Notes on O’Neill’s Semi-Riemannian Geometry with ... O'Neill.pdf · Notes on O’Neill’s...

37
Notes on O’Neill’s Semi-Riemannian Geometry with Applications to Relativity Jason Payne November 25, 2011

Transcript of Notes on O’Neill’s Semi-Riemannian Geometry with ... O'Neill.pdf · Notes on O’Neill’s...

Page 1: Notes on O’Neill’s Semi-Riemannian Geometry with ... O'Neill.pdf · Notes on O’Neill’s Semi-Riemannian Geometry with Applications to Relativity Jason Payne November 25, 2011

Notes on O’Neill’sSemi-Riemannian Geometry with Applications to Relativity

Jason Payne

November 25, 2011

Page 2: Notes on O’Neill’s Semi-Riemannian Geometry with ... O'Neill.pdf · Notes on O’Neill’s Semi-Riemannian Geometry with Applications to Relativity Jason Payne November 25, 2011

Notes on O’Neill’s Semi-Riemannian Geometry with Applications to Relativity

Jason Payne 2

Page 3: Notes on O’Neill’s Semi-Riemannian Geometry with ... O'Neill.pdf · Notes on O’Neill’s Semi-Riemannian Geometry with Applications to Relativity Jason Payne November 25, 2011

Contents

1 Manifold Theory 9Smooth Manifolds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9Smooth Mappings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9Tangent Vectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9Differential Maps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9Curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9Vector Fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9One-Forms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9Submanifolds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9Immersions and Submersions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9Topology of Manifolds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9Some Special Manifolds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9Integral Curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2 Tensors 11Basic Algebra . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11Tensor Fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11Interpretations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11Tensors at a Point . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11Tensor Components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11Contraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11Covariant Tensors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11Tensor Derivatives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11Symmetric Bilinear Forms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11Scalar Products . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3 Semi-Riemannian Manifolds 13Isometries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13The Levi-Civita Connection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13Parallel Translation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13Geodesics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13The Exponential Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3

Page 4: Notes on O’Neill’s Semi-Riemannian Geometry with ... O'Neill.pdf · Notes on O’Neill’s Semi-Riemannian Geometry with Applications to Relativity Jason Payne November 25, 2011

Notes on O’Neill’s Semi-Riemannian Geometry with Applications to Relativity

Curvature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13Sectional Curvature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13Semi-Riemannian Surfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13Type-Changing and Metric Contraction . . . . . . . . . . . . . . . . . . . . . . . . 13Frame Fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13Some Differential Operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13Ricci and Scalar Curvature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13Semi-Riemannian Product Manifolds . . . . . . . . . . . . . . . . . . . . . . . . . . 13Local Isometries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13Levels of Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

4 Semi-Riemannian Submanifolds 15Tangents and Normals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15The Induced Connection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15Geodesics in Submanifolds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15Totally Geodesic Submanifolds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15Semi-Riemannian Hypersurfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15Hyperquadratics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15The Codazzi Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15Totally Umbilic Hypersurfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15The Normal Connection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15A Congruence Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15Isometric Immersions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15Two-Parameter Maps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

5 Riemannian and Lorentz Geometry 17The Gauss Lemma . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17Convex Open Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17Arc Length . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17Riemannian Distance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17Riemannian Completeness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17Lorentz Casual Character . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17Timecones . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17Local Lorentz Geometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17Geodesics in Hyperquadratics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17Geodesics in Surfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17Completeness and Extendability . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

6 Special Relativity 19Newtonian Space and Time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19Newtonian Space-Time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19Minkowski Spacetime . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19Minkowski Geometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

Jason Payne 4

Page 5: Notes on O’Neill’s Semi-Riemannian Geometry with ... O'Neill.pdf · Notes on O’Neill’s Semi-Riemannian Geometry with Applications to Relativity Jason Payne November 25, 2011

Notes on O’Neill’s Semi-Riemannian Geometry with Applications to Relativity

Particles Observed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19Some Relativistic Effects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19Lorentz-Fitzgerald Contraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19Energy-Momentum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19Collisions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19An Accelerating Observer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

