Nonlinear and Anisotropic Materials...Anisotropic materials are good for controlling and...

24
1/23/2018 1 ECE 5322 21 st Century Electromagnetics Instructor: Office: Phone: E‐Mail: Dr. Raymond C. Rumpf A‐337 (915) 747‐6958 [email protected] Electromagnetic Properties of Materials – Part 2 Nonlinear and Anisotropic Materials Lecture #3 Lecture 3 1 Lecture Outline Nonlinear materials Anisotropic materials Tensor rotation and “unrotation” Dispersion relation and index ellipsoids Lecture 3 Slide 2

Transcript of Nonlinear and Anisotropic Materials...Anisotropic materials are good for controlling and...

Page 1: Nonlinear and Anisotropic Materials...Anisotropic materials are good for controlling and manipulating the waves. 1/23/2018 6 Atomic Scale Picture Lecture 3 Slide 11 Charges will oscillate

1/23/2018

1

ECE 5322 21st Century Electromagnetics

Instructor:Office:Phone:E‐Mail:

Dr. Raymond C. RumpfA‐337(915) 747‐[email protected]

Electromagnetic Properties of Materials – Part 2

Nonlinear and Anisotropic Materials

Lecture #3

Lecture 3 1

Lecture Outline

• Nonlinear materials

• Anisotropic materials

• Tensor rotation and “unrotation”

• Dispersion relation and index ellipsoids

Lecture 3 Slide 2

Page 2: Nonlinear and Anisotropic Materials...Anisotropic materials are good for controlling and manipulating the waves. 1/23/2018 6 Atomic Scale Picture Lecture 3 Slide 11 Charges will oscillate

1/23/2018

2

Nonlinear Materials

Nonlinear Materials

Lecture 3 Slide 4

All materials are nonlinear; some just have stronger nonlinear behavior than others.

For radio frequencies, materials tend to breakdown before they exhibit nonlinear properties.  Nonlinear properties are commonly exploited in optics.

In general, the polarization of a material is a nonlinear function of the electric field and can be expressed as…

1 2 32 30 0 0e e eP E E E

Linear responseThis is what we have done so far.

Nonlinear response

Page 3: Nonlinear and Anisotropic Materials...Anisotropic materials are good for controlling and manipulating the waves. 1/23/2018 6 Atomic Scale Picture Lecture 3 Slide 11 Charges will oscillate

1/23/2018

3

“Potential Well” Description

Lecture 3 Slide 5

r

V is the “push” required to displace the charge by a distance r. 

Linear materials have a parabolic potential well.This leads to a resonator that oscillates as a perfect sinusoid.

2V r

“Potential Well” for Nonlinear Materials

Lecture 3 Slide 6

Linear “parabolic” region for small r.

Nonlinear for large r.

As bound charges are pushed very hard, the restoring force is no longer linear.

This results in anharmonic oscillation.

This type of resonance does not oscillate as a sinusoid.  It can be seen as a series of sinusoids.

The oscillator is effectively resonating at multiple frequencies at the same time.

Page 4: Nonlinear and Anisotropic Materials...Anisotropic materials are good for controlling and manipulating the waves. 1/23/2018 6 Atomic Scale Picture Lecture 3 Slide 11 Charges will oscillate

1/23/2018

4

Nonsymmetric Potentials

Lecture 3 Slide 7

This is a non‐symmetrical potential and therefore exhibits a preferred direction for polarization.  

The result is a rectified signal along with potentially other frequency content.

DC component

Applications of Nonlinear Materials

Lecture 3 Slide 8

(1) Materials• Ordinary linear materials

(2) Materials• Rectification – can create a DC potential from an optical wave• Frequency doubling (second harmonic generation) – can make lasers at otherwise impossible wavelengths.

• Parametric mixing – can provide sum and difference frequencies• Pockel’s effect – can introduce birefringence from an applied electric field.

(3) Materials• Kerr effect – field dependent dielectric constant • Third harmonic generation – can generate very short wavelength waves.

• Raman scattering – the mechanical vibration of a molecule can shift the frequency of the wave

• Brillouin scattering – dielectric response changes with applied pressure

• Two photon absorption – two photons are absorbed simultaneously where as a single photon would not be absorbed.

