Noise Simulation on RPCs

24
Noise Simulation on RPCs Andrés Leonardo Cabrera Mora High Energy Physics Group Universidad de los Andes

description

Noise Simulation on RPCs. Andrés Leonardo Cabrera Mora High Energy Physics Group Universidad de los Andes. ¿ What we are simulating ?. Resistive Plate Chambers. Geometry. First Aproximation. Polyethylene (0.2 mm) Graphite (0.2 mm) Bakelite (2 mm) Gas C 2 H 2 F 4 (2 mm) - PowerPoint PPT Presentation

Transcript of Noise Simulation on RPCs

Page 1: Noise Simulation on RPCs

Noise Simulation on RPCs

Andrés Leonardo Cabrera MoraHigh Energy Physics GroupUniversidad de los Andes

Page 2: Noise Simulation on RPCs

¿What we are simulating?

Resistive Plate Chambers

Page 3: Noise Simulation on RPCs

Geometry

• Polyethylene (0.2 mm)• Graphite (0.2 mm)• Bakelite (2 mm)• Gas C2H2F4 (2 mm)• Aluminum (strips)(0.04

mm)• Air• Localized Electric Field

(4.5 kV/mm)

FIRST APROXIMATION

Page 4: Noise Simulation on RPCs

Implementation

• Particles: photons, electrons, positrons, muons and antimuons.

• Processes: Compton Scattering, Photo Electric Effect, Gamma Conversion, Multiple Scattering, Ionization, Bremsstrahlung, Positron Annihilation and Pair Production.

• Results: Histograms, Scatter Plots, Angles Distribution and Distance Distribution.

Page 5: Noise Simulation on RPCs

Conditions on the Simulation

• Incidence of ten millions of muons through a Double RPC (perpendicular, fixed point)

• Localized field in the region of the gas-4.5 kV/mm in the z axis (negative)

• The results show electrons that come from photons in the gas region

Page 6: Noise Simulation on RPCs

RESULTS

Page 7: Noise Simulation on RPCs

Counts

Distance Distribution X (cm)

Electron Distance Distribution

Page 8: Noise Simulation on RPCs

Counts

Energy Distribution (MeV)

Electron Energy Distribution

Page 9: Noise Simulation on RPCs

Angular Distribution

Z (positive)

Cos (Ѳ) = 1 Cos (Ѳ) = -1

Page 10: Noise Simulation on RPCs

Counts

Cos (Ѳ) Distribution

Electron Cos (Ѳ) Distribution

Page 11: Noise Simulation on RPCs

Counts

Φ Distribution (Deg)

Electron Φ Angular Distribution

Page 12: Noise Simulation on RPCs

X (mm)

Y (mm)

Scatter Plot Y vs X

Page 13: Noise Simulation on RPCs

OTHER RESULTS

Page 14: Noise Simulation on RPCs

Positive Electric Field

(4.5 kV/mm en la dirección positiva del eje z)

Page 15: Noise Simulation on RPCs
Page 16: Noise Simulation on RPCs

Negative Electric Field

(4.5 kV/mm en la dirección negativa del eje z)

Page 17: Noise Simulation on RPCs
Page 18: Noise Simulation on RPCs

RPC with Iron

Page 19: Noise Simulation on RPCs

RPC with aluminium

Page 20: Noise Simulation on RPCs

Change in the incidence of particles

• Distribution of energies • Incidence from different angles and points.

Page 21: Noise Simulation on RPCs

Manage of Information• Twiki in english/spanish

http://twiki.org/cgi-bin/view/Sandbox/AndresCabreraSandbox

Page 22: Noise Simulation on RPCs

Conclusions• The incidence of ten millions of muons

produce a 0.09% (9242) of electrons that come from photons.

• Only 0.09% (9) of electrons are produced to more than 10 cm of the point of incidence.

Page 23: Noise Simulation on RPCs

Conclusions

• Only 2.7% (257) electrons are produced to more than 2.4 cm (1.2 cm) of the point of incidence.

Page 24: Noise Simulation on RPCs

Counts

Distance Distribution X (cm)

Electron Distance Distribution