Notes Lecture 3

download Notes Lecture 3

of 17

Transcript of Notes Lecture 3

  • 8/7/2019 Notes Lecture 3

    1/17

    SN

    SOO

    M

    M

    Metalloenzymes

    ccccooooooooppppeeeerrrraaaatttt iiiivvvveeeeaaaasssssssseeeemmmmbbbbllllyyyy

    placed in an environment where

    its selected function is: kinetically favored

    thermodynamically favored

    +n

    Function of Metal Ions in Biology:

    1. electron transport/transfer

    2. small molecule/atom transport/transfer

    3. bind and activate substrates4. stabilize a protein structure

  • 8/7/2019 Notes Lecture 3

    2/17

    e transport/transfer

    bind and activate

    substrates

    single atom transfer

    stabilize a protein

    structure

    Metal Ion Requirements

    small reorganizational barrier

    appropriate redox potential

    "vacant" binding site

    filledd orbitals, or,

    Lewis acidic charactor

    "vacant" binding site

    appropriate redox potential

    non-redox active metal ion

    large Keq (M+n + protein)

    Function

  • 8/7/2019 Notes Lecture 3

    3/17

    Weve seen that metal ions have very different properties

    How is it that metal ions can be used interchangeably?

    e.g., Cu vs.Fe in electron transfer, Fe vs. Mn vs.Cu insuperoxide disproportionation, etc.

    How is it that Fe can be used for different functions?

    (as well as Cu, Zn, Mn, Ni, V, Mo, )

    Answer: the properties of metal ions can be tuned

    by altering its ligands

    by altering its geometry by altering nearby residues

    (e.g., H-bonding, polarity, etc.)

    EEEE xxxxaaaammmmpppplllleeeessss:::: RRRReeeeddddooooxxxx ppppooootttt eeeennnntttt iiiiaaaallllsssseeeelllleeeecccctttt rrrroooonnnn tttt rrrraaaannnnssssffff eeeerrrr rrrraaaatttt eeeessss

  • 8/7/2019 Notes Lecture 3

    4/17

    SN

    SOO

    M

    NH

    Protein: can donateprotons, Hbonds, etc

    Metal Ion:

    catalyzes rxns

    Protein: can constrain the metal

    ion geometry in a near

    transitionstate = ENTATICSTATE

    Protein:responsible for

    selectivity in

    substrate binding

    Protein: usually creates a

    hydrophobic pocket =

    nature's organic solvent

    Protein: tunes

    the metal ion's

    properties

    Metal Ion

    + ligated

    atoms= the

    "ACTIVE

    SITE"

    Metalloenzyme Active Sites

    are Finely Tuned to Favora Selected Function

  • 8/7/2019 Notes Lecture 3

    5/17

    [Co(H2O)6]+2

    e

    e

    [Co(H2O)6]+3

    [Co(EDTA)3]2 [Co(EDTA)3]

    E1/2= 0.60 V

    E1/2= 1.84 V

    e

    e

    [Co(en)3]+2 [Co(en)3]

    +3E1/2= +0.26 V

    e

    e

    [Co(NH3)6]+2

    e

    e

    [Co(NH3)6]+3 E1/2= 0.10V

    [Co(CN)5]3

    e

    e

    [Co(CN)6]3 E1/2= +0.83 VCN+

    Influence of Ligand on Redox Potentials

    (Thermodynamics)

  • 8/7/2019 Notes Lecture 3

    6/17

    [Cu(Osal)2en] 1.21 V

    E1/2

    Cu(Mesal)2 0.90 V

    Cu(Etsal)2 0.86 V

    Cu(iPrsal)2 0.74 V

    [Cu(Ssal)2en] 0.83 V

    Cu(tBusal)2 0.66 V

    Influence of Ligating Atoms andGeometry on Redox Potentials

    O

    N

    R

    Cu

    O

    N

    R

    Cu(Rsal)2

    Cu

    X

    N

    X

    N

    [Cu(Xsal)2en]

  • 8/7/2019 Notes Lecture 3

    7/17

    Redox Potentials of ElectronTransport Sites Found in Biology

    Nhis CuScysNhisS

    met

    blue copper

    +2

    cyt c

    Fe

    Smet

    Nhis

    E1/2= +370 mV E1/2= +260 mV

    +2

    cyt b

    Fe

    Nhis

    Nhis

    E1/2= +60 mV

    Scys

    ScysFe Scys

    Scys

    rubredoxinE1/2= 60 mV

    Fe S

    FeSFe

    S Fe

    S

    Scys

    Scys

    Scys

    Scys

    3

    ferredoxin

    FeSS

    FeS

    cys

    ScysScys

    Scys

    ferredoxin

    2

    E1/2= 430 mV E1/2= 400 mV

    1

  • 8/7/2019 Notes Lecture 3

    8/17

    N N

    Electron Transfer Reactions

    M+n

    ne

    CO2

    ....one of the most important reactions inbiology!

