Non-linear phenomena in semiconductor nanostructures/Menu/...2 rkk 23 r k 3 r k 4 Introduction...

20
Marcin Swillo School of Engineering Sciences, KTH, Stockholm Non-linear phenomena in semiconductor nanostructures Adopt Winter School 2012

Transcript of Non-linear phenomena in semiconductor nanostructures/Menu/...2 rkk 23 r k 3 r k 4 Introduction...

  • Marcin Swillo School of Engineering Sciences, KTH, Stockholm

    Non-linear phenomena in semiconductor nanostructures

    Adopt Winter School 2012

  • Collaboration

    • Semiconductor Materials Division (KTH/ ICT):

    Assoc. Prof. Anand Srinivasan

    Reza Sanatinia

    -SHG in semiconductor nanopillars

  • Outline

    • Introduction • Nonlinear polarization on the surface

    - Structure discontinuity - Electric quadrupole

    • Surface contribution to SHG (GaP nanopillar)

    • Bulk contribution to SHG (GaP nanopillar)

    • Experiment

  • Electric displacement field:

    jjj PED 0

    Polarization density (applying Taylor expansion):

    .3,2,1j

    .3,2,1,...,, lkj

    .]exp[)()( cctit

    EE

    If the electric field E is a superposition of monochromatic waves:

    Linear

    jPNonlinear

    jP

    Introduction

    0

    0

    jkl

    jkl

    for centrosymmetric crystals

    for non-centrosymmetric crystals

    ..., mlkjklmlkjklkjkj EEEEEEP

  • Nonlinear

    jkjkj PED

    Electric displacement field:

    Wave equation:

    2

    2

    02

    2

    0

    2

    t

    P

    t

    EE

    Nonlinear

    jkjkj

    Three-wave mixing: Four-wave mixing:

    321 4321

    lkjklj EEP )2(

    mlkjklmj EEEP )3(

    321 kkk 4321 kkkk

    Introduction

    (second order nonlinearity) (third order nonlinearity)

  • Introduction

    Second harmonic generation (SHG):

    pump 21

    P. Franken, A. Hill, C. Peters, G. Weinreich, "Generation of Optical Harmonics". Physical Review Letters 7 (4), 118 (1961).

    R. W. Terhune, P. D. Maker, and C. M. Savage, “Optical Harmonic Generation in Calcite”, Physical Review Letters 8 (10), 404 (1962)

    The first observation of SHG (crystalline quartz –> non-centrosymmetric crystal):

    The first observation of SHG in calcite (centrosymmetric crystal):

    ● Third order nonlinearity:

    ● Second order nonlinearity: 211111111

    )2(

    1 )(EdEEP

    - Using external electric field: - Electric quadrupole

    ml

    DC

    kjklmj EEEP )3(

    ● Second order nonlinearity: - Structure discontinuity at the surface

  • E

    Au

    - Local field enhancement - Structure discontinuities - Electric quadrupole contribution

    Nonlinear polarization on the surface

    A. Bouhelier, M. Beversluis, A. Hartschuh, L. Novotny Physical Review Letters 90, 013903 (2003)

    Second harmonic generation on the glass surface

    Electrostatic approximation:

  • Structure discontinuities

    x

    y

    z

    lkjklj EEP )2(

    x

    y

    z

    x’

    y’

    z’

    x’ = x y’ = -y z’ = -z

    )2()2(

    '''1515

    )2( 22 xxxzxzx PPEEdEEdP

    E E

    015 d

    Using symmetry operations the only nonvanishing elements are:

    yx

    xz

    yz

    z

    y

    x

    z

    y

    x

    EE

    EE

    EE

    E

    E

    E

    d

    d

    ddd

    P

    P

    P

    2

    2

    2

    2

    2

    2

    35

    26

    131211

  • yx

    xz

    yz

    z

    y

    x

    z

    y

    x

    EE

    EE

    EE

    E

    E

    E

    d

    d

    ddd

    P

    P

    P

    2

    2

    2

    2

    2

    2

    35

    26

    131211

    x

    y

    z

    1312 dd

    3526 dd

    Using symmetry operations some nonvanishing elements are identical:

    11d

    Electric dipole contribution

    lkjklj EEP )2(

    Structure discontinuities

  • Electric quadrupole contribution to SHG

    ]exp[})]([)0({),( tixxEEtxE x

    ]2exp[))2((2

    )(

    )(2

    )(]exp[

    )()(

    22

    0

    222

    0

    2

    0

    3

    22

    0

    2

    0

    2

    0

    3

    22

    0

    0

    2

    tim

    xEENe

    m

    xEENeti

    m

    ENetP xx

    Electron oscillator for electric quadrupole approximation:

    LP )2(PStatic polarization

    e

    E(x, t)

    x

    ● Third order nonlinearity (2,0,,): 02

  • x

    y

    z

    '

    35

    '

    26 dd

    '

    11d

    Electric quadrupole contribution

    0

    x

    Ex

    Electric quadrupole contribution to SHG

    D. Epperlein, B. Dick, and G. Marowsky, „Second-Harmonic Generation in Centro-Symmetric Media”, Applied Physics B 44, 5-10 (1987)

