Nrm 2233

download Nrm 2233

of 12

Transcript of Nrm 2233

  • 7/29/2019 Nrm 2233

    1/12

    Cea seescece as fomay descied moe thafo decades ago he Hayfick ad coeages shoedthat oma ces had a imited aiity to oifeate icte1(see BOX 1 fo descitios of diffeet tyesof seescece). These cassic exeimets shoed thathma fioasts iitiay deet ost ce diisioi cte. Hoee, gaday oe may ce do-igs ce oifeatio (sed hee itechageayith ce goth) decied. Eetay, a ces i thecte ost the aiity to diide. The o-diidig cesemaied iae fo may eeks, t faied to godesite the esece of ame sace, tiets adgoth factos i the medim.

    Soo afte this discoey, the fidig that omaces do ot idefiitey oifeate saed toimotat hyotheses. At the time, oth ee highysecatie ad seemigy cotadictoy. The fisthyothesis stemmed fom the fact that may caceces oifeate idefiitey i cte. Cea sees-cece as oosed to e a ati-cace o tmo-sessie mechaism. I this cotext, the seesceceesose as cosideed eeficia ecase it otected

    ogaisms fom cace, a majo ife-theateig disease.The secod hyothesis stemmed fom the fact thattisse egeeatio ad eai deteioate ith age.Cea seescece as oosed to ecaitate theageig, o oss of egeeatie caacity, of ces in vivo.I this cotext, cea seescece as cosideeddeeteios ecase it cotited to decemets itisse eea ad fctio. Fo may yeas, thesehyotheses ee sed moe o ess ideed-ety. Hoee, as a destadig of the seesceceesose ge, these hyotheses coaesced, igige isights to the fieds of cace ad ageig. Hee,e eie ecet ogess i destadig the cases

    of cea seescece, ad the eidece that it is imo-tat fo sessig cace ad a ossie cotitoto ageig.

    Senescence in an evolutionary context

    To destad ho cea seescece ca e oth ee-ficia ad detimeta, ad the oigis of its egatio,it is imotat to destad the ate of cace adthe eotioay theoy of ageig. Cace is ofte fataad theefoe oses a majo chaege to the ogeityof ogaisms ith rnwabl tiu. Tisse eea isessetia fo the iaiity of comex ogaisms schas mammas. Hoee, ce oifeatio is essetiafo tmoigeesis, ad eeae tisses ae at isk ofdeeoig cace2. Moeoe, cace iitiates ad, toa age extet, ogesses oig to somatic mtatios3,ad oifeatig ces acqie mtatios moe eadiytha o-diidig ces4. The dage that cace osedto ogeity as mitigated y the eotio of tmo-sesso mechaisms. Oe sch mechaism ascea seescece, hich stos iciiet cace cesfom oifeatig57.

    The eiomet i hich cea seesceceeoed as eete ith extisic hazads sch asifectio, edatio ad staatio. Hece, ogaismaifesas ee eatiey shot oig to death fomthese hazads. Theefoe, tmo-sesso mecha-isms eeded to e effectie fo oy a eatiey shotitea (a fe decades fo hmas, seea mothsfo mice). Shod sch mechaisms e deeteiosate (fo exame, if the egeeatie caacity eeto decie o if dysfctioa seescet ces ee toaccmate), thee od e itte seectie esseto eimiate the hamf effects. Theefoe, sometmo-sesso mechaisms ca e oth eeficia

    *Life Sciences Division,

    Lawrence Berkeley

    National Laboratory,

    1 Cyclotron Road, Berkeley,California 94720, USA;

    and Buck Institute for

    Age Research, 8001

    Redwood Boulevard, Novato,

    California 94945, USA.IFOM Foundation,

    FIRC Institute of Molecular

    Oncology, Via Adamello 16,

    20139 Milan, Italy.

    e-mails:[email protected];

    fabrizio.dadda@ifom-ieo-

    campus.it

    doi:10.1038/nrm2233

    Publihd onlin

    1 Augut 2007

    Renewable tissue

    A tiu in which cll

    prolifration i important for

    tiu rpair or rgnration.

    Rnwabl tiu typically

    contain, but omtim rcruit,

    mitotic cll upon injury or cll

    lo.

    Cellular senescence: when bad thingshappen to good cells

    Judith Campisi* and Fabrizio dAdda di Fagagna

    Abstract | Cells continually experience stress and damage from exogenous and endogenous

    sources, and their responses range from complete recovery to cell death. Proliferating cells

    can initiate an additional response by adopting a state of permanent cell-cycle arrest that is

    termed cellular senescence. Understanding the causes and consequences of cellular

    senescence has provided novel insights into how cells react to stress, especially genotoxicstress, and how this cellular response can affect complex organismal processes such as the

    development of cancer and ageing.

    nATurE rEvIEwS |molecular cell biology vOluME 8 | SEpTEMbEr 2007 |729

    REVIEWS

    mailto:[email protected]:[email protected]:[email protected]:[email protected]:[email protected]:[email protected]
  • 7/29/2019 Nrm 2233

    2/12

    Antagonistic pleiotropy

    Th hypothi that gn or

    proc that wr lctd

    to bnfit th halth and

    fitn of young organim can

    hav unlctd dltriou

    ffct that manift in oldr

    organim and thrby

    contribut to aging.

    Mitotic cell

    A cll that ha th ability to

    prolifrat. In vivo, mitotic cll

    oftn xit in a rvribl

    growth-arrtd tat that i

    trmd quicnc or G0

    pha, but uch cll can b

    timulatd to prolifrat in

    rpon to appropriat

    phyiological ignal.

    Post-mitotic cell

    A cll that ha prmanntly

    lot th ability to prolifrat,

    uually du to diffrntiation.

    ad deeteios, deedig o the age of the oga-ism8. This cocet that a ocess ca e eeficiato yog ogaisms t hamf to od ogaisms isthe essece ofantagonitic pliotropy, a imotat eo-tioay theoy of ageig9. Thee is o sstatiaeidece that cea seescece is ideed a otettmo-sesso mechaism6,7,10,11, ad thee is asomotig t sti agey cicmstatia eidece

    that cea seescece omotes ageig1214.

    Characteristics of senescent cells

    Comex ogaisms sch as mammas cotai othmitotic cll ad pot-mitotic cll(BOX 2). Cea sees-cece is cofied to mitotic ces, fom hich cace caaise. Athogh mitotic ces ca oifeate, they ca asosed og iteas i a eesiy aested state temedquicnc o G0. Qiescet ces esme oifeatio iesose to aoiate sigas, icdig the eed fotisse eai o egeeatio. by cotast, ost-mitoticces emaety ose the aiity to diide oig todiffeetiatio.

    Mitotic ces ca seesce he they ecote ote-tiay ocogeic eets (discssed eo). whe thisoccs, the ces cease oifeatio (ko as gothaest), i essece ieesiy. They ofte ecome esis-tat to ce-death sigas (aotosis esistace) ad theyacqie idesead chages i gee exessio (ateedgee exessio). Togethe, these feates comise thencnt phnotyp(FIG. 1).

    Growth arrest. The hamak of cea seescece is aiaiity to ogess thogh the ce cyce. Seescet cesaest goth, say ith a DnA cotet that is tyicaof G1 hase, yet they emai metaoicay actie1518.Oce aested, they fai to iitiate DnA eicatio desiteadeqate goth coditios. This eicatio faie isimaiy cased y the exessio of domiat ce-cyce ihiitos (see eo). I cotast to qiescece,the seescece goth aest is essetiay emaet(i the asece of exeimeta maiatio) ecaseseescet ces caot e stimated to oifeate yko hysioogica stimi.

    The feates ad stigecy of the seescece gothaest ay deedig o the secies ad the geeticackgod of the ce. Fo exame, most mose fio-asts seesce ith a G1 DnA cotet, athogh a defecti the stess-sigaig kiase MKK7 imaiy idcesa G2M aest19. likeise, some oncogn (see eo)case a factio of ces to seesce ith aDnA cotetthat is tyica of G2 hase2022. Fthemoe, tmo cesca seesce ith G2- o S-hase DnA cotets. Athoghtmo ces say oifeate idefiitey i cte,some of them etai the aiity to dego a seescece-ike aest, eseciay i esose to cetai ati-cacetheaies23. Fiay, hma ad odet ces diffe stik-igy i the stigecy of the seescece goth aest24.like hma ces, may mose ad at ces hae a fiiteoifeatie caacity i cte, athogh, as discssedeo, the mechaisms that imit this oifeatiooay diffe. Hoee, odet ce ctes feqetyacqie sotaeos aiats that ca diide idefiitey.Sch aiats ae exceedigy ae i hma ctes.

    Apoptosis resistance. Aotosis etais the cotoeddestctio of cea costitets ad thei timateegfmet y othe ces25. like seescece, aotosis isa exteme esose to cea stess ad is a imotattmo-sessie mechaism26. bt, heeas sees-cece eets the goth of damaged o stessed ces,

    aotosis qicky eimiates them.May (t ot a) ce tyes acqie esistace to

    cetai aototic sigas he they ecome seescet.Fo exame, seescet hma fioasts esist ceamide-idced aotosis t edotheia ces do ot27. Seescethma fioasts aso esist aotosis cased y goth-facto deiatio ad oxidatie stess, t do ot esistaotosis cased y egagemet of the Fas death ece-to28,29. resistace to aotosis might aty exai hyseescet ces ae so stae i cte. This attitemight aso exai hy the me of seescet cesiceases ith age, athogh, as discssed eo, seeafactos oay cotite to this heomeo.

    Box 1 | A hitchhikers guide to senescence nomenclature

    Senescence derives from senex, a Latin word meaning old man or old age.

    In organismal biology, senescence describes deteriorative processes that follow

    development and maturation, and the term is used interchangeably with ageing.

    The term senescence was applied to cells that ceased to divide in culture1, based on

    the speculation that their behaviour recapitulated organismal ageing. Consequently,

    cellular senescence is sometimes termed cellular ageing or replicative senescence.

    Cells that are not senescent are termed pre-senescent, early passage, proliferating or,

    sometimes, young.

    Telomere shortening provided the first molecular explanation for why many cells

    cease to divide in culture61,68. Dysfunctional telomeres trigger senescence through

    the p53 pathway. This response is often termed telomere-initiated cellular

    senescence.

    Some cells undergo replicative senescence independently of telomere

    shortening16,53,101. This senescence is due to stress, the nature of which is poorly

    understood. It increases p16 expression and engages the p16retinoblastoma protein

    (pRB) pathway. This response is termed stress-induced or premature senescence,

    stasis or M0 (mortality phase 0).

    Certain mitogenic oncogenes or the loss of anti-mitogenic tumour-suppressor genes

    induce senescence in normal cells83,92,93,95. This is known as oncogene-induced

    senescence.

    Cells that do not divide indefinitely are said to have a finite or limited replicative

    (or proliferative) lifespan and are (replicatively) mortal. Cells that proliferate

    indefinitely are termed (replicatively) immortal.

    Immortal cells are not necessarily transformed (tumorigenic) cells. Although

    historically the terms immortalization and transformation have been used

    interchangeably, the replicative lifespan of cells can be expanded indefinitely by the

    expression of telomerase without the phenotypic changes that are associated with

    malignant transformation138.

    Telomere-initiated senescence is sometimes termed M1 (mortality phase 1)153.

    Some cells (for example, fibroblasts) undergo telomere-initiated senescence with few

    signs of genomic instability. Other cells (for example, some epithelial cells) arrest with

    obvious signs of genomic instability and are termed agonescent154.

    Human cells that escape telomere-initiated senescence (M1) or agonescence owing

    to the loss of p53 function can proliferate until they enter a state that is termed crisis,

    mitotic catastrophe or M2 (mortality phase 2)153. This state is characterized by

    extensive genomic instability and cell death.