7 Constructions 21Deck Transformations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21Orbit Manifolds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21Orientability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21Semi-Riemannian Coverings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21Lorentz Time-Orientability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21Volume Elements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21Vector Bundles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21Local Isometries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21Matched Coverings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21Warped Products . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21Warped Product Geodesics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21Curvature of Warped Products . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21Semi-Riemannian Submersions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

8 Symmetry and Constant Curvature 23Jacobi Fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23Tidal Forces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23Locally Symmetric Manifolds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23Isometries of Normal Neighborhoods . . . . . . . . . . . . . . . . . . . . . . . . . 23Symmetric Spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23Simply Connected Space Forms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23Transvections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

9 Isometries 25Semiorthogonal Groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25Some Isometry Groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25Time-Orientability and Space-Orientability . . . . . . . . . . . . . . . . . . . . . . 25Linear Algebra . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25Space Forms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25Killing Vector Fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25The Lie Algebra i(M) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25I(M) as Lie Group . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25Homogeneous Spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

Jason Payne 5

Page 6: Notes on O’Neill’s Semi-Riemannian Geometry with ... O'Neill.pdf · Notes on O’Neill’s Semi-Riemannian Geometry with Applications to Relativity Jason Payne November 25, 2011

Notes on O’Neill’s Semi-Riemannian Geometry with Applications to Relativity

10 Calculus of Variations 27First Variation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27Second Variation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27The Index Form . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27Conjugate Points . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27Local Minima and Maxima . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27Some Global Consequences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27The Endmanifold Case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27Focal Points . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27Variation of E . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27Focal Points Along Null Geodesics . . . . . . . . . . . . . . . . . . . . . . . . . . . 27A Causality Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

11 Homogeneous and Symmetric Spaces 29More about Lie Groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29Bi-Invariant Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29Coset Manifolds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29Reductive Homogeneous Spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29Symmetric Spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29Riemannian Symmetric Spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29Duality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29Some Complex Geometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

12 General Relativity; Cosmology 31Foundations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31The Einstein Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31Perfect Fluids . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31Robertson-Walker Spacetimes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31The Robertson-Walker Flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31Robertson-Walker Cosmology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31Friedmann Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31Geodesics and Redshift . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31Observer Fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31Static Spacetimes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

13 Schwarzschild Geometry 33Building the Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33Geometry of N and B . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33Schwarzschild Observers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33Schwarzschild Geodesics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33Free Fall Orbits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33Perihelion Advance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

Jason Payne 6

Page 7: Notes on O’Neill’s Semi-Riemannian Geometry with ... O'Neill.pdf · Notes on O’Neill’s Semi-Riemannian Geometry with Applications to Relativity Jason Payne November 25, 2011

Notes on O’Neill’s Semi-Riemannian Geometry with Applications to Relativity

Lightlike Orbits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33Stellar Collapse . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33The Kruskal Plane . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33Kruskal Spacetime . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33Black Holes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33Kruskal Geodesics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

14 Causality in Lorentz Manifolds 35Causality Relations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35Quasi-Limits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35Causality Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35Time Separation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35Achronal Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35Cauchy Hypersurfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35Warped Products . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35Cauchy Developments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35Spacelike Hypersurfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35Cauchy Horizons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35Hawking’s Singularity Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35Penrose’s Singularity Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

Jason Payne 7

Page 8: Notes on O’Neill’s Semi-Riemannian Geometry with ... O'Neill.pdf · Notes on O’Neill’s Semi-Riemannian Geometry with Applications to Relativity Jason Payne November 25, 2011

Notes on O’Neill’s Semi-Riemannian Geometry with Applications to Relativity

Jason Payne 8

Page 9: Notes on O’Neill’s Semi-Riemannian Geometry with ... O'Neill.pdf · Notes on O’Neill’s Semi-Riemannian Geometry with Applications to Relativity Jason Payne November 25, 2011

