NPR REVIEW

31
Natural sesquiterpenoids Braulio M. Fraga * Received 2nd June 2011 DOI: 10.1039/c1np00046b Covering: January 2010 to December 2010. Previous review: Nat. Prod. Rep. 2010, 27, 1681. This review covers the isolation, structural determination, synthesis and chemical and microbiological transformations of natural sesquiterpenoids. The literature is reviewed, and 417 references are cited. 1 Introduction 2 Farnesane 3 Monocyclofarnesane 4 Bicyclofarnesane 5 Bisabolane and heliannane group 6 Sesquipinane, sesquicamphane and fumagillane 7 Trichothecane, herbertane, laurane and cuparane 8 Chamigrane 9 Carotane, cedrane, zizaane and prezizaane 10 Cadinane, copaane, oplopane and cubenane 11 Himachalane, longipinane and longifolane 12 Caryophyllane, clovane, caryolane, punctaporonin group, silphiperfolane, presilphiperfolane, camer- oonane, silphinane, isocomane and quadrane 13 Humulane, lactarane, hirsutane, marasmane, illudane, illudalane, tremulane, precapnellane, capnellane, africa- nane, pentalenane, lippifoliane and asteriscane 14 Germacrane 15 Elemane 16 Eudesmane, lindenane, axane and oppositane 17 Vetisperane 18 Eremophilane, valencane and bakkane 19 Guaiane, xanthane, pseudoguaiane, patchoulane, bour- bonane and carabrane 20 Aromadendrane, bicyclogermacrane, valerenane, aris- tolane, nardosinane and zierane 21 Pinguisane 22 Salviolane 23 Miscellaneous sesquiterpenoids 24 References 1 Introduction A review on the structures, biological activities and phyloge- netic relationships of terpenoids from marine ciliates of the genus Euplotes has appeared. 1 The chemistry and biological activity of species of the Saussurea genus 2 and the pharma- ceutical properties of the Amberboa plants 3 have been reviewed. The biotransformation by fungi and mammals of sesquiter- penes isolated from liverwort has been published, 4 while the functional and evolutionary relationships between terpene synthases from species of Australian Myrtaceae have been investigated. 5 A study of the intestinal permeability of eight sesquiterpenes, constituents of traditional Chinese medicines, using the Caco-2 cell monolayer model has appeared. 6 The reaction mechanism and the catalytic fidelity of two Instituto de Productos Naturales y Agrobiolog ıa, CSIC, 38206 La Laguna, Tenerife, Canary Islands, Spain. E-mail: [email protected]; Fax: +34- 922260135; Tel: +34-922251728 1580 | Nat. Prod. Rep., 2011, 28, 1580–1610 This journal is ª The Royal Society of Chemistry 2011 Dynamic Article Links C < NPR Cite this: Nat. Prod. Rep., 2011, 28, 1580 www.rsc.org/npr REVIEW

Transcript of NPR REVIEW

Page 1: NPR REVIEW

Dynamic Article LinksC<NPR

Cite this: Nat. Prod. Rep., 2011, 28, 1580

www.rsc.org/npr REVIEW

Natural sesquiterpenoids

Braulio M. Fraga*

Received 2nd June 2011

DOI: 10.1039/c1np00046b

Covering: January 2010 to December 2010. Previous review: Nat. Prod. Rep. 2010, 27, 1681.

This review covers the isolation, structural determination, synthesis and chemical and microbiological

transformations of natural sesquiterpenoids. The literature is reviewed, and 417 references are cited.

1 Introduction

2 Farnesane

3 Monocyclofarnesane

4 Bicyclofarnesane

5 Bisabolane and heliannane group

6 Sesquipinane, sesquicamphane and fumagillane

7 Trichothecane, herbertane, laurane and cuparane

8 Chamigrane

9 Carotane, cedrane, zizaane and prezizaane

10 Cadinane, copaane, oplopane and cubenane

11 Himachalane, longipinane and longifolane

12 Caryophyllane, clovane, caryolane, punctaporonin

group, silphiperfolane, presilphiperfolane, camer-

oonane, silphinane, isocomane and quadrane

13 Humulane, lactarane, hirsutane, marasmane, illudane,

illudalane, tremulane, precapnellane, capnellane, africa-

nane, pentalenane, lippifoliane and asteriscane

14 Germacrane

15 Elemane

16 Eudesmane, lindenane, axane and oppositane

17 Vetisperane

18 Eremophilane, valencane and bakkane

19 Guaiane, xanthane, pseudoguaiane, patchoulane, bour-

bonane and carabrane

20 Aromadendrane, bicyclogermacrane, valerenane, aris-

tolane, nardosinane and zierane

21 Pinguisane

22 Salviolane

23 Miscellaneous sesquiterpenoids

24 References

1 Introduction

A review on the structures, biological activities and phyloge-

netic relationships of terpenoids from marine ciliates of the

Instituto de Productos Naturales y Agrobiolog�ıa, CSIC, 38206 La Laguna,Tenerife, Canary Islands, Spain. E-mail: [email protected]; Fax: +34-922260135; Tel: +34-922251728

1580 | Nat. Prod. Rep., 2011, 28, 1580–1610

genus Euplotes has appeared.1 The chemistry and biological

activity of species of the Saussurea genus2 and the pharma-

ceutical properties of the Amberboa plants3 have been reviewed.

The biotransformation by fungi and mammals of sesquiter-

penes isolated from liverwort has been published,4 while the

functional and evolutionary relationships between terpene

synthases from species of Australian Myrtaceae have been

investigated.5 A study of the intestinal permeability of eight

sesquiterpenes, constituents of traditional Chinese medicines,

using the Caco-2 cell monolayer model has appeared.6 The

reaction mechanism and the catalytic fidelity of two

This journal is ª The Royal Society of Chemistry 2011

Page 2: NPR REVIEW

sesquiterpene synthases, Cop4 and Cop6, from Coprinus cinereus

have been studied.7

2 Farnesane

A new sesquiterpene 1 with biological activity has been iso-

lated from hairy root cultures of Artemisia annua.8–10 2,3-

Dihydrohomofarnesal 2 has been identified as a component of

the sex attractant pheromone of the female seed beetle Cal-

losobruchus rhodesianus,11 whilst the norsesquiterpene 3 may

also be a possible component of this pheromone.12 The

sesquiterpene glycosides 4 and 5 have been found in extracts

of Breynia fruticosa13 and Gynostemma yixingense,14 respec-

tively. Several compounds of this type 6 have been obtained

from the pericarps of Sapindus rarak.15 A novel lactone (6R)-

dehydroxysipandinolide 7, probably derived from a germa-

crane sesquiterpene, has been isolated from the rhizomes of

Curcuma wenyujin.16 The essential oil of Melicope obscura

contains the new sesquiterpene 8, which has been named

melicopenol.17

The bacterium Escherichia coli has been metabolically engi-

neered in order to increase its farnesol production by har-

nessing the exogenous mevalonate pathway.18 Neroplomacrol 9

and neroplofurol 10 are two new nerolidol derivatives, which

have been found in the inner stem bark of Oplopanax

horridus.19 Two new irregular sesquiterpenes, tricinonoic acid

11 and tricindiol 12, have been obtained from an extract of

Fusarium tricinctum, which is an endophytic strain in the root

of the Mexican Sonora desert plant Rumex hymenosepalus.20

The sesquilavandulyl aldehyde 13 is a component of Ligusticum

grayi roots. This plant is very rich in other sesquiterpenoids,

which are described in the ‘‘Miscellaneous sesquiterpenoid’’

section of this review.21

Braulio M: Fraga

Braulio M. Fraga was born in

Tenerife (1944) and received his

PhD in Chemistry at the

University of La Laguna

(1970), where he lectured in

Organic Chemistry for several

years. In 1971 he was honoured

with the Young Researcher

Award of the Spanish Royal

Society of Chemistry. He

obtained a permanent position in

the Spanish Council for Scien-

tific Research as Tenured

Scientist in 1972, being later

appointed Research Scientist

(1986) and Research Professor

(1987). He was director of the Institute of Natural Products

(Tenerife) from 1988–1991, and has been the representative of the

Spanish Council for Scientific Research in the Canary Islands since

1991. He had previously been appointed Professor of Organic

Chemistry at the University of Valencia (1981). His research

interests range from the chemistry to the biotransformation of

natural products, especially in the terpenoid field. He has authored

more than two hundred scientific publications.

This journal is ª The Royal Society of Chemistry 2011

Nitropyrrolins A–E22 14–18 and heronapyrroles A–C23 19–21

are cytotoxic farnesyl nitropyrroles, which have been isolated

from saline cultures of marine-derived bacteria of the actinomy-

cete family Streptomycetaceae, while aspernidine A 22 and

aspernidine B 23 are two farnesyl isoindolinone-alkaloids, which

have been found in an extract of the fungusAspergillus nidulans.24

The roots of Ferula ferulaeoides contain two new sesquiterpenes,

ferulactone A 24 and ferulactone B 25.25 The structure of mac-

agigantin, a farnesylated flavonol, has been determined as 6-far-

nesyl-kaempherol. This compound has been isolated from

Macaranga gigantea.26 Another species of this genus,Macaranga

pruinosa, contains macapruinosin A 26 and macapruinosin B 27,

which are a stilbene and a flavonoid derivative, respectively,

containing an irregular sesquiterpenyl side chain with a cyclo-

butane ring.27 Cristatomentin 28 is a green pigment of mixed

biogenetic origin, which has been obtained from Albatrellus

cristatus.28 A chemical study of the soft coral Sinularia capillosa29

Nat. Prod. Rep., 2011, 28, 1580–1610 | 1581

Page 3: NPR REVIEW

afforded three new sesquiterpenoids, named capillobenzopyranol

29, capillobenzofuranol 30 and capillofuranocarboxylate 31.

A stereospecific total synthesis of (+)-davana acid, (+)-nor-

davanone and (+)-davanone has been reported.30 The (R)- and

(S)-enantiomers of juvenile hormone III acid and (R)-juvenile

hormone III-d3 have been synthesized.31 An efficient synthesis of

the antileukaemic sesquiterpene (+)-caparratriene has been

described.32

3 Monocyclofarnesane

Monaspilosuslin 32 is a new monocyclofarnesane sesquiterpene,

which has been isolated from the extraction of red yeast rice

fermented with the fungus Monascus pilosus.33 Known

compounds of this type have been isolated from Inula

ensifolia.34 Three megastigmane glucosides crotalionosides A–C

33–35 have been found in an extract of Crotalaria zanzibarica,35

1582 | Nat. Prod. Rep., 2011, 28, 1580–1610

while canangaionoside 36 has been obtained from Cananga

odorata. In this last work, the absolute configuration of brey-

niaionoside A was also determined.36 Elaeocarpionoside 37 is

another glucoside, which has been obtained from the leaves of

Elaeocarpus japonicus.37 The species Gynostemma pentaphyllum

contains five new megastigmane glycosides 38–42, which have

been named gynostemosides A–E.38 Two acetylated compounds

This journal is ª The Royal Society of Chemistry 2011

Page 4: NPR REVIEW

of this class, matenoside A 43 and matenoside B 44, have been

isolated from Ilex paraguariensis.39 Three conjugates of an

abscisic acid derivative 45 and phenolic glucosides have been

isolated from the roots of Lindera strychnifolia.40 The absolute

stereochemistry of the megastigmane glycoside icariside B5 has

been revised to 46.41

It has been shown that 3-hydroxy-b-ionone, isolated from the

moss Rhynchostegium pallidifolium, inhibits the shoot and root

growth of cress seedlings.42 Monocyclofarnesane sesquiterpenes,

found in the marine macroalga Ulva fasciata, have free-radical

scavenging properties.43

A chemical investigation of the roots of Ferula flabelliloba44

afforded three new sesquiterpene coumarins farnesiferone B 47,

flabellilobin A 48 and flabellilobin B 49. Synthetic studies have

been carried out to construct analogues with the basic skeleton of

galbanic acid, a biologically-active sesquiterpene-coumarin.45 A

racemic total synthesis of elegansidiol, farnesiferol B and farne-

siferol D has been reported.46

This journal is ª The Royal Society of Chemistry 2011

4 Bicyclofarnesane

The drimane sesquiterpene kairatene 50 has been isolated from

Eurotia ceratoides.47 Another two compounds of this type,

changweikangic acid A 51 and changweikangic acid B 52, have

been found in an extract of the Chinese drug ‘‘Compound

Changweikang’’, which is made from the aqueous extracts of two

plants, Daphniphyllum calycinum and Polygonum hydropiper.48 A

chemical study of the leaves of Canella winterana afforded a new

hemiacetal 53, which has been named muzigodiol.49 The poly-

godial derivative 54 has been isolated from Pseudowintera

insperata. This paper included a chemotaxonomic study of the

New Zealand species of this genus.50 Chromatography of an

extract of the liverwort Bazzania novae-zelandiae51 led to the

isolation of the rearranged drimane derivative 55.

The antiprotozoal activity of several drimane and coloratane

sesquiterpenes towards Trypanosoma brucei and Plasmodium

falciparum has been investigated. These compounds were

obtained from the medicinal plant Warburgia ugandensis.52 The

enantioselective synthesis of 3(S)-hydroxy-polygodial derivatives

and the evaluation of their vanilloid activity have been repor-

ted,53 while the preparation of 9a-fluorinated drimanes and the

evaluation of their antifeedant properties have also been

described.54

Craterellins A–C 56–58 are new merosesquiterpenes, which

have been found in cultures of the basidiomycete Craterellus

odoratus,55 whilst epoxyphomalins C–E 59–61 are cytotoxic

metabolites, which have been obtained from a marine-derived

fungus Paraconiothyrium sp.,56 previously classified as a Phoma

species. It should be noted that the structures of craterellin C 58

and epoxyphomalin D 60 are described as epimeric in one oxy-

methine (C-10) in the polyketide moiety. However, the authors of

both works report similar NMR spectra for both compound in

methanol-d4 and acetone-d6, respectively. Indeed, the chemical

shifts and coupling constants of this oxygenated methine are

Nat. Prod. Rep., 2011, 28, 1580–1610 | 1583

Page 5: NPR REVIEW

similar (dC 76.8, dH 3.49, J ¼ 7.6 Hz for 58; dC 76.8, dH 3.51, J ¼7.7 Hz for 60), which seems to indicate that these two sesqui-

terpenes have the same relative structure, probably 60. The

marine fungus Aspergillus versicolor57 contains the novel mer-

oterpenoid asperdemin 62. Another compound of this type is

epi-cochlioquinone A 63, whose first total synthesis has been

achieved.58 This sesquiterpene had been obtained from the

fermentation broth of the fungus Stachybotrys bisbyi.59 Cultures

of another microorganism, Penicillium cecidicola, afforded the

new meroterpene pentacecilide D 64. In this work, the absolute

configuration of pentacecilides A–D was also determined.60

A review on the cytotoxic terpene quinones from marine

sponges has appeared.61 The synthesis and natural occurrence

of the quinone/hydroquinone sesquiterpenes have been

reviewed.62,63 A chemical study of a red macroalga of the

Peyssonnelia genus64 afforded the hydroquinones peyssonoic acid

A 65 and peyssonoic acid B 66. Four new

1584 | Nat. Prod. Rep., 2011, 28, 1580–1610

sesquiterpenoid-aminoquinones, 18-aminoarenarone 67,

19-aminoarenarone 68, 18-methylaminoarenarone 69, 19-methyl-

aminoarenarone 70 and popolohuanone F 71, have been isolated

from a marine sponge, Dysidea sp.65 Nakijiquinones J–R 72–80

are sesquiterpenoid quinones with an amine residue, which have

been found in three collections ofOkinawanmarine sponges of the

family Spongiidae.66

Oridamycin A 81 and oridamycin B 82 have been isolated from

the fermentation broth of a Streptomyces sp.67 These two new

indolo-sesquiterpene alkaloids are selective anti-Saprolegnia

parasitica antibiotics. Xiamycin 83 is another sesquiterpene of

this type with anti-HIV activity which has been obtained from

a Streptomyces sp., an endophytic fungus of the mangrove plant

Bruguiera gymnorrhiza.68 Polysin 84 is an inhibitor of phospho-

fructo kinase in Trypanosoma brucei, which has been obtained

This journal is ª The Royal Society of Chemistry 2011

Page 6: NPR REVIEW

from Polyalthia suaveolens (Annonaceae).69 This plant, also

named as Greenwayodendron suaveolens, contains the novel

sesquiterpene alkaloids 85–87, which possess antibiotic

properties.70

The species Ferula gumosa71 contains the new sesquiterpene-

coumarins gumosin 88, gumoside A 89 and gumoside B 90, while

another compound of this type tunetacoumarin A 91 has been

identified as a component of Ferula tunetana.72 Interesting

cytotoxic properties have been shown by drimartol A, a sesqui-

terpene coumarin ether, which has been obtained from hairy root

cultures of Artemisia annua.73

Peyssonol A, an anti-HIV natural product, has been synthe-

sized and its structure revised to 92. In this work, the synthesis of

peyssonoic acid A was also carried out.74 A total synthesis of

(+)-stachyflin75 and a formal synthesis of (+)-puupuhenone and

other related metabolites,76 have been described, while a rapid

assembly of the tetracyclic core of the puupuhenone group of

marine sesquiterpenes has been published.77

This journal is ª The Royal Society of Chemistry 2011

5 Bisabolane and heliannane group

The rhizomes of Curcuma longa78 contain four new bisabolene

sesquiterpenes, which have been named curculones A–D, 93–96.