    R E V I E W S

    730 | SEpTEMbEr 2007 | vOluME 8 www.nt./ws/

  • 7/29/2019 Nrm 2233

    3/12

    Quiescence

    A rvribl non-dividing tat

    from which cll can b

    timulatd to prolifrat in

    rpon to phyiological

    ignal.

    Senescent phenotype

    Th combination of chang in

    cll bhaviour, tructur and

    function that occur upon

    cllular ncnc. For mot

    cll typ, th chang

    includ an ntially

    irrvribl growth arrt,

    ritanc to apoptoi and

    many altration in gn

    xprion.

    Oncogene

    A gn that contribut to th

    malignant tranformation of

    cll. Oncogn can b

    cllular or viral in origin.

    Cllular oncogn ar uuallymutant or ovrxprd form

    of normal cllular gn. Viral

    oncogn can alo originat

    from cllular gn, acquiring

    mutation during viral captur,

    but thy can alo b ditinctly

    viral in origin.

    Chromatin

    Th DNA and complx of

    aociatd protin that

    dtrmin th accibility of

    larg DNA rgion to th

    trancription machinry and

    othr larg protin complx.

    It is ot cea hat detemies hethe ces degoseescece o aotosis. Oe detemiat is ce tye; foexame, damaged fioasts ad eitheia ces ted toseesce, heeas damaged ymhocytes ted to degoaotosis. The ate ad itesity of the damage ostess may aso e imotat30,31. Most ces ae caaeof oth esoses. Moeoe, maiatio of o- adati-aototic oteis ca case ces that ae destiedto die y aotosis to seesce ad, coesey, case cesthat ae destied to seesce to dego aotosis3032.The seescece ad aotosis egatoy systems thee-foe commicate oay thogh thei commoegato, the 53 tmo sesso otei31. Themechaisms y hich seescet ces esist aotosis aeooy destood. I some ces, esistace might e deto exessio chages i oteis that ihiit, omote oimemet aototic ce death33,34. I othes, 53 mightefeetiay tasactiate gees that aest oifeatio,athe tha those that faciitate aotosis35.

    Altered gene expression. Seescet ces sho stikigchages i gee exessio, icdig chages i koce-cyce ihiitos o actiatos3541. To ce-cyceihiitos that ae ofte exessed y seescet ces aethe cyci-deedet kiase ihiitos (CDKIs) 21

    (aso temed CDKn1a, 21Ci1, waf1 o SDI1) ad16(aso temed CDKn2a o 16InK4a)6,7. These CDKIsae comoets of tmo-sesso athays that aegoeed y the 53 ad etioastoma (rb) oteis,esectiey. 53 ad rb ae tascitioa egatos,ad the athays they goe ae feqety distedi cace42. both athays ca estaish ad maitaithe goth aest that is tyica of seescece. 21 isidced diecty y 53 (ReFs 35,43) t the mechaismsthat idce 16, a tmo sesso i its o ight, aeicometey destood44. utimatey, 21 ad 16 mai-tai rb i a hyohoshoyated ad actie state t, asdiscssed eo, thei actiities ae ot eqiaet.

    Seescet ces aso eess gees that ecode oteisthat stimate o faciitate ce-cyce ogessio (foexame, eicatio-deedet histoes, c-FOS, cyci A,cyci b ad pCnA (oifeatig ce cea ati-ge))4548. Some of these gees ae eessed ecaseE2F,the tascitio facto that idces them, is iactiatedy rb. I some seescet ces, E2F taget gees aesieced y a rb-deedet eogaizatio ofchromatinito discete foci that ae temed seescece-associatedheteochomati foci (SAHFs)45.

    Iteestigy, may chages i gee exessioaea to e eated to the goth aest. Mayseescet ces oeexess gees that ecode secetedoteis that ca ate the tisse micoeiomet3641.Fo exame, seescet fioasts oeexess oteisthat emode the extacea matix o mediate ocaifammatio. As discssed eo, these fidigs aisethe ossiiity that as seescet ces icease ith age,they might cotite to age-eated decemets itisse stcte ad fctio8,12. The mechaisms thatae esosie fo the seescece-associated secetoy

    heotye ae ko.

    Senescence markers. Seea makes ca idetify sees-cet ces i cte ad in vivo. Hoee, o makesae excsie to the seescet state. A ooy destoodfeate of these makes is that, aside fom the deciei DnA eicatio, a of them eqie seea daysto deeo.

    A oios make fo seescet ces is the ackof DnA eicatio, hich is tyicay detected y theicooatio of 5-omodeoxyidie o 3H-thymidie,o y immostaiig fo oteis sch as pCnA adKi-67. Of cose, these makes do ot distigishetee seescet ces ad qiescet o diffeetiatedost-mitotic ces. The fist make to e sed fo themoe secific idetificatio of seescet ces as theseescece-associated -gaactosidase (SA-ga)49. Thismake is detectae y histochemica staiig i mostseescet ces. Hoee, it is aso idced y stessessch as ooged cofece i cte. The SA-gaoay deies fom the ysosoma -gaactosidasead efects the iceased ysosoma iogeesis thatcommoy occs i seescet ces50. I additio, 16 a imotat egato of seescece is o sedto idetify seescet ces51. 16 is exessed y may,t ot a, seescet ces52,53 ad it is aso exessedy some tmo ces, eseciay those that hae ost

    rb fctio44. recety, thee oteis ee ideti-fied i a scee fo gees that ee exessed fooigocogee-idced seescece, ad the oteis eesseqety sed to idetify seescet ces: DEC1(diffeetiated emyo-chodocyte exessed-1),15 (a CDKI) ad DCr2 (decoy death eceto-2)54.The secificity ad sigificace of these oteis foseescet ces ae ot yet cea, t they ae omisigadditioa makes.

    Some seescet ces ca aso e idetified ythe cytoogica makes of SAHFs45 ad seescece-associated DnA-damage foci (SDFs)16,20,55,56. SAHFs aedetected y the efeetia idig of DnA dyes, sch as

    Box 2 | Mitotic and post-mitotic cells

    Mitotic cells are capable of proliferation, and they include the epithelial, stromal

    (fibroblastic) and vascular (endothelial) cells that comprise the major renewable tissues

    and organs such as the skin, intestines, liver, kidney and so on. They also comprise major

    components of the haematopoietic system, and cells such as the glia, which support

    the survival and function of non-dividing neurons. Mitotic cells also include the

    undifferentiated stem and progenitor cells that provide many of these tissues with the

    differentiated cells that are required for their function. Mitotic cells are susceptible tomalignant transformation (that is, transformation into a cancer cell). They are also

    susceptible to undergoing cellular senescence when challenged by stimuli that have

    the potential to cause cancer.

    Post-mitotic cells are incapable of proliferation. They include the differentiated

    neurons and muscle cells that comprise the brain, heart and skeletal muscle. Recent

    findings suggest that tissues that are composed mainly of post-mitotic cells can

    undergo limited repair and regeneration; however, this regeneration is not due to the

    proliferation of post-mitotic cells, but rather to the recruitment of mitotic stem cells or

    their progeny (progenitor cells)155157. Because they have already lost the ability to

    proliferate, post-mitotic cells do notundergo cellular senescence as currently defined.

    Post-mitotic and senescent cells are irreversibly blocked from re-entering the cell

    cycle. The mechanisms that prevent these cells from undergoing cell division are

    incompletely understood, but probably share some common effectors.

    R E V I E W S

    nATurE rEvIEwS |molecular cell biology vOluME 8 | SEpTEMbEr 2007 |731

    http://www.expasy.org/uniprot/P04637http://www.expasy.org/uniprot/P38936http://www.expasy.org/uniprot/P42771http://www.expasy.org/uniprot/P06400http://www.expasy.org/uniprot/Q01094http://www.expasy.org/uniprot/Q01094http://www.expasy.org/uniprot/Q01094http://www.expasy.org/uniprot/P06400http://www.expasy.org/uniprot/P42771http://www.expasy.org/uniprot/P38936http://www.expasy.org/uniprot/P04637
  • 7/29/2019 Nrm 2233

    4/12

    |

    Pre-senescent cell

    Senescent phenotype

    Strong mitogenicsignals

    Chromatin perturbationsand other non-genotoxicstresses

    Dysfunctionaltelomeres

    Non-telomericDNA damage

    Growth arrest

    Apoptosisresistance

    Altered geneexpression

    4,6-diamidio-2-heyidoe (DApI), ad the eseceof cetai heteochomati-associated histoe modifica-tios (fo exame, H3 lys9 methyatio) ad oteis(fo exame, heteochomati otei-1 (Hp1)). SAHFsaso cotai E2F taget gees, hich SAHFs ae thoghtto siece. I mose ces, eicetomeic chomatiaso efeetiay ids DApI, cotais modifiedhistoes ad oteis fod i SAHFs, ad foms cyto-ogicay detectae foci. Hoee, thee is o eidecethat these foci cotai E2F taget gees; ideed, they aeaso eset i oifeatig ces. becase eiceto-meic foci ae mch moe omiet i mose ces thahma ces57,58, they ca e mistake fo SAHFs. SDFs,

    y cotast, ae eset i seescet ces fom mice adhmas ad cotai oteis that ae associated ithDnA damage (fo exame, hoshoyated histoeH2AX (-H2AX) ad 53-idig otei-1 (53bp1)).As discssed eo, these foci est fom dysfctioateomees ad othe soces of DnA damage.

    Causes of cellular senescence

    what cases ces to seesce? The fist ces came fomdestadig hy oma hma ces do ot o-ifeate idefiitey i cte (BOX 1), t sseqetstdies shoed that seescece ca e idced ymay stimi (FIG. 1).

    Telomere-dependent senescence. Teomees ae stetchesof eetitie DnA (5-TTAGGG-3 i eteates) adassociated oteis that ca the eds of iea chomo-somes ad otect them fom degadatio o fsio yDnA-eai ocesses59. The ecise teomeic stcte isot ko, t mammaia teomees ae thoght to edi a age cica stcte, temed a t-oo60. becasestadad DnA oymeases caot cometey eicateDnA eds a heomeo caed the ed-eicatiooem ces ose 50200 ase ais of teomeic DnAdig each S hase61(FIG. 2). Hma teomees agefom a fe kioases to 1015 ki egth, so may cediisios ae ossie efoe the ed-eicatio oemedes teomees citicay shot ad dysfctioa. Oyoe o a fe sch teomees ae sfficiet to tigge sees-cece62,63. The ed-eicatio oem is a majo (tot the soe) easo hy oma ces do ot oifeateidefiitey(BOX 1).

    Dysfctioa teomees tigge a cassica DnA-damage esose (DDr)16,55,56,64(FIG. 3). The DDr eaesces to sese damaged DnA, aticay doe-stad

    eaks (DSbs), ad to esod y aestig ce-cyce o-gessio ad eaiig the damage if ossie. Athoghthe seeity of the damage is oay a imotat facto,itte is ko aot ho ces choose etee tasietDDr actiatio ad the esistet DDr sigaig that iseidet i may seescet ces. May oteis atici-ate i the DDr, icdig otei kiases (fo exame,ataxia teagiectasia mtated (ATM) ad checkoit-2(CHK2)), adato oteis (fo exame, 53bp1 adMDC1 (mediato of DnA damage checkoit otei-1))ad chomati modifies (fo exame, -H2AX). Mayof these oteis ocaize to the DnA-damage foci that aedetected i seescet ces. I ces that seesce oig todysfctioa teomees, these foci aso cotai a ssetof teomees, sggestig that dysfctioa teomeeseseme DSbs.

