Nmr

201
1 Nuclear Magnetic Resonance Spectroscopy BY B. E. MANN 1 Introduction Following the criteria established in earlier volumes, only books and reviews directly relevant to this chapter are included, and the reader who requires a complete list is referred to the Specialist Periodical Reports 'Nuclear Magnetic Resonance',' where a complete list of books and reviews is given. Reviews which are of direct relevance to a section of this Report are included in the beginning of that section rather than here. Papers where only 'H, 2H, 19F, and/or 31P NMR spectroscopy is used are only included when they make a non-routine contribution, but complete coverage of relevant papers is still attempted where nuclei other than these are involved. In view of the greater restrictions on space, and the ever growing number of publications, many more papers in marginal areas have been omitted. This is especially the case in the sections on solid-state NMR spectroscopy, silicon and phosphorus. One book has been published which is relevant to this review:- 'Studies in Inorganic Chemistry, 13: Ti snsition Metal Nuclear Magnetic Resonance', ed. by P.S. Pregosin.2 Sweral relevant reviews have been published, including 'Molecular hydrogen (q2-H2) complexes of transition metals'? 'Metal NMR chemical shifts of polynuclear early transition metal complexes with direct metal-metal bonds'? 'Electronic states of transition metal complexes and the electronic mechanism of metal-nucleus NMR chemical shifts': 'Synthesis and characterization of heterometallic carbonyl cluster anions',6 'Applications of spectroscopic measurements to homogeneous ~atalysis',~ and 'Use of NMR spectroscopy in the study of glass structure. I. NMR spectroscopy of silicate solutions'.8 A number of papers have been published which are too broadly based to fit into a later section and are included here. The use of lJ(13ClH) as a criterion of agostic bonding has been examined for C2H4 coordinated to early transition metals.9 15N NMR spectroscopy has been used to probe the bonding, bending and fluxionality of the imido ligand on Ta, Mo, W, Re, and 0s.lo Inorganic phosphates have 1 2 3 4 5 6 7 8 9 10 'Nuclear Magnetic Resonance', ed. G.A. Webb (Specialist Periodical Reports), The Royal Society of Chemistry, London, 1992. Vol. 21; 1993. Vol. 22. 'Studies in Inorganic Chemistry, 13: Transition Metal Nuclear Magnetic Resonance', ed. by P.S. Pregosin, Elsevier, Amsterdam, 1991. D. Cheng, C. Liu. and X. Lin,Jiegou Huuxue, 1991.10, 316 (Chem. Absn., 1992, 117, 61 329). A. Nagasawa, CACS Forum, 1991, 11.2 (Chem. Absfr., 1992, 116, 186 134). M. Sugimoto and H. Nakatsuji, Organomef. News, 1992,63 (Chem. Absfr.. 1992, 117, 162 527). A. Fumagalli, Mafer. Chem. Phys., 1991.29.211 (Chem. Absfr.. 1992. 116, 14 668). D. Brown, B.T. Heaton, and J.A. Iggo, Carol. Met. Complexes, 1991, 12 (Met. Promoted Sel. Org. Synth.), 329 (Chem. Abstr., 1992. 116, 263 213). M. Mazur, P. Pelikan. M. Valko, V. Mlynarik, A. Plsko. M. Liska, and H. Hulinova, Ceramics-Silikary, 1991, 35, 303 (Chem. Absfr., 1992, 116. 89 419). K. Mashima and A. Nakamura, J. Organomet. Chem., 1992,428.49. D.C. Bradley, S.R. Hodge, J.D. Runnacles. M. Hughes, J. Mason, and R.L. Richards, J. Chem. Soc., Dalron Trans., 1992. 1663.

Transcript of Nmr

Page 1: Nmr

1 Nuclear Magnetic Resonance Spectroscopy

BY B. E. MANN

1 Introduction

Following the criteria established in earlier volumes, only books and reviews directly relevant to this chapter are included, and the reader who requires a complete list is referred to the Specialist Periodical Reports 'Nuclear Magnetic Resonance',' where a complete list of books and reviews is given. Reviews which are of direct relevance to a section of this Report are included in the beginning of that section rather than here. Papers where only 'H, 2H, 19F, and/or 31P NMR spectroscopy is used are only included when they make a non-routine contribution, but complete coverage of relevant papers is still attempted where nuclei other than these are involved. In view of the greater restrictions on space, and the ever growing number of publications, many more papers in marginal areas have been omitted. This is especially the case in the sections on solid-state NMR spectroscopy, silicon and phosphorus.

One book has been published which is relevant to this review:- 'Studies in Inorganic Chemistry, 13: Ti snsition Metal Nuclear Magnetic Resonance', ed. by P.S. Pregosin.2

Sweral relevant reviews have been published, including 'Molecular hydrogen (q2-H2) complexes of

transition metals'? 'Metal NMR chemical shifts of polynuclear early transition metal complexes with direct metal-metal bonds'? 'Electronic states of transition metal complexes and the electronic mechanism of metal-nucleus NMR chemical shifts': 'Synthesis and characterization of heterometallic carbonyl cluster anions',6 'Applications of spectroscopic measurements to homogeneous ~a ta lys i s ' ,~ and 'Use of NMR spectroscopy in the study of glass structure. I. NMR spectroscopy of silicate solutions'.8

A number of papers have been published which are too broadly based to fit into a later section and are included here. The use of lJ(13ClH) as a criterion of agostic bonding has been examined for C2H4

coordinated to early transition metals.9 15N NMR spectroscopy has been used to probe the bonding, bending and fluxionality of the imido ligand on Ta, Mo, W, Re, and 0s . lo Inorganic phosphates have

1

2

3 4 5 6 7

8

9 10

'Nuclear Magnetic Resonance', ed. G.A. Webb (Specialist Periodical Reports), The Royal Society of Chemistry, London, 1992. Vol. 21; 1993. Vol. 22. 'Studies in Inorganic Chemistry, 13: Transition Metal Nuclear Magnetic Resonance', ed. by P.S. Pregosin, Elsevier, Amsterdam, 1991. D. Cheng, C. Liu. and X. Lin,Jiegou Huuxue, 1991.10, 316 (Chem. Absn., 1992, 117, 61 329). A. Nagasawa, CACS Forum, 1991, 11.2 (Chem. Absfr., 1992, 116, 186 134). M. Sugimoto and H. Nakatsuji, Organomef. News, 1992,63 (Chem. Absfr.. 1992, 117, 162 527). A. Fumagalli, Mafer. Chem. Phys., 1991.29.211 (Chem. Absfr.. 1992. 116, 14 668). D. Brown, B.T. Heaton, and J.A. Iggo, Carol. Met. Complexes, 1991, 12 (Met. Promoted Sel. Org. Synth.), 329 (Chem. Abstr., 1992. 116, 263 213). M. Mazur, P. Pelikan. M. Valko, V. Mlynarik, A. Plsko. M. Liska, and H. Hulinova, Ceramics-Silikary, 1991, 35, 303 (Chem. Absfr., 1992, 116. 89 419). K. Mashima and A. Nakamura, J . Organomet. Chem., 1992,428.49. D.C. Bradley, S.R. Hodge, J.D. Runnacles. M. Hughes, J. Mason, and R.L. Richards, J . Chem. Soc., Dalron Trans., 1992. 1663.

Page 2: Nmr

2 Spectroscopic Properties of Inorganic and Organometallic Compounds

been analysed quantitatively using 3 l P NMR spectroscopy.' The solution and solid state conformations of Ni2+, Zn2+, Cd2+, and Hg2+ have been investigated both in solution and the solid state by 13C NMR spectroscopy and in solution by l99Hg NMR spectroscopy.12 The relaxation and dynamical properties of water in partially filled porous materials have been investigated using NMR techniques.13 The measurement of I = relaxation in biological and macromolecular systems using

multiple-quantum NMR techniques has been described and applied to 17O,25Mg, and 27A1.14 The characterisation of compounds using 13C and 2% NMR spectroscopy has been discussed, 15 NMR data have also been reported for l-Me3Si-cycloocta-l,5-diene complexes with RhI, Pd", PtII, and Ag', (13C),16 pyridoxalisonicotinoyl hydrazone complexes with some 3d metal ions, (13C),l7 U, Mo, W, Re, Rh, and Pd complexes of (l) , (13C),18 NiII and Znn complexes of (2), (13C),19 salicylaldehyde-2- aminobenzophenone-2-thenoylhydrazone complexes with 3d metal ions, (13C) ,20 [M(RNCMeCH2CMe2NHR)]2+, (M = Co, Ni, Zn, Cd; 13C),21 complexes of metals with 1,15-diaza- 3,4: 12,13-dibenzo-5,8,ll-trioxacyclooctadecane, (13C),22 and metal complexes of 4-acyl-5- pyrazolone, (13C1.23