Another compound of this type 97 has been isolated from

Leontopodium andersonii.79 Ashitabaol A 98 is a novel anti-

oxidative sesquiterpene, which has been obtained from the seeds

of Angelica keiskei.80 Chromatography of an extract of Ligularia

altaica afforded four bioactive sesquiterpenes, altaicalarins A–D

99–102,81,82 whilst a zingiberene diglucoside 103 has been isolated

from Butea monosperma.83

Seven bisabolane derivatives have been obtained by an

efficient cyclization of (2Z,6E)-farnesyl diphosphate with

5-epi-aristolochene synthase.84 The effects of curcuphenol on cell

proliferation and apoptosis in Caco-2 human colon cancer cells85

and of (�)-a-bisabonol in human endothelian cells86 have been

investigated. The cloning and characterization of a novel gene

that encodes (S)-b-bisabolene synthase from ginger, Zingiber

officinale, has been reported.87

Two nitrogenous bisabolene sesquiterpenes 104 and 105 have

been found in an extract of a Hainan sponge, Axinyssa sp.88 The

marine-derived fungus Verticillium tenerum contains the new

sesquiterpenes verticinols A 106 and B 107,89 while expansol A

108, expansol B 109 and two sydonic acid derivatives 110 and 111

Nat. Prod. Rep., 2011, 28, 1580–1610 | 1585

Page 7: NPR REVIEW

have been obtained from another microorganism of this type,

Penicillium expansum.90 Three bisabolene derivatives 112–114

have been found in anAspergillus species, which had been isolated

from a gorgonian soft coral, Dichotella gemmacea.91 Chroma-

tography of an extract of the marine red alga Laurencia compo-

sita92 afforded the bisabolane derivative 115. Another species of

this genus, Laurencia catarinensis, contains seven new haloge-

nated metabolites 116–122, which possess cytotoxic properties.93

A concise synthesis of the antifeedant sesquiterpene 123 has

been described,94 while the first enantioselective synthesis of

(�)-gossonorol, and the cyclization of its epoxide to form boi-

vinianin B, have been achieved.95 Curcuphenol, curcudiol, cur-

cuhydroquinone,96 curcuphenol and xanthorrhizol97 have been

synthesized as their racemates. Short syntheses of (S)-turmer-

one98 and meiogynin A99 have been reported. An asymmetrical

total synthesis of ent-heliaspirones A and C has been accom-

plished,100 whilst racemic101 and enantioselective102 preparations

of heliannuol D have been described.

6 Sesquipinane, sesquicamphane and fumagillane

The new bergamotene derivatives brasilamides A–D 124–127

have been isolated from cultures of the plant endophytic fungus

1586 | Nat. Prod. Rep., 2011, 28, 1580–1610

Paraconiothyrium brasiliense.103 Several exo- and endo-3,8-dihy-

dro-b-santanols104 and campholene105 derivatives, with odorant

properties, have been prepared. A stereoselective total synthesis

of (�)-ovalicin has been described.106

7 Trichothecane, herbertane, laurane and cuparane

A new cytotoxic trichothecene macrolide, roritoxin E 128, has

been obtained from solid cultures of Myrothecium roridum,

which had been isolated from the roots of Artemisia annua.107

The dereplication of macrocyclic trichothecenes from extracts of

filamentous fungi, using UV and NMR profiles, has been

studied.108

Three novel herbertane sesquiterpenes 129–131 have been

found in an extract of Herbertus dicramus,109 whilst known bio-

logically-active sesquiterpenes of this type have been isolated

from the Tahitian liverwort Mastigophora diclados.110 The

sesquiterpene ether 8,10-dibromo-3,7-epoxylaur-13-ol has been

obtained from a red alga of the Laurencia genus.111 Total

This journal is ª The Royal Society of Chemistry 2011

Page 8: NPR REVIEW

syntheses of enokipodins A, B,112 cuparene-1,4-diol and

enokipodins A–D113 have been reported.

8 Chamigrane

The novel norsesquiterpene peroxides steperoxides A–D 132–135

have been obtained from the fungus Steccherinum

ochraceum,114,115 while another nor-chamigrane merulin A 133,

and the chamigranes merulin B 136 and merulin C 137, have been

found in an extract of the culture broth of an endophytic fungus

XG8D, which was isolated from the mangrove plant Xylocarpus

granatum.116 We have observed that steperoxide B and merulin A

have the same structure 133.

The halogenated sesquiterpene 138 has been found in an

extract of the marine red alga Laurencia composita.92 The

antileishmanial activity of elatol has been studied. This

sesquiterpene is the major constituent of Laurencia

This journal is ª The Royal Society of Chemistry 2011

dendroidea.117 The microbiological transformation of pacifenol

and two semisynthetic derivatives by the fungi Aspergillus

niger, Gibberella fujikuroi and Mucor plumbeus has been

investigated.118 A general enantioselective route to the chami-

grene family of sesquiterpenes has been developed. In this way,

the total synthesis of elatol, laurencenone C and of the

proposed structure of laurencenone B has been accom-

plished.119 Another total synthesis of (�)-laurencenone C has

been reported.120

9 Carotane, cedrane, zizaane and prezizaane

The new sesquiterpene 139 has been isolated from the stem

bark of Daphne aurantiaca.121 A phytochemical study of the

aerial part of the Algerian medicinal plant Ferula vesceritensis

afforded the known sesquiterpene lapiferin, which induces

apoptosis in breast cancer cells.122 Another species of this

genus, Ferula tunetana,72 contains the new sesquiterpenic ester

tunetanin A 140. Asperpenoid 141 is a novel seco-carotane

derivative, which has been obtained from the root of Homa-

lomena occulta.123

The biotransformation of a-cedrol by the fungus Neurospora

crassa has been investigated.124 The synthesis of DL-cedrone has

been reported.125 The structure of a recombinant epi-isozizaene

synthase, from Streptomyces coelicolor, has been determined by

X-ray analysis.126

Five new 8,9-seco-prezizaene sesquiterpenoids 142–146 have

been found in an extract of Illicium arborescens,127 whilst hen-

rylactones A–E 147–151 have been isolated from the stems and

roots of Illicium henryi.128 Racemic syntheses of the neurotrophic

sesquiterpenes merrilactone A and anislactone A have been

reported.129

Nat. Prod. Rep., 2011, 28, 1580–1610 | 1587

Page 9: NPR REVIEW

10 Cadinane, copaane, oplopane and cubenane

Chromatography of an extract of a fungus of the Stereum

genus130 afforded the novel sesquiterpene stereumin G 152.

Four cadinane derivatives 153–156 have been isolated from the

rhizomes of Acorus calamus.131,132 Another species of this

genus, Acorus tatarinowii, contains the new sesquiterpenes

tatarinowin A 157 and tatarinowin B 158,133,134 while chlo-

multin C 159 and chlomultin D 160 are two cadinane deriv-

atives, which have been obtained from Chloranthus

multistachys.135 The glycoside 161 has been isolated from the

roots and rhizomes of Celastrus orbiculatus.136 It has been

shown that 10a-hydroxyartemisinic acid 162 is a constituent of

Saussurea lappa root.137 The cadinane sesquiterpene 163 has

been found in an extract of the aerial parts of Senecio argu-

nensis,138 whilst the norcadinane derivative anomallenodiol 164

has been isolated from Artemisia anomala.139 Cosmosaldehyde

165 and cosmosoic acid 166 are two novel abeo-muurolane

sesquiterpenes, which have been identified as components of

Cosmos sulphureus.140

1588 | Nat. Prod. Rep., 2011, 28, 1580–1610

The structure of altheacalamene has been determined as

2b-hydroxy-calamene. This compound has been obtained from

the seeds of Althea officinalis.141 The isolation and several

applications of calamene-3,7,8-triol, isolated from the dried bark

of Alangium salviifolium, have been patented. This sesquiterpene

showed DPPH radical-scavenging effect and tyrosinase-inhibit-

ing activity.142

It has been shown that a multiproduct terpene synthase

(MtTPS5), isolated from Medicago truncatula, produces cada-

lane sesquiterpenes via two different mechanisms.143 Quantum

chemical studies on the formation of amorphadiene and amor-

phene sesquiterpenes have been described.144 The inhibitor and

substrate activities of several sesquiterpene hydrocarbons toward

(+)-d-cadinene-8-hydroxylase have been reported. This cyto-

chrome P450 monooxygenase plays an important role in the

biosynthesis of gossypol in Gossypium arboreum.145

The synthesis of hemigossypol and hemigossylic lactone has

been carried out.146 The enantioselective total synthesis of the

marine sesquiterpene 10-isocyano-4-cadinene147 has permitted

the determination of its absolute configuration as 167.

This journal is ª The Royal Society of Chemistry 2011

Page 10: NPR REVIEW

A review on the recent developments of artemisinin, and its

derivatives, as antimalarial and anticancer agents has

appeared.148 The recent advances in plant-derived natural

products for treatment of malaria have been reviewed.149 A

comparison of the quantitative analysis of artemisinin by

chromatographic techniques and qNMR has shown that this

last method can be used to quantify this antimalarial

sesquiterpene in Artemisia annua samples in a rapid

manner.150

The biosynthesis of artemisinin in growing plants of Arte-

misia annua using 13CO2 has been studied,151 while the molec-

ular cloning of dihydroartemisinic aldehyde reductase and its

implication in the biosynthesis of this sesquiterpene in this

species has been reported.152 A review on the biosynthesis of

artemisinin and the phytochemistry of Artemisia annua has

appeared.153 The acetoxylation of artemisinin at C-9 and

hydroxylation at C-3 in a biotransformation by the soil-fungus

Penicillium simplissimum have been described.154 The possibility

of producing artemisinin in genetically modified species, using

the tobacco plant as a model, has been investigated. In this

way, the production of biosynthetic precursors of this sesqui-

terpene was achieved.155

A concise and stereoselective total synthesis of (+)-artemisinin,

starting from (R)-(+)-citronellal, has been devised.156 It has been

shown that a cytotoxic artemisinin derivative conjugated with

a fluorescent dansyl moiety is accumulated in the endoplasmatic

reticulum.157 The synthesis of artemisinin-glycolipid hybrids with

potent antiangiogenic activity has been reported,158 while the

preparation of 10-substituted triazolyl artemisinins and their

growth inhibitory activity against several cancer cell lines have

been described.159

A new ylangene (copaene) sesquiterpene 168 has been isolated

from the soft coral Lemnalia flava.160 The oplopane derivatives

169 and 170 have been obtained from Ambrosia arborescens161

and Aglaia perviridis,162 respectively. Stereocontrolled syntheses

of (�)-cubebol and (�)-10-epicubebol have been

accomplished.163

11 Himachalane, longipinane and longifolane

The rearrangement of two himachalene epoxides by treatment

with Lewis acids has been described.164 Studies on the anti-

feedant and cytotoxic activity of several longipinane deriva-

tives have been carried out.165 The microbiological

transformations of (+)-a-longipinene166 by the fungus Asper-

gillus niger, and of (�)-isolongifolol167 and (�)-iso-

longifolone168 by the plant pathogenic fungus Glomerella

cingulata have been investigated.

This journal is ª The Royal Society of Chemistry 2011

12 Caryophyllane, clovane, caryolane,punctaporonin group, silphiperfolane,presilphiperfolane, cameroonane, silphinane,isocomane and quadrane

Five new caryophyllane derivatives 171–175 have been isolated

from Buddleja davidii.169Two unusual meroterpenoids, psidial A170

176 and psiguadial B171 177, have been found in extracts from the

leaves of guava (Psidium guajava). A short biomimetic synthesis of

psidial A and guajadial has been accomplished.172 The gorgonian

coral Rumphella antipathies contains the 4,5-seco-caryophyllane

sesquiterpene, rumphellaone A173 178 and the clovane derivative

2b-hydroxyclovan-9-one 179.174Three novel sesquiterpenoids 180–

182, with a rearranged caryophyllane skeleton, have been obtained

from a tropical rainforest basidiomycete,Marasmiellus troyanus.175

The microbiological transformations of caryophyllene oxide by

the fungi Aspergillus niger176 and Neurospora crassa124 have been

investigated. In another studyof this type, the biotransformation of

5a-hydroxycaryophylla-4(12),8(13)-diene by the fungus Macro-

phomina phaseolina has been studied.177 A synthesis of optically

active tetrahydrozerumbone, a powerful balmy fragrance, has been

Nat. Prod. Rep., 2011, 28, 1580–1610 | 1589

Page 11: NPR REVIEW

described,178while biomimetic syntheses of caryolanemagnolol and

clovanemagnolol havebeenachieved.179Several clovanederivatives

have been prepared and evaluated for their in vitro antifungal

activity against the phytopathogenic fungus Botrytis cinerea.180

The total synthesis of punctaporonin C has been carried out.181

The structure of (�)-epi-presilphiperforlan-1-ol, a sesquiterpene

isolated from Anemia tomentosa, has been reassigned as 9-epi-pre-

silphiperforlan-1-ol 183. In this work, the absolute configuration of

this compoundwas also determined.182Othermajor components of

the essential oil from this plant are silphiperfol-6-ene, pre-

silphiperfol-7-ene andcameroonan-7a-ol.183Thepresilphiperfolane

derivatives184and185havebeen isolated fromaXylaria species,an

endophytic fungus associated with Piper aduncum.184

A biomimetic synthesis of penifulvins B and C has been

accomplished.185 Isocomene and b-isocomene has been synthe-

sized as their racemates.186 The natural source, biology and

synthesis of the quadrane sesquiterpene group have been

reviewed.187

13 Humulane, lactarane, hirsutane, marasmane,illudane, illudalane, tremulane, precapnellane,capnellane, africanane, pentalenane, lippifoliane andasteriscane

The new sesquiterpene 186 has been obtained from Buddleja

davidii,169 whilst five juniferol esters 187–191 have been isolated

from Ferula lycia.188 Known humulane sesquiterpenes have been

isolated from Curcuma ochrorhiza and Curcuma heyneana.189 The

anti-inflammatory effect of zerumbone, obtained from Zingiber

zerumbet, has been studied.190 Three new lactarane sesquiter-

penes, subvellerolactones B, D and E 192–194, with cytotoxic

activity have been found in an extract of the fruiting bodies of

Lactarius subvellereus.191 A total synthesis of furanether B has

been achieved.192

The fungi Xeromphalina sp., Stereum sp. and Pleurocybella

porrigens contain the new hirsutane derivatives xeromphalinones

A–F 195–200, chlorostereone 201 and pleurocybellone A 202,

respectively.193 A chemoenzymatic total synthesis of the hirsu-

tane sesquiterpene (+)-connatusin B has been achieved,194 while

a racemic synthesis of hirsutic acid C has been devised.195 Rus-

sulfoen 203 is a newmarasmane derivative, which has been found

in an extract of Russula foetens.196 The isolation and structural

elucidation of coprinastatin 1 204, coprinol 205 and the triol 206

have been described. These sesquiterpenes, together with

7,7a-diepicoprisnastatin 1 207, the illudosin derivative 208 and

the armillol derivative 209, have been obtained from Coprinus

cinereus.197,198 Ptesculentoside 210 is a novel norsesquiterpene

glucoside, which has been found in an extract of the Australian

bracken fern Pteridium esculentum.199 Chromatography of an

1590 | Nat. Prod. Rep., 2011, 28, 1580–1610 This journal is ª The Royal Society of Chemistry 2011

Page 12: NPR REVIEW

extract of the basidiomycete Agrocybe salicacola led to the

isolation of a novel unsymmetrical bis-illudane sesquiterpene

211, which has been named agrocybone.200

Three new illudalane sesquiterpenes, (2R)-norpterosin B 212,

its glucoside 213 and semipterosin A 214, have been found in an

extract of Pteris semipinnata.201 Another species of this genus,

Pteris multifida, contains (2R)-pterosin P 215 and dehydropter-

osin B 216.202 The total syntheses of alcyopterosins C, I and L–N

have been accomplished.203 The bioactive sesquiterpene 217 has

been obtained from a culture of the fungus Ganoderma

applanatum.204 A synthesis of cybrodol 218 has been achieved.205

This seco-illudalane sesquiterpene had been obtained from the

bird’s nest fungus Cyathus bulleri.206

Nine tremulane derivatives 219–227 have been isolated from

Phellinus igniarius.207 A short synthesis of dactylol and poitediol

has been accomplished.208 Racemic total syntheses of capnell-9

(12)-ene209 and pentalenene125 have been described, while the

tricyclic core of the lippifoliane group of sesquiterpenes has been

synthesized.210 It has been shown that asteriscunolide A induces

apoptosis and activation of the mitogen-activated protein kinase

pathway in human tumor cell lines.211

This journal is ª The Royal Society of Chemistry 2011

14 Germacrane

The new sesquiterpenes 228 and 229 have been obtained from the

aerial parts of Cleome droserifolia.212 Another nine compounds

of this type, trijugins A–I 230–238, have been found in an extract

of Salvia trijuga,213 while two novel germacrane derivatives

bearing a methylthiopropenoate moiety, 239 and 240, have been

isolated from Thapsia villosa.214 The rhizomes of Curcuma zeo-

daria contain the new sesquiterpenoid 241, which has been

named curcuzederone.215 Known germacrane sesquiterpenes

have been identified as components of Ferula lycia188 and Cur-

cuma malabarica.216 The diketogermacradiene 242 is a precursor

Nat. Prod. Rep., 2011, 28, 1580–1610 | 1591

Page 13: NPR REVIEW

of the new sesquiterpene 6a-hydroxy-curcumanolide A 243,

which has been obtained from the rhizomes of Curcuma longa.78

The structure of the sesquiterpene 244 has been determined by

X-ray analysis.217 A new germacrane A synthase (HaGAS3) has

been found in glandular trichomes of Helianthus annuus.218

1592 | Nat. Prod. Rep., 2011, 28, 1580–1610

The new germacrane lactones, which have been isolated from

natural sources during 2010, are shown in Table 1. The structures

245–254 represent the new germacranolides, while the structures

255–257 and 258, 259 have been assigned to the new

heliangolides and melampolides, respectively. No new

cis,cis-germacranolides were obtained this year.

