No. +**,p.-/.+ · ˘ˇ ˆ ˘˙˝˛˚˜ !˙˝ ˛"˚ #$% ˘ ˙ &˙’() * +" ,- ˆ ./ 0 123 ˆ+˙ 0 4...

7
腐腓腏腃腍腒腈腑腂腊腀腄腆腅腇腌腋腁腉腎 * Experimental Study of Water Redistribution Measurement in the Model Earthen Wall and its Numerical Analysis Takeshi ISHIZAKI* * National Research Institute for Cultural Properties, Tokyo Abstract In the Asian countries, there are many important wall paintings on earthen walls of temples and other historical buildings. Because earth can be considered as a porous material, there is water redistribution in the walls due to the change of the surrounding environmental conditions. Water evaporates under dry conditions from the wall surface and salts accumulate near the surface zone and can cause salt e%orescence damages in the wall paintings. In order to develop suitable protective measures, it is necessary to know the water content profiles and water movement in the earthen walls. For this purpose, a model earthen wall has been built up in the historical folklore museum in Sapporo. The water redistribution in the earthen wall was measured by using a TDR (Time Domain Reflectometry) apparatus. The numerical simulation of water movement in the model wall was performed with the Delphin. program developed by the TU Dresden. The material data, such as moisture retention curve, liquid water conductivity and water vapor di#usivity of the model earthen wall and climate data of the location Sapporo were taken into account for simulation. For development of suitable protective measures, it is quite important to have non destructive methods to understand the water regime in porous materials. The good agreement between simulation results and measured moisture profiles in position and time show the validity of using the Delphin. program for development and evaluation of conservation measures of historical buildings and stone monuments. Key words : historical building, earthen wall, water redistribution, TDR (time domain reflecto- metry), numerical analysis +腇腅腈腆 臺膯臒膟臄臦臁臄臨膆膫臗膥臄臦腟腞腢臦至臒膆膋臒膿臦臒臲腾腜臻膆腔腪腐腫腨腡臻膆腡腈腘臦 至臒臻膆腌臨膆膫腬膥膾腔腪膪臵腠臇腒腛膓膜腋腚臉 腍腟膁膗腬臰腉腪膍臹臌腠腊腇腛腢膄臖腌 *腹膅腠 腟腩臺膯臒膟臄臦腡臩臆臎腡膺腌臘膞腔腪腝膺腢臘 膞臭腤膒腇膏腕腨腫腛腍腛腖腐腜臟腝腒腛臀膲腔腪腡臟腡膾臐腠腧腪臬臏腌臩臆腬臻膆腑腕腪膡腾腡腽腚腝 腟腙腛腇腪腽自腳腯腝腋腴腱腲腳腸腟腞腡膌膐膀膐腡腆腪臌 腼腜腢臺膯臒腷腸腰膟臄臦腌膃臷臤膆腝膣腣腫腪膢膵 腠腧腩臻膆腌膹腭腜腇腪臸腉腣膼膉腻膮腠臔臼腑腫 腛腇腪腳腯腡腮腶腳腵腡臺膯臒腷腸腰膟臄臦腠腊腇腛膀膐腠腢膺腢腷腸腰臎腠臍臂腑腫膌膐腠腷腸腰臠臭腋 腨膸臝腔腪腐腡膺腡腺臚腡膩腠腷腸腰腡膎膝膺腠臱 腏膨腭腜腇腗膃臷腌腷腸腰臠臭膘腎腜臀膲腒腐腡膞膴 膾臐腠臞腈膎膝腡臬臏腠腧腩腷腸腰腌臻膆腔腪 Ishi- zaki et al., ,**+腃腀 臎膧腡臜膦膚腢膼膉腻膮腠臔臼腑腫腛腇腪臥膖 腡臁膚膛腜腆腩. 膼膑腠膊膭腌腢腓腥腙腗臁膚腌 .3, 腆腩臡腋腫腗臩膇腡臃臭臂腢 ./,*** m , 腠腦臊腔腪* 臙膕臨膆膫膠膔膳 ++*21+- 臙膕臕臈臙膙膶臮膤膂 +-.- 腉腁腋腁腊 : 臺膯臒膟臄臦臗臩膺臧臧臢TDR 膱膎臶腼臯臓致臅臑膻臋膈臀 J. Jpn. Soc. Soil Phys. 臗膷腡臦至膽 No. +**, p. -/.+ ,**/腍腌腏腎

Transcript of No. +**,p.-/.+ · ˘ˇ ˆ ˘˙˝˛˚˜ !˙˝ ˛"˚ #$% ˘ ˙ &˙’() * +" ,- ˆ ./ 0 123 ˆ+˙ 0 4...

