Nucleic acid mass spectrometry - UAB spectrometry Stephen Barnes, PhD [email protected] BMG/PHR 744...

12
2/2/2011 1 Nucleic acid and nucleotide mass spectrometry Stephen Barnes, PhD [email protected] BMG/PHR 744 02-02-11 class Synopsis MALDI Sample prep UV laser SNPs, multiplexing IR laser (large DNA/RNA) ESI Bases Nucleosides Nucleotides

Transcript of Nucleic acid mass spectrometry - UAB spectrometry Stephen Barnes, PhD [email protected] BMG/PHR 744...

2/2/2011

1

Nucleic acid and nucleotide mass spectrometry

Stephen Barnes, PhD

[email protected]

BMG/PHR 744 02-02-11 class

Synopsis

• MALDI

– Sample prep

– UV laser

• SNPs, multiplexing

– IR laser (large DNA/RNA)

• ESI

– Bases

– Nucleosides

– Nucleotides

2/2/2011

2

UV-MALDI TOF of nucleic acids

• Limited in the number of residues (up to 70 nt)

12 nt Antisense Oligo DNA

Ferulic acid as the matrix

254 nm laser

Keough et al., 1996

Single nucleotide polymorphisms (SNPs)

2/2/2011

3

Multiplexing concept for SNPs

ATCTGAAACGGTCACAGACCTGGABiotin TTTTTTTTT

GATCTGAAACGGTCACAACCTGGCBiotin TTTTTTTTTTTT

TCTGAAACGGTCACAACCTGGGAGBiotin TTTTTTTTTTTTTT

D massesAdenine 135.13 Adenosine 251.242 - 24.025 -15.999 - 9 .013Cytosine 111.10 Cytidine 227.217 -24.025 - -40.024 -15.012Guanine 151.13 Deoxyguanosine 267.241 15.999 40.024 - 25.012Thymine 126.11 Deoxythymidine 242.229 - 9.013 15.012 -25.012 -

Multiplexed MALDI-TOF spectra

Mengel-Jørgensen et al., Anal Chem 2004

17-plex analysis

2/2/2011

4

Infra-red MALDI-TOF of DNA

Berkenkamp et al., Science 1998

300 fmol, 1 shot

300 amol, 30 shots

516 nt PCR product

Pptd with EtOH from 2 M ammonium acetate

IR laser at 2.4 mm

Sample in glycerol

IR MALDI of Nucleic acids

Pptd with EtOH from 2 M ammonium acetate

IR laser at 2.4 mm

Sample in glycerol

oligo

Berkenkamp et al., Science 1998

2/2/2011

5

Fundamentals of nucleic acids analysis by ESI-mass spectrometry

• Analysis as bases, nucleosides

– No different from other small molecules

– Bases are sufficiently hydrophobic to be analyzed by reverse-phase LC-MS

• The addition of ribose or deoxyribose not a problem

• Detected in the positive ion mode

• Nucleotides are more difficult

– The phosphate group reduces net charge

– Na+ salts cause multiple ion states

LC-MS analysis of nucleosides

• There are nucleoside drugs

– e.g., gemcitabine (2,2’-diflurocytidine)

– Xu et al., J. Chromatogr B (2004)

• LC-MS – negative ESI –m/z 262

– Honeywell et al., J Chromatogr B (2007)

• LC-MRM-MS – positive APCI –m/z 264/112

– Bowen et al., J Chromatogr B (2009)

• uPLC-MRM-MS – dansyl derivatives – 1.5 min

2/2/2011

6

Measuring gemcitabine in DNA

Wickremsinhe et al., Anal Chem 2010

Nucleosides

• Nucleosides are not just adenosine, cytosine, guanosine or uridine

– “Different strokes for different folks”

2/2/2011

7

More hydrophobic nucleosides

Hydrophilic nucleosides

2/2/2011

8

Nucleotides

• Important to convert them to ammonium, not Na+ salts– DNA/RNA reprecipitated from 2 M ammonium

acetate by alcohol at -20oC

• Nucleotides can be analyzed by LC-MS using a hydrophobic counter ion– E.g., tetrabutyl ammonium acetate (TBAA)

• Both NH4+ and TBAA salts dissociate in the

ESI interface

CTP and ATP derivatives

Crauste et al., 2009

2/2/2011

9

LC-UV of NTPsSolvent A: Water – 4 mM hexylammonium and diethylammonium acetateSolvent B: Acetonitrile – water (50/50)

Crauste et al., (2009)

Sample prep for NTPs from cells

Washed cells extracted with 60% aqueous methanol and kept at -20oC overnight

Extract centrifuged at 13,200 xg for 3 minutes at RT

Supernatant diluted in 60% aqueous methanol and passed over a weak anion exchange column.

Column washed with 50 mM ammonium acetate, pH 4.5

NTPs eluted with methanol-water-ammonia (24:5:1)

Evaporated to dryness and reconstituted in LC starting buffer.

Crauste et al., (2009)

2/2/2011

10

The NTPs were separated by reverse-phase LC using hexylamine as the hydrophobic ion pair reagent and a graphitic carbon phase (HyperCarb™)

The left column is the MRM signal with no added NTP

The right hand column is the signal from a spike of 300 ng/ml for AraCTP, 30 ng/ml for CTP and deoxyCTP, 4000 ng/ml for BrATP

Crauste et al., (2009)

High energy intermediates

• Hexose and triose phosphates as well as Krebs cycle intermediates

– These are very hydrophilic compounds

• Do not separate well on a reverse-phase column

– Good separation in tributylammonium and better in tetrabutylammonium acetate

• “Naked” molecular ions

2/2/2011

11

Ion-pair LC-MRM-MS of energy intermediates

Glycolytic intermediates by LC-MS

G6P/F6P

2/2/2011

12

Suggested reading (ESI)

• Crauste C, Lefebvre I, Hovaneissian M, Puy JY, Roy B, Peyrottes S, Cohen S, Guitton J, Dumontet C, Perigaud C. J Chromatogr B Analyt Technol Biomed Life Sci. 2009;877:1417-1425.

• Cantara WA, Crain PF, Rozenski J, McCloskey JA, Harris KA, Zhang X, Vendeix FA, Fabris D, Agris PF. Nucleic Acids Res. 2011;39(Database issue):D195-201.

• Wickremsinhe ER, Lutzke BS, Jones BR, Schultz GA, Freeman AB, Pratt SE, Bones AM, Ackermann BL. Anal Chem. 2010;82:6576-6583.

• Xu Y, Keith B, Grem JL. J Chromatogr B Analyt Technol Biomed Life Sci. 2004;802:263-270.

• Honeywell R, Laan AC, van Groeningen CJ, Strocchi E, Ruiter R, Giaccone G, Peters GJ. J Chromatogr B Analyt Technol Biomed Life Sci. 2007;847:142-152.

• Bowen C, Wang S, Licea-Perez H. J Chromatogr B Analyt Technol Biomed Life Sci. 2009;877:2123-9.

Suggested reading (MALDI)

• Tost J, Gut IG. J Mass Spectrom 2006; 41:981-995.

• Berkenkamp S, Kirpekar F, Hillenkamp F. Science. 1998;281:260-262.

• Mengel-Jørgensen J, Sanchez JJ, Børsting C, Kirpekar F, Morling N. Anal Chem. 2004;76:6039-6045.

• Keough T, Shaffer JD, Lacey MP, Riley TA, Marvin WB, Scurria MA, Hasselfield JA, Hesselberth EP. Anal Chem. 1996;68:3405-3412.