Numerical Modeling of Insensitive High-Explosive Initiators...NUMERICAL MODELING OF INSENSITIVE...

32
LA-8437-MS b Informal Report - ~*z... - f . . C6 .- C 0 > .- Cn L a) > .- S Numerical Modeling of Insensitive High-Explosive Initiators 1 DO MM’ CIRCULATE I I PERMANENT RETENTiON REQUIREDBY CONTRACT -r L%% LOS ALAMOS SCIENTIFIC LABORATORY Post Off ice Box 1663 Los Alamos, New Mexico 87545

Transcript of Numerical Modeling of Insensitive High-Explosive Initiators...NUMERICAL MODELING OF INSENSITIVE...

  • LA-8437-MS bInformal Report -~*z... - f

    .

    .

    C6.-C0

    >.-CnLa)>.-

    S

    Numerical Modeling of

    Insensitive High-Explosive Initiators

    1

    DO MM’ CIRCULATE

    I

    I

    PERMANENT RETENTiON

    REQUIREDBY CONTRACT—

    -r

    L%%LOS ALAMOS SCIENTIFIC LABORATORYPost Off ice Box 1663 Los Alamos, New Mexico 87545

  • An Affirmative Action/~ual Opportunity ~mploycr

    .

    .

    ThisreportwasnoteditedbytheTechnicalInformationstaff.

    Thit report was prepared as an account of work sponsofcdby the United States Government. Neither (he UnitedStates nor tbe United States Department of Energy, norany of Ihek employees. make% any warranty, express orimplied, or assumesany Iesal Iiabitity or respontibtiity forthe accuracy, comple[en~ or usefulness of any infor-mation, apparatus, product, or p:ocess disclosed, or rcpre-scntt that its ux would not infringe privately owned rights.Reference herein to” any specific commercial product,proce=, or xrvice by trade name, mark, manufacturer, orotherwise, doe; not necesaily constitute or imply itsendoncment, recommendation, or favoring by the UnitedStstes Government or any zgency thereof. The views andopinions of authors expre!scd herein do not nccemrilyNate or reflect those of the United Slates Governmentor any agency thexeof,

    .

    UNITCO STATCSDEPARTMENT OF CNIZSt~V

    CONTRACT W-740 B-CNG. 36

  • LA-8437-MS

    Informal Report

    UC-45Issued: July 1980

    -.

    Numerical Modeling of

    Insensitive High-Explosive Initiators

    Charles L. Mader

    ..

    ..

    . . . ..-

    . . —..

    ,... . .. . ,-

    *.. . . ... .

    ..—,. .

    , “, r- - —,. --, -.- —---- -:m ; -...._,_ . . ..

    —,--..

    -- . .. . -s . . . ,-,A:: = ~.—s. . . ..e7--.- --tie ,,G< ,.’!-, -. .- s.. r---- . . . . . . .

    . . . . .- -------------------- ------ -.-. — —. .

    ------ .-. ..—. .. —...- . . . ..

    . ,- ,--.-—,,------- --...,-. . ------ ..-

    ..

    . .

    -! 7----- -. .,’

    ..-

    .. ..

    ...”

    . . .

    —, .-r

    ,..-.,.—.

    -.-

    ABOUT THIS REPORTThis official electronic version was created by scanning the best available paper or microfiche copy of the original report at a 300 dpi resolution. Original color illustrations appear as black and white images.

    For additional information or comments, contact: Library Without Walls Project Los Alamos National Laboratory Research LibraryLos Alamos, NM 87544 Phone: (505)667-4448 E-mail: [email protected]

  • NUMERICAL MODELING OF INSENSITIVE HIGH-EXPLOSIVE INITIATORS

    by

    Charles L. Mader

    ABSTRACT

    The initiation of propagating detonation in PBX-9404,PBX-9502, and x0219 by hemispherical initiators of PBX-9404,1.8 g/cm3TATB, and X0351 is described numerically, usingthe two-dimensional Lagrangian code 2DL and the Forest Firerate to describe the heterogeneous explosive shock initia-tion process.

    1. INTRODUCTION

    The initiation of propagating, diverging detonation is usually accomplishedby small conventional initiators; however, as the explosive to be initiated be–comes more shock insensitive, the initiators must have larger diameters (>2.5 cm)to be effective.

