Nonparametric Bayesian Statistics...•Bayesian statistics that is not parametric (wait!) •...

128
Nonparametric Bayesian Statistics Tamara Broderick ITT Career Development Assistant Professor Electrical Engineering & Computer Science MIT

Transcript of Nonparametric Bayesian Statistics...•Bayesian statistics that is not parametric (wait!) •...

Page 1: Nonparametric Bayesian Statistics...•Bayesian statistics that is not parametric (wait!) • Bayesian • Not parametric (i.e. not finite parameter, unbounded/ growing/infinite

Nonparametric Bayesian Statistics

Tamara BroderickITT Career Development Assistant Professor Electrical Engineering & Computer Science

MIT

Page 2: Nonparametric Bayesian Statistics...•Bayesian statistics that is not parametric (wait!) • Bayesian • Not parametric (i.e. not finite parameter, unbounded/ growing/infinite

• Bayesian statistics that is not parametric • Bayesian

!

• Not parametric (i.e. not finite parameter, unbounded/growing/infinite number of parameters)

Nonparametric Bayes

P(parameters|data) / P(data|parameters)P(parameters)

1

Page 3: Nonparametric Bayesian Statistics...•Bayesian statistics that is not parametric (wait!) • Bayesian • Not parametric (i.e. not finite parameter, unbounded/ growing/infinite

• Bayesian statistics that is not parametric • Bayesian

!

• Not parametric (i.e. not finite parameter, unbounded/growing/infinite number of parameters)

Nonparametric Bayes

P(parameters|data) / P(data|parameters)P(parameters)

1

Page 4: Nonparametric Bayesian Statistics...•Bayesian statistics that is not parametric (wait!) • Bayesian • Not parametric (i.e. not finite parameter, unbounded/ growing/infinite

• Bayesian statistics that is not parametric (wait!) • Bayesian

!

• Not parametric (i.e. not finite parameter, unbounded/growing/infinite number of parameters)

Nonparametric Bayes

P(parameters|data) / P(data|parameters)P(parameters)

1

Page 5: Nonparametric Bayesian Statistics...•Bayesian statistics that is not parametric (wait!) • Bayesian • Not parametric (i.e. not finite parameter, unbounded/ growing/infinite

• Bayesian statistics that is not parametric • Bayesian

!

• Not parametric (i.e. not finite parameter, unbounded/growing/infinite number of parameters)

Nonparametric Bayes

P(parameters|data) / P(data|parameters)P(parameters)

1

Page 6: Nonparametric Bayesian Statistics...•Bayesian statistics that is not parametric (wait!) • Bayesian • Not parametric (i.e. not finite parameter, unbounded/ growing/infinite

• Bayesian statistics that is not parametric • Bayesian

!

• Not parametric (i.e. not finite parameter, unbounded/growing/infinite number of parameters)

Nonparametric Bayes

P(parameters|data) / P(data|parameters)P(parameters)

1

Page 7: Nonparametric Bayesian Statistics...•Bayesian statistics that is not parametric (wait!) • Bayesian • Not parametric (i.e. not finite parameter, unbounded/ growing/infinite

• Bayesian statistics that is not parametric • Bayesian

!

• Not parametric (i.e. not finite parameter, unbounded/growing/infinite number of parameters)

Nonparametric Bayes

P(parameters|data) / P(data|parameters)P(parameters)

1

Page 8: Nonparametric Bayesian Statistics...•Bayesian statistics that is not parametric (wait!) • Bayesian • Not parametric (i.e. not finite parameter, unbounded/ growing/infinite

• Bayesian statistics that is not parametric • Bayesian

!

• Not parametric (i.e. not finite parameter, unbounded/growing/infinite number of parameters)

Nonparametric Bayes

P(parameters|data) / P(data|parameters)P(parameters)

[wikipedia.org]

1

Page 9: Nonparametric Bayesian Statistics...•Bayesian statistics that is not parametric (wait!) • Bayesian • Not parametric (i.e. not finite parameter, unbounded/ growing/infinite

• Bayesian statistics that is not parametric • Bayesian

!

• Not parametric (i.e. not finite parameter, unbounded/growing/infinite number of parameters)

Nonparametric Bayes

P(parameters|data) / P(data|parameters)P(parameters)

[wikipedia.org]

“Wikipedia phenomenon”

1

Page 10: Nonparametric Bayesian Statistics...•Bayesian statistics that is not parametric (wait!) • Bayesian • Not parametric (i.e. not finite parameter, unbounded/ growing/infinite

• Bayesian statistics that is not parametric • Bayesian

!

• Not parametric (i.e. not finite parameter, unbounded/growing/infinite number of parameters)

Nonparametric Bayes

P(parameters|data) / P(data|parameters)P(parameters)

[wikipedia.org]

1

Page 11: Nonparametric Bayesian Statistics...•Bayesian statistics that is not parametric (wait!) • Bayesian • Not parametric (i.e. not finite parameter, unbounded/ growing/infinite

• Bayesian statistics that is not parametric • Bayesian

!

• Not parametric (i.e. not finite parameter, unbounded/growing/infinite number of parameters)

Nonparametric Bayes

P(parameters|data) / P(data|parameters)P(parameters)

[wikipedia.org]

[Ed Bowlby, NOAA]

1

Page 12: Nonparametric Bayesian Statistics...•Bayesian statistics that is not parametric (wait!) • Bayesian • Not parametric (i.e. not finite parameter, unbounded/ growing/infinite

• Bayesian statistics that is not parametric • Bayesian

!

• Not parametric (i.e. not finite parameter, unbounded/growing/infinite number of parameters)

Nonparametric Bayes

P(parameters|data) / P(data|parameters)P(parameters)

[wikipedia.org]

[Ed Bowlby, NOAA]

1

[Escobar, West 1995; Ghosal et al 1999]

Page 13: Nonparametric Bayesian Statistics...•Bayesian statistics that is not parametric (wait!) • Bayesian • Not parametric (i.e. not finite parameter, unbounded/ growing/infinite

• Bayesian statistics that is not parametric • Bayesian

!

• Not parametric (i.e. not finite parameter, unbounded/growing/infinite number of parameters)

Nonparametric Bayes

P(parameters|data) / P(data|parameters)P(parameters)

[wikipedia.org]

[Ed Bowlby, NOAA]

[Arjas, Gasbarra 1994]

1

[Escobar, West 1995; Ghosal et al 1999]

Page 14: Nonparametric Bayesian Statistics...•Bayesian statistics that is not parametric (wait!) • Bayesian • Not parametric (i.e. not finite parameter, unbounded/ growing/infinite

• Bayesian statistics that is not parametric • Bayesian

!

• Not parametric (i.e. not finite parameter, unbounded/growing/infinite number of parameters)

Nonparametric Bayes

P(parameters|data) / P(data|parameters)P(parameters)

[wikipedia.org]

[Ed Bowlby, NOAA]

[Arjas, Gasbarra 1994]

1

[Fox et al 2014]

[Escobar, West 1995; Ghosal et al 1999]

Page 15: Nonparametric Bayesian Statistics...•Bayesian statistics that is not parametric (wait!) • Bayesian • Not parametric (i.e. not finite parameter, unbounded/ growing/infinite

• Bayesian statistics that is not parametric • Bayesian

!

• Not parametric (i.e. not finite parameter, unbounded/growing/infinite number of parameters)

Nonparametric Bayes

P(parameters|data) / P(data|parameters)P(parameters)

[wikipedia.org]

[Ed Bowlby, NOAA]

[Arjas, Gasbarra 1994]

1

[Ewens, 1972; Hartl, Clark 2003]

[Fox et al 2014]

[Escobar, West 1995; Ghosal et al 1999]

Page 16: Nonparametric Bayesian Statistics...•Bayesian statistics that is not parametric (wait!) • Bayesian • Not parametric (i.e. not finite parameter, unbounded/ growing/infinite

• Bayesian statistics that is not parametric • Bayesian

!

• Not parametric (i.e. not finite parameter, unbounded/growing/infinite number of parameters)

Nonparametric Bayes

P(parameters|data) / P(data|parameters)P(parameters)

[wikipedia.org]

[Ed Bowlby, NOAA]

[Arjas, Gasbarra 1994]

[Saria et al

2010]1

[Ewens, 1972; Hartl, Clark 2003]

[Fox et al 2014]

[Escobar, West 1995; Ghosal et al 1999]

Page 17: Nonparametric Bayesian Statistics...•Bayesian statistics that is not parametric (wait!) • Bayesian • Not parametric (i.e. not finite parameter, unbounded/ growing/infinite

• Bayesian statistics that is not parametric • Bayesian

!

• Not parametric (i.e. not finite parameter, unbounded/growing/infinite number of parameters)

Nonparametric Bayes

P(parameters|data) / P(data|parameters)P(parameters)

[wikipedia.org]

[Ed Bowlby, NOAA]

[Arjas, Gasbarra 1994]

1

[Saria et al

2010]

[Ewens, 1972; Hartl, Clark 2003]

[Lloyd et al 2012; Miller et al 2010]

[Fox et al 2014]

[Escobar, West 1995; Ghosal et al 1999]

Page 18: Nonparametric Bayesian Statistics...•Bayesian statistics that is not parametric (wait!) • Bayesian • Not parametric (i.e. not finite parameter, unbounded/ growing/infinite

• Bayesian statistics that is not parametric • Bayesian

!

• Not parametric (i.e. not finite parameter, unbounded/growing/infinite number of parameters)

Nonparametric Bayes

P(parameters|data) / P(data|parameters)P(parameters)

[wikipedia.org]

[Ed Bowlby, NOAA]

[Sudderth, Jordan 2009]

[Lloyd et al 2012; Miller et al 2010]

[Arjas, Gasbarra 1994]

[Fox et al 2014]

1

[Escobar, West 1995; Ghosal et al 1999]

[Saria et al

2010]

[Ewens 1972; Hartl, Clark 2003]

Page 19: Nonparametric Bayesian Statistics...•Bayesian statistics that is not parametric (wait!) • Bayesian • Not parametric (i.e. not finite parameter, unbounded/ growing/infinite

• A theoretical motivation: De Finetti’s Theorem • A data sequence is infinitely exchangeable if the

distribution of any N data points doesn’t change when permuted:

• De Finetti’s Theorem (roughly): A sequence is infinitely exchangeable if and only if, for all N and some distribution P: !

• Motivates: • Parameters and likelihoods • Priors • “Nonparametric Bayesian” priors

Nonparametric Bayes

p(X1, . . . , XN ) = p(X�(1), . . . , X�(N))

X1, X2, . . .

