nuclei

33
Nu Xu 1/32 “Critical Point and Onset of De-confinement”, 23-29 August, 2010, JINR, Dubna High-Energy Nuclear Collisions and the QCD Phase Structure Nu Xu Nuclear Science Division Lawrence Berkeley National Laboratory Berkeley, USA

description

High-Energy Nuclear Collisions and the QCD Phase Structure Nu Xu Nuclear Science Division Lawrence Berkeley National Laboratory Berkeley, USA. The QCD Phase Diagram and High-Energy Nuclear Collisions. T ini , T C LHC, RHIC. T E RHIC , SPS , FAIR. Phase boundary - PowerPoint PPT Presentation

Transcript of nuclei

Page 1: nuclei

Nu Xu 1/32“Critical Point and Onset of De-confinement”, 23-29 August, 2010, JINR, Dubna

High-Energy Nuclear Collisions and the QCD Phase Structure

Nu Xu

Nuclear Science Division Lawrence Berkeley National Laboratory

Berkeley, USA

Page 2: nuclei

nuclei

hadron gasCSC

quark-gluon plasma

TE

Baryon Chemical Potential

Critical Point?

Tem

pera

ture Ear

ly U

nive

rse

1 23

2 TE RHIC, SPS, FAIR

1 Tini, TC

LHC, RHIC3 Phase boundary

RHIC, FAIR, NICA

The QCD Phase Diagram and High-Energy Nuclear Collisions

Page 3: nuclei

Nu Xu 3/32“Critical Point and Onset of De-confinement”, 23-29 August, 2010, JINR, Dubna

Quantum Chromodynamics

1) Quantum Chromodynamics (QCD) is the established theory of strongly interacting matter.

2) Gluons hold quarks together to from hadrons.

3) Gluons and quarks, or partons,typically exist in a color singlet state:confinement.

Little is known about the structure ofthe matter.

baryonmeson

Page 4: nuclei

Nu Xu 4/32“Critical Point and Onset of De-confinement”, 23-29 August, 2010, JINR, Dubna

Phase Diagram: Water

Phase diagram: A map shows that, at given degrees of freedom, how matter organize itself under external conditions.

The QCD Phase diagram: structure of matter with quark- and gluon-degrees (color degrees) of freedom.

Page 5: nuclei

Nu Xu 5/32“Critical Point and Onset of De-confinement”, 23-29 August, 2010, JINR, Dubna

E. Fermi: “Notes on Thermodynamics and Statistics ” (1953)

QCD Phase Diagram (1953)

Page 6: nuclei

Nu Xu 6/32“Critical Point and Onset of De-confinement”, 23-29 August, 2010, JINR, Dubna

(1, 2, 5-10)ρ0

QCD Phase Diagram 1983

1983 US Long Range Plan - by Gordon Baym

(1, 2, 5-10)*ρ0

TC~200 MeV

Page 7: nuclei

Nu Xu 7/32“Critical Point and Onset of De-confinement”, 23-29 August, 2010, JINR, Dubna

QCD Phase Diagram (2009)

1983 US Long Range Plan - by Gordon Baym

nucl-th: 0907.4489, NPA830,709(09) L. McLerran nucl-th 0911.4806: A. Andronic, D. Blaschke, P. Braun-Munzinger, J. Cleymans, K. Fukushima, L.D. McLerran, H. Oeschler, R.D. Pisarski, K. Redlich, C. Sasaki, H. Satz, and J. Stache

Systematic experimental measurements (Ebeam, A) : extractnumbers that may be related to the QCD phase diagram!

