Nose and Inrush

83
Summary of Papers 1. P. Sauer and M. Pai, “Power System SteadyState Stability and the Load Flow Jacobian,” IEEE Transactions on Power Systems, Vol. 5, No. 4, Nov. 1990 2. V. Ajjarapu and C. Christy, “The Continuation Power Flow: A Tool for SteadyState Voltage Stability Analysis,” IEEE Transactions on Power Systems, Vol. 7, No. 1, Feb., 1992. 3. S. Greene, I. Dobson, and F. Alvarado, “Sensitivity of the Loading Margin to Voltage Collapse with Respect to Arbitrary Parameters,” IEEE Transactions on Power Systems, Vol. 12, No. 1, Feb. 1997, pp. 232240. 4. S. Greene, I. Dobson, and F. Alvarado, “Contingency Ranking for Voltage Collapse via Sensitivities from a Single Nose Curve,” IEEE Transactions on Power Systems, Vol. 14, No. 1, Feb. 1999, pp. 262272. 1

description

Nose Curves voltage regulation and transformer inrush currents

Transcript of Nose and Inrush

  • Summary of Papers

    1.P.SauerandM.Pai,PowerSystemSteadyStateStabilityandtheLoadFlowJacobian,IEEETransactionsonPowerSystems,Vol.5,No.4,Nov.1990

    2.V.AjjarapuandC.Christy,TheContinuationPowerFlow:AToolforSteadyStateVoltageStabilityAnalysis,IEEETransactionsonPowerSystems,Vol.7,No.1,Feb.,1992.

    3.S.Greene,I.Dobson,andF.Alvarado,SensitivityoftheLoadingMargintoVoltageCollapsewithRespecttoArbitraryParameters,IEEETransactionsonPowerSystems,Vol.12,No.1,Feb.1997,pp.232240.

    4.S.Greene,I.Dobson,andF.Alvarado,ContingencyRankingforVoltageCollapseviaSensitivitiesfromaSingleNoseCurve,IEEETransactionsonPowerSystems,Vol.14,No.1,Feb.1999,pp.262272.

    1

  • Voltage Security

    Voltagesecurityistheabilityofthesystemtomaintainadequateandcontrollablevoltagelevelsatallsystemloadbuses.Themainconcernisthatvoltagelevelsoutsideofaspecifiedrange can affect the operation of the customers loadsrangecanaffecttheoperationofthecustomer sloads.

    Voltagesecuritymaybedividedintotwomainproblems:1 L lt lt l l i t id f d fi d1.Lowvoltage:voltagelevelisoutsideofpredefinedrange.2.Voltageinstability:anuncontrolledvoltagedecline.

    Youshouldknowthat lowvoltagedoesnotnecessarilyimplyvoltageinstability no low voltage does not necessarily imply voltage stability

    2

    nolowvoltagedoesnotnecessarilyimplyvoltagestability voltageinstabilitydoesnecessarilyimplylowvoltage

  • Th h b l i di id l th t h i ifi tl

    Resources

    Therehavebeenseveralindividualsthathavesignificantlyprogressedthefieldofvoltagesecurity.Theseinclude:

    AjjarapufromISU

    Van Cutsem: See the book by Van Cutsem and Vournas.VanCutsem:SeethebookbyVanCutsemandVournas.

    Alvarado,Dobson,Canizares,&Greene:

    Thereareacoupleothertextsthatprovidegoodtreatmentsofthe subject:thesubject: CarsonTaylor:PowerSystemVoltageStability PrabhaKundur:PowerSystemStability&Control

    3

  • Ourtreatmentofvoltagesecuritywillproceedasfollows:

    Voltageinstabilityinasimplesystem Voltageinstabilityinalargesystem Brieftreatmentofbifurcationanalysis Continuationpowerflow(pathfollowing)methods Sensitivity methodsSensitivitymethods

    4

  • Voltageinstabilityinasimplesystem

    Considertheperphaseequivalentofaverysimplethreephasepowersystemgivenbelow:

    V1 V2

    Z=R+jX

    INode1 Node2

    V1 V2

    ++

    1

    __

    5S12 SD=S12

  • jBGYjXRZ =+= NoteB>0jj

    121212 jQPS +=

    )sin(||||)cos(|||||| 212121212

    112 += BVVGVVGVP

    121212 jQPS +

    )sin(||||)cos(||||||

    )(||||)(||||||

    212121212

    112

    21212121112

    = GVVBVVBVQ )s (||||)cos(|||||| 21212121112 GVVVVVQ

    LetG=0.Then.

    )sin(|||| 212112 = BVVP

    6)cos(|||||| 2121

    2112 = BVVBVQ

  • NowwecangetSD=PD+jQD=(P21+jQ21)by

    exchangingthe1and2subscriptsinthepreviousequations. negatingg g

    )sin(||||)sin(|||| 122121

    ===

    BVVBVVPPD

    )cos(||||||

    )sin(||||

    2

    2121

    +==

    =

    BVVBVQQ

    BVV

    )cos(||||||

    )cos(||||||

    21212

    2

    1221221

    +=

    +==

    BVVBV

    BVVBVQQD

    Define12 =1 2

    1221 sin|||| BVVPD =

    712212

    2

    1221

    cos||||||

    ||||

    BVVBVQD

    D

    +=

  • Define: isthepowerfactorangleoftheload,i.e., p g

    IV = 2

    ThenwecanalsoexpressSD as:|||| 2*

    2eIVIVS jD ==

    )sin1(||||

    )sin(cos|||| 2

    jIV

    jIV +=

    )tan1(

    )cos

    1(cos|||| 2

    jP

    jIV

    +=

    +=

    )tan1( jPD +=

    Define=tan.Then

    Notethatphi,andthereforebeta,ispositiveforlagging,

    ti f l di

    8)1( jPjQPS DDDD +=+=

    negativeforleading.

  • Sowehavedevelopedthefollowingequations.

    12212

    2

    1221

    cos||||||

    sin||||

    BVVBVQ

    BVVP

    D

    D

    +=

    =

    12212 cos|||||| BVVBVQD +=

    )1( jPjQPS DDDD +=+=

    EquatingtheexpressionsforPD andforQD,wehave:

    2 |||||| BVVBVPQ

    1221 sin|||| BVVPD = 12212

    2

    12212

    2

    cos||||||

    cos||||||

    BVVBVP

    BVVBVPQ

    D

    DD

    =+

    +==

    Squarebothequationsandaddthemtoget..