Chapter 1

Manifold Theory

Smooth Manifolds

Smooth Mappings

Tangent Vectors

Differential Maps

Curves

Vector Fields

One-Forms

Submanifolds

Immersions and Submersions

Topology of Manifolds

Some Special Manifolds

Integral Curves

9

Page 10: Notes on O’Neill’s Semi-Riemannian Geometry with ... O'Neill.pdf · Notes on O’Neill’s Semi-Riemannian Geometry with Applications to Relativity Jason Payne November 25, 2011

Notes on O’Neill’s Semi-Riemannian Geometry with Applications to Relativity

Jason Payne 10

Page 11: Notes on O’Neill’s Semi-Riemannian Geometry with ... O'Neill.pdf · Notes on O’Neill’s Semi-Riemannian Geometry with Applications to Relativity Jason Payne November 25, 2011

Chapter 2

Tensors

Basic Algebra

Tensor Fields

Interpretations

Tensors at a Point

Tensor Components

Contraction

Covariant Tensors

Tensor Derivatives

Symmetric Bilinear Forms

Scalar Products

11

Page 12: Notes on O’Neill’s Semi-Riemannian Geometry with ... O'Neill.pdf · Notes on O’Neill’s Semi-Riemannian Geometry with Applications to Relativity Jason Payne November 25, 2011

Notes on O’Neill’s Semi-Riemannian Geometry with Applications to Relativity

Jason Payne 12

Page 13: Notes on O’Neill’s Semi-Riemannian Geometry with ... O'Neill.pdf · Notes on O’Neill’s Semi-Riemannian Geometry with Applications to Relativity Jason Payne November 25, 2011

Chapter 3

Semi-Riemannian Manifolds

Isometries

The Levi-Civita Connection

Parallel Translation

Geodesics

The Exponential Map

Curvature

Sectional Curvature

Semi-Riemannian Surfaces

Type-Changing and Metric Contraction

Frame Fields

Some Differential Operators

Ricci and Scalar Curvature

Semi-Riemannian Product Manifolds

Local Isometries

Levels of Structure

13

Page 14: Notes on O’Neill’s Semi-Riemannian Geometry with ... O'Neill.pdf · Notes on O’Neill’s Semi-Riemannian Geometry with Applications to Relativity Jason Payne November 25, 2011

Notes on O’Neill’s Semi-Riemannian Geometry with Applications to Relativity

Jason Payne 14

Page 15: Notes on O’Neill’s Semi-Riemannian Geometry with ... O'Neill.pdf · Notes on O’Neill’s Semi-Riemannian Geometry with Applications to Relativity Jason Payne November 25, 2011

Chapter 4

Semi-Riemannian Submanifolds

Tangents and Normals

The Induced Connection

Geodesics in Submanifolds

Totally Geodesic Submanifolds

Semi-Riemannian Hypersurfaces

Hyperquadratics

The Codazzi Equation

Totally Umbilic Hypersurfaces

The Normal Connection

A Congruence Theorem

Isometric Immersions

Two-Parameter Maps

15

Page 16: Notes on O’Neill’s Semi-Riemannian Geometry with ... O'Neill.pdf · Notes on O’Neill’s Semi-Riemannian Geometry with Applications to Relativity Jason Payne November 25, 2011

Notes on O’Neill’s Semi-Riemannian Geometry with Applications to Relativity

Jason Payne 16

Page 17: Notes on O’Neill’s Semi-Riemannian Geometry with ... O'Neill.pdf · Notes on O’Neill’s Semi-Riemannian Geometry with Applications to Relativity Jason Payne November 25, 2011

Chapter 5

Riemannian and Lorentz Geometry

The Gauss Lemma

Convex Open Sets

Arc Length

Riemannian Distance

Riemannian Completeness

Lorentz Casual Character

Timecones

Local Lorentz Geometry

Geodesics in Hyperquadratics

Geodesics in Surfaces

Completeness and Extendability

17

Page 18: Notes on O’Neill’s Semi-Riemannian Geometry with ... O'Neill.pdf · Notes on O’Neill’s Semi-Riemannian Geometry with Applications to Relativity Jason Payne November 25, 2011