    The ed-eicatio oem ca e cicmetedy teomease. This ezyme cotais a cataytic oteicomoet (teomease eese tascitase; TErT) ada temate rnA comoet, ad adds teomeic DnAeeats diecty to chomosome eds65. Most omaces do ot exess TErT, o exess it at ees that aetoo o to eet teomee shoteig66,67. by cotast,gem-ie ces ad may cace ces exess TErT.Moeoe, ectoic TErT exessio i oma hmaces simtaeosy eets teomee shoteig adseescece cased y the ed-eicatio oem68.

    Hoee, teomease caot eet seescece casedy o-teomeic DnA damage o othe seesceceidces69.

    This oit is demostated y the ehaio of maymose ces. I cotast to most hma ces, ces fomaoatoy mice hae og teomees (>20 k) ad mayexess teomease. noetheess, may mose cesseesce afte oy a fe doigs de stadad ctecoditios. This aest is de to the sahysioogicaoxyge ee (20%) that is sed i stadad cteotocos. A 20% oxyge ee, to hich mose ces aemch moe sesitie tha hma ces, cases seeeDnA damage ad, i the asece of efficiet eai

    Figure 1 | T snsnt pntp ndd tp

    st. Mitotically competent cells respond to various

    stressors by undergoing cellular senescence. These

    stressors include dysfunctional telomeres, non-telomeric

    DNA damage, excessive mitogenic signals including those

    produced by oncogenes (which also cause DNA damage),

    non-genotoxic stress such as perturbations to chromatinorganization and, probably, stresses with an as-yet-

    unknown etiology. The senescence response causes

    striking changes in cellular phenotype. These changes

    include an essentially permanent arrest of cell

    proliferation, development of resistance to apoptosis

    (in some cells), and an altered pattern of gene expression.

    The expression or appearance of senescence-associated

    markers such as senescence-associated -galactosidase,p16, senescence-associated DNA-damage foci (SDFs) and

    senescence-associated heterochromatin foci (SAHFs) are

    neither universal nor exclusive to the senescent state and

    therefore are not shown.

    R E V I E W S

    732 | SEpTEMbEr 2007 | vOluME 8 www.nt./ws/

    http://www.expasy.org/uniprot/Q13315http://www.expasy.org/uniprot/O96017http://www.expasy.org/uniprot/O96017http://www.expasy.org/uniprot/Q13315
  • 7/29/2019 Nrm 2233

    5/12

    |

    Telomerelength

    Normal somatic cells(telomerase-negative)

    Chromosome

    Telomeric DNA

    Germline cells,cancer cells(telomerase-positive)

    Normal cells +

    telomerase,cancer cells

    Cell division

    Senescence

    Euchromatin

    Chromatin that i in an opn

    conformation and hnc

    accibl. Alo trmd activ

    chromatin.

    Heterochromatin

    Chromatin that i in a clod

    conformation and hnc

    inaccibl. Alo trmd ilnt

    or inactiv chromatin.

    Chromatin probably xit in

    many form btwn th

    xtrm of uchromatin and

    htrochromatin.

    mechaisms, DSbs. both the damage ad eicatiefaie ae mitigated y ctig mose ces at a (oe)hysioogica oxyge ee70.

    DNA-damage-initiated senescence. Seee DnA damagethat occs ayhee i the geome eseciay damagethat ceates DSbs cases may ce tyes to degoseescece15,70. I cte, sch ces hao SDFs fomay eeks o oge (J.C. ad F.dA.d.F., ishedoseatios). Thee is as yet o fim eidece that theseesistet foci cotai ieaae DSbs. whatee theiate, they may oide costittie sigas to 53 tomaitai the seescece goth aest.

    both damage- ad teomee-iitiated seescece

    deed stogy o 53 ad ae say accomaiedy exessio of 21 (ReFs 15,16,55)(FIG. 4). Hoee,i may ces, DnA damage ad dysfctioa teo-mees aso idce 16, aeit ith deayed kietics.16,the, oides a secod aie to eet the gothof ces ith seeey damaged DnA o dysfctioateomees52,71,72.

    May chemotheaetic dgs case seee DnAdamage. As exected, sch dgs idce seescece ioma ces. Sisigy, they aso idce seescecei some tmo ces, oth i cte ad in vivo73.Tmo ces ith id-tye, as oosed to mtat, 53ae moe ikey to seesce i esose to chemotheay, at

    east i ce cte ad cace-oe mose modes7476,cosistet ith a iota oe fo 53 i damage-idcedseescece. Of actica imotace, DnA-damagigtheaies ae moe ikey to e efficacios i tmosthat seesce, comaed ith those that do ot7376.

    Senescence caused by chromatin perturbation. Thechomati state detemies the extet to hich geesae actie (uchromatin) o siet (htrochromatin), addeeds maiy o histoe modificatios (fo exame,acetyatio ad methyatio). Iteestigy, chemicahistoe deacetyase ihiitio (HDAi), hich omotesechomati fomatio, idces seescece17,77. Themechaism y hich this occs is ooy destood,ad may diffe deedig o the secies ad ce tye.Fo exame, i hma fioasts, HDAi seqetiayidces 21 ad 16 exessio, ad the seescecegoth aest citicay deeds o the esece of rb.by cotast, i mose fioasts, the 53 athay ismoe imotat fo the seescece esose to HDAi(ReF. 77). becase HDAi ca idce ATM kiase actiity78,

    HDAi might case seescece i some ces y iitiatiga 53-deedet DDr.

    The fidig that HDAi cases seescece aeasto cofict ith the oe of heteochomati ad SAHFsi estaishig ad maitaiig the seescet gothaest45. likeise, HDAi-idced seescece seems toe i cofict ith the fidig that doegatio of ahistoe acety tasfease, hich omotes heteochom-ati fomatio, idces seescece79. It is ot ko hoseescece ca e tiggeed oth y heteochomatidistio ad y actiities that ae associated ithheteochomati fomatio. both maiatios caseextesie t icomete chages i chomati oga-izatio, so each may ate the exessio of diffeetcitica gees, ad the esose may e ce-tye secific.udestadig this aadox cod e imotat, ecaseHDAi hods omise fo teatig cetai caces80.

    Oncogene-induced senescence. Ocogees ae mtatesios of oma gees that hae the otetia to tas-fom ces i cojctio ith additioa mtatios.noma ces esod to may ocogees y degoigseescece. This heomeo as fist oseed hea ocogeic fom of rAS, a cytoasmic tasdceof mitogeic sigas, as exessed i oma hmafioasts18. Sseqety, othe memes of the rASsigaig athay (fo exame, rAF, MEK, MOS ad

    brAF), as e as o-oifeatie cea oteis (foexame, E2F-1), ee sho to case seescece heoeexessed o exessed as ocogeic esios22,8183.

    becase ocogees that idce seescece stimatece goth, the seescece esose may coteactexcessie mitogeic stimatio, hich ts ces at isk ofocogeic tasfomatio. This idea is soted y thefidig that mose ces that ae cted i sem-feemedim (hich edces the high mitogeic esse ofsem) esist rAS-idced seescece84. likeise, someodet ces do ot eicatiey seesce (BOX 1) i sem-fee medim, hich sggests that excessie mitogeicstimatio is esosie fo thei seescece85,86.

    Figure 2 | T-dpndnt snsn. Telomeres are stretches of a repetitiveDNA sequence and associated proteins (magenta) that are located at the termini of

    linear chromosomes (blue). The telomeric ends form a circular protective cap termed the

    t-loop, which may help to prevent the termini from triggering a full DNA-damage

    response (DDR). Telomere lengths are maintained by the enzyme telomerase, which is

    expressed by cells that comprise the germline as well as many cancer cells. Most normal

    somatic cells do not express this enzyme, or express it only transiently or at levels that are

    too low to prevent telomere shortening caused by the end-replication problem. In such

    cells, telomere lengths decline with each cell cycle. Eventually, one or a few telomeres

    become sufficiently short and malfunction, presumably owing to loss of the protective

    proteinDNA structure. Dysfunctional telomeres trigger a DDR, to which cells respond

    by undergoing senescence.

    R E V I E W S

    nATurE rEvIEwS |molecular cell biology vOluME 8 | SEpTEMbEr 2007 |733

  • 7/29/2019 Nrm 2233

    6/12

    |

    DNA-damagesensors

    Upstream kinases

    Downstream kinases

    DNA-damagemediators(adaptors)

    Effectors

    Transient cell-cycle arrest Apoptosis Senescence

    RFC2H2AX

    P

    H2AXP

    NBS1RAD50 RPA

    ATM

    MDC1 53BP1

    CHK2 CHK1

    SMC1CDC25

    BRCA1 Claspin

    ATR

    HUS1

    MRE11

    RAD17

    RAD1RA

    D9

    RFC3RFC4

    RFC5

    p53

    Is ocogee-idced seescece distict fomchomati o teomee/damage-idced seescece?pehas ot; fo exame, ocogeic rAS idces 16ad the fomatio of SAHFs45,87,88. Moeoe, athogh

    ocogee-idced seescece does ot etai teomeeshoteig, may ocogees idce a ost DDroig to the DnA damage that is cased y aeatDnA eicatio. This DDr has a casa oe i oth theiitiatio ad maiteace of ocogee-idced sees-cece ecase its exeimeta doegatio eetsseescece, aos ce oifeatio ad edisoses cesto ocogeic tasfomatio20,89.

    Ocogee-idced seescece as fist idetifiedi cted ces ad does ot occ i a ces 90,91, so isit hysioogicay eeat? recet fidigs sho thatocogees eicit a seescece esose that ctais thedeeomet of cace83,9295. I mice, stog mitogeic

    sigas that ae cased y actiated ocogees, o oss ofthe tmo sesso otei pTEn (hich damesmitogeic sigas), case eig esios that cosist ofseescet ces. likeise, eig aei i hma skicotai ces that exess ocogeic brAF ad aeseescet. These fidigs sggest that ocogee-idcedseescece occs ad sesses tmoigeesis in vivo.Tmoigeesis eqies additioa mtatios otayi 53 o 16 that eet o ehas eese theseescece goth aest92,93,95.

    Stress and other inducers of senescence. Sstaied sig-aig y cetai ati-oifeatie cytokies, sch asitefeo-, aso cases seescece. Acte itefeo-stimatio eesiy aests ce goth, t choicstimatio iceases itacea oxyge adicas adeicits a 53-deedet DDr ad seescece96. likeise,choic sigaig y tasfomig goth facto-,a ihiito of eitheia ce oifeatio, idces sees-cece y omotig 16rb-deedet heteochomatifomatio97,98.

    Fiay, the oosey defied heomeo efeedto as ce-cte stess, o cte shock, ca idce16-deedet, teomee-ideedet seescece. Foexame, hma keatiocytes ad mammay eitheiaces sotaeosy exess 16 ad seesce ith ogteomees de stadad cte coditios. This doesot occ he the ces ae cted o feede ayes(as of fioasts), t afte may doigs ofeede ayes, the ces eetay dego teomee-deedet seescece99. These fidigs sggest that,i additio to hyehysioogica goth coditios,iadeqate goth coditios aso idce seescece.

    Some ces ack a 16-deedet seescece esoseecase the gee ecodig 16 is sieced, ofte y DnAmethyatio100,101. May hma ce ctes, icdigfioasts, ae heteogeeos ad eicatiey seesceas mosaics; some ces seesce de to the exessio of16 ad othes seesce de to teomee shoteig ada 53-deedet DDr16,52,53. The stimi that idce 16ae ooy destood. I some ces, oxidatie stessidces 16 (ReFs 70,102), t this is ot aays the case53.Ocogeic rAS ca idce 16 y hoshoyatig adactiatig ETS tascitio factos87, t exessioof 16 is cotoed y mtie factos, icdig thechomati state44,77,103.