    9

  • 122

    12222

    22

    122

    22 )cos(sin||||)||( BVVBVPP DD +=++

    222

    21

    222

    21212212

    ||||)||(

    )(||||)||(

    BVVBVPP DD

    DD

    =++

    Manipulationyields:

    2

    ( ) [ ] 01||||2|| 222

    22

    21

    222 =++

    +

    BPVV

    BPV DD

    Notethatthisisaquadraticin|V2|2.Assuch,ithasthesolution:

    2/12

    1

    41

    212

    2 ||||||||

    += VPPVPVV DDD

    10

    12 ||42||

    BBB

  • Letsassumethatthesendingendvoltageis|V1|=1.0pu1andB=2pu.Thenourpreviousequationbecomes:

    [ ])2(11 2/12 + DDD PPP [ ]2

    )2(11|| 22 +

    = DDDPPPV

    %pf=0.97laggingbeta=0 25

    You can make

    beta=0.25pdn=[00.10.20.30.40.50.60.70.78];v2n=sqrt((1beta.*pdn sqrt(1pdn.*(pdn+2*beta)))/2);pdp=[0.780.70.60.50.40.30.20.10];v2p=sqrt((1beta.*pdp+sqrt(1pdp.*(pdp+2*beta)))/2);pd1=[pdnpdp];v21=[v2nv2p];Youcanmake

    thePVplotusingthefollowing

    tl b d

    [ p]%pf=1.0beta=0pdn=[00.10.20.30.40.50.60.70.80.90.99];v2n=sqrt((1beta.*pdn sqrt(1pdn.*(pdn+2*beta)))/2);pdp=[0.990.90.70.60.50.40.30.20.10];v2p=sqrt((1beta.*pdp+sqrt(1pdp.*(pdp+2*beta)))/2);d2 [ d d ]matlabcode. pd2=[pdnpdp];v22=[v2nv2p];

    %pf=.97leadingbeta=0.25pdn=[00.10.20.30.40.50.60.70.80.91.01.11.21.3];v2n=sqrt((1beta.*pdn sqrt(1pdn.*(pdn+2*beta)))/2);pdp=[1.3 1.2 1.1 1.0 0.9 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0];

    11

    pdp [1.31.21.11.00.90.70.60.50.40.30.20.10];v2p=sqrt((1beta.*pdp+sqrt(1pdp.*(pdp+2*beta)))/2);pd3=[pdnpdp];v23=[v2nv2p];

    plot(pd1,v21,pd2,v22,pd3,v23)

  • Plotsofthepreviousequationfordifferentpowerfactors

    |V ||V2|

    R l l di P

    12

    Realpowerloading,PD

  • SomecommentsregardingthePVcurves:1.Eachcurvehasamaximumload.Thisvalueistypicallycalledthemaximumsystemloadorthesystemloadability.2.Iftheloadisincreasedbeyondtheloadability,thevoltageswilldeclineuncontrollably.3.Foravalueofloadbelowtheloadability,therearetwovoltagesolutions.Theupperonecorrespondstoonethatcanbereachedinpractice.Theloweroneiscorrectmathematically,butIp y,donotknowofawaytoreachthesepointsinpractice.4.Inthelaggingorunitypowerfactorcondition,itisclearthatthevoltagedecreasesastheloadpowerincreasesuntiltheloadability.g p yInthiscase,thevoltageinstabilityphenomenaisdetectable,i.e.,operatorwillbeawarethatvoltagesaredecliningbeforetheloadability is exceeded.loadabilityisexceeded.5.Intheleadingcase,oneobservesthatthevoltageisflat,orperhapsevenincreasingalittle,untiljustbeforetheloadability.Thus,inthe leading condition voltage instability is not very detectable

    13

    theleadingcondition,voltageinstabilityisnotverydetectable.Theleadingconditionoccursduringhightransferconditionswhentheloadislightorwhentheloadishighlycompensated.

  • QVCurvesWeconsideroursimple(lossless)systemagain,withtheequations

    12212

    2

    1221

    cos||||||

    sin||||

    BVVBVQ

    BVVP

    D

    D

    +=

    =

    Now,againassumethatV1=1.0,andforagivenvalueofPDandV2,compute12 fromthefirstequation,andthenQfromthe

    secondequation.RepeatforvariousvaluesofV2 toobtainaQVcurveforthespecifiedrealloadPD.

    v1=1.0;b=1.0;

    YoucanmakethePVplotusingthefollowingmatlabcode.

    pd1=0.1v2=[1.1,1.05,1.0,.95,.90,.85,.80,.75,.70,.65,.60,.55,.50,.45,.40,.35,.30,.25,.20,.15];sintheta=pd1./(b*v1.*v2);theta=asin(sintheta);qd1=v2.^2*b+v1*b*v2.*cos(theta);

    14

    plot(qd1,v2);

    Thecurveonthenextpageillustrates.

  • QVCurve

    |V ||V2|

    15QD

  • Homework

    1.DrawthePVcurveforthefollowingcases,andforeach,determinetheloadability.

    a.B=2,|V1|=1.0,pf=0.97lagging

    b B=2 |V1|=1 0 pf=0 95 laggingb.B=2,|V1|=1.0,pf=0.95lagging

    c.B=2,|V1|=1.06,pf=0.97lagging

    d.B=10,|V1|=1.0,pf=0.97lagging

    Identifytheeffectonloadabilityofpowerfactor,sendingendvoltage,andlinereactance.

    2.DrawtheQVcurvesforthefollowingcases,andforeach,determinethemaximumQD.

    a.B=1,|V1|=1.0,PD=0.1

    b.B=1,|V1|=1.0,PD=0.2

    c. B=1, |V1|=1.06, PD=0.1c.B 1,|V1| 1.06,PD 0.1

    d.B=2,|V1|=1.0,PD=0.1

    IdentifytheeffectonmaximumQD ofrealpowerdemand,sendingendvoltage,andlinet

    16

    reactance.

  • SomecommentsregardingtheQVCurves

    Inpractice,thesecurvesmaybedrawnwithapowerflowprogramby

    1.modelingatthetargetbusasynchronouscondenser(ag g y (generatorwithP=0)havingverywidereactivelimits

    2.Setting|V|toadesiredvalue3 Solving the power flow3.Solvingthepowerflow.4.ReadingtheQofthegenerator.5.Repeat24forarangeofvoltages.

    QVcurveshaveoneadvantageoverPVcurves:Theyareeasiertoobtainifyouonlyhaveapowerflow(standard

    powerflowswillnotsolvenearorbelowthenoseofPVcurvespbuttheywillsolvecompletelyaroundthenoseofQVcurves.)

    17

  • Voltageinstabilityinalargesystem:Influentialfactors:

    Loadmodeling Reactivepowerlimitsongenerators Loss of a circuit Lossofacircuit Availabilityofswitchableshuntdevices

    Twoimportantideasonwhichunderstandingoftheabovei fl1. Voltageinstabilityoccurswhenthereactivepowersupply

    cannotmeetthereactivepowerdemandofthenetwork.

    influencesrest:

    Transmissionlineloadingistoohigh Reactivesources(generators)aretoofarfromloadcenters Generatorterminalvoltagesaretoolow.

    I ffi i l d i i Insufficientloadreactivecompensation2.Reactivepowercannotbemovedveryfarinanetwork(varsdonottravel),sinceI2Xislarge.

    18

    Implication:TheSYSTEMcanhaveavarsurplusbutexperiencevoltageinstabilityifalocalareahasavardeficiency.

  • Loadmodeling

    Inanalyzingvoltageinstability,itisnecessarytoconsiderthenetworkundervariousvoltageprofiles.

    Voltagestabilitydependsonthelevelofcurrentdrawnbytheloads.

    Thelevelofcurrentdrawnbytheloadscandependonthevoltageseenbytheloads.

    Therefore,voltageinstabilityanalysisrequiresamodelofhowtheloadrespondstoloadvariations.

    Thus,loadmodelingisveryinfluentialinvoltageinstabilityanalysis.

