Nonlinear Total Strain vs Linear Strai1

39
Nonlinear Total Strain vs Linear Strain Tech Articles ID KB8019331 Status: Published Published date: 07/08/201 0 Updated: 07/12/201 4 Reported In: MSC Nastran Abstract (Question) For SOL106 it is possible to request NLSTRESS=ALL and STRAIN=ALL in the case control section which will result in two sets of printout. Strain will be reported in each of these two results in the F06 printout. The Total Strain in the Nonlinear Stress printout is not the same as the Strain in the Linear Strain printout if thermal loads are present. Description (Answer) For the test case shown a CONROD element with elastic/plastic material properties and a coefficient of thermal expansion is loaded in three subcases. The first subcase applies a mechanical axial load up to the yield stress of 1000 pounds. The second subcase adds an addition 1000 pounds resulting in a plastic strain. The third subcase adds a delta temperature of 700 degrees which causes additional stress free thermal expansion.

description

Nonlinear Total Strain vs Linear Strai1

Transcript of Nonlinear Total Strain vs Linear Strai1

Page 1: Nonlinear Total Strain vs Linear Strai1

Nonlinear Total Strain vs Linear Strain

Tech Articles ID KB8019331Status: Published

Published date: 07/08/2010Updated: 07/12/2014

Reported In: MSC Nastran 

Abstract (Question)

For SOL106 it is possible to request NLSTRESS=ALL and STRAIN=ALL in the case control section which will result in two sets of printout.  Strain will be reported in each of these two results in the F06 printout. The Total Strain in the Nonlinear Stress printout is not the same as the Strain in the Linear Strain printout if thermal loads are present.

Description (Answer)

For the test case shown a CONROD element with elastic/plastic material properties and a coefficient of thermal expansion is loaded in three subcases.

The first subcase applies a mechanical axial load up to the yield stress of 1000 pounds.

The second subcase adds an addition 1000 pounds resulting in a plastic strain.

The third subcase adds a delta temperature of 700 degrees which causes additional stress free thermal expansion.

ID GCG,MSCSOL 106CEND   DISPLACEMENT(SORT1,REAL)=ALL   SPCFORCES(SORT1,REAL)=ALL   STRESS=ALL   STRAIN = ALL   NLPARM = 1   TEMP(INIT)=100SUBCASE 1   LOAD = 1SUBCASE 2   LOAD = 2SUBCASE 3   LOAD = 2   TEMP(LOAD)=200BEGIN BULK

Page 2: Nonlinear Total Strain vs Linear Strai1

$-------2-------3-------4-------5-------6-------7-------8-------9-------0-------TEMPD   100     0.0TEMPD   200     700.0$-------2-------3-------4-------5-------6-------7-------8-------9-------0-------GRID    1               0.      0.      0.              123456GRID    2               1.0     0.      0.              23456$-------2-------3-------4-------5-------6-------7-------8-------9-------0-------FORCE   1       2               1000.   1.FORCE   2       2               2000.   1.$-------2-------3-------4-------5-------6-------7-------8-------9-------0-------CONROD  1       1       2       1       1.0$-------2-------3-------4-------5-------6-------7-------8-------9-------0-------PARAM    POST    0PARAM    AUTOSPC NOPARAM   PRTMAXIM YES$-------2-------3-------4-------5-------6-------7-------8-------9-------0-------NLPARM  1       1               AUTO$-------2-------3-------4-------5-------6-------7-------8-------9-------0-------MATS1   1                       PLASTIC 10000.  1       1       1000.MAT1    1       1.+7            .3              1.0-5$-------2-------3-------4-------5-------6-------7-------8-------9-------0-------ENDDATA  

The NonLinear Stress results are as follows-

     LOAD STEP =  1.00000E+00                         N O N L I N E A R   S T R E S S E S   I N   R O D   E L E M E N T S      ( C O N R O D )     ELEMENT       AXIAL STRESS         EQUIVALENT         TOTAL STRAIN       EFF. STRAIN          EFF. CREEP        LIN. TORSIONAL       ID                                STRESS                            PLASTIC/NLELAST           STRAIN              STRESS          1        1.000000E+03        1.000000E+03        1.000000E-04        0.0                 0.0                 0.0