Known germacrane lactones have been identified as compo-

nents of Brachanthemum gobicum,229 Centaurea arenaria,230

Centaurea lippii231 Carpesium rosulatum,232 Lactuca aculeata,233

Smallanthus sonchifolius234 and Vernonia scorpioides.235 The

conformational properties of 6-epi-desacetyllaurenobiolide have

been investigated.236 Studies on acid rearrangement of epoxy-

germacranolides have permitted the determination of the abso-

lute configuration of 1b,10a-epoxy-salonitenolide237 and other

sesquiterpene lactones.238 A second-generation total synthesis of

(�)-diversifolin has been achieved.239

The effects of parthenolide in the oxaliplatinum treatment of

human lung cancer A549 cells, via the inhibition of NF-kB

Table 1 Sources of germacrane lactones

Source Compounds Ref.

GermacranolidesAnthemis melanolepis 245, 246 219Artemisia anomala 247, 248 139Magnolia kobus 249 220Rolanda fruticosa 250 221Schkuhria pinnata 251 222Scorzonera austriaca 252 223Taraxacum udum 253, 254 224HeliangolidesCentaurea sulphurea 255 225Eremanthus argenteus 256, 257 226MelampolidesArtemisia anomala 258 227Gonospermumfruticosum

259 228

This journal is ª The Royal Society of Chemistry 2011

Page 14: NPR REVIEW

activation and induction of apoptosis, have been studied.240 It

has been shown that water-soluble analogues of this sesquiter-

pene lactone suppress in vivo prostate cancer growth.241

Protective effects of isoatriplicolide tiglate against glutamate-

induced neurotoxicity in primary cultured rat cortical cells have

been observed. This known germacranolide was obtained from

Paulownia coreana and Paulownia tomentosa.242,243

15 Elemane

Kachiraterpenol 260 is a new sesquiterpene, which has been

isolated from Magnolia kachirachirai.244 Two novel elemanolide

dimers with a tricyclic ortho ester moiety, vernodalidimer A 261

and vernodalidimer B 262, have been found in an extract of the

seeds of Vernonia anthelmintica.245 Both compounds can be

formed by Diels–Alder reactions, the first between two verno-

ladin molecules and the second between vernoladin246 263 and

This journal is ª The Royal Society of Chemistry 2011

vernoladol247 264, which are also components of this plant. The

synthesis of occidenol 265 has permitted the correction of its

stereochemistry.248 The structures of two lactones, previously

isolated from Schkhuria anthemoides,249 have been revised222 as

266 and 267.

16 Eudesmane, lindenane, axane and oppositane

The sesquiterpene 268 has been isolated from an unidentified

liverwort of the Gackstroemia genus.250 The eudesmane deriva-

tives 269, 270 and 271 have been obtained from Ambrosia

arborescens,161 Cleome droserifolia,212 and Ecdysanthera rosea,251

respectively. The aerial parts of Gonospermum fruticosum228

contain four new sesquiterpenes related to costol 272–275. Other

compounds of this type 276, 277 and 278, 279 have been found in

extracts from Gymnaster koraiensis252 and Verbesina virginica,253

respectively. The furanoeudesmane chlomultin B 280 is another

new sesquiterpene, which has been obtained from Chloranthus

multistachys,135 whilst the methyl esters 281, 282 and 283 have

been identified as components of Dimerostemma arnottii254 and

Echinops ritro,255 respectively. The species Chrysanthemum indi-

cum,256 Curcuma wenyujin16 and Sarcanda glabra257 contain the

new eudesmane sesquiterpenes chrysanthemdiol A 284, curco-

dione 285 and glabranol B 286, respectively. A chemical study of

a Tibetan folk medicinal species, Pulicaria insignis, afforded the

trinorsesquiterpene 287.258 Another compound of this type 288

has been obtained from the aerial parts of Senecio argunensis.138

The meroterpene psidial C 289 has been found in an extract of

the leaves of Psidium guajava.170 The glucosides litchioside A 290

and litchioside B 291 have been identified as components of

lychee seed (Litchi chinensis).259 The methyl esters 292 and 293

have been obtained from Inula japonica,260 whilst the glucoside

294 has been isolated from Chloranthus anhuiensis.261 Known

eudesmane derivatives have been isolated from Aeschynanthus

mengxinggensis,262 Inula falconeri,263 Nectandra cissifiora264 and

Shorea javanica.265

Nat. Prod. Rep., 2011, 28, 1580–1610 | 1593

Page 15: NPR REVIEW

Table 2 Sources of eudesmanolides

Source Eudesmanolides Ref.

Ajania przewalskii 295 281Anthemis melanolepis 296 219Anthemis ruthenica 297 282Aster himalaicus 298 283Chloranthus anhuiensis 299, 300 284Chloranthus spicatus 301–304 285Curcuma wenyujin 305 16Daucus glaber 306 286Dimerostemma arnottii 307 254Inula helenium 308, 309 287Inula japonica 310–335 260,288Inula racemosa 336, 337 289Lactuca sativa 338, 339 290Lactuca tatarica 340 291Pulicaria insignis 341 258Salvia castanea 342, 343 292Sarcandra glabra 344 293Saussurea involucrata 345 294Sonchus arvensis 346, 347 295Trattinickia rhoifolia 348–350 296

Enantioselective total syntheses of dihydrojuneol266 and

(+)-carainterol A267 have been accomplished, while depsilairdin

has been synthesized by esterification of lairdinol A with a tetra-

depsipeptide.268 A preparation of ar-occidol has been reported.269

The sesquiterpene 1a-hydroxy-b-dihydroagarofuran has been

obtained from the fruits ofCryptomeria fortunei.270 Other dihydro-

b-agarofuran derivatives have been isolated this year from Celas-

trus angulatus,271,272 Celastrus paniculatus,273 Maytenus jelskii,274

Maytenus spinosa, Maytenus vitisidaea,275 Osyris lanceolata276 and

Tripterygium wilfordii.277,278 The synthesis and insecticidal activity

of new celangulin-V derivatives have been reported.279 A racemic

synthesis of a-agarofuran has been achieved.280

The new eudesmanolides, which have been obtained from

different species, are listed in Table 2. Their structures have been

shown to be 295–350.

There are several points to note in relation to these eudesma-

nolides. A norsesquiterpene lactone 295 with a rare carbon

1594 | Nat. Prod. Rep., 2011, 28, 1580–1610

skeleton has been isolated from Ajania przewalskii,281 whilst the

novel lactam cespilactam A 351 has been found in an extract of

the Formosan soft coral Cespitularia hypotentaculata.297 Known

eudesmanolides have been obtained from Atractyloides chi-

nensis.298 Structural modifications have been carried out on

alantolactone and isoalantolactone, with the aim to understand

the larvicidal activity of these eudesmanolides against Aedes

aegypti. In this work, the absolute configurations of these

lactones were determined by X-ray analysis.299 Syntheses of novel

a-santonin derivatives as potential cytotoxic agents have been

carried out.300

This journal is ª The Royal Society of Chemistry 2011

Page 16: NPR REVIEW

This journal is ª The Royal Society of Chemistry 2011

The lindelane sesquiterpenes oxyonoseriolide 352 and

hedyosmone 353 have been obtained from the bark of Hedyos-

mum angustifolium.301 The structure of glabranol A, isolated

from Sarcandra glabra,257 has been determined as 354. This plant

also contains the linderanolide sarcandralactone A 355 and the

Nat. Prod. Rep., 2011, 28, 1580–1610 | 1595

Page 17: NPR REVIEW

dimers sarcandrolides A–E 356–360.293 Other lindelane dimers,

chloramultiols A–F 361–366, have been found in extracts from

Chloranthus multistachys,302,303 whilst another research group has

described the isolation of the dimers multistalide A 367 and

multistalide B 368 from this same species.304

1596 | Nat. Prod. Rep., 2011, 28, 1580–1610 This journal is ª The Royal Society of Chemistry 2011

Page 18: NPR REVIEW

A formal and racemic synthesis of axamide-1 and axisonitrile-

1 has been achieved.305 The new oppositane sesquiterpenes lep-

tocladolin A 369 and leptocladolin B 370 have been identified as

components of the Formosan soft coral Sinularia leptoclados.306

Another sesquiterpene 371 with this skeleton has been isolated

from Senecio argunensis.307

17 Vetisperane

The new solavetivone derivative argutosine D 372 has been iso-

lated from Incarvillea arguta,308 whilst 3-hydroxysolavetivone-b-

D-glucoside A and 3-hydroxysolavetivone-b-D-glucoside B have

been obtained from the leaves of Nicotiana tabacum.309 Studies

on the production of phytoalexins, with a vetispirane skeleton,

by hairy root cultures of Hyoscyamus albus have been

described.310

18 Eremophilane, valencane and bakkane

A study of the fermentation of the fungus Xylaria sp. BCC 21097

afforded seven new eremophilane derivatives 373–379.311

Another sesquiterpene of this type, xylaranic acid 380, has been

found in an extract of a second species of this genus, Xylaria sp.

101,312 whilst 1-(xylarenone A)xylariate 381 has been obtained

from a third species, Xylaria sp NCY2, which is an endophyte of

the plant Torreya jackii.313 Two new eremophilane derivatives,

cupressolide A 382 and cupressolide B 383, have been isolated

from another Xylariaceous microorganism, which is endophytic

in the tissues of Cupressus lusitanica leaves.314 Another endo-

phytic fungus, Microdiplodia sp. KS 75–1, contains two new

sesquiterpenoids 384 and 385. In this work, the stereochemistry

at C-8 of phomadecalin C and phomadecalin D have been cor-

rected to 386 and 387, respectively.315 Cryptosphaerolide 388 is

a cytotoxic Mcl-1 inhibitor, which has been obtained from saline

cultures of a marine-derived species of the Cryptosphaeria

genus.316

This journal is ª The Royal Society of Chemistry 2011

The sesquiterpene glucoside 389 has been isolated from the

roots of Lindera strychnifolia,40 whilst argutosines A–C 390–392

and delavayol 393 have been obtained from Incarvillea arguta308

and Incarvillea delavayi,317 respectively. Other new compounds of

this type 394–411 and lineariifolianone 412 have been found in

extracts from the rhizomes of Farfugium japonicum318 and from

the aerial parts of Inula lineariifolia,319 respectively. A chemical

study of Parasenecio deltophylla320 led to the isolation of five

eremophilane derivatives 413–417, whilst an investigation of

Senecio santelisis321 afforded the sesquiterpenes 418 and 419.

Other species of this genus, Senecio ambraceus322 and Senecio

nemorensis,323 contain the new eremophilenelactones 420 and

Nat. Prod. Rep., 2011, 28, 1580–1610 | 1597

Page 19: NPR REVIEW

Table 3 New eremophilane sesquiterpenes from Ligularia species

Source Eremophilanes Ref.

Ligularia anoleuca 426 325Ligularia fischeri 427–433 326,327,328,329Ligularia muliensis 434, 435 330Ligularia oligonema 436 331Ligularia veitchiana 437 332

421, respectively. The eremophilane sesquiterpenes 422–424 are

stress metabolites, which have been isolated from Chloranthus

anhuiensis261 after treatment with CuCl2. The new eremophila-

nolide 425 has been obtained from Carpesium cernuum.324 The

studies on components of the Ligularia genus have continued

with intensity during this year (see Table 3).

1598 | Nat. Prod. Rep., 2011, 28, 1580–1610 This journal is ª The Royal Society of Chemistry 2011

Page 20: NPR REVIEW

Mass spectrometry of crude extracts of fourteen samples of

Ligularia virgaurea, collected in two provinces of China, has

permitted the classification of this species into two phyto-

chemical groups.333 The absolute configuration of ten known

eremophilane sesquiterpenes, isolated from Petasitis hybridus,

has been assigned by comparison of their simulated and

experimental circular dichroism spectra.334 The intermediacy of

a eudesmane cation in the cyclization of farnesyl diphosphate

to (+)-aristolochene, catalyzed by aristolochene synthase, has

been reported.335 An enantioselective total synthesis336 of

(�)-platyphyllide has permitted the revision of its absolute

This journal is ª The Royal Society of Chemistry 2011

configuration as the (6S,7S)-enantiomer 438. This sesquiterpe-

noid had been isolated from Senecio platyphylloides.337,338 The

structural requirements for repellency of several nootkatone

derivatives against the Formosan subterranean termite,

Coptermes formosanus, have been investigated.339 Different

methodologies have been employed in a study on the selective

hydrogenation of the ring system of nootkatone and other

valencane derivatives.340

Ligulactone A 439 and ligulactone B 440 are two bakkeno-

lides, which have been isolated from Ligularia fischeri.341 The

cytotoxic activity of a new lactone of this type 441, isolated from

Petasites tatewakianus, has been evaluated.342 Diastereoselective

total syntheses of bakkenolides A,343 I, J and S344 have been

accomplished.

19 Guaiane, xanthane, pseudoguaiane, patchoulane,bourbonane and carabrane

The sesquiterpene 10,11,12-guaianetriol 442 and 1,10,11,12-

guaianetetrol 443 have been isolated from an endophytic fungus

S49 of Cephalotaxus hainanensis,345 while xylaranol A 444 and

xylaranol B 445 have been found in an extract of Xylaria sp.

101.312 The fruiting bodies of Lactarius hatsudake contain lac-

tarioline A 446 and lactarioline B 447, two guaiane derivatives

with biological properties.346 Oreolactone 448 is another azulene-

type pigment, which has been obtained from the rhizomes of

Oreocnide frutescens.347 The guaiane derivatives 449, 450, 451–

455 and 456 have been isolated from Acorus calamus,131 Cleome

droserifolia,212 Daucus carota,348,349,350,351 and Daphne

aurantiaca,121 respectively. Another two new compounds of this

type 457 and 458 have been obtained from the fruits of Torilis

japonica.352 The sesquiterpenoids 459, 460 and 461 have been

found in extracts from Curcuma longa,78 Croton regelianus353 and

Saussurea laniceps,354 respectively. The structure of chlomultin A

has been determined as 462. This furanoguaiane is a component

of Chloranthus multistachys.135 Blumeaenes A–J 463–472 are

guaiane esters with NO inhibitory activity, which have been

obtained from Blumea balsamifera.355 A phytochemical study of

the flowers of Artemisia rupestris356 afforded four novel guai-

pyridine alkaloids, which have been named rupestines A–D 473–

476. Another species of this genus, Artemisia anomala,227

contains the seco-acid 477.