Lacks inversion symmetry

Has inversion symmetry

Page 5: Nonlinear and Anisotropic Materials...Anisotropic materials are good for controlling and manipulating the waves. 1/23/2018 6 Atomic Scale Picture Lecture 3 Slide 11 Charges will oscillate

1/23/2018

5

Anisotropic Materials

Anisotropic Materials

Lecture 3 Slide 10

In some materials, charges are more easily displaced along certain directions.  For this reason, the material can become polarized in a direction slightly different than the applied field.  In this case, the susceptibility is a tensor quantity.

Imagine pushing at an angle against a sliding glass door.The door has a preferred direction for displacement.Real materials are not this dramatic!

0 eP E

Isotropic materials are good for simple transmission of electromagnetic waves.

Anisotropic materials are good for controlling and manipulating the waves.

Page 6: Nonlinear and Anisotropic Materials...Anisotropic materials are good for controlling and manipulating the waves. 1/23/2018 6 Atomic Scale Picture Lecture 3 Slide 11 Charges will oscillate

1/23/2018

6

Atomic Scale Picture

Lecture 3 Slide 11

Charges will oscillate differently in these two directions.  Therefore, the susceptibility changes as a function of direction in the lattice.

large

small

Tensor Relations for Anisotropic Materials

Lecture 3 Slide 12

This is most often treated through a dielectric tensor.

r e I

0

x xx xy xz x

y yx yy yz y

z zx zy zz z

D E

D E

D E

The constitutive relation between E and D is then

The dielectric tensor has Hermitian symmetry for the general lossy case.*

ij ji This means the field components are no longer independent.  But…it presents many new possibilities!!

0

x xx xy xz x

y yx yy yz y

z zx zy zz z

P E

P E

P E

The material polarization is now expressed as:

Materials can become polarized in directions that are  slightly different than the electric field!

Page 7: Nonlinear and Anisotropic Materials...Anisotropic materials are good for controlling and manipulating the waves. 1/23/2018 6 Atomic Scale Picture Lecture 3 Slide 11 Charges will oscillate

1/23/2018

7

Principle Axes

Lecture 3 Slide 13

It is always possible to choose a different coordinate system such that the dielectric tensor becomes diagonal.

0

0 0

0 0

0 0

a a a

b b b

c c c

D E

D E

D E

ˆˆˆˆ

ˆˆ

ax

y b

z c

a, b, and c are called the “Principal Axes of the Crystal.”a, b, and c are not necessarily at 90° to each other.

Alternative Description: There are only three degrees of freedom for 3D tensors.  Numbers can only occur in the off‐diagonal elements when the tensor is rotated.

Maxwell’s Equations with Anisotropic Materials

Lecture 3 Slide 14

Maxwell’s equations remain unchanged.

E j B

H j D

0

0

D

B

The constitutive relations now include tensors

D E

B H

x xx xy xz x

y yx yy yz y

z zx zy zz z

D E

D E

D E

Page 8: Nonlinear and Anisotropic Materials...Anisotropic materials are good for controlling and manipulating the waves. 1/23/2018 6 Atomic Scale Picture Lecture 3 Slide 11 Charges will oscillate

1/23/2018

8

Symmetry and Anisotropy

Lecture 3 Slide 15

Anisotropy Crystal Symmetry Dielectric Properties

Isotropic Cubic

Uniaxial HexagonalTetragonal

Biaxial MonoclinicTriclinicOrthorhombic

0 0

0 0

0 0

0 0

0 0

0 0

positive birefringence

negative birefringence

O

O

E

E O

E O

0 0

0 0

0 0

a

b

c

a b c

Tensor Rotation and “Unrotation”

Page 9: Nonlinear and Anisotropic Materials...Anisotropic materials are good for controlling and manipulating the waves. 1/23/2018 6 Atomic Scale Picture Lecture 3 Slide 11 Charges will oscillate

1/23/2018

9

Definition of a Rotation Matrix

ab

ab R

Rotation matrix [R] is defined as

The rotation matrix should notchange the amplitude.  This implies that [R] is unitary.

1H

H H

R R

R R R R

b a

I

Lecture 3 17

Derivation of a 2D Rotation Matrix

a

Start with vector     at angle .