Page 3: Nonlinear Total Strain vs Linear Strai1

1                                                                              JULY   8, 2010   MD NASTRAN  6/12/08   PAGE    14                                                                                                                                   

0                                                                                                            SUBCASE 2             

     LOAD STEP =  2.00000E+00                         N O N L I N E A R   S T R E S S E S   I N   R O D   E L E M E N T S      ( C O N R O D )     ELEMENT       AXIAL STRESS         EQUIVALENT         TOTAL STRAIN       EFF. STRAIN          EFF. CREEP        LIN. TORSIONAL       ID                                STRESS                            PLASTIC/NLELAST           STRAIN              STRESS          1        2.000000E+03        2.000000E+03        1.002000E-01        1.000000E-01        0.0                 0.01                                                                              JULY   8, 2010   MD NASTRAN  6/12/08   PAGE    15                                                                                                                                   

0                                                                                                            SUBCASE 3             

     LOAD STEP =  3.00000E+00                         N O N L I N E A R   S T R E S S E S   I N   R O D   E L E M E N T S      ( C O N R O D )     ELEMENT       AXIAL STRESS         EQUIVALENT         TOTAL STRAIN       EFF. STRAIN          EFF. CREEP        LIN. TORSIONAL       ID                                STRESS                            PLASTIC/NLELAST           STRAIN              STRESS          1        2.000000E+03        2.000000E+03        1.002000E-01        1.000000E-01        0.0                 0.0+

The  first subcase above the TOTAL STRAIN is the mechanical strain causes by the elastic stress up to the yield stress limit of 1000.

The second subcase above shows that the TOTAL STRAIN is a combination of the elastic and plastic strain due to the mechanical stress.

Page 4: Nonlinear Total Strain vs Linear Strai1

The third subcase above shows that the TOTAL STRAIN does not change from the strain in subcase two. This TOTAL STRAIN does not include the thermal strain.

The TOTAL STRAIN in the above printout is   Sigma/ E   =   du/dx   -  alpha* deltaT     (This TOTAL STRAIN can be considered the total mechanical strain not including the themal strain)

-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

In the Linear Strain results  (STRAIN=ALL) is as follows-

     LOAD STEP =  1.00000E+00                                       S T R A I N S   I N   R O D   E L E M E N T S      ( C O N R O D )       ELEMENT       AXIAL       SAFETY      TORSIONAL     SAFETY       ELEMENT       AXIAL       SAFETY      TORSIONAL     SAFETY         ID.        STRAIN       MARGIN        STRAIN      MARGIN         ID.        STRAIN       MARGIN        STRAIN      MARGIN             1    1.000000E-04              0.0           1                                                                              JULY   8, 2010   MD NASTRAN  6/12/08   PAGE    28                                                                                                                                   

0                                                                                                            SUBCASE 2             

     LOAD STEP =  2.00000E+00                                       S T R A I N S   I N   R O D   E L E M E N T S      ( C O N R O D )       ELEMENT       AXIAL       SAFETY      TORSIONAL     SAFETY       ELEMENT       AXIAL       SAFETY      TORSIONAL     SAFETY         ID.        STRAIN       MARGIN        STRAIN      MARGIN         ID.        STRAIN       MARGIN        STRAIN      MARGIN             1    1.002000E-01              0.0           1                                                                              JULY   8, 2010   MD NASTRAN  6/12/08   PAGE    29                                                                                                                                   

0                                                                 

Page 5: Nonlinear Total Strain vs Linear Strai1

                                           SUBCASE 3             

     LOAD STEP =  3.00000E+00                                       S T R A I N S   I N   R O D   E L E M E N T S      ( C O N R O D )       ELEMENT       AXIAL       SAFETY      TORSIONAL     SAFETY       ELEMENT       AXIAL       SAFETY      TORSIONAL     SAFETY         ID.        STRAIN       MARGIN        STRAIN      MARGIN         ID.        STRAIN       MARGIN        STRAIN      MARGIN             1    1.072000E-01              0.0          

The Strain results in the above three subcases of the Linear Strain printout include the thermal strains.

These strains are represented by the equation       du/dx  =   Sigma / E  +  alpha*deltaT

As shown above the AXIAL STRAIN in Subcase 3 includes the thermal strain of  0.07E-01 which was added to the total mechanical strain of  1.002E-01

 

 

 

-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

In conclusion the TOTAL STRAIN in the Nonlinear Stress printout and the STRAIN in the Linear Strain printout will not be the same if thermal expansion is present.