Nat. Prod. Rep., 2011, 28, 1580–1610 | 1599

Page 21: NPR REVIEW

1600 | Nat. Prod. Rep., 2011, 28, 1580–1610

The structures of leptocladol A, leptocladol B and 1-epi-

chabrolidione A have been determined as 478–480, respectively.

These guaiane derivatives have been isolated from a Formosan

soft coral, Sinularia leptoclados.357 Known guaiane sesquiter-

penes have been identified as components of Curcuma malabar-

ica.216 The structure of curcumenol, a known sesquiterpene from

Curcuma zeodaria, has been confirmed by X-ray analysis.358

The characterization of a d-guaiane synthase from cultured

cells of Aquilaria plants has been reported. This enzyme is

responsible for the formation of the sesquiterpenes in agar-

wood.359 Enantiospecific total syntheses of aciphyllene360 and

isocalamusenone361 have been achieved. (R)-Limonene has been

used as starting material in the synthesis of two epimeric 11-

hydroxy-guaiadienes 481 and 482.362 A racemic synthesis of

clavukerin K 483 has been described,363 while an enantioselective

synthesis of this last sesquiterpene and isoclavukerin A has been

accomplished.364 Four research groups have carried out

racemic365 and enantiospecific366–368 syntheses of the guaiane

This journal is ª The Royal Society of Chemistry 2011

Page 22: NPR REVIEW

Table 4 Sources of guaianolides

Source Guaianolides Ref.

Ajania przewalskii 485 281Amberboa ramosa 487, 488 369Artemisia anomala 499, 508, 517, 518, 529 139,227,370Artemisia dubia 484, 486, 490, 495–498, 509 371Carpesium cernuum 519 324Chloranthus anhuiensis 528 284Chrysanthemum indicum 503, 504 256Cichorium glandulosum 489, 492 372Daphne aurantiaca 520–523 121Daucus glaber 511–516 286Echinops ritro 502, 505 255Inula japonica 310–317 288Inula linearifolia 524–527 319Lactuca sativa 507 290Lactuca tatarica 491 291Schkuhria pinnata 251 222Scorzonera austriaca 493, 494, 500, 501, 506 223Thapsia villosa 510 214

sesquiterpene (�)-englerin A, a potent and selective inhibitor of

renal cancer cell growth, which had been isolated from

a Tanzanian plant. A short synthesis of teucladiol and iso-

teucladiol has been accomplished.208

New guaianolides have been isolated during the period

covered by this review (see Table 4). The novel guaian-6a,12-

olides, i.e. 484–509, are listed in Table 5 and other new guaia-

nolides are represented by the 6b,12-lactones 510–516, the dimers

251, 310–317 and 517, the guaian-8,12-olides 518–525 and the

seco-guaianolides 526–529.

Known guaianolides have been isolated from Anthemis sege-

talis,373 Lactuca aculeata233,374 and Lactuca altaica.375 A biomi-

metic total synthesis of (+)-ainsliadimer A has been

accomplished,376 whilst a synthesis of the guaianolide ring system

has been achieved, starting from (R)-(�)-carvone.377 The cata-

lytic hydrogenation and the addition of methanol to a-methy-

lene-g-lactones in eremanthine derivatives have been studied.378

The design and synthesis of novel guaianolide-endoperoxides as

potential antimalarial agents have been reported.379 It has been

This journal is ª The Royal Society of Chemistry 2011

shown that the lactone trilobide activates the production of

interferon-g and nitric oxide,380 whilst diversolides A, D, F and

G were active against Epstein-Barr virus early antigen activation,

induced by a phorbol derivative.381

The xanthane sesquiterpene curcumadionol 530 has been

obtained from Curcuma wenyujin.16 The total synthesis and the

determination of the absolute configuration of (+)- and

(�)-sundiversifolide have been achieved. In this work, another

three xanthanolides, 8-epi-xanthatin, dihydroxanthatin and

xanthatin, were also prepared.382 The semisynthesis of xanthinin

and 4-epi-isoxanthanol, and their protein farnesyltransferase

inhibitory activity, have been reported.383

Nat. Prod. Rep., 2011, 28, 1580–1610 | 1601

Page 23: NPR REVIEW

Table 5 Novel guaian-6a,12-olidesa

Name StructurePosition ofdouble bond(s) Substituents and configurations Ref.

Artemdubolide F 484 1–2, 9–10, 11–13 3a-OH, 4a-OH, 8a-OH 371Artemdubolide F derivative 485 1–2, 9–10, 11–13 3a-OH, 4a-OH, 8a-OAng 281Artemdubolide G 486 2–3, 11–13 1a-OH, 4b-OH, 8a-OAc, 10a-OH 371Amberbin A 487 3–4 8a-OAc, 10a-OH, 11a 369Amberbin B 488 3–4 8a-OAc, 10a-OGlc, 11a 369Cichoralexin derivative 489 3–4 2-oxo, 8a-OAng, 10b, 11a 372Artemdubolide D 490 3–4, 9–10, 11–13 1a-OH, 8a-OSen 371Involucratin derivative 491 3–4, 10–1 2-oxo, 8a-OH, 11b-OH, 15-OH 291Austricin derivative 492 3–4, 10–1 2-oxo, 8a-OMesen, 11a 372Scorzoaustriacin derivative 493 3–4, 10–1 2-oxo, 8a-OH, 11a, 14-OVali 223Scorzoaustriacin derivative 494 3–4, 10–1 2-oxo, 8a-OSO3H, 11a, 14-OVali 223Artemdubolide A 495 3–4, 10–14, 11–13 1a-OH, 8a-OSen 371Artemdubolide B 496 3–4, 10–14, 11–13 1a-OH, 8a-OMebu 371Artemdubolide C 497 3–4, 10–1, 11–13 8a-OMebu 371Artemdubolide E 498 3–4, 11–13 2-oxo, 8a-OH, 10b,1b-epoxy 371Leucodin derivative 499 3–4, 11–13 2-oxo, 5a-OH, 10b-OH 227Scorzoaustriacin 500 4–15, 10–14 3b-OH, 11a, 13-R 223Scorzoaustriacin glucoside 501 4–15, 10–14 3b-OGlc, 11a, 13-R 223A D7(11)-guaianolide 502 7–11, 10–14 3a-OH, 4a, 13-OH 255Chysanthguaianolactone A 503 9–10 1a-OH, 3a,4a-epoxy, 8a-OAng, 11a 256Chysanthguaianolactone B 504 10–1 3a,4a-epoxy, 8a-OAng, 11a 256Deoxoleucodin derivative 505 10–1 3a-OH, 4a, 11b, 14-OH 255Estafiatol derivative 506 10–14 3b-OH, 4b, 11a 223Amphoricarpolide derivative 507 10–14, 11–13 4a-OGlc, 15-OH 290Bibsanin derivative 508 11–13 1a,2a-epoxy, 3b-Cl, 4b-OH, 10b-OH 227Artemdubolide H 509 11–13 1b-Cl, 2b-OH, 3b,4b-epoxy, 8a-OMebu, 10b-OH 371

a R ¼ aminomethyl-g-butyrolactone.

Thenewpseudoguaiane sesquiterpene531hasbeen isolated from

Trichiliaquadrijuga,384while the lactones 532,533and534,535have

been obtained from Ambrosia arborescens161 and Inula japonica,260

respectively. Another novel pseudoguaianolide 536 have been

found in an extract of Inula linearifolia.319 Known compounds of

this type, with cytotoxic activity, have been obtained from

Ambrosia peruviana.385 The quantitative variation of the sesquiter-

pene lactones helanin and dihydrohelanin in different German

Arnica montana populations has been investigated.386 The anti-

proliferative effect and ultra structural alteration induced by psi-

lostachyn on Trypanosoma cruzi has been described.387

The cyclization of singly labelled [2-2H1]farnesyl diphosphate

catalyzed by recombinant patchoulol synthase from Pogostemon

cablin has been studied. In this work, a new semisystematic

nomenclature has been proposed with the aim of distinguishing

the three different skeleta of the patchoulane sesquiterpenes.388

1602 | Nat. Prod. Rep., 2011, 28, 1580–1610

The new bourbonenolide 537 has been isolated from the leaves

and twigs of Rolanda fruticosa.221 Pubescenone 538 is an 11(7/

6)abeo-14-nor-carabrane sesquiterpene, which has been found in

an extract of the aerial parts of Siegesbeckia pubescens.389 The

synthesis and antifungal activity of several carabrone derivatives

have been described.390

This journal is ª The Royal Society of Chemistry 2011

Page 24: NPR REVIEW

20 Aromadendrane, bicyclogermacrane, valerenane,aristolane, nardosinane and zierane

Twonew aromadendrane sesquiterpenoids 539 and 540 have been

isolated from cultures of the fungus Agrocybe salicacola.391 The

liverwort Plagiochila bursata392 contains the 2,3-seco-aromaden-

drane 541, while an alloaromadendrane derivative 542 has been

obtained from the rhizomes of Ligusticum chuanxiong.393 A

chemical study of theVietnamese nudibranchmolluskPhyllidiella

pustulosa394 afforded another compound of this type 543. The

meroterpenes psidial B 544 and psiguadial A 545 have been found

in extracts from the leaves of Psidium guajava.170,171 It has been

shown that a SAV_76 synthase from Streptomyces avermitilis

catalyzes the cyclization of farnesyl diphosphate to a new tricyclic

sesquiterpene alcohol 546, which has been named avermitilol.395

The new bicyclogermacranes 547 and 548 have been isolated

from the aerial parts of Calamintha ashei,396 whilst other

sesquiterpenes volvalerenals A–E 549–553 and volvalerenic acids

This journal is ª The Royal Society of Chemistry 2011

A–C 554–556 have been obtained from the roots of Valeriana

officinalis.397 This last plant also contains the novel sesquiterpe-

noid volvalerenone A 557.398 Another compound of this type

valerena-4,7(11)-diene, a highly active sedative, has been

synthesized starting from valerenic acid.399

The sesquiterpenoid 558 has been isolated from an unidentified

liverwort of the Gackstroemia genus.250 A new aristolane sesqui-

terpene 559 has been found in the marine red alga Laurencia sim-

ilis.400Chromatography of an extract of the soft coralParalemnalia

thyrsoides afforded seven novel nardisonane derivatives 560–566,

which have been named paralemnolins J–P.401 Later, another three

sesquiterpenes 560, 567 and 568were obtained from the same coral

species, and named paralemnolins J, K and L, respectively.160

Consequently, to avoid confusion the last two compounds 567 and

568 should be renamed as paralemnolins R and S, respectively. The

novel zierane lactone chandiolide 569 has been found in an extract

of the Tahitian liverwort Chandonanthus hirtellus.402

Nat. Prod. Rep., 2011, 28, 1580–1610 | 1603

Page 25: NPR REVIEW

21 Pinguisane

Two chemical constituents of the Vietnamese liverwort Porella

densiflora403 have been identified as the novel sesquiterpenoids

norpinguisone 570 and its methyl ester 571.

22 Salviolane

Two new salvionane derivatives 572 and 573 have been isolated

from the aerial parts of Senecio argunensis.307

23 Miscellaneous sesquiterpenoids

The structure of stereumin F has been determined as 574. This

new sesquiterpene has been obtained from a fungus of the

Stereum genus.130 Abiespiroside A 575 is a novel sesquiterpene

spirolactone, which has been found in Abies delavayi,404 whilst

the dilactone gaultheriadiolide 576 has been isolated from

Gaultheria yunnanensis.405 The bark and root of Thottea

hainanensis contain the sesquiterpene thotteodiol 577, which

possesses a new carbon skeleton.406 The meroterpenoid globi-

ferane 578 has been identified as a component of Cordia globifera

root.407 The structures of terebanene, teredenene and ter-

ebinthene, have been determined as 579–581, respectively. These

compounds, isolated from the fruits of Schinus terebinthifolius,

have a new carbon framework named terebanane, which prob-

ably derives from an illudane sesquiterpene.408 Cryptotrione 582

is a C35 terpenoid, formed by the coupling of a unique bicyclic

sesquiterpene and an abietane diterpene. This substance is

a component of Cryptomeria japonica.409

The root of Ligusticum grayi contains the new thapsane

derivatives thapsadiene 583, a-thapsenol 584 and b-epithapsenol

585, and another fourteen sesquiterpenes representing eight

novel carbon skeleta, named as pretapsane (a-pretapsenol 586

and b-pretapsenol 587), isothapsane (isothapsadiene 588, a-iso-

thapsenol 589 and b-isothapsenol 590), ligustigrane

1604 | Nat. Prod. Rep., 2011, 28, 1580–1610 This journal is ª The Royal Society of Chemistry 2011

Page 26: NPR REVIEW

(a-ligustigrenol 591 and b-ligustigrenol 592), isoligustigrane

(a-isoligustigrenol 593 and b-isoligustigrenol 594),

preisothapsane (a-preisothapsenol 595 and b-preisothapsenol

596), allothapsane (allothapsenol 597), isoprethapsane (iso-

prethapsenol 598) and oshalagrane (oshalagrenol 599).21

The gorgonian coral Rumphella antipathies contains rum-

phellclovane A 600, which possesses a novel carbon framework,

which probably arises from a clovane sesquiterpene.174 The

structures 601 and 602 have been assigned to two sesquiterpenes

with antibacterial properties, obtained from the marine macro-

alga Ulva fasciata.410

Total syntheses of (�)-crassifolone, (�)-dihydrocrassifolone411

and (+)-frondosin B412 have been carried out. Echinopines A and

B have been synthesized in both enantiomeric and racemic

forms.413 A stereoselective synthesis of (�)-urechitol A has been

achieved.414 (R)-Carvone has been used as starting material in the

synthesis of the optical antipode of the sesquiterpene 5-sen-

ecioyloxy-10,11-epoxy-thapsan-10-ol.415 The first total synthesis

of (+)-chabranol has been accomplished in six steps.416 This

compound had been recently isolated fromNephthea chabrolii.417

24 References

1 G. Guella, D. Skropeta, G. Di Giuseppe and F. Dini, Mar. Drugs,2010, 8, 2080.

2 Y. F. Wang, Z. Y. Ni, M. Dong, B. Cong, Q. W. Shi, Y. C. Gu andH. Kiyota, Chem. Biodiversity, 2010, 7, 2623.

3 S. B. Khan, R. Akhtar, A. Malik, E. S. Jang and H. Han, J.Medicinal Plant Res., 2010, 4, 1039.

4 Y. Asakawa, T. Hashimoto and Y. Noma, Nat. Prod. Commun.,2010, 5, 695.

5 A. Keszei, C. L. Brubaker, R. Carter, T. K€ollner, J. Degenhardt andW. J. Foley, Phytochemistry, 2010, 71, 844.

6 Q. Wu, B. Zhao, X. W. Yang, W. Xu, P. Zhang, L. Zou andL. X. Zhang, Planta Med., 2010, 76, 319.

7 F. Lopez-Gallego, S. A. Agger, D. Abate-Pella, M. K. Distefano andC. Schmidt-Dannert, ChemBioChem, 2010, 11, 1093.

8 D. D. Zhai, H. Z. Jin and J. J. Zhong, Chin. Chem. Lett., 2010, 21,590.

9 D. D. Zhai and J. J. Zhong, Phytochemical Anal., 2010, 21, 524.10 D. D. Zhai, K. Supaibulwatana and J. J. Zhong, Phytomedicine,

2010, 17, 856.11 K. Shimomura, H. Koshino, A. Yajima, N. Matsumoto,

Y. Kagohara, K. Kamada, S. Yajima and K. Ohsawa, J. Chem.Ecol., 2010, 36, 824.

12 K. Shimomura, H. Koshino, A. Yajima, N. Matsumoto, S. Yajimaand K. Ohsawa, Tetrahedron Lett., 2010, 51, 6860.

13 D. Meng, J. Wu and W. Zhao, Phytochemistry, 2010, 71, 325.14 W. J. Xiang, C. Y. Guo, L. Ma and L. H. Hu, Fitoterapia, 2010, 81,

248.15 T. Morikawa, Y. Xie, K. Ninomiya, M. Okamoto, O. Muraoka,

D. Yuan, M. Yoshikawa and T. Hayakawa, Chem. Pharm. Bull.,2010, 58, 1276.

16 Y. Lou, F. Zhao, H. He, K. F. Peng, L. X. Chen and F. Qiu, Chem.Biodiversity, 2010, 7, 1245.

17 J. Smadja, D. Strasberg, G. Legoff and A. Gauvin-Bialecki, Chem.Biodiversity, 2010, 7, 467.

This journal is ª The Royal Society of Chemistry 2011

18 G. Wang, S. H. Yoon, A. A. Shah, Y. R. Chung, J. Y. Kim,E. S. Choi, J. D. Keasling and S. W. Kim, Biotechnol. Bioeng.,2010, 107, 421.