Me

1 1

11 12 13

14 15 16 17

18 19 20

21

22

23

a0- 0

H

fN h H

OH

/ HN

J.K. Gard, D.R. Gard, and C.F. Callis. ACS Symp. Ser., 1992, 486, 41. M. Louloudi, N. Hadjiliadis, and I.S. Butler, J . Chem. SOC., Dalton Trans., 1992, 1401. W.P. Halpexin, S. Bhattacharja, and F. D'Orazio, Magn. Reson. Imaging, 1991, 9, 733 (Chem. Absfr., 1992, 116, 91 849). C.W. Chung and S. Wimperis, Mol. Phys., 1992,76,47. G. Lorentz, Analusis. 1992, 20, M62 (Chem. Abstr., 1992, 116, 227 347). B.S. Bandodakar and G. Nagendrappa, J. Organornet. Chem., 1992,430,373. G. Singh. P.S.S.J. Shastry, R.K. Lonibala, and T.R. Rao, Synth. React. Inorg. Metal-Org. Chem., 1992, 22 , 1041. W.P. Griffith and S.1. Mostafa, Polyhedron, 1992,11,2997. B. Adhikary, K.K. Nanda, R. Das, S.K. Mandal, and K. Nag, Polyhedron, 1992, 11,347. B. Singh and A.K. Srivastav, Proc. - Indian Acad. Sci., Chem. Sci., 1991, 103,691 (Chem. Abstr., 1992, 116, 119 711). M.L. Tul'chinski, L.I. Demina, and A.Yu. Tsivadze, Zh. Obshch. Khim., 1991, 61, 936 (Chem. Abstr., 1992, 116, 59 261). S.J. Kim, M.J. Lee, C.H. Koo. and K. Woo, J . Korean Chem. SOC., 1991, 35, 645 (Chem. Abstr., 1992, 117, 38 978). S. Umetani, H. Takahara, M. Matsui, T. Nakamura, and T. Matsumura-Inoue, Proc. Symp. Solvenf Extr., 1991, 193 (Chem. Absrr., 1992, 116, 259 330).

Page 3: Nmr

Nuclear Magnetic Resonance Spectroscopy

2 Stereochemistry

3

This section is subdivided into eleven parts which contain n.m.r. information about Groups 1 and 2 and transition-metal complexes presented by Groups according to the Periodic Table. Within each Group, classification is by ligand type.

Complexes of Groups 1 and 2.-Reviews entitled 'NMR of lithium-6 enriched organolithium compounds',24 and 'Applications of NMR in sensory science', which includes 23Na NMR spectroscopy,s have appeared.

The 1% NMR spectrum, including lJ(l3C6Li), has been reported for [LiCH2NMeCH2CH2- NMeCH2CH2NMe2].26 6Li-6Li COSY of PriLi/sparteine in Et20 shows coupling between two sites. The l3C NMR spectrum was also rep0rted.2~ The structures of [Ph3CLi] and [Cs(3-Et-3-heptoxide)] in solution have been studied using 6Li,lH HOESY, l33Cs,'H HOESY, and IH,lH ROESY, and close contacts identified.28 6Li,lH HOESY has been used to determine Li-H distances to an accuracy of ca 0.2 A in [C~H3Li.thf]4.*~ The solution structures of [ [ Li(TMEDA))2(MegSi- CH=CH)2] and [ (Li(TMEDA) )2(Me3SiCH=CMe)2] have been determined using 7Li,1H HOESY. 7Li Ti measurements were also reported.30 The one-dimensional and two-dimensional 6Li,6Li INADEQUATE experiments have been described and applied to compounds such as (E)-1 -Li-2-(2- LiC&)- I-Ph-hex- 1 -ene.31 [2-Me2N-6-ButO-C@3Li] shows extreme distortion of the benzene ring from hexagonal at Li and a very low lJ(13C13C) of 27.8 Hz results. The 6Li NMR spectrum was also recorded.32 13C NMR spectroscopy, 6Li,lH HOESY, and HETCOR have been used to determine the structure of (3).33 6Li, I3C, and 15N NMR spectroscopic studies have been used to show that [LiNPri2] in neat TMEDA is a dimer.34 Heteronuclear multiple quantum correlation has been used to correlate 6Li and 15N chemical shifts of mixed aggregates of [6Li,lsN] lithium 2,2,6,6- tetramethylpiperidide with 6LiBr, 6LiCl, and 6Li(OCc$l11).35 The aggregated forms of [LiNPr$] and Li 2,2,6,6-tetramethylpiperidide in THF have been unambiguously shown to be dimers rather than trimers or higher oligomers by 6Li detection of l5N homonuclear zero quantum coherence.36 6Li,lH HOESY and 13C NMR spectroscopy have been applied to (4).37 13C NMR spectroscopy has been used to study the structure of the complex of CH2(CH2O- I-C~4-2-OCH2)2CHCH2OP(O)(OH)-

24 25

26

2 1 28 29 30 31 3 2

3 3 34

35 36 3 7

R.D. Thomas, Isot. Phys. Biomed. Sci., 1991, 2 367 (Chem. Absrr., 1992, 116, 164 662). T. Robertson, S. Schmidt, and B. Klein, Trends Food Sci. lechnol., 1992, 3,236 (Chem. Abstr., 1992, 117, 229 306). G.W. Klumpp, H. Luitjes, M. Schakel, F.J.J. de Kanter, R.F. Schmitz, and N.J.R. van E. Hommes, Angew. Chem.. Inr. Ed. Engl., 1992, 31. 633. D.J. Gallagher, S.T. Kerrick, and P. Beak, J . Am. Chem. Soc., 1992, 114, 5872. W. Bauer and L. Lochmann, J. Am. Chem. Soc., 1992, 114, 7482. W. Bauer and F. Hampel, J. Chem. Soc., Chem. Commun., 1992, 903. L.D. Field, M.G. Gardiner, B.A. Messerle, and C.L. Raston. Organomerallics, 1992, 11, 3566. 0. Eppers, T. Fox, and H. Giinther, Hefv. Chim. Acra, 1992, 75. 883. S. Harder, P.F. Ekhart, L. Brandsma, J.A. Kanters, A.J.M. Duisenberg, and P.v.R. Schleyer, Organomerallics, 1992, 11, 2623. W. Bauer, M.R. Sivik, D. Friedrich, P. von RaguC Schleyer. and L.A. Paquette, Organomeralfics, 1992,11,4178. M.P. Bernstein, F.E. Romesberg, E. Floyd, D.J. Fuller, A.T. Harrison, D.B. Collum, Q.Y. Liu, and P.G. Williard, J . Am. Chem. SOC., 1992,114, 5100. J.H. Gilchrist, A.T. Harrison, D.J. Fuller, and D.B. Collum, Magn. Reson. Chem., 1992, 30, 855. J.H. Gilchrist and D.B. Collum, J. Am. Chem. SOC., 1992, 114, 794. E. Anders, A. Opitz, and R. Boese, Chem. Ber., 1992, 125, 1267.

Page 4: Nmr

4 Spectroscopic Properties of Inorganic and Organometallic Compounds

(OBun) with LP.38 A method has been developed to measure Li+ concentrations in the human brain

using in vivo lH and 7 L i N M R s p e ~ t r o s c o p y . ~ 9 NMR d a t a have a l s o been reported for

[LiCH(CN)2(H2O)(TMEDA)], (6Li,lH HOESY, 13C),40 [(PhC=CLi)4(TMEDA)2], (13C),4' ( 5 ) ,

( 13C) ,42 (6), [C&CH=CHSnBun2], (6Li, 13C, 19Sn),43 [Li (CsH2Ph3) .2Et20] , (13C),44

[ (Li(2,4,6-ButjCd-€2)) (LiP(H)(2,4,6-ButgCgH2))]2, (7Li),45 [(EtzN)PhzSiLiI, (13C),46 [(2,4,6-

Me3CgH2)H2GeLi], (13C),47 [((Et20)Li)2(Ph(Me2N)BB(NMe2)Ph)], (llB),48$49 [Li(l2-crown-

6)] [ (THF)Li( p- NS iMeBub)2SiBut], (7Li, 13C, 29Si),50 (71, (6Li, 15N): [Li (P hNPPh2) (OE t2)]2,

(7Li),52 [ ( ( B U ~ N P N C ~H~BU~~-~,~,~)L~)~(E~~O)~], (7Li),53 (8), (7Li, 13C, 29Si),54 [(Me3SiN)2-

S P h L i I z O E t z , (6Li, including 6 L i , l H HOESY, 7Li, 13C, 29Si),55 (9), (7Li, I l B , 13C),56 and LiHC(O)PH.DME, (13C).57

-

Me -61 [*j Me Me 3

( 5 )

SiMe,

E

23Na NMR spectroscopy has been used to study the binding of Na+ to N(CH2CHzN=CHXCH=N-