    19

  • Exponentialloadmodel

    Atypicalloadmodelforaloadatabusistheexponentialmodel:

    =

    = 00VQQVPP

    0

    00

    0 VQQ

    VPP

    wherethesubscript0indicatestheinitialoperatingconditions.Theexponents and arespecifictothetypeofload,e.g.,

    Incandescentlamps 1.54 Roomairconditioner 0.50 2.5F f 0 08 1 6Furnacefan 0.08 1.6Batterycharger 2.59 4.06Electroniccompactflorescent1.0 0.40

    20

    Conventionalflorescent 2.07 3.21

  • PolynomialloadmodelTheZIPorpolynomialmodelisaspecialcaseofthemoregeneral

    i l d l i b f 3 i l d l i hexponentialmodel,givenbyasumof3exponentialmodelswithspecifiedsubscripts:

    22

    VVVV

    ++

    =

    ++

    = 3

    02

    0103

    02

    010 qV

    VqVVqQQp

    VVp

    VVpPP

    0.1321 =++ ppp 0.1321 =++ qqq

    whereagainthesubscript0indicatestheinitialoperatingconditions.

    Usually,valuesp2 andq2 arethelargest.

    Sothismodeliscomposedofthreecomponents:

    constant impedance component (p1 q1) lighting

    21

    constantimpedancecomponent(p1,q1) lighting constantcurrentcomponent(p2,q2) motor/lighting constantpowercomponent(p3,,q3) loadsservedbyLTCs

  • Understanding the effect of each component on voltage instability

    EffectofLoadmodeling

    Understandingtheeffectofeachcomponentonvoltageinstabilitydependsonunderstandingtwoideas:

    l i bili i ll i d h h d d d hi1.Voltageinstabilityisalleviatedwhenthedemandreduces.ThisisbecauseIreducesandI2Xreactivelossesinthecircuitsreduce.

    2.Sincevoltageinstabilitycausesvoltagedecline,alleviationofvoltageinstabilityresultsifdemandreduceswithvoltagedecline.This gives the key to understanding the effect of load modelingThisgivesthekeytounderstandingtheeffectofloadmodeling.

    constantimpedanceload(p1)isGOODsincedemandreduces with square of voltagereduceswithsquareofvoltage. constantcurrentload(p2)isOKsincedemandreduceswithvoltage.C l d ( ) i BAD i d d d

    22

    Constantpowerload(p3)isBADsincedemanddoesnotchangeasvoltagedeclines.

  • The effects of voltage variation on loads and thus of loads on

    Someconsiderationsinloadmodeling

    Theeffectsofvoltagevariationonloads,andthusofloadsonvoltageinstability,cannotbefullycapturedusingexponentialorpolynomialloadmodelsbecauseofthefollowingthreeaspects.

    Thermostaticloadrecovery Inductionmotorstalling/trippingg pp g Loadtapchangers

    23

  • Heatingloadisthemostcommontypeofthermostaticload,anditThermostaticloadrecovery

    g yp ,isoneforwhichweareallquitefamiliar.Althoughmuchheatingisdonewithnaturalgasastheprimaryfuel,someheatingisdoneelectrically and even gas heating systems always contain someelectrically,andevengasheatingsystemsalwayscontainsomeelectriccomponentsaswell,e.g.,thefans.

    h h i l d i l d h / lOtherthermostaticloadsincludespaceheaters/coolers,waterheaters,andrefrigerators.

    Whenvoltagedrops,thermostaticloadsinitiallydecreaseinpowerconsumption.Butaftervoltagesremainlowforafewminutes,theload regulation devices (thermostats) will start the loads or willloadregulationdevices(thermostats)willstarttheloadsorwillmaintainthemforlongerperiodssothatmoreofthemareonatthesametime.Thisisreferredtoasthermostaticloadrecovery,d i d b l bl h hi h l

    24

    andittendstoexacerbatevoltageproblemsatthehighvoltagelevel.

  • Three phase induction motors comprise a significant portion of

    Inductionmotorstalling/tripping

    Threephaseinductionmotorscompriseasignificantportionofthetotalloadandsoitsresponsetovoltagevariationisimportant,especiallysinceithasaratheruniqueresponse.

    Considerthesteadystateinductionmotorperphaseequivalentmodel.

    Za=R1+jX1 X2 I2

    Zb=Rc//jXm

    R2+R2(1-s)/s =R2 / s

    V1c//j / s

    25

  • The(referredtostator)rotor current is given by:

    Inductionmotorstalling/tripping

    2 ')/'('

    jXsRZVI th

    ++=

    rotorcurrentisgivenby: 22 ')/'( jXsRZth ++

    bZVV = baZZZZZ //where ba

    th ZZVV

    += 1

    andba

    babath ZZ

    ZZZ+

    == //

    Under normal conditions the slip s is typically very small less than 0 05Undernormalconditions,theslipsistypicallyverysmall,lessthan0.05(5%).Inthiscase,R2/s>>R2,andI2 issmall.

    B t lt V d th l t ti t d l dButasvoltageV1 decreases,theelectromagnetictorquedevelopeddecreasesaswell,themotorslowsdown.Ultimately,themotormaystall.Inthiscase,s=1,causingR2/s=R2.Thus,oneseesthatthecurrentI2 is

    h l f ll d di i h f l di i B f Xmuchlargerforstalledconditionsthanfornormalconditions.BecauseofX1andX2 oftheinductionmotor,thelargestallcurrentrepresentsalargereactiveload.

    26Largemotorshaveundervoltagetrippingtoguardagainstthis,butsmallermotors(refrigerators/airconditioners)maynot.

  • Tapchangers:

    L d h (LTC OLTC ULTC TCUL) f hLoadtapchangers(LTC,OLTC,ULTC,TCUL)aretransformersthatconnectthetransmissionorsubtransmissionsystemstothedistributionsystems.Theyaretypicallyequippedwithregulationcapabilitythatallowthemtocontrolthevoltageonthelowsidesothatvoltagedeviationonthehighsideisnotseenonthelowside.

    t:1

    V1 V1/t

    t:1HVside

    LVside

    V1 andtaregiveninpu.

    Inperunit,wesaythatthetapist:1,where tmayrangefrom0.851.15pu a single step may be about 0 005 pu (5/8%=0 00625 is very common)asinglestepmaybeabout0.005pu(5/8%=0.00625isverycommon) achangeofonesteptypicallyrequiresabout5seconds. thereisadeadbandof23timesthetapsteptopreventexcessivetapchange

    U d l l di i h hi h id h LTC ill d

    27

    Underlowvoltageconditionsatthehighside,theLTCwilldecreasetinordertotryandincreaseV1/t.

  • Tapchangers:

    Thus,aslongastheLTCisregulating(notatalimit),avoltagedeclineonthehighsidedoesnotresultinvoltagedeclineattheload in the steady state so that even if the load is constant Zload,inthesteadystate,sothateveniftheloadisconstantZ,itappearstothehighsideasifitisconstantpower.Soasimpleloadmodelforvoltageinstabilityanalysis,forsystemsusingLTC,isconstantpower!

    There are 2 qualifications to using such a simple model (constant power):Thereare2qualificationstousingsuchasimplemodel(constantpower):1.Fastvoltagedipsareseenatthelowside(sinceLTCactiontypicallyrequiresminutes),andifthedipislowenough,induction motors may trip resulting in an immediate decrease ininductionmotorsmaytrip,resultinginanimmediatedecreaseinloadpower.2.OncetheLTChitsitslimit(minimumt),thenthelowside

    28voltagebeginstodecline,anditbecomesnecessarytomodeltheloadvoltagesensitivity.

  • Generatorcapabilitycurve:

    Fieldcurrentlimitduetofieldheating,enforced by overexcitation limiter on I

    QenforcedbyoverexcitationlimiteronIf.