    The exessio of 16 ad a oss of 16 idciiityaso occ in vivo. Exessio of 16 iceases ith age

    i may mie tisses51,104, ad as ecety sho toicease i mie haematooietic, eoa ad ace-atic stem o ogeito ces in vivo105107. This exessioeets stem-ce oifeatio, ossiy y idcigseescece. Moeoe, hma mammay eitheia cessotaeosy siece 16 ia omote methyatioin vivo108 sch that, as i cte, the adt east eitheiacomatmet is mosaic fo the exessio of 16.

    Control by the p53 and p16pRB pathways

    The seescece goth aest is estaished ad mai-taied y the 53 ad 16rb tmo sessoathays (FIG. 4). These athays iteact t ca

    Figure 3 | T DNa-d spns. DNA damage in the form of DNA double-strand

    breaks and other DNA discontinuities is thought to be sensed by a host of factors such as

    replication protein A (RPA) and replication factor C (RFC)-like complexes (which contain

    the cell-cycle-checkpoint protein RAD17). These complexes recruit the 911 complex

    (RAD9HUS1RAD1). Damage is also sensed by the MRN complex (MRE11RAD50

    NBS1). Detection of DNA damage then leads to the activation of upstream protein

    kinases such as ataxia telangiectasia mutated (ATM) and ATM and Rad-3 related (ATR),

    which trigger immediate events such as phosphorylation of the histone variant H2AX.

    The modified chromatin recruits multiple proteins. Some of these proteins augment

    signalling by the upstream kinases, participate in transducing the damage signal and

    optimize repair activities by other proteins, the identity of which depends on the nature

    of the damage and position in the cell cycle (for example, the DNA end-stabilizing

    heterodimers Ku70/80, DNA ligases such as ligase IV, exonucleases such as MRE11,

    DNA helicases such as BLM). Several adaptor proteins, including MDC1, 53BP1, BRCA1

    and claspin, orchestrate the orderly recruitment of DNA-damage response proteins, as

    well as the function of downstream kinases such as checkpoint-1 (CHK1) and CHK2,

    which propagate the damage signal to effector molecules such as SMC1, CDC25 and

    the tumour suppressor p53. The effector molecules halt cell-cycle progression, either

    transiently or permanently (senescence), or trigger cell death (apoptosis). 53BP1, p53-

    binding protein-1; BRCA1, breast cancer type-1 susceptibility protein; HUS1,

    hydroxyurea-sensitive-1 protein; MDC1, mediator of DNA damage checkpoint protein-1;

    MRE11, meiotic recombination-11 protein; NBS1, Nijmegen breakage syndrome-1

    protein; SMC1, structural maintenance of chromosomes protein-1.

    R E V I E W S

    734 | SEpTEMbEr 2007 | vOluME 8 www.nt./ws/

    http://www.expasy.org/uniprot/P60484http://www.expasy.org/uniprot/P60484
  • 7/29/2019 Nrm 2233

    7/12

    |

    Senescencegrowth arrest

    Senescence signals

    ARF

    HDM2

    p21

    p53

    p16

    CDKs

    E2F

    pRB

    Cellproliferation

    ideedety hat ce-cyce ogessio. To someextet, they aso esod to diffeet stimi. I additio,thee ae oth ce-tye-secific ad secies-secificdiffeeces i the oesity ith hich ces egage oeo the othe athay, ad i the aiity of each ath-ay to idce seescece. Fiay, athogh most cesseesce oig to egagemet of the 53 athay, 16rb athay, o oth, thee ae exames of seescecethat aea to e ideedet of these athays21,83.These exames aise the ossiiity of a 53- ad16rb-ideedet seescece athay(s).

    The p53 pathway. Stimi that geeate a DDr (foexame, ioizig adiatio ad teomee dysfctio)idce seescece imaiy thogh the 53 athay.This athay is egated at mtie oits y oteissch as the E3 iqiti-otei igase HDM2 (MDM2i mice), hich faciitates 53 degadatio, ad theateate-eadig-fame otei (ArF), hich ihiitsHDM2 actiity42. 21 is a ccia tascitioa tagetof 53 ad mediato of 53-deedet seescece109.

    Hoee, 21 aso mediates a tasiet DnA-damage-idced goth aest. So hat detemies hethe cesseesce o aest tasiety? The ase is cetyko. Oe ossiiity is that aid DnA eaiqicky temiates 5321 sigaig, heeas so,icomete o faty eai ests i sstaied siga-ig ad seescece. whatee the case, exeimetaedctio i 53, 21 o DDr oteis (fo exame,ATM o CHK2) eets teomee- o damage-idcedseescece, ad, i some ces (fo exame, those thatexess itte o o 16 o ocogeic rAS), it ca eeeese the seescece goth aest20,52,55,64,109,110. Theoifeatio of damaged ces ith a edced DDr o53 fctio ofte caot e sstaied, hoee, ecaseteomees eetay ecome seeey eoded, eadig toa state of extesie geomic istaiity ad ce death thatis temed cisis o mitotic catastohe (BOX 1). rae mta-tioa o eigeetic eets ca actiate TErT exessioo ecomiatio mechaisms to eogate teomees111.Sch ces ae at a high isk of maigat tasfomatioecase they ca eicate idefiitey ad hao mta-tios ad chomosoma aomaities.

    The DDr ad 53 athay oide a fist ie ofdefece agaist cace y eetig the goth of cesith seeey damaged DnA, hich ae at isk of deeo-ig ad oagatig ocogeic mtatios112,113. Hoee,the oss of 53 o a itact DDr eithe efoe ces

    exeiece damage o afte damage-idced seescece say eads to mitotic catastohe, hich acts asa secod aie that mst e oecome y teomeestaiizatio111.

    The p16pRB pathway. Stimi that odce a DDrca aso egage the 16rb athay, t this sayoccs secoday to egagemet of the 53 athay71,72.noetheess, some seescece-idcig stimi act i-maiy thogh the 16rb athay. This is aticayte of eitheia ces, hich ae moe oe tha fio-asts to idcig 16 ad aestig oifeatio, at east icte. Fthemoe, thee ae secies-secific diffeeces:

    fo exame, exeimeta distio of teomees i-maiy egages the 53 athay i mose ces t oththe 53 ad 16rb athays i hma ces114.

    Ocogeic rAS idces 16 exessio y actiatigETS tascitio factos; ETS actiity is coteactedy ID oteis87, hich ae doegated i seescetces115. It is ot cea ho othe seescece-casig stimiidce 16 exessio. Oe ossie mechaism is theedced exessio of poycom InK4a eessos sch

    Figure 4 | Snsn ntd t p53 nd p16

    prb ptws. Senescence-inducing signals, including

    those that trigger a DNA-damage response (DDR), as well

    as many other stresses (FIG. 1), usually engage either the

    p53 or the p16retinoblastoma protein (pRB) tumour

    suppressor pathways. Some signals, such as oncogenic

    RAS, engage both pathways. p53 is negatively regulated by

    the E3 ubiquitin-protein ligase HDM2 (MDM2 in mice),

    which facilitates its degradation, and HDM2 is negatively

    regulated by the alternate-reading-frame protein (ARF).

    Active p53 establishes the senescence growth arrest in

    part by inducing the expression of p21, a cyclin-dependent

    kinase (CDK) inhibitor that, among other activities,

    suppresses the phosphorylation and, hence, the

    inactivation of pRB. Senescence signals that engage the

    p16pRB pathway generally do so by inducing the

    expression of p16, another CDK inhibitor that prevents

    pRB phosphorylation and inactivation. pRB halts cell

    proliferation by suppressing the activity of E2F, a

    transcription factor that stimulates the expression of genes

    that are required for cell-cycle progression. E2F can also

    curtail proliferation by inducing ARF expression, which

    engages the p53 pathway. So, there is reciprocal regulation

    between the p53 and p16pRB pathways. Interactions

    among ARF, HDM2, p53, p21, CDKs, pRB and E2F also occur

    in other cell contexts for example, during the DDR and

    reversible or transient growth arrest so it not yet clear

    how senescence, as opposed to quiescence or transient

    growth arrest, is established. It is noteworthy, however, that

    at least in cell-culture studies, upregulation of p16 is not

    part of the immediate DDR and does not occur duringtransient growth arrests or quiescence.

    R E V I E W S

    nATurE rEvIEwS |molecular cell biology vOluME 8 | SEpTEMbEr 2007 |735

    http://www.expasy.org/uniprot/Q00987http://www.expasy.org/uniprot/Q00987
  • 7/29/2019 Nrm 2233

    8/12

    as bMI1 (ReFs 53,116) ad CbX7 (ReF. 117). Cosistet iththis idea, bMI1 o CbX7 oeexessio exteds the ei-catie ifesa of hma ad mose fioasts53,103,117.

    16 ad 21 ae oth CDKIs; hece, oth ca keerb i a actie, hyohoshoyated fom, theeyeetig E2F fom tasciig gees that ae eededfo oifeatio42. Hoee, 16 ad 21 ae ceay oteqiaet118. Ces that seesce soey de to 5321actiatio ca esme goth afte iactiatio of the 53athay, ad do so fo may ce doigs ti cisis omitotic catastohe occs20,52,55,64,110 . Hoee, athoghces that seesce de to ocogeic rAS (hich idces16 exessio) ca esme imited oifeatio20,ces that fy egage the 16rb athay fo seeadays say caot esme goth ee afte iactia-tio of 53, rb o 16 (ReF. 52). Moeoe, the oss of16rb actiity egates 53 ad 21 exessio iat ecase E2F aso stimates ArF exessio119,120.Desite ecioca egatio etee the 53 ad16rb athays (FIG. 4), thee ae diffeeces i hoces esod he oe o the othe athay mediates

    a seescece esose.The 16rb athay is ccia fo geeatig

    SAHFs, hich siece the gees that ae eeded fooifeatio45. SAHFs eqie seea days to deeo,dig hich time thee ae tasiet iteactiosamog chomati-modifyig oteis sch as HIrA(histoe eesso A), ASF1a (ati-siecig fctio-1a)ad Hp1 (ReF. 88). utimatey, each SAHF cotaisotios of a sige codesed chomosome, hich isdeeted fo the ike histoe H1 ad eiched fo Hp1ad the histoe aiat macoH2A121,122. like the gothaest, oce estaished, SAHFs o oge eqie 16o rb fo maiteace45. These fidigs sggest thatthe 16rb athay ca estaish sef-maitaiigseescece-associated heteochomati. This actiitymay e de to the aiity of rb to comex ith histoe-modifyig ezymes that fom eessie chomati123.Athogh SAHFs ae ot eset i a seescet ces,the 16rb athay might estaish chomati statesthat ae fctioay, if ot cytoogicay, eqiaet toSAHFs i ces that do ot deeo these stctes.

    Significance of senescence in vivo

    Hayficks oseatios1 ee made sig ctedces, ad mch of o cet destadig of thecases ad coseqeces of seescece sti deiesfom ce ctes. Oy dig the ast decade o so

    has cea seescece ee sho to occ ad to eimotat in vivo.

    Senescent cells in vivo. Seescece-associated makes(see aoe) hae ee sed to idetify seescet cesin vivo, ith the caeat that oe of these makes aeexcsie to the seescet state. I odets, imatesad hmas, seescet ces ae fod i may ee-ae tisses, icdig the ascate, haematooieticsystem, may eitheia ogas ad the stoma12,49,51,124.notay, ces that exess oe o moe seescecemakes ae eatiey ae i yog ogaisms, t theime iceases ith age. Ho adat ae seescet

    ces i aged ogaisms? Estimates ay idey deed-ig o the stdy, secies ad tisse, agig fom 15%. It is diffict to ko the case of the sees-cece esose fom these stdies. Hoee, amogthe seescece makes that accmate ith age aeSDFs that co-ocaize ith teomees, sggestig that,at east i some tisses, teomee dysfctio casesseescece in vivo.