38 39 40 41 4 2 43 44 45 46 47 4 8 49 50 51

5 2 53 54 55 56 57

Y. Habata, M. Ikeda, and S. Akabo, J. Chem. SOC., Perkin Trans. 1, 1992,2651. T. Kato, S. Takahashi, and T. Inubushi, Psychiatry R e x , 1992,4553 (Chem. Absrr., 1992, 117, 103 451). C. Lamben, P. von Ragu6 Schleyer, U. Pieper, and D. Stalke, Angew. Chem., Int. Ed. Engl., 1992,31,77. E. Hey-Hawkins and F. Lindenberg, Chem. Ber., 1992, 125, 1815. R. Knorr, T.P. Hoang, H. NBth. and G. Linti, Organometallics, 1992, 11,2669. A. Maercker. H. Bodenstedt, and L. Brandsma. Angew. Chem.. In[. Ed. Engl., 1992.31, 1339. G.S. Girolami, M.E. Riehl, K.S. Suslick. and S.R. Wilson, Organomerallics, 1992, 11, 3907. S. K u n and E. Hey-Hawkins, Organometallics, 1992,11,2729. K. Tamao, A. Kawachi, and Y. Ito, J. Am. Chem. Soc., 1992, 114, 3989. A. Castel, P. Rivihe, J. Satgt, and D. Desor, J. Organomet. Chem., 1992, 433.49. A. Moezzi. R.A. Bartlett, and P.P. Power, Angew. Chem., Int. Ed. Engl., 1992, 31, 1082. P.P. Power, Inorg. Chim. Acta, 1992, 198-200, 443. B. Tecklenburg, U. Klingebiel. and D. Schmidt-Bbe, J. Organomet. Chem.. 1992,426,287. D. Sato, H. Kawasaki, I. Shimada, Y. Arata, K. Okamura, T. Date, and K. Koga, J. Am. Chem. SOC., 1992, 114, 761. M.T. Ashby and 2. Li. Inorg. Chem., 1992.31, 1321. R. Detsch, E. Niecke, M. Nieger. and W.W. Schoeller, Chem. Ber., 1992, 125, 1119. P.B. Hitchcock, M.F. Lappert, and P. Yin, J. Chem. SOC., Chem. Commun., 1992, 1598. F.T. Edelmann, F. KnBsel, F. Pauer. D. Stalke, and W. Bauer, J. Organomer. Chem., 1992, 438, 1. P. Frankhauser, M. DrieS, H. Pritzkow. and W. Siebert. Chem. Ber., 1992,125, 1341. G . Becker, W. Schwarz, N. Seidler, and M. Westerhausen. Z. Anorg. Allg. Chem., 1992,612, 72.

Page 5: Nmr

Nuclear Magnetic Resonance Spectroscopy 5

CH2CH2)3N, X = 2,5-furyl, 2,6-pyridyl, 2,5-pyrole, or 2,6-4-Me-pheno1.58 The conformation of

the potassium salt of lasolocid has been determined by 1H and 13C NMR spectroscopy.59 39K NMR

spectroscopy has been used to show the presence of K- and [K(cryptand[2.2.2])]+, when K is

dissolved in cryptand.60 The NMR relaxation behaviour and quadrupole coupling constants of 23Na

and 39K in glycerol have been studied and compared with 39K tissue data.61 NMR data have also been reported for [NaNPri2], (13C),62 and [MN(SiMe3)2], (13C, 29Si, 133C~) .~3

lJ(9BelH) has been determined for the first time in [ H B ( ~ - B U ‘ C ~ H ~ N ~ ) ~ B ~ H ] . The 9Be and 13C

NMR spectra were also recorded.64 The 9Be chemical shift of [ B e ( @ w ) 2 ] 2 - is at 67.5, indicative

of catecholate coordination. The 13C NMR spectrum was recorded.65 NMR data have also been reported for [Me2A1(pL-NEt2)2MgMe]2, (‘3C, 27Al),66 [ ( C S H ~ ) M ~ O C H ~ C H ~ N M ~ ~ ] , (13C),67

[(C5Meg)2M]. [M( N(SiMe3)2)2]2, (M = Ca, Sr, Ba; 13C),68 [(CsMes)CaN(SiMe3)2.(THF)3], [(CsMe5)2BaN(SiMe3)2]-, (l3C),@ [(CsMe~)Ca(OC)2Zr(qs-CgMeg)l, ( 13Q70 [Ba(fluorenyl)2-

(HMPA)2], (13C),71 [(q 5-fluorenyl)2Ba], ( 13C),72 [ ( ~ ~ - H B ( ~ - B u ~ C ~ H Z N ~ ) ~ 1 Mg02R1, ( l3C,

170),73 [( PhC(NSiMe3)2]2Mg(NCPh)], (13C, 29Si),74 [(PhNCPh=CPhNPh)2Mg], (13C),75 (lo),

( l 3C) ,76 [Me2Ag( C N ) ( M g B r ) 2 1 , ( 13C),77 [ ( d i b e n z o p y r r y l ) ~ C a ( N C 5 H 5)2], ( l 3 C ) ,7

[ (PhC(NSiMeg)2}2M(THF)2], (M = Sr, Ba; 13C, 29Si),79 [Ca{ PhC(NSiMe3)z )2.2THF], (29Si),80

(1 l) , (13C),81 [M(ethyl acetoacetato)2], (M = Mg, Ca; 13C),82 [ M ( O C & B U ’ ~ - ~ , ~ - M ~ - ~ ) ~ ( T H F ) ~ I , (M = Ca, Ba; 13C),83 [M(OGH2But3-2,4,6)212, (M = Ca, Sr, Ba; 13C),84 [Ba2(OSiBu3)4(THF)lI

(13C),85 [Ba(dpm)2(0Et2)]2, (13C),86 [Ba(dpm)2(2,5,8,11,14-pentaoxaheptadecane)], (13C),g7 and

- 58 59 60

61 62 63 64 65 66 67 6 8

69 70 71 72 73 74 75 76 77 78 79 80 81

82 83 84 85 86 87

V. McKee, M.RJ. Dorrity, J.F. Malone, D. Marrs, and J. Nelson, J. Chem. SOC., Chem. Commun., 1992, 383. R. Lyazghi, A. Cuer, G. Dauphin, and J. Juillard, J . Chem. SOC., Perkin Trans. 2 , 1992, 35. M. Sokol, J. Grobelny, Z. Grobelny. and Z.J. Jedlinski, Spectrochim. Acta, Part A, 1991, 47, 1547 (Chem. Absa., 1992, 116, 97 926). R.M. Wellard, B.P. Shelan, D.J. Craik, and W.R. Adam, J. M a p . Reson., 1992,99,247. D. Barr, A.J. Dawson, and B J . Wakefield, J. Chem. Soc., Chem. Commun., 1992,204. F.T. Edelmann, F. Pauer, M. Wedler, and D. Stalke, Inorg. Chem., 1992,31,4143. R. Han and G. Parkin, Inorg. Chem., 1992.31.983. 0. Kumberger, J. R i d e , and H. Schmidbaur, Chem. Ber.. 1992,125.2701. T.-Y. Her, C.-C. Chang, and L.-K. Liu, Inorg. Chem., 1992, 31, 2291. O.N.D. Mackey and C.P. Morley, J. Organomer. Chem., 1992.426, 279. S.R. Drake, D.J. Otway, and S.P. Perlepes, Main Group. Met . Chem., 1991, 14, 243 (Chem. Abstr., 1992, 117, 151 056). S.C. Sockwell. T.P. Hanusa, and J.C. Huffman, J. Am. Chem. SOC., 1992, 114, 3393. S.C. Sockwell, P.S. Tanner, and T.P. Hanusa, Organometallics, 1992, 11, 2634. S.R. Drake and D.J. Otway, Polyhedron, 1992. 11,745. G. MBsges, F. Hampel, and P. von Rague Schleyer, Organometallics, 1992.11, 1769. R. Han and G. Parkin, J. Am. Chem. SOC., 1992, 114, 748. M. Westerhausen and H.-D. Hausen, Z. Anorg. Allg. Chem., 1992,615,27. D. Walther. U. Riuer, R. Kempe, J. Sieler. and B. Undeutsch, Chem. Ber., 1992, 125, 1529. T.W. Bell and A.T. Papoulis, Angew. Chem., Int. Ed. Engl., 1992, 31, 749. T. Kauffmann, C. Neiteler, and S. Robbe, Chem. Ber., 1992, 125, 2409. G. Mdsges, F. Hampel, M. Kaupp, and P. von RaguB Schleyer, J. Am. Chem. SOC., 1992, 114, 10 880. M. Westerhausen, H.D. Hausen, and W. Schwarz. Z. Anorg. Allg. Chem., 1992, 618, 121. M. Westerhausen and W. Schwarz, Z. Naturforsch., B. 1992,47,453 (Chem. Abstr., 1992, 117, 19 264). N.A. Bailey, D.E. Fenton. P.C. Hellier, P.D. Hempstead. U. Casellato, and P.A. Vigato, J. Chem. SOC., Dalton Trans., 1992,2809. G. Petrov, A. Alexiev, 0. Angelova, and J. Macicek. J. Coord. Chem., 1992. 25, 101. K.F. Tesh, T.P. Hanusa, J.C. Huffman, and C J . Huffman, Inorg. Chem., 1992.31, 5572. S.R. Drake, D.J. Otway, M.B. Hursthouse, and K.M.A. Malik, Polyhedron, 1992.11, 1995. S.R. Drake, W.E. Streib, K. Folting, M.H. Chisholm, and K.G. Caulton, Inorg. Chem., 1992,31, 3205. G. Rossetto, A. Polo, F. Benetollo, M. Porchia. and P. Zanella, Polyhedron, 1992, 11,979. R.A. Gardiner, D.W. Brown, P.S. Kirlin, and A.L. Rheingold, Report, 1991, TR-4; Order No. Ad-A236 883, 34