    Armature current limit due toQmax

    Armaturecurrentlimitduetoarmatureheating,enforcedbyoperatorcontrolofPandIf.

    Typicalapproximation

    d iP

    usedinpowerflowprograms.

    Limitduetosteadystateinstability(smallinternalvoltageEgivessmall|E||V|Bsin),

    Qmin

    29

    andduetostatorendregionheatingfrominducededdycurrents,enforcedbyunderexcitationlimiter(UEL).

  • Effectofgeneratorreactivepowerlimits:

    1.Voltageinstabilityistypicallyprecededbygeneratorshittingtheirupperreactivelimit,somodelingQmax isveryimportanttoanalysisofvoltageinstability.

    2.MostpowerflowprogramsrepresentgeneratorQmax asfixed.However,thisi i i d h h ld b i d I li Q i fi disanapproximation,andonethatshouldberecognized.Inreality,Qmax isnotfixed.ThereactivecapabilitydiagramshowsquiteclearlythatQmax isafunctionofPandbecomesmorerestrictiveasPincreases.AfirstorderimprovementtofixedQmaxis to model Q as a function of PistomodelQmax asafunctionofP.

    3.Qmax issetaccordingtotheOvereXcitationLimiter(OXL).ThefieldcircuithasaratedsteadystatefieldcurrentIfmax,setbyfieldcircuitheatinglimitations.Sinceheating is proportional to , we see that smaller overloads can be tolerated 2dtI fheatingisproportionalto,weseethatsmalleroverloadscanbetoleratedforlongertimes.Therefore,mostmodernOXLsaresetwithatimeinversecharacteristic:

    4.AssoonastheOXLactstolimitIf,thenno

    timeoverload

    f

    ffurtherincreaseinreactivepowerispossible.WhendrawingPVorQVcurves,theactionofageneratorhittingQmax,will

    IfI

    2.0OXLcharacteristic

    30

    manifestitselfasasharpdiscontinuityinthecurve.

    Overloadtime(sec)

    Irated1.0

    120

    10

  • EffectofOXLactiononPVcurve:

    |V|

    Onegeneratorhitsreactivelimit

    Noreactivelimitsmodeledo

    P

    (demand)

    Note:GeorgiaPowerCo.modelsitsloadabilitylimitatpointx,notpointo.

    31

  • L f i itLossofacircuit

    Comparereactivelosseswithandwithoutsecondcircuit

    /

    AssumebothcircuitshavereactanceofX.

    I/2

    I/2

    I

    P

    X

    XI/2 P P

    Qloss=(I/2)2X+ (I/2)2X=I2X/2 Qloss=I2XQloss (I/2) X (I/2) X I X/2 Qloss I X

    Implication:Lossofacircuitwillalwaysincreasereactivelossesin the network. This effect is compounded by the fact

    32

    inthenetwork.Thiseffectiscompoundedbythefactthatlosingacircuitalsomeanslosingitslinechargingcapacitance.

  • Kundur,onpp.979990,hasanexcellentexamplewhichillustratesmanyoftheaforementionedeffects.Theillustrationwasdoneusingalongtermtimedomainsimulationprogram(Eurostag).

    33

  • Influence of switched shunt capacitorsInfluenceofswitchedshuntcapacitors

    I II

    P

    I

    PP P

    |V|

    WithcapacitorWithoutit

    P

    capacitor

    34

    P

    (demand)

  • But,shuntcompensationhassomedrawbacks:

    Itproducesreactivepowerinproportiontothesquareofthethe voltage therefore when voltages drop so does the reactivethevoltage,thereforewhenvoltagesdrop,sodoesthereactivepowersuppliedbythecapacitor.

    It h i ti l l b d hi h t bl Ithasamaximumcompensationlevelbeyondwhichstableoperationisnotpossible(Seepg.972ofKundur,andnextslide).

    (A h d d SVC d t h th 2 d b k )(AsynchronouscondenserandanSVCdonothavethese2drawbacks)

    ItresultsinaflatterPVcurveandthereforemakesvoltageinstabilit less detectable Therefore as the load gro s in areasinstabilitylessdetectable.Therefore,astheloadgrowsinareaslackinggeneration,moreandmoreshuntcompensationisusedtokeepvoltagesinnormaloperatingranges.Bysodoing,normal

    35operatingpointsprogressivelyapproachloadability.

  • V1=1.0 V2

    PL

    EachQVcurve/Capacitorcharacteristicintersectionshowstheoperatingpoint.Notethatforthefirstthreeoperatingpoints,asmall increase in Q comp (indicated by

    |V |

    PLQL=0

    smallincreaseinQcomp(indicatedbyarrows)resultsinvoltageincrease,butforthelastoperatingpoint(950),moreQcomp(say960)resultsinavoltagedecrease.S=|V2|2B*Sbase

    1.2

    |V2|300Mvar450Mvar675Mvar

    950Mvar

    with|V2|=1.0

    1.0

    0.8QV-curves drawnusing synchronouscondensor approach.

    0.6

    362004006008001000120014001600

    CapacitiveMvars

  • Bifurcationanalysis(ref:A.GaponovGrekhov,NonlinearitiesinactionandalsoVanCutsem&Vournas,Voltagestabilityofelectricpowersystems.)

    Abifurcation,foradynamicsystem,isanacquisitionofanewqualitybythemotionthedynamicsystem,causedbysmallchangesin its parameters. A power system that has experienced a bifurcation

    Considerrepresentingthedynamicsofthepowersystemas:

    initsparameters.Apowersystemthathasexperiencedabifurcationwillgenerallyhavecorrespondingmotionthatisundesirable.

    )(0

    ),,(

    pyxG

    pyxFx

    =

    =&Eqts.1

    ),,(0 pyxG=Adifferentialalgebraicsystem(DAS):H i bl f h ( lHerex representsstatevariablesofthesystem(e.g.,rotorangles,rotorspeed,etc),y representsthealgebraicvariables(busvoltagemagnitudes&voltageangles),andp representstherealandreactivepowerinjections

    37ateachbus.ThefunctionF representsthedifferentialequationsforthegenerators,andthefunctionG representsthepowerflowequations.

  • Typesofbifurcations

    Thereareatleasttwotypesofbifurcation: Hopf:twoeigenvaluesbecomepurelyimaginary:abirthofoscillatoryorperiodicmotion. Saddlenode:adisappearanceofanequilibriumstate.ThestableoperatingequilibriumcoalesceswithanunstableThe stable operating equilibrium coalesces with an unstableequilibriumanddisappears.Thedynamicconsequenceofagenericsaddlenodebifurcationis:

    a monotonic decline in system variablesamonotonicdeclineinsystemvariables.

    Sowethinkitisthesaddlenodebifurcationthatcausesvoltage instabilityvoltageinstability.

    38

  • The Jacobian matrix of eqts 1 is

    TheunreducedJacobian:

    TheJacobianmatrixofeqts.1is

    YX FFJ

    =YX GG

    J

    anditisreferredtoastheunreducedJacobianoftheDAS,where

    x

    Jx&

    Eqt 2

    =

    y

    J0

    Eqt.2

    39

  • Wemayreduceeq.2byeliminatingthevariable y

    ThereducedJacobian:

    =

    yx

    GF

    GFx

    Y

    Y

    X

    X

    0&

    yGG YX0Thismeansweneedtoforcethetoprighthandsubmatrixto0,whichwecandobymultiplyingthebottomrowbyFYGY1 andthenaddingtothetoprow.