    Ces that exess seescece makes ae aso fodat sites of choic age-eated athoogy, sch as osteo-athitis ad atheosceosis125127. Ths, seescet cesae associated ith ageig ad age-eated diseasesin vivo, as sggested y Hayficks eay exeimets. Iadditio, seescet ces ae associated ith eig dys-astic o eeoastic esios83,9294 ad eig ostatichyeasia128, t ot ith maigat tmos. Theyae aso fod i oma ad tmo tisses fooigDnA-damagig chemotheay7376. These fidigs s-ot the secod secatio fom Hayficks exeimets that cea seescece sesses the deeometof cace. Seescet ces ae theefoe fod at aoi-

    ate times ad aces fo thei oosed oes i tmosessio ad ageig.

    why do seescet ces accmate in vivo? Thease to this qestio is ot ko. recet fidigssggest that seescet ces, at east those idced yacte 53 actiatio i mie tmo modes, cae ceaed y host mechaisms sch as the immesystem129,130. vitay othig is ko aot hoseescet ces ae ecogized y the imme system,hethe additioa mechaisms cea them in vivo ohethe ceaace mechaisms chage ith age o iage-eated diseases. likeise, othig is ko aothethe the seescet ces fod in vivo hae escaedceaace o ae i the ocess of eig ceaed.

    Cellular senescence and cancer. Seescece-idcigstimi ae otetiay ocogeic, ad cace ces mstacqie mtatios that ao them to aoid teomee-deedet ad ocogee-idced seescece2,93,131133.These mtatios tyicay occ i the 53 ad 16rbathays. Of cose, these athays hae mtie acti-ities, a of hich may cotite to thei tmo s-esso actiities. noetheess, thee ae seea istacesi hich oss of the seescece esose aeas to ea ccia, aeit isfficiet, ste i the deeomet ofcace. Fo exame, geeticay egieeed mice thatae deficiet i a histoe methytasfease o 53 co-

    tai ces that fai to seesce i esose to aoiatestimi; these mice ae iaiay cace-oe92,93,134.likeise, ces fom atiets ith li-Famei sydome,hich cay mtatios i 53 o CHK2 (ReFs 135,136),oecome seescece mch moe eadiy tha omaces137; hmas ith these mtatios ae aso cace-oe. Fiay, as oted eaie, some eeoastic esioscotai age mes of ces that exess seescecemakes, hich sggests that a seescece esose hatsthei ogessio to maigacy.

    Cea seescece oay sesses tmoigeesisecase cace deeomet eqies ce oifeatio2,so ay mechaism that stigety eets ce goth

    R E V I E W S

    736 | SEpTEMbEr 2007 | vOluME 8 www.nt./ws/

    http://www.ncbi.nlm.nih.gov/entrez/dispomim.cgi?id=151623http://www.ncbi.nlm.nih.gov/entrez/dispomim.cgi?id=151623
  • 7/29/2019 Nrm 2233

    9/12

    |

    Functional tissue Damaged tissue

    Apoptotic cell

    Senescent cell

    Mutated cell

    Senescent cell

    Dysfunctional cell

    Cancerous cell

    i, a ioi, eet cace. Hoee, faie to seesceis say isfficiet fo maigat tasfomatio.This is aticay te fo eicatie seescece; foexame, teomease eets teomee-iitiated sees-cece, t does ot cofe maigat oeties oces138. likeise, the iactiatio of 16, 21 o cetaiDDr gees o ee 53 o rb (fo exame, y iaocogees) iceases the eicatie ifesa of hmaces t does ot tasfom them per se20,109,139. Schces say ete cisis, fom hich ae eicatieyimmota ces (hich hae oecome the ed-eicatiooem) ca aise139. Ee the, the immota ces mayot e tmoigeic ti they acqie mtatios thatactiate mitogeic ocogees sch as rAS o iactiatetmo sessos that dame mitogeic sigas sch

    as pTEn83,92,93,140. Ths, geetic o eigeetic eets thataet eicatie seescece ae ecessay t isfficietfo maigat tmoigeesis.

    Seescece eesa ca occ if ces seesce ithotfy egagig the 16rb athay ad sseqetyose 53 fctio52. It is ot ko hethe this occsin vivo. Hoee, ces ith sieced (methyated)16 exist i aaety oma tisse108; shod schces seesce (fo exame, i esose to teomeedysfctio o DnA damage) ad sseqety ose53 fctio, they cod, i icie, esme oifea-tio. likeise, seescet 16-egatie ces i dysasticaei83 cod acqie a mtatio that iactiates 53

    fctio ad eet to a oifeatig state. no-diidigces ca acqie mtatios4 so these sceaios ae otimossie, t it is ot cea hethe they ae asie.whatee the case, it is aaet that seescece osesa fomidae t ot ismotae aie to caceogessio.

    Cellular senescence and ageing.The ik etee ceaseescece ad ageig is moe tetatie tha the ikto cace12. As oted eaie, the me of seescetces iceases ith age, ad seescet ces ae esetat sites of age-eated athoogy. Fthe, ecet fidigsimicate 16-deedet seescece i thee hamaksof ageig decemets i eogeesis, haematooiesisad aceatic fctio105107. 16 exessio iceasesith age i the stem ad ogeito ces of the moseai, oe mao ad aceas, hee it sessesstem-ce oifeatio ad tisse egeeatio. This isei 16-ositie stem ces is aaet i eay midde-age.Stikigy, the age-eated decie i stem-ce gothad tisse egeeatio is sstatiay etaded i mice

    that hae ee geeticay egieeed to ack 16 exes-sio. Hoee, as exected, these mice die ematey(i ate midde-age) of cace.

    The age-deedet ise i 16-ositie stem adogeito ces is cosistet ith the idea that stem-ceseescece might at east aty exai the age-eateddecie i ai ad oe-mao fctio ad thedeeomet oftye II diaetes. Hoee, it is ot yetko hethe the 16-ositie stem ad ogeitoces ae i fact seescet. So, it is ossie that oth thetmo-sessie ad o-ageig actiities of 16 aeaty de to goth sessio ithot seescece.noetheess, these fidigs sggest that the tmo-sessie actiity of 16 might e iexticay ikedto its o-ageig effects. A simia tade-off eteetmo sessio ad ageig is see i mice ithcostittiey hyeactie foms of 53 aimas thatexess these foms ae emakay tmo-fee, tsho mtie sigs of acceeated ageig141,142, hichae at east aty de to thei iceased sesitiity toseescece-idcig stimi142.

    A secod mechaism y hich seescet ces mightcotite to ageig comes fom thei ateed atte ofgee exessio secificay, the egatio of geesthat ecode extacea-matix-degadig ezymes,ifammatoy cytokies ad goth factos, hich caaffect the ehaio of eighoig ces o ee dista

    ces ithi tisses12(FIG. 5). These seceted factos cadist the oma tisse stcte ad fctio ice-cte modes (fo exame, the fctioa admohoogica diffeetiatio of mammay eitheiaces o eidema keatiocytes)143,144. Moeoe, factosseceted y seescet ces ca stimate the gothad agiogeic actiity of eay emaigat ces,oth i cte ad in vivo145149. Theefoe, seescetces, hich themsees caot fom tmos, may fethe ogessio of eay emaigat ces, theey ioicay faciitatig the deeomet of cacei ageig ogaisms. Togethe, these fidigs sotthe idea that the seescece esose is atagoisticay

    Figure 5 | Ptnt dts ffts f snsnt s. Damage to cells within

    tissues can result in several outcomes. Of course, the damage may be completely

    repaired, restoring the cell and tissue to its pre-damaged state. Excessive or irreparable

    damage, however, can cause cell death (apoptosis), senescence or an oncogenicmutation. The division of a neighbouring cell, or a stem or progenitor cell, usually

    replaces apoptotic cells. Cell division, however, increases the risk of fixing DNA damage

    as an oncogenic mutation, leaving the tissue with pre-malignant or potentially malignant

    cells. Senescent cells, by contrast, may not be readily replaced; in any case, their number

    can increase with age. Senescent cells secrete various factors that can alter or inhibit the

    ability of neighbouring cells to function, resulting in dysfunctional cells. They can also

    stimulate the proliferation and malignant progression of nearby premalignant cells.

    Therefore, an accumulation of senescent cells can both compromise normal tissue

    function and facilitate cancer progression.

    R E V I E W S

    nATurE rEvIEwS |molecular cell biology vOluME 8 | SEpTEMbEr 2007 |737

    http://www.ncbi.nlm.nih.gov/entrez/dispomim.cgi?cmd=entry&id=125853http://www.ncbi.nlm.nih.gov/entrez/dispomim.cgi?cmd=entry&id=125853
  • 7/29/2019 Nrm 2233

    10/12

    eiotoic, ad aaces the eefits of sessigcace i yog ogaisms agaist omotig thedeeomet of deeteios ageig heotyes8,12.

    Future questions and directions

    Desite the tasitio fom ce-cte ciosity tootetia egato of cace ad ageig, cea sees-cece emais eigmatic ad coties to ose a hostof qestios. pecisey ho do the 53 ad 16rbathays estaish ad, eqay imotaty, maitaithe seescet goth aest? both of these tmo-sesso athays aso case tasiet o eesiece-cyce aests, so ho ae thei actiities modifiedy seescece-idcig sigas? Fo that matte, hodo ces decide hethe to dego a tasiet gothaest, seescece o aotosis i esose to damageo stess sigas? The sigas that idce 16, oth icte ad in vivo, ae eseciay osce at eset.

    likeise, itte is ko aot the mechaisms thatae esosie fo the aaety deeteios seescetsecetoy heotye. Ho ad hy does this heotye

    deeo? Fiay, ho does the seescece esose a-ace tmo sessio, tisse egeeatio ad ageigheotyes? Ceay, it od ot e desiae to eese

    the seescece goth aest this od ao dam-aged, stessed o ocogee-exessig ces to oifeatead theefoe icease the isk of cace. bt i it e os-sie to eimiate the deeteios (o-ageig) asects ofcea seescece (fo exame, the seescet secetoyheotye) ithot eesig the tmo-sessiegoth aest? The geeatio of egieeed micethat cay additioa coies of oey egated 53(ReF. 150) o 16 ad ArF151, o hae edced actiityof the egatie 53 egato MDM2 (ReF. 152), edhoe to this ossiiity. These mice deeo itte ca-ce ithot sigs of acceeated ageig. Hoee, theifesas of these mice ee ot sigificaty ogetha coto mice, desite cace eig a majo caseof death i mice. It emais to e see hethe othe,ossiy o-etha, age-eated athoogies ee acce-eated o exaceated. The existece of these mice asoaises the ossiiity that thee is (o ca e) itte o otade-off etee tmo sessio ad ogeity, ifot etee tmo sessio ad ageig heotyeso cetai age-eated athoogies. whatee the case,

    it might e ossie, thogh secific iteetios, toameioate ay atagoisticay eiotoic effects thattmo sessos might hae.

    1. Hayflick, L. The limited in vitro lifetime of human

    diploid cell strains. Exp. Cell Res. 37, 614636

    (1965).

    A classic paper that describes the limited

    replicative lifespan of normal human cells.2. Hanahan, D. & Weinberg, R. A. The hallmarks of

    cancer. Cell100, 5770 (2000).

    3. Bishop, J. M. Cancer: the rise of the genetic paradigm.

    Genes Dev. 9, 13091315 (1995).

    References 2 and 3 describe the characteristics of

    cancer cells and the importance of mutations in

    cancer development.