Page 8: nuclei

Nu Xu 8/32“Critical Point and Onset of De-confinement”, 23-29 August, 2010, JINR, Dubna

Outline

(1) Introduction

(2) STAR experiment and physics program

(3) Observables, and recent results- Three examples: (i) v2; (ii) S, K; (iii) di-elelctron- Many more will be discussed during the workshop

(4) Summary

Page 9: nuclei

Nu Xu 9/32“Critical Point and Onset of De-confinement”, 23-29 August, 2010, JINR, Dubna

BNL PAC, 21 - 22, 2010

HFT 2013

TPC

FGT 2011

STAR Detectors Fast and Full azimuthal particle identification

EMC+EEMC+FMS(-1 ≤ ≤ 4)TOF

DAQ1000

MTD 2013

Page 10: nuclei

Nu Xu 10/32“Critical Point and Onset of De-confinement”, 23-29 August, 2010, JINR, Dubna

Particle Identification at STAR

STAR TPC

STAR ToF

STAR EMC

STAR HFT

Neutral particles Strange Jets Heavy Quark hyperons Hadrons

Multiple-fold correlations among the identified particles!

e, μ

πK p d

TPC ToF TPC

Log10(p)STAR MTD

Page 11: nuclei

Nu Xu 11/32“Critical Point and Onset of De-confinement”, 23-29 August, 2010, JINR, Dubna

TOF Performance√sNN = 39 GeV Au + Au Collisions

TPC TPC+ToF

Beam Energy Timing Resolution Remarks

200 (GeV) 85 (ps) At 39 GeV, using a new calibration scheme without information of start time from VPD, 87 ps of timing resolution has been achieved.

62.4 (GeV) 90 (ps)

39 (GeV) 85 (ps)

11.5 & 7.7 (GeV) ~ 80 (ps)

Page 12: nuclei

Nu Xu 12/32“Critical Point and Onset of De-confinement”, 23-29 August, 2010, JINR, Dubna

PID: 7.7, 39, 200 GeV (p±, K±, p)Au+Au at 7.7 GeV Au+Au at 39 GeV Au+Au at 200 GeV

Page 13: nuclei

Nu Xu 13/32“Critical Point and Onset of De-confinement”, 23-29 August, 2010, JINR, Dubna

STAR Physics Focus

Polarized p+p program - Study proton intrinsic properties

Forward program - Study low-x properties, initial condition,

search for CGC - Study elastic and inelastic processes in

pp2pp

1) At 200 GeV top energy - Study medium properties, EoS - pQCD in hot and dense medium

2) RHIC beam energy scan (BES) - Search for the QCD critical point - Chiral symmetry restoration

Page 14: nuclei

Nu Xu 14/32“Critical Point and Onset of De-confinement”, 23-29 August, 2010, JINR, Dubna

The QCD Critical Point- LGT prediction on the transitiontemperature TC is robust.

- LGT calculation, universality, andmodels hinted the existence ofthe critical point on the QCD phasediagram* at finite baryon chemicalpotential. - Experimental evidence for eitherthe critical point or 1st order transition is important for ourknowledge of the QCD phase diagram*.

* Thermalization has been assumed

M. Stephanov, K. Rajagopal, and E. Shuryak, PRL 81, 4816(98); K. Rajagopal, PR D61, 105017 (00)

http://www.er.doe.gov/np/nsac/docs/Nuclear-Science.Low-Res.pdf

Page 15: nuclei

Nu Xu 15/32“Critical Point and Onset of De-confinement”, 23-29 August, 2010, JINR, Dubna

Maximum Baryon Density

The maximum baryon density at freeze-out: √sNN ~ 8 GeV

Page 16: nuclei

Nu Xu 16/32“Critical Point and Onset of De-confinement”, 23-29 August, 2010, JINR, Dubna

Example I:

Partonic Collectivity

Page 17: nuclei

Nu Xu 17/32“Critical Point and Onset of De-confinement”, 23-29 August, 2010, JINR, Dubna

y

x

py

px

coordinate-space-anisotropy momentum-space-anisotropy

Anisotropy Parameter v2

ε =⟨y 2 − x 2⟩⟨y 2 + x 2⟩

v2 = cos2ϕ , ϕ = tan−1(pypx

)

Initial/final conditions, EoS, degrees of freedom

Page 18: nuclei

Nu Xu 18/32“Critical Point and Onset of De-confinement”, 23-29 August, 2010, JINR, Dubna

Collectivity, De-confinement at RHIC - v2 of light hadrons and multi-strange hadrons - scaling by the number of quarks