    =

    yx

    GGGGFFx XYYX 0

    0

    1&

    yGG YX0Thisresultsin: [ ] xGGFFx XYYX = 1& [ ]SothatthereducedJacobianmatrixisaSchurscomplement:

    GGFFA 140

    XYYX GGFFA =

  • Stability:

    Fact1:Theconditionsforasaddlenodebifurcationare)(F&1. Equilibrium:

    2. Singularity of the unreduced Jacobian),,(0

    ),,(

    pyxG

    pyxFx

    =

    =

    =

    Y

    Y

    X

    X

    GF

    GF

    J2. SingularityoftheunreducedJacobian

    det(J)=0(a0eigenvalue,J noninvertible). YX

    Implication1:ThestabilityofanequilibriumpointoftheDASdependson

    Fact2:ThedeterminantofaSchurscomplementtimesthedeterminantof

    theeigenvaluesoftheunreducedJacobianJ.ThesystemwillexperienceaSNBasparameterp increaseswhenJ hasazeroeigenvalue.

    Implications 2:

    pGY givesthedeterminantoftheoriginalmatrix:det(J)=det(A)*det(GY)ifGY isnonsingular.

    Implications2:1. IfGY isnonsingular,thensingularityofA impliessingularityofJ so

    thatwemayanalyzeeigenvaluesofA toascertainstability.h f h b l l h

    41

    2. ThefactthatGY maybenonsingular,yetA singular,meansthatloadflowconvergenceisnotasufficientconditionforvoltagestability.

  • SingularityofloadflowJacobian:

    I li i 2Implications2:1. IfGY isnonsingular,thensingularityofA impliessingularityofJ so

    thatwemayanalyzeeigenvaluesofA toascertainstability.2. ThefactthatGY maybenonsingular,yetA singular,meansthat

    loadflowconvergenceisnotasufficientconditionforvoltagestability

    Singular SingularSingular(unstable)

    stability.

    NonsingularAGY J

    NonsingularNonsingular(stable)

    Y

    42

  • SingularityofloadflowJacobian:

    S l i bili l i i l l d fl J bi i ldSovoltageinstabilityanalysisusingonlyaloadflowJacobianmayyieldoptimistic resultswhencomparedtoresultsfromanalysisofA,thatis,stablepoints(basedonGy)maynotbereallystable.y=>However,IbelieveitistruethatpointsidentifiedasunstableusingtheloadflowJacobianwillbereallyunstable(Schurscomplementdoes not support that singularity of G implies singularity of JdoesnotsupportthatsingularityofGY impliessingularityofJ,however,becauseitisonlyvalidifGY isnonsingular).

    SingularSingular(unstable)Nonsingular

    Singular(unstable)Nonsingular

    Singular(unstable)Nonsingular

    Note: Sauer and Pai 1990 provide an indepth analysis of the relation

    Nonsingular(stable) AGY J

    g(stable) (stable)

    43

    Note:SauerandPai,1990,provideanin depthanalysisoftherelationbetweensingularityofGY andsingularityofJ,andshowsomespecialcasesforwhichsingularityofGY impliessingularityofJ.

  • SingularityofloadflowJacobian:

    S h l d fl J bi l i idSo,weassume thatloadflowJacobiananalysisprovidesanupperboundonstability.

    Fact:Thebifurcation(zeroeigenvalueofGY)oftheloadflowJacobian corresponds to the turnaround point (i e the noseJacobiancorrespondstothe turn aroundpoint (i.e.,the nose point)ofaPVorQVcurvedrawnusingapowerflowprogram.

    Thiscanbeprovenusinganoptimizationapproach.Seepp.218220ofthetextbyVanCutsemandVournas.

    WehavepreviouslydenotedthepowerflowequationsasG(x,y,p)=0,butnowwedenotethemasG(y,p)=0,withoutthedependenceonthe

    44

    statevariablesx (whichrelatetothemachinemodelingandinclude,minimally, and ofeachmachine).

  • Soweturnourefforttoidentifyingthesaddlenodebifurcation(SNB)forthepowerflowJacobianmatrix.

    TheJacobiancanreachaSNBinmanyways.Forexample, increasetheimpedanceinakeytielinep y increasethegenerationlevelatageneratorwithweaktransmission,whiledecreasinggenerationatallothergenerators.

    increasetheloadatasinglebus |V|g increasetheloadatallbuses.Inallcases,wearelookingforthenosepointoftheV curve,where istheparameterthatisbeingincreased.)

    | |

    Mostapplicationsfocusonthelastmethod(increaseloadatallbuses).Key questions here are:Keyquestionshereare: directionofincrease:arebusloadsincreasedproportionally,orinsomeotherway? dispatchpolicy:howdothegeneratorspickuptheloadincrease?

    45Wewillassumeproportionalloadincreasewithgovernorloadflow(generatorspickupinproportiontotheirrating)

  • D fi iti l i t th ti diti h t i dDefine:criticalpoint theoperatingconditions,characterizedbyacertainvalueof,beyondwhichoperationisnot

    acceptable.

    |V|Question1:Whatcancausethecriticalpointtodiffer

    p

    fromtheSNBpoint?

    Question 2:Question2:Howcanknowledgeofthecriticalpointprovideasecuritymeasure?

    Question3:DoesthePVcurveprovideaforecast ofthesystemtrajectory?

    46

  • Solutionapproachestofinding*, thevalueof correspondingtoSNB.

    Approach1:Searchfor* usingsomeiterativesearchprocedure.

    1.i=12. Using (i), solve power flow using NewtonRaphson.2.Using ,solvepowerflowusingNewton Raphson.

    Here,weiterativelysolveG(y,p)=0.Ateachstep,wemustsolvefory intheeqt:GYy =p

    3 If solved3.Ifsolved,(i+1)=(i)+ .

    i=i+1goto2g

    elseifnotsolved,*=(i+1)

    endif4.End

    Butbigproblem:as getscloseto*,GY becomesillconditioned

    (close to singular) This means that at some point before the critical

    47

    (closetosingular).Thismeansthatatsomepointbeforethecriticalpoint,step2willnolongerbefeasible.

  • Approach2:Usethecontinuationpowerflow(CPF).

    Predictor stepPredictorstep

    Correctorstepp

    S lNoPass*? Selectcontinuationparameter

    No.

    Yes.

    48

    Stop

  • Thepredictorstep:

    )(0 pyG=

    Thepowerflowequationsarefunctionsofthebusvoltagesandbusanglesandthebusinjections:

    ),(0 pyG=Augmentthepowerflowequationssothattheyarefunctionsof(dependenceonp iscarriedthroughthedependenceon).