    4. Busuttil, R. A., Rubio, M., Dolle, M. E., Campisi, J. &Vijg, J. Mutant frequencies and spectra depend on

    growth state and passage number in cells cultured

    from transgenic lacZ-plasmid reporter mice. DNA

    Repair5, 5260 (2006).

    5. Sager, R. Senescence as a mode of tumor suppression.

    Environ. Health Perspect. 93, 5962 (1991).

    6. Campisi, J. Cellular senescence as a tumor-suppressor

    mechanism. Trends Cell Biol. 11, 2731 (2001).

    7. Braig, M. & Schmitt, C. A. Oncogene-induced

    senescence: putting the brakes on tumor

    development. Cancer Res. 66, 28812884 (2006).

    8. Campisi, J. Cancer and ageing: rival demons? Nature

    Rev. Cancer3, 339349 (2003).

    9. Kirkwood, T. B. & Austad, S. N. Why do we age?

    Nature408, 233238 (2000).

    10. Dimri, G. P. What has senescence got to do with

    cancer? Cancer Cell7, 505512 (2005).

    11. Wright, W. E. & Shay, J. W. Cellular senescence as a

    tumor-protection mechanism: the essential role of

    counting. Curr. Opin. Genet. Dev.11, 98103(2001).

    12. Campisi, J. Senescent cells, tumor suppression and

    organismal aging: good citizens, bad neighbors. Cell

    120, 513522 (2005).

    13. Hornsby, P. J. Cellular senescence and tissue aging

    in vivo.J. Gerontol. 57, 251256 (2002).

    References 513 describe the historic and current

    evidence that cellular senescence suppresses the

    development of cancer. In addition, references 8

    and 9 explain the concept of antagonistic

    pleiotropy.

    14. Kim, W. Y. & Sharpless, N. E. The regulation of

    INK4/ARF in cancer and aging. Cell127, 265275

    (2006).

    15. DiLeonardo, A., Linke, S. P., Clarkin, K. & Wahl, G. M.

    DNA damage triggers a prolonged p53-dependent G1

    arrest and long-term induction of Cip1 in normal

    human fibroblasts. Genes Dev. 8, 25402551 (1994).

    16. Herbig, U., Jobling, W. A., Chen, B. P., Chen, D. J. &

    Sedivy, J. Telomere shortening triggers senescence of

    human cells through a pathway involving ATM, p53,

    and p21(CIP1), but not p16(INK4a). Mol. Cell14,

    501513 (2004).

    17. Ogryzko, V. V., Hirai, T. H., Russanova, V. R.,

    Barbie, D. A. & Howard, B. H. Human fibroblast

    commitment to a senescence-like state in response to

    histone deacetylase inhibitors is cell cycle dependent.

    Mol. Cell. Biol. 16, 52105218 (1996).

    18. Serrano, M., Lin, A. W., McCurrach, M. E., Beach, D.

    & Lowe, S. W. Oncogenic ras provokes premature cell

    senescence associated with accumulation of p53 andp16INK4a. Cell88, 593602 (1997).

    19. Wada, T. et al. MKK7 couples stress signaling to G2/M

    cell-cycle progression and cellular senescence. Nature

    Cell Biol. 6, 215226 (2004).

    20. Di Micco, R. et al. Oncogene-induced senescence is a

    DNA damage response triggered by DNA hyper-

    replication. Nature444, 638642 (2006).

    21. Olsen, C. L., Gardie, B., Yaswen, P. & Stampfer, M. R.

    Raf-1-induced growth arrest in human mammary

    epithelial cells is p16-independent and is overcome in

    immortal cells during conversion. Oncogene21,

    63286339 (2002).

    22. Zhu, J., Woods, D., McMahon, M. & Bishop, J. M.

    Senescence of human fibroblasts induced by

    oncogenic raf. Genes Dev. 12, 29973007 (1998).

    23. Shay, J. W. & Roninson, I. B. Hallmarks of senescence

    in carcinogenesis and cancer therapy. Oncogene23,

    29192933 (2004).

    References 1523 show that many potentially

    oncogenic stimuli can induce a senescenceresponse.

    24. Itahana, K., Campisi, J. & Dimri, G. P. Mechanisms of

    cellular senescence in human and mouse cells.

    Biogerontology 5, 110 (2004).

    25. Ellis, R. E., Yuan, J. Y. & Horvitz, H. R. Mechanisms

    and functions of cell death.Annu. Rev. Cell Biol. 7,

    663698 (1991).

    26. Green, D. R. & Evan, G. I. A matter of life and death.

    Cancer Cell1, 1930 (2002).

    27. Hampel, B., Malisan, F., Niederegger, H., Testi, R. &

    Jansen-Durr, P. Differential regulat ion of apoptotic cell

    death in senescent human cells. Exp. Gerontol. 39,

    17131721 (2004).28. Chen, Q. M., Liu, J. & Merrett, J. B. Apoptosis or

    senescence-like growth arrest: influence of cell-cycle

    position, p53, p21 and bax in H2O2 response of

    normal human fibroblasts. Biochem. J. 347, 543551

    (2000).

    29. Tepper, C. G., Seldin, M. F. & Mudryj, M. Fas-mediated

    apoptosis of proliferating, transiently growth-arrested,

    and senescent normal human fibroblasts. Exp. Cell

    Res. 260, 919 (2000).

    30. Rebbaa, A., Zheng, X., Chou, P. M. & Mirkin, B. L.

    Caspase inhibition switches doxorubicin-induced

    apoptosis to senescence. Oncogene22, 28052811

    (2003).31. Seluanov, A. et al. Change of the death pathway in

    senescent human fibroblasts in response to DNA

    damage is caused by an inability to stabilize p53.

    Mol. Cell. Biol. 21, 15521564 (2001).

    32. Crescenzi, E., Palumbo, G. & Brady, H. J. Bcl-2 activatesa programme of premature senescence in human

    carcinoma cells. Biochem. J. 375, 263274 (2003).33. Marcotte, R., Lacelle, C. & Wang, E. Senescent

    fibroblasts resist apoptosis by downregulating

    caspase-3. Mech. Ageing Dev.125, 777783 (2004).

    34. Murata, Y. et al. Death-associated protein 3 regulates

    cellular senescence through oxidative stress response.

    FEBS Lett. 580, 60936099 (2006).

    35. Jackson, J. G. & Pereira-Smith, O. M. p53 is

    preferentially recruited to the promoters of growth

    arrest genes p21 and GADD45 during replicative

    senescence of normal human fibroblasts. Cancer Res.

    66, 83568360 (2006).

    36. Chang, B. D. et al. Molecular determinants of terminal

    growth arrest induced in tumor cells by a

    chemotherapeutic agent. Proc. Natl Acad. Sci. USA

    99, 389394 (2002).

    37. Mason, D. X., Jackson, T. J. & Lin, A. W. Molecular

    signature of oncogenic ras-induced senescence.

    Oncogene23, 92389246 (2004).38. Shelton, D. N., Chang, E., Whittier, P. S., Choi, D. &

    Funk, W. D. Microarray analysis of replicative

    senescence. Curr. Biol. 9, 939945 (1999).

    39. Trougakos, I. P., Saridaki, A., Panayotou, G. &

    Gonos, E. S. Identification of differentially expressed

    proteins in senescent human embryonic fibroblasts.

    Mech. Ageing Dev. 127, 8892 (2006).

    40. Yoon, I. K. et al. Exploration of replicative senescence-

    associated genes in human dermal fibroblasts by

    cDNA microarray technology.Exp. Gerontol. 39,

    13691378 (2004).

    41. Zhang, H., Pan, K. H. & Cohen, S. N. Senescence-specific

    gene expression fingerprints reveal cell-type-dependent

    physical clustering of up-regulated chromosomal loci.

    Proc. Natl Acad. Sci. USA100, 32513256 (2003).

    References 3641 describe the many changes in

    gene expression that are linked to the senescence

    response.

    R E V I E W S

    738 | SEpTEMbEr 2007 | vOluME 8 www.nt./ws/

  • 7/29/2019 Nrm 2233

    11/12

    42. Sherr, C. J. & McCormick, F. The RB and p53

    pathways in cancer. Cancer Cell2, 103112 (2002).43. Espinosa, J. M., Verdun, R. E. & Emerson, B. M.

    p53 functions through stress- and promoter-specific

    recruitment of transcription initiation components

    before and after DNA damage. Mol. Cell12,

    10151027 (2003).

    44. Gil, J. & Peters, G. Regulation of the INK4bARF

    INK4a tumour suppressor locus: all for one or one for

    all. Nature Rev. Mol. Cell Biol. 7, 667677 (2006).

    45. Narita, M. et al. Rb-mediated heterochromatin

    formation and silencing of E2F target genes duringcellular senescence. Cell113, 703716 (2003).

    The first description of senescence-associated

    heterochromatin foci.

    46. Pang, J. H. & Chen, K. Y. Global change of gene

    expression at late G1/S boundary may occur in human

    IMR-90 diploid fibroblasts during senescence.J. Cell

    Physiol. 160, 531538 (1994).

    47. Seshadri, T. & Campisi, J. Repression of c-fos

    transcription and an altered genetic program in

    senescent human fibroblasts. Science247, 205209

    (1990).48. Stein, G. H., Drullinger, L. F., Robetorye, R. S.,

    Pereira-Smith, O. M. & Smith, J. R. Senescent cells fail

    to express CDC2, CYCA, and CYCB in response to

    mitogen stimulation. Proc. Natl Acad. Sci USA88,

    1101211016 (1991).

    49. Dimri, G. P. et al.A novel biomarker identifies

    senescent human cells in culture and in aging skin

    in vivo. Proc. Natl Acad. Sci. USA92, 93639367

    (1995).

    First description of a senescence-associated

    marker that allowed the identification of senescent

    cellsin vivo.

    50. Lee, B. Y. et al. Senescence-associated -galactosidaseis lysosomal -galactosidase.Aging Cell5, 187195(2006).

    51. Krishnamurthy, J. et al. Ink4a/Arf expression is a

    biomarker of aging.J. Clin. Invest.114, 12991307

    (2004).

    52. Beausejour, C. M. et al. Reversal of human cellular

    senescence: roles of the p53 and p16 pathways.

    EMBO J. 22, 42124222 (2003).

    53. Itahana, K. et al. Control of the replicative life span of

    human fibroblasts by p16 and the polycomb protein

    Bmi-1. Mol. Cell. Biol. 23, 389401 (2003).54. Collado, M. & Serrano, M. The power and the promise

    of oncogene-induced senescence markers. Nature Rev.

    Cancer6, 472476 (2006).

    55. dAdda di Fagagna, F. et al.A DNA damage checkpoint

    response in telomere-initiated senescence. Nature

    426, 194198 (2003).56. Takai, H., Smogorzewska, A. & de Lange, T. DNA

    damage foci at dysfunctional telomeres. Curr. Biol. 13,

    15491556 (2003).

    References 55 and 56, along with reference 16,

    provide the first direct evidence that dysfunctional

    telomeres trigger a DNA-damage response.

    57. Bartholdi, M. F. Nuclear distribution of centromeres

    during the cell cycle of human diploid fibroblasts.

    J. Cell Sci. 99, 255263 (1991).

    58. Cerda, M. C., Berrios, S., Fernandez-Donoso, R.,

    Garagna, S. & Redi, C. Organisation of complex

    nuclear domains in somatic mouse cells. Biol. Cell91,

    5565 (1999).

    59. dAdda di Fagagna, F., Teo, S. H. & Jackson, S. P.

    Functional links between telomeres and proteins of

    the DNA-damage response. Genes Dev. 18,

    17811799 (2004).

    60. Griffith, J. D. et al. Mammalian telomeres end in a

    large duplex loop. Cell97, 503514 (1999).

    61. Harley, C. B., Futcher, A. B. & Greider, C. W. Telomeresshorten during aging of human fibroblasts. Nature

    345, 458460 (1990).