2

Page 20: Nonparametric Bayesian Statistics...•Bayesian statistics that is not parametric (wait!) • Bayesian • Not parametric (i.e. not finite parameter, unbounded/ growing/infinite

• A theoretical motivation: De Finetti’s Theorem • A data sequence is infinitely exchangeable if the

distribution of any N data points doesn’t change when permuted:

• De Finetti’s Theorem (roughly): A sequence is infinitely exchangeable if and only if, for all N and some distribution P: !

• Motivates: • Parameters and likelihoods • Priors • “Nonparametric Bayesian” priors

Nonparametric Bayes

p(X1, . . . , XN ) = p(X�(1), . . . , X�(N))

X1, X2, . . .

2

Page 21: Nonparametric Bayesian Statistics...•Bayesian statistics that is not parametric (wait!) • Bayesian • Not parametric (i.e. not finite parameter, unbounded/ growing/infinite

• A theoretical motivation: De Finetti’s Theorem • A data sequence is infinitely exchangeable if the

distribution of any N data points doesn’t change when permuted:

• De Finetti’s Theorem (roughly): A sequence is infinitely exchangeable if and only if, for all N and some distribution P: !

• Motivates: • Parameters and likelihoods • Priors • “Nonparametric Bayesian” priors

Nonparametric Bayes

p(X1, . . . , XN ) = p(X�(1), . . . , X�(N))

X1, X2, . . .

[Hewitt, Savage 1955; Aldous 1983]2

Page 22: Nonparametric Bayesian Statistics...•Bayesian statistics that is not parametric (wait!) • Bayesian • Not parametric (i.e. not finite parameter, unbounded/ growing/infinite

• A theoretical motivation: De Finetti’s Theorem • A data sequence is infinitely exchangeable if the

distribution of any N data points doesn’t change when permuted:

• De Finetti’s Theorem (roughly): A sequence is infinitely exchangeable if and only if, for all N and some distribution P: !

• Motivates: • Parameters and likelihoods • Priors • “Nonparametric Bayesian” priors

Nonparametric Bayes

p(X1, . . . , XN ) = p(X�(1), . . . , X�(N))

X1, X2, . . .

p(X1, . . . , XN ) =

Z

NY

n=1

p(Xn|✓)P (d✓)

[Hewitt, Savage 1955; Aldous 1983]2

Page 23: Nonparametric Bayesian Statistics...•Bayesian statistics that is not parametric (wait!) • Bayesian • Not parametric (i.e. not finite parameter, unbounded/ growing/infinite

• A theoretical motivation: De Finetti’s Theorem • A data sequence is infinitely exchangeable if the

distribution of any N data points doesn’t change when permuted:

• De Finetti’s Theorem (roughly): A sequence is infinitely exchangeable if and only if, for all N and some distribution P: !

• Motivates: • Parameters and likelihoods • Priors • “Nonparametric Bayesian” priors

Nonparametric Bayes

p(X1, . . . , XN ) = p(X�(1), . . . , X�(N))

p(X1, . . . , XN ) =

Z

NY

n=1

p(Xn|✓)P (d✓)

X1, X2, . . .

[Hewitt, Savage 1955; Aldous 1983]2

Page 24: Nonparametric Bayesian Statistics...•Bayesian statistics that is not parametric (wait!) • Bayesian • Not parametric (i.e. not finite parameter, unbounded/ growing/infinite

• A theoretical motivation: De Finetti’s Theorem • A data sequence is infinitely exchangeable if the

distribution of any N data points doesn’t change when permuted:

• De Finetti’s Theorem (roughly): A sequence is infinitely exchangeable if and only if, for all N and some distribution P: !

• Motivates: • Parameters and likelihoods • Priors • “Nonparametric Bayesian” priors

Nonparametric Bayes

p(X1, . . . , XN ) = p(X�(1), . . . , X�(N))

p(X1, . . . , XN ) =

Z

NY

n=1

p(Xn|✓)P (d✓)

X1, X2, . . .

[Hewitt, Savage 1955; Aldous 1983]2

Page 25: Nonparametric Bayesian Statistics...•Bayesian statistics that is not parametric (wait!) • Bayesian • Not parametric (i.e. not finite parameter, unbounded/ growing/infinite

• A theoretical motivation: De Finetti’s Theorem • A data sequence is infinitely exchangeable if the

distribution of any N data points doesn’t change when permuted:

• De Finetti’s Theorem (roughly): A sequence is infinitely exchangeable if and only if, for all N and some distribution P: !

• Motivates: • Parameters and likelihoods • Priors • “Nonparametric Bayesian” priors

Nonparametric Bayes

p(X1, . . . , XN ) = p(X�(1), . . . , X�(N))

p(X1, . . . , XN ) =

Z

NY

n=1

p(Xn|✓)P (d✓)

X1, X2, . . .

[Hewitt, Savage 1955; Aldous 1983]2

Page 26: Nonparametric Bayesian Statistics...•Bayesian statistics that is not parametric (wait!) • Bayesian • Not parametric (i.e. not finite parameter, unbounded/ growing/infinite

• A theoretical motivation: De Finetti’s Theorem • A data sequence is infinitely exchangeable if the

distribution of any N data points doesn’t change when permuted:

• De Finetti’s Theorem (roughly): A sequence is infinitely exchangeable if and only if, for all N and some distribution P: !

• Motivates: • Parameters and likelihoods • Priors • “Nonparametric Bayesian” priors

Nonparametric Bayes

p(X1, . . . , XN ) = p(X�(1), . . . , X�(N))

p(X1, . . . , XN ) =

Z

NY

n=1

p(Xn|✓)P (d✓)

X1, X2, . . .

[Hewitt, Savage 1955; Aldous 1983]2

Page 27: Nonparametric Bayesian Statistics...•Bayesian statistics that is not parametric (wait!) • Bayesian • Not parametric (i.e. not finite parameter, unbounded/ growing/infinite

Outline• Dirichlet process

• Background for intuition • Generative model • What does a growing/infinite number of parameters

really mean (in Nonparametric Bayes)? • Chinese restaurant process • Inference • Venture further into the wild world of Nonparametric

Bayesian statistics

3

Page 28: Nonparametric Bayesian Statistics...•Bayesian statistics that is not parametric (wait!) • Bayesian • Not parametric (i.e. not finite parameter, unbounded/ growing/infinite

Outline• Dirichlet process

• Background for intuition • Generative model • What does a growing/infinite number of parameters

really mean (in Nonparametric Bayes)? • Chinese restaurant process • Inference • Venture further into the wild world of Nonparametric

Bayesian statistics

3

Page 29: Nonparametric Bayesian Statistics...•Bayesian statistics that is not parametric (wait!) • Bayesian • Not parametric (i.e. not finite parameter, unbounded/ growing/infinite

Outline• Dirichlet process

• Background for intuition • Generative model • What does a growing/infinite number of parameters

really mean (in Nonparametric Bayes)? • Chinese restaurant process • Inference • Venture further into the wild world of Nonparametric

Bayesian statistics

3

Page 30: Nonparametric Bayesian Statistics...•Bayesian statistics that is not parametric (wait!) • Bayesian • Not parametric (i.e. not finite parameter, unbounded/ growing/infinite

Outline• Dirichlet process

• Background for intuition • Generative model • What does a growing/infinite number of parameters

really mean (in Nonparametric Bayes)? • Chinese restaurant process • Inference • Venture further into the wild world of Nonparametric

Bayesian statistics

3

Page 31: Nonparametric Bayesian Statistics...•Bayesian statistics that is not parametric (wait!) • Bayesian • Not parametric (i.e. not finite parameter, unbounded/ growing/infinite

Outline• Dirichlet process

• Background for intuition • Generative model • What does a growing/infinite number of parameters

really mean (in Nonparametric Bayes)? • Chinese restaurant process • Inference • Venture further into the wild world of Nonparametric

Bayesian statistics

3

Page 32: Nonparametric Bayesian Statistics...•Bayesian statistics that is not parametric (wait!) • Bayesian • Not parametric (i.e. not finite parameter, unbounded/ growing/infinite

Outline• Dirichlet process

• Background for intuition • Generative model • What does a growing/infinite number of parameters

really mean (in Nonparametric Bayes)? • Chinese restaurant process • Inference • Venture further into the wild world of Nonparametric

Bayesian statistics

3

Page 33: Nonparametric Bayesian Statistics...•Bayesian statistics that is not parametric (wait!) • Bayesian • Not parametric (i.e. not finite parameter, unbounded/ growing/infinite

Outline• Dirichlet process

• Background for intuition • Generative model • What does a growing/infinite number of parameters

really mean (in Nonparametric Bayes)? • Chinese restaurant process • Inference • Venture further into the wild world of Nonparametric

Bayesian statistics

3

Page 34: Nonparametric Bayesian Statistics...•Bayesian statistics that is not parametric (wait!) • Bayesian • Not parametric (i.e. not finite parameter, unbounded/ growing/infinite

Outline• Dirichlet process

• Background for intuition • Generative model • What does a growing/infinite number of parameters

really mean (in Nonparametric Bayes)? • Chinese restaurant process • Inference • Venture further into the wild world of Nonparametric

Bayesian statistics

3

Page 35: Nonparametric Bayesian Statistics...•Bayesian statistics that is not parametric (wait!) • Bayesian • Not parametric (i.e. not finite parameter, unbounded/ growing/infinite

Generative model

• Don’t know µ1, µ2

• Don’t know ⇢1, ⇢2

zniid⇠ Categorical(⇢1, ⇢2)

µkiid⇠ N (µ0,⌃0)

⇢1 ⇠ Beta(a1, a2)⇢2 = 1� ⇢1

• Inference goal: assignments of data points to clusters, cluster parameters

4

Page 36: Nonparametric Bayesian Statistics...•Bayesian statistics that is not parametric (wait!) • Bayesian • Not parametric (i.e. not finite parameter, unbounded/ growing/infinite

Generative model• Finite Gaussian mixture

model (K=2 clusters)

• Don’t know µ1, µ2

• Don’t know ⇢1, ⇢2

zniid⇠ Categorical(⇢1, ⇢2)

µkiid⇠ N (µ0,⌃0)

⇢1 ⇠ Beta(a1, a2)⇢2 = 1� ⇢1

• Inference goal: assignments of data points to clusters, cluster parameters

4

Page 37: Nonparametric Bayesian Statistics...•Bayesian statistics that is not parametric (wait!) • Bayesian • Not parametric (i.e. not finite parameter, unbounded/ growing/infinite