Page 6: Nmr

6 Spectroscopic Properties of Inorganic and Organometallic Compounds

[M(TeSi(SiMe3)3)2], (M = Mg, Ca, Sr, Ba; 125Te).88

!+

-

f Me0

-

& N

" >Oh c Ba "1

2+

C o m p l e x e s of Group 3, t h e L a n t h a n i d e s , and Actinides.-The N M R spectrum of the

Y complex of 1,4,7,10- ((HO)P(O)(Me)CH2)4-1,4,7,10-tetra-azacyclohexadecane shows 89Y c0upling.~9 l3C T I measurements have been used to determine the structure of lanthanide complexes

of oxyethylene glycols.9o NMR data have also been reported for [(q5-CsMe5)2Y2(OC6H3Bu~- ~,~)~(~-H>(cI--CH~CH~CH~)I, (13C),91 [ { Y(r13-C3H5)"(SiMe2CH2PMe2)21 12(p-CUI, (13C),92

[(q5-C5H5)2Y(q5-2-Me2NC5H3-C,N)Fe(q5-C5H5)], ( 13C)?3 [(r15-C5H4SiMe3)2Y(OMe)]2, (13C),94

(12), ( 13C),95 [(q5-CsMes)La(NHEt)(NH2Et)], (13C),96 [ { (THF)2Li(p-C1)2 ]2(q5-C5H4Me)La-

(THF)], (13C),97 [(q5-CsMe5)2La(OCMe2)(OCEt=CHMe)], (13C),98 [(q5-C5H5)(q5-C5H4PPh2)2- La(THF)], ( I3C) ,99 [ ScC12( 18-crown-6)]+, ( I 3C), O0 [ ScCl{ H O ( C H 2 C H 2 0 ) n O H ] 1, ( I3C), O1

[ M I N C 5 h - 2 - C ( O ) N H N H 2 ] (M = Y, La; 13C),102 [La(acetone isonicotinoylhydrazone)3]3+, (13C, 139La),lo3 [YCu(OSiPh3)4(PMe2Ph)], (29Si, 89Y),Io4 l(q5-C5H5)Co( P(OEt)20) 3Y[(q5-

pp. Avail. NTIS. From Gov. Rep. Announce. Index (U. S.), 1991,91, Absu. No. 154 575 (Chem. Absir., 1991, 117, 80 350).

8 8 D.E. Gindelberger and J. Arnold. J. Am. Chem. SOC., 1992, 114, 6242. 8 9 D. Parker, K. Palukkody, T.J. Norman, A. Harrison, L. Royle, and C. Walker, J . Chem. SOC., Chem. Commun..

1992, 1441. 90 K.-M. Yao, L.-Z. Cai, L.-F. Shen, and Q.-P. Tian, Polyhedron, 1992, 11, 2245. 91 CJ. Schaverien, J. Chem. Soc.. Chem. Commun., 1992, 11. 92 M.D. Fryzuk, T.S. Haddad. and S.J. Rettig, Organomeiallics, 1992, 11, 2967. 93 K. Jacob, W. Kretschmer, I. Pavlik, A. LyEka, V. HanuS, M. PolBSek, and F.T. Edelmann, Z. Anorg. A l f g .

Chem., 1992.618. 163. 94 M.J. Evans, M.S. Sollberger, J.L. Shreeve, J.M. Olofson, J.H. Hain, jun., and J.W. Ziller, Inorg. Chem., 1992,

31, 2492 9 5 C.J. Schaverien, N. Meijboom, and A.G. Orpen, J . Chem. SOC.. Chem. Commun., 1992, 124. 96 M.R. Gagnt, C.L. Stern, and T.J. Marks, J. Am. Chem. SOC., 1992, 114, 275. g7 J. Guan, S. Jin, Y. Lin, and Q. Shen, Organomeiallics, 1992, 11, 2483. 98 HJ. Heeres, M. Maters, J.H. Teuben, G. Helgesson, and S. Jagner, Organomeiallics, 1992, 11, 350. 99 H. Schumann, J.A. Meese-Marktscheffel, B. Gorella, and F.H. Garlitz, J. Organomei. Chem.. 1992,428, C27. loo G.R. Willey. M.T. Lakin, and N.W. Alcock. J. Chem. Soc., Chem. Commun., 1992, 1619. l o l K. Yao, L. Chai, L. Shen, and Q. Tian, Huaxue Xuebao, 1991,49,894 (Chem. Absir., 1991, 116, 50 345). lo* T.R. Rao, M.R. Srivastava, and G. Singh, Synih. React. Inorg. Meial-Org. Chem., 1992, 22, 25. Io3 G. Singh, M.R. Srivastava, P.S.S.J. Sastry, and T.R. Rao, Proc.-Indian Acad. Sci.. Chem. Sci., 1991, 103, 725

lo4 P.S. Coan, J.C. Huffman, and K.G. Caulton, Inorg. Chem., 1992, 31, 4207. (Chem. Absrr.. 1992, 116, 142 704).

Page 7: Nmr

Nuclear Magnetic Resonance Spectroscopy 7

CsH5)Co{P(O)(OEt)2)2( P(O)2(OEt)}]2Y [ OP(OEt)2} 3Co(q5-C5H5)], ( l3C),Io5 [La[ d ie thylene

glycol di(o-hydrox ypheny1)e ther)]3+, ( '3C), lo6 [ Ce(OCBut j )3(02CPh) l , ( 3C), O7 [Ce(OPri)3(p-

O C 2 h N M e C 2 & N M e z ) ] 2 , ( 3C), lo* [ (q5-C5Mes)zSrn(THF)( N2Hq)l [BPh41, ( 'B, 3C), [(q 5- - - C5H5)2 L u C H ~ C H ~ C H ~ N M e 2 1, ( 3 C ) , [ (q 5 - C 5 H 5 ) LU(CH~CHM~CH~NM~~)C~("HF)~], ( 13C),l [ (l'15-C5H3(SiMe3)2- 1 ,3]2Y bIm, (l3C, %i, 171Yb),l l2 [ (Ph2P(NSiMe3)2 ]2Yb(THF)21,

( l7 Y b), l3 [Y b ( A1(OPri)4 } 21, ( 71 Y b), l4 [ Y b ( O C 6 H 2 B u *2-2,6-Me-4)2( THF) 31, ( 3C), [Y (OCPr$CH2OEt)3], (13C, *9Y),l l6 [Yb(TeC(jH2Me3-2,4,6)2(THF)n], ( 3C, 25Te, Yb), ' l7

[(q5-C5Me5)2U(NPh)2], (13C),l18 and (13). (13C).I19

But

Me0 OMe Lac H (Si Me&

Et Et

(13)

But

(12)

Complexes of Group 4--1H N O E measurements on [(PhCH2)2Zr(q5-C5H4But)2] s h o w smal l

enhancements. W h e n the exper iment is run in t h e presence of a polymer t o increase the viscosity,

there are large negative NOES t o everything.120 NMR data have a l so been reported for (14), (R = H 13C),121 [ { (q5-C5Me5)2MH )2{ p-(CH2)5 ) I , (M = Zr, Hf; 13C),122 [(r15-C~H5>2Ti(CH3)(oZcR)1, (13C),123 [($-C5H5)2Ti(CHzPh)2], (13C),124 [(~~-C~HS)(~~-CSM~~)M(CH~PP~~)~I, (M = T i , Zr;

lo5 L. Liang, E.D. Stevens, and S.P. Nolan, Organomerallics, 1992, 11. 3459 (Chem. Absrr., 1991. 117, 191 971). lo6 K. Yao, L. Cai, 2. Bao, L. Shen, and Q. Tian, Yingyong Huaxue, 1992, 9 , 12 (Chem. Absrr.. 1991, 117, 183

lo7 A. Sen, H.A. Stecher, and A.L. Rheingold,lnorg. Chern., 1992,31,473. lo8 L.G. Hubert-Pfalzgraf, N. El Khokh, and J.-C. Daran, Polyhedron, 1992, 11,59. Io9 W.J. Evans, G. Kociok-KBhn, and J.W. Ziller. Angew. Chem., Inr. Ed. Engl . , 1992.31, 1081.