See the input file  conrod-plastic.dat

 

English Attachment

conrod-plastic.dat 1K • < 1 minute @ 56k, < 1 minute @ broadband

Page 6: Nonlinear Total Strain vs Linear Strai1

How to define Temperature Dependent Stress-Strain Curve?

Tech Articles ID KB8021653

Status: PublishedPublished date: 06/11/2014

Updated: 07/11/2014Reported In: MSC Nastran (2011) - MSC Nastran - MD Implicit Nonlinear (SOL400)

Environment: Intel IA-32 (32-bit compat) - Windows 7 

Abstract (Question)

 

 

How to define a Stress-Strain curve as shown above for Sol 400/600 analysis?

 

Description (Answer)

Page 7: Nonlinear Total Strain vs Linear Strai1

 In this article we will go through the procedure of defining Temperature dependent Stress-Strain curve in Patran. 

a. Create Field as Shown below in Patran

Figure 1: Young's Modulus wrt Temperature

Values entered in Figure 1 above will take of the E values in Elastic region for specific temperatures. 

b) Field for Stress-Strain Values 

Page 8: Nonlinear Total Strain vs Linear Strai1

Figure 2: Stress-Strain Curve in Plastic region

A 2D Material Scalar Table data is created as shown in Figure 2 above. All values in column e-1 indicate the yield stresses for the respective temperature values. The plastic portion defined in this fashion for all the temperatures and respective strain values. I have used the Cauchy (true) stress vs. plastic true strain, so data can be used for SOL 400 and 600 without any issues. 

c) Assign the Fields to Material

Page 9: Nonlinear Total Strain vs Linear Strai1

for 

Figure 3: Fields Applied to respective Constitutive Model

Apply the E vs Temperature field in Linear Elastic constitutive model. The 2D Material scalar data table field is selected in elasto-plastic constitutive model. 

d) Nastran Card Interpretation

Page 10: Nonlinear Total Strain vs Linear Strai1

 

Figure 4: Nastran Cards

e) MATEP card points to TABLES1 ID 4. Tables1 Id 4 points to stress-strain curve for Temp=70. MATTEP card defines the temperature-dependent elasto-plastic material properties. MATTEP card points to TABLEM1 ID 3. TABLEM1 ID 3 defines the Yields stresses for specific Temperature values.  TABLEST ID 5 defines the TABLES1 id numbers to be referred to for specific Temperature values.  TABLES1 are used to defines the stress-strain values for all the Temperature data.

Attached Files:

stress-strain.bdf 

Page 11: Nonlinear Total Strain vs Linear Strai1

stress_strain.db

English Attachment

stress_strain.db 3MB • 9 minute(s) @ 56k, < 1 minute @ broadband

stress_strain.bdf 16K • < 1 minute @ 56k, < 1 minute @ broadband

Thermal Stress Analysis of a High Speed Aircraft Wing Box

Conference & Tech Papers ID PA42Status: Published

Published date: 01/23/2012Updated: 07/11/2014

Reported In: MSC NastranCategories United States

Thermal AnalysisAerospace & Defense2011

 

Author(s)

Scott Malaznik, Senior Staff Engineer, Lockheed Martin Aeronautics Company

Abstract

High speed flight generates high temperatures and temperature gradients in an airframe structure.  In order to ensure structural integrity, validated modeling and analysis methods are required.  This paper presents the results of a study that was performed using MSC.Nastran to investigate various issues arising in the thermal stress analysis of an aircraft wing box.

Since this was to be a generic study, it was decided to base the analysis on publically available data, namely the North American X-15 research airplane.  The X-15 was a very successful experimental vehicle which flew 199 times between 1959 and 1968, reaching a maximum speed of Mach 6.7.  Many NASA reports are available on the Internet which describe the design (materials and dimensions) as well as give the flight temperatures experienced by this vehicle.