    Travisl has used the I*C camera to examine the nature of the diverging det-onation waves formed in PBX-9404 (94/3/3 HMX/nitrocellulose/Tris-&chloroethylphosphate), X0290 or PBX-9502 (95/5 TATB/Kel-F at 1.894 g/cm3), and X0219 (90/10TATB/Kel F at 1.914 g/cm3) by hemispherical initiators. The geometries of theinitiators were (1) a 6.35–mm-radius hemisphere of PBX-9407 (94/6 RDX/Exon at1.61 g/cm3) surrounded by a 6.35-mm-thick hemisphere of PBX-9404, (2) a 6.35-mm-radius hemisphere of 1.7-g/cm3 TATB surrounded by a 19.05-mm-thick hemisphere of1.8-g/cm3 TATB, or (3) a 16-mm-radius hemisphere of X0351 (15/5/80 HMX/Kel-F/TATBat 1.89 g/cm3).

    We have numerically examined systems with similar geometries by use of thehydrodymmic code 2DL2and the Forest Fire rate2 to describe the shock initiationprocess.

    II. NUMERICAL MODELING

    The two-dimensional reactive Lagrangian hydrodynamic code 2DL2 was used todescribe the reactive fluid dynamics. The Forest Fire2 description of hetero-geneous shock initiation was used to describe the explosive burn. The HOM equa-tion of state and Forest Fire rate constants for PBX-9502, PBX-9404, and X0219were identical to those described in Ref. 2. The Pop plots are shown in Fig. 1

    1

  • and the Forest Fire rates in Fig. 2. The BKW detonation product equation-of-state constants for X0351 and for 1.7- and 1.8-g/cm 3 TATB are given in Tables I,II, and III.

    The calculations were done in cylindrical geometry with Lucite confinementrather than the air confinement present in the experimental study. The Lucite

    confinement prevents the mesh distortion that can be fatal to Lagrangian calcula-tions.

    The central 6.35-mm region of the detonator is initially exploded, whichinitiates the remaining explosive in the detonator using a C-J volume burn. For

    any given mesh size and time step, the viscosity must be adjusted to give a peakpressure at the detonation front near the effective C-J pressure. The parameters

    used are as follows.

    Calculation Mesh Size Time Step ViscosityInitiator Acceptor (cm) (lls) Coefficient

    PBx-9407/PBx-9404 PBX-9404 0.05 0.02 4.0PBx-9407/PBx-9404 PBX-9502 0.05 0.02 5.0PBx-9407/PBx-9404 X0219 0.05 0.02 4.21.7 TATB/1.8 TATB PBX-9502 0.1 0.02 5.0X0351 PBX-9502 0.1 0.02 5.0

    The pressure and mass fraction contours are shown for a PBX-9404 hemisphereinitiating PBX–9404 in Fig. 3, PBX-9502 (X0290) in Fig. 4, and x0219 in Fig. 5.The experimental and calculated position of the leading wave as a function ofdistance from the origin is shown in Fig. 6.

    The burn can become unstable when it turns a corner. The instability isapparently numerical because it can be eliminated by using an average of nearbycell pressures for the Forest Fire burn rather than the individual cell pressure.

    The pressure and mass fraction contours are shown in Fig. 7 for the 1.8-g/cm3 TATB hemisphere initiating PBX-9502. Veqr little undecomposed explosive wasobserved experimentally, in agreement with the calculated results. The contoursare shown in Fig. 8 for an X0351 hemisphere initiating PBX-9502. The experimen-tal and calculated regions of partially decomposed PBX-9502 are shown in Fig. 9.

    III. CONCLUSIONS

    The initiation of propagating detonation in sensitive (PBX-9404) and insen-sitive (PBX-9502 and X0219) explosives by hemispherical initiators can be de–scribed numerically using the two-dimensional Lagrangian code 2DL and the ForestFire rate. Large regions of partially decomposed explosive occur even when in-sensitive explosives are initiated by large initiators.

    REFERENCES

    1. James R. Travis, Los Alamos Scientific Laboratory, personal communication.

    2. Charles L. Mader, Numerical Modeling of Detonations (University of CaliforniaPress, Berkeley, 1979).

    2

  • .“.-

    .-

    !D

    .