ˆ ˆ

ˆ ˆcos sin

x yx y

a

a

y

a a

x

Apply trig identities

ˆ cos cos sin sin

ˆsin cos cos sin

ˆ cos sin

ˆcos sin

x y

y x

xa

a a

a

y

x

ya

b

cos sin

sin cosx

R

yy

xb

b

a

a

Lecture 3 18

a

b

Add angle  to rotate the vector

ˆ ˆcos sina yb x

Page 10: Nonlinear and Anisotropic Materials...Anisotropic materials are good for controlling and manipulating the waves. 1/23/2018 6 Atomic Scale Picture Lecture 3 Slide 11 Charges will oscillate

1/23/2018

10

3D Rotation Matrices

1 0 0

0 cos sin

0 sin cosxR

Rotation matrices for 3D coordinates can be written directly from the previous result.

cos 0 sin

0 1 0

sin 0 cosyR

cos sin 0

sin cos 0

0 0 1zR

a

b

b b

a

a

Lecture 3 19

Rotation Matrix that Rotates Onto

Lecture 3 20

a

b

ˆˆ a b

a ba b

Normalize Vectors

Algorithm

3 2

3 1

2 1

ˆˆ

i.e. sin

ˆˆ i.e. cos

0

0

0

ab

ab

v a b

s v

c a b

v v

v v v

v v

2

2

1 cR I v v

s

ˆˆR a b

[R] is such that

Page 11: Nonlinear and Anisotropic Materials...Anisotropic materials are good for controlling and manipulating the waves. 1/23/2018 6 Atomic Scale Picture Lecture 3 Slide 11 Charges will oscillate

1/23/2018

11

Tensor Rotation

Tensors are rotated in a slightly different manner than vectors.

1

zR

zR R

Lecture 3 21

Combinations of Rotations

For vectors…

z y xRb aR R

For tensors…

11 1

z y x x y zR R R R R R R

Lecture 3 22

Suppose we wish to first rotate about the x‐axis by some angle, second rotate about the y‐axis by some angle, and third rotate about the z‐axis by some angle.

Page 12: Nonlinear and Anisotropic Materials...Anisotropic materials are good for controlling and manipulating the waves. 1/23/2018 6 Atomic Scale Picture Lecture 3 Slide 11 Charges will oscillate

1/23/2018

12

Composite Rotation Matrix

We can combine multiple rotation matrices into a single composite rotation matrix [R].

ab R

Tensor rotation using the composite rotation matrix is

1R R R Lecture 3 23

y z xR R R R Vector rotation using the composite rotation matrix is

This equation implies we will rotate first about the x‐axis, second about the z‐axis, and third about the y‐axis. 

Lecture 1 24

Animation of Tensor Rotation

Page 13: Nonlinear and Anisotropic Materials...Anisotropic materials are good for controlling and manipulating the waves. 1/23/2018 6 Atomic Scale Picture Lecture 3 Slide 11 Charges will oscillate

1/23/2018

13

Order of Rotations Matter

45 220 10z y xb aR R R

Lecture 3 25

The order that we multiply the rotation matrices controls the order that the rotations are performed.

1. First rotates about the x‐axis by 10°.2. Second rotates about the y‐axis by 220°.3. Third rotates about the z‐axis by ‐45°.

In general, we do not get the same result when the order of rotation is changed.

y x x yR R R R

Numerical Examples (1 of 2)

Lecture 3 26

1 0 0

Given: 0 2 0

0 0 3r

Rotate about x‐axis by 20°

1 0 0

20 0 0.9397 0.3420

0 0.3420 0.9397xR

1 0 0

0 2.1170 0.3214

0 0.3214 2.8830r

Rotate about y‐axis by 45°

0.7071 0 0.7071

45 0 1 0

0.7071 0 0.7071yR

2 0 1

0 2 0

1 0 2r

Rotate about z‐axis by 60°

0.5000 0.8660 0

60 0.8660 0.5000 0

0 0 1zR

1.7500 0.4330 0

0.4330 1.2500 0

0 0 3r

Page 14: Nonlinear and Anisotropic Materials...Anisotropic materials are good for controlling and manipulating the waves. 1/23/2018 6 Atomic Scale Picture Lecture 3 Slide 11 Charges will oscillate

1/23/2018

14

Numerical Examples (2 of 2)

