Nonproportionality Studies in Single Crystal Scintillators: Towards Improved Energy Resolution for...

20
 M. Gascón, S. Lam, R. Gaumé, R. Feigelson   AOCL                      Stanford University                                    Sept. 26th, 2011   1 n n Nonproportionality Studies in Single Crystal Scintillators: Towards Improved Energy Resolution for Nuclear and Radiological Detectors M. Gascón, S. Lam, R. Gaume,  R. Feigelson  Dept. of Material Science & Engineering, Stanford University                                               Sept. 26 Th  2011  

Transcript of Nonproportionality Studies in Single Crystal Scintillators: Towards Improved Energy Resolution for...

Page 1: Nonproportionality Studies in Single Crystal Scintillators: Towards Improved Energy Resolution for Nuclear and Radiological Detectors

 M. Gascón, S. Lam, R. Gaumé, R. Feigelson   AOCL                      Stanford University                                    Sept. 26th, 2011    1

nn

Nonproportionality Studies in Single Crystal Scintillators: 

Towards Improved Energy Resolution for Nuclear and Radiological Detectors

M. Gascón, S. Lam, R. Gaume,  R. Feigelson

 Dept. of Material Science & Engineering, Stanford University

                                              Sept. 26Th,  2011  

Page 2: Nonproportionality Studies in Single Crystal Scintillators: Towards Improved Energy Resolution for Nuclear and Radiological Detectors

 M. Gascón, S. Lam, R. Gaumé, R. Feigelson   AOCL                      Stanford University                                    Sept. 26th, 2011    2

Overview

Comments

  Motivation & background

  Modeling

  Temperature and Pressure studies

  Conclusions

Page 3: Nonproportionality Studies in Single Crystal Scintillators: Towards Improved Energy Resolution for Nuclear and Radiological Detectors

 M. Gascón, S. Lam, R. Gaumé, R. Feigelson   AOCL                      Stanford University                                    Sept. 26th, 2011    3

Motivation: Scintillator applications

Comments

Petroleum Engineering

Medical Imaging

Scintillators

High­Energy Physics

Nuclear Radiation Detection

Page 4: Nonproportionality Studies in Single Crystal Scintillators: Towards Improved Energy Resolution for Nuclear and Radiological Detectors

 M. Gascón, S. Lam, R. Gaumé, R. Feigelson   AOCL                      Stanford University                                    Sept. 26th, 2011    4

Motivation: scintillators history

M. J. Weber, J. Lumin. 100 (2002) 35

SrI2:Eu 1968/2008LSO:Ce,Ca 2007LuI3:Ce 2003LaBr3:Ce 2001LYSO:Ce 2001LuYAP:Ce 2001LaCl3:Ce 2000LuAP:Ce 1994LSO:Ce 1982

Invention of the PMT

CWE van Eijk, SCINT 2011

Robert Hofstadter

Page 5: Nonproportionality Studies in Single Crystal Scintillators: Towards Improved Energy Resolution for Nuclear and Radiological Detectors

 M. Gascón, S. Lam, R. Gaumé, R. Feigelson   AOCL                      Stanford University                                    Sept. 26th, 2011    5

Motivation: Energy resolution

CWE van Eijk, SCINT 2011

Page 6: Nonproportionality Studies in Single Crystal Scintillators: Towards Improved Energy Resolution for Nuclear and Radiological Detectors

 M. Gascón, S. Lam, R. Gaumé, R. Feigelson   AOCL                      Stanford University                                    Sept. 26th, 2011    6

Motivation: Nonproportionality in light yield

Light yield (relative to 662 keV)

Page 7: Nonproportionality Studies in Single Crystal Scintillators: Towards Improved Energy Resolution for Nuclear and Radiological Detectors

 M. Gascón, S. Lam, R. Gaumé, R. Feigelson   AOCL                      Stanford University                                    Sept. 26th, 2011    7

Motivation: Nonproportionality in light yield

Light yield (relative to 662 keV)

Page 8: Nonproportionality Studies in Single Crystal Scintillators: Towards Improved Energy Resolution for Nuclear and Radiological Detectors

 M. Gascón, S. Lam, R. Gaumé, R. Feigelson   AOCL                      Stanford University                                    Sept. 26th, 2011    8

Motivation: Temperature studies

Page 9: Nonproportionality Studies in Single Crystal Scintillators: Towards Improved Energy Resolution for Nuclear and Radiological Detectors

 M. Gascón, S. Lam, R. Gaumé, R. Feigelson   AOCL                      Stanford University                                    Sept. 26th, 2011    9

Modeling: Pressure

DSSSD

Large Nonproportionality

LuAlO3

conduction band

valence band

Small Nonproportionality

K2LaCl5

valence band

conduction band

dip: ↑ NP no dip: ↓ NP

Difference in charge carrier mobilities.