Page 12: Nonlinear Total Strain vs Linear Strai1

Some of the issues investigated include: mesh refinement, temperature interpolation, material selection, and joint stiffness.  Four meshes with increasing refinement were constructed.  Temperatures were applied as smeared average values, as well as using more realistic distributions.  Various material combinations for the inner (cool) and outer (hot) structure were analyzed, giving insight into the rationale behind the actual X-15 design choice of Inconel skins and titanium spars.  Finally, the effect of allowing for joint flexibility between the wing skins and internal structure was investigated. 

English Attachments

Malaznik-Thermal_Stress_Analysis_on_a_Composite_Fuselage.pdf 765K • 2 minute(s) @ 56k, < 1 minute @ broadband

UC_Presentation-Malaznik.pdf 1.6MB • 5 minute(s) @ 56k, < 1 minute @ broadband

CREATION OF A NONLINEAR ELASTIC TEMPERATURE DEPENDENT MATERIAL, TABLES1, TABLEST

Page 13: Nonlinear Total Strain vs Linear Strai1

Tech Articles ID KB8011078

Type: FAQStatus: Published

Published date: 10/02/2009Updated: 07/12/2014

Reported In: Patran (7.5) - Patran MSC / MD Nastran Preference 

Abstract (Question)

Not Available

Description (Answer)

KEYWORDS: nonlinear, temperature, TABLES1, TABLEST

First create a field with two independant Variables:-> Field/Create/Material Property/Tabular_Input/Table_Definition: Temperature + StrainThen create a nonlinear material:-> Material/Create/Isotropic/Input_Properties/Constitutive_Model: Linear_Elastic + Nonlinear_Elastic

-> following NASTRAN BULK DATA CARDS should be created: MAT1, MATS1, TABLES1, TABLEST

for reproduction run the following session file, which creates an one-inch cube, subjected to an unaxial tension of 10000 lbs and a change in temperature from 100° to 200°. Young's modulus is 8.0e6 psi at 100° and 4.0e6 at 200° and Poisson's ratio is 0.3 for all temperatures. The thermal expansion coefficient is 1.0e-5 for all temperatures (-> nonlin. seminar notes dated May 94: workshop problem five chapter 5).

STRING asm_create_hpat_xyz_created_ids[VIRTUAL]asm_const_hpat_xyz( "1", "<1 1 1>", "[0 0 0]", "Coord 0", @asm_create_hpat_xyz_created_ids )$# 1 Hpat created: Hpat 1mesh_seed_display_mgr.erase( )INTEGER fem_create_mesh_solid_num_nodesINTEGER fem_create_mesh_solid_num_elemsSTRING fem_create_mesh_s_nodes_created[VIRTUAL]STRING fem_create_mesh_s_elems_created[VIRTUAL]fem_create_mesh_sol_3( "IsoMesh", 0, "Solid 1 ", 1, [1.], "Hex8", "101", "10", @"Coord 0", "Coord 0", fem_create_mesh_solid_num_nodes, @fem_create_mesh_solid_num_elems, fem_create_mesh_s_nodes_created, @fem_create_mesh_s_elems_created )