638).

l o H. Schumann, J.A. Meese-Marktscheffel, A. Dietrich, and F.H. Gorlitz, J. Organornet. Chem.. 1992,430,299. H. Schumann, J.A. Meese-Marktscheffel, A. Dietrich, and J. Pickardt, J. Organomet. Chem., 1992,433,241.

l 2 P.B. Hitchcock, J.A.K. Howard, M.F. Lappert, and S. Prashar. J. Organornet. Chem., 1992,437, 177. 1 1 3 M. Wedler, A. Recknagel, J.W. Gilje, M. Nottemeyer, and F.T. Edelmann, J. Organomet. Chem., 1992, 426,

295. l 4 A. Edelmann, J.W. Gilje, and F.T. Edelmann, Polyhedron, 1992,11,2421.

115 B. Cetinkaya, P.B. Hitchcock, M.F. Lappert, and R.G. Smith, J. Chem. Soc., Chem. Commun., 1992, 932.

117 A.R. Strzelecki, P.A. Timinski, B.A. Helsel. and P.A. Bianconi,J. Am. Chem. Soc., 1992, 114, 3159. 1 1 8 D.S.J. Amey. C.J. Burns, and D.C. Smith, J. Am. Chem. SOC., 1992, 114, 10068. 119 J.L. Sessler, T.D. Mody, and V. Lynch, Inorg. Chem., 1992.31,529. 120 L.A. Luck and C.R. Landis, Organometallics. 1992,11,1003. 121 G. Erker, M. Albrecht, S. Werner, M. Nolte, and C. Kriiger. Chem. Ber., 1992, 125, 1953. 22 J.E. Bercaw and J.R. Moss, Organomerallics. 1992, 11,639.

123 S. Diirr, U. Hbhlein, and R. Schobert. Organometallics, 1992, 11.2950. 124 N.A. Petasis and E.I. Bzowej, J. Org. Chem., 1992,57, 1327.

W.A. Herrmann, R. Anwander, and M. Denk, Chem. Eer., 1992, 125,2399.

Page 8: Nmr

8 Spectroscopic Properties of Inorganic and Organometallic Compounds

13C),125 [(q5-CsMe5)2TiR1R2], (13C),126 [RTi(Me2SiCH2CH2)3N], (M = C1, Bun; 13C),127 [($-

C5Me5)2Ti( CMe=CHR)Cl], ( 13C), 128 [ (2,6-Ph2C&0)2 TiCEt=CEtC(H)(Ph)NCH2Ph], ( 3C) [(q5-C~H5)2Ti(PMe3)=C=C=Ti(PMe3)(q5-C5H5)2], (13C),130 [(q5-C5H5)Ti(C~CSiMeg)12, (13C),131 [ (qS-C5H4SiMe3)2Ti( C=CPh-q2)2Ni(CO)], (l3C), 132 [ (qS-C~H5)2Zr(q 2-CMeNB ut) (p- 0,0‘-02CHCF3)ZrMe(qs-CgHg)2], (13C),133 [(q5-CsH5>4Zr2(p-CH3)(p-C=CMeR)]+, (13C),134

[(q5-C5H5)2Zr(p-ql:q2-PhC=CPh)(p-CH3)AlMe2], (13C),135 (14), (R = Me; 13C),136 [(q5- C5H5)4Zr2Et2(pL-C=CCMe2)], ( 1 3 , (13C),138 [ ( (q5-C5H5)2EtZrOCH2)2CHOZrEt(q5- C5H5)2], (13C),139 (16), (13C),140 (17), (13C),141 [ ( q s - C ~ H g ) 2 Z r ( C H ( M e ) ( 6 - e t h y l p y r i d - 2 -

yl)}(CO)]+, (13C),142 [ruc-C2Hq(indenyl-q5)2Zr( CH(SiMe2Cl)(SiMe3) ]][A12C16.5Me0.5], (13C),143 [ ( ~ ~ - C ~ H ~ ) ~ Z ~ C ~ C ( N B U ~ ) C = C R U ( ~ ~ - C ~ H ~ ) ( P M ~ ~ ) ~ ] , (13C) ,144 (18), (13C),145 [(q5- C 5 H 5 ) 2 Z r ( S n [ C H ( S i M e 3 ) 2 ] 2 ) 21. ( 1 3 C , 1 9 S n ) . 1 4 6 (191, ( 1 3 C ) , 1 4 ’ [(q 5 -

C 5 M e 5 ) 2 Z r ( C H = C R C = C R ) ] + , (13C),148 [(q5-CsH5)2ZrSGeMe2-2-CgH4], ( l 3 C ) , 1 4 9 [(q 5 -

- n

- Me

R-AI Bu 2

125 T. Cuenca, J.C. Flores, P. Royo, A.-M. Larsonneur, R. Choukroun, and F. Dahan, Organometallics. 1992, 11,

126 G.A. Luinstra and J.H. Teuben, Organometaliics. 1992.11, 1793. 127 C.C. Cummins, R.R. Schrock, and W.M. Davis, Organomerallics, 1992, 11, 1452. 128 G.A. Luinstra, J. Vogelzang, and J.H. Teuben, Organomerallics, 1992, 11,2273. 129 JB. Hill, P.E. Fanwick. and I.P. Rothwell, Organometallics, 1992, 11, 1775. 130 P. Binger, P. Miiller, P. Philipps, B. Gabor, R. Mynott, A.T. Herrmann, F. Langhauser, and C. Kriiger, Chem.

777.

Ber., 1992, 125, 2209. U. Rosenthal and H. Gtirls, J. Organomet. Chem., 1992,439, C36.

132 H. Lang and W. Imhof, Chem. Ber., 1992, 125, 1307. 133 T.V. Lubben, K. Pltissl, J.R. Norton, M.M. Miller, and O.P. Anderson, Organometallics, 1992, 11, 122. 134 A.D. Horton and A.G. Orpen. Angew. Chem.. Int. Ed. Engl., 1992.31.876. 135 G. Erker, M. Albrecht, C. Kriiger, S. Werner. P. Binger, and F. Langhauser, Organometallics, 1992.11,3517. 136 G. Erker, M. Albrecht, C. Kriiger, and S. Werner, J . Am. Chem. SOC., 1992, 114, 8531. 137 P. Binger, F. Langhauser, B. Gabor, R. Mynott, A.T. Herrmann, and C. Kriiger, J. Chem. SOC. , Chem. Commun.,

138 FJ. Berg and J L . Petersen, Tetrahedron, 1992,48,4749. 139 H.G. Alt, C.E. Denner, and R. Zenk. J. Organomet. Chem., 1992,433, 107. 140 J.M. Davis, R.J. Whitby, and A. Jaxa-Chamiec, Telrahedron Leu., 1992,33,5655.

A.D. Horton and A.G. Orpen. Organometallics, 1992, 11,8. 142 A.S. Guram. D.C. Swenson, and R.F. Jordan, J. Am. Chem. SOC., 1992, 114, 8991. 143 A.D. Horton and A.G. Orpen, Organometallics, 1992.11, 1193. 144 F.R. Lemke and R.M. Bullock, Organometaliics, 1992,11,4261. 145 T . Wettling, B. Geissler, R. Schneider, S. Barth. P. Binger, and M. Regitz, Angew. Chem., In t . Ed. Engl., 1992,

146 W.E. Piers, R.M. Whittal, G. Ferguson, J.F. Gallagher, R.D.J. Froese, H.J. Stronks. and P.H. Krygsman,

147 F. Mohamadi and M.M. Spees, Organometallics. 1992,11, 1398. 148 A.D. Horton, J. Chem. SOC., Chem. Commun., 1992, 185. 149 J. Bodiguel. P. Meunier, M.M. Kubicki, P. Richard, B. Gautheron, G. Dousse, H. Lavayssigre, and J. SatgC,

150 G. Erker. R. Petrenz, C. Kriiger, F. Lutz, A. Weiss, and S. Werner. Organometallics, 1992, 11, 1646.

1992, 505.

31. 758.

Organometallics, 1992, 11,4015.

Organometallics. 1992. 11. 1423.