19 T. Inui, Y. Wang, D. Nikolic, D. C. Smith, S. G. Franzblau andG. F. Pauli, J. Nat. Prod., 2010, 73, 563.

20 B. P. Bashyal andA.A. L.Gunatilaka,Nat. Prod. Res., 2010, 24, 349.21 L. G. Cool, K. E. Vermillion, G. R. Takeoka and R. Y. Wong,

Phytochemistry, 2010, 71, 1545.22 H. C. Kwon, A. P. D. M. Espindola, J. S. Park, A. Prieto-Davo,

M. Rose, P. R. Jensen and W. Fenical, J. Nat. Prod., 2010, 73, 2047.23 R. Raju, A. M. Piggott, L. X. Barrientos-Diaz, Z. Khalil and

R. J. Capon, Org. Lett., 2010, 12, 5158.24 K. Scherlach, J. Schuemann, H. M. Dahse and C. Hertweck, J.

Antibiot., 2010, 63, 375.25 Y. Hu, X. D. Li, G. Y. Li, N. Li, W. J. Zuo, Y. M. Zeng, H. Meng,

X. Li and J. H. Wang, Helv. Chim. Acta, 2010, 93, 1019.26 M. Tanjung, E. H. Hakim, D. Mujahidin, M. Hanafi and

Y. M. Syah, J. Asian Nat. Prod. Res., 2009, 11, 929.27 Y. M. Syah and E. L. Ghisalberti,Nat. Prod. Commun., 2010, 5, 219.28 B. Koch, C. Kilpert and W. Steglich, Eur. J. Org. Chem., 2010, 359.29 S. Y. Cheng, K. J. Huang, S. K. Wang, Z. H. Wen, P. W. Chen and

C. Y. Duh, J. Nat. Prod., 2010, 73, 771.30 G. Sabitha, M. N. Prasad, M. Bhikshapathi and J. S. Yadav,

Synthesis, 2010, 807.31 A. Ichikawa, M. Takenaka and H. Ono, Nat. Prod. Res., 2010, 24,

1800.32 P. Das and J. McNulty, Tetrahedron Lett., 2010, 51, 3197.33 M. J. Cheng, M. D. Wu, I. S. Chen and G. F. Yuan,Nat. Prod. Res.,

2010, 24, 750.34 A. Stojakowska, J. Malarz, S. Zubek, K. Turnau and W. Kisiel,

Biochem. Syst. Ecol., 2010, 38, 232.35 J. Shitamoto, K. Matsunami, H. Otsuka, T. Shinzato and

Y. Takeda, Chem. Pharm. Bull., 2010, 58, 1026.36 K. Matsunami, J. Nagashima, S. Sugimoto, H. Otsuka, Y. Takeda,

D. Lhieochaiphant and S. Lhieochaiphant, J. Nat.Med., 2010, 64, 460.37 J. Shitamoto, K. Matsunami, H. Otsuka, T. Shinzato and

Y. Takeda, J. Nat. Med., 2010, 64, 104.38 Z. Zhang, W. Zhang, Y. P. Ji, Y. Zhao, C. G. Wang and J. F. Hu,

Phytochemistry, 2010, 71, 693.39 G. H. Xu, Y. H. Kim, S. J. Choo, I. J. Ryoo, J. K. Yoo, J. S. Ahn and

I. D. Yoo, Arch. Pharmacal Res., 2010, 33, 369.40 A. Mimura, H. Sumioka, K. Matsunami and H. Otsuka, J. Nat.

Med., 2010, 64, 153.41 K. Matsunami, H. Otsuka, Y. Takeda and T. Miyase, Chem. Pharm.

Bull., 2010, 58, 1399.42 H. Kato-Noguchi, T. Seki and H. Shigemori, J. Plant Physiol., 2010,

167, 468.43 K. Chakraborty and R. Paulrai, Food Chem., 2010, 122, 31.44 M. Iranshani, F. Kalategi, A. Sahebkar, A. Sardashti and

B. Schneider, Pharm. Biol., 2010, 48, 217.45 A. Corbu, J. M. Castro, M. Aquino, Z. Gandara, P. Retailleau and

S. Arseniyadis, Eur. J. Org. Chem., 2010, 1483.46 J. S. Yadav, K. Satyanarayana, P. Sreedhar, P. Srihari, T. B. Shaik

and S. V. Kalivendi, Bioorg. Med. Chem. Lett., 2010, 20, 3814.47 B. S. Siddiqui, K. Z. Butabayeva, G. S. Burasheva, S. Perwaiz,

S. K. Ali and H. A. Bhatti, Tetrahedron, 2010, 66, 1716.48 M. S. Liu, C. Liu, X. P. Zhang, L. Sheng, J. Q. Zhang and

S. L. Kang, Chem. Pharm. Bull., 2010, 58, 1224.49 M. H. Grace, C. Lategan, F. Mbeunkui, R. Graziose, P. J. Smith,

I. Raskin and M. A. Lila, Nat. Prod. Commun., 2010, 5, 1869.50 K. Wayman, P. J. de Lange, L. Larsen, C. E. Sansom and

N. B. Perry, Phytochemistry, 2010, 71, 766.51 M. Toyota, I. Omatsu, F. Sakata, J. Braggins and Y. Asakawa, Nat.

Prod. Commun., 2010, 5, 999.52 A. A. Wube, F. Bucar, S. Gibbons, K. Asres, L. Rattay and

S. L. Croft, Phytother. Res., 2010, 24, 1468.53 M. D’Acunto, C. Della Monica, I. Izzo, L. De Petrocellis, V. di

Marzo and A. Spinella, Tetrahedron, 2010, 66, 9785.54 A. Abad, C. Agull�o, A. C. Cu~nat, A. Gonz�alez-Coloma and

D. Pardo, Eur. J. Org. Chem., 2010, 2182.55 L. Zhang, Y. Shen, F. Wang, Y. Leng and J. K. Liu, Phytochemistry,

2010, 71, 100.56 I. E. Mohamed, S. Kehraus, A. Krick, G. M. K€onig, G. Kelter,

A. Maier, H. H. Fiebig, M. Kalesse, N. P. Malek and H. Gross, J.Nat. Prod., 2010, 73, 2053.

Nat. Prod. Rep., 2011, 28, 1580–1610 | 1605

Page 27: NPR REVIEW

57 A. N. Yurchenko, O. F. Smetanina, A. I. Kalinovsky, M. V. Pivkin,P. S. Dmitrenok and T. A. Kuznetsova, Russ. Chem. Bull., 2010, 59,852.

58 S. Hosokawa, K. Matsuhita, S. Tokimatsu, T. Toriumi, Y. Suzukiand K. Tatsuta, Tetrahedron Lett., 2010, 51, 5532.

59 T. Fujioka, K. Yao, K. Hamano, T. Hosoya, T. Kagasaki,Y. Furukawa, H. Haruyama, S. Sato, T. Koga and Y. Tsujita, J.Antibiot., 1996, 49, 409.

60 H. Yamazaki, N. Ugaki, D. Matsuda and H. Tomoda, J. Antibiot.,2010, 63, 1.

61 M. Gordaliza, Mar. Drugs, 2010, 8, 2849.62 L. S. Marcos, A. Conde, R. F. Moro, P. Basabe, D. Diez and

J. Urones, Tetrahedron, 2010, 66, 8280.63 L. S. Marcos, A. Conde, R. F. Moro, P. Basabe, D. Diez and

J. Urones, Mini-Rev. Org. Chem., 2010, 7, 230.64 A. M. Lane, L. Mular, E. J. Drenkard, T. L. Shearer, S. Engel,

S. Fredericq, C. R. Fairchild, J. Prudhomme, K. Le Roch,M. E. Hay, W. Aalbersberg and J. Kubanek, Tetrahedron, 2010,66, 455.

65 N. K. Utkina, V. A. Denisenko and V. B. Krasokhin, J. Nat. Prod.,2010, 73, 788.

66 Y. Takahashi, M. Ushio, T. Kubota, S. Yamamoto, J. Fromont andJ. Kobayashi, J. Nat. Prod., 2010, 73, 467.

67 K. Takada, H. Kajiwara and N. Imamura, J. Nat. Prod., 2010, 73,698.

68 L. Ding, J. Munch, A. Maier, H. H. Fiebig, W. H. Lin andC. Hertweck, Bioorg. Med. Chem. Lett., 2010, 20, 6685.

69 I. Ngantchou, B. Nyasse, C. Denier, C. Blonski, V. Hannaert andB. Scheneider, Bioorg. Med. Chem. Lett., 2010, 20, 3495.

70 R. B.William, J. F. Hu, K.M. Olson, V. L. Norman,M. G. Goering,M. O’Neil-Johnson, G. R. Eldridge and C. M. Starsk, J. Nat. Prod.,2010, 73, 1008.

71 M. Iranshahi, M. Masullo, A. Asili, A. Hamedzadeh, B. Jahanbin,M. Festa, A. Capasso and S. Piacente, J. Nat. Prod., 2010, 73,1958.

72 A. Jabrane, H. Ben-Janet, Z. Mighri, J. F. Mirjolet, O. Duchamp,F. Harzallah-Skhiri and M. A. Lacaille-Dubois, Chem.Biodiversity, 2010, 7, 392.

73 D. D. Zhai, K. Supaibulwatana and J. J. Zhong, Latin Am. J.Pharm., 2010, 29, 1159.

74 S. A. Snyder, D. S. Treitler and A. P. Brucks, J. Am. Chem. Soc.,2010, 132, 14303.

75 K. Watanave, J. Sakurai, H. Abe and T. Katoh, Chem. Commun.,2010, 46, 4055.

76 E. Alvarez-Manzaneda, R. Chahboun, E. Cabrera, E. Alvarez,A. Haidour, J. M. Ramos, R. Alvarez-Manzaneda, R. Tapia,H. Es-Samti, A. Fern�andez and I. Barranco, Eur. J. Org. Chem.,2010, 1139.

77 R.M. Kamble andM.M. V. Ramana,Can. J. Chem., 2010, 88, 1233.78 J. J. Chang, C. S. Tsai, T. L. Hwang, P. C. Shieh, J. F. Chen and

P. J. Sung, Food Chem., 2010, 119, 974.79 S. Schwaiger, S. Hehenberger, E. P. Ellmerer and H. Stuppner, Nat.

Prod. Commun., 2010, 5, 667.80 N. Aoki and S. Ohta, Tetrahedron Lett., 2010, 51, 3449.81 Q. Wang, T. H. Chen, K. F. Bastow, K. H. Lee and D. F. Chen, J.

Nat. Prod., 2010, 73, 139.82 D. F. Chen, Q. Wang and G. X. Li, Faming Zhuanli Shenquing

Gongkai Shuomingshu, CN 101,747,190 (Chem. Abstr., 2010, 153,213398).

83 S. Alam, M. Ali, P. Alam and M. Shuaib, Chem. Nat. Compd., 2010,46, 44.

84 J. A. Faraldos, P. E. O’Maille, N. Dellas, J. P. Noel andR. M. Coates, J. Am. Chem. Soc., 2010, 132, 4281.

85 G. Rodrigo, G. R. Almanza, Y. Cheng, J. Peng, M. Hamann,R. D. Duan and B. Akesson, Fitoterapia, 2010, 81, 762.

86 L. Magnelli, R. Caldini, N. Schiavone, H. Suzuki andM. Chevanne,J. Nat. Prod., 2010, 73, 523.

87 M. Fujisawa, H. Harada, K. Kenmoku, S. Mizutani and N.Misawa,Planta, 2010, 232, 121.

88 J. Z. Sun, K. S. Chen, H. L. Liu, R. van Soest and Y. W. Guo,Helv.Chim. Acta, 2010, 93, 517.

89 C. Almeida, S. Elsaedi, S. Kekhraus and G. M. K€onig, Nat. Prod.Commun., 2010, 5, 507.

90 Z. Lu, H. Zhu, P. Fu, Y.Wang, Z. Zhang, H. Lin, P. Liu, Y. Zhuang,K. Hong and W. Zhu, J. Nat. Prod., 2010, 73, 911.

1606 | Nat. Prod. Rep., 2011, 28, 1580–1610

91 M. Y. Wei, C. Y. Wang, Q. A. Liu, C. L. Shao, Z. G. She andY. C. Lin, Mar. Drugs, 2010, 8, 941.

92 N. Y. Ji, X. M. Li and B. G. Wang, Helv. Chim. Acta, 2010, 93,2281.

93 C. Lhullier, M. Falkenberg, E. Ioannou, A. Quesada, P. Papazafiri,P. A. Horta, E. P. Schenkel, C. Vagias and V. Roussis, J. Nat. Prod.,2010, 73, 27.

94 M. Matsui, T. Tashiro, M. Sasaki and H. Takikawa, Biosci.,Biotechnol., Biochem., 2010, 74, 683.

95 K. Abecassis and S. E. Gibson, Eur. J. Org. Chem., 2010, 2938.96 Z. T. Du, H. R. Yu, Y. Xu, Q. L. Song and A. P. Li, J. Chin. Chem.

Soc., 2010, 57, 399.97 L. E. Montiel, L. G. Zepeda and J. Tamariz,Helv. Chim. Acta, 2010,

93, 1261.98 S. Nave, R. P. Sonewane, T. G. Elford and V. K. Aggarwal, J. Am.

Chem. Soc., 2010, 132, 17096.99 D. F. Fotsop, F. Roussi, A. Leverri, A. Bret�ech�e and F. Gu�eritte, J.

Org. Chem., 2010, 75, 7412.100 C. Huang and B. Liu, Chem. Commun., 2010, 46, 5280.101 M. Osaka, M. Kanematsu, M. Yoshida and K. Shishido,

Heterocycles, 2010, 80, 1003.102 M. Osaka, M. Kanematsu, M. Yoshida and K. Shishido,

Tetrahedron: Asymmetry, 2010, 21, 2319.103 L. Liu, H. Gao, X. Chen, X. Cai, L. Yang, L. Guo, X. Yao and

Y. Che, Eur. J. Org. Chem., 2010, 3302.104 A. Muratore, J. C. Clinet and E. Du~nach, Chem. Biodiversity, 2010,

7, 623.105 I. Stappen, J. H€ofinghoff, G. Buchbauer and P. Wolschann, Nat.

Prod. Commun., 2010, 5, 1343.106 J. S. Yadav, P. N. Reddy and B. V. S. Reddy, Synlett, 2020, 457.107 L. Shen, J. S. Wang, H. J. Shen, Y. C. Song and R. X. Tan, Planta

Med., 2010, 76, 1004.108 A. A. Sy-Cordero, T. N. Graf, M. C. Wani, D. J. Kroll, C. J. Pearce

and N. H. Oberlies, J. Antibiot., 2010, 63, 539.109 S. Bal, Asian J. Chem., 2010, 22, 3101.110 I. Komaila, T. Ito, F. Nagashima, Y. Yagi and Y. Asakawa, J. Nat.

Med., 2010, 64, 417.111 S. Su, W. S. Sun, B. Wang, W. Cheng, H. Liang, Y. Y. Zhao,

Q. Y. Zhang and J. Wu, J. Asian Nat. Prod. Res., 2010, 12, 916.112 J. A. Luj�an-Montelongo and J. G. Avila-Z�arraga, Tetrahedron Lett.,

2010, 51, 2232.113 A. Srikrishna and M. S. Rao, Indian J. Chem., Sect. B: Org. Chem.

Incl. Med. Chem., 2010, 49, 1363.114 D. Z. Liu, F. Wang and J. K. Liu, Tetrahedron Lett., 2010, 51, 3152.115 D. Z. Liu and M. H. Luo, Fitoterapia, 2010, 81, 1205.116 S. Chokpaiboon, D. Sommit, T. Teerawatananond, N. Muangsin,

T. Bunyapaiboonsri and K. Pudhom, J. Nat. Prod., 2010, 73,1005.

117 A. Oliveira do Santos, P. Veiga-Santos, T. Ueda-Nakamura,B. P. Dias-Filho, D. Bueno-Sudatti, E. M. Bianco, R. C. Pereiraand C. V. Nakamura, Mar. Drugs, 2010, 8, 2733.

118 A. San Martin, J. Rovirosa, A. Carrasco, S. Orejarena, J. Soto-Delgado, R. Contreras and M. C. Chamy, Nat. Prod. Commun.,2010, 5, 1859.