    First evidence linking telomere shortening to

    replicative senescence.

    62. Hemann, M. T., Strong, M.A., Hao, L. Y. &

    Greider, C. W. The shortest telomere, not average

    telomere length, is critical for cell viability and

    chromosome stability. Cell107, 6777 (2001).

    63. Martens, U. M., Chavez, E. A., Poon, S. S., Schmoor,

    C. & Lansdorp, P. M. Accumulation of short telomeres

    in human fibroblasts prior to replicative senescence.

    Exp. Cell Res. 256, 291299 (2000).64. Gire, V., Roux, P., Wynford-Thomas, D., Brondello, J. M.

    & Dulic, V. DNA damage checkpoint kinase Chk2

    triggers replicative senescence. EMBO J. 23,

    25542563 (2004).

    65. Collins, K. & Mitchell, J. R. Telomerase in the human

    organism. Oncogene21, 564579 (2002).

    66. Effros, R. B., Dagarag, M. & Valenzuela, H. F. In vitro

    senescence of immune cells. Exp. Gerontol. 38,

    12431249 (2003).

    67. Masutomi, K. et al. Telomerase maintains telomere

    structure in normal human cells. Cell114, 241253

    (2003).

    68. Bodnar, A. G. et al. Extension of life span by

    introduction of telomerase into normal human cells.

    Science279, 349352 (1998).69. Chen, Q. M., Prowse, K. R., Tu, V. C., Purdom, S. &

    Linskens, M. H. Uncoupling the senescent phenotype

    from telomere shortening in hydrogen peroxide-treated fibroblasts. Exp. Cell Res. 265, 294303

    (2001).

    70. Parrinello, S. et al. Oxygen sensitivity severely limits

    the replicative life span of murine cells. Nature Cell

    Biol. 5, 741747 (2003).

    71. Jacobs, J. J. & de Lange, T. Significant role for

    p16(INK4a) in p53-independent telomere-directed

    senescence. Curr. Biol. 14, 23022308 (2004).

    72. Stein, G. H., Drullinger, L. F., Soulard, A. & Dulic, V.

    Differential roles for cyclin-dependent kinase inhibitors

    p21 and p16 in the mechanisms of senescence and

    differentiation in human fibroblasts. Mol. Cell. Biol.

    19, 21092117 (1999).

    73. Roninson, I. B. Tumor cell senescence in cancer

    treatment. Cancer Res. 63, 27052715 (2003).

    74. Roberson, R. S., Kussick, S. J., Vallieres, E., Chen, S. Y.

    & Wu, D. Y. Escape from therapy-induced accelerated

    cellular senescence in p53-null lung cancer cells and in

    human lung cancers. Cancer Res. 65, 27952803

    (2005).

    75. Schmitt, C. A. et al.A senescence program controlled

    by p53 and p16INK4a contributes to the outcome of

    cancer therapy. Cell109, 335346 (2002).

    76. te Poele, R. H., Okorokov, A. L., Jardine, L., Cummings,

    J. & Joel, S. P. DNA damage is able to induce

    senescence in tumor cells in vitro and in vivo. Cancer

    Res. 62, 18761883 (2002).

    References 7376 describe evidence that tumour

    cells can undergo senescence in response to DNA-

    damaging chemotherapy.

    77. Munro, J., Barr, N. I., Ireland, H., Morrison, V. &

    Parkinson, E. K. Histone deacetylase inhibitors induce

    a senescence-like state in human cells by a p16-

    dependent mechanism that is independent of a mitotic

    clock. Exp. Cell Res. 295, 525538 (2004).78. Bakkenist, C. J. & Kastan, M. B. DNA damage

    activates ATM through intermolecular

    autophosphorylation and dimer dissociation. Nature

    421, 499506 (2003).

    79. Bandyopadhyay, D. et al. Down-regulation of p300/

    CBP histone acetyltransferase activates a senescencecheckpoint in human melanocytes. Cancer Res. 62,

    62316239 (2002).

    80. Minucci, S. & Pelicci, P. G. Histone deacetylase

    inhibitors and the promise of epigenetic (and more)

    treatments for cancer. Nature Rev. Cancer6, 3851

    (2006).

    81. Dimri, G. P., Itahana, K., Acosta, M. & Campisi, J.

    Regulation of a senescence checkpoint response by

    the E2F1 transcription factor and p14/ARF tumor

    suppressor. Mol. Cell. Biol. 20, 273285 (2000).

    82. Lin, A. W. et al. Premature senescence involving p53

    and p16 is activated in response to constitutive MEK/

    MAPK mitogenic signaling. Genes Dev. 12,

    30083019 (1998).

    83. Michaloglou, C. et al. BRAFE600-associated senescence-

    like cell cycle arrest of human nevi. Nature436,

    720724 (2005).

    84. Woo, R. A. & Poon, R. Y. Activated oncogenes promote

    and cooperate with chromosomal instability for

    neoplastic transformation. Genes Dev. 18 (2004).85. Mathon, N. F., Malcolm, D. S., Harrisingh, M. C.,

    Cheng, L. & Lloyd, A. C. Lack of replicative senescence

    in normal rodent glia. Science291, 872875 (2001).

    86. Tang, D. G., Tokumoto, Y. M., Apperly, J. A., Lloyd, A. C.

    & Raff, M. C. Lack of replicative senescence in cultured

    rat oligodendrocyte precursor cells. Science291,

    868871 (2001).

    87. Ohtani, N. et al. Opposing effects of Ets and Id

    proteins on p16/INK4a expression during cellular

    senescence. Nature409, 10671070 (2001).

    88. Zhang, R. et al. Formation of macroH2A-containing

    senescence-associated heterochromatin foci and

    senescence driven by ASF1a and HIRA. Dev. Cell8,

    1931 (2005).

    89. Bartkova, J. et al. Oncogene-induced senescence is

    part of the tumorigenesis barrier imposed by DNA

    damage checkpoints. Nature444, 633637

    (2006).

    90. Benanti, J. A. & Galloway, D. A. Normal human

    fibroblasts are resistant to RAS-induced senescence.

    Mol. Cell. Biol. 24, 28422852 (2004).

    91. Skinner, J. et al. Opposing effects of mutant ras

    oncoprotein on human fibroblast and epithelial cell

    proliferation: implications for models of human

    tumorigenesis. Oncogene23, 59945999

    (2004).

    92. Braig, M. et al. Oncogene-induced senescence as an

    initial barrier in lymphoma development. Nature436,

    660665 (2005).

    93. Chen, Z. et al. Critical role of p53-dependent cellularsenescence in suppression of PTEN-deficient

    tumorigenesis. Nature436, 725730 (2005).

    94. Collado, M. et al. Identification of senescent cells in

    premalignant tumours. Nature436, 642 (2005).95. Lazzerini Denchi, E., Attwooll, C., Pasini, D. & Helin, K.

    Deregulated E2F activity induces hyperplasia and

    senescence-like features in the mouse pituitary gland.

    Mol. Cell. Biol. 25, 26602672 (2005).

    Together with references 83 and 89, references

    9295 provide evidence that cellular senescence

    suppresses tumorigenesisin vivo.96. Moiseeva, O., Mallette, F. A., Mukhopadhyay, U. K.,

    Moores, A. & Ferbeyre, G. DNA damage signaling

    and p53-dependent senescence after prolonged-interferon stimulation. Mol. Biol. Cell17,15831592 (2006).

    97. Vijayachandra, K., Lee, J. & Glick, A. B. Smad3

    regulates senescence and malignant conversion in a

    mouse multistage skin carcinogenesis model. Cancer

    Res. 63, 34473452 (2003).

    98. Zhang, H. & Cohen, S. N. Smurf2 up-regulation

    activates telomere-dependent senescence. Genes Dev.

    18, 30283040 (2004).

    99. Ramirez, R. D. et al. Putative telomere-independent

    mechanisms of replicative aging reflect inadequate

    growth conditions. Genes Dev. 15, 398403

    (2001).

    100. Brenner, A. J., Stampfer, M. R. & Aldaz, C. M.

    Increased p16 expression with first senescence arrest

    in human mammary epithelial cells and extended

    growth capacity with p16 inactivation. Oncogene17,

    199205 (1998).

    101. Huschtscha, L. I. et al. Loss of p16INK4 expression by

    methylation is associated with lifespan extension of

    human mammary epithelial cells. Cancer Res. 58,

    35083512 (1998).

    102. Forsyth, N. R., Evans, A. P., Shay, J. W. & Wright, W. E.

    Developmental differences in the immortalization of

    lung fibroblasts by telomerase.Aging Cell2, 235243

    (2003).

    103. Jacobs, J. J., Kieboom, K., Marino, S., DePinho, R. A.& van Lohuizen, M. The oncogene and Polycomb-

    group gene BMI-1 regulates cell proliferation and

    senescence through the INK4a locus. Nature397,

    164168 (1999).

    104. Zindy, F., Quelle, D. E., Roussel, M. F. & Sherr, C. J.

    Expression of the p16INK4a tumor suppressor versus

    other INK4 family members during mouse

    development and aging. Oncogene15, 203211

    (1997).

    First report that p16 expression increases during

    ageing.105. Janzen, V. et al. Stem cell aging modified by the cyclin-

    dependent kinase inhibitor, p16INK4a. Nature443,

    421426 (2006).

    106. Krishnamurthy, J. et al. p16INK4a induces an age-

    dependent decline in islet regenerative potential.

    Nature443, 453457 (2006).

    107. Molofsky, A. V. et al. Declines in forebrain progenitor

    function and neurogenesis during aging are partially

    caused by increasing Ink4a expression. Nature443,448452 (2006).

    References 105107 describe evidence that p16

    limits stem-cell or progenitor-cell proliferation,

    which drives ageing phenotypes.

    108. Holst, C. R. et al. Methylation of p16(INK4a)

    promoters occurs in vivo in histologically normal

    human mammary epithelia. Cancer Res. 63,

    15961601 (2003).

    109. Brown, J. P., Wei, W. & Sedivy, J. M. Bypass of

    senescence after disruption of p21CIP1/WAF1 gene in

    normal diploid human fibroblasts. Science277,

    831834 (1997).110. Won, J. et al. Small molecule-based reversible

    reprogramming of cellular lifespan. Nature Chem. Biol.

    2, 369374 (2006).

    111. Shay, J. W. & Wright, W. E. Senescence and

    immortalization: role of telomeres and telomerase.

    Carcinogenesis26, 867874 (2005).

    R E V I E W S

    nATurE rEvIEwS |molecular cell biology vOluME 8 | SEpTEMbEr 2007 |739

  • 7/29/2019 Nrm 2233

    12/12

    112. Bartkova, J. et al. DNA damage response as a

    candidate anti-cancer barrier in early human

    tumorigenesis. Nature434, 864870 (2005).

    113. Gorgoulis, V. G. et al.Activation of the DNA damage

    checkpoint and genomic instability in human

    precancerous lesions. Nature434, 907913 (2005).

    114. Smogorzewska, A. & de Lange, T. Different telomere

    damage signaling pathways in human and mouse cells.

    EMBO J. 21, 43384348 (2002).115. Hara, E. et al. Id related genes encoding helix loop

    helix proteins are required for G1 progression and are

    repressed in senescent human fibroblasts.J. Biol.Chem. 269, 21392145 (1994).

    116. Bracken, A. P. et al. The Polycomb group proteins bind

    throughout the INK4AARF locus and are

    disassociated in senescent cells. Genes Dev. 21,

    525530 (2007).

    117. Gil, J., Bernard, D., Martinez, D. & Beach, D.

    Polycomb CBX7 has a unifying role in cellular lifespan.

    Nature Cell Biol. 6, 6267 (2004).