Page 9: Nmr

Nuclear Magnetic Resonance Spectroscopy 9

(13C),151 [(qS-CsHs)(q5-CgMeg)Hf(SiH2Ph)C1], (13C, 29Si),152 and [ ( q 5 - C s H s ) ( q 5 -

CgMe5)Hf( Si(SiMe3)3)Me], ('3C, 29Si).153

(16)

But

( q 5 - C 5 H 5 ) 2 Z r ~ A P

But

(18) (19) The 13C and 31P CP/MAS NMR spectra of [Hf(q4-CH2CMeCMeCH2)(PMe3)2C12] show the lack

of mirror symmetry in the solid state. The solution 13C and 31P NMR spectra were also rep0rted.1~~

NMR data have also been reported for [(2,6-Ph2C6H30)2Ti(q2-C2H4)(PMe3)l, (13C),155 [(q5- C~H5)2Ti(q2-Me3SiCnCSiMe3)], (l3C),lS6 [(q5-CsH5)2Hf( p-q 1 :q2-MeCC(C6H~ 1 ) ) (p -CC-

(C6Hll))AlMe2], (13C),157 [(q5-C~H5)2Zr(p-C4H6)(p-Cl)AlC12], (13C),158 [(q4-C7H7SiMe3)-

ZrI2(PMe3)2], (13C),159 [(q5-C~H5)2Ti(p-PEt3)(p-q 1:q2-OC)M(CO)(q5-CSHS)1. (M = Mo, W; 13C),160 [(qS-CsH5)2MC12(Schiff base)], (M = Ti, Zr; l3C),I6l [(q5-C5H5)2Ti ( (p-02CC5H4)-

Fe(C0)2CH2Ph)2], (13C),16* [(q5-C5H5)2MX( (OQH5-qS)Cr(CO)3)], (M = Ti, Zr; 13C),163 [ [ (q5-

C5H5)2Ti( p-S CH2CH2CH2S)2Ti(q5-CsH5)2 ] A g]+, ( 3C), 64 [ (q5-C~Hs)Ti(q5- 2.4-Me2CsH5) - (CNPh)4], (13C),165 [O(SiMe2C5H4-q5)2TiC12lI ( 3C) ,I 66 [(q 5-C5HPh4)2TiC12], ( 3C), 67 [ ( 1,4-

Pr~-2,5-(q%ndenyl)2C&Ig)TiCl2], (13C),168 [(q5-C5H5)Ti(W501g)Hl2-, (170),169 [($-CsHs)Ti-

(carbohydrato)2Cl], (13C, 49Ti),170 [ ( (q5-CsH5)TiC1(p-O))4], ( 13C),171 [ ( ~ ~ - C S H ~ ) T ~ ( O R ) C ~ ~ ] ,

l 5

152 H.-G. Woo, R.H. Heyn, and T.D. Tilley, J . Am. Chem. SOC., 1992. 114, 5698. 153 H.-G. Woo, J.F. Walzer, and T.D. Tilley, J. Am. Chem. Soc.. 1992, 114, 7047. 154 G.M. Diamond, M.L.H. Green, N.M. Walker, and J.A.K. Howard, J . Chem. Soc., Dalton Trans., 1992, 2641, 155 J.E. Hill, P.E. Fanwick, and I.P. Rothwell, Orgonometallics, 1992. 11, 1771. 156 U. Rosenthal. H. GOrls, V.V. Burlakov. V.B. Shur. and M.E. Vol'pin. J. Organomet. Chem., 1992,426. C53. 157 M. Albrecht. G. Erker. M. Nolte, and C. Kriiger, J . Organomet. Chem.. 1992,427, C21. 158 G. Erker, R. Noe, C. Kriiger, and S. Werner, Organometallics, 1992,11,4174. 159 G.M. Diamond, M.L.H. Green, P. Mountford, and N.M. Walker, J. Chem. SOC., Dalton Trans., 1992, 2259. 160 D.G. Dick, Z. Hou, and D.W. Stephan, Organometallics. 1992.11,2378.

1 6 * H.-M. Gau, C.-C. Schei, L.-K. Liu, and L.-H. Luh,J. Organomet. Chem., 1992,435.43. 1 6 3 H.-M. Gau, C.T. Chen, and C.-C. Schei, J. Organomet. Chem., 1992,424, 307. 164 T.T. Nadasdi and D.W. Stephan, Organometallics, 1992, 11, 116. 165 T.E. Waldman, A.M. Wilson, A.L. Rheingold, E. Melendez, and R.D. Emst. Organometallics, 1992, 11,3201. 166 Y. Wang, X. Zhou, H. Wang, and X. Yao, Huaxue Xuebuo. 1991.49, 1107 (Chem. Absfr., 1991,116, 129 129). 167 K.-H. Thiele, F. Rehbaum. H. Baumann, H. Schumann, F.H. GUrlitz. and R. Weimann, Z. Anorg. Aflg. Chem.,

168 Z. Chen and R.L. Halterman, J . Am. Chem. Soc., 1992. 114, 2276. 169 T.M. Che. V.W. Day, L.C. Francesconi, W.G. Klemperer, D.J. Main, A. Yagasaki, and O.M. Yaghi, Inorg.

I 7 O R.O. Duthaler, A. Hafner, and M. Riediker, Org. Synth. Organomet., Proc. Symp., 3rd 1990, (Pub. 1991), 285.

T. Cuenca. R. Gbmez, P. G6mez-Sal. G.M. Rodriguez, and P. Royo, Organometallics, 1992, 11, 1229.

K.D. Mishra, R. Rai, O.P. Pandey, and S.K. Sengupta, Transifion M e t . Chem. (London), 1992. 17, 127.

1992, 613, 76.

Chem., 1992.31, 2920.

Page 10: Nmr

(20) T h e nature o f the Katsuki-Sharpless asymmetric epoxidation catalyst formed by the reactions of

[Ti2( (2R,3R)-diisopropyltartrate) 2(OR)4] with amines has been investigated by IH and 13C N M R

spec t roscopy. 194 NMR data have also been reported for [ ( C H ( C M e N C g H 4 N C M e ) 2 C H ) - Ti(03SCF3)21, (13C),195 [{(en)(Me3Si)2NTiCl)~(c~-N~)], (13C),196 [HB(3,5Me2C3HN2)3TiC12-

Ed. by K.H. Ntz and R.W. Hoffmann (Chem. Absir., 1991,116. 129 391). T. Carofiglio. C. Floriani, A. Sgamellotti, M. Rosi. A. Chiesi-Villa, and C. Rizzoli, J. Chem. SOC.. Dalron Trans., 1992. 1081.

172 U. Hohlein and R. Schobert, J. Organomel. Chem., 1992,424. 301. 173 D.M. Giolando, K. Kirschbaum, L.J. Graves, and U. Bolle. Inorg. Chem., 1992.31, 3887. 174 L.M. Alvaro, T. Cuenca, J.C. Flores, P. Royo, M.A. Pellinghelli, and A. Tiripicchio, Orgonometallics, 1992, 11,

175 L.A. Paquette and M.R. Sivik, Organomerallics, 1992,11, 3503. 1 7 6 S.I. Troyanov. V.B. Rybakov, V. Varga, P. Sedmera, and K. Mach, Mefalloorg. Khim., 1991,4. 1004. 177 F.-q. Liu, H.W. Roesky, H.-G. Schmidt, and M. Noltemeyer, Organometallics. 1992, 11, 2965. 178 N. Kuhn, S. StubeNauch, R. Boese, and D. B l h r , J. Organomei. Chem., 1992,440, 289. 179 P.J. Walsh, A.M. Baranger, and R.G. Bergman, J. Am. Chem. SOC., 1992, 114, 1708. 180 PJ . Walsh. F.J. Hollander, and R.G. Bergman, J. Organomer. Chem.. 1992.428, 13. 181 A.K. Saxena, S. Saxena. and A.K. Rai, Transition Met. Chem., 1992, 17.9. 1 8 * N. Dufour, A.-M. Caminade, M. Basso-Bert, A. Igau, and J.-P. Majoral, Organometallics, 1992,11, 1131. 183 H.H. Karsch, B. Deubelly, G. Grauvogl, J. Lachmann, and G . Muller, Organomeiallics, 1992, 11,4245. 184 W.E. Piero, L. Koch, D.S. Ridge, L.R. MacGillivray, and M. Zaworotko, Organometallics, 1992, 11, 3148. 185 J. Ho and D.W. Stephan, Organomelallics, 1992, 11, 1014. l g6 J. Cacciola, K.P. Reddy, and J.L. Petersen. Organomerallics. 1992, 11, 665. 187 Z.-y. Guo, P.K. Bradley, and R.F. Jordan, Organomeiallics. 1992,11,2690. 188 I.-M. Lee, W J . Gauthier, J.M. Ball, B. Iyengar, and S. Collins, Organomerallics, 1992, 11,2115. 189 G. Erker, S. Wilker, C. Kriiger, and R. Goddard, J . Am. Chem. Soc., 1992, 114, 10 983. l 90 R. Beckhaus, D. Wilbrandt, S. Flatau, and W.-H. BOhmer, J. Organomei. Chem., 1992,423.21 1. 191 J.E. Bol, B. Hessen, J.H. Teuben, WJJ. Smeets, and A.L. Spek, Organometallics, 1992, 11, 1981. 192 D.W. Blackbum, D. Britton, and J.E. Ellis, Angew. Chem., Inr. Ed. Engl., 1992, 31, 1495. 193 G.M. Diamond, M.L.H. Green, P. Mountford, N.M. Walker, and J.A.K. Howard, J. Chem. Sac., Dalton Trans.,

194 P.G. Potvin and S. Bianchet, J. Org. Chem., 1992.57, 6629. 195 C.E. Housmekerides, D.L. Ramage, C.M. Kretz, J.T. Shontz, R.S. Pilato, G.L. Geoffroy, A.L. Rheingold, and

3301.

