Numerical Analysis of Critical Performance Parameters of the Sulzer Hexis Fuel Cell Stack

17
Numerical Analysis of Critical Performance Parameters of the Sulzer Hexis Fuel Cell Stack Pascal Held, Thomas Hocker CCP – Center for Computational Physics ZHW – University of Applied Sciences Winterthur Winterthur, Switzerland Jeannette Frei, Jan Hoffmann Sulzer Hexis Ltd. Winterthur, Switzerland

description

Numerical Analysis of Critical Performance Parameters of the Sulzer Hexis Fuel Cell Stack. Pascal Held, Thomas Hocker CCP – Center for Computational Physics ZHW – University of Applied Sciences Winterthur Winterthur, Switzerland Jeannette Frei, Jan Hoffmann Sulzer Hexis Ltd. - PowerPoint PPT Presentation

Transcript of Numerical Analysis of Critical Performance Parameters of the Sulzer Hexis Fuel Cell Stack

Page 1: Numerical Analysis of Critical Performance Parameters of the Sulzer Hexis Fuel Cell Stack

Numerical Analysis of Critical Performance Parameters of the

Sulzer Hexis Fuel Cell Stack

Pascal Held, Thomas HockerCCP – Center for Computational Physics

ZHW – University of Applied Sciences WinterthurWinterthur, Switzerland

Jeannette Frei, Jan HoffmannSulzer Hexis Ltd.

Winterthur, Switzerland

Page 2: Numerical Analysis of Critical Performance Parameters of the Sulzer Hexis Fuel Cell Stack

Fuel Cells - Science and Technology 2004

Introduction

- Simulation- Software validation

- Experimental setup- Hardware development

- Program support- GUI development

• The Project is supported by the Swiss Commission for Technology and Innovation (KTI)

• 1998 the CCP starts with SOFC simulation

• Goal: support of the HEXIS SOFC development with “virtual experiments”

• Partners:

Page 3: Numerical Analysis of Critical Performance Parameters of the Sulzer Hexis Fuel Cell Stack

Fuel Cells - Science and Technology 2004

Contents

• Environment

• Volume Averaging Method

• Model

• Sensitivity Analysis

• Results

Page 4: Numerical Analysis of Critical Performance Parameters of the Sulzer Hexis Fuel Cell Stack

Fuel Cells - Science and Technology 2004

Hexis Fuel Cell SystemSystemHXS 1000 Premiere

Stack

Fuel

Airafter burning zone

electrolyte(YSZ-ceramic)

Current collector (MIC)

Cell

Page 5: Numerical Analysis of Critical Performance Parameters of the Sulzer Hexis Fuel Cell Stack

Fuel Cells - Science and Technology 2004

Volume Averaging Method

EffectiveParameters

Page 6: Numerical Analysis of Critical Performance Parameters of the Sulzer Hexis Fuel Cell Stack

Fuel Cells - Science and Technology 2004

Vertical Temperature Gradient

Page 7: Numerical Analysis of Critical Performance Parameters of the Sulzer Hexis Fuel Cell Stack

Fuel Cells - Science and Technology 2004

Horizontal Temperatur Gradient

Page 8: Numerical Analysis of Critical Performance Parameters of the Sulzer Hexis Fuel Cell Stack

Fuel Cells - Science and Technology 2004

VAM Applied to SOFC

RepetitiveMIC-Element

MIC-Structure

•keff

eff

eff

eff(T,jq,xH2,...)

Effective ParametersSimulation of Transport Phenomena

• Reduced Geometric Complexity• Less computational effort

2D Effective Model:

Page 9: Numerical Analysis of Critical Performance Parameters of the Sulzer Hexis Fuel Cell Stack

Fuel Cells - Science and Technology 2004

Input:

Incorporation in 2D-Model

Nubs/element -Sigma -Kappa -

Permeability -Diffusion -

Database: multi.sfc

MIC -Gas Properties -

Database:reaction.sfc

Reaction prop. -

el. Cond.

Reaction

th. Cond.z-direction

th. Cond.x-direction

Perm

Diffusionnubs

Diffusion

Output:

effective Parameters

for 2D-Model

Solving3D withdetails

Comparing 3D with and without details

Page 10: Numerical Analysis of Critical Performance Parameters of the Sulzer Hexis Fuel Cell Stack

Fuel Cells - Science and Technology 2004

Parameter Variation

Original Direct Hole

Different MIC-Designs Contact Resistance

Manganite

RCont,Cath

Nubs MIC

Page 11: Numerical Analysis of Critical Performance Parameters of the Sulzer Hexis Fuel Cell Stack

Fuel Cells - Science and Technology 2004

Sensitivity Analysis

• Definition:Investigation into how projected performance varies along with changes in the key assumptions on which the projections are based.

• Goals:Identify parameters of major importance toa) find out if more accurate measurements requiredb) concentrate on parameters with optimization potential

Page 12: Numerical Analysis of Critical Performance Parameters of the Sulzer Hexis Fuel Cell Stack

Fuel Cells - Science and Technology 2004

Procedure

• Define upper and lower boundaries for input parameters (input parameters: material properties, geometries, operation condition)

• Evaluate output variables for all possible combinations of input parameters

• Statistical analysis of output variables

Page 13: Numerical Analysis of Critical Performance Parameters of the Sulzer Hexis Fuel Cell Stack

Fuel Cells - Science and Technology 2004

Input VariablesExample:• Free Volume in Anode/Cathode (Diff_x)• Ion conductivity of Electrolyte (SigmaTKx)• Contact Resistance (Contact_x)

DesignEase Screenshot

Page 14: Numerical Analysis of Critical Performance Parameters of the Sulzer Hexis Fuel Cell Stack

Fuel Cells - Science and Technology 2004

Required Simulations

DesignEase Screenshot

Follows 2n-law

Page 15: Numerical Analysis of Critical Performance Parameters of the Sulzer Hexis Fuel Cell Stack

Fuel Cells - Science and Technology 2004

Output Variables

• According to optimization goals

For example:• Area specific

resistance (ASR)• Temperature

Page 16: Numerical Analysis of Critical Performance Parameters of the Sulzer Hexis Fuel Cell Stack

Fuel Cells - Science and Technology 2004

Results

Parameter F (contact resistance cathode) has a major impact on overall performance

Page 17: Numerical Analysis of Critical Performance Parameters of the Sulzer Hexis Fuel Cell Stack

Fuel Cells - Science and Technology 2004

Further Information

CCP-ZHW http://www.ccp.zhwin.ch

Sulzer HEXIS Ltd. http://www.hexis.ch

NM GmbH http://www.nmtec.ch

NMSeses NMSeses (public domain version) with reduced capabilities is available under http://www.nmtec.ch