    6e, 6H+

    CO + H2O

    substrate

    O O

    2 NH3

    4e, 4H+2 H2O

    2e, 2H+

  • 8/7/2019 Notes Lecture 3

    9/17

    ferredoxin

    NADH

    FAD

    Cytochrome b

    Cytochrome c1

    Cytochrome c

    Cytochrome c oxidase

    O2

    400

    E1/2

    +800 (+815 mV)

    +500

    +300

    0.0 (+60 mV)

    (320 mV)

    (+260 mV)

    E

    Besides promoting redox reactions,

    electron transfer is intimately connected

    with energy storage in mitochondria (as

    ATP), via the electrontransport chain

    G= 52.6 kcal/mol

  • 8/7/2019 Notes Lecture 3

    10/17

    NAD+

    FADmitochondrial

    matrix

    inner mitochondrial

    membrane

    O2

    e

    e

    e

    e

    e

    e

  • 8/7/2019 Notes Lecture 3

    11/17

    Redox Potentials of ElectronTransport Sites Found in Biology

    Nhis CuScysNhisS

    met

    blue copper

    +2

    cyt c

    Fe

    Smet

    Nhis

    E1/2= +370 mV E1/2= +260 mV

    +2

    cyt b

    Fe

    Nhis

    Nhis

    E1/2= +60 mV

    Scys

    ScysFe Scys

    Scys

    rubredoxinE1/2= 60 mV

    Fe S

    FeS

    Fe

    S Fe

    S

    Scys

    Scys

    Scys

    Scys

    3

    ferredoxin

    FeSS

    FeS

    cys

    ScysScys

    Scys

    ferredoxin

    2

    E1/2= 430 mV E1/2= 400 mV

    1

  • 8/7/2019 Notes Lecture 3

    12/17

    M+n

    e

    electrode surface

    ....studied in the lab under m ore

    cont rolled condit ions...

    Thermodynamics

    ie, energy of e delivered

    *

    M+n

    e

    Kinetics

    ie, rate of e

    transfer

    Chapter 7

  • 8/7/2019 Notes Lecture 3

    13/17

    example

    [Cr(II)L6]+2 + [Cr(III)L6]

    +3

    e

    [Cr(III)L6]+3 +

    Potential Well descriptionof the Barrier to e transfer

    [Cr(II)L6]+2

    Kinetics

    Selfexchange Reaction

    G= 0, M1= M2

    r= total changein CrL distance

    conversion

    required for

    Cr+2> Cr+3

    r/2= change

    in CrL distance

    e transferrequired for

    E

    r

    r /2

    Ea= activationbarrier

    increasingML distance

    Ea= activation

    barrier

  • 8/7/2019 Notes Lecture 3

    14/17

    Dependence of electron transfer barrier on r

    E a= a ctivat ionbarrier

    r r

    E a= a ctivat ionbarrier

    r

    E a= a ctivat ionbarrier

    Conclude: Ratesare proportional

    to r

  • 8/7/2019 Notes Lecture 3

    15/17

    M2

    +2

    r ed u ce d p r od u ct

    activation

    stepM2

    +3

    a c t i v a t e d

    com p lex

    e

    e transferM2

    +3

    oxid ized

    M2 Llong

    groun d sta te for M2+n

    +(n1)M2 L

    elongated

    vibrationally excited

    +n

    sta te for M2+n

    M2 L

    short

    groun d sta te for M2+(n1)

    +n

    e

    a c c e p t o r

    Frank Condon principleFrank Condon principle

  • 8/7/2019 Notes Lecture 3

    16/17

    Fe S

    FeS

    Fe

    S Fe

    S

    SR

    RS

    RS

    SR

    Fe S

    FeS

    Fe

    S Fe

    S

    SR

    RS

    RS

    SR

    2 3

    e

    e

    +2.5 +2.25

    e

    Fe4S4 Clusters in Biology

    added electron is

    delocalized over

    all four Fe ions !

    thus, the charge on each

    iron changes by only 1/4 of

    a unit, rather than one full

    charge unit!

    this minimizes

    the barrier to

    electron transfer

  • 8/7/2019 Notes Lecture 3

    17/17

    -