119 D. E. White, I. C. Stewart, B. A. Seashore-Ludlow, R. H. Grubbsand B. M. Stolz, Tetrahedron, 2010, 66, 4668.

120 K. C. Chu, H. J. Liu and J. L. Zhu, Synlett, 2010, 3061.121 S. Liang, Y. H. Shen, Y. Feng, J. M. Tian, X. H. Liu, Z. Xiong and

W. D. Zhang, J. Nat. Prod., 2010, 73, 532.122 A. M. Gamal-Eldeen and M. E. F. Hegazy, Nat. Prod. Res., 2010,

24, 246.123 X. Y. Tian, Y. Zhao, S. S. Yu and W. S. Fang, Chem. Biodiversity,

2010, 7, 984.124 I. Kiran, Z. Durceylan, N. Kirimer, K. H. C. Baser, Y. Noma and

F. Demirci, Nat. Prod. Commun., 2010, 5, 518.125 S. Kim and J. I. Hwang, Synlett, 2010, 1551.126 J. A. Aaron, X. Lin, D. E. Cane and D. W. Christianson,

Biochemistry, 2010, 49, 1787.127 J. Y. Chang, M. H. A. El-Razek, Y. H. Chen, Y. B. Chen,

S. Y. Chen, C. T. Chien, Y. H. Kuo and Y. C. Shen, Helv. Chim.Acta, 2010, 93, 123.

128 J. F. Liu, Z. Y. Jiang, Q. Zhang, Y. Shi, Y. B. Ma, M. J. Xie,X. M. Zhang and J. J. Chen, Planta Med., 2010, 76, 152.

129 L. Shi, K. Meyer and M. F. Greaney, Angew. Chem., Int. Ed., 2010,49, 9250.

This journal is ª The Royal Society of Chemistry 2011

Page 28: NPR REVIEW

130 F. F. Liu, G. H. Li, Z. S. Yang, X. Zheng, Y. Yang andK. Q. Zhang,Helv. Chim. Acta, 2010, 93, 1737.

131 W. Dong, D. Yang and R. Lu, Planta Med., 2010, 76, 454.132 W. Dong, M. Li, D. Yang and R. Lu, Planta Med., 2010, 76,

1742.133 X. G. Tong, G. S. Wu, C. G. Huang, Q. Lu, Y. H. Wang,

C. H. Long, H. R. Luo, H. J. Zhu and Y. X. Cheng, J. Nat. Prod.,2010, 73, 1160.

134 X. G. Tong, B. Qiu, G. F. Luo, X. F. Zhang and Y. X. Cheng, J.Asian Nat. Prod. Res., 2010, 12, 438.

135 S. Zhang, Z. S. Su, S. P. Yang and J. M. Yue, J. Asian Nat. Prod.Res., 2010, 12, 522.

136 Y. Zhang, C. H. Tan, J. J. Tan, P. M. Yang, S. H. Jiang, X. Ni andD. Y. Zhu, Helv. Chim. Acta, 2010, 93, 1407.

137 J. A. Duan, P. Hou, Y. Tang, P. Liu, S. Su and H. Liu, Nat. Prod.Commun., 2010, 5, 1531.

138 W. D. Xie, Y. F. Niu, J. J. Huang and K. H. Row,Helv. Chim. Acta,2010, 93, 2448.

139 K. Zan, S. P. Shi, Q. Fu, X. Q. Chen, S. X. Zhou, M. T. Xiao andP. F. Tu, Helv. Chim. Acta, 2010, 93, 2000.

140 J. H. Wu, Y. F. Chang, Y. T. Tung, M. Tsuzuki, A. Izuka,S. Y. Wang and Y. H. Kuo, Helv. Chim. Acta, 2010, 93, 753.

141 S. Rani, S. A. Khan and M. Ali, Nat. Prod. Res., 2010, 24, 1358.142 M. Miyazawa and N. Yagi, Jpn. Kokai Tokkyo Koho JP, 2010,

37,299 (Chem. Abstr., 2010, 152, 271145).143 S. Garms, T. G. K€ollner and W. Boland, J. Org. Chem., 2010, 75,

5590.144 Y. J. Hong and D. J. Tantillo, Chem. Sci., 2010, 1, 609.145 Y. H. Wang and M. Essenberg, Phytochemistry, 2010, 71, 1825.146 J. Wei, D. L. Vander Jagt, R. E. Royer and L. M. Deck, Tetrahedron

Lett., 2010, 51, 5757.147 K. Nishikawa, H. Nakahara, Y. Shirokura, Y. Nogata,

E. Yoshimura, T. Umezawa, T. Okino and F. Matsuda, Org.Lett., 2010, 12, 904.

148 D. Chaturvedi, A. Goswami, P. P. Saikia, N. C. Barua andP. G. Rao, Chem. Soc. Rev., 2010, 39, 435.

149 C. W. Wright, Nat. Prod. Rep., 2010, 27, 961.150 N. Q. Liu, Y. H. Choi, R. Verpoorte and F. van der Kooy,

Phytochemical Anal., 2010, 21, 451.151 N. Schramek, H. Wang, W. R€omisch-Margl, B. Keil,

T. Radykewicz, B. Winzenh€orlein, L. Beerhues, A. Bacher,F. Rohdich, J. Gershenzon, B. Liu and W. Eisenreich,Phytochemistry, 2010, 71, 179.

152 A.M. Ryden, C. Ruyter-Spira, W. J. Quax, H. Osada, T. Muranaka,O. Kayser and H. Bouwmeester, Planta Med., 2010, 76, 1778.

153 G. D. Brown, Molecules, 2010, 15, 7603.154 A. Goswami, P. P. Saikia, N. C. Barua, M. Bordoloi, A. Yadav,

T. C. Bora, B. K. Gogoi, A. K. Saxena, N. Suri and M. Sharma,Bioorg. Med. Chem. Lett., 2010, 20, 359.

155 Y. Zhang, G. Nowak, D. W. Reed and P. S. Covello, PlantBiotechnol. J., 2010, 1.

156 J. S. Yadav, B. Thirupathaiah and P. Srihari, Tetrahedron, 2010, 66,2005.

157 Y. Liu, C. N. Lok, B. C. B. Ko, T. Y. T. Shum, M. K. Wong andC. M. Che, Org. Lett., 2010, 12, 1420.

158 J. Ricci, J. Park, W. Y. Chung, K. K. Park and M. Jung, Bioorg.Med. Chem. Lett., 2010, 20, 6858.

159 S. Oh, W. S. Shin, J. Ham and S. Lee, Bioorg. Med. Chem. Lett.,2010, 20, 4112.

160 S. Y. Chang, E. H. Lin, J. S. Huang, Z. H. Wen and C. Y. Duh,Chem. Pharm. Bull., 2010, 58, 381.

161 M. De Leo, M. B. Vera-Saltos, B. F. Naranjo-Puente, N. DeTommasi and A. Braca, Phytochemistry, 2010, 71, 804.

162 L. Zhang, J. H. Zhang, S. M. Yang, C. H. Tan, H. F. Luo andD. Y. Zhu, J. Asian Nat. Prod. Res., 2010, 12, 215.

163 D. M. Hodgson, S. Salik and D. J. Fox, J. Org. Chem., 2010, 75,2157.

164 A. El-Haib, A. Benharref, S. Parres-Maynadie, E. Manoury,J. C. Daran, M. Urrutigoity and M. Gouygou, Tetrahedron:Asymmetry, 2010, 21, 1272.

165 C. M. Cerda-Garc�ıa-Rojas, E. Burgue~no-Tapia, L. U. Rom�an-Mar�ın, J. D. Hern�andez-Hern�andez, T. Agull�o-Ortu~no,A. Gonz�alez-Coloma and P. Joseph-Nathan, Planta Med., 2010,76, 297.

166 K. Sakata and M. Miyazawa, J. Oleo Sci., 2010, 59, 261.

This journal is ª The Royal Society of Chemistry 2011

167 M. Miyazawa, K. Sakata and M. Ueda, J. Oleo Sci., 2010, 59, 243.168 K. Sakata, Y. Oda and M. Miyazawa, J. Agric. Food Chem., 2010,

58, 2164.169 W. Zhang, Z. Yao, Y. W. Zhang, X. X. Zhang, Y. Takaishi and

H. Q. Duan, Planta Med., 2010, 76, 1882.170 H. Z. Fu, Y. M. Luo, C. J. Li, J. Z. Yang and D. M. Zhang, Org.

Lett., 2010, 12, 656.171 M. Shao, Y. Wang, Z. Liu, D. M. Zhang, H. H. Cao, R. W. Jiang,

C. L. Fan, X. Q. Zhang, H. R. Chen, X. S. Yao and W. C. Ye, Org.Lett., 2010, 12, 5040.

172 A. L. Lawrence, R. M. Adlington, J. E. Baldwin, V. Lee,J. A. Kershaw and A. L. Thompson, Org. Lett., 2010, 12, 1676.

173 H. M. Chung, Y. H. Chen, M. R. Lin, J. H. Su, W. H. Wang andP. J. Sung, Tetrahedron Lett., 2010, 51, 6025.

174 H. M. Chung, Y. H. Chen, T. L. Huang, L. F. Chuang, W. H. Wangand P. J. Sung, Tetrahedron Lett., 2010, 51, 2734.

175 L. Evans, J. Hedger, G. O’Donnell, B. W. Skelton, A. H. White,R. T. Williamson and S. Gibbons, Tetrahedron Lett., 2010, 51, 5493.

176 Y. Noma, T. Hashimoto, S. Uehara and Y. Asakawa, FlavourFragrance J., 2010, 25, 161.

177 S. G. Musharraf, A. Najeeb, S. Khan, M. Pervez, R. A. Ali andM. I. Choudhary, J. Mol. Catal. B: Enzym., 2010, 66, 156.

178 T. Kitayama, S. Ohta, Y. Kawai, T. Nakayama and M. Awata,Tetrahedron: Asymmetry, 2010, 21, 11.

179 X. Cheng, N. L. Harzdorf, T. Shaw and D. Siegel, Org. Lett., 2010,12, 1304.

180 L. Saiz-Urra, J. C. Racero, A. J. Mac�ıas-S�anchez, R. Hern�andez-Gal�an, J. R. Hanson, M. P�erez-Gonz�alez and I. G. Collado, J.Agric. Food Chem., 2009, 57, 2420.

181 M. Fleck and T. Bach, Chem.–Eur. J., 2010, 16, 6015.182 P. Joseph-Nathan, S. Guimar€aes-Leitao, S. Correa-Pinto,

G. Guimar€aes-Leitao, H. Ribeiro-Bizzo, F. L. Paranhos-Costa,M. Barbosa de Amorim, N. Martinez, E. Dellacassa,A. Hern�andez-Barrag�an and N. P�erez-Hern�andez, TetrahedronLett., 2010, 51, 1963.

183 S. C. Correa-Pinto, G. Guimar€aes-Leitao, D. Ribeiro de Oliveira,H. Ribeiro-Bizzo, D. Fernandez-Ramos, T. Silveira-Coelho,P. E. A. Silva, M. C. S. Lourenco and S. Guimar€aes-Leitao, Nat.Prod. Commun., 2009, 4, 1675.

184 G. H. Silva, C. M. de Oliveira, H. L. Teles, P. M. Pauletti, I. Castro-Gamboa, D. H. S. Silva, B. S. Bolzani, M. C. M. Young,C. M. Costa-Neto, L. H. Pfenning, R. G. S. Berlinck andA. R. Araujo, Phytochem. Lett., 2010, 3, 164.

185 T. Gaich and J. Muizer, Org. Lett., 2010, 12, 272.186 A.W. Schmidt, T. Olpp, E. Baum, T. Stiffel andH. J. Knoelker,Org.

Biomol. Chem., 2010, 8, 4562.187 M. Presset, Y. Coquerel and J. Rodriguez, Eur. J. Org. Chem., 2010,

2247.188 R. Alkhatib, T. Hennebelle, S. Joha, V. Roumy, Y. Guezel,

M. Biabiany, T. Idziorek, C. Preudhomme, B. Quesnel, S. Sahpazand F. Bailleul, J. Nat. Prod., 2010, 73, 780.

189 M. A. Sukari, T. S. Wah, S. M. Saad, N. Y. Rashid, M. Rahmani,N. H. Lajis and T. Y. Y. Hin, Nat. Prod. Res., 2010, 24, 838.

190 M. R. Sulaiman, E. K. Perimal, M. N. Akhtar, A. S. Mohamad,M. H. Khalid, N. A. Tasrip, F. Mokhtar, Z. A. Zakaria,N. H. Lajis and D. A. Israf, Fitoterapia, 2010, 81, 855.

191 K. H. Kim, H. J. Noh, S. U. Choi, K. M. Park, S. J. Seok andK. R. Lee, Bioorg. Med. Chem. Lett., 2010, 20, 5385.

192 K.Mitachi, T. Yamamoto, F. Kondo, T. Shimizu, M.Miyashita andK. Tanino, Chem. Lett., 2010, 39, 630.

193 J. C. Liermann, A. Schuffler, B. Wolinsky, J. Birnbacher,H. Kolshorn, T. Anke and T. Opatz, J. Org. Chem., 2010, 75, 2955.

194 D. J. Y. D. Bon,M. G. Bamwell and A. C. Willis, Tetrahedron, 2010,66, 7807.

195 C. Yuan, L. Jiao and Z. X. Yu, Tetrahedron Lett., 2010, 51, 5674.196 K. H. Kim, H. J. Noh, S. U. Choi, K. M. Park, S. J. Seok and

K. R. Lee, J. Antibiot., 2010, 63, 575.197 G. R. Pettit, Y. Meng, R. K. Pettit, D. L. Herald, F. Hogan and

Z. A. Cichacz, Bioorg. Med. Chem., 2010, 18, 4879.198 G. R. Pettit, Y. Meng, R. K. Pettit, D. L. Herald, Z. A. Cichacz,

D. L. Doubek and L. Richert, J. Nat. Prod., 2010, 73, 388.199 M. T. Fletcher, P. Y. Hayes, M. J. Somerville and J. J. De Voss,

Tetrahedron Lett., 2010, 51, 1997.200 Y. C. Zhu, G.Wang, X. L. Yang, D. Q. Luo, Q. C. Zhu, T. Peng and

J. K. Liu, Tetrahedron Lett., 2010, 51, 3443.

Nat. Prod. Rep., 2011, 28, 1580–1610 | 1607

Page 29: NPR REVIEW

201 Z. J. Zhan, Y. M. Ying, F. Y. Zhang, C. P. Li andW. G. Shan,Helv.Chim. Acta, 2010, 93, 550.

202 D. W. Ouyang, X. Ni, H. Y. Xu, J. Chen, P. M. Yang andD. Y. Kong, Planta Med., 2010, 76, 1896.

203 T. Welsch, H. A. Tran and B. Witulski, Org. Lett., 2010, 12, 5644.204 A. Miura, S. Kanno, S. Shimura, H. Kawagishi and A. Sekiya, Jpn.

Kokai Tokkyo Koho JP, 2010, 202601.205 B. Crone, S. F. Kirsch and K. D. Umland, Angew. Chem., Int. Ed.,

2010, 49, 4661.206 W. A. Ayer and R. H. McCaskill, Tetrahedron Lett., 1980, 21, 1917.207 X. Wu, S. Lin, C. Zhu, Z. Yue, Y. Yu, F. Zhao, B. Liu, J. Dai and

J. Shi, J. Nat. Prod., 2010, 73, 1294.208 M. S. Dowling and C. D. Vanderwal, J. Org. Chem., 2010, 75, 6908.209 D. S. Hsu, Y. Y. Chou, Y. S. Tung and C. C. Liao, Chem.–Eur. J.,

2010, 16, 3121.210 A. Srikrishna, B. R. Ramesh and B. Beeraiah, Tetrahedron:

Asymmetry, 2010, 21, 719.211 G. Negrin, J. L. Eiroa, M. Morales, J. Triana and F. Estevez, Mol.

Carcinogenesis, 2010, 49, 488.212 M. I. Aboushoer, H. M. Fhaty, M. S. Abdel-Kader, G. Goetz and

A. A. Omar, Nat. Prod. Res., 2010, 24, 687.213 Z. H. Pan, Y. Y. Huang, M. M. Li, G. Xu, L. Y. Peng, J. He,

Y. Zhao, Y. Li and Q. S. Zhao, J. Nat. Prod., 2010, 73, 1146.214 J. J. Rubal, J. Moreno-Dorado, F. M. Guerra, Z. D. Jorge,

M. C. Gal�an, G. M. Salido, S. B. Christensen, H. Sahoel andG. M. Massanet, Planta Med., 2010, 76, 284.

215 S. Eun, I. Choi and S. H. Shim, Bull. Korean Chem. Soc., 2010, 31,1387.

216 A. Sheeja and M. S. Nair, Biochem. Syst. Ecol., 2010, 38, 229.217 M. H. He, Q. Yang and J. Sun, Acta Crystallogr., Sect. E: Struct.