At RHIC: nq-scaling novel hadronization processê Partonic flow De-confinement

PHENIX: PRL91, 182301(03) STAR: PRL92, 052302(04), 95, 122301(05) nucl-ex/0405022, QM05

S. Voloshin, NPA715, 379(03)Models: Greco et al, PRC68, 034904(03)Chen, Ko, nucl-th/0602025Nonaka et al. PLB583, 73(04)X. Dong, et al., Phys. Lett. B597, 328(04).….

i ii

Page 19: nuclei

Nu Xu 19/32“Critical Point and Onset of De-confinement”, 23-29 August, 2010, JINR, Dubna

System Size Driven Collectivity

Collectivity: Driven by number of participantsMore Analysis: How and when local equilibrium reached

STAR: PRC81, 44902(10)

Page 20: nuclei

Nu Xu 20/32“Critical Point and Onset of De-confinement”, 23-29 August, 2010, JINR, Dubna

Low pT (≤ 2 GeV/c): hydrodynamic mass orderingHigh pT (> 2 GeV/c): number of quarks ordering s-quark hadron: smaller interaction strength in hadronic medium light- and s-quark hadrons: similar v2 pattern

=> Partonic Collectivity at RHIC !

Partonic Collectivity at RHIC

STAR: preliminaryPHENIX: nucl-ex/0604011

QM

09: arXiv 0907.2265

Page 21: nuclei

Nu Xu 21/32“Critical Point and Onset of De-confinement”, 23-29 August, 2010, JINR, Dubna

The nq-scaling in Hadron v2

(a) Scaling for all hadrons up to pT ≥ 3 GeV/c in case of partonic scatterings and coalescence.

(b) No scaling in case of hadronic scatterings.

Page 22: nuclei

Nu Xu 22/32“Critical Point and Onset of De-confinement”, 23-29 August, 2010, JINR, Dubna

Observable: Quark Scaling

- m ~ mp ~ 1 GeV- ss not K+K- - h << p,

In the hadronic case:(i) No number of quark scaling (ii) Very small value of v2 !

Page 23: nuclei

Nu Xu 23/32“Critical Point and Onset of De-confinement”, 23-29 August, 2010, JINR, Dubna

Example II:

High Order Correlation Functions

Page 24: nuclei

Nu Xu 24/32“Critical Point and Onset of De-confinement”, 23-29 August, 2010, JINR, Dubna

Correlations, Susceptibilities, Kurtosis

δN = N − N

δN( )2 ≈ ξ 2, δN( )

3 ≈ ξ 4.5

δN( )4 − 3 δN( )

2 2≈ ξ 7

S =δN( )

3

δN( )2 3 / 2

κ =δN( )

4 − 3 δN( )2 2

δN( )2 2 = χ X

4

χ X2

Higher order correlations are correspond to higher power of the correlation length of the system: more sensitive to critical phenomena.

Skewness: Symmetry of the correlation function.

Kurtosis: Peakness of the correlation function. Connection to thermodynamics, X.

S & K observables: total charge, total protons, net-p, net-Q

M. A. Stephanov, PRL. 102, 032301 (09)

R.V. Gavai and S. Gupta: 1001.2796. F. Karsch and K. Redlich, arXiv:1007.2581

Page 25: nuclei

Nu Xu 25/32“Critical Point and Onset of De-confinement”, 23-29 August, 2010, JINR, Dubna

Susceptibilities and Moments In the Boltzmann approximation, the HRG model provides a simple result for the thermodynamic pressure.