Page 1: No. +**,p.-/.+ · ˘ˇ ˆ ˘˙˝˛˚˜ !˙˝ ˛"˚ #$% ˘ ˙ &˙’() * +" ,- ˆ ./ 0 123 ˆ+˙ 0 4 5 ˙! 6 7-ˆ ".8.3 &9: ;?@ -- a b

���������� �������

� � � �*

Experimental Study of Water Redistribution Measurement in the Model

Earthen Wall and its Numerical Analysis

Takeshi ISHIZAKI*

* National Research Institute for Cultural Properties, Tokyo

Abstract

In the Asian countries, there are many important wall paintings on earthen walls of temples and

other historical buildings. Because earth can be considered as a porous material, there is water

redistribution in the walls due to the change of the surrounding environmental conditions.

Water evaporates under dry conditions from the wall surface and salts accumulate near the

surface zone and can cause salt e%orescence damages in the wall paintings. In order to develop

suitable protective measures, it is necessary to know the water content profiles and water

movement in the earthen walls. For this purpose, a model earthen wall has been built up in the

historical folklore museum in Sapporo. The water redistribution in the earthen wall was

measured by using a TDR (Time Domain Reflectometry) apparatus. The numerical simulation of

water movement in the model wall was performed with the Delphin. program developed by the

TU Dresden. The material data, such as moisture retention curve, liquid water conductivity and

water vapor di#usivity of the model earthen wall and climate data of the location Sapporo were

taken into account for simulation. For development of suitable protective measures, it is quite

important to have non destructive methods to understand the water regime in porous materials.

The good agreement between simulation results and measured moisture profiles in position and

time show the validity of using the Delphin. program for development and evaluation of

conservation measures of historical buildings and stone monuments.

Key words : historical building, earthen wall, water redistribution, TDR (time domain reflecto-

metry), numerical analysis

+� � � � �

����� �� �� ������ ��� ��� ������ ��� �� !� !"#��� $� �%�&��'()*+,� -./012�34%56�� 789):;,�<=$ *>?@)�A� ����!BCD!E$FG��H� E�FGIJK;LM �,2,N��OH+,PQ��� �!O!&R)S�TU$BC%� VM�W�!X0H�Y,;��XZ� [\H/]^_[`��!ab� cb!d�9

e��� ���f`g�$hij Hkl��mn)SA� $op�;�� q6l� rstu)vwV�,;�[\!xy[z!���f`g�):;,�cb)�E�f`gD){|V�� ab)f`g}I/ ~���� �!E!��!�)� f`g!��E)���p�;�hi$f`g}I���PQ+� �!G�&R)�"��!TU)SAf`g$� �� �Ishi-zaki et al., ,**+��D�� ��!����rstu)vwV�,;���!����dA� .r�)��$���Y���$ .3,

dA��/��B�!�I|� ./,***m,)� ����

*¡¢� �£¤¥ ¦++*�21+- ¡¢§¨¡©ª«¬­ +-�.-

���� : ����� �B� E®®¯� TDR �°�±e²³´µ¶� ·� ¸¹ºP

J. Jpn. Soc. Soil Phys.

�»!�¼No. +**, p. -/.+ �,**/�

����

Page 2: No. +**,p.-/.+ · ˘ˇ ˆ ˘˙˝˛˚˜ !˙˝ ˛"˚ #$% ˘ ˙ &˙’() * +" ,- ˆ ./ 0 123 ˆ+˙ 0 4 5 ˙! 6 7-ˆ ".8.3 &9: ;?@ -- a b

���� ������������������� ���� ����� ������������������� �Kuchitsu and Xiuye, +331�������� ��� !"#��� ����$%���&���$����'� �(%���&��)*�������%��+���,-.�/�� � ��01� ������$���2�301�'� �(%�������2�/- 45 ���!��6 �78� 9"#:$���� ,**+%�;<��&/