Page 14: Nonlinear Total Strain vs Linear Strai1

$# 8 nodes and 1 element created for Solid 1.$# === 8 nodes created. IDs = 101:108.$# === 1 element created. ID = 10.loadsbcs_create( "dis1", "Displacement", "Nodal", "", "Static", [ @"Node 101:104"], "FEM", "Coord 0", 1., ["< 0,0,0 >", "< 0,0,0 >"], ["", @""] )$# Load/BC set "dis1" created.loadsbcs_create( "force1", "Force", "Nodal", "", "Static", ["Node 105:108"], @"FEM", "Coord 0", 1., ["< 0,0,2500 >", "< >"], ["", ""] )$# Load/BC set "force1" created.fields_create( "field1", "Material", 1, "Scalar", "Real", "", "", "Table", 2, @"T", "e", "", "", "", "", FALSE, [100., 200.], [-1., 0., 1.], [0.], [[[ @-8000000.][0.][8000000.]][[-4000000.][0.][4000000.]]] )$# Field "field1" created.$#material.create( "Analysis code ID", 1, "Analysis type ID", 1, "mat1", 0, @"Date: 08-Sep-98 Time: 14:18:34", "Isotropic", 1, "Directionality", @1, "Linearity", 1, "Homogeneous", 0, "Linear Elastic", 1, @"Model Options & IDs", ["", "", "", "", ""], [0, 0, 0, 0, 0], "Active Flag", @1, "Create", 10, "External Flag", FALSE, "Property IDs", ["Elastic Modulus", @"Poisson Ratio", "Thermal Expan. Coeff"], [2, 5, 24, 0], "Property Values", [ @"8e+6", ".3", "1e-5", ""] )material.create( "Analysis code ID", 1, "Analysis type ID", 1, "mat1", 1, @"Date: 08-Sep-98 Time: 14:18:34", "Isotropic", 1, "Directionality", @1, "Linearity", 2, "Homogeneous", 0, "Nonlinear Elastic", 2, @"Model Options & IDs", ["", "", "", "", ""], [0, 0, 0, 0, 0], "Active Flag", @1, "Create", 10, "External Flag", FALSE, "Property IDs", [ @"Stress/Strain Curve", ""], [503, 0], "Property Values", ["field1", ""] )$#elementprops_create( "prop1", 71, 25, 30, 1, 1, 20, [13, 21, 4124, 4126, 4125] @, [5, 4, 4, 4, 4], ["m:mat1", "", "", "", ""], "Element 10" )$# Property Set "prop1" created.loadcase_create2( "lcs1", "Time Dependent", "", 1., ["dis1", "force1"], [0, 0] @, [1., 1.], "", 0., TRUE )

Page 15: Nonlinear Total Strain vs Linear Strai1

Enter temperature dependent stress versus plastic strain table in Marc

Tech Articles ID KB8021097

Status: PublishedPublished date: 06/07/2013

Updated: 07/12/2014Reported In: Marc & Mentat (2013) - Mentat

 

Abstract (Question)

Enter temperature dependent stress versus plastic strain table for plasticity in Marc

Description (Answer)

When the yield stress is temperature dependent, the plasticity in Marc requires to enter the yield stress as the function of both plastic strain and temperature. This can be done using the multi-dimensional tables in Mentat. First, arrange the yield stress data in the table format as shown in the first page of the attached pdf file. These data can be obtained from tensile tests at various temperatures, T1, T2, T3.... In Mentat, when defining the table, define a '2 independent variables' table (as shown in the second page of the attached pdf file). For the first variable V1, define the type to be equivalent plastic strain; and the second variable V2 to be temperature. The V1 and V2 correspond to the horizontal and vertical arrangements in the data table in the first page of the pdf file. Then, click the 'add data' button. In the dialog area of Mentat (the third page in the attached pdf file), enter the number of points for V1; the number of points for V2. Enter V1 values; V2 values; the values for the yield stress function F(V1, V2). When these entries are done, the table is finished. One can click the FIT button to view the table. If one has the mathematical expression of the yield stress as function of plastic strain and temperature, he can enter the mathematical expression directly by selecting the formula option (see the fourth page in the attached pdf file), instead of the above data entries. The finished table is going to be selected in plasticity definition in Mentat.

English Attachment

plastic-strain.pdf 368K • 1 minute(s) @ 56k, < 1 minute @ broadband

Page 16: Nonlinear Total Strain vs Linear Strai1

How to Define Temperature Dependent Plasticity in Marc

Tech Articles ID KB8019794

Status: PublishedPublished date: 03/31/2011

Updated: 07/12/2014Reported In: Marc & Mentat (2010) - All Products

 

Abstract (Question)

This article describes how to define temperature dependent plasticity in Marc, i.e. temperature dependent yield stress vs. plastic strain field.

Description (Answer)

See attached power point (pptx).

English Attachment

field_add.pptx 202K • < 1 minute @ 56k, < 1 minute @ broadband

https://simcompanion.mscsoftware.com/infocenter/index?page=content&id=KB8019794&actp=search&viewlocale=en_US&searchid=1410965040647

https://simcompanion.mscsoftware.com/infocenter/index?page=content&id=KB8021097&actp=search&viewlocale=en_US&searchid=1410965040647

https://simcompanion.mscsoftware.com/infocenter/index?page=content&id=KB8011078&actp=search&viewlocale=en_US&searchid=1410965040647

