NRG Studies on ESFR Oxide Core Feedback Coefficients ... · Results for the ESFR parameters 11 /...

13
1 / 13 NRG Studies on ESFR Oxide Core Feedback Coefficients: Uncertainty Analyses (ESFR WP3 T2.1.3) D. Rochman, A.J. Koning, D.F. DaCruz and S.C. van der Marck Nuclear Research and Consultancy Group, NRG, Petten, The Netherlands April, 2011

Transcript of NRG Studies on ESFR Oxide Core Feedback Coefficients ... · Results for the ESFR parameters 11 /...

  • 1 / 13

    NRG Studies on ESFR Oxide Core FeedbackCoefficients: Uncertainty Analyses

    (ESFR WP3 T2.1.3)

    D. Rochman, A.J. Koning, D.F. DaCruz

    and S.C. van der Marck

    Nuclear Research and Consultancy Group,

    NRG, Petten, The Netherlands

    April, 2011

  • Contents

    2 / 13

    ① Goals:=⇒ Uncertainties for the ESFR parameters

    ② Concept for uncertainty propagation:=⇒ Total Monte Carlo (and a perturbation method for sensitivity)

    ③ SFR Model:=⇒ MCNP ESFR based on the JRC Petten model

    ④ Nuclear Data:=⇒

    238U, 239,240,241,242Pu and 23Na

    ⑤ Results:=⇒ Void coefficient, keff, βeff and Doppler coefficient

    ⑥ Conclusions

  • Goals:

    3 / 13

    ① Obtain uncertainties on the JRC Petten ESFR model due to nuclear datauncertainties (obtained from H. Tsige-Tamirat, November 2009)

    ② Systematic approach, reliable and reproducable

    Solution (1): Total Monte Carlo

    Control of nuclear data (TALYS)+ simple processing (NJOY)

    + system simulation (MCNP/ERANOS/CASMO...)

    1000times

    Solution (2): Perturbation method=⇒MCNP+ Perturbation cards

  • Concept: TALYS + Monte Carlo = Total Monte Carlo

    4 / 13

    ResonanceParameters TARES

    Determ.Codes

    ENDFGen. purp.

    File NJOY MCNP

    ExperimentalData

    EXFOR TEFAL

    Output

    ENDF/EAFActiv.File

    Proc.codes

    FIS-PACT

    NuclearModel

    Parameters TALYSOtherCodes

    TASMAN

    + Covariances

    + Covariances

    -keff-Flux-Etc.

    + Covariances

    -Activation-Burn-up

    + Covariances

    Monte Carlo: 1000 TALYS runs

  • TMC and Perturbation method

    5 / 13

    n TALYSinput files

    TALYS

    1 ENDF file+

    covariances

    Perturbationmethod

    MCNPinput file TMC n×

    ENDFrandom file

    NJOY Add perturbation NJOY

    Processedcovariances

    Processedcross

    sections

    MCNP input file

    +perturbation card

    n×Processed

    crosssections

    MCNP MCNP

    Sensitivity

    profile n× keffs ± ∆ kstat.

    SUSD

    ∆ knucl.data keff ± ∆ kstat.

    keff

    ±∆ kstat.

    ±∆ knucl.data

  • Nuclear data: 239Pu and 238U

    6 / 13

    Random 240Pu(n,f)

    Incident neutron energy (MeV)

    Cro

    ssse

    ctio

    n(b

    )

    20151050

    3.0

    2.0

    1.0

    0.0

    Random 239Pu(n,f)

    Incident neutron energy (MeV)

    Cro

    ssse

    ctio

    n(b

    )

    20151050

    3.0

    2.5

    2.0

    1.5

    Random 238U(n,inl)

    Incident neutron energy (MeV)

    Cro

    ssse

    ctio

    n(b

    )

    20151050

    4.0

    3.0

    2.0

    1.0

    0.0

    Random 238U(n,γ)

    Incident neutron energy (MeV)

    Cro

    ssse

    ctio

    n(b

    arns)

    10110010−1

    10−1

    10−2

    10−3

  • Nuclear data: examples in the resonance region

    7 / 13

    JEFF-3.1ENDF/B-VII.0

    This workExp

    50 random 241Pu(n,f)

    Incident neutron energy (eV)

    Cro

    ssse

    ctio

    n(b

    arns)