1992,417.

Page 11: Nmr

Nuclear Magnetic Resonance Spectroscopy 11

(OR)], ( 13C),197 [HB(~,~-M~~C~HN~)~T~C~(OCH~PP~~)~MO(CO)~], (13C),198 [Ti2L2(OPri)4(02C-

CF3)21, (H2L = (21); 13CJ,r99 (221, (11B),200 [((B~~C~)Z~)~(C~~-N>(C~~-NH)~(CL~-NH~)~I, (13C, l5N, including C P M A S 15N),201 [Zr(NC6H3Pri2-2,6)(NHC6H3Pri2-2,6)2(NC5H5)2], (13C),202

[(tetraphenylporphyrin)Zr(02CR)2], (13C),203 [Zr(Te)( TeSi(SiMeg)g)2(dmpe)], ( 13C, 125Te),204

[(BuQ)2M(OCMeCHC(O)Ph 121, (M = Ti , Zr; 13C),205 [ZrgTi3(0Pr)16(02CMe)806], (13C),206

[(MeO2CC&0)2Ti( S2CNR2)Cl], ( 13C),207 [ (ButjSiO)3MCl], ( M = Ti, Zr; 13C),208 [Zr(OBut)4],

(13C),209 [{Zr2(OPri)g)Sn{A1(OPri)4)3], (l3C, 27Al, 19Sn),210 and [CuqZr403(OPri)18], (13C).21

-

Complexes of Group 5.-A review entitled 'Biological applications of 5IV NMR spectroscopy'

has appeared.212

T h e 93Nb chemical shifts show the expected dependence on halide ligand in [NbX(CO)2(q2-

PhGCPh)(dppe) ] . The 13C NMR spectra were also recorded.213 NMR data have also been reported

for [(q5-C~Mes)2TaH(=NPh)], (13C),214 [ (q7-C7H7)Nb(q5-C~H4Me)Me], (13C),215 [(q5-C5Meg)2-

Nb(CH2SiMe3)(q2-O=C=O)], (13C),216 (23), (L = dibenzopyrryl; M = Nb, Ta; 13C),217 [(q5-

196 197 198 199 200

201 202 203 204 205 206

207 208 209

210 21 1

212

213 214

215

216 217

B.S. Haggerty, Inorg. Chem., 1992, 31, 4453. N. Beydoun, R. Duchateau, and S. Gambarotta, J. Chem. SOC., Chem. Commun., 1992, 244. J. Ipaktschi and W. Sulzbach, J. Organomet. Chem., 1992,426, 59. J. Ipaktschi and W. Sulzbach, J. Organomet. Chem.. 1992,434,287. S . Bianchet and P.G. Potvin, Can. J. Chem., 1992, 70, 2256. H.-J. Koch, H.W. Roesky, R. Bohra, M. Noltemeyer, and H.-G. Schmidt, Angew. Chem.. In[. Ed. Engl., 1992, 31, 598. M.M.B. Holl and P.T. Wolczanski, J. Am. Chem. Soc., 1992, 114, 3854. DJ . Amey, M.A. Bruck, S.R. Huber, and D.E. Wigley,Inorg. Chem., 1992, 31, 3749. K. Shibata, T. Aida, and S. Inoue, Tetrahedron Lett., 1992.33, 1077. V. Christou and J. Arnold, J. Am. Chem. SOC., 1992, 114, 6240. U. Schubert, H. Buhler, and B. Hide, Chem. Ber., 1992, 125,999. I. Laaziz, A. Larbot, A. Julbe, C. Guizard, and L. Cot, J. Solid Stare Chem., 1992, 98, 393 (Chem. Abstr., 1992, 117, 39 160). S. Bhargava, R. Bohra, and R.C. Mehroua. Transition Met . Chem. (London), 1991, 16,622. KJ . Covert, P.T. Wolczanski, S.A. Hill, and P.J. Krusic, Inorg. Chem., 1992.31.66. Y . Okada, S. Kato, S. Satooka, N. Iwata, T. Ishii, and K. Takeuchi, Rera Kagaku Kenkyu, 1991, 13, 82 (Chem. Abstr., 1991. 116, 139 843). S. Mathur, A. Singh, and R.C. Mehrotra, Polyhedron, 1992, 11, 341. J.A. Samuels, B.A. Vaartstra, J.C. Huffman, K.L. Trojan, and W.E. Hatfield, Report, 1990, TR-40; Order No. AD- A229 483, 11 pp. Avail. NTIS. From Gov. Rep. Announce. Index (U.S.) , 1991, 91, Abstr. No. 127 838 (Chem. Abstr., 1991, 116, 50 257). D. Rehder, Vanadium B i d . Sysr., 1990, 173. Ed. by N.D. Chasteen, Kluwer, Dordrecht, (Chem. Absrr., 1991, 116, 37 133). F. Calderazzo, C. Felten, G. Pampaloni, and D. Rehder, J. Chem. Soc.. Dalion Trans.. 1992, 2003. G. Parkin, A.v. Asselt, DJ. Leahy, L. Whinnery, N.G. Hua, R.W. Quan, L.M. Henling, W.P. Schaefer, B.D. Santarsiera, and J.E. Bercaw, Inorg. Chem., 1992,31, 82. J.C. Green, M.L.H. Green, N. Kaltsoyannis, P. Mountford, P. Scott, and S.J. Simpson, Organometallics, 1992, 11. 3353. P.-f. Fu, M.A. Khan, and K.M. Nicholas, Organometallics, 1992, 11, 2607. R.D. Profilet. P.E. Fanwick, and I.P. Rothwell, Angew. Chem., Inr. Ed. Engl., 1992, 31, 1261.

Page 12: Nmr

12 Spectroscopic Properties of Inorganic and Organometallic Compounds

CsH4SiMe3)2NbCl(RlR2C=C=O-C.O)], ( 1 3 Q 2 1 8 [(qS-CsMes)Ta(Me)3(CH2)2PPh2], (13C),219

[(q5-C5H5)2Ta(p-CH2)21r(C0)2], ( 13C),220 [(r15-C5Me5)M(CH2SiMe3)2(CHSiMe3)], ( M = Nb, Ta; 13C),221 [(qS-C5Hs)(q2-CH2=CHMe)Nb(NC6H2Pri3-2,4,6)(PMe3)l, (13C),222 [NbX(C0)2-

( R1 C=CR2)]2, ( 3C),223 [(q 5-C5Hs)(q2-C6H4)N b(NC6H2Pri3- 2,4,6)(PMe3)], ( 3C),224 [ (dmpe)2 - (OC)Ta(CO)Ta(q2-Me3SiOCrCOSiMe3)(dmpe)], (13C),225 [(q7-C7H7)(q4-C7H8)Nb(PMe3)1, (13C),226 [Ta(q4-anthracene)(dmpe)2Cl], ( 13C),227 [(q5-CgHg)2VC121+, (51V)?28 [(q5-CgHqMe)2-

V2S31, (5lV) ,229 [ (q5-CsHs)V( SePh)z(NCMe)], (5 V, 77Se),230 [ (q 5-C5H5)Nb( NR)Cl2], ( 13C),23

But2C~H3)SnBun3] , (13C, 93Nb, 119Sn),233 [(q5-CgMe5)NbC12(CO)2(PMe3)], ( 13C),234 [(q5- C=jMe5)Nb(NC6H2Pri3-2,4,6) (E)( PMe-j)], (E = S, Se, Te; 3C)?35 [ (q - CgMe5)N b( NC6H2Pri3-

2,4,6)(PMe3)21, (13C),236 [((q5-CsMes)NbC1)3(~-C1)(p-O)Z(CL3-OH)(~3-O)l+, (13C),237 [(q5- CgMeqEt)2Nb2C12(B2H6)], ( l 'B, 93Nb),238 (24), ( l 1B),239 [ {q5-C5H3(SiMe3)2}TaC14], (13C),240

and [(q5-C5H5)TaC13(02CPri)1, (13C).241

[[~l5:q~-C~H4(CH2)3N)NbC12], (13C),232 [[ (q5-l,3-But2C5H3)Nb)2(~-q6:q6-P6)], [(q '-1,3-

Ps \I+ SiMe3

( q 5 - ~ t ~ , ~ e , ) ~ b L *?' >N b(q5-C,Me4Et) L2M A ML2

'AN& (q5-C5Me4Et)

Et SiMe,

Et

(23) (24)

218 A. Antiilolo, A. Otero, M. Fajardo, C. Lopez-Mardomingo, D. Lucas, Y. Mugnier, M. Lanfranchi, and M.A.

219 M. G6mez, G. Jimenez, P. Royo, M.A. Pellinghelli, and A. Tiripicchio, J. Organomer. Chem., 1992,439, 309. 220 MJ. Hostetler, M.D. Butts, and R.G. Bergman, fnorg. Chim. Acra, 1992, 198-200, 377. 221 I. De Castro, J. De la Mata, M. G6mez. P. G6mez-Sa1, P. Royo, and J.M. Selas, Polyhedron, 1992, 11, 1023. 222 A.D. Poole. V.C. Gibson, and W. Clegg, J. Chern. SOC., Chern. Commun., 1992,237. 223 C. Felten. D. Rehder, G. Pampaloni, and F. Calderazzo, fnorg. Chim. Acta, 1992,202, 121. 224 J.K. Cockcroft, V.C. Gibson, J.A.K. Howard, A.D. Poole, U. Siemeling, and C. Wilson, J. Chem. Soc., Chem.