Generative modelP(parameters|data) / P(data|parameters)P(parameters)

• Don’t know µ1, µ2

• Don’t know ⇢1, ⇢2

zniid⇠ Categorical(⇢1, ⇢2)

µkiid⇠ N (µ0,⌃0)

⇢1 ⇠ Beta(a1, a2)⇢2 = 1� ⇢1

• Inference goal: assignments of data points to clusters, cluster parameters

• Finite Gaussian mixture model (K=2 clusters)

4

Page 38: Nonparametric Bayesian Statistics...•Bayesian statistics that is not parametric (wait!) • Bayesian • Not parametric (i.e. not finite parameter, unbounded/ growing/infinite

Generative modelP(parameters|data) / P(data|parameters)P(parameters)

• Finite Gaussian mixture model (K=2 clusters)

• Don’t know µ1, µ2

• Don’t know ⇢1, ⇢2

zniid⇠ Categorical(⇢1, ⇢2)

µkiid⇠ N (µ0,⌃0)

⇢1 ⇠ Beta(a1, a2)⇢2 = 1� ⇢1

• Inference goal: assignments of data points to clusters, cluster parameters

4

Page 39: Nonparametric Bayesian Statistics...•Bayesian statistics that is not parametric (wait!) • Bayesian • Not parametric (i.e. not finite parameter, unbounded/ growing/infinite

Generative modelP(parameters|data) / P(data|parameters)P(parameters)

• Finite Gaussian mixture model (K=2 clusters)

• Don’t know µ1, µ2

• Don’t know ⇢1, ⇢2

zniid⇠ Categorical(⇢1, ⇢2)

µkiid⇠ N (µ0,⌃0)

⇢1 ⇠ Beta(a1, a2)⇢2 = 1� ⇢1

⇢1 ⇢2

• Inference goal: assignments of data points to clusters, cluster parameters

4

Page 40: Nonparametric Bayesian Statistics...•Bayesian statistics that is not parametric (wait!) • Bayesian • Not parametric (i.e. not finite parameter, unbounded/ growing/infinite

Generative modelP(parameters|data) / P(data|parameters)P(parameters)

• Finite Gaussian mixture model (K=2 clusters)

• Don’t know µ1, µ2

• Don’t know ⇢1, ⇢2

zniid⇠ Categorical(⇢1, ⇢2)

xnindep⇠ N (µzn ,⌃)

µkiid⇠ N (µ0,⌃0)

⇢1 ⇠ Beta(a1, a2)⇢2 = 1� ⇢1

⇢1 ⇢2

• Inference goal: assignments of data points to clusters, cluster parameters

4

Page 41: Nonparametric Bayesian Statistics...•Bayesian statistics that is not parametric (wait!) • Bayesian • Not parametric (i.e. not finite parameter, unbounded/ growing/infinite

Generative modelP(parameters|data) / P(data|parameters)P(parameters)

• Finite Gaussian mixture model (K=2 clusters)

• Don’t know µ1, µ2

• Don’t know ⇢1, ⇢2

zniid⇠ Categorical(⇢1, ⇢2)

xnindep⇠ N (µzn ,⌃)

µkiid⇠ N (µ0,⌃0)

⇢1 ⇠ Beta(a1, a2)⇢2 = 1� ⇢1

⇢1 ⇢2

• Inference goal: assignments of data points to clusters, cluster parameters

4

Page 42: Nonparametric Bayesian Statistics...•Bayesian statistics that is not parametric (wait!) • Bayesian • Not parametric (i.e. not finite parameter, unbounded/ growing/infinite

Generative modelP(parameters|data) / P(data|parameters)P(parameters)

• Finite Gaussian mixture model (K=2 clusters)

• Don’t know µ1, µ2

• Don’t know ⇢1, ⇢2

zniid⇠ Categorical(⇢1, ⇢2)

xnindep⇠ N (µzn ,⌃)

µkiid⇠ N (µ0,⌃0)

⇢1 ⇠ Beta(a1, a2)⇢2 = 1� ⇢1

⇢1 ⇢2

• Inference goal: assignments of data points to clusters, cluster parameters

4

Page 43: Nonparametric Bayesian Statistics...•Bayesian statistics that is not parametric (wait!) • Bayesian • Not parametric (i.e. not finite parameter, unbounded/ growing/infinite

Generative modelP(parameters|data) / P(data|parameters)P(parameters)

• Finite Gaussian mixture model (K=2 clusters)

• Don’t know µ1, µ2

• Don’t know ⇢1, ⇢2

zniid⇠ Categorical(⇢1, ⇢2)

xnindep⇠ N (µzn ,⌃)

µkiid⇠ N (µ0,⌃0)

⇢1 ⇠ Beta(a1, a2)⇢2 = 1� ⇢1

⇢1 ⇢2

• Inference goal: assignments of data points to clusters, cluster parameters

4

Page 44: Nonparametric Bayesian Statistics...•Bayesian statistics that is not parametric (wait!) • Bayesian • Not parametric (i.e. not finite parameter, unbounded/ growing/infinite

Generative modelP(parameters|data) / P(data|parameters)P(parameters)

• Finite Gaussian mixture model (K=2 clusters)

• Don’t know µ1, µ2

• Don’t know ⇢1, ⇢2

zniid⇠ Categorical(⇢1, ⇢2)

xnindep⇠ N (µzn ,⌃)

µkiid⇠ N (µ0,⌃0)

⇢1 ⇠ Beta(a1, a2)⇢2 = 1� ⇢1

⇢1 ⇢2

• Inference goal: assignments of data points to clusters, cluster parameters

4

Page 45: Nonparametric Bayesian Statistics...•Bayesian statistics that is not parametric (wait!) • Bayesian • Not parametric (i.e. not finite parameter, unbounded/ growing/infinite

Generative modelP(parameters|data) / P(data|parameters)P(parameters)

• Finite Gaussian mixture model (K=2 clusters)

• Don’t know µ1, µ2

• Don’t know ⇢1, ⇢2

zniid⇠ Categorical(⇢1, ⇢2)

xnindep⇠ N (µzn ,⌃)

µkiid⇠ N (µ0,⌃0)

⇢1 ⇠ Beta(a1, a2)⇢2 = 1� ⇢1

⇢1 ⇢2

• Inference goal: assignments of data points to clusters, cluster parameters

4

Page 46: Nonparametric Bayesian Statistics...•Bayesian statistics that is not parametric (wait!) • Bayesian • Not parametric (i.e. not finite parameter, unbounded/ growing/infinite

Generative modelP(parameters|data) / P(data|parameters)P(parameters)

• Finite Gaussian mixture model (K=2 clusters)

• Don’t know µ1, µ2

• Don’t know ⇢1, ⇢2

zniid⇠ Categorical(⇢1, ⇢2)

xnindep⇠ N (µzn ,⌃)

µkiid⇠ N (µ0,⌃0)

⇢1 ⇠ Beta(a1, a2)⇢2 = 1� ⇢1

• Inference goal: assignments of data points to clusters, cluster parameters

4

Page 47: Nonparametric Bayesian Statistics...•Bayesian statistics that is not parametric (wait!) • Bayesian • Not parametric (i.e. not finite parameter, unbounded/ growing/infinite

Generative modelP(parameters|data) / P(data|parameters)P(parameters)

• Finite Gaussian mixture model (K=2 clusters)

• Don’t know µ1, µ2

• Don’t know ⇢1, ⇢2

zniid⇠ Categorical(⇢1, ⇢2)

xnindep⇠ N (µzn ,⌃)

µkiid⇠ N (µ0,⌃0)

⇢1 ⇠ Beta(a1, a2)⇢2 = 1� ⇢1

⇢1 ⇢2

• Inference goal: assignments of data points to clusters, cluster parameters

4

Page 48: Nonparametric Bayesian Statistics...•Bayesian statistics that is not parametric (wait!) • Bayesian • Not parametric (i.e. not finite parameter, unbounded/ growing/infinite

Generative modelP(parameters|data) / P(data|parameters)P(parameters)

• Finite Gaussian mixture model (K=2 clusters)

• Don’t know µ1, µ2

• Don’t know ⇢1, ⇢2

zniid⇠ Categorical(⇢1, ⇢2)

xnindep⇠ N (µzn ,⌃)

µkiid⇠ N (µ0,⌃0)

⇢1 ⇠ Beta(a1, a2)⇢2 = 1� ⇢1

⇢1 ⇢2

• Inference goal: assignments of data points to clusters, cluster parameters

4

Page 49: Nonparametric Bayesian Statistics...•Bayesian statistics that is not parametric (wait!) • Bayesian • Not parametric (i.e. not finite parameter, unbounded/ growing/infinite

Generative modelP(parameters|data) / P(data|parameters)P(parameters)

• Finite Gaussian mixture model (K=2 clusters)

• Don’t know µ1, µ2

• Don’t know ⇢1, ⇢2

zniid⇠ Categorical(⇢1, ⇢2)

xnindep⇠ N (µzn ,⌃)

µkiid⇠ N (µ0,⌃0)

⇢1 ⇠ Beta(a1, a2)⇢2 = 1� ⇢1

⇢1 ⇢2

• Inference goal: assignments of data points to clusters, cluster parameters

4

Page 50: Nonparametric Bayesian Statistics...•Bayesian statistics that is not parametric (wait!) • Bayesian • Not parametric (i.e. not finite parameter, unbounded/ growing/infinite

Beta distribution reviewBeta(⇢1|a1, a2) =

�(a1 + a2)

�(a1)�(a2)⇢a1�11 (1� ⇢1)

a2�1 a1, a2 > 0

• Gamma function • integer m: • for x > 0:

• What happens? • • • [R demo]

• Beta is conjugate to Cat

a = a1 = a2 ! 0a = a1 = a2 ! 1

��(m) = (m� 1)!

�(x) = x�(x� 1)

⇢1 2 (0, 1)

5

Page 51: Nonparametric Bayesian Statistics...•Bayesian statistics that is not parametric (wait!) • Bayesian • Not parametric (i.e. not finite parameter, unbounded/ growing/infinite

Beta distribution reviewBeta(⇢1|a1, a2) =

�(a1 + a2)

�(a1)�(a2)⇢a1�11 (1� ⇢1)

a2�1 a1, a2 > 0

• Gamma function • integer m: • for x > 0:

• What happens? • • • [R demo]

• Beta is conjugate to Cat

a = a1 = a2 ! 0a = a1 = a2 ! 1

��(m) = (m� 1)!