Rep. Online, 2010, 66, o3263.218 J. G€opfert, A. K. B€ulow and O. Spring, Nat. Prod. Commun., 2010,

5, 709.219 V. Saroglou, A. Karioti, A. Rancic, K. Dimas, C. Koukoulitsa,

M. Zervou and H. Skaltsa, J. Nat. Prod., 2010, 73, 242.220 H. W. Park, J. H. Lee, S. U. Choi, N. I. Baek, S. H. Kim, J. H. Yang

and D. K. Kim, Arch. Pharmacal Res., 2010, 33, 71.221 L. Pan, D. D. Lantvit, S. Riswan, L. B. S. Kardono, H. B. Chai,

E. J. Carcache de Blanco, N. R. Farnsworth, D. D. Soejarto,S. M. Swanson and A. D. Kinghorn, Phytochemistry, 2010, 71, 635.

222 A. Le�on, B. M. Reyes, M. S. Ch�avez, R. A. Toscano andG. Delgado, J. Mexican Chem. Soc., 2009, 53, 193.

223 Y. Zhu, P. Z. Hu, Z. W. He, Q. X. Wu, J. Li and W. S. Wu, J. Nat.Prod., 2010, 73, 237.

224 K.Michalska, J. Marciniuk andW.Kisiel, Fitoterapia, 2010, 81, 434.225 H. Lakhal, T. Boudiar, A. Kabouche, Z. Kabouche, R. Touzani and

C. Bruneau, Nat. Prod. Commun., 2010, 5, 849.226 H. T. Sakamoto, E. Paceli-Laudares, A. E. M. Miller-Crotti,

N. Peporine-Lopes, W. Vichnewski, J. L. Callegari-Lopes andV. C. Gomes-Heleno, Nat. Prod. Commun., 2010, 5, 681.

227 J. Wen, H. Shi, Z. Xu, H. Chang, C. Jia, K. Zan, Y. Jiang and P. Tu,J. Nat. Prod., 2010, 73, 67.

228 J. Triana, J. L. Eiroa, J. J. Ortega, F. Le�on, I. Brouard,J. C. Hern�andez, F. Est�evez and J. Bermejo, Phytochemistry, 2010,71, 627.

229 J. Staneva, S. Shatar, M. Todorova and S. Altantsetseg, ComptesRendus Acad. Bulgare Sci., 2010, 63, 225.

230 B. Csapi, Z. Hajd�u, I. Zupk�o, A. Ber�enyi, P. Forgo, P. Szab�o andJ. Hohmann, Phytother. Res., 2010, 24, 1664.

231 N. Mezache, D. Bendjeddou, D. Satta, R. Mekkiou, S. Benayacheand F. Benayache, Chem. Nat. Compd., 2010, 46, 801.

232 H. I. Moon and O. Zee, Records Nat. Prod., 2010, 4, 149.233 K. Michalska and W. Kisiel, Biochem. Syst. Ecol., 2010, 38, 830.234 M. I. Mercado, M. V. Coll-Araoz, A. Grau and C. A. N. Catalan,

Nat. Prod. Commun., 2010, 5, 1721.235 H. Buskuhl, F. L. de Oliveira, L. Z. Blind, R. A. de Freitas,

A. Barison, F. R. Campos, Y. E. Corilo, M. N. Eberlin,G. F. Caramori and M. W. Biavatti, Phytochemistry, 2010, 71, 1539.

236 J. E. Barquera-Lozada, B. Quiroz-Garc�ıa, L. Quijano andG. Cuevas, J. Org. Chem., 2010, 75, 2139.

237 S. Rosselli, A. M. Maggio, R. A. Raccuglia, S. L. Morris-Natschke,K. F. Bastow, K. H. Lee and M. Bruno, Nat. Prod. Commun., 2010,5, 675.

238 S. Rosselli, A. M. Maggio, R. A. Raccuglia and M. Bruno, Eur. J.Org. Chem., 2010, 3093.

1608 | Nat. Prod. Rep., 2011, 28, 1580–1610

239 K. Tsuboi, T. Nakamura, T. Suzuki, A. Nakazaki and S. Kobayashi,Tetrahedron Lett., 2010, 51, 1876.

240 L. J. Fang, X. T. Shao, S. Wang, G. H. Lu and J. Y. Zhou, PlantaMed., 2010, 76, 258.

241 R. Shanmugam, P. Kusumanchi, L. Cheng, P. Crooks,S. Neelakantan, W. Matthews, H. Nakshatri and C. J. Sweeney,Prostate, 2010, 70, 1074.

242 S. K. Kim, S. B. Cho and H. I. Moon, Phytother. Res., 2010, 24,1898.

243 I. M. Chung, E. H. Kim, H. S. Jeon and H. I. Moon, Nat. Prod.Commun., 2010, 5, 851.

244 H. S. Chang, S. J. Lee, C. W. Yang and I. S. Chen, Chem.Biodiversity, 2010, 7, 2737.

245 Y. Liu, A. E. Nugroho, Y. Hirasawa, A. Nakata, T. Kaneda,N. Uchiyama, Y. Goda, O. Shirota, H. Morita and H. A. Aisa,Tetrahedron Lett., 2010, 51, 6584.

246 S. M. Kupchan, R. J. Hemingway, A. Karim and D. Werner, J. Org.Chem., 1969, 34, 3908.

247 Y. Asaka, T. Kubota and A. B. Kulkarni, Phytochemistry, 1977, 16,1838.

248 J. N. Marx and A. Ajlouni, Nat. Prod. Commun., 2010, 5, 5.249 E. Stewart and T. Mabry, Phytochemistry, 1985, 24, 2731.250 F. Nagashima, Y. Kuba, A. Ogata and Y. Asakawa,Nat. Prod. Res.,

2010, 24, 68.251 X. D. Zhu, Q. H. Zhang, L. B. Kong, F. Wang and S. D. Luo,

Fitoterapia, 2010, 81, 906.252 I. K. Lee, K. H. Kim, S. Y. Ryu, S. U. Choi and K. R. Lee, Bull.

Korean Chem. Soc., 2010, 31, 227.253 W. H. Xu, Q. Liang, Z. S. Liang and X. C. Li, Chin. Chem. Lett.,

2010, 21, 693.254 S. R. Ambrosio, R. Stefani, V. C. Gomes-Heleno,M. A. deMenezes,

A. G. Ferreira, P. G. Barboni, D. Nascimento, M. A. Galvao-Magenta and F. Batista Da Costa, Nat. Prod. Commun., 2010, 5,669.

255 L. B. Li, J. Ren, Z. M. Cheng and H. J. Zhu,Helv. Chim. Acta, 2010,93, 1344.

256 Y. F. Bi, L. Jia, S. P. Shi, H. L. Sun, Y. Y. Chen and Y. B. Zhang,Helv. Chim. Acta, 2010, 93, 1953.

257 D. T. Oanh, P. T. Ky, N. T. B. Hang, P. H. Yen, T. H. Hanh,N. X. Cuong, D. V. Luong, C. V. Mihn and P. V. Kiem, Nat.Prod. Commun., 2010, 5, 1717.

258 S. Z. Huang, L. B. Li, S. P. Jiang, X. L. Chen and H. J. Zhu, Helv.Chim. Acta, 2010, 93, 1808.

259 X. Xu, H. Xie, J. Hao, Y. Jiang and X. Wei, Food Chem., 2010, 123,1123.

260 J. J. Qin, H. Z. Jin, J. X. Zhu, J. J. Fu, Q. Zeng, X. R. Cheng, Y. Zhu,L. Shan, S. D. Zhang, Y. X. Pan and W. D. Zhang, Tetrahedron,2010, 66, 9379.

261 B. Wu, L. Gan and H. Qu, J. Nat. Prod., 2010, 73, 1069.262 W. Y. Kang, L. Chen and X. Y. Zang, Chem. Nat. Compd., 2010, 46,

661.263 A. L. Khan, J. Hussain, M. Hamayun, S. M. Kang, H. Y. Kim,

K. N. Watanabe and I. J. Lee, Molecules, 2010, 15, 1554.264 F. R. Garcez, W. S. Garcez, L. Hamerski and A. C. de M. Miranda,

Quim. Nova, 2010, 33, 1739.265 M. Ukiya, T. Kikuchi, H. Tokuda, K. Tabata, Y. Kimura, T. Arai,

Y. Ezaki, O. Oseto, T. Suzuki and T. Akihisa, Chem. Biodiversity,2010, 7, 1871.

266 K. Chen, Y. Ishihara, M. Mor�on-Gal�an and P. S. Baran,Tetrahedron, 2010, 66, 4738.

267 K. Ma, C. Zhang, M. Liu, Y. Chu, L. Zhou, C. Hu and D. Ye,Tetrahedron Lett., 2010, 51, 1870.

268 D. E. Ward and S. G. Pardeshi, J. Org. Chem., 2010, 75, 5170.269 A. K. Banerjee, W. J. Vera, E. V. Cabrera and J. L. Sanchez, J.

Chem. Res., 2010, 34, 243.270 J. Wu and W. M. Zhao, J. Asian Nat. Prod. Res., 2010, 12, 382.271 S. P. Wei, W. J. Wu, Z. Q. Ji, J. W. Zhang, Y. Z. Guo and J. Xue,

Helv. Chim. Acta, 2010, 93, 1844.272 S. P. Wei, M. Wang, Z. Q. Ji, B. J. Shi, S. K. Li and J. W. Zhang,

Nat. Prod. Commun., 2010, 5, 355.273 J. R. Weng and M. H. Yen, Helv. Chim. Acta, 2010, 93, 1716.274 N. R. Perestelo, I. A. Jim�enez, H. Tokuda, H. Hayashi and

I. L. Bazzocchi, J. Nat. Prod., 2010, 73, 127.275 M. T. Rojo de Almeida, C. Rios-Luci, J. M. Padron and

J. A. Palermo, Phytochemistry, 2010, 71, 1741.

This journal is ª The Royal Society of Chemistry 2011

Page 30: NPR REVIEW

276 E. M. O. Yeboah, R. R. T. Majinda, A. Kadziola and A. Muller, J.Nat. Prod., 2010, 73, 1151.

277 B. L. Li, Q. Shen, M. N. Jin and H. Q. Duan, Chin. Chem. Lett.,2010, 21, 827.

278 C. M. Wu, L. M. Zhou, Y. F. Chai, Y. T. Wu and G. R. Fan, Chin.Chem. Lett., 2010, 21, 830.

279 J. Zhang, Z. Hu, H. Yang andW. Wu,Nat. Prod. Commun., 2010, 5,845.

280 L. Jiao, M. Lin, L. G. Zhuo and Z. X. Yu,Org. Lett., 2010, 12, 2528.281 Y. Zhu, L. X. Zhang, Y. Zhao and G. D. Huang, Food Chem., 2010,

118, 228.282 Z. Hadju, I. Zupko, B. Rethy, P. Forgo and J. Hohmann, Planta

Med., 2010, 76, 94.283 W. D. Xie, C. W. Weng, Y. F. Niu, P. X. Lai and K. H. Row, Chem.

Biodiversity, 2010, 7, 221.284 Y. J. Xu, C. P. Tang, M. J. Tan, C. Q. Ke, T. Wu and Y. Ye, Chem.

Biodiversity, 2010, 7, 151.285 Z. Y. Xiao, X. C. Wang, G. P. Zhang, Z. L. Huang and L. H. Hu,

Helv. Chim. Acta, 2010, 93, 803.286 A. A. Sallam, Y. Hitotsuyanagi, E. S. S. Mansour, A. F. Ahmed,

S. gedara, H. Fukaya and K. Takeya,Helv. Chim. Acta, 2010, 93, 48.287 Y. M. Zhao, Y. J. Wang, M. Dong, M. L. Zhang, C. H. Huo,

Y. C. Gu and Q. W. Shi, Chem. Nat. Compd., 2010, 46, 373.288 J. J. Qin, H. Z. Jin, J. X. Zhu, J. J. Fu, X. J. Hu, X. H. Liu, Y. Zhu,

S. K. Yan and W. D. Zhang, Planta Med., 2010, 76, 278.289 T. Zhang, W. Xiao, T. Gong, Y. Yang, R. Y. Chen and D. Q. Yu, J.

Asian Nat. Prod. Res., 2010, 12, 788.290 Y. F. Han, G. X. Cao, X. J. Gao andM. Xia, Food Chem., 2010, 120,

1083.291 X. X. Wang, X. Gao and Z. J. Jia, Fitoterapia, 2010, 81, 42.292 G. Xu, L. Y. Peng, X. L. Shen and Q. S. Zhao, Helv. Chim. Acta,

2010, 93, 1773.293 X. F. He, S. Yin, Y. C. Ji, Z. S. Zu, M. Y. Geng and J. M. Yue, J.

Nat. Prod., 2010, 73, 45.294 R. D. Chen, J. H. Zhou, J. M. Jia and J. G. Dai, J. Asian Nat. Prod.

Res., 2010, 12, 119.295 Z. Xia, W. Qu, H. Lu, J. Fu, Y. Ren and J. Liang, Fitoterapia, 2010,

81, 424.296 C. Rosquete, E. del Olmo, J. M. Miguel del Corral, J. L. Lopez,

M. Gordaliza and A. San Feliciano, Avances en Qu�ımica, 2010, 5,123.

297 Y. C. Lin, M. H. A. El-Razek and Y. C. Shen, Helv. Chim. Acta,2010, 93, 281.

298 H. Meng, G. Li, R. Dai, Y. Ma, K. Zhang, C. Zhang, X. Li andJ. Wang, Biochem. Syst. Ecol., 2010, 38, 1220.

299 C. L. Cantrell, J. W. Pridgeon, F. R. Fronczek and J. J. Becnel,Chem. Biodiversity, 2010, 7, 1681.

300 F. F. P. Arantes, L. C. A. Barbosa, C. R. A. Maltha, A. J. Demuner,P. Marcal da Costa, J. R. O. Ferreira, L. V. Costa-Lotufo,M. O. Moraes and C. Pessoa, Eur. J. Med. Chem., 2010, 45, 6045.

301 L. Acebey, V. Jullian, D. Sereno, S. Chevalley, Y. Estevez,C. Moulis, S. Beck, A. Valentin, A. Gimenez and M. Sauvain,Planta Med., 2010, 76, 365.

302 X. H. Ran, F. Teng, C. X. Chen, G. Wei, X. J. Hao and H. Y. Liu, J.Nat. Prod., 2010, 73, 972.

303 H. Y. Liu, L. Li, C. X. Chen, L. Sun, F. Teng, N. X. Huang,X. H. Ran, W. Ni, X. J. Hao and S. Gao, Faming ZhuanliShenqing Gongkai Shuomingshu CN, 101,671,346 (Chem. Abstr.,2010, 152, 462967).

304 S. Zhang, S. P. Yang, T. Yuan, B. D. Lin, Y. Wu and J. M. Yue,Tetrahedron Lett., 2010, 51, 764.

305 K. Takahashi, K. Takeda and T. Honda, Tetrahedron Lett., 2010,51, 3542.

306 C. Y. Huang, J. H. Su, Y. C. Liu, Z. H. Wen, C. H. Hsu,M. Y. Chiang and J. H. Sheu, Bull. Chem. Soc. Jpn., 2010, 83, 678.

307 W. D. Xie, Y. F. Niu, P. X. Lai and K. H. Row, Chem. Pharm. Bull.,2010, 58, 991.

308 J. J. Fu, J. J. Qin, Q. Zeng, Y. Huang, H. Z. Jin and W. D. Zhang,Chem. Pharm. Bull., 2010, 58, 1263.

309 X. Feng, J. S. Wang, J. Luo and L. Y. Kong, J. Asian Nat. Prod.Res., 2010, 12, 252.

310 M. Kawauchi, T. Arima, O. Shirota, S. Sekita, T. Nakane,Y. Takase and M. Kuroyanagi, Chem. Pharm. Bull., 2010, 58, 934.

311 M. Isaka, P. Chinthanom, T. Boonruangprapa, N. Rungjindamaiand U. Pinruan, J. Nat. Prod., 2010, 73, 683.

This journal is ª The Royal Society of Chemistry 2011

312 Y. Y. Li, Z. Y. Hu, C. H. Lu and Y. M. Shen, Helv. Chim. Acta,2010, 93, 796.

313 Z. Y. Hu, Y. Y. Li, C. H. Lu, T. Lin, P. Hu and Y. M. Shen, Helv.Chim. Acta, 2010, 93, 925.

314 L. S. Amaral and E. Rodr�ıguez-Filho, J. Braz. Chem. Soc., 2010, 21,1446.

315 T. Hatakeyama, T. Koseki, T. Murayama and Y. Shiono,Phytochem. Lett., 2010, 3, 148.

316 H. Oh, P. R. Jensen, B. T. Murphy, C. Florilla, J. F. Sullivan,T. Ramsey and W. Fenical, J. Nat. Prod., 2010, 73, 998.