Page 10: Nonproportionality Studies in Single Crystal Scintillators: Towards Improved Energy Resolution for Nuclear and Radiological Detectors

 M. Gascón, S. Lam, R. Gaumé, R. Feigelson   AOCL                      Stanford University                                    Sept. 26th, 2011    10

Light Yield Nonproportionality: Modeling

DSSSD

Observation of band structure of YAlO3 (YAP) and LuAlO3 (LuAP). YAP and LuAP have the same crystal structure, but exhibit very different nonproportionality.

good proportionality poor proportionality

Similar band dispersion except for the presence of “dip” in conduction band minimum (CBM) of LuAP as indicated with the arrow

vale

nce

band

X Y

ZU R

T

S

1st BrillouinZone

Page 11: Nonproportionality Studies in Single Crystal Scintillators: Towards Improved Energy Resolution for Nuclear and Radiological Detectors

 M. Gascón, S. Lam, R. Gaumé, R. Feigelson   AOCL                      Stanford University                                    Sept. 26th, 2011    11

Motivation: Pressure experiment

Mobilities of charge carriers better matched

Page 12: Nonproportionality Studies in Single Crystal Scintillators: Towards Improved Energy Resolution for Nuclear and Radiological Detectors

 M. Gascón, S. Lam, R. Gaumé, R. Feigelson   AOCL                      Stanford University                                    Sept. 26th, 2011    12

Isostatic pressure

http://harwoodeng.com/

Specifications: Pressure range: 0<Piso<1 GPa Large sample volume: >5 cm3 Operated at ambient temperature Compatible with hygroscopic materials Good pressure stability

Page 13: Nonproportionality Studies in Single Crystal Scintillators: Towards Improved Energy Resolution for Nuclear and Radiological Detectors

 M. Gascón, S. Lam, R. Gaumé, R. Feigelson   AOCL                      Stanford University                                    Sept. 26th, 2011    13

Facilities

High pressure studies:  Eu:SrI2, BGO, Tl: CsI,  LSO

Page 14: Nonproportionality Studies in Single Crystal Scintillators: Towards Improved Energy Resolution for Nuclear and Radiological Detectors

 M. Gascón, S. Lam, R. Gaumé, R. Feigelson   AOCL                      Stanford University                                    Sept. 26th, 2011    14

Isostatic pressure

Recall assumptions:

Pressure stabilityPressure dependence 

of optical coupling scintillator with window & reflector

Light output correction neededGood pressure stability |DP/P| < 1% after 1 hr

Page 15: Nonproportionality Studies in Single Crystal Scintillators: Towards Improved Energy Resolution for Nuclear and Radiological Detectors

 M. Gascón, S. Lam, R. Gaumé, R. Feigelson   AOCL                      Stanford University                                    Sept. 26th, 2011    15

Isostatic pressure

  There is an increase in Light Output up to 50% The optical coupling contribution was 

subtracted

Page 16: Nonproportionality Studies in Single Crystal Scintillators: Towards Improved Energy Resolution for Nuclear and Radiological Detectors

 M. Gascón, S. Lam, R. Gaumé, R. Feigelson   AOCL                      Stanford University                                    Sept. 26th, 2011    16

 Conclusions

 Adequate detection and identification of radioactive material require 

scintillators with good light yield proportionality and energy resolution

 Light yield proportionality requires an effective mass ratio of 1 (well 

matched charge carrier mobilities)

 Nonproportionality and carrier mobility can be probed through 

application of high pressure and low temperature

This program is funded by the USA Domestic Nuclear Detection Office (DNDO) and Dept. of Homeland Security (DHS).

Page 17: Nonproportionality Studies in Single Crystal Scintillators: Towards Improved Energy Resolution for Nuclear and Radiological Detectors

 M. Gascón, S. Lam, R. Gaumé, R. Feigelson   AOCL                      Stanford University                                    Sept. 26th, 2011    17

Recall assumptions:

Page 18: Nonproportionality Studies in Single Crystal Scintillators: Towards Improved Energy Resolution for Nuclear and Radiological Detectors

 M. Gascón, S. Lam, R. Gaumé, R. Feigelson   AOCL                      Stanford University                                    Sept. 26th, 2011    18

Decay time

 Pulse were inverted   N Pulses were added after rise time correction Pulses with amplitudes bigger 0.4 (normalized) 

before ­0.5 us and after 2.5 us were discarded to avoid pile up.   Pulses with amplitudes below 1 mV were discarded.

Comments

Page 19: Nonproportionality Studies in Single Crystal Scintillators: Towards Improved Energy Resolution for Nuclear and Radiological Detectors

 M. Gascón, S. Lam, R. Gaumé, R. Feigelson   AOCL                      Stanford University                                    Sept. 26th, 2011    19

Non Proportionality

Radioactive sources  and energies

 Cs­137..... 32 keV and 662 keV Ba­133..... 31 keV, 81 keV, 302 keV, 356 keV  Am­241.... 26 keV and 59.5 keV Cd­109..... 22 keV and 88 keV Co­57 …...122 keV Na­22........511 keV and 1274 keV Mn­54.......835 keV Eu­152......41 keV, 121 keV and 1408 keV

Cs-137

Ba-133

Am-241 Cd-109

Comments Fitting an extra peak can displace 

the peaks  5­10 channels  which means a huge change in NP at low energies

Page 20: Nonproportionality Studies in Single Crystal Scintillators: Towards Improved Energy Resolution for Nuclear and Radiological Detectors

 M. Gascón, S. Lam, R. Gaumé, R. Feigelson   AOCL                      Stanford University                                    Sept. 26th, 2011    20

Non Proportionality

Radioactive sources  and energies

 Cs­137..... 32 keV and 662 keV Ba­133..... 31 keV, 81 keV, 302 keV, 356 keV  Am­241.... 26 keV and 59.5 keV Cd­109..... 22 keV and 88 keV Co­57 …...122 keV Na­22........511 keV and 1274 keV Mn­54.......835 keV Eu­152......41 keV, 121 keV and 1408 keV

Co-57

Na-22

Mn-54 Eu-152

Comments  Co­57 has an additional peak below 122 

keV which is not in the tables Na and Mn are easily fit­able Eu has 41, 121 and 1408 are easily fit­able