��/0���'(=��� � )> ,**+%�� +* 0

+%,�-��0?@!A�@ABC.����/D��;<��&/0� ;<�0�E/�� ���'F=��� � ��;<&�GH����/�'�1IJ2��� KJ�34� ��GH'� �L%.�/D���5M�6��NO�� � ����78���29���5 3��� �L%.�/:���5M2�/- 45 ���;��6 ����'� ��������� ��+��.5 4<=2P>5 01� ?Q(R@�A�ST��2UB/� ��UBV��������6�2CW TDR��DEFG��XDE/� ����6��.5 YZ[ CY\!]�2^�0��_`�'F5 �

,� �����

HI%�a����#�����/����6 � J�+'�?Q(R@�A�����#���bK2c/0���6 ���'� _`�<L�U�� � ���GM�NO�

`1'� P�Cd(2ef5�Qg�RS2UX� ��2T�hU/P�iO� j�hU/P2V�kE5 �`WXX'Y���Z/-��l��[Xm�2An�/�o\/0���]��� � ��X2^p��q�!rWX/� �WX� 3WXX�8s-�_��t�2�-5 � ����NO��Y`��6 ����X����u�vaw`b2�H���� � x0� �X8-�t�2�-5 ����X� yK��,�wc6������� de�cz��C=-� {fd�g�&���-�|������ � �����|�'� }T��~1��0���6 �� ���h��`*��NO��� h����0���6 �NO�� � j/�����GM�XO��'��2W ������!rWX'� j���^ cmic��=��2WX� j��� W�0X��j�{-x�k�� ��X2W ���U�2�Xl5� ���i'� ���m��,'^������� ������,'^%�U U��� �

-� ����������

-�+ ���������UBV�������+�2n� 01�� �o�?Q(R@�A�ST��2UB/0� Rp'q=+*2 cm�r +/ cm��= . cm�,s�Rt�q= +**

cm�r +/ cm��= . cm�,s�Rt���X� Rp'G: +*2 cm��u��6 � Rp��v �+: +**

cm��u�� �' f + cmic����XP2w .I�� /I2�x��y�/�� yp�v�[X���kE=�0��� y�h� f /mmic��2 ,I��C�/�z - cm�- cmic�ef5�� ���w ,+x�� +1x2{���kE/0 �J�,�� ����|�� �x�'� � ����� ��� Rp����� 3 cm,

}��� Rp����� / cm� G�~G/0���������2DE5 01� TDR¡!nC

'� �������¢� .�� `O� .�� £ 2�2`WX��WX��¤3¥�¦§��~G/0� ¡!nC�C¨©'����}��ª,��/� ¡!nC'�x����j���kE/0� !�%DE���«¬������­�6 �&��2�®5 01�� ¡!nC'¯°©������¢O��7`O�¢�j���~G/0�TDR����DE�'� Campbell scientific±��

TDR+**�)±�°C²³"C CR+*X2]�0� CR+*

X'I��O�´¯µC� CPU2��/��X� �1¶³·@¸5 ����X��/�£D��¹�º�2»���^O FG�6 � x0� °C²p��'� CR

�+ �o� R@�A����6 ���#��Fig. + Japanese traditional house with earth-

en wall in Hokkaido Historical Village,

Sapporo.

����h` � +**¼ �,**/�36

Page 3: No. +**,p.-/.+ · ˘ˇ ˆ ˘˙˝˛˚˜ !˙˝ ˛"˚ #$% ˘ ˙ &˙’() * +" ,- ˆ ./ 0 123 ˆ+˙ 0 4 5 ˙! 6 7-ˆ ".8.3 &9: ;?@ -- a b

+*X���������� PC,*2W ��� ������������ �EC� �������� TDR

+**������������ PCTDR ��� TDR !"��� #$ ���%��&�'�(�

)�'� �*�-� +,�-�./� . cm, 01� 0 mm

234 +,�+.56��7� 89:;��<��=2� �>?�@ABC5DEFG�

-�, ��������HI�JKKL�M�NOPQR STQRU2 /

KL34 JK�VW�JKXY�Z[� \] ^KL�]_R�`�89:;��>�� abcde����-f;�� TRIME-FM- g�����h+,�

- TRIME-F-F )�'� ij�kTl��m*�.�nQ � + �� � �����89:;� -2���` �opgqrst� ��N

*�, � �uvw�_ �Ix4� yz p��{/�0 cm 23R TDR !"�� P#+ �|}�� P#/ �I���I��~� ������>� � P#, �|}�� P#0