317 Y. Q. Chen, W. D. Zhang, L. Y. Kong, T. Lu and Y. H. Shen, Nat.Prod. Res., 2010, 24, 915.

318 M. Tori, K. Otose, H. Fukuyama, J. Murata, Y. Shiotani,S. Takaoka, K. Nakashima, M. Sono and M. Tanaka,Tetrahedron, 2010, 66, 5235.

319 L. Y. Nie, J. J. Qin, Y. Huang, L. Yan, Y. B. Liu, Y. X. Pan andH. Z. Jin, J. Nat. Prod., 2010, 73, 1117.

320 G. D. Huang, Y. J. Yang, W. S. Wu and Y. Zhu, J. Nat. Prod., 2010,73, 1954.

321 M. I. Arias-Cassar�a, S. A. Borkosky, M. Gonz�alez-Sierra,A. Bard�on and M. L. Ybarra, Chem. Biodiversity, 2010, 7,1745.

322 H. Zhao, W. D. Xie and K. H. Row, Nat. Prod. Res., 2010, 24, 115.323 R. J. Zhao,W. D. Xie, Y. X. Liu, F. J. Meng, H. Zhao and P. X. Lai,

J. Chem. Res., 2010, 425.324 L. L. Liu, R. Wang, J. L. Yang and Y. P. Shi, Helv. Chim. Acta,

2010, 93, 595.325 H. Nagano, M. Kanda, H. Yamada, R. Hanai, X. Gong and

C. Kuroda, Helv. Chim. Acta, 2010, 93, 1945.326 W. J. Zhang, H. Y. Qi and Y. P. Shi, Planta Med., 2010, 76, 159.327 W. D. Xie, C. W. Weng, X. Li and K. H. Row, Helv. Chim. Acta,

2010, 93, 1983.328 H. Zhao, C.W.Weng, X. Tian, P. X. Lai, J. J. Guang andW. D. Xie,

Chin. Chem. Lett., 2010, 21, 613.329 Z. Guo, C. W. Weng, W. X. Liu and T. Shen, J. Chem. Res., 2010,

34, 390.330 D. Q. Fei, G. H.Wu, S. G. Li and K. Gao,Chem. Pharm. Bull., 2010,

58, 467.331 H. Nagano, M. Matsushima, H. Yamada, R. Hanai, X. Gong and

C. Kuroda, Nat. Prod. Commun., 2010, 5, 1.332 Q. Liu, L. Shen, T. T. Wang, C. J. Chen, W. Y. Qi and K. Gao, Food

Chem., 2010, 122, 55.333 Y. Okamoto, Y. Saito, C. Kuroda, R. Hanai, X. Gong and M. Tori,

Phytochemical Anal., 2010, 21, 513.334 A. Bodensieck, W. M. F. Fabian, O. Kunert, F. Belaj, S. Jahangir,

W. Schuehly and R. Bauer, Chirality, 2010, 22, 308.335 J. A. Faraldos, B. Kariuki and R. K. Allemann, J. Org. Chem., 2010,

75, 1119.336 S. Hiraoka, S. Harada and A. Nishida, J. Org. Chem., 2010, 75,

3871.337 F. Bohlmann, K. H. Knoll, C. Zdero, P. K. Mahanta, M. Grenz,

A. Suwita, D. Ehlers, N. Le Van, W. R. Abraham andA. A. Natu, Phytochemistry, 1977, 16, 965.

338 S. Nagashima, H. Ontsuka, M. Shiro and K. Kanematsu,Heterocycles, 1995, 41, 245.

339 B. C. R. Zhu, G. Henderson, A. M. Sauer, W. Crowe andR. A. Laine, Pest. Mang. Sci., 2010, 66, 875.

340 A. M. Sauer, W. E. Crowe, G. Henderson and R. A. Laine, Synlett,2010, 445.

341 W. J. Zhang, X. H. Li and Y. P. Shi, J. Nat. Prod., 2010, 73, 143.342 X. W. Dong, R. J. Li, X. Gao and K. H. Row, Fitoterapia, 2010, 81,

153.343 V. M. T. Carneiro, H. M. C. Ferraz, T. O. Vieira, E. E. Ishikawa and

L. F. Silva, J. Org. Chem., 2010, 75, 2877.344 E. M. Phillips, J. M. Roberts and K. A. Scheidt,Org. Lett., 2010, 12,

2830.345 W. L. Mei, P. Chen, H. Wang, J. L. Huang and H. F. Dai, J. Asian

Nat. Prod. Res., 2010, 12, 582.346 G. H. Xu, J. W. Kim, I. J. Ryoo, S. J. Choo, Y. H. Kim, S. J. Seok,

J. S. Ahn and I. D. Yoo, J. Antibiot., 2010, 63, 335.347 C. Zhang, H. Liang, G. Tu and Y. Zhao, Fitoterapia, 2010, 81, 849.348 H. W. Fu, L. Zhang, T. Yi, Y. L. Feng and J. K. Tian, Fitoterapia,

2010, 81, 443.349 H. W. Fu, L. Zhang, T. Yi, Y. L. Feng and J. K. Tian, Pharmazie,

2010, 65, 69.

Nat. Prod. Rep., 2011, 28, 1580–1610 | 1609

Page 31: NPR REVIEW

350 H. W. Fu, L. Zhang, T. Yi, R. Z. Chen, X. Wang and J. K. Tian,Chem. Pharm. Bull., 2010, 58, 125.

351 H.W. Fu, L. Zhang, T. Yi, Y. L. Feng and J. K. Tian,Biochem. Syst.Ecol., 2010, 38, 309.

352 D. C. Kim, J. A. Kim, B. S. Min, T. S. Jang,M. K. Na and S. H. Lee,Helv. Chim. Acta, 2010, 93, 692.

353 M. C. M. Torres, R. Braz-Filho, E. R. Silveira, J. C. Diniz,F. A. Viana and O. D. L. Pessoa, Helv. Chim. Acta, 2010, 93,375.

354 H. B. Wang, J. P. Zhuo and G. W. Qin, Fitoterapia, 2010, 81, 937.355 M. Chen, J. J. Qin, J. J. Fu, X. J. Hu, X. H. Liu, W. D. Zhang and

H. Z. Jin, Planta Med., 2010, 76, 897.356 Z. Su, H. K. Wu, F. He, U. Slukhan and H. A. Aisa, Helv. Chim.

Acta, 2010, 93, 33.357 J. H. Su, M. Y. Chiang, Z. H. Wen, C. F. Dai, C. H. Hsu and

J. H. Sheu, Chem. Pharm. Bull., 2010, 58, 250.358 O. A. A. Hamdi, K. Awang, A. H. A. Hadi, D. R. Syamsir and

S. W. Ng, Acta Crystallogr., Sect. E: Struct. Rep. Online, 2010, 66,o2844.

359 Y. Kumeta and M. Ito, Plant Physiol., 2010, 154, 1998.360 A. Srikrishna and V. H. Pardeshi, Tetrahedron, 2010, 66, 8160.361 A. Srikrishna, V. H. Pardeshi and K. Mahesh, Tetrahedron:

Asymmetry, 2010, 21, 2512.362 A. Srikrishna, V. H. Pardeshi and K. Mahesh, Tetrahedron:

Asymmetry, 2010, 21, 2830.363 W. Li, X. Liu, Z. Zhou and C. S. Lee, Org. Lett., 2010, 12, 548.364 A. Srikrishna, V. H. Pardeshi and G. Satyanarayana, Tetrahedron:

Asymmetry, 2010, 21, 746.365 K. C. Nicolau, Q. Kang, S. Y. Ng and D. Y. K. Chen, J. Am. Chem.

Soc., 2010, 132, 8219.366 K. Molawi, N. Delpont and A. M. Echevarren, Angew. Chem., Int.

Ed., 2010, 49, 3517.367 Q. Zhou, X. Chen and D. Ma, Angew. Chem., Int. Ed., 2010, 49,

3513.368 J. Xu, E. J. E. Caro-Diaz and E. A. Theodorakis, Org. Lett., 2010,

12, 3708.369 M. Ibrahim, R. Khan and A. Malik, Nat. Prod. Commun., 2010, 5,

1865.370 K. Zan, X. Q. Chen, Q. Fu, S. P. Shi, S. X. Zhou, M. T. Xiao and

P. F. Tu, Biochem. Syst. Ecol., 2010, 38, 431.371 Z. S. Huang, Y. H. Pei, C. M. Liu, S. Lin, J. Tang, D. S. Huang,

T. F. Song, L. H. Lu, Y. P. Cao and W. D. Zhang, Planta Med.,2010, 76, 1710.

372 H. Wu, Z. Su, X. Xin and H. A. Aisa, Helv. Chim. Acta, 2010, 93,414.

373 I. Vuckovic, L. Vujisic, D. Stesevic, S. Radulovic, M. Lazic andS. Milosavljevic, Phytother. Res., 2010, 24, 225.

374 A. Beharav, R. Ben-David, J. Malarz, A. Stojakowska,K. Michalska, Y. Dolezalova, A. Lebeda and W. Kisiel, Biochem.Syst. Ecol., 2010, 38, 602.

375 K. Michalska, E. Szneler and W. Kisiel, Biochem. Syst. Ecol., 2010,38, 1246.

376 C. Li, X. Yu and X. Lei, Org. Lett., 2010, 12, 4284.377 V. Navickas, D. B. Ushakov, M. E. Maier, M. Str€obele and

H. J. Meyer, Org. Lett., 2010, 12, 3418.378 J. C. F. Alves, Org. Chem. Int., 2010, 603436.379 L. Sun, F. Shah, M. A. Helal, Y. Wu, Y. Pedduri,

A. G. Chittiboyina, J. Gut, P. J. Rosenthal and M. A. Avery, J.Med. Chem., 2010, 53, 7864.

380 E. Kmonickova, J. Harmatha, K. Vokac, P. Kostecka, H. Farghaliand Z. Zidek, Fitoterapia, 2010, 81, 1213.

381 M. Iranshahi, A. Sahebkar, S. T. Hosseini, M. Takasaki,T. Konoshima and H. Tokuda, Phytomedicine, 2010, 17, 269.

382 K. Matsuo, K. Ohtsuki, T. Yoshikawa, K. Shishido, K. Yokotani-Tomita and M. Shindo, Tetrahedron, 2010, 66, 8407.

383 B. Pinel, J. Dubois, D. Seraphin and P. Richomme, J. Enzyme Inhib.Med. Chem., 2010, 25, 172.

384 V. F. Rodriguez, H. M. Carmo, R. Braz-Filho, L. Mathias andI. j. Curcino-Vieira, Nat. Prod. Commun., 2010, 5, 179.

1610 | Nat. Prod. Rep., 2011, 28, 1580–1610

385 J. C. Aponte, H. Yang, A. J. Vaisberg, D. Castillo, E. M�alaga,M. Ver�astegui, L. K. Casson, N. Stivers, P. J. Bates, R. Rojas,I. Fernandez, W. H. Lewis, C. Sarasara, M. Sauvin, R. H. Gilmanand G. B. Hammond, Planta Med., 2010, 76, 705.

386 A. Seemann, T. Wallner, P. Poschlod and J. Heilmann, Planta Med.,2010, 76, 837.

387 V. S€ulsen, P. Barrera, L. Muschietti, V. Martino and M. Sosa,Molecules, 2010, 15, 545.

388 J. A. Faraldos, S. Wu, J. Chappell and R. M. Coates, J. Am. Chem.Soc., 2010, 132, 2998.

389 R. Wang, L. L. Lin and Y. P. Shi, Helv. Chim. Acta, 2010, 93, 2081.390 J. T. Feng, Z. Q.Ma, J. H. Li, J. He, H. Xu andX. Zhang,Molecules,

2010, 15, 6485.391 Y. C. Zhu, G.Wang and J. K. Liu, J. Asian Nat. Prod. Res., 2010, 12,

464.392 M. Ram�ırez, N. Kamiya, S. Popich, Y. Asakawa and A. Bard�on,

Chem. Biodiversity, 2010, 7, 1855.393 C. Miao, S. Wu, B. Luo, J. Wang and Y. Chen, Fitoterapia, 2010, 81,

1088.394 E. G. Lyakhova, S. A. Kolesnikova, A. I. Kalinovski and

V. A. Stonik, Chem. Nat. Compd., 2010, 46, 534.395 W. K. W. Chou, I. Fanizza, T. Uchiyama, M. Komatsu, H. Ikeda

and D. E. Cane, J. Am. Chem. Soc., 2010, 132, 8850.396 M. A. Menelaou, H. P. Henandez, F. A. Mac�ıas,

J. D. Weidenhamer, C. B. Williamson, F. R. Fronczek,H. D. Fischer and N. H. Fischer, Nat. Prod. Commun., 2010, 5, 685.

397 P. C. Wang, X. H. Ran, R. Chen, H. R. Luo, Y. Q. Liu, J. Zhou andY. X. Zhao, J. Nat. Prod., 2010, 73, 1563.

398 P. C. Wang, X. H. Ran, R. Chen, L. C. Li, S. S. Xiong, Y. Q. Liu,H. R. Luo, J. Zhou and Y. X. Zhao, Tetrahedron Lett., 2010, 51,5451.

399 T. Kitayama, G. Kawabata and M. Ito, Biosci., Biotechnol.,Biochem., 2010, 74, 1963.

400 C. S. Li, X. M. Li, C. M. Cui and B. G. Wang, Z. Naturforsch., B:Chem. Sci., 2010, 65, 87.

401 G. H.Wang, H. C. Huang, J. H. Su, Y. C. Wu and J. H. Sheu,Chem.Pharm. Bull., 2010, 58, 30.

402 I. Komala, T. Ito, F. Nagashima, Y. Yagi, M. Kawahata,K. Yamaguchi and Y. Asakawa, Phytochemistry, 2010, 71, 1387.

403 D. N. Quang and Y. Asakawa, Fitoterapia, 2010, 81, 659.404 X. W. Yang, S. M. Li, Y. L. Li, J. H. Xia, L. Wu, Y. H. Shen,

J. M. Tian, N. Wang, Y. Liu and W. D. Zhang, Eur. J. Org.Chem., 2010, 6531.

405 J. Li, F. Li, Y. Y. Lu, X. J. Su, C. P. Huang and X. W. Lu,Fitoterapia, 2010, 81, 35.

406 S. W. Dong, X. Wang, M. Y. Shang, C. M. Ma, S. X. Zhang,X. W. Li, M. J. Xu, S. Q. Cai and T. Namba, Helv. Chim. Acta,2010, 93, 354.

407 J. Parks, T. Gyeltshen, V. Prachyawarakorn, C. Mahidol,S. Ruchirawat and P. Kittakoop, J. Nat. Prod., 2010, 73, 992.

408 R. Richter, S. H. von Reuss andW. A. K€onig, Phytochemistry, 2010,71, 1371.

409 C. C. Chen, J. H. Wu, N. S. Yang, J. Y. Chang, C. C. Kuo,S. Y. Wang and Y. H. Kuo, Org. Lett., 2010, 12, 2786.

410 K. Chakraborty, A. P. Lipton, R. Paulraj and R. D. Chakraborty,Eur. J. Med. Chem., 2010, 45, 2237.

411 R. S. Menon and M. G. Banwell,Org. Biomol. Chem., 2010, 8, 5483.412 M. Reiter, S. Torssell, S. Lee and D. W. C. MacMillan, Chem. Sci.,

2010, 1, 37.413 K. C. Nikolau, H. Deng, J. A. Richard and D. Y. K. Chen, J. Am.

Chem. Soc., 2010, 132, 3815.414 T. Sumiya, K. Ishigami and H. Watanabe, Angew. Chem., Int. Ed.,

2010, 49, 5527.415 A. Srikrishna and K. Anebouuselvy, Indian J. Chem., Sect. B: Org.

Chem. Incl. Med. Chem., 2010, 49, 776.416 X. Wang, J. Zheng, Q. Chen, H. Zheng, Y. He, J. Yang and X. She,

J. Org. Chem., 2010, 75, 5392.417 S. Y. Cheng, K. J. Huang, S. K. Wang, Z. H. Wen, C. H. Hsu,

C. F. Dai and C. Y. Duh, Org. Lett., 2009, 11, 4830.

This journal is ª The Royal Society of Chemistry 2011