Numerical Methods and Optimization: introduction · Numerical Methods and Optimization:...

12
Numerical Methods and Optimization: introduction Mauro Passacantando Department of Computer Science, University of Pisa [email protected] Numerical Methods and Optimization Master in Computer Science – University of Pisa M. Passacantando Numerical Methods and Optimization 1 / 12

Transcript of Numerical Methods and Optimization: introduction · Numerical Methods and Optimization:...

Numerical Methods and Optimization:introduction

Mauro Passacantando

Department of Computer Science, University of [email protected]

Numerical Methods and OptimizationMaster in Computer Science – University of Pisa

M. Passacantando Numerical Methods and Optimization 1 / 12 –

Course Organization

I 1 course (12 cfu/ects)I 1 programI 1 examI 2 lecturers

Federico Poloni (Numerical methods)

Dipartimento di InformaticaLargo B. Pontecorvo 3, PisaBuilding C, 2nd floor, room 343Tel. 050 2213143, e-mail: [email protected] hours: Still to decide

Mauro Passacantando (Optimization)

Dipartimento di InformaticaLargo B. Pontecorvo 3, PisaBuilding C, 2nd floor, room 323Tel. 050 2212756, e-mail: [email protected] hours: Wednesday 9:00-11:00

M. Passacantando Numerical Methods and Optimization 2 / 12 –

Information

Course Schedule

I Tuesday 9:00-11:00 room L1

I Tuesday 16:00-18:00 room H-lab

I Wednesday 11:00-13:00 room C (except September 21: room C1)

I Thursday 11:00-13:00 room C

Web page

https://elearning.di.unipi.it/course/view.php?id=77

ExamWritten and oral exam

M. Passacantando Numerical Methods and Optimization 3 / 12 –

Bibliography

I S. Boyd, L. Vandenberghe, Convex optimization, Cambridge University Press, 2004(available on http://web.stanford.edu/~boyd/cvxbook/)

I M.S. Bazaraa, H.D. Sherali, C.M. Shetty, Nonlinear programming: theory andalgorithms, Wiley & Sons, 2006 (Chapters 1-6, 8-9)

I J. Nocedal, S. Wright, Numerical Optimization, Springer Series in OperationsResearch and Financial Engineering, 2006 (Chapters 1-3, 5, 12, 16, 17)

I A.R. Conn, K. Scheinberg, L.N. Vicente, Introduction to Derivative-FreeOptimization, SIAM series on Optimization, 2009 (Chapters 1, 7)

I J. Demmel, Applied Numerical Linear Algebra, SIAM press, 1996

I L. N. Trefethen, D. Bau, Numerical Linear Algebra, SIAM press, 1997

M. Passacantando Numerical Methods and Optimization 4 / 12 –

Syllabus

I Linear algebra and calculus background

I Unconstrained optimization and systems of equations

I Direct and iterative methods for linear systems

I Iterative methods for nonlinear systems

I Numerical methods for unconstrained optimization

I The linear least-squares problem

I Iterative methods for computing eigenvalues

I Constrained optimization and systems of equations

I Lagrangian duality

I Numerical methods for constrained optimization

I The fast Fourier transform

I Applications: regression, parameter estimation, approximation and datafitting, support vector machines, image and signal reconstruction

I Software tools for numerical and optimization problems (Matlab).

M. Passacantando Numerical Methods and Optimization 5 / 12 –

Support Vector Machines for Data Classification

Given training data in different classes (labels known)

Predict test data (labels unknown)

Examples:

I handwritten digits recognition

I spam filtering

I credit card fraud detection

I marketing

I medical diagnosis

I image processing

I . . .

M. Passacantando Numerical Methods and Optimization 6 / 12 –

Support Vector Machines for Data Classification

Given two sets A,B ⊂ Rn (training set).Assume that A and B are linearly separable, i.e., there is an hyperplaneH = {x ∈ Rn : wTx + b = 0} such that

wTx i + b > 0 ∀ x i ∈ AwTx j + b < 0 ∀ x j ∈ B

0 1 2 3 4 5 6 7 8 9 100

1

2

3

4

5

6

7

8

9

10

Test data x :decision function f (x) = sign(wTx + b)

M. Passacantando Numerical Methods and Optimization 7 / 12 –

Support Vector Machines for Data Classification

Many possible choices of w and b. Which hyperplane do we choose?

0 1 2 3 4 5 6 7 8 9 100

1

2

3

4

5

6

7

8

9

10

0 1 2 3 4 5 6 7 8 9 100

1

2

3

4

5

6

7

8

9

10

M. Passacantando Numerical Methods and Optimization 8 / 12 –

Support Vector Machines for Data Classification

0 1 2 3 4 5 6 7 8 9 100

1

2

3

4

5

6

7

8

9

10

0 1 2 3 4 5 6 7 8 9 100

1

2

3

4

5

6

7

8

9

10

We look for the separating hyperplane with the maximum margin of separation.This problem can be modeled as

min ‖w‖2wTx i + b ≥ 1 ∀ x i ∈ AwTx j + b ≤ −1 ∀ x j ∈ B

M. Passacantando Numerical Methods and Optimization 9 / 12 –

Low-rank approximation with the Singular Value Decomposition

ProblemGiven a matrix M ∈ Rn×m, approximate it with the product of a ‘tall thin’A ∈ Rn×k and a ‘fat large’ B ∈ Rk×m (k � n,m):

≈ ·

minA,B‖M − AB‖

Why?

I Reduce data dimensionI Reveal features

Applications:

I Text and data miningI Neural networksI Web searchI Graph / community analysis. . .

M. Passacantando Numerical Methods and Optimization 10 / 12 –

An example

An example easy to visualize: image compression by approximation.Black/white image: matrix with color intensities ∈ [0, 1].

Original (512× 512) k = 1 k = 10

k = 25 k = 50 k = 100

M. Passacantando Numerical Methods and Optimization 11 / 12 –

Eigenvalue problems

ProblemGiven a matrix M ∈ Rn×m, approximate it with the product of a ‘tall thin’A ∈ Rn×k and a ‘fat large’ B ∈ Rk×m (k � n): minA,B ‖M − AB‖.

Optimal A, B can be obtained from eigenvectors of MTM and MMT .

I How can we solve this problem?

I What if M is very large and sparse?

I What if M has some special structure?

I Can we avoid forming MTM and MMT ?

I Is the solution numerically stable, or should we expect large errors?

M. Passacantando Numerical Methods and Optimization 12 / 12 –