4 4( ) ( / ) ( / ) , , ,

( / ) ( )

n nn

q n nq q

p T p T q B Q ST

= = =

224 2

1 ( / ) ( / ) cosh[( ) / ]i i i i B i S i Qi

p d m T K m T B S Q TT

=

(4)2

(2)

(3)3

(1)

(3)

(2)

= 1

= =1

q

q

q

q

q

q

SM

S

=

=

(1)3

(2) 23

(3) 33

(4) 4 2 23

1

1 ( )

1 ( )

1 ( ( ) 3 ( ) )

q q

q q

q q

q q q

NVT

NVT

NVT

N NVT

δ

δ

δ δ

=

=

=

=

The nth order susceptibilities:

X.F. Luo (LBNL/USTC)

Page 26: nuclei

Nu Xu 26/32“Critical Point and Onset of De-confinement”, 23-29 August, 2010, JINR, Dubna

High Order Correlations

Event by event:

1. net-proton Kurtosis Kp(E)*2. two proton correlation functions C2(E)3. ratio of the d/p4. ratio of K/p * Gavai and Gupta, 03, 05; Gupta 0909.4630

M. Cheng et al. 08 Gupta, Karsch, Stephanov, INT, 08€

Kp =Np

4 − 3 Np2 2

Np2

Page 27: nuclei

Nu Xu 27/32“Critical Point and Onset of De-confinement”, 23-29 August, 2010, JINR, Dubna

High Moment Analysis (BES)STAR Preliminary

1) High moments are more sensitive to critical point related fluctuation.

2) The 4th moment, Kurtosis, is directly related to the corresponding thermodynamic quantity: susceptibility for conserved quantum numbers such as Baryon number, charge, strangeness…

3) see H.G. Ritter’s talk

Page 28: nuclei

Nu Xu 28/32“Critical Point and Onset of De-confinement”, 23-29 August, 2010, JINR, Dubna

Net-proton High Moments1) STAR results* on net-proton high

moments for Au+Au collisions at √sNN = 200, 62.4 and 19.6 GeV.

2) Sensitive to critical point**:

3) Direct comparison with Lattice results**:

4) Extract susceptibilities and freeze-out temperature. An independent test on thermal equilibrium in heavy ion collisions.

* STAR: 1004.4959, accepted by PRL(2010).** M. Stephanov: PRL,102, 032301(2009).*** R.V. Gavai and S. Gupta: 1001.2796. F. Karsch and K. Redlich, arXiv:1007.2581

δN( )2 ≈ ξ 2, δN( )

3 ≈ ξ 4.5, δN( )4 ≈ ξ 7

S *σ ≈ χ B3

χ B2 , κ *σ 2 ≈ χ B

4

χ B2

STAR: 1004.4959, PRL

Estimated errors in Au+Au collision : Run 10: 7.7, 11.5, 39 GeV Run 11: 18, 27 GeV

Page 29: nuclei

Nu Xu 29/32“Critical Point and Onset of De-confinement”, 23-29 August, 2010, JINR, Dubna

Example III:

Slope Parameters of Hadrons and Leptons

Page 30: nuclei

Nu Xu 30/32“Critical Point and Onset of De-confinement”, 23-29 August, 2010, JINR, Dubna

Student Lecture, “Quark Matter 2006”, Shanghai, Nov. 14 - 20, 2006

Slope Parameter Systematics

mT = pT2 +m 2

f ∝ exp(−mT /Tslope )

Page 31: nuclei

Nu Xu 31/32“Critical Point and Onset of De-confinement”, 23-29 August, 2010, JINR, Dubna

Direct Radiation Measurements

Expanding partonic matter at RHIC and LHC!

Di-leptons allow us to measure the direct radiation from the matter with partonic degrees of freedom, no hadronization!

- Low mass region: , , e-e+

minv e-e+

medium effect Chiral symmetry

- Intermediate region: J/ e-e+

minv e-e+

Direct radiation hadronic partonic

STAR already started its di-electron measurements!

Direct radiation:

Page 32: nuclei

Nu Xu 32/32“Critical Point and Onset of De-confinement”, 23-29 August, 2010, JINR, Dubna

QCD Phase Diagram

Tch ~ TC (LGT) at RHIC. *Thermalization has been assumed!

LHC: Ti, TC

RHIC & SPS: TC, TE, and phase boundary

FAiR & NICA: Detailed phase structure study

Recent review:A. Andronic, et al, NP A772, B. 167(06)

LHC RHIC ------------------ SPS AGS SIS NICA

Page 33: nuclei

Many Thanks to Conference Organizers!