�(x) = x�(x� 1)

⇢1 2 (0, 1)

5

Page 52: Nonparametric Bayesian Statistics...•Bayesian statistics that is not parametric (wait!) • Bayesian • Not parametric (i.e. not finite parameter, unbounded/ growing/infinite

Beta distribution reviewBeta(⇢1|a1, a2) =

�(a1 + a2)

�(a1)�(a2)⇢a1�11 (1� ⇢1)

a2�1 a1, a2 > 0

• Gamma function • integer m: • for x > 0:

• What happens? • • • [R demo]

• Beta is conjugate to Cat

a = a1 = a2 ! 0a = a1 = a2 ! 1

��(m) = (m� 1)!

�(x) = x�(x� 1)

⇢1 2 (0, 1)

5

Page 53: Nonparametric Bayesian Statistics...•Bayesian statistics that is not parametric (wait!) • Bayesian • Not parametric (i.e. not finite parameter, unbounded/ growing/infinite

Beta distribution reviewBeta(⇢1|a1, a2) =

�(a1 + a2)

�(a1)�(a2)⇢a1�11 (1� ⇢1)

a2�1 a1, a2 > 0

• Gamma function • integer m: • for x > 0:

• What happens? • • • [R demo]

• Beta is conjugate to Cat

a = a1 = a2 ! 0a = a1 = a2 ! 1

��(m) = (m� 1)!

�(x) = x�(x� 1)

⇢1 2 (0, 1)

5

Page 54: Nonparametric Bayesian Statistics...•Bayesian statistics that is not parametric (wait!) • Bayesian • Not parametric (i.e. not finite parameter, unbounded/ growing/infinite

Beta distribution reviewBeta(⇢1|a1, a2) =

�(a1 + a2)

�(a1)�(a2)⇢a1�11 (1� ⇢1)

a2�1 a1, a2 > 0

• Gamma function • integer m: • for x > 0:

• What happens? • • • [R demo]

• Beta is conjugate to Cat

a = a1 = a2 ! 0a = a1 = a2 ! 1

��(m) = (m� 1)!

�(x) = x�(x� 1)

⇢1 2 (0, 1)

5

Page 55: Nonparametric Bayesian Statistics...•Bayesian statistics that is not parametric (wait!) • Bayesian • Not parametric (i.e. not finite parameter, unbounded/ growing/infinite

Beta distribution reviewBeta(⇢1|a1, a2) =

�(a1 + a2)

�(a1)�(a2)⇢a1�11 (1� ⇢1)

a2�1 a1, a2 > 0

• Gamma function • integer m: • for x > 0:

• What happens? • • • [R demo]

• Beta is conjugate to Cat

a = a1 = a2 ! 0a = a1 = a2 ! 1

��(m) = (m� 1)!

�(x) = x�(x� 1)

ρ1

dens

ity

⇢1 2 (0, 1)

5

Page 56: Nonparametric Bayesian Statistics...•Bayesian statistics that is not parametric (wait!) • Bayesian • Not parametric (i.e. not finite parameter, unbounded/ growing/infinite

Beta distribution reviewBeta(⇢1|a1, a2) =

�(a1 + a2)

�(a1)�(a2)⇢a1�11 (1� ⇢1)

a2�1 a1, a2 > 0

• Gamma function • integer m: • for x > 0:

• What happens? • • • [R demo]

• Beta is conjugate to Cat

a = a1 = a2 ! 0a = a1 = a2 ! 1

��(m) = (m� 1)!

�(x) = x�(x� 1)

ρ1

dens

ity

⇢1 2 (0, 1)

5

Page 57: Nonparametric Bayesian Statistics...•Bayesian statistics that is not parametric (wait!) • Bayesian • Not parametric (i.e. not finite parameter, unbounded/ growing/infinite

Beta distribution reviewBeta(⇢1|a1, a2) =

�(a1 + a2)

�(a1)�(a2)⇢a1�11 (1� ⇢1)

a2�1 a1, a2 > 0

• Gamma function • integer m: • for x > 0:

• What happens? • • • [R demo]

• Beta is conjugate to Cat

a = a1 = a2 ! 0a = a1 = a2 ! 1

��(m) = (m� 1)!

�(x) = x�(x� 1)

ρ1

dens

ity

⇢1 2 (0, 1)

5

Page 58: Nonparametric Bayesian Statistics...•Bayesian statistics that is not parametric (wait!) • Bayesian • Not parametric (i.e. not finite parameter, unbounded/ growing/infinite

Beta distribution reviewBeta(⇢1|a1, a2) =

�(a1 + a2)

�(a1)�(a2)⇢a1�11 (1� ⇢1)

a2�1 a1, a2 > 0

• Gamma function • integer m: • for x > 0:

• What happens? • • •

• Beta is conjugate to Cat

a = a1 = a2 ! 0a = a1 = a2 ! 1

��(m) = (m� 1)!

�(x) = x�(x� 1)

ρ1

dens

ity

a1 > a2

⇢1 2 (0, 1)

5

Page 59: Nonparametric Bayesian Statistics...•Bayesian statistics that is not parametric (wait!) • Bayesian • Not parametric (i.e. not finite parameter, unbounded/ growing/infinite

Beta distribution reviewBeta(⇢1|a1, a2) =

�(a1 + a2)

�(a1)�(a2)⇢a1�11 (1� ⇢1)

a2�1 a1, a2 > 0

• Gamma function • integer m: • for x > 0:

• What happens? • • •

• Beta is conjugate to Cat

a = a1 = a2 ! 0a = a1 = a2 ! 1

��(m) = (m� 1)!

�(x) = x�(x� 1)

ρ1

dens

ity

a1 > a2

⇢1 2 (0, 1)

5

[demo]

Page 60: Nonparametric Bayesian Statistics...•Bayesian statistics that is not parametric (wait!) • Bayesian • Not parametric (i.e. not finite parameter, unbounded/ growing/infinite

Beta distribution reviewBeta(⇢1|a1, a2) =

�(a1 + a2)

�(a1)�(a2)⇢a1�11 (1� ⇢1)

a2�1 a1, a2 > 0

• Gamma function • integer m: • for x > 0:

• What happens? • • •

• Beta is conjugate to Cat

a = a1 = a2 ! 0a = a1 = a2 ! 1

��(m) = (m� 1)!

�(x) = x�(x� 1)

ρ1

dens

ity

a1 > a2

⇢1 2 (0, 1)

5

[demo]

Page 61: Nonparametric Bayesian Statistics...•Bayesian statistics that is not parametric (wait!) • Bayesian • Not parametric (i.e. not finite parameter, unbounded/ growing/infinite

Beta distribution reviewBeta(⇢1|a1, a2) =

�(a1 + a2)

�(a1)�(a2)⇢a1�11 (1� ⇢1)

a2�1 a1, a2 > 0

• Gamma function • integer m: • for x > 0:

• What happens? • • •

• Beta is conjugate to Cat

a = a1 = a2 ! 0a = a1 = a2 ! 1

��(m) = (m� 1)!

�(x) = x�(x� 1)

⇢1 ⇠ Beta(a1, a2), z ⇠ Cat(⇢1, ⇢2)ρ1

dens

ity

a1 > a2

⇢1 2 (0, 1)

5

[demo]

Page 62: Nonparametric Bayesian Statistics...•Bayesian statistics that is not parametric (wait!) • Bayesian • Not parametric (i.e. not finite parameter, unbounded/ growing/infinite

Beta distribution reviewBeta(⇢1|a1, a2) =

�(a1 + a2)

�(a1)�(a2)⇢a1�11 (1� ⇢1)

a2�1 a1, a2 > 0

• Gamma function • integer m: • for x > 0:

• What happens? • • •

• Beta is conjugate to Cat

a = a1 = a2 ! 0a = a1 = a2 ! 1

��(m) = (m� 1)!

�(x) = x�(x� 1)

⇢1 ⇠ Beta(a1, a2), z ⇠ Cat(⇢1, ⇢2)ρ1

dens

ity

a1 > a2

p(⇢1, z) / ⇢1{z=1}1 (1� ⇢1)

1{z=2}⇢a1�11 (1� ⇢1)

a2�1

⇢1 2 (0, 1)

5

[demo]

Page 63: Nonparametric Bayesian Statistics...•Bayesian statistics that is not parametric (wait!) • Bayesian • Not parametric (i.e. not finite parameter, unbounded/ growing/infinite

Beta distribution reviewBeta(⇢1|a1, a2) =

�(a1 + a2)

�(a1)�(a2)⇢a1�11 (1� ⇢1)

a2�1 a1, a2 > 0

• Gamma function • integer m: • for x > 0:

• What happens? • • •

• Beta is conjugate to Cat

a = a1 = a2 ! 0a = a1 = a2 ! 1

��(m) = (m� 1)!

�(x) = x�(x� 1)

⇢1 ⇠ Beta(a1, a2), z ⇠ Cat(⇢1, ⇢2)ρ1

dens

ity

a1 > a2

p(⇢1, z) / ⇢1{z=1}1 (1� ⇢1)

1{z=2}⇢a1�11 (1� ⇢1)

a2�1

⇢1 2 (0, 1)

5

[demo]

Page 64: Nonparametric Bayesian Statistics...•Bayesian statistics that is not parametric (wait!) • Bayesian • Not parametric (i.e. not finite parameter, unbounded/ growing/infinite

Beta distribution reviewBeta(⇢1|a1, a2) =

�(a1 + a2)

�(a1)�(a2)⇢a1�11 (1� ⇢1)

a2�1 a1, a2 > 0

• Gamma function • integer m: • for x > 0:

• What happens? • • •

• Beta is conjugate to Cat

a = a1 = a2 ! 0a = a1 = a2 ! 1

��(m) = (m� 1)!

�(x) = x�(x� 1)

⇢1 ⇠ Beta(a1, a2), z ⇠ Cat(⇢1, ⇢2)ρ1

dens

ity

a1 > a2

p(⇢1, z) / ⇢1{z=1}1 (1� ⇢1)

1{z=2}⇢a1�11 (1� ⇢1)

a2�1

⇢1 2 (0, 1)

5

[demo]

Page 65: Nonparametric Bayesian Statistics...•Bayesian statistics that is not parametric (wait!) • Bayesian • Not parametric (i.e. not finite parameter, unbounded/ growing/infinite

Beta distribution reviewBeta(⇢1|a1, a2) =

�(a1 + a2)

�(a1)�(a2)⇢a1�11 (1� ⇢1)

a2�1 a1, a2 > 0

• Gamma function • integer m: • for x > 0:

• What happens? • • •

• Beta is conjugate to Cat

a = a1 = a2 ! 0a = a1 = a2 ! 1

��(m) = (m� 1)!