Lecture 3 27

1 0 0

Given: 0 2 0

0 0 3r

Rotate first about x‐axis by 20° and second about the y‐axis by 45°

0.7071 0.2418 0.6645

45 20 0 0.9397 0.3420

0.7071 0.2418 0.6645y xR R

1.9415 0.2273 0.9415

0.2273 2.1170 0.2273

0.9415 0.2273 1.9415r

Rotate first about z‐axis by 60° and second about the y‐axis by 45°

0.3536 0.6124 0.7071

45 60 0.8660 0.5000 0

0.3536 0.6124 0.7071y zR R

2.3750 0.3062 0.6250

0.3062 1.2500 0.3062

0.6250 0.3062 2.3750r

Rotate first about x‐axis by 20°, second about the y‐axis by 45°, and third about the z‐axis by 60°

0.3536 0.6929 0.6284

60 45 20 0.6124 0.6793 0.4044

0.7071 0.2418 0.6645z y xR R R

2.2699 0.0377 0.6676

0.0377 1.7886 0.7017

0.6676 0.7017 1.9415r

Tensor Unrotation (1 of 2)

Lecture 3 28

A tensor can always be diagonalized along its principle axes.

0 0

0 0

0 0 c

a

b

ˆ is along

ˆ is along

ˆ is along

Principle A

xes:

b

c

a a

c

b

But suppose we are given a general nine‐element tensor.

rot

xx xy xz

yx yy yz

zx zy zz

How do we determine a, b, c and the principle axes a, b, and c? 

Convention:

ca b

Page 15: Nonlinear and Anisotropic Materials...Anisotropic materials are good for controlling and manipulating the waves. 1/23/2018 6 Atomic Scale Picture Lecture 3 Slide 11 Charges will oscillate

1/23/2018

15

Tensor Unrotation (2 of 2)

Lecture 3 29

We can relate the original tensor and the rotated tensor through the composite rotation matrix [R].

1

rot R R

We calculate the eigen‐vectors and eigen‐values of [rot].

rotrot

rot

is the eigen-vector matrix of

is the eigen-value matrix of

R

Determining Principle Axes (1 of 2)

Lecture 3 30

What are the principle axes of [rot]?

Let’s put the original principal axes a, b, and c into a matrix. 

ˆ ˆ

ˆ

x

y

x

y

z

x

y

zz

a

P a

a

b

b

b

b

c

c

c

ca

Now let’s rotate them according to [R] so they correspond to that of [rot].

rot PP R

We are not rotating a tensor here so we don’t use [R][P][R]-1.

Page 16: Nonlinear and Anisotropic Materials...Anisotropic materials are good for controlling and manipulating the waves. 1/23/2018 6 Atomic Scale Picture Lecture 3 Slide 11 Charges will oscillate

1/23/2018

16

Determining Principle Axes (2 of 2)

Lecture 3 31

For the special case of orthorhombic symmetry, the principle axes start off as

0

0

1

1

0

0

ˆ

ˆ

0

1

0

ˆ

P

a cb

[P] is just the identity matrix here.  The principle axes of the rotated tensor are then

rot RP I R We now have a second interpretation of the eigen‐

vector matrix [R].  These are the principle axes of the rotated tensor (for orthorhombic symmetry).

Directly Setting the Principle Axes

Lecture 3 32

We may know the orientation that we would like to place our tensor directly in terms of the desired crystal axes a, b, and c.

We place these into a matrix and interpret it as the composite rotation matrix.

ˆ ˆ

ˆ

x

y

z

y

z

x x

y

z

c

c

c

c

a

a

a

a

R

b

b

b

b

The rotated tensor can be directly calculated from [R].

1

rot R R

Page 17: Nonlinear and Anisotropic Materials...Anisotropic materials are good for controlling and manipulating the waves. 1/23/2018 6 Atomic Scale Picture Lecture 3 Slide 11 Charges will oscillate

1/23/2018

17

Dispersion Relation &

Index Ellipsoids

The Wave Vector

Lecture 3 Slide 34

The wave vector (wave momentum) is a vector quantity that conveys two pieces of information:

1. Wavelength and Refractive Index – The magnitude of the wave vector tells us the spatial period  (wavelength) of the wave inside the material.  When the free space wavelength is known, |k| conveys the material’s refractive index n(more to be said later).

2. Direction – The direction of the wave is perpendicular to the wave fronts (more to be said later).

00

2 2 free space wavelengthkn

ˆˆ ˆa b ck k a k b k c

Page 18: Nonlinear and Anisotropic Materials...Anisotropic materials are good for controlling and manipulating the waves. 1/23/2018 6 Atomic Scale Picture Lecture 3 Slide 11 Charges will oscillate

1/23/2018

18

Dispersion Relations

Lecture 3 Slide 35

The dispersion relation for a material relates the wave vector to frequency.Essentially, it tells us the refractive index as a function of direction through a material.