    ),(0 yG=

    N i th t )(0 VG

    pp0

    Nowrecognizethat

    =

    Vy

    sothat ),,(0 VG=

    If we want to compute the change in the power flow equations dGIfwewanttocomputethechangeinthepowerflowequationsdGduetosmallchangesinthevariables,V,and,

    thatmoveusclosertotheloadabilitypoint as we move from one solution i to another close solution i+1 then

    49

    aswemovefromonesolutionitoanotherclosesolutioni+1,thendG=G((i),V(i),(i)) G((i+1),V(i+1),(i+1))=0 0=0

  • ddGdVd

    VdGdd

    dGdGd ++=

    dVddHere,eachsetofpartialderivativesareevaluatedattheoperatingconditionscorrespondingtotheoldsolution.Ifthepowerflowequationsarelinearwiththe3sets of variables in the region between the old solution and the (close) new one the

    0=++= dGdVdGddGdGd

    setsofvariablesintheregionbetweentheoldsolutionandthe(close)newone,thefollowingissatisfied:

    0++

    dd

    VdVd

    dd

    Gd

    Eq.3 [ ] 0=

    Vdd

    GGG V

    BUT h dd d k t th fl bl ith t ddi

    q [ ] 0

    dVdGGG V

    BUT,wehaveaddedoneunknown,, tothepowerflowproblemwithoutaddingacorrespondingequation,i.e.,inG(,V,)=0,thereareareNequationsbutN+1variables,sothatineq.3,thematrix[G GV,G],hasNrows(thenumberofeqts

    50

    beingdifferentiated)andN+1columns(thenumberofvariablesforwhicheacheqtisdifferentiated). Soweneedanotherequationinordertosolvethis.Whattodo?

  • Theanswertothiscanbefoundbyidentifyinghowwewillbeusingusingthesolution to eqt. 3. Note the solution corresponding to the new point is:solutiontoeqt.3.Notethesolutioncorrespondingtothe new pointis:

    + ')(),1( dipi Here the p indicates

    +

    =

    +

    +

    ''

    )(

    )(

    ),1(

    ),1(

    dVdVV

    i

    i

    pi

    piHerethe p indicatesthatthisisthepredictedpoint.

    d

    Ifwedefine tobethestepsize,thenwecanrewritethisas

    +

    =

    +

    +

    Vd

    dVV i

    i

    pi

    pi

    )(

    )(

    ),1(

    ),1(

    dd 'where

    +

    +

    d

    VdVVipi )()1(

    =

    dVd

    dVd

    ''

    51

    dd

  • Wecalltheupdatevector(withthedifferentials)thetangentvector,denotedbyt.

    =

    dVd

    t d

    Thisvectorprovidesthedirection tomoveinordertofindanewsolution(i+1,p)fromtheoldone(i).We can think of this in terms of the following pictureWecanthinkofthisintermsofthefollowingpicture..

    52

  • Tangentvector

    |V|

    53

  • Note:Inspecifyingadirectionusinganndimensionalvector,onlyn1oftheelementsareconstrained oneelementcanbechosentobeanyvaluewe

    Forexample,considera2dimensionalvector.

    ylike.

    x2

    x2=x1tan(30)so:

    thedirectionisspecifiedby

    Direction=30o

    x

    selectingx1=1,x2=0.5774, thedirectionisspecifiedbyselectingx1=0.5,x2=0.2246.

    Sowecansetoneofthetangentvectorelementstol lik h h h l

    x1g 1 , 2

    54

    anyvaluewelike,thencomputetheotherelements.Thisprovidesuswithourotherequation.

  • Supposethatwesetthekthparameterinthetangentvectortobe1.0.Thenourequationgivenaseq.3canbeaugmentedtobecome:

    0

    dGGG V

    =

    10

    ddV

    GeGG

    k

    V

    where

    ]0...010...00[=ke

    k

    ]0...010...00[

    ke

    Toselect,wewouldhave:k

    55

    ]1...000...00[=keWhichwouldforced=1.

  • Theparameterforwhichweselectkiscalledthecontinuationparameter,anditcanbeanyloadlevel(orgroupofloadlevels),oritcanbeavoltagemagnitude.Initially,whenthesolutionisfarfromthenose,thecontinuationparameteristypically.

    +

    + dd

    i

    i

    pi

    pi

    )(

    )(

    )1(

    ),1(

    +

    =

    +

    +

    ddVVV

    i

    i

    pi

    pi

    )(

    )(

    ),1(

    ),1(

    tyy ipi )(),1( +=+

    Theparameter iscalledthestepsize,anditcanbeselected

    usingvarioustechniques.Thesimplestoftheseistojust

    56

    setittoaconstant.Letstrythisonoursimpleproblemformulatedatthebeginningoftheseslides.

  • HOMEWORK#2,DueMonday,Jan26.1.Usingtheequationsatthebottomofslide7,withthelefthandside(PDandQD)andalsoV1givenbytheproblemstatement,weknoweverythingexcept V2 and theta.

    12212

    2

    1221

    cos||||||

    sin||||

    BVVBVQ

    BVVP

    D

    D

    +=

    =

    exceptV2andtheta.2.Now,justbringtherighthandsideofthese2equationsovertothelefthandside,andyouhavethe2equationsthatcorrespondtoG(y,p)=0.

    3.Solvetheseequationstogetthecorrespondingpowerflowsolution(butyoudonotneedNewtonRaphson todothis youcanjustusetheequationt th b tt f lid 10)atthebottomofslide10).

    4.NowyouneedtoreplacethevaluespecifiedintheequationsforPD(whichis0.4accordingtotheproblemstatement)with0.4*lambda.Thisgivesyoutheequationsintheformofslide49:0=G(theta,V,lambda).Note,however,thatGisreallytwoequations:G1andG2.y q

    5.Nowyouneedtoformulatetheequationsontheslide55.Thisisamatteroftakingderivativesandthenevaluatingthosederivativesatthesolutionthatyouobtainedabove.Note,however,theeachelementinthematrixofslide55actuallyrepresents2elements.Thatis:

    |dG1/dtheta dG1/dV dG1/dlambda||dG2/dtheta dG2/dV dG2/dlambda||0 0 1 |

    6.Evaluateeachoftheabovematrixelementsatthesolutionobtainedin#9and#10willbeexplainedinnext

    step3.7.Thensolvetheseequationsforthetangentvector.Youcandothisbyinvertingtheabovematrix(usematlab oracalculatortodothis)andthenmultiplytherighthandsidebythisinvertedmatrix.

    8 Then take a step using an appropriately chosen step size per the

    pfewslides.

    57

    8.Thentakea step usinganappropriatelychosenstepsizepertheequationonslide56.

    9.Beginningfromyourpredictedpointthatyouidentifiedinstep8of#2a,developequationsforapproacha,solvethem,andidentifytheresultingcorrectedpointintermsofvoltageandpower.10.Repeat#9exceptimplementapproachb.

  • Correctorstep

    Note,however,thatthepredictedpointwillsatisfythepowerflowequationsonlyifthepowerflowequationsarelinear, which they are not.linear,whichtheyarenot.

    Soourpointneedscorrection.Thisleadstothecorrectorstep.

    Therearetwodifferentapproachesforperformingthecorrectorstep.

    Approacha: Perpendicularintersectionmethod.

    Approachb: Parameterizationmethod

    58

  • Approacha:perpendicularintersection

    Here,wefindtheintersectionbetweenthepowerflowequations(thePVcurve)andaplanethatisperpendiculartothe tangent vectorthetangentvector.

    |V| ty(i)

    )(0 )1( +iG (i+1)y(i+1,p)

    ySolvesimultaneously,fory(i+1)

    { } 0),1()1( = ++ tyy pii),(0 )1( += iyG y(i+1)

    The last equation says the inner

    Thelastequationsaystheinner(dot)productof2 vectorsiszero.

    59

    UseNewtonRaphsontosolvetheabove(requiresonly13iterationssincewehavegoodstartingpoint).Ifnoconvergence,cutstepsize()byhalfandrepeat.