�(x) = x�(x� 1)

⇢1 ⇠ Beta(a1, a2), z ⇠ Cat(⇢1, ⇢2)ρ1

dens

ity

a1 > a2

p(⇢1, z) / ⇢1{z=1}1 (1� ⇢1)

1{z=2}⇢a1�11 (1� ⇢1)

a2�1

p(⇢1|z) / ⇢a1+1{z=1}�11 (1� ⇢1)

a2+1{z=2}�1 / Beta(⇢1|a1 + z, a2 + (1� z))

⇢1 2 (0, 1)

5

[demo]

Page 66: Nonparametric Bayesian Statistics...•Bayesian statistics that is not parametric (wait!) • Bayesian • Not parametric (i.e. not finite parameter, unbounded/ growing/infinite

Beta distribution reviewBeta(⇢1|a1, a2) =

�(a1 + a2)

�(a1)�(a2)⇢a1�11 (1� ⇢1)

a2�1 a1, a2 > 0

• Gamma function • integer m: • for x > 0:

• What happens? • • •

• Beta is conjugate to Cat

a = a1 = a2 ! 0a = a1 = a2 ! 1

��(m) = (m� 1)!

�(x) = x�(x� 1)

⇢1 ⇠ Beta(a1, a2), z ⇠ Cat(⇢1, ⇢2)ρ1

dens

ity

a1 > a2

p(⇢1, z) / ⇢1{z=1}1 (1� ⇢1)

1{z=2}⇢a1�11 (1� ⇢1)

a2�1

p(⇢1|z) / ⇢a1+1{z=1}�11 (1� ⇢1)

a2+1{z=2}�1 / Beta(⇢1|a1 + z, a2 + (1� z))

⇢1 2 (0, 1)

5

[demo]

Page 67: Nonparametric Bayesian Statistics...•Bayesian statistics that is not parametric (wait!) • Bayesian • Not parametric (i.e. not finite parameter, unbounded/ growing/infinite

Beta distribution reviewBeta(⇢1|a1, a2) =

�(a1 + a2)

�(a1)�(a2)⇢a1�11 (1� ⇢1)

a2�1 a1, a2 > 0

• Gamma function • integer m: • for x > 0:

• What happens? • • •

• Beta is conjugate to Cat

a = a1 = a2 ! 0a = a1 = a2 ! 1

��(m) = (m� 1)!

�(x) = x�(x� 1)

⇢1 ⇠ Beta(a1, a2), z ⇠ Cat(⇢1, ⇢2)ρ1

dens

ity

a1 > a2

p(⇢1, z) / ⇢1{z=1}1 (1� ⇢1)

1{z=2}⇢a1�11 (1� ⇢1)

a2�1

p(⇢1|z) / ⇢a1+1{z=1}�11 (1� ⇢1)

a2+1{z=2}�1 / Beta(⇢1|a1 + z, a2 + (1� z))

⇢1 2 (0, 1)

5

[demo]

Page 68: Nonparametric Bayesian Statistics...•Bayesian statistics that is not parametric (wait!) • Bayesian • Not parametric (i.e. not finite parameter, unbounded/ growing/infinite

Generative modelP(parameters|data) / P(data|parameters)P(parameters)

• Finite Gaussian mixture model (K clusters)

6

Page 69: Nonparametric Bayesian Statistics...•Bayesian statistics that is not parametric (wait!) • Bayesian • Not parametric (i.e. not finite parameter, unbounded/ growing/infinite

Generative modelP(parameters|data) / P(data|parameters)P(parameters)

• Finite Gaussian mixture model (K clusters)

6

Page 70: Nonparametric Bayesian Statistics...•Bayesian statistics that is not parametric (wait!) • Bayesian • Not parametric (i.e. not finite parameter, unbounded/ growing/infinite

Generative modelP(parameters|data) / P(data|parameters)P(parameters)

• Finite Gaussian mixture model (K clusters)

⇢1 ⇢2

⇢1:K ⇠ Dirichlet(a1:K)

⇢36

Page 71: Nonparametric Bayesian Statistics...•Bayesian statistics that is not parametric (wait!) • Bayesian • Not parametric (i.e. not finite parameter, unbounded/ growing/infinite

Generative modelP(parameters|data) / P(data|parameters)P(parameters)

• Finite Gaussian mixture model (K clusters)

⇢1 ⇢2

⇢1:K ⇠ Dirichlet(a1:K)

⇢36

µkiid⇠ N (µ0,⌃0)

Page 72: Nonparametric Bayesian Statistics...•Bayesian statistics that is not parametric (wait!) • Bayesian • Not parametric (i.e. not finite parameter, unbounded/ growing/infinite

Generative modelP(parameters|data) / P(data|parameters)P(parameters)

• Finite Gaussian mixture model (K clusters)

⇢1 ⇢2

⇢1:K ⇠ Dirichlet(a1:K)

⇢36

µkiid⇠ N (µ0,⌃0)

zniid⇠ Categorical(⇢1:K)

Page 73: Nonparametric Bayesian Statistics...•Bayesian statistics that is not parametric (wait!) • Bayesian • Not parametric (i.e. not finite parameter, unbounded/ growing/infinite

Generative modelP(parameters|data) / P(data|parameters)P(parameters)

• Finite Gaussian mixture model (K clusters)

xnindep⇠ N (µzn ,⌃)

µkiid⇠ N (µ0,⌃0)

⇢1 ⇢2

zniid⇠ Categorical(⇢1:K)

⇢1:K ⇠ Dirichlet(a1:K)

⇢36

Page 74: Nonparametric Bayesian Statistics...•Bayesian statistics that is not parametric (wait!) • Bayesian • Not parametric (i.e. not finite parameter, unbounded/ growing/infinite

Dirichlet distribution reviewDirichlet(⇢1:K |a1:K) =

�(PK

k=1 ak)QKk=1 �(ak)

KY

k=1

⇢ak�1k ak > 0

a = ak ! 0 a = ak ! 1a = ak = 1

6

Page 75: Nonparametric Bayesian Statistics...•Bayesian statistics that is not parametric (wait!) • Bayesian • Not parametric (i.e. not finite parameter, unbounded/ growing/infinite

Dirichlet distribution reviewDirichlet(⇢1:K |a1:K) =

�(PK

k=1 ak)QKk=1 �(ak)

KY

k=1

⇢ak�1k ak > 0

a = ak ! 0 a = ak ! 1a = ak = 1

⇢k 2 (0, 1)X

k

⇢k = 1

6

Page 76: Nonparametric Bayesian Statistics...•Bayesian statistics that is not parametric (wait!) • Bayesian • Not parametric (i.e. not finite parameter, unbounded/ growing/infinite

Dirichlet distribution reviewDirichlet(⇢1:K |a1:K) =

�(PK

k=1 ak)QKk=1 �(ak)

KY

k=1

⇢ak�1k ak > 0

a = ak ! 0 a = ak ! 1a = ak = 1

6

Page 77: Nonparametric Bayesian Statistics...•Bayesian statistics that is not parametric (wait!) • Bayesian • Not parametric (i.e. not finite parameter, unbounded/ growing/infinite

Dirichlet distribution review

• What happens? • Dirichlet is conjugate to Categorical

Dirichlet(⇢1:K |a1:K) =�(

PKk=1 ak)QK

k=1 �(ak)

KY

k=1

⇢ak�1k ak > 0

a = ak ! 0 a = ak ! 1a = ak = 1

6

Page 78: Nonparametric Bayesian Statistics...•Bayesian statistics that is not parametric (wait!) • Bayesian • Not parametric (i.e. not finite parameter, unbounded/ growing/infinite

Dirichlet distribution review

• What happens? • Dirichlet is conjugate to Categorical

Dirichlet(⇢1:K |a1:K) =�(

PKk=1 ak)QK

k=1 �(ak)

KY

k=1

⇢ak�1k ak > 0

a = ak ! 0 a = ak ! 1a = ak = 1

a = (0.5,0.5,0.5) a = (5,5,5) a = (40,10,10)

ρ1

dens

ity

ρ2

6

Page 79: Nonparametric Bayesian Statistics...•Bayesian statistics that is not parametric (wait!) • Bayesian • Not parametric (i.e. not finite parameter, unbounded/ growing/infinite

Dirichlet distribution review

• What happens? • Dirichlet is conjugate to Categorical

Dirichlet(⇢1:K |a1:K) =�(

PKk=1 ak)QK

k=1 �(ak)

KY

k=1

⇢ak�1k ak > 0

a = ak ! 0 a = ak ! 1a = ak = 1

a = (0.5,0.5,0.5) a = (5,5,5) a = (40,10,10)

ρ1

dens

ity

ρ2

6

Page 80: Nonparametric Bayesian Statistics...•Bayesian statistics that is not parametric (wait!) • Bayesian • Not parametric (i.e. not finite parameter, unbounded/ growing/infinite

Dirichlet distribution review

• What happens? • Dirichlet is conjugate to Categorical

Dirichlet(⇢1:K |a1:K) =�(

PKk=1 ak)QK

k=1 �(ak)

KY

k=1

⇢ak�1k ak > 0

a = ak ! 0 a = ak ! 1a = ak = 1

a = (0.5,0.5,0.5) a = (5,5,5) a = (40,10,10)

ρ1

dens

ity

ρ2

6

Page 81: Nonparametric Bayesian Statistics...•Bayesian statistics that is not parametric (wait!) • Bayesian • Not parametric (i.e. not finite parameter, unbounded/ growing/infinite

Dirichlet distribution review

• What happens? • Dirichlet is conjugate to Categorical

Dirichlet(⇢1:K |a1:K) =�(

PKk=1 ak)QK

k=1 �(ak)

KY

k=1

⇢ak�1k ak > 0

a = ak ! 0 a = ak ! 1a = ak = 1

a = (0.5,0.5,0.5) a = (5,5,5) a = (40,10,10)

ρ1

dens

ity

ρ2

6

Page 82: Nonparametric Bayesian Statistics...•Bayesian statistics that is not parametric (wait!) • Bayesian • Not parametric (i.e. not finite parameter, unbounded/ growing/infinite

Dirichlet distribution review

• What happens? • Dirichlet is conjugate to Categorical

Dirichlet(⇢1:K |a1:K) =�(

PKk=1 ak)QK

k=1 �(ak)