    WI-J

    r-o0000

    35

    00Irlo6:Ynl.

    .lo

    -

    --00,!li-

    3

  • ,-Ui

    000

    000&00000z01-PIi

    00‘i0000W)iiiIz!

    0..

    00

    j

    vc-..–.”.—.–.:.–.

    ....–.–...:–...

    ..

    ..

    8’-mm*ms

    -IU

    -*-*FS

    -=-

    IIJI

    -*-.r-

    ~Ii1!si2(

    u!

    m

    N

    1!v..

    0v5?

    9!x

    4

  • nuco0

    ..

    ..

    ..

    000-000

    0u000000iij

    00

    0u00000t-0ar-fur-

    010

    0u00000tuii1?IN

    lysym~

    -nlar-1-unlvl-o

    ,80,

    .-..—

    .—...

    ..

    ..

    ..

    ..

    --M

    IU-IU

    *-fu

    mm

    -of-o

    0011

    Knlfu

    --r*m

    m--m

    rnini

    --

    5

  • nu~CJ

    H

    ..

    ..

    ..

    .00000000

    nln

    lluru

    rulu

    nllll

    ..

    ..

    ..

    ..

    --------

    Mm

    mm

    mm

    rom

    00000000.

    ..

    ..

    ..

    .

    Iulu

    rum

    nlfu

    lum

    ..

    ..

    ..

    mw

    tmm

    mn#&

    &

    -----___

    0000000011181,

    ,,

    6

    .1’“.

  • -“.

    “.

    Illoao

    HH

    u!

    muiimsba!’y

    ru0.

    Ln

    vxzo

    mY

    x

    00L00.4

    0000●w0

    ..

    .00

    c)-

    00L!

    0..00-0

    +10000

    7

  • 000

    00

    0“00

    00

    0c

    00

    00

    0

    u00000ii:r-0

    u0000001-

    mzm

    u00000GG%Ii

    HH

    ..

    ..

    ..

    ..

    ..

    ..

    ..

    ...

    ...—

    ..

    ...

    ..-

    Ml

    -o

    -o-?-m

    -mm

    ul-n

    l-O-m

    nJ

    -b

    ’ou

    ,1

    8

    :u-l

    nl--w

    lfum

    Oi

    r

    x

    ..

    8

  • --------

    --------

    ------

    20

    00

    00

    00

    00

    00

    00

    00

    00

    00

    00

    0-,,

    ,,,,

    ,,,,,,

    ,,,,

    ,!,,

    ,,

    Iiu0

    ..

    ..

    ..

    .—

    .—..

    ..

    .t-

    “liPiw

    irA9”3”K

    itikuiuiL9totoPFFPPr-

    Poooooooo;o

    Ii

    m

    mr

    Ii

    HH

    Ii1

    -m

    80000000000

    ,

    ml

    Si,

    ..

    9

  • 00A0..

    ..

    t-uooo

    .

    tn-

    ..

    00~

    ..

    ..

    Om

    oo

    %-

    U

    00A0.

    ..

    .000-

    —-

    vrtj

    “EJ

    \Mm0L00000000000

    w.

    00●u

    .O.

    00-0

    f+Pi0P-1HHH

    0“>h0

    0“0i0000000:Wxii0

    .7tn

    lnmuii

    ni

    (n

    m

    +i!“...

    .

    10

  • k,uuam00u000000:0rt-&

    00w00000zKra

    00u00000zmr-mG

    <>0L.J0000:u-l6ma

    00u00000rt=0r.-rIi

    00u000000r-U-1

    :m

    ‘.8

    LA

    z>Ill0w00000Pzi’..

    .-m

    -0-O

    -al-fu-m

    am

    -m-o

    -mm

    -p0

    WI

    ,,,

    0“.-

    -nJ-w

    l-

    m-

    m-m

    -W).

    .wl-

    r.1-l-tJU

    OZ

    IZE

    Z2000

    000000000000000

    .*.*****

    ..

    ..

    ..

    ..

    ..

    ...*.

    I.

    0

    m-x

    u!

    nJ

    is

    .--.