Page 17: Nonlinear Total Strain vs Linear Strai1

https://simcompanion.mscsoftware.com/infocenter/index?page=content&id=PA42&actp=search&viewlocale=en_US&searchid=1410965040647

https://simcompanion.mscsoftware.com/infocenter/index?page=content&id=KB8021653&actp=search&viewlocale=en_US&searchid=1410965040647

Use the Logarithmic representaion for temperature-dependent materials

Tech Articles ID KB8010231Type: FAQ

Status: PublishedPublished date: 10/02/2009

Updated: 07/12/2014Reported In: MSC Nastran (69) - MSC Nastran - Standard (SOL 1 through 200)

 

Abstract (Question)

Not Available

Description (Answer)

Heat Transfer - MATT4,TABLEM2 - *** USER FATAL MESSAGE 4551,

When you have a thermal properties that is rapidly increasing or decreasing as a function of temperature,then using the LINEAR interpolation between the data points may failed to converged with UFM 4551.This is because a Logarithmic representation of such data curve maybe be better suited for linear interpolation.

Avoidance: Define the temperature -dependent material properties using the TABLEM1 using

Page 18: Nonlinear Total Strain vs Linear Strai1

the logarithmic interpolation.

TABLEM2* 1011 0.0 MD06717*MD06717 MD06718*MD06718 2.000000000E+01 1.180000000E-04 4.000000000E+01 1.180000000E-04 MD06719*MD06719 8.000000000E+01 1.000000000E-04 1.200000000E+02 8.800000000E-05 MD06720*MD06720 1.600000000E+02 7.800000000E-05 6.500000000E+02 5.600000000E-07 MD06721*MD06721 7.000000000E+02 5.600000000E-07 ENDT

Temp,Natual Log of Thermal properties20.0,-9.04540.0,-9.04580.0,-9.210120.0,-9.338160.0,-9.459650.0,-14.395700.0,-14.395

As we can see using the TABLEM1 with XAXIS(TEMP) is LINEAR,YAXIS(Thermal properties) is LOG,the linear interpolation is mush smoother.This in term will help NASTRAN to converge to the correct solution.

https://simcompanion.mscsoftware.com/infocenter/index?page=content&id=KB8010231&actp=search&viewlocale=en_US&searchid=1410965040647

Temperature loads and temperature dependent material properties in SOL 106 and SOL 101

Tech Articles ID KB8018380Type: Technical Publication

Status: PublishedPublished date: 10/02/2009

Updated: 07/12/2014 

Abstract (Question)

Page 19: Nonlinear Total Strain vs Linear Strai1

Calculation of temperature loads using the secant method in SOL 106, and tangent method in SOL 101.Table lookup of temperature dependent material properties in SOL 106 and SOL 101.

Description (Answer)

In order to get the same results in SOL 101 to those from SOL 106, use an equivalent tangent CTE versus temperature table in SOL 101 calculated from the secant CTE table from SOL 106. For instance:

Find attached Sol106a1.dat which has the following information:

sol 106.temp(init)=11subcase 1temp(load)=1subcase 2temp(load)=2..tempd,11,250.tempd,1,100.tempd,2,-50.mat1,1,30.+6,,.3,,2.-5,70.matt1,1,,,,,101tablem1,101,-100.,1.5-5, 70.,2.-5, 300.,3.-5, endt

To change the above secant table to an equivalent tangent tablesimply equate the tangent strain

tangent strain = alpha(tangent) * (T-Tref)

To the secant strain (alphas below are from secant table),

secant strain = alpha(T) * (T-Tref) – alpha(Tinit) * (Tinit-Tref)

Noting that the Tref in the tangent equation is the same as Tinitin the secant equation, we get:

alpha(tangent) = Secant strain / (T-Tinit)

So the SOL 101 decks (Sol101c1.dat and Sol101d1.dat (2 are necessarybecause you can have only one material lookup per run (1 subcase)))

Page 20: Nonlinear Total Strain vs Linear Strai1

look like:

sol 101.temp(both)=1.mat1,1,30.+6,,.3,,,250.matt1,1,,,,,101tablem1,101,-50.,2.33-5, 100.,2.92-5, endttempd,1,100..

Note that the TREF was changed from 70 to 250, the alpha table changed according to the above formula, and temp(both) was usedinstead of temp(init) and temp(load). To run subcase 2 simply change TEMPD,1 to -50.