    10010−110−2

    104

    103

    102

    101

    JEFF-3.1ENDF/B-VII.0

    This workExp

    50 random 235U(n,f)

    Incident neutron energy (eV)

    Cro

    ssse

    ctio

    n(b

    arns)

    4.03.02.01.00.40.1

    102

    101

  • Nuclear data: 56Fe and 23Na

    8 / 13

    100 random 23Na(n,inl)

    Incident neutron energy (MeV)C

    ross

    sect

    ion

    (bar

    ns)

    2015105

    1.5

    1.2

    0.9

    0.6

    0.3

    0.0

    100 random 56Fe(n,inl)

    Incident neutron energy (MeV)

    Cro

    ssse

    ctio

    n(b

    arns)

    2015105

    2.0

    1.5

    1.0

    0.5

    0.0

  • Sensitivities to keff

    9 / 13

    Main components: 23Na, 56Fe, Zr, 238U, 239,240PuMost sensitive reactions: 239Pu(n,f) and 238U(n,γ)

    238U

    235U

    240Pu

    239Pu

    238U

    keff sensitivity to (n,γ)

    Incident Energy (eV)

    Sen

    siti

    vity

    (%/%

    )10710610510410310210110−5

    0·100

    -1·10−4

    -2·10−4

    238U

    235U

    240Pu

    239Pu

    240Pu

    238U

    239Pu

    keff sensitivity to (n,f)

    Incident Energy (eV)

    Sen

    siti

    vity

    (%/%

    )

    10710610510410310210110−5

    8·10−4

    6·10−4

    4·10−4

    2·10−4

    0·100

  • Results for the ESFR parameters

    10 / 13

    The sodium void reactivity (SVR) in units of dollars ($) can be obtained with thefollowing equation :

    SVR = k2 − k1k1k2

    1βeff

    ×105, (1)

    where the number of delayed neutron βeff (in units of pcm) and the keff values areobtained from the MCNP calculations.k1 corresponds to the core flooded with Na coolant, and k2 to the same corevoided of Na coolant.In both cases the Na coolant present in the axial and radial reflectors is supposedto remain unchanged.

  • Results for the ESFR parameters

    11 / 13

    If we suppose that βeff does not vary with different nuclear data files and that k1and k2 are fully correlated, the uncertainty on the sodium void reactivity can beexpressed as:

    ∆SVRperturbation =∣

    ∆k1k21

    −∆k2k22

    1βeff

    ×105, (2)

    In the case of the TMC method, βeff is also varying.Results on the void coefficient, keff and βeff are presented in the following slide.The change in reactivity per degree of change in the temperature of nuclear fuel(or Doppler coefficient) is calculated from differences in keff obtained at threedifferent temperatures: 1227 C (nominal temperature) ± 200 C.

  • Results for the ESFR parameters

    12 / 13

    Table 1: Uncertainties on the sodium void coefficient (SVR), keff, βeff and Dopplercoefficient due to different nuclear data uncertainties

    Coefficient value Uncertainty due tonuclear data

    SVR 5.86 $ ' 5 %Non Voided keff 0.98298 ' 100 pcmVoided keff 1.00481 ' 15 pcmβeff 371 pcm < 1 pcmDoppler -0.60 pcm/C ' 7-13 %

    The uncertainty obtained for the Doppler coefficient takes into account thestatistical uncertainty coming from the various MCNP calculations, and thelimited number of perturbed calculations from the TMC approach.

  • Conclusions and Future improvements

    13 / 13

    ☞ The TMC method was applied to propagate nuclear data uncertainties forthe ESFR model

    ☞ Main isotopes were considered (239,240,241,242Pu, 238U and 23Na),

    ☞ Uncertainties have been calculated for the sodium void coefficient, keff, βeffand Doppler coefficient for the ESFR model,

    ☞ Similar uncertainties were obtained for the Kalimer-600 (see publicationfrom the same authors in the Journal of Nuclear Science and Technology,2011)

    ContentsGoals:Concept: TALYS + Monte Carlo = Total Monte Carlo TMC and Perturbation methodNuclear data: 239Pu and 238UNuclear data: examples in the resonance regionNuclear data: 56Fe and 23NaSensitivities to keffResults for the ESFR parametersResults for the ESFR parametersResults for the ESFR parametersConclusions and Future improvements