    2

  • ——

    ——

    .—

    ——

    ——

    ——

    ——

    .--——

    ...-—

    ——

    ——

    ——

    ——

    ——

    —-0000000

    0000000000000

    --0—

    .,,,

    ,!,,,

    ,!,,,

    ,,!O

    ,.!

    HHH

    z................................

    u--mm

    mrr~

    wu21D

    totowm

    motnm

    om

    om

    ---------

    Xrw

    lr.lmm

    mm

    mm

    Wlm

    l.lu

    ll’u

    nln

    lt-ulll

    I-ul-u

    lutu

    flllwm

    mm

    wlm

    ~~

    ~~

    0000000000000000000000

    00000000000,.,

    ..

    ..

    ..

    ....*

    ..

    ..

    ..

    ..*.**

    ●*****

    ●**

    id.

    ..

    ..

    ...

    ..

    ..

    ..

    ..

    ..

    ..

    ..

    ..

    ..

    ..

    ..

    .+1

    1Jim

    ----------m

    cnmm

    r-I-w

    ktimrfunlm

    IUII.IIU

    NN

    W

    ....

    12

  • ..

    ‘..

    1.00

    I I I I I I 1 I I I I I I I I 1 I I I I I

    -y%) “+3 -0 ~up” \ “@ @go@

    0.10 –

    .

    .

    0.011 J j I I I I I I I I 110

    I 1 1 1 1 1 1 I1IJannWV

    Pressure (kbar)1000

    Fig. I.The distance of run to detonation as a function of the shock pressure.

    23

  • 103E I

    102:

    10’ =

    100=

    10-1yPBX-9404

    [0-2 ~

    Comp. B

    10+10 100 1000

    ..

    ..

    Pressure ( kbar)

    Fig . 2

    The Forest Fire decomposition rates as a function of shock pressure.“.

    14

  • .-.

    “,

    4

    2

    0

    -2

    4

    2

    0

    :2

    4

    2

    0

    -2

    4.

    2.

    0.

    -2.

    4

    2

    0

    -2.

    Fig. 3.The pressure and mass fraction contours at various times for’a hemispherical ini-tiator of 6.35-mm-radius PBX-9407 surrounded by 6.35 mm of PBX-9404 initiatingPBX-9404. The pressure contour interval is 50 kbar and the mass fraction con--tour is 0.1.

  • 4

    2

    0

    .2

    2.

    4.I I I I I 1 I I

    o.

    1 1 1 1 I 1 1 1 1 I 1

    15JCI Js[-2.0 2. /.

    4.

    2.

    0.

    -2

    4.

    2.

    0.

    -2.D. 2. 4. 6.

    4.

    2.

    0.

    -2.0.2. 4. 6.

    4.

    2.

    0.

    -2.

    .-.

    *.

    Fig. 3. (cent)

  • Fig. 4.

    4.I I I

    MAb-FRhC~IO 1

    Iiiiiiiii!i!lL , 1

    2.

    _#

    0.

    .Z.

    4.

    2.

    0.

    -2.

    The pressure and mass fraction contours-at various times for a hemispherical ini-tiatorof 6.35-mm-radius PBX-9407 surrounded by 6.35 mm of PBX-9404 initiatingPBX-9502 (x0290). The pressure contour interval is 50 kbar and the mass frac-tion contour is 0.1.

    17

  • 1 I II

    I

    I.?

    o

    -2

    4

    2

    0

    -2

    4,

    2.

    0. I 1 I I I I 1 ( I b

    J-++yjvjjI I

    t , 1 1 1-’

    -2. ~ , 1 I 1 I I 1 1----

    10, 2, 4.

    16.

    4.

    2.

    0.

    -2”0. 2. 4. 6.

    I

    Fi~. 4. (cent)

    18

  • -.

    -..

    4.

    2.

    0.

    .7-.0. 2. i. 6.

    4.

    2.

    0.

    -2.

    4.

    2.

    0.

    -2.02. 4. 6.

    4.

    2.

    0

    .

    -2

    Fig. 5.

    The pressure and mass fraction contours at various timesitiator of 6.35-mm-radius PBX-9407 surrounded by 6.35 mmx0219 . The pressure contour interval is 50 kbar and theis 0.1.

    for a hemispherical in-of PBX-9404 initiatingmass fraction conto~r

    19

  • 4.