To check this, run Sol106a1.dat and compare the results of subcase 1 to the results of Sol101c1.dat and the subcase 2 results to the results from Sol101d1.dat.

The equivalent tangent table is only good for one initial temperature. If the initial temperature is changed, then a new temperature dependent table must be calculated.

the secant method is only used in calculation of thermal loads for nonlinear elements in SOL 106. The tangent method is used for all elements in SOL 101 and for linear elements in SOL 106.

Table lookup is used for all other temperature dependent properties in both SOL 106 and SOL 101. And by using the TEMP(BOTH) technique in my SOL 101 sample problems, the load temperature is used for the table lookup in both SOL 101 and SOL 106. Do not use TEMP(INIT) in SOL 101.

Source ID

1-70321567

English Attachment

Sol101c1.dat 270Bytes • < 1 minute @ 56k, < 1 minute @ broadband

Sol101d1.dat 270Bytes • < 1 minute @ 56k, < 1 minute @ broadband

Sol106a1.dat 402Bytes • < 1 minute @ 56k, < 1 minute @ broadband

Page 21: Nonlinear Total Strain vs Linear Strai1

sol101c1.f06 15K • < 1 minute @ 56k, < 1 minute @ broadband

sol101d1.f06 15K • < 1 minute @ 56k, < 1 minute @ broadband

sol106a1.f06 21K • < 1 minute @ 56k, < 1 minute @ broadband

How to shift the tablem2 table value using X1

Tech Articles ID KB8010058

Type: FAQStatus: Published

Published date: 10/02/2009Updated: 07/12/2014

Reported In: MSC Nastran (68.0.3) - MSC Nastran - Standard (SOL 1 through 200) 

Abstract (Question)

Not Available

Description (Answer)

The TABLEM2 defines a tabular function for use in generating temperature-dependent material properties. The advantage of using TABLEM2 over the TABLEM1 bulk dataentry is its ability to shift the curve if the material properties are given in some other temperature unit and the analysis is performed based on other temperature unit.For example:

Summary: if your analysis uses: Material data X1=

Page 22: Nonlinear Total Strain vs Linear Strai1

degree F degree R -460.0degree C degree K -273.15degree R degree F +460.0degree K degree C +273.15

Problem Summary:

The input data is thermal conductivity versus Temperature,where temperature is given in Rankines.

The NASTRAN input test deck use Fahrenheit as the input unit.There is PARAM,TABS,460.0 in the test deck. This means for all the input unit in F to be converted to Rankine during the solution process and the output will use Fahrenheit for the result.

If one uses TABLEM2 for inputting the data, there is a scale factor where we can shift the curve.

Y=zYt(x-X1)

Please note that (x-X1) represents the table,and x is the solution value.the z value is supplied from the MAT4 entry

The rule is when we want to subract the numbers from the table value then the X1 is negative number. When you want to add the number then the X1 is a positive number.For example if we want to convert the table value unit in Rankine to F

R = F + 460.0

Since Y=zYt(x-X1) and we see the argument F+460.0 = x-X1 then X1=-460.0

In this case x= Farenheit or solution value, X1 = -460.0

The following test deck used degree C as input,and the table value usesKelvins.One can see

*** Mar 13 1997 10:36AM *** Dan Chu ***ID MSC-NASTRAN V68SOL 153TIME 10CENDTITLE = EXAMPLE 1aANALYSIS = HEAT

Page 23: Nonlinear Total Strain vs Linear Strai1

THERMAL = ALLFLUX = ALLSPCF = ALLOLOAD = ALLSPC = 10TEMP(INIT) = 20NLPARM = 100BEGIN BULKNLPARM,100$GRID,1,,0.0,0.0,0.0GRID,2,,0.1,0.0,0.0GRID,3,,0.2,0.0,0.0GRID,4,,0.3,0.0,0.0GRID,5,,0.4,0.0,0.0GRID,6,,0.5,0.0,0.0$CROD,1,5,1,2CROD,2,5,2,3CROD,3,5,3,4CROD,4,5,4,5CROD,5,5,5,6PROD,5,15,.0078540MAT4,15,204.0$MATT4 MID T(K) T(CP) T(H) T(Mu) T(HGEN)$matt4     15     40matt4     15     30tablem2     30     -273.15     100.     1.0     250.     2.0     500.     2.5     1000.     2.67     endttablem2     40     0.0     -173.0     1.0     -23.0     2.0     227.     2.5     727.     2.67     endt$SPC,10,1,,1300.0SPC,10,6,,300.0TEMPD,20,1300.0$ENDDATA