It is derived by substituting a plane wave solution into the wave equation.

For an ordinary linear homogeneous and isotropic (LHI) material, the dispersion relation is:

2 2 2 2 20a b ck k k k n

2 2 2202

0a b ck k kk

n

This can also be written as:

Index Ellipsoids

Lecture 3 Slide 36

From the previous slide, the dispersion relation for a LHI material was:

This defines a sphere called an “index ellipsoid.”

The vector connecting the origin to a point on the surface of the sphere is the k‐vector for that direction.  Refractive index is calculated from this.

For LHI materials, the refractive index is thesame in all directions.

Think of this as a map of the refractiveindex as a function of the wave’s directionthrough the medium.

2 2 2 2 20a b ck k k k n

ab

c

index ellipsoid

0k k n

Page 19: Nonlinear and Anisotropic Materials...Anisotropic materials are good for controlling and manipulating the waves. 1/23/2018 6 Atomic Scale Picture Lecture 3 Slide 11 Charges will oscillate

1/23/2018

19

How to Derive the Dispersion Relation (1 of 2)

Lecture 3 Slide 37

The wave equation in a linear homogeneous anisotropic material is:

20 0 0rE k E

The solution to this equation is still a plane wave, but our allowed values for k (modes) are more complicated.

0 0ˆˆ ˆ jk r

a b cE E e E E a E b E c

We are ignoring the magnetic response here.

Substituting this solution into the wave equation leads to the following relation:

20 0 0 0 0rk k E k E k E

This equation has the form: ˆˆ ˆ 0a b c

Each (•••) term has the form: 0a b cE E E

Each vector component must be set to zero independently.

ˆ component: 0

ˆ component: 0

ˆ component: 0

a b c

a b c

a b c

a E E E

b E E E

c E E E

0a

b

c

E

E

E

Matrix form…

How to Derive the Dispersion Relation (2 of 2)

Lecture 3 Slide 38

This leads to the following general equation: 

det 0

Solutions for k are the eigen‐values of the big matrix and derived by setting the determinant to zero.

2 2 2

2 2 22 2 2 2 2 20 0 0

1a b c

a b c

k k k

k k n k k n k k n

It can also be shown that given the wave vector, the polarization of the electric field is:

0 2 2 22 2 2 2 2 20 0 0

ˆˆ ˆa b c

a b c

k k kE a b c

k k n k k n k k n

Page 20: Nonlinear and Anisotropic Materials...Anisotropic materials are good for controlling and manipulating the waves. 1/23/2018 6 Atomic Scale Picture Lecture 3 Slide 11 Charges will oscillate

1/23/2018

20

Generalized Dispersion Relation

Lecture 3 Slide 39

Given the dielectric tensor…,

The general form of the dispersion relation is:

This can be written in a more useful form as:

2 2 2

2 2 22 2 2 2 2 20 0 0

1a b c

a b c

k k k

k k n k k n k k n

2

2

2

0 0 0 0

0 0 0 0

0 0 0 0

a a

r b B

c C

n

n

n

2 2 2 2 2 2 2 2 222 40 02 2 2 2 2 2 2 2 2

1a b c b c a c a b

b c a c a b a b c

k k k k k k k k kk k k

n n n n n n n n n

Dispersion Relation for UniaxialCrystals

Lecture 3 Slide 40

Uniaxial crystals have

The general dispersion relation reduces to:

2 2 2 2 2 22 20 02 2 2

Sphere EllipseOrdinary Wave Extraordinary Wave

0a b c a b c

O E O

k k k k k kk k

n n n

ordinary refractive index

extraordinary refractive indexa b O O

c E E

n n n n

n n n

This has two solutions corresponding to the two polarizations (TE and TM).

This first solution is the same as for an isotropic material.  It acts like it is propagating through a isotropic material with index nO so it is called the “ordinary wave.”

The second solution is an ellipsoid.  Depending on its direction, the effective refractive index will be somewhere between nO and nE.

This has two solutions corresponding to the two polarizations (TE and TM).