Notes on O’Neill’s Semi-Riemannian Geometry with Applications to Relativity

Jason Payne 18

Page 19: Notes on O’Neill’s Semi-Riemannian Geometry with ... O'Neill.pdf · Notes on O’Neill’s Semi-Riemannian Geometry with Applications to Relativity Jason Payne November 25, 2011

Chapter 6

Special Relativity

Newtonian Space and Time

Newtonian Space-Time

Minkowski Spacetime

Minkowski Geometry

Particles Observed

Some Relativistic Effects

Lorentz-Fitzgerald Contraction

Energy-Momentum

Collisions

An Accelerating Observer

19

Page 20: Notes on O’Neill’s Semi-Riemannian Geometry with ... O'Neill.pdf · Notes on O’Neill’s Semi-Riemannian Geometry with Applications to Relativity Jason Payne November 25, 2011

Notes on O’Neill’s Semi-Riemannian Geometry with Applications to Relativity

Jason Payne 20

Page 21: Notes on O’Neill’s Semi-Riemannian Geometry with ... O'Neill.pdf · Notes on O’Neill’s Semi-Riemannian Geometry with Applications to Relativity Jason Payne November 25, 2011

Chapter 7

Constructions

Deck Transformations

Orbit Manifolds

Orientability

Semi-Riemannian Coverings

Lorentz Time-Orientability

Volume Elements

Vector Bundles

Local Isometries

Matched Coverings

Warped Products

Warped Product Geodesics

Curvature of Warped Products

Semi-Riemannian Submersions

21

Page 22: Notes on O’Neill’s Semi-Riemannian Geometry with ... O'Neill.pdf · Notes on O’Neill’s Semi-Riemannian Geometry with Applications to Relativity Jason Payne November 25, 2011

Notes on O’Neill’s Semi-Riemannian Geometry with Applications to Relativity

Jason Payne 22

Page 23: Notes on O’Neill’s Semi-Riemannian Geometry with ... O'Neill.pdf · Notes on O’Neill’s Semi-Riemannian Geometry with Applications to Relativity Jason Payne November 25, 2011

Chapter 8

Symmetry and Constant Curvature

Jacobi Fields

Tidal Forces

Locally Symmetric Manifolds

Isometries of Normal Neighborhoods

Symmetric Spaces

Simply Connected Space Forms

Transvections

23

Page 24: Notes on O’Neill’s Semi-Riemannian Geometry with ... O'Neill.pdf · Notes on O’Neill’s Semi-Riemannian Geometry with Applications to Relativity Jason Payne November 25, 2011

Notes on O’Neill’s Semi-Riemannian Geometry with Applications to Relativity

Jason Payne 24

Page 25: Notes on O’Neill’s Semi-Riemannian Geometry with ... O'Neill.pdf · Notes on O’Neill’s Semi-Riemannian Geometry with Applications to Relativity Jason Payne November 25, 2011

Chapter 9

Isometries

Semiorthogonal Groups

Some Isometry Groups

Time-Orientability and Space-Orientability

Linear Algebra

Space Forms

Killing Vector Fields

The Lie Algebra i(M)

I(M) as Lie Group

Homogeneous Spaces

25

Page 26: Notes on O’Neill’s Semi-Riemannian Geometry with ... O'Neill.pdf · Notes on O’Neill’s Semi-Riemannian Geometry with Applications to Relativity Jason Payne November 25, 2011

Notes on O’Neill’s Semi-Riemannian Geometry with Applications to Relativity

Jason Payne 26

Page 27: Notes on O’Neill’s Semi-Riemannian Geometry with ... O'Neill.pdf · Notes on O’Neill’s Semi-Riemannian Geometry with Applications to Relativity Jason Payne November 25, 2011

Chapter 10

Calculus of Variations

First Variation

Second Variation

The Index Form

Conjugate Points

Local Minima and Maxima

Some Global Consequences

The Endmanifold Case

Focal Points

Applications

Variation of E

Focal Points Along Null Geodesics

A Causality Theorem

27

Page 28: Notes on O’Neill’s Semi-Riemannian Geometry with ... O'Neill.pdf · Notes on O’Neill’s Semi-Riemannian Geometry with Applications to Relativity Jason Payne November 25, 2011