�I�� � ����� �D�r�'g����� ������%QR P#+, P#,, P#/, P#0 �p���Fr��%�/����� +3 mm, . mm, +. mm, . mm 23G� \] �� �������������'\�5 ����Fr���2�4�'5��\R���534 �4�'��QR�7� �����yz U� ����������z��8��4�'��QR�7��E +���R JK���p�����8� ¡¢�5FGN�R � , ����� �����Ix4JK +. £�2� ����¤�¥GN¦W§

�5¨[N]4 p�`�©ª5DEFG� 89:;� -/���` �«pstgqr:�� 2D�r�'y� TDR !"�� P#-, P#1 �~��S���%QR p��{/� + cm ¬­' 1 cm �\G� P#-,

P#1 �p���Fr��%�/�g(� . mm 23G� P#,, P#0 � KL + 2���Fr . mm �®¯23G�5 + cm p��{/5¬­'��7 ��Fr+. mm �®¯��qGN�R JK���p����Ix4��`°4���R� ¡¢�±WN�R ��, ��Fr��ij��²�g���

Fig. , Bamboo mesh structure of the model

wall seen from the rear side.

��- 89:;��>��7�³´ TDR !"��Fig. - Tiny TDR sensor for measuring volu-

metric water content.

��. ijp�kT��mFig. . Making earthen wall by putting mud

on the bamboo.

µ���� : p�|�;�¶·�¸QR¹�fºjg»¼ 37

Page 4: No. +**,p.-/.+ · ˘ˇ ˆ ˘˙˝˛˚˜ !˙˝ ˛"˚ #$% ˘ ˙ &˙’() * +" ,- ˆ ./ 0 123 ˆ+˙ 0 4 5 ˙! 6 7-ˆ ".8.3 &9: ;?@ -- a b

�� - ������ �� ������� /�� ������ ������� ��������� ��������� !���"��#$%����� ��������&�'()���*��+"�,-� �����.�/���0 ��������123� +��0 4�5��!�6��������7-� ����"�.8�.3��& 9:�;<5��� =>?@� --�A�B ������� � B P#-, P#1�C�5&��B�������%B�D-�� ���EF� 1 cm

�//� TDRGHIJ�KLM�<������������N� OP���QRST5M:���U�V3�0 W=%:!�*�.3�� 2X �5����1��0��%Y� Z@��� ��%��[�\���%�]���23T %�����^���_%`F +2* cma� 3* cmaE!� +* cm�bcdefJg�W=%�h�i���� . ����� �� jk�l��OP����jkmT5M�����Y23� B��������&� �'()�F3+"�n!-�� jk��NMW="%:!�o��� B������ +*�� =>?@� ..��C�5��&9:�;<5���A ������� ����EF�+ cmE�25 2 cm%2��� +���� P#., P#2����%�D� WGHIJ�DL�p#-�� P#.,

P#2�����*���DqF�"M% . mm����� ��������N�OP���mT5Mrr:!�o�.3�� W=����EF� 2 cm, st"2TDRGHIJ P#+, P#,, P#-, P#., P#/, P#0, P#1, P#2�����*���DqF�u�v� -3 mm, ,. mm, +.

mm, . mm, -. mm, ,. mm, +. mm, . mm������� / ��� ��� ����� 3�� ���QRS"�. /w xy���5 y���z%jk��� $y�QRS�����

.� ���������

{|��}~�� � � �� GHIJ 9HMP

./C, �dI���A �%3.��� -*�"%�Jce�J%�&��� /� '�(�����)��%*����b�J��H 9��H����A �DL� �� � �[+�+�� +m��"%��� �Jce�J%�&��� ��C�@�,���� J��H%-.2¡¢�Jc� +�����£�%3��

/� ��������

/�+ ���!"#����@/)¤¥��¦§H�� Water poten-

tial meter 9WP.A ��������0 1� J¨J�%3�0 ©ªL 9Sald-*** 2«�i¬�A �%3.����� /� ���34?@� jk5 �0­�®6¯2°M����� {|��%%3��{��34�l�=>?@�� -3���������7������@/)¤¥ ±²8�¥���C�@9:³���� J��H%´µ��� /�;<�Jc� 9Grunewald and Bomberg, ,**,A � =%T5���Jc�>��.¶0�� ¶0����@/)¤¥"±²8�¥�·�¸�¹�/ ¹�0%,-�

$�/ {|��%%3���@/)¤¥Fig. / Water retention curve of the soil used

for the model wall.

$�0 {|��%%3���±²8�¥Fig. 0 Sorption isotherm of the soil used for

the model wall.