Page 21: Nonlinear and Anisotropic Materials...Anisotropic materials are good for controlling and manipulating the waves. 1/23/2018 6 Atomic Scale Picture Lecture 3 Slide 11 Charges will oscillate

1/23/2018

21

Index Ellipsoids for UniaxialCrystals (1 of 2)

Lecture 3 Slide 41

2 2 2 2 2 22 20 02 2 2

0a b c a b c

O E O

k k k k k kk k

n n n

2 2 2202

0a b c

O

k k kk

n

2 2 2202 2

0a b c

E O

k k kk

n n

O En n O En n

Ordinary Wave Extraordinary Wave

Index Ellipsoids for UniaxialCrystals (2 of 2)

Lecture 3 Slide 42

ab

cObservations

• Both solutions share a common axis.• This “common” axis looks isotropic with refractive index n0 regardless of polarization.

• Since both solutions share a single axis, these crystals are called “uniaxial.”

• The “common” axis is called:oOptic axisoOrdinary axisoC axisoUniaxial axis

• Deviation from the optic axis will result in two separate possible modes.

On

On

On

En En

Page 22: Nonlinear and Anisotropic Materials...Anisotropic materials are good for controlling and manipulating the waves. 1/23/2018 6 Atomic Scale Picture Lecture 3 Slide 11 Charges will oscillate

1/23/2018

22

Dispersion Relation for Biaxial Crystals (1 of 2)

Lecture 3 Slide 43

Biaxial crystals have all unique refractive indices.  Most texts adopt the convention where

The general dispersion relation cannot be reduced.  

a b cn n n

ab

c

optic axes

Notes and Observations

• The convention na<nb<nc causes the optic axes to lie in the a‐c plane.

• The two solutions can be envisioned as one balloon inside another, pinched together so they touch at only four points.

• Propagation along either of the optic axes looks isotropic, thus the name “biaxial.”

Dispersion Relation for Biaxial Crystals (2 of 2)

Lecture 3 Slide 44

There are three special cases when it can be simplified.We can cause these conditions by launching electromagnetic waves at the proper orientation.

2 22 2 2 2 2

0 02 2

2 22 2 2 2 2

0 02 2

2 22 2 2 2 2

0 02 2

0 : 0

0 : 0

0 : 0

b ca b c a

c b

a cb a c b

c a

a bc a b c

b a

k kk k k k n k

n n

k kk k k k n k

n n

k kk k k k n k

n n

We see that each case has two separate solutions corresponding to the two polarizations (TE and TM).

Page 23: Nonlinear and Anisotropic Materials...Anisotropic materials are good for controlling and manipulating the waves. 1/23/2018 6 Atomic Scale Picture Lecture 3 Slide 11 Charges will oscillate

1/23/2018

23

Dispersion Surfaces of Magnetoelectric Materials

Lecture 3 Slide 45

Magnetoelectric materials can exhibit up to 16 singularities.

and D E H B H E

Alberto Favaro and Friedrich W. Hehl, “Light propagation in local and linear media: Fresnel‐Kummerwave surfaces with 16 singular points,” arXiv preprint arXiv:1510.05566 (2015).

Direction of Power Flow

Lecture 3 Slide 46

Isotropic Materials

k

P

x

y

k

P

Anisotropic Materials

x

y

Phase propagates in the direction of k.  Therefore, the refractive index derived from |k| is best described as the phase refractive index.  Velocity here is the phase velocity.

Energy propagates in the direction of P which is always normal to the surface of the index ellipsoid.  From this, we can define a group velocity and a group refractive index.

Page 24: Nonlinear and Anisotropic Materials...Anisotropic materials are good for controlling and manipulating the waves. 1/23/2018 6 Atomic Scale Picture Lecture 3 Slide 11 Charges will oscillate

1/23/2018

24

Illustration of k versus

Lecture 3 Slide 47

Negative refraction into a photonic crystal.

Raymond C. Rumpf "Engineering the Dispersion and Anisotropy of Periodic Electromagnetic Structures," Solid State Physics, Vol. 66, pp. 213‐300, 2015.

Double Refraction in Anisotropic Materials

Lecture 3 Slide 48

Isotropic Materials

y

1k

x

2k

Anisotropic materials have two index ellipsoids – one for each polarization.  Wave energy can split between the two produce an ordinary and an extraordinary wave.

y

1k

x

0k

Anisotropic Materials

ek