  • Approachb:ParameterizationThecorrectorstepisperformedbyidentifyingacontinuationparameter (seeslide62) canbe fixingitatthevaluefoundinthepredictorstep; thensolvingthepowerflowequations.g p q

    |V| t

    (i 1 )

    y(i)

    Solve simultaneously

    y(i+1)

    y(i+1,p)

    0),( )1(

    + iyG

    Solvesimultaneously,fory(i+1)

    Verticalcorrectionscorrespondtoafixedloadcontinuationparameter,horizontal

    0)1(

    =

    + ikycorrectionstoafixedvoltagecontinuationparameter.

    Here,yk(i+1) isthecontinuationparameter;itisthevariableyk(i+1) thatcorrespondstothekthelementdyk(i+1) inthetangentvectorandisusually atfirstbutoftenbecomessomethingelse

    60

    yk g y gasthenosepointisneared.Theparameter isthevaluetowhichyk isset,whichwouldbethe

    valuefoundinthepredictorstep. Asinapproacha,wecansolvethisusingNewtonRaphson.Ifnoconvergence,cutstepsize()byhalfandrepeat.

  • Detectionofcriticalpoint:

    Wewillknowthatwehavesurpassedthecriticalpointwhenthesignofd inthetangentvectorbecomes

    negative,becauseitisatthispointwheretheloadingreachesamaximumpointandbeginstodecrease.

    |V| increasing

    x decreasing

    61

  • Selectionofcontinuationparameter:

    The continuation parameter is selected from among Thecontinuationparameterisselectedfromamong

    andthestatevariablesiny accordingtotheonethatischangingthemostwith.Thiswillbetheparameterthat

    Theonechangingthemostwith ismost sensitive and

    hasthelargestelementinthetangentvector. relativelyunstressedconditions(farfromnose):generally

    relatively stressed conditions (close to nose): generally the

    mostsensitiveandrepresentsavariablethatwewanttobecarefulwithaswelookfor

    relativelystressedconditions(closetonose):generallythevoltagemagnitudeoftheweakestbus,asitchangesagreatdealas ischanged,whenwearecloseto*.

    anothersolution,soitmakessensetokeepitconstant.

    + dipi

    )(

    )(

    )1(

    ),1(

    +

    =

    +

    +

    ddVVV

    i

    i

    pi

    pi

    )(

    )(

    ),1(

    ),1(Typically,ykisgoingtobeoneofthese.

    62

  • Selectionofcontinuationparameter(unstressedcondition):

    The continuation parameter is selected from among Thecontinuationparameterisselectedfromamong

    andthestatevariablesiny accordingtotheonethatischangingthemostwith.Thiswillbetheparameterthat

    hasthelargestelementinthetangentvector. relativelyunstressedconditions(farfromnose):generally.

    > This looks like below

    |V| y(i)

    =>Thislookslikebelow.

    y(i+1)

    y(i+1,p)

    yHere, isfixed.

    63

  • relativelystressedconditions(closetonose):generallythe

    Selectionofcontinuationparameter(stressedcondition):

    y ( ) g yvoltagemagnitudeoftheweakestbus.Here,thevoltagebeingplottedischosenasthecontinuationparameter.

    |V|

    (i+1 p)

    y(i)

    y(i+1)

    y(i+1,p)

    Here,|V|isfixed.

    Essentially,avariableisfixedasaparameter(thevoltage),andtheparameter()istreatedasavariable.Thisprocessofselecting

    64

    p ( ) p g

    avariabletofixissometimescalledtheparameterizationstep.ScottGreene,Ph.D.dissertation,1998.

  • Acentralquestion:

    Howdoesthecontinuationtechniquealleviatetheillconditioning problem experienced by a regular power flow ?conditioningproblemexperiencedbyaregularpowerflow?

    Refer to the solutions procedures for the two corrector approaches.Refertothesolutionsproceduresforthetwocorrectorapproaches.PerpendicularinteresectionSolvesimultaneously,for y(i+1)

    ParameterizationSolvesimultaneously,for y(i+1)

    ),(0 )1( += iyG0

    )( )1(

    + iyG

    fory fory

    { } 0),1()1( = ++ tyy pii 0)1( =

    + iky

    I b th N t R h t l d t bt i th

    65

    Inbothcases,weuseNewtonRaphsontosolve,soweneedtoobtaintheJacobian.ButtheJacobianisslightlydifferentthaninnormalpowerflow.

  • TheJacobianofthepowerflowequationsisjustGy,buttheJacobian of the equations in the two corrector approachesJacobianoftheequationsinthetwocorrectorapproacheswillhaveanextrarowandcolumn.

    GG

    k

    k

    x

    x

    y

    y

    C

    G

    C

    G

    Here,Cistheadditionalequation,andxk istheselectedcontinuationparameter.

    ThisadditionofarowandcolumntotheJacobianhastheff f i i h di i i h h i leffectofimprovingtheconditioningsothatthepreviouslysingularpointscaninfactbeobtained.Inotherwords,theadditionalrowandcolumnprovidesthatthisJacobianis

    i l * h h d d J bi i i l

    66

    nonsingularat* wherethestandardJacobianissingular.

  • Knowncodesforcontinuationmethods:

    1. ClaudioCanizarresatUniversityofWaterloo:CcodeSeehttp://www.power.uwaterloo.ca/~claudio/claudio.htmlUWPFLOWisaresearchtoolthathasbeendesignedtocalculatelocalbifurcationsrelatedtosystemlimitsorsingularitiesinthesystemJacobian.Theprogramalsogeneratesaseriesofoutputfilesthatallowfurtheranalyses,suchastangentvectors,leftandrighteigenvectorsatasingularbifurcationpoint,Jacobians,powerflowsolutionsatdifferentloadinglevels,voltagestabilityindices,etc

    2. IhaveMatlabcodethatdoesit fromScottGreene.3. VenkataramanaAjjarapu(ISU):Fortrancode4. Powertechhasaprogram

    67

  • Calculationofsensitivitiesforvoltageinstabilityanalysis

    Whatisasensitivity?

    Itisthederivativeofanequationwithrespecttoavariable.Itshowshowparameter1changeswithparameter2.

    Itis:exactwhenparameter2dependslinearlyonparameter1.Itisapproximatewhenparameter2dependsnonlinearlyonparameter1,

    butitisquiteaccurateifitisonlyusedclosetowhereitiscalculated.

    68

  • ConsiderthesystemcharacterizedbyG(y).Thenis the sensitivity of the equation G with respect to y

    *yyG

    isthesensitivityoftheequationGwithrespecttoy,evaluatedaty*.

    G(y) SlopeisG/yevaluatedaty*.

    y

    y*yy

    yy

    Itsusefulnessisthatonceitiscalculated,itcanbeusedtoQUICKLYevaluatef(y)fromG(y)G(y*)+(G/y|y*)y,

    69

    BUTONLYASLONGASyISCLOSETOy*.

  • Consider parameter p: we desire to obtain the sensitivity ofConsiderparameterp:wedesiretoobtainthesensitivityofG(y,p)top.Typicalparameterspwouldbeabusload,abuspowerfactor,oragenerationlevel.

    Veryimportanttodistinguishbetween voltagesensitivities

    voltageinstabilitysensitivities

    Whatisthedifferencebetweenthemintermsof whattheymean? how to compute them ? howtocomputethem?

    70

  • Sensitivities for bus voltageSensitivitiesforbusvoltage

    Thesewecomputeatthecurrentoperatingcondition.