KY

k=1

⇢ak�1k ak > 0

a = ak ! 0 a = ak ! 1a = ak = 1

a = (0.5,0.5,0.5) a = (5,5,5) a = (40,10,10)

ρ1

dens

ity

ρ2

6

[demo]

Page 83: Nonparametric Bayesian Statistics...•Bayesian statistics that is not parametric (wait!) • Bayesian • Not parametric (i.e. not finite parameter, unbounded/ growing/infinite

Dirichlet distribution review

• What happens? • Dirichlet is conjugate to Categorical

Dirichlet(⇢1:K |a1:K) =�(

PKk=1 ak)QK

k=1 �(ak)

KY

k=1

⇢ak�1k ak > 0

a = ak ! 0 a = ak ! 1a = ak = 1

a = (0.5,0.5,0.5) a = (5,5,5) a = (40,10,10)

ρ1

dens

ity

ρ2

6

[demo]

Page 84: Nonparametric Bayesian Statistics...•Bayesian statistics that is not parametric (wait!) • Bayesian • Not parametric (i.e. not finite parameter, unbounded/ growing/infinite

Dirichlet distribution review

• What happens? • Dirichlet is conjugate to Categorical

Dirichlet(⇢1:K |a1:K) =�(

PKk=1 ak)QK

k=1 �(ak)

KY

k=1

⇢ak�1k ak > 0

a = ak ! 0 a = ak ! 1

⇢1:K ⇠ Dirichlet(a1:K), z ⇠ Cat(⇢1:K)

a = ak = 1

a = (0.5,0.5,0.5) a = (5,5,5) a = (40,10,10)

ρ1

dens

ity

ρ2

6

[demo]

Page 85: Nonparametric Bayesian Statistics...•Bayesian statistics that is not parametric (wait!) • Bayesian • Not parametric (i.e. not finite parameter, unbounded/ growing/infinite

Dirichlet distribution review

• What happens? • Dirichlet is conjugate to Categorical

Dirichlet(⇢1:K |a1:K) =�(

PKk=1 ak)QK

k=1 �(ak)

KY

k=1

⇢ak�1k ak > 0

a = ak ! 0 a = ak ! 1

⇢1:K ⇠ Dirichlet(a1:K), z ⇠ Cat(⇢1:K)

⇢1:K |z d= Dirichlet(a01:K), a0k = ak + 1{z = k}

a = ak = 1

a = (0.5,0.5,0.5) a = (5,5,5) a = (40,10,10)

ρ1

dens

ity

ρ2

6

[demo]

Page 86: Nonparametric Bayesian Statistics...•Bayesian statistics that is not parametric (wait!) • Bayesian • Not parametric (i.e. not finite parameter, unbounded/ growing/infinite

What if K ≫ N ?• e.g. species sampling, topic modeling, groups on a

social network, etc.

⇢1 ⇢2 ⇢3

⇢1000

• Components: number of latent groups

• Clusters: number of components represented in the data

• Number of clusters for N data points is < K and random

• Number of clusters grows with N

7

Page 87: Nonparametric Bayesian Statistics...•Bayesian statistics that is not parametric (wait!) • Bayesian • Not parametric (i.e. not finite parameter, unbounded/ growing/infinite

What if K ≫ N ?

⇢1 ⇢2 ⇢3

⇢1000

• Components: number of latent groups

• Clusters: number of components represented in the data

• Number of clusters for N data points is < K and random

• Number of clusters grows with N

7

Page 88: Nonparametric Bayesian Statistics...•Bayesian statistics that is not parametric (wait!) • Bayesian • Not parametric (i.e. not finite parameter, unbounded/ growing/infinite

What if K ≫ N ?• e.g. species sampling, topic modeling, groups on a

social network, etc.

⇢1 ⇢2 ⇢3

⇢1000

• Components: number of latent groups

• Clusters: number of components represented in the data

• Number of clusters for N data points is < K and random

• Number of clusters grows with N

7

Page 89: Nonparametric Bayesian Statistics...•Bayesian statistics that is not parametric (wait!) • Bayesian • Not parametric (i.e. not finite parameter, unbounded/ growing/infinite

What if K ≫ N ?• e.g. species sampling, topic modeling, groups on a

social network, etc.

⇢1 ⇢2 ⇢3

⇢1000

• Components: number of latent groups

• Clusters: number of components represented in the data

• Number of clusters for N data points is < K and random

• Number of clusters grows with N

7

Page 90: Nonparametric Bayesian Statistics...•Bayesian statistics that is not parametric (wait!) • Bayesian • Not parametric (i.e. not finite parameter, unbounded/ growing/infinite

What if K ≫ N ?• e.g. species sampling, topic modeling, groups on a

social network, etc.

⇢1 ⇢2 ⇢3

⇢1000

• Components: number of latent groups

• Clusters: number of components represented in the data

• Number of clusters for N data points is < K and random

• Number of clusters grows with N

7

Page 91: Nonparametric Bayesian Statistics...•Bayesian statistics that is not parametric (wait!) • Bayesian • Not parametric (i.e. not finite parameter, unbounded/ growing/infinite

What if K ≫ N ?• e.g. species sampling, topic modeling, groups on a

social network, etc.

⇢1 ⇢2 ⇢3

⇢1000

• Components: number of latent groups

• Clusters: number of components represented in the data

• [demo 1, demo 2]

• Number of clusters for N data points is < K and random

• Number of clusters grows with N7

Page 92: Nonparametric Bayesian Statistics...•Bayesian statistics that is not parametric (wait!) • Bayesian • Not parametric (i.e. not finite parameter, unbounded/ growing/infinite

What if K ≫ N ?• e.g. species sampling, topic modeling, groups on a

social network, etc.

⇢1 ⇢2 ⇢3

⇢1000

• Components: number of latent groups

• Clusters: number of components represented in the data

• [demo 1, demo 2]

• Number of clusters for N data points is < K and random

• Number of clusters grows with N7

Page 93: Nonparametric Bayesian Statistics...•Bayesian statistics that is not parametric (wait!) • Bayesian • Not parametric (i.e. not finite parameter, unbounded/ growing/infinite

What if K ≫ N ?• e.g. species sampling, topic modeling, groups on a

social network, etc.

⇢1 ⇢2 ⇢3

⇢1000

• Components: number of latent groups

• Clusters: number of components represented in the data

• [demo 1, demo 2]

• Number of clusters for N data points is < K and random

• Number of clusters grows with N7

Page 94: Nonparametric Bayesian Statistics...•Bayesian statistics that is not parametric (wait!) • Bayesian • Not parametric (i.e. not finite parameter, unbounded/ growing/infinite

• Here, difficult to choose finite K in advance (contrast with small K): don’t know K, difficult to infer, streaming data

• How to generate K = ∞ strictly positive frequencies that sum to one? • Observation: ⇢1:K ⇠ Dirichlet(a1:K)

8

Page 95: Nonparametric Bayesian Statistics...•Bayesian statistics that is not parametric (wait!) • Bayesian • Not parametric (i.e. not finite parameter, unbounded/ growing/infinite

Choosing K = ∞• Here, difficult to choose finite K in advance (contrast with

small K): don’t know K, difficult to infer, streaming data • How to generate K = ∞ strictly positive frequencies that

sum to one? • Observation: ⇢1:K ⇠ Dirichlet(a1:K)

8

Page 96: Nonparametric Bayesian Statistics...•Bayesian statistics that is not parametric (wait!) • Bayesian • Not parametric (i.e. not finite parameter, unbounded/ growing/infinite

Choosing K = ∞• Here, difficult to choose finite K in advance (contrast with

small K): don’t know K, difficult to infer, streaming data • How to generate K = ∞ strictly positive frequencies that

sum to one? • Observation: ⇢1:K ⇠ Dirichlet(a1:K)

8

Page 97: Nonparametric Bayesian Statistics...•Bayesian statistics that is not parametric (wait!) • Bayesian • Not parametric (i.e. not finite parameter, unbounded/ growing/infinite

Choosing K = ∞• Here, difficult to choose finite K in advance (contrast with

small K): don’t know K, difficult to infer, streaming data • How to generate K = ∞ strictly positive frequencies that

sum to one? • Observation: ⇢1:K ⇠ Dirichlet(a1:K)

8

Page 98: Nonparametric Bayesian Statistics...•Bayesian statistics that is not parametric (wait!) • Bayesian • Not parametric (i.e. not finite parameter, unbounded/ growing/infinite

Choosing K = ∞• Here, difficult to choose finite K in advance (contrast with

small K): don’t know K, difficult to infer, streaming data • How to generate K = ∞ strictly positive frequencies that

sum to one? • Observation: ⇢1:K ⇠ Dirichlet(a1:K)

8

Page 99: Nonparametric Bayesian Statistics...•Bayesian statistics that is not parametric (wait!) • Bayesian • Not parametric (i.e. not finite parameter, unbounded/ growing/infinite

Choosing K = ∞• Here, difficult to choose finite K in advance (contrast with

small K): don’t know K, difficult to infer, streaming data • How to generate K = ∞ strictly positive frequencies that

sum to one? • Observation: ⇢1:K ⇠ Dirichlet(a1:K)

?? (⇢2,...,⇢K)1�⇢1

d= Dirichlet(a2, . . . , aK)) ⇢1

d= Beta(a1,

KX

k=1

ak � a1)

8

Page 100: Nonparametric Bayesian Statistics...•Bayesian statistics that is not parametric (wait!) • Bayesian • Not parametric (i.e. not finite parameter, unbounded/ growing/infinite

Choosing K = ∞• Here, difficult to choose finite K in advance (contrast with

small K): don’t know K, difficult to infer, streaming data • How to generate K = ∞ strictly positive frequencies that

sum to one? • Observation: ⇢1:K ⇠ Dirichlet(a1:K)

?? (⇢2,...,⇢K)1�⇢1

d= Dirichlet(a2, . . . , aK)) ⇢1

d= Beta(a1,

KX

k=1

ak � a1)

8

Page 101: Nonparametric Bayesian Statistics...•Bayesian statistics that is not parametric (wait!) • Bayesian • Not parametric (i.e. not finite parameter, unbounded/ growing/infinite

Choosing K = ∞• Here, difficult to choose finite K in advance (contrast with

small K): don’t know K, difficult to infer, streaming data • How to generate K = ∞ strictly positive frequencies that

sum to one? • Observation: ⇢1:K ⇠ Dirichlet(a1:K)

?? (⇢2,...,⇢K)1�⇢1

d= Dirichlet(a2, . . . , aK)) ⇢1

d= Beta(a1,

KX

k=1

ak � a1)