225 R.N. Vrtis, S.G. Bou, and S J . Lippard, Organometallics, 1992,11, 270. 226 M.L.H. Green. A.K. Hughes, P.C. McGowan, P. Mountford, P. Scott, and S.J. Simpson, J. Chem. Soc., Dafton

227 J.D. Protasiewicz, P.A. Bianconi, I.D. Williams, S. Liu, Ch.P. Rao, and S.J. Lippard, Inorg. Chem., 1992, 31,

228 P. Gowik, T.M. Klapoetke, K. Siems, and U. Thewalt, J. Organomet. Chem., 1992,431.47. 229 M. Herberhold, M. Schrepfermann, and J. Darkwa, J. Organomet. Chem., 1992,430,61. 230 F. Preuss, T. Wieland, and B. Giinther, 2. Anorg. Allg. Chem., 1992, 609.45. 231 D.N. Williams, J.P. Mitchell, A.D. Poole, U. Siemeling, W. Clegg, D.C.R. Hockless, P.A. O'Neil, and V.C.

232 D.M. Antonelli, M.L.H. Green, and P. Mountford, J. Organomet. Chem., 1992,438, C4. 233 A.C. Reddy, E.D. Jemmis, 011. Scherer, R. Winter, G. Heckmann, and G. WolmersMuser, Organometallics, 1992,

234 U. Siemeling and V.C. Gibson, J. Organomet. Chem., 1992,424, 159. 235 U. Siemeling and V.C. Gibson, J. Chem. SOC., Chem. Commun.. 1992, 1670. 236 U. Siemeling and V.C. Gibson, J. Organomet. Chern., 1992,426. C25. 237 F. Bottomley and S. Karslioglu, Organomerallics, 1992,11,326. 238 H. Brunner, G. Gehart, W. Meier, J. Wachter, B. Wrackmeyer, B. Nuber, and M.L. Ziegler, J . Organomet. Chem..

239 H. Brunner, G. Gehart, B. Nuber, J. Wachter, and M.L. Ziegler, Angew. Chem., Inf. Ed. Engf., 1992.31, 1021. 24Q M. G6mez. G. Jimenez, P. Royo, J.M. Selas, and P.R. Raithby, J. Organomet. Chem., 1992,439, 147. 241 K. Joshi, J. Bao. A.S. Goldman, and J. Kohn, J. Am. Chem. Soc., 1992, 114, 6649.

Pellinghelli, J. Organomet. Chem., 1992, 435, 55.

Commun., 1992, 1668.

Trans., 1992, 1591.

4134.

Gibson, J. Chem. SOC., Dalton Trans., 1992. 739.

11, 3894.

1992, 436, 313.

Page 13: Nmr

Nuclear Magnetic Resonance Spectroscopy 13

J(5lV13C) has been observed in [O=V(NMeCH2CH2)3N].242 The 93Nb chemical shifts in 19 niobium complexes, [NbX6-nYn]-, X, Y = F, C1, Br, I, have been calculated using the ab inifio Hartree-Fock method, and good agreement with experiment was found.243 NMR data have also been reported for (25), (51V),244 [V(O) (4-(2-salicylideneiminoethyl)imidazolyl) (catecholate)], (51V),245

Vv complexes of iminodiacetate, ('3C, 51V),246 [(3,5-Bu%C6H202)2V(phen)]+, (51V),247 fruns- [V(N2)2(dppe)2]-, (51V),248 [MezHSiN=M( N(SiHMe2)2}3], (M = Nb, Ta; l3C, 29Si),249

[VO(OR)3], (5 lV)F50 Vv complexes of catechol and several polydentate analogues, (51V),251

[V(OCEt2C02)(0)2]2-, (13C),252 [(C&I11Si)7012V=OAl(CH2SiMe3)3], (l3C, 170, 29Si, 51V),253

[V6O13 ( (OCH2)3CMe)2]2-, (51V),2s4 (170),=5 [M2(OXala tO)10V1~~(OXala tO)6 ] , (M = La, Ce, Pr, Nd; 13C),256 [H12V 13040]3-, ('70, 51V),257 [V13034]3-, (51V),258 [O=M(NSiMe2CH2CH2-

SiMe2)3], (M = Nb, Ta; 13C, 29Si),259 and [Nb(O)(O-2,6-R2QjH3)3], (R = Me, But; 13C).260

Complexes of Group 6.-1H and 13C NMR studies on [(q5-CjMe4Et)W(CH2D)4]+ have shown

a strong temperature dependence of the isotope shift, 6(CH3) - ~(CHZD), indicating the presence of a monoagostic methyl group. Other compounds such as [Ti(CH2D)C13] were investigated and

lJ( 13C1H) reported.261 The 1H NMR spectrum of 1,l -[W2(C=CMe)2C12(PMe3)4] shows 5431PlH)

and 6J(31P1H). The 13C NMR spectrum was also reported.262 The l99Hg chemical shifts of [($-

242 W. Plass and J.G. Verkade. J . Am. Chem. S O ~ . , 1992, 114.2275. 243 M. Sugimoto, M. Kanayama, and H. Nakatsuji, J . Phys. Chem., 1992.96.4375. 244 C.R. Cornman, G.J. Colpas, J.D. Hoeschele, J. Kampf, and V.L. Pecoraro, J. Am. Chem. SOC., 1992, 114,9925. 245 C.R. Cornman. J. Kampf. and V.L. Pecoraro, Inorg. Chem., 1992.31, 1981. 246 M.H. Lee, Bull. Korean Chem. SOC.. 1992, 13,22 (Chem. Absrr., 1991, 116,247 282). 247 T.A. Kabanos, A.J.P. White, D.J. Williams, and J.D. Woollins, J . Chem. SOC.. Chem. Commun., 1992, 17;

T.A. Kabanos. A.M.Z. Slawin, D.J. Williams, and J.D. Woollins, J. Chem. Soc.. Dullon Trans., 1992, 1423. 248 D. Rehder. C. Woitha, W. Priebsch. and H. Gailus. J. Chem. SOC.. Chem. Commun.. 1992, 364. 249 W.A. Herrmann. N.W. Huber, P. Hater , M. Denk. and F. Dyckhoff, Chem. Ber., 1992.125, 117. 250 H. Langbein. A. Polte, R. Lang. and G. Grossmann. Z . Narurforsch., B, 1991.46. 1509 (Chem. Absrr., 1991,

2 5 1 A. Butler, R. de la Rosa, Q. Zhou, A. Jhanji, and CJ . Carrano, Inorg. Chem., 1992,31,5072. 252 T.W. Hambley, RJ . Judd, andP.A. Lay,Inorg. Chem.. 1992,31,343. 253 F.J. Feher and R.L. Blanski, J . Am. Chem. Soc., 1992. 114. 5886. 254 Q. Chen and J. Zubieta, Inorg. Chim. Acta, 1992,198-200,95. 255 Q. Chen, D.P. Goshom, C.P. Scholes, X.4. Tan, and J. Zubieta, J . Am. Chem. Soc., 1992. 114, 4667. 256 J. Wang, Y. Song, J. Duan, Y. Chang, Y. Du, Z. Xiu. Y. Fan, and W. Du. Wuji Huaxue Xuebao, 1991,7, 244

257 L. Pettenson, 1. Anderson. and O.W. Howarth. Inorg. Chem., 1992,31,4032. 258 D. Hou. K.S. Hagen. and C.L. Hill, J. Am. Chem. Soc., 1992, 114, 5864. 259 W.A. Herrmann. F. Dyckhoff, and E. Herdtweck. Chem. Ber., 1992. 125,2651. 260 T.P. Kee and V.C. Gibson. Polyhedron, 1992.11.587. 261 M.L.H. Green, A.K. Hughes, N.A. Popham, A.H.H. Stephens. and L.-L. Wong, J . Chem. Soc.. Dalton Trans.,

262 T.C. Stoner, S.J. Geib, and M.D. Hopkins. J. Am. Chem. Soc.. 1992, 114. 4201.

116, 14 845).

(Chem. Absrr.. 1991. 116, 74 828).

1992, 3077.

Page 14: Nmr

14 Spectroscopic Properties of inorganic and Organometall ic C o m p o u n d s

C ~ H ~ > ( O C ) ~ ( R ~ P ) M O H ~ X