�º�?@) » +**¼ 9,**/A38

Page 5: No. +**,p.-/.+ · ˘ˇ ˆ ˘˙˝˛˚˜ !˙˝ ˛"˚ #$% ˘ ˙ &˙’() * +" ,- ˆ ./ 0 123 ˆ+˙ 0 4 5 ˙! 6 7-ˆ ".8.3 &9: ;?@ -- a b

/�, ������������������������ ������ ����� �Burdine, +3/-� ������� !"#$%& �����" '�� ()*�+ q���� K �q� ,��-./'&0%� ����� Kcap1K �qcap� 234'�� �������5�67%89���� ,��6./'&

K�q�1��

����

��

+

pc�q���

,

dq �

::�� pc �q� � ()*�+ q�;���<�='&

Kr�q�1K�q�

K�qcap��

::�� ������>2Kcap�7?,�"@AB'�� C��,"D'&

K�q�1Kr�q�Kcap �

::�� ������ EF�G�HIJK��#$%L��MN �fclay� 234? Dane and Puckett �+33,����" O� ���,��#$%&

Kcap1���� ������ ����������

��

::�� gPQRSF�='& T�/%������ ..,U+*V/m�s�=W%&T�/%�������()*�+�>�X�2Y�1"-B&

/�- ������Z[\]�� �Z[<^_��Z[�\]SF2X�`a'b��='& �Z[\]�cdefg�7

?� h[ijkl mdrym='& h[ijkl mdry� nopqrstuvDwx��y��>2-7?4'& z�{|D}~|(���Z[\]2�I7� ���Z[���� ���N���" O� Grunewald and

Bomberg �,**,� �� �,2��7?4'& cdefg p� ���Z[������()MN2-7?4'& ���Z[��"XB'����� +Vp�()MN"D'&

DV�q�T�1D�T�

mdry

�+Vqr��p��+Vqr�,�+Vp��

::�

qr1qVqdry

qporVqdry

D �T� � �[���Z[\]�� qpor� ��+�='&�,����7%�Z[\]��>2Y�2"-B&

0� �� �������

����������� ��r�������p��������7%� }~|(���� �������qpd� Delphin .234% �Grunewald, ,***�&��� ��¡ +¢/"X7?� ������£�H

IJK�������" W?T�/%JK�5¤2¥W%&��"34'AQ¦§2Y�3"-B&Y"�¡ .�¨¡��� TDR©�ªf�«¬m-./?4'& P#,,

P#-, P#.���6§���­®¯.°/±/�,.mm,

+.mm, .mm�=W%& 0%� �¡ +���¡ .0����²³�()*�+HIJK�´µ¶�f´·���

��1 ¸¹��"34%�����Fig. 1 Liquid water conductivity of the soil

used for the model wall.

��2 ¸¹��"34%���Z[\]�Fig. 2 Vapor di#usivity of the soil used for

the model wall.

º��» : ��������"XB'���¼¹��� 39

Page 6: No. +**,p.-/.+ · ˘ˇ ˆ ˘˙˝˛˚˜ !˙˝ ˛"˚ #$% ˘ ˙ &˙’() * +" ,- ˆ ./ 0 123 ˆ+˙ 0 4 5 ˙! 6 7-ˆ ".8.3 &9: ;?@ -- a b

������+*����� ������������������������������� ����+� +�� +�� !"�#������$� +�%�&�"���� ��������'($)� *+�,-���� +*�./�0�� �12. mm�34�56P#,7 ��89� -2�12 /���:�;<�,-���� $� +�)� +.�!=�12$� ,� �&�>= �12 . mm�34��6P#-7 �� $� +���� /�0�0�� 89� -0�12 +*���:�,-� ?�� �12 +. mm�34�� 6P#,7 � �&���= @�� +/���:������'A'= '� : ,-� $� ,�)������BCDEF�'G� H� I + cm�����J&K� �&�>= 6$� -7 �"��L������$� ,���C�M�� $� .��� 42� + cm�N4����= �O��1

2 . mm�� 6P#.7 ����������P�12;<�,-� : � �12 +. mm�� 6P#-7 � ,.

mm�� 6P#,7 ���������� +/���:�QR�: ,-� S� ������T4��U��� ��'�BVW2X���� Y�� Z[\]�'�� H� TDR^_`\� �a�'����������b� H�cd2Y�efg� ��� ��h ijZ[klm Delphin .