8

Page 102: Nonparametric Bayesian Statistics...•Bayesian statistics that is not parametric (wait!) • Bayesian • Not parametric (i.e. not finite parameter, unbounded/ growing/infinite

Choosing K = ∞• Here, difficult to choose finite K in advance (contrast with

small K): don’t know K, difficult to infer, streaming data • How to generate K = ∞ strictly positive frequencies that

sum to one? • Observation: ⇢1:K ⇠ Dirichlet(a1:K)

?? (⇢2,...,⇢K)1�⇢1

d= Dirichlet(a2, . . . , aK)) ⇢1

d= Beta(a1,

KX

k=1

ak � a1)

8

Page 103: Nonparametric Bayesian Statistics...•Bayesian statistics that is not parametric (wait!) • Bayesian • Not parametric (i.e. not finite parameter, unbounded/ growing/infinite

Choosing K = ∞• Here, difficult to choose finite K in advance (contrast with

small K): don’t know K, difficult to infer, streaming data • How to generate K = ∞ strictly positive frequencies that

sum to one? • Observation: ⇢1:K ⇠ Dirichlet(a1:K)

?? (⇢2,...,⇢K)1�⇢1

d= Dirichlet(a2, . . . , aK)) ⇢1

d= Beta(a1,

KX

k=1

ak � a1)

8

Page 104: Nonparametric Bayesian Statistics...•Bayesian statistics that is not parametric (wait!) • Bayesian • Not parametric (i.e. not finite parameter, unbounded/ growing/infinite

Choosing K = ∞• Here, difficult to choose finite K in advance (contrast with

small K): don’t know K, difficult to infer, streaming data • How to generate K = ∞ strictly positive frequencies that

sum to one? • Observation: ⇢1:K ⇠ Dirichlet(a1:K)

?? (⇢2,...,⇢K)1�⇢1

d= Dirichlet(a2, . . . , aK)) ⇢1

d= Beta(a1,

KX

k=1

ak � a1)

• “Stick breaking”

8

Page 105: Nonparametric Bayesian Statistics...•Bayesian statistics that is not parametric (wait!) • Bayesian • Not parametric (i.e. not finite parameter, unbounded/ growing/infinite

Choosing K = ∞• Here, difficult to choose finite K in advance (contrast with

small K): don’t know K, difficult to infer, streaming data • How to generate K = ∞ strictly positive frequencies that

sum to one? • Observation: ⇢1:K ⇠ Dirichlet(a1:K)

?? (⇢2,...,⇢K)1�⇢1

d= Dirichlet(a2, . . . , aK)) ⇢1

d= Beta(a1,

KX

k=1

ak � a1)

V1 ⇠ Beta(a1, a2 + a3 + a4)

• “Stick breaking”

8

Page 106: Nonparametric Bayesian Statistics...•Bayesian statistics that is not parametric (wait!) • Bayesian • Not parametric (i.e. not finite parameter, unbounded/ growing/infinite

Choosing K = ∞• Here, difficult to choose finite K in advance (contrast with

small K): don’t know K, difficult to infer, streaming data • How to generate K = ∞ strictly positive frequencies that

sum to one? • Observation: ⇢1:K ⇠ Dirichlet(a1:K)

?? (⇢2,...,⇢K)1�⇢1

d= Dirichlet(a2, . . . , aK)) ⇢1

d= Beta(a1,

KX

k=1

ak � a1)

V1 ⇠ Beta(a1, a2 + a3 + a4) ⇢1 = V1

• “Stick breaking”

8

Page 107: Nonparametric Bayesian Statistics...•Bayesian statistics that is not parametric (wait!) • Bayesian • Not parametric (i.e. not finite parameter, unbounded/ growing/infinite

Choosing K = ∞• Here, difficult to choose finite K in advance (contrast with

small K): don’t know K, difficult to infer, streaming data • How to generate K = ∞ strictly positive frequencies that

sum to one? • Observation: ⇢1:K ⇠ Dirichlet(a1:K)

?? (⇢2,...,⇢K)1�⇢1

d= Dirichlet(a2, . . . , aK)) ⇢1

d= Beta(a1,

KX

k=1

ak � a1)

V1 ⇠ Beta(a1, a2 + a3 + a4) ⇢1 = V1

V2 ⇠ Beta(a2, a3 + a4)

• “Stick breaking”

8

Page 108: Nonparametric Bayesian Statistics...•Bayesian statistics that is not parametric (wait!) • Bayesian • Not parametric (i.e. not finite parameter, unbounded/ growing/infinite

Choosing K = ∞• Here, difficult to choose finite K in advance (contrast with

small K): don’t know K, difficult to infer, streaming data • How to generate K = ∞ strictly positive frequencies that

sum to one? • Observation: ⇢1:K ⇠ Dirichlet(a1:K)

?? (⇢2,...,⇢K)1�⇢1

d= Dirichlet(a2, . . . , aK)) ⇢1

d= Beta(a1,

KX

k=1

ak � a1)

V1 ⇠ Beta(a1, a2 + a3 + a4) ⇢1 = V1

V2 ⇠ Beta(a2, a3 + a4)

• “Stick breaking”

⇢2 = (1� V1)V2

8

Page 109: Nonparametric Bayesian Statistics...•Bayesian statistics that is not parametric (wait!) • Bayesian • Not parametric (i.e. not finite parameter, unbounded/ growing/infinite

Choosing K = ∞• Here, difficult to choose finite K in advance (contrast with

small K): don’t know K, difficult to infer, streaming data • How to generate K = ∞ strictly positive frequencies that

sum to one? • Observation: ⇢1:K ⇠ Dirichlet(a1:K)

?? (⇢2,...,⇢K)1�⇢1

d= Dirichlet(a2, . . . , aK)) ⇢1

d= Beta(a1,

KX

k=1

ak � a1)

V1 ⇠ Beta(a1, a2 + a3 + a4) ⇢1 = V1

V2 ⇠ Beta(a2, a3 + a4) ⇢2 = (1� V1)V2

V3 ⇠ Beta(a3, a4)

• “Stick breaking”

8

Page 110: Nonparametric Bayesian Statistics...•Bayesian statistics that is not parametric (wait!) • Bayesian • Not parametric (i.e. not finite parameter, unbounded/ growing/infinite

Choosing K = ∞• Here, difficult to choose finite K in advance (contrast with

small K): don’t know K, difficult to infer, streaming data • How to generate K = ∞ strictly positive frequencies that

sum to one? • Observation: ⇢1:K ⇠ Dirichlet(a1:K)

?? (⇢2,...,⇢K)1�⇢1

d= Dirichlet(a2, . . . , aK)) ⇢1

d= Beta(a1,

KX

k=1

ak � a1)

V1 ⇠ Beta(a1, a2 + a3 + a4) ⇢1 = V1

V2 ⇠ Beta(a2, a3 + a4) ⇢2 = (1� V1)V2

V3 ⇠ Beta(a3, a4) ⇢3 = (1� V1)(1� V2)V3

• “Stick breaking”

8

Page 111: Nonparametric Bayesian Statistics...•Bayesian statistics that is not parametric (wait!) • Bayesian • Not parametric (i.e. not finite parameter, unbounded/ growing/infinite

Choosing K = ∞• Here, difficult to choose finite K in advance (contrast with

small K): don’t know K, difficult to infer, streaming data • How to generate K = ∞ strictly positive frequencies that

sum to one? • Observation: ⇢1:K ⇠ Dirichlet(a1:K)

?? (⇢2,...,⇢K)1�⇢1

d= Dirichlet(a2, . . . , aK)) ⇢1

d= Beta(a1,

KX

k=1

ak � a1)

V1 ⇠ Beta(a1, a2 + a3 + a4) ⇢1 = V1

V2 ⇠ Beta(a2, a3 + a4) ⇢2 = (1� V1)V2

V3 ⇠ Beta(a3, a4) ⇢3 = (1� V1)(1� V2)V3

⇢4 = 1�3X

k=1

⇢k

• “Stick breaking”

8

Page 112: Nonparametric Bayesian Statistics...•Bayesian statistics that is not parametric (wait!) • Bayesian • Not parametric (i.e. not finite parameter, unbounded/ growing/infinite

Choosing K = ∞• Here, difficult to choose finite K in advance (contrast with

small K): don’t know K, difficult to infer, streaming data • How to generate K = ∞ strictly positive frequencies that

sum to one? • Observation: ⇢1:K ⇠ Dirichlet(a1:K)

9

Page 113: Nonparametric Bayesian Statistics...•Bayesian statistics that is not parametric (wait!) • Bayesian • Not parametric (i.e. not finite parameter, unbounded/ growing/infinite

Choosing K = ∞• Here, difficult to choose finite K in advance (contrast with

small K): don’t know K, difficult to infer, streaming data • How to generate K = ∞ strictly positive frequencies that

sum to one? • Dirichlet process stick-breaking: • Griffiths-Engen-McCloskey (GEM) distribution:

ak = 1, bk = ↵ > 0

9

Page 114: Nonparametric Bayesian Statistics...•Bayesian statistics that is not parametric (wait!) • Bayesian • Not parametric (i.e. not finite parameter, unbounded/ growing/infinite

Choosing K = ∞• Here, difficult to choose finite K in advance (contrast with

small K): don’t know K, difficult to infer, streaming data • How to generate K = ∞ strictly positive frequencies that

sum to one? • Dirichlet process stick-breaking: • Griffiths-Engen-McCloskey (GEM) distribution:

ak = 1, bk = ↵ > 0

9

Page 115: Nonparametric Bayesian Statistics...•Bayesian statistics that is not parametric (wait!) • Bayesian • Not parametric (i.e. not finite parameter, unbounded/ growing/infinite

Choosing K = ∞• Here, difficult to choose finite K in advance (contrast with

small K): don’t know K, difficult to infer, streaming data • How to generate K = ∞ strictly positive frequencies that

sum to one? • Dirichlet process stick-breaking: • Griffiths-Engen-McCloskey (GEM) distribution:

ak = 1, bk = ↵ > 0

V1 ⇠ Beta(a1, b1)

9

Page 116: Nonparametric Bayesian Statistics...•Bayesian statistics that is not parametric (wait!) • Bayesian • Not parametric (i.e. not finite parameter, unbounded/ growing/infinite