    1

    2

    2'

    11

    i

    sd

    Preferred a high refractive index Semiconductors

    yx

    xz

    yz

    z

    y

    x

    z

    y

    x

    EE

    EE

    EE

    E

    E

    E

    d

    d

    ddd

    P

    P

    P

    2

    2

    2

    2

    2

    2

    '

    35

    '

    26

    '

    13

    '

    12

    '

    11

  • 1312 dd

    3526 dd

    11d

    Structure discontinuities (electric dipole)

    '

    35

    '

    26 dd

    '

    11d

    Electric quadrupole contribution

    Amorphous solid

    x

    y )2(

    z

    Crystal Class: -43m

    GaP crystal

    Bulk nonlinearity:

    362514 ddd

    1312 dd

    11d'

    11d

    3625 dd '

    36

    '

    25 dd

    14d

    Structure discontinuities (electric dipole)

    Electric quadrupole contribution

    [001] x

    y

    z

    Nonlinear susceptibility on the surface

    Picture from: Benjah-bmm27

    yx

    xz

    yz

    z

    y

    x

    z

    y

    x

    EE

    EE

    EE

    E

    E

    E

    d

    d

    d

    P

    P

    P

    2

    2

    2

    2

    2

    2

    36

    25

    14

    3526 dd '

    35

    '

    26 dd

  • Array of GaP nanopillar waveguides

    x

    y

    Electric field Ex of guided fundamental mode

    Wavelength: 840 nm Diameter: 150 nm

  • kx

    kpump kSH kpump

    kx

    ]2

    [Ak

    ASinc x

    A

    2

    A

    4

    A

    6

    A

    2

    A

    4 0

    ]2

    []2

    [],[ 11)2( LkSinc

    AkALSincdkk zxzx

    kz

    ]2

    [Lk

    LSinc z

    A

    11

    )2( d0)2(

    kpump

    Nanopillar Air

    L

    surf

    ace

    kpump Ex pump

    z

    x

    𝑃𝑥2

    = 𝜒(2)𝐸𝑥𝐸𝑥

    Surface contribution to SHG

    kz

  • Ex

    x [m]

    y [

    m]

    00,10,20,30,40,50,60,70,80,9

    1

    50 80 110 140 170 200 230 260 290 320 350

    Diameter [nm]

    SH

    Inte

    nsi

    ty [

    a.u

    ]

    𝑃⊥2

    = 𝜒(2)[𝐸𝑥∙ 𝒆⊥]2

    Nanopillar

    Air

    bpump

    Ex

    e E

    z

    x

    y

    Surface contribution to SHG

  • 25

    )2( d

    bpump

    bSH

    Nanopillar Air Air

    L

    Ex

    ]2

    [2][ 25)2( LkLSincdk zz

    bpump bSH

    bpump

    kz

    kz

    ]2

    [Lk

    LSinc z Ez

    kpump Ex pump

    Ex

    Ez

    z

    x

    𝑃𝑦2

    = 𝜒(2)𝐸𝑥𝐸𝑧

    Bulk contribution to SHG

    Ey

  • 00,10,20,30,40,50,60,70,80,9

    1

    50 80 110 140 170 200 230 260 290 320 350

    Diameter [nm]

    SH

    Inte

    nsi

    ty [

    a.u]

    𝑃𝑦2

    = 2𝑑25𝐸𝑥𝐸𝑧 Ex

    Ez

    x [m]

    x [m]

    y [

    m]

    y [

    m]

    Bulk contribution to SHG

  • (d) (c) (b)

    RIE CAIBE

    (a) Deposition of colloidal silica nanospheres (500nm)

    (b) Size reduction by RIE (c) Etching by Ar/Cl2 CAIBE (d) Nanopillars ca. 1m high, diameter

    100-250 nm

    (a)

    Semiconductor Materials Division (KTH)

    Nanopillar fabrication steps

  • 0

    0,1

    0,2

    0,3

    0,4

    0,5

    0,6

    0,7

    50 80 110 140 170 200 230 260 290 320 350

    Measurements

    Surface simulation

    Bulk simulation

    Fitting

    Diameter [nm]

    SH

    In

    ten

    sity

    [a.

    u]

    [0 0 1] direction

    SHG- 420 nm

    Pump 840 nm

    50X, NA= 0.5

    150 nm 250 nm

    SHG measurement

    R. Sanatinia, M. Swillo, S. Anand, Nano Letter., 2012, 12 (2), p. 820

    SHG efficiency (detected): 2∙10-7 % Coherence lenght for SHG: ~ 100 nm

    0,99

    1,09

    1,19

    400 420 440

  • [0 0 1]

    direction

    SHG- 420 nm

    50X, NA= 0.5

    Pump 840 nm

    5X, NA= 0.15

    Polarizer

    Epump

    0

    15 °

    30 °

    45 °

    60 °75 °90 °105 °

    120 °

    135 °

    150 °

    165 °

    180 °

    195 °

    210 °

    225 °

    240 °255 ° 270 ° 285 °

    300 °

    315 °

    330 °

    345 °

    Epump

    Polarization of SH light

    SHG measurement

    Nanopillar diameter: 150 nm, 250 nm