0LOAD STEP = 1.00000E+00T E M P E R A T U R E V E C T O R

POINT ID. TYPE ID VALUE ID+1 VALUE ID+2 VALUE ID+3 VALUE ID+4 VALUE ID+5 VALUE

Page 24: Nonlinear Total Strain vs Linear Strai1

1 S 1.300000E+03 1.109722E+03 9.149415E+02 7.153222E+02 5.104834E+02 3.000000E+02

 

Source ID

2611

Analysis of a Cryogenic Composite Structure with Large Temperature Gradients Using MSC Nastran's Temperature Dependent Material Capabilities

Conference & Tech Papers ID PA159Status: Published

Published date: 10/05/2012Updated: 07/11/2014

Reported In: MSC NastranCategories 2012

United StatesCompositesAerospace & Defense

 

Author(s)

Dr. Emmanuel Cofie, SGT Inc.

Abstract

The presentation describes how MSC NASTRAN‟s Temperature Dependent Material Property Capabilities are used for the analysis of a large Cryogenic Composite Structure with Large Temperature Gradients.

Topics

Cryogenic Structure with Large Temperature Gradient Parameters Required for Analysis Description of Analysis Method

Page 25: Nonlinear Total Strain vs Linear Strai1

o Use of MSC NASTRAN Temperature Dependent Material capabilitieso Implementation in Static Analysiso Limitation of approach

Summary

English Attachments

Tues.Rivanna_A.1200.Cofie.pdf 1.2MB • 3 minute(s) @ 56k, < 1 minute @ broadband

PAT312 WS08 TEMPERATURE DEPENDENT MATERIAL PROPERTIES

Tech Articles ID KB8018127Type: Example

Status: PublishedPublished date: 10/02/2009

Updated: 07/12/2014Reported In: Patran (2006 (MD R1)) - Patran Thermal

 

Abstract (Question)

PAT312 WS08: TEMPERATURE DEPENDENT MATERIAL PROPERTIES

Description (Answer)

PAT312 WS08: TEMPERATURE DEPENDENT MATERIAL PROPERTIES

 

Model Description

In this exercise you will learn to create temperature dependent material properties. There are very few analytical solutions available for composite materials with

temperature dependent conductivities. Recently, K.C.Chang and V.J. Payne published an analytic solution for the problem you will analyze in this exercise (Journal of Heat Transfer, Feb. 1991, Vol. 113, pp.237). Results of their work have been included a the end of this exercise to allow you to qualitatively compare your solution to theirs.

Objectives

Page 26: Nonlinear Total Strain vs Linear Strai1

You will create a 2D material slice consisting of two materials with temperature dependent material properties.

You will visually and qualitatively compare the MSC/THERMAL results with the results of an analytical solution.

Exercise Overview

1. Create a new database named exercise_08.db. Set the Tolerance to Default, and Analysis Code to MSC/THERMAL.

2. Create two surfaces which model the two adjoining material slabs.3. Mesh the surfaces with an IsoMesh.4. Identify “cracks” in the model and Equivalence the nodes at the mating surface edges.5. Define the two materials using Fields/Create/Material Property/General.6. Using the fields just defined create Material 1 and Material 2.7. Apply element properties to the elements referencing the two material properties just

defined.8. Apply the three temperature boundary conditions to the edges of your model.9. Prioritize temperature boundary conditions at the lower corners.10. Prepare and submit the model for analysis.11. Read results file and plot results.12. Compare the results to the analytical solution.13. Exit MSC.Patran.

Source ID

1-57451986

English Attachment

Ws08_matltempdep.pdf 1.4MB • 4 minute(s) @ 56k, < 1 minute @ broadband

Page 27: Nonlinear Total Strain vs Linear Strai1
Page 28: Nonlinear Total Strain vs Linear Strai1
Page 29: Nonlinear Total Strain vs Linear Strai1
Page 30: Nonlinear Total Strain vs Linear Strai1
Page 31: Nonlinear Total Strain vs Linear Strai1