���� ������������ �������� $� +n.�o��� TDRZ[\]�p� ����!V"q�����'r2Y�

1� � � �

sts�u+��� #v$wx%���'yzY��� {|��� eV�}~C��'��A�&1Y��� ���� �'(��)��p�*M������ ��� D����(���� �+,M�p&*M�� Y2�*M�� �� ���h ��BC��'��Y2�*M�"��-�C.�"��/�� H��� �� ����0����M�1����'23��� �4$� H�� 5�6�7���8(���������� ���>= �� �������� �� �9�� T4C TDR^_`\�p& �� ������ :;$C�<�p&��� �� �������� �Y�Y$� +12$� .:��0��BV�M� ���� �������� ����_$�����=� efg� ��� ��h ijZ[klmDelphin .���� �� ¡�\�¢_�>?£¤���� ����¥¦�§"¨�� ©�@' �4Y : � ���23C���%ª����� ��Aª��� B��C��#C/'D2Y ���p=�D2Y �� ������� �����0��!�"q'r2Y ���� ij�E� �� ��h ijZ[klm Delphin .'� �� ���h �F«��A�G¬���������� #v$�}~CHM­�®¯�o��� IJ°$C�<�K±����~3��� LM²��� � ¡�\�¢_ij³<�� ´µ£¤¶"µ�%ª�C/12�����0¶��h �F«�B� H� HM­�K±����LG¬����cd2Y�

� � � �

Burdine (+3/-) : Relative permeability calculations

from pore size distribution data. Petroleum

Trans. Am. Inst. Mining Eng., +32 : 1+�12.

�3 ij·¸¹�>?����������ºN6$� .7

Fig. 3 Location of the monitoring position of

water content (Stage .).

�+* ������ ������ 6$� +n.7Fig. +* Measured volumetric water content

and calculated (Stage +n.).

�»�%Oª P +**¼ 6,**/740

Page 7: No. +**,p.-/.+ · ˘ˇ ˆ ˘˙˝˛˚˜ !˙˝ ˛"˚ #$% ˘ ˙ &˙’() * +" ,- ˆ ./ 0 123 ˆ+˙ 0 4 5 ˙! 6 7-ˆ ".8.3 &9: ;?@ -- a b

Dane, J.H. and Puckett, W.E. (+33,) : Field Soil Hy-

draulic Properties Based on Physical and Miner-

alogical Information. In : van Genuchten M.T. et

al. (ed.) (+33-), Proceedings of the International

Workshop on Indirect Methods for Estimating

the Hydraulic Properties of Unsaturated Soils,

Riverside (California) USA, -23�.*-.

Grunewald, J. (,***) : Documentation of the Numeri-

cal Simulation Program DIM-.+, Volume + : The-

oretical Fundamentals and Volume , : User’s

Guide. Delphin..+ program installation available

on the ftp-server ftp : //+.+.-*..+.+3. of the Insti-

tute of Building Climatology.

Grunewald, J. and Bomberg, M. (,**,) : An engineer-

ing approximation of material characteristics for

input to Heat, Air and Moisture transport simu-

lations. ++. Bauklimatisches Symposium an der

TU Dresden.

Ishizaki, T., Simunek, J. and van Genuchten, M. Th.

(,**+) : Deterioration Mechanism of Stone, Brick

and Soil Building Materials, Proc. Corrosion &

Prevention-*+, Durability of Materials, .+st

Annual Conference, Newcastle, Australia, ,* : +�+-.

Kuchitsu, N. and Duan Xiuye. (+331) : Geological En-

vironment of the Mogao Grottes at Dunghuang.

Proc. of Conservation of Ancient Sites on the

Silk Road, ,..�,.2.

� �

���������� �������������������� �� !"#$��$% ��&'()*+,-.�/0���123�456�� ��789:�;<6�=% ��123�>?�@ABC% D245�E0�5�FGH���>?$IJC��&KL�� MNO&GHP.=�Q� ��RSTU&VW�X$% ��1233Y�2345&Z[��\L�M=��]$��� MM$�% ^_��&`aC% bc TDR23dZef&g��% ��`ah233Y-.&dZCF� ij% ��1233Y-.�% klmnopqrs$tBCFu% 2345vIwxyz{ Delphin .&g��vICF� |_=vI}~�@% ����l���ovI�����12345&��6�X$��$��M=�3�0F�

����� : ,**/� /� +2������ : ,**/� 0� 3 �

����� : ��12345��6��n�|_=vI 41