Notes on O’Neill’s Semi-Riemannian Geometry with Applications to Relativity

Jason Payne 28

Page 29: Notes on O’Neill’s Semi-Riemannian Geometry with ... O'Neill.pdf · Notes on O’Neill’s Semi-Riemannian Geometry with Applications to Relativity Jason Payne November 25, 2011

Chapter 11

Homogeneous and Symmetric Spaces

More about Lie Groups

Bi-Invariant Metrics

Coset Manifolds

Reductive Homogeneous Spaces

Symmetric Spaces

Riemannian Symmetric Spaces

Duality

Some Complex Geometry

29

Page 30: Notes on O’Neill’s Semi-Riemannian Geometry with ... O'Neill.pdf · Notes on O’Neill’s Semi-Riemannian Geometry with Applications to Relativity Jason Payne November 25, 2011

Notes on O’Neill’s Semi-Riemannian Geometry with Applications to Relativity

Jason Payne 30

Page 31: Notes on O’Neill’s Semi-Riemannian Geometry with ... O'Neill.pdf · Notes on O’Neill’s Semi-Riemannian Geometry with Applications to Relativity Jason Payne November 25, 2011

Chapter 12

General Relativity; Cosmology

Foundations

The Einstein Equations

Perfect Fluids

Robertson-Walker Spacetimes

The Robertson-Walker Flow

Robertson-Walker Cosmology

Friedmann Models

Geodesics and Redshift

Observer Fields

Static Spacetimes

31

Page 32: Notes on O’Neill’s Semi-Riemannian Geometry with ... O'Neill.pdf · Notes on O’Neill’s Semi-Riemannian Geometry with Applications to Relativity Jason Payne November 25, 2011

Notes on O’Neill’s Semi-Riemannian Geometry with Applications to Relativity

Jason Payne 32

Page 33: Notes on O’Neill’s Semi-Riemannian Geometry with ... O'Neill.pdf · Notes on O’Neill’s Semi-Riemannian Geometry with Applications to Relativity Jason Payne November 25, 2011

Chapter 13

Schwarzschild Geometry

Building the Model

Geometry of N and B

Schwarzschild Observers

Schwarzschild Geodesics

Free Fall Orbits

Perihelion Advance

Lightlike Orbits

Stellar Collapse

The Kruskal Plane

Kruskal Spacetime

Black Holes

Kruskal Geodesics

33

Page 34: Notes on O’Neill’s Semi-Riemannian Geometry with ... O'Neill.pdf · Notes on O’Neill’s Semi-Riemannian Geometry with Applications to Relativity Jason Payne November 25, 2011

Notes on O’Neill’s Semi-Riemannian Geometry with Applications to Relativity

Jason Payne 34

Page 35: Notes on O’Neill’s Semi-Riemannian Geometry with ... O'Neill.pdf · Notes on O’Neill’s Semi-Riemannian Geometry with Applications to Relativity Jason Payne November 25, 2011

Chapter 14

Causality in Lorentz Manifolds

Causality Relations

Quasi-Limits

Causality Conditions

Time Separation

Achronal Sets

Cauchy Hypersurfaces

Warped Products

Cauchy Developments

Spacelike Hypersurfaces

Cauchy Horizons

Hawking’s Singularity Theorem

Penrose’s Singularity Theorem

35

Page 36: Notes on O’Neill’s Semi-Riemannian Geometry with ... O'Neill.pdf · Notes on O’Neill’s Semi-Riemannian Geometry with Applications to Relativity Jason Payne November 25, 2011

Notes on O’Neill’s Semi-Riemannian Geometry with Applications to Relativity

Jason Payne 36

Page 37: Notes on O’Neill’s Semi-Riemannian Geometry with ... O'Neill.pdf · Notes on O’Neill’s Semi-Riemannian Geometry with Applications to Relativity Jason Payne November 25, 2011

Bibliography

[1] B. O’Neill. Semi-Riemannian Geometry with Applications to Relativity. Academic Press,1983.

37