    118. Sherr, C. J. & Roberts, J. M. CDK inhibitors: positive

    and negative regulators of G1-phase progression.

    Genes Dev. 13, 15011512 (1999).

    119. Bates, S. et al. p14ARF links the tumor suppressors

    RB and p53. Nature395, 125125 (1998).

    120. Zhang, J., Pickering, C. R., Holst, C. R., Gauthier, M. L.

    & Tlsty, T. D. p16INK4a modulates p53 in primary

    human mammary epithelial cells. Cancer Res. 66,

    1032510331 (2006).

    121. Funayama, R., Saito, M., Tanobe, H. & Ishikawa, F.

    Loss of linker histone H1 in cellular senescence.J. Cell

    Biol. 175, 869880 (2006).

    122. Zhang, R., Chen, W. & Adams, P. D. Molecular

    dissection of formation of senescence-associated

    heterochromatin foci. Mol. Cell. Biol. 27, 23432358

    (2007).

    123. Macaluso, M., Montanari, M. & Giordano, A.

    Rb family proteins as modulators of gene expression

    and new aspects regarding the interaction with

    chromatin remodeling enzymes. Oncogene25,

    52635267 (2006).

    124. Jeyapalan, J. C., Ferreira, M., Sedivy, J. M. & Herbig, U.

    Accumulation of senescent cells in mitotic tissue of

    aging primates. Mech. Ageing Dev. 128, 3644

    (2007).

    125. Chang, E. & Harley, C. B. Telomere length and

    replicative aging in human vascular tissues. Proc. Natl

    Acad. Sci. USA92, 1119011194 (1995).

    126. Price, J. S. et al. The role of chondrocyte senescence in

    osteoarthritis.Aging Cell1, 5765 (2002).127.Vasile, E., Tomita, Y., Brown, L. F., Kocher, O. &

    Dvorak, H. F. Differential expression of thymosin -10

    by early passage and senescent vascular endotheliumis modulated by VPF/VEGF: Evidence for senescent

    endothelial cells in vivo at sites of atherosclerosis.

    FASEB J. 15, 458466 (2001).

    128. Castro, P., Giri, D., Lamb, D. & Ittmann, M. Cellular

    senescence in the pathogenesis of benign prostatic

    hyperplasia. Prostate55, 3038 (2003).

    129.Ventura, A. et al. Restoration of p53 function leads to

    tumour regression in vivo. Nature445, 661665

    (2007).

    130. Xue, W. et al. Senescence and tumour clearance is

    triggered by p53 restoration in murine liver

    carcinomas. Nature445, 656650 (2007).

    131. Cosme-Blanco, W. et al. Telomere dysfunction

    suppresses spontaneous tumorigenesis in vivo by

    initiating p53-dependent cellular senescence. EMBO

    Rep. 8, 497503 (2007).

    132. Christophorou, M. A., Ringshausen, I., Finch, A. J.,

    Swigart, L. B. & Evan, G. I. The pathological response

    to DNA damage does not contribute to p53-mediated

    tumour suppression. Nature443, 214217 (2006).

    133. Feldser, D. M. & Greider, C. W. Short telomeres limit

    tumor progression in vivo by inducing senescence.

    Cancer Cell11, 461469 (2007).

    134. Donehower, L. A. et al. Mice deficient for p53 aredevelopmentally normal but susceptible to

    spontaneous tumors. Nature356, 215221 (1992).

    135. Iwakuma, T., Lozano, G. & Flores, E. R. Li-Fraumeni

    syndrome: a p53 family affair. Cell Cycle4, 865867

    (2005).

    136. Lee, S. B. et al. Destabilization of CHK2 by a missense

    mutation associated with Li-Fraumeni syndrome.

    Cancer Res. 61, 80628067 (2001).

    137. Shay, J. W., Tomlinson, G., Piatyszek, M. A. &

    Gollahon, L. S. Spontaneous in vitro immortalization of

    breast epithelial cells from a patient with Li-Fraumeni

    syndrome. Mol. Cell Biol. 15, 425432 (1995).

    138. Morales, C. P. et al.Absence of cancer-associated

    changes in human fibroblasts immortalized with

    telomerase. Nature Genet. 21, 115118 (1999).

    139. Shay, J. W., Van Der Haegen, B. A., Ying, Y. &

    Wright, W. E. The frequency of immortalization of

    human fibroblasts and mammary epithelial cells

    transfected with SV40 large T-antigen. Exp. Cell Res.

    209, 4552 (1993).

    140. Hahn, W. C. et al. Creation of human tumor cells with

    defined genetic elements. Nature400, 464468

    (1999).

    141. Tyner, S. D. et al. p53 mutant mice that display early

    aging-associated phenotypes. Nature415, 4553

    (2002).

    142. Maier, B. et al. Modulation of mammalian life span by

    the short isoform of p53. Genes Dev. 18, 306319

    (2004).

    References 141 and 142 show that constitutive p53

    activity can suppress the development of cancer at

    the cost of accelerating ageing phenotypes.143. Funk, W. D. et al. Telomerase expression restores

    dermal integrity to in vitro aged fibroblasts in a

    reconstituted skin model. Exp. Cell Res. 258,

    270278 (2000).

    144. Parrinello, S., Coppe, J. P., Krtolica, A. & Campisi, J.

    Stromal-epithelial interactions in aging and cancer:

    senescent fibroblasts alter epithelial cell

    differentiation.J. Cell Sci. 118, 485496 (2005).

    145. Bavik, C. et al. The gene expression program ofprostate fibroblast senescence modulates neoplastic

    epithelial cell proliferation through paracrine

    mechanisms. Cancer Res. 66, 794802 (2006).

    146. Coppe, J. P., Kauser, K., Campisi, J. & Beausejour, C. M.

    Secretion of vascular endothelial growth factor by

    primary human fibroblasts at senescence.J. Biol.

    Chem. 281, 2956829574 (2006).

    147. Dilley, T. K., Bowden, G. T. & Chen, Q. M. Novel

    mechanisms of sublethal oxidant toxicity: induction of

    premature senescence in human fibroblasts confers

    tumor promoter activity. Exp. Cell Res. 290, 3848

    (2003).

    148. Krtolica, A., Parrinello, S., Lockett, S., Desprez, P. &

    Campisi, J. Senescent fibroblasts promote epithelial

    cell growth and tumorigenesis: a link between cancer

    and aging. Proc. Natl Acad. Sci. USA98,

    1207212077 (2001).

    149. Martens, J. W. et al.Aging of stromal-derived human

    breast fibroblasts might contribute to breast cancer

    progression. Thromb. Haemost. 89, 393404 (2003).

    150. Garcia-Cao, I. et al. Super p53 mice exhibit enhanced

    DNA damage response, are tumor resistant and age

    normally. EMBO J. 21, 62256235 (2002).

    151. Matheu, A. et al. Increased gene dosage of Ink4a/Arfresults in cancer resistance and normal aging. Genes

    Dev. 18, 27362746 (2004).

    152. Mendrysa, S. M. et al. Tumor suppression and normal

    aging in mice with constitutively high p53 activity.

    Genes Dev. 20, 1621 (2006).

    References 150152 show that resistance to

    cancer need not accelerate ageing.

    153. Shay, J. W., Wright, W. E. & Werbin, H. Defining the

    molecular mechanisms of human cell immortalization.

    Biochim. Biophys. Acta Rev. Cancer1071, 17 (1991).

    154. Romanov, S. R. et al. Normal human mammary

    epithelial cells spontaneously escape senescence and

    acquire genomic changes. Nature409, 633637

    (2001).

    155. Emsley, J. G., Mitchell, B. D., Kempermann, G. &

    Macklis, J. D. Adult neurogenesis and repair of the

    adult CNS with neural progenitors, precursors, and

    stem cells. Prog. Neurobiol. 75, 321341 (2005).

    156. Shi, X. & Garry, D. J. Muscle stem cells in

    development, regeneration, and disease. Genes Dev.

    20, 16921708 (2006).157. Srivastava, D. & Ivey, K. N. Potential of stem-cell-

    based therapies for heart disease. Nature441,

    10971099 (2006).

    AcknowledgementsThe authors thank colleagues and the members of their labo-

    ratories for stimulating discussions. The F.dA.d.F. group is

    supported by the Associazione Italiana per la Ricerca sul

    Cancro, the Association for International Cancer Research

    and the Human Frontier Science Program. The J.C. group is

    supported by the US National Institute of Aging, the National

    Cancer Institute and the Department of Energy.

    Competing interests statementThe authors declare no competing financial interests.

    DATABASESOMIM:http://www.ncbi.nlm.nih.gov/entrez/query.

    fcgi?db=OMIM

    Li-Fraumeni syndrome| type II diabetes

    UniProtKB:http://ca.expasy.org/sprot

    ATM| CHK2| E2F|HDM2| p16|p21|p53 | pRB|PTEN

    FURTHER INFORMATIONJudith Campisis homepages:

    http://www.buckinstitute.org/site/index.php?option=com_c

    ontent&task=view&id=113&Itemid=100

    http://www.lbl.gov/lifesciences/labs/campisi_lab.html

    Fabrizio dAdda di Fagagnas homepage:

    http://www.ifom-ieo-campus.it/research/dadda.php

    all liNkS are acTive iN The oNliNe PDF.

    R E V I E W S

    740 | SEpTEMbEr 2007 | vOluME 8 / /

    http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=OMIMhttp://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=OMIMhttp://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=OMIMhttp://www.ncbi.nlm.nih.gov/entrez/dispomim.cgi?id=151623http://www.ncbi.nlm.nih.gov/entrez/dispomim.cgi?cmd=entry&id=125853http://ca.expasy.org/sprothttp://www.expasy.org/uniprot/Q13315http://www.expasy.org/uniprot/O96017http://www.expasy.org/uniprot/Q01094http://www.expasy.org/uniprot/Q01094http://www.expasy.org/uniprot/Q00987http://www.expasy.org/uniprot/Q00987http://www.expasy.org/uniprot/P42771http://www.expasy.org/uniprot/P38936http://www.expasy.org/uniprot/P38936http://www.expasy.org/uniprot/P38936http://www.expasy.org/uniprot/P04637http://www.expasy.org/uniprot/P04637http://www.expasy.org/uniprot/P06400http://www.expasy.org/uniprot/P06400http://www.expasy.org/uniprot/P60484http://www.expasy.org/uniprot/P60484http://www.buckinstitute.org/site/index.php?option=com_content&task=view&id=113&Itemid=100http://www.buckinstitute.org/site/index.php?option=com_content&task=view&id=113&Itemid=100http://www.lbl.gov/lifesciences/labs/campisi_lab.htmlhttp://www.ifom-ieo-campus.it/research/dadda.phphttp://www.ifom-ieo-campus.it/research/dadda.phphttp://www.lbl.gov/lifesciences/labs/campisi_lab.htmlhttp://www.buckinstitute.org/site/index.php?option=com_content&task=view&id=113&Itemid=100http://www.buckinstitute.org/site/index.php?option=com_content&task=view&id=113&Itemid=100http://www.expasy.org/uniprot/P60484http://www.expasy.org/uniprot/P06400http://www.expasy.org/uniprot/P04637http://www.expasy.org/uniprot/P38936http://www.expasy.org/uniprot/P42771http://www.expasy.org/uniprot/Q00987http://www.expasy.org/uniprot/Q01094http://www.expasy.org/uniprot/O96017http://www.expasy.org/uniprot/Q13315http://ca.expasy.org/sprothttp://www.ncbi.nlm.nih.gov/entrez/dispomim.cgi?cmd=entry&id=125853http://www.ncbi.nlm.nih.gov/entrez/dispomim.cgi?id=151623http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=OMIMhttp://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=OMIM