Choosing K = ∞• Here, difficult to choose finite K in advance (contrast with

small K): don’t know K, difficult to infer, streaming data • How to generate K = ∞ strictly positive frequencies that

sum to one? • Dirichlet process stick-breaking: • Griffiths-Engen-McCloskey (GEM) distribution:

ak = 1, bk = ↵ > 0

V1 ⇠ Beta(a1, b1) ⇢1 = V1

9

Page 117: Nonparametric Bayesian Statistics...•Bayesian statistics that is not parametric (wait!) • Bayesian • Not parametric (i.e. not finite parameter, unbounded/ growing/infinite

Choosing K = ∞• Here, difficult to choose finite K in advance (contrast with

small K): don’t know K, difficult to infer, streaming data • How to generate K = ∞ strictly positive frequencies that

sum to one? • Dirichlet process stick-breaking: • Griffiths-Engen-McCloskey (GEM) distribution:

ak = 1, bk = ↵ > 0

V1 ⇠ Beta(a1, b1)

V2 ⇠ Beta(a2, b2)

⇢1 = V1

9

Page 118: Nonparametric Bayesian Statistics...•Bayesian statistics that is not parametric (wait!) • Bayesian • Not parametric (i.e. not finite parameter, unbounded/ growing/infinite

Choosing K = ∞• Here, difficult to choose finite K in advance (contrast with

small K): don’t know K, difficult to infer, streaming data • How to generate K = ∞ strictly positive frequencies that

sum to one? • Dirichlet process stick-breaking: • Griffiths-Engen-McCloskey (GEM) distribution:

ak = 1, bk = ↵ > 0

V1 ⇠ Beta(a1, b1)

V2 ⇠ Beta(a2, b2)

⇢1 = V1

⇢2 = (1� V1)V2

9

Page 119: Nonparametric Bayesian Statistics...•Bayesian statistics that is not parametric (wait!) • Bayesian • Not parametric (i.e. not finite parameter, unbounded/ growing/infinite

Choosing K = ∞• Here, difficult to choose finite K in advance (contrast with

small K): don’t know K, difficult to infer, streaming data • How to generate K = ∞ strictly positive frequencies that

sum to one? • Dirichlet process stick-breaking: • Griffiths-Engen-McCloskey (GEM) distribution:

ak = 1, bk = ↵ > 0

V1 ⇠ Beta(a1, b1)

V2 ⇠ Beta(a2, b2)

⇢1 = V1

⇢2 = (1� V1)V2

9

Page 120: Nonparametric Bayesian Statistics...•Bayesian statistics that is not parametric (wait!) • Bayesian • Not parametric (i.e. not finite parameter, unbounded/ growing/infinite

Choosing K = ∞• Here, difficult to choose finite K in advance (contrast with

small K): don’t know K, difficult to infer, streaming data • How to generate K = ∞ strictly positive frequencies that

sum to one? • Dirichlet process stick-breaking: • Griffiths-Engen-McCloskey (GEM) distribution:

ak = 1, bk = ↵ > 0

V1 ⇠ Beta(a1, b1)

V2 ⇠ Beta(a2, b2)

⇢1 = V1

⇢2 = (1� V1)V2

9

Page 121: Nonparametric Bayesian Statistics...•Bayesian statistics that is not parametric (wait!) • Bayesian • Not parametric (i.e. not finite parameter, unbounded/ growing/infinite

Choosing K = ∞• Here, difficult to choose finite K in advance (contrast with

small K): don’t know K, difficult to infer, streaming data • How to generate K = ∞ strictly positive frequencies that

sum to one? • Dirichlet process stick-breaking: • Griffiths-Engen-McCloskey (GEM) distribution:

ak = 1, bk = ↵ > 0

V1 ⇠ Beta(a1, b1)

V2 ⇠ Beta(a2, b2)

Vk ⇠ Beta(ak, bk)

⇢1 = V1

⇢2 = (1� V1)V2

9

Page 122: Nonparametric Bayesian Statistics...•Bayesian statistics that is not parametric (wait!) • Bayesian • Not parametric (i.e. not finite parameter, unbounded/ growing/infinite

Choosing K = ∞• Here, difficult to choose finite K in advance (contrast with

small K): don’t know K, difficult to infer, streaming data • How to generate K = ∞ strictly positive frequencies that

sum to one? • Dirichlet process stick-breaking: • Griffiths-Engen-McCloskey (GEM) distribution:

ak = 1, bk = ↵ > 0

V1 ⇠ Beta(a1, b1)

V2 ⇠ Beta(a2, b2)

Vk ⇠ Beta(ak, bk)

⇢1 = V1

⇢2 = (1� V1)V2

⇢k =

2

4k�1Y

j=1

(1� Vj)

3

5Vk

9

Page 123: Nonparametric Bayesian Statistics...•Bayesian statistics that is not parametric (wait!) • Bayesian • Not parametric (i.e. not finite parameter, unbounded/ growing/infinite

Choosing K = ∞• Here, difficult to choose finite K in advance (contrast with

small K): don’t know K, difficult to infer, streaming data • How to generate K = ∞ strictly positive frequencies that

sum to one? • Dirichlet process stick-breaking: • Griffiths-Engen-McCloskey (GEM) distribution:

ak = 1, bk = ↵ > 0

V1 ⇠ Beta(a1, b1)

V2 ⇠ Beta(a2, b2)

Vk ⇠ Beta(ak, bk)

⇢1 = V1

⇢2 = (1� V1)V2

⇢k =

2

4k�1Y

j=1

(1� Vj)

3

5Vk

[Ishwaran, James 2001]9

Page 124: Nonparametric Bayesian Statistics...•Bayesian statistics that is not parametric (wait!) • Bayesian • Not parametric (i.e. not finite parameter, unbounded/ growing/infinite

Choosing K = ∞• Here, difficult to choose finite K in advance (contrast with

small K): don’t know K, difficult to infer, streaming data • How to generate K = ∞ strictly positive frequencies that

sum to one? • Dirichlet process stick-breaking: • Griffiths-Engen-McCloskey (GEM) distribution:

ak = 1, bk = ↵ > 0

V1 ⇠ Beta(a1, b1)

V2 ⇠ Beta(a2, b2)

Vk ⇠ Beta(ak, bk)

⇢1 = V1

⇢2 = (1� V1)V2

⇢k =

2

4k�1Y

j=1

(1� Vj)

3

5Vk

[Ishwaran, James 2001]9

Page 125: Nonparametric Bayesian Statistics...•Bayesian statistics that is not parametric (wait!) • Bayesian • Not parametric (i.e. not finite parameter, unbounded/ growing/infinite

Choosing K = ∞• Here, difficult to choose finite K in advance (contrast with

small K): don’t know K, difficult to infer, streaming data • How to generate K = ∞ strictly positive frequencies that

sum to one? • Dirichlet process stick-breaking: • Griffiths-Engen-McCloskey (GEM) distribution:

V1 ⇠ Beta(a1, b1)

V2 ⇠ Beta(a2, b2)

Vk ⇠ Beta(ak, bk)

⇢1 = V1

⇢2 = (1� V1)V2

⇢k =

2

4k�1Y

j=1

(1� Vj)

3

5Vk

ak = 1, bk = ↵ > 0

⇢ = (⇢1, ⇢2, . . .) ⇠ GEM(↵)

[McCloskey 1965; Engen 1975; Patil and Taillie 1977; Ewens 1987; Sethuraman 1994; Ishwaran, James 2001]9

Page 126: Nonparametric Bayesian Statistics...•Bayesian statistics that is not parametric (wait!) • Bayesian • Not parametric (i.e. not finite parameter, unbounded/ growing/infinite

• Code your own GEM simulator to draw ρ • Simulate drawing cluster indicators (z) from the

distribution you generated in the first exercise • Compare the growth in the number of clusters

as N changes in the GEM case with the growth in the K=1000 case

Exercises

10

• How does the expected number of clusters in the GEM case change with N and with the GEM parameter α?

Page 127: Nonparametric Bayesian Statistics...•Bayesian statistics that is not parametric (wait!) • Bayesian • Not parametric (i.e. not finite parameter, unbounded/ growing/infinite

References for Part 1, page 1

11

DJ Aldous. Exchangeability and related topics. Springer, 1983.

E Arjas and D Gasbarra. Nonparametric Bayesian inference from right censored survival data, using the Gibbs sampler. Statistica Sinica, 1994.

E Bowlby. NOAA/Olympic Coast NMS; NOAA/OAR/Office of Ocean Exploration - NOAA Photo Library. Retrieved from: https://en.wikipedia.org/wiki/Opisthoteuthis_californiana#/media/File:Opisthoteuthis_californiana.jpg

S Engen. A note on the geometric series as a species frequency model. Biometrika, 1975.

W Ewens. The sampling theory of selectively neutral alleles. Theoretical Population Biology, 1972.

W Ewens. Population genetics theory -- the past and the future. Mathematical and Statistical Developments of Evolutionary Theory, 1987.

EB Fox, personal website. Retrieved from: http://www.stat.washington.edu/~ebfox/research.html --- Associated paper: EB Fox, MC Hughes, EB Sudderth, and MI Jordan. The Annals of Applied Statistics, 2014.

S Ghosal, JK Ghosh, and RV Ramamoorthi. Posterior consistency of Dirichlet mixtures in density estimation. The Annals of Statistics, 1999.

DL Hartl and AG Clark. Principles of Population Genetics, Fourth Edition. 2003.

E Hewitt and LJ Savage. Symmetric measures on Cartesian products. Transactions of the American Mathematical Society, 1955.

H Ishwaran and LF James. Gibbs sampling methods for stick-breaking priors. Journal of the American Statistical Association, 2001.

JR Lloyd, P Orbanz, Z Ghahramani, and DM Roy. Random function priors for exchangeable arrays with applications to graphs and relational data. NIPS, 2012.

Page 128: Nonparametric Bayesian Statistics...•Bayesian statistics that is not parametric (wait!) • Bayesian • Not parametric (i.e. not finite parameter, unbounded/ growing/infinite

References for Part 1, page 2

12

JW McCloskey. A model for the distribution of individuals by species in an environment. Ph.D. thesis, Michigan State University, 1965.

K Miller, MI Jordan, and TL Griffiths. Nonparametric latent feature models for link prediction. NIPS, 2009.

GP Patil and C Taillie. Diversity as a concept and its implications for random communities. Bulletin of the International Statistical Institute, 1977.

S Saria, D Koller, and A Penn. Learning individual and population traits from clinical temporal data. NIPS, 2010.

J Sethuraman. A constructive definition of Dirichlet priors. Statistica Sinica, 1994.

EB Sudderth and MI Jordan. Shared segmentation of natural scenes using dependent Pitman-Yor processes. NIPS, 2009.