    Foragivencontinuationparameter,theycanbeobtainedfrom the first predictor step in the continuation power flowfromthefirst predictorstepinthecontinuationpowerflow.

    |V|

    dRecallthatthisprovidesuswith

    =d

    dVtthetangentvector,givenby:

    Th t t t i th t f

    Thetangentvectoristhevectorofsensitivitieswithrespecttoasmallchangein,sotheportionofthevector

    71

    Currentoperatingpoint

    designatedasdV isexactlythevoltagesensitivities.

  • Sensitivitiesforvoltageinstability

    Here it is important to realize that the measure of voltage instabilityHere,itisimportanttorealizethatthemeasureofvoltageinstability,theloadingmargin,dependsonanoperatingcondition

    differentfromthepresentoperatingcondition.

    Theimplicationisthatwemustlookatsensitivitiesof the loading margin not of the voltageoftheloadingmargin,notofthevoltage.

    |V|

    Sowewantthesensitivitiesevaluated at this point, i.e.,

    Loadingmargin

    evaluatedatthispoint,i.e.,theSNBpoint.

    72

    Currentoperatingpoint

  • DerivationofloadingmarginsensitivitiesatSNBpoint.

    LetS bethevectorofrealandreactiveloadpowers,d k b h di i f l d iandk bethedirectionofloadincrease.

    kSS 0 +=Also,defineLastheloadingmargin(ascalar),sothattheloadpowersresultingintheSNBpointaregivenby:

    kSS L0 +=

    WedesiretofindthesensitivityoftheloadingmarginLtoah i th t W d t thi iti it b L

    0

    73

    changeintheparameterp.WedenotethissensitivitybyLp.

  • ConsiderthesystemcharacterizedbyWewantthesensitivityofthe loading margin to p.

    G(y,S,p)=0

    Assumption:thesystemhasaSNBat(y*,S*,p*),i.e.,:

    theloadingmargintop.

    p y (y , , p ), ,

    1.G(y*,S*,p*)=0 (anequilibriumpoint)

    2.Gy(y*,S*,p*)issingular(zeroeigenvalue),andw isalefteigenvectorofGy(y*,S*,p*),correspondingtothezeroeigenvaluesothat(bydefinitionofthelefteigenvector)

    wT Gy(y*,S*,p*)=0wT=0y(y , , p )NotethatGy(y*,S*,p*),beingsingular,cannotbeinverted,butwecancomputeit(thatis,Gy(y*,S*,p*)),anditseigenvectors.

    74

    3.wT GS(y*,S*,p*) 0

  • Thepoints(y,S,p)satisfyingnumbers1and2correspondtoSNBpoints,

    andwecanobtainacurveofsuchpointsbyvaryingpaboutitsnominalvaluep*.

    LinearizationofthiscurveabouttheSNBpointresultsin

    0++ GSGG 0***

    =++ pGSGyG pSywherethenotation|* indicatesthederivativesareevaluatedattheSNBpoint.

    P lti li ti b th l ft i t lt iPremultiplicationbythelefteigenvectorw resultsin:

    0***

    =++ pGwSGwyGw pT

    ST

    yT

    75By#2onthepreviousslide,thefirsttermintheaboveiszero.So...

  • 0=+ pGwSGw TST Eqt.*0

    **+ pGwSGw pS

    Nowrecalltherelationoftheloadpowerstotheloadingmargin.

    kLSkSS

    =+= L0

    kLS =Substitutingthisexpressionfortheloadpowersintoeqt.*,

    pGwkGwLpGwkLGw pTT

    pTT ==+

    ****0

    And the loading margin sensitivity to parameter p is:

    GwLL pT

    *

    =

    =

    Andtheloadingmarginsensitivitytoparameterpis:Sopmaybe,forexample,realpowerloadatabus(todetect the most effective load

    76

    kGwpL

    STp

    *

    *=

    = detectthemosteffectiveload

    shedding)orreactivepoweratabus(todeterminewheretositeashuntcap).

  • SomecommentsaboutcomputingLpGw

    LT

    pT

    p*

    *

    =

    ThelefteigenvectorwmustbecomputedfortheJacobian G evaluated at the SNB point

    kGw STp

    *

    *

    JacobianGyevaluatedattheSNBpoint.

    Youonlyneedtocomputew andGS once,independentofhow many sensitivities you need. Methods to compute the left eigenvectorhowmanysensitivitiesyouneed.Methodstocomputethelefteigenvectorw includeQRorinverseiteration.

    Thevectorofderivativeswithrespecttotheparameterp,whichisGp, isp,typicallysparse.Forexample,ifyouwanttocomputethesensitivitytoabuspower,thentherewouldbeonly1nonzeroentryinGp.

    Thematrixofderivativeswithrespecttotheloadpowers,GS,usingconstantpowerloadmodels,isadiagonalmatrixwithonesintherowscorrespondingtoloadbuses.ThisisbecauseaparticularloadvariablewouldONLYoccuri th ti di t th b h it i l t d d f th

    77

    intheequationcorrespondingtothebuswhereitislocated,andfortheseequations,thesevariablesappearlinearlywith1ascoefficient.

  • Some comments about extensionsSomecommentsaboutextensions

    MultiplesensitivitiesmaybecomputedusingGp (amatrix)insteadofGp (avector).Inthiscase,theresultisavector.

    kGw

    GwL T

    pT

    p*

    *

    =

    kGw S * Gettingmultiplesensitivitiescanbeespeciallyattractivewhenwewanttofindthesensitivitytoseveralsimultaneouschanges.Onegoodexampleistofindthesensitivitytochangesinmultipleloads.

    AspecialcaseofthisistofindthesensitivitytochangesatALLloads,whichisl l l k h

    A iti it t li t b bt i d b l tti t i l t

    verytypical,givenaparticularloadingdirectionk.Then

    =i

    pi iLkL

    *loads all

    78

    Asensitivitytoalineoutagemaybeobtainedbylettingp containelementscorrespondingtotheoutagedlineparameters.

  • Somecommentsaboutextensions

    A iti it t li t b bt i d b l tti t i l t Asensitivitytoalineoutagemaybeobtainedbylettingp containelementscorrespondingtotheoutagedlineparameters:R(seriesconductance),X(seriesreactance),andB(linecharging).Thenusethemultipleparameterapproach.

    kGw

    GwL

    T

    pT

    p*

    *

    =

    Zpq=R+jX

    kGw S *

    pLL p = *

    p q

    jB jBpp * Here,p =[RXB]T.

    Notethatp isNOTSMALL!ThereforeLmayhaveconsiderableerror.

    Forthatreason,thisoneneedstobecarefulaboutusingthisapproachtocomputetheactualloadingmarginsfollowingcontingencies.

    79

    However,itcertainlycanbeusedforRANKINGcontingencies.Onemightconsiderhavingaquickapproximationandalongexactriskcalculation.

  • Some comments about alternatives

    Greene,etal.,alsoproposeaquadraticsensitivity whichrequires calculation of a second order term L This is used

    Somecommentsaboutalternatives

    requirescalculationofasecondordertermLpp .Thisisusedtogetherwiththelinearsensitivityaccordingto

    2)(1 LLL 2*

    *)(

    2pLpLL ppp +=

    Itrequiressignificantlymorecomputationbutcanprovidegreateraccuracy over a larger range of paccuracyoveralargerrangeofp.

    InvariantSubspaceParameticSensitivity(ISPS)byAjjarapu.Advantages:

    basedondifferentialalgebraicmodel

    80

    g providessensitivitiesatANYpointonthePVcurve

  • voltageInrush