    2.

    0.

    -zo. 2. 4. 6.

    4.

    2.

    0.

    -2

    2.

    0

    1 I , ,

    -2. In. 2. 4. /.

    ..

    -.

    Fig. 5. (cent)

    20

  • . .

    --

    0

    10

    20

    Im

    1 I I I

    \

    \\m A

    A PBX-9502\\

    A A A+-

    - — — — ——--

    A Travis PBX -9502 data

    ● Travis X0219 data

    --- Calculated PBX-9502

    — Calculated X0219—

    L10 20 30 40 50 60

    Distance From Origin (mm )

    Fig. 6.experimental and calculated position of the leading wave fromtop of the explosive block as a function of the distance of the

    leading front of the wave from the origin.

    21

  • 2.

    0.

    4.

    _ -.I I I I I I I t

    2. 5- *S-2.* L

    0. 2. 4. 6.

    4.

    IPI

    1 1 I I 1 1

    2

    0

    4. 0 &ls-z.b Ln. 2. 4. 6.

    4.

    ‘M-t-hi

    0.

    .?.Fig. 7.

    4.

    2.

    0.

    .2.0.2. 4. 6.

    4.

    2.

    0.

    4“0. 2. 4. 6.

    . .

    ‘“ I

    The pressure and mass fraction contours-at various times for a hemispherical ini-

    tiator of 6.35-mm-radius TATB at 1.7 g/cm3 surrounded by 19.05 mm of TATB at 1.8g/cm3 initiating PBX-9502. The pressure contour interval is 50 kbar and the massfraction contour is 0.1.

    22

  • 4.

    2.

    0.

    .2

    Fig. 7. (cent)

    23

  • 6

    4

    2

    0

    -2

    b.

    4.

    r

    I I 1

    \ di t 1 1 I

    t

    2.

    0,

    I

    -2$3. 0 b

    2. 4. 6.

    6.

    4.

    2.

    0.

    -2.02. 4. 6.

    Fig. 8.The pressure and mass fraction contours at varioustiator of 16-mm-radius X0351 initiating PBX-9502.is 50 kbar and the mass fraction contour is 0.1.

    2. 4. 6.

    times for a hemispherical ini-The pressure contour interval

    . .

    -.

    24

  • I

    6.

    4.

    2.

    0.I

    I 1 I I I 1 1 1 1 I I 1 I

    15]o#lsl.2.0 I

    2, 4. 6.

    6

    4.

    2.

    0.

    -2.

    6

    4

    2.

    0.

    -2

    Fig. 8. (cent)

    25

  • 6

    4

    2

    o.

    -2.0. 2. 4. 6.

    6.y

    If

    Mliss F~ACT-I(NI

    4. ,

    2.

    0.

    I/ -

    .2.: 2. 4. 6.

    4.+1 1 1 1 1 1 1 1 I

    1 I L r t

    I 1 1 11 I

    o.

    -2.J-1 1 1 1 1 1 , , , , , 4

    0. 2. 4. 6.

    Fig. 8. (cent)

    ..

  • 40

    30

    20

    10

    ‘X0351

    /

    Booster

    ● I● ✌✏

    -

  • .. .

    .

    .. Rinwd m the Untttxl SKUcx or America. A-sbhlc rfomtiitbml Technical Information .Scrwwc

    1:S Department d Conmcrw

    S28S Purl ROW! Road

    Sprit@_a4d. VA 22161

    MiaoIichc S3.00

    001425 4.00 ,~6.150 7.2s 25 I -275 10.75 376400 13.@2 sol .s25 1S.2S026450 4.S0 151.175 Hal 276-300 11.00 40!425 13.25 s~~.~so 1s.500s147s 5.25 17&mo 9.00 301.32s 11.7s 426450 14.00 S51-S75 16..25076-100 6.00 201-?2s 9.2s 326.350 12.011 45147s 14.s0 576-faL7 16.S0101-125 6.50 226.2.$0 9.50 \sl-37s I~..so 476.500 1500 601.UII

    Nolc Add S1.50 for cwh x!dttiond 100.IwL’ inucrncnt I’rom 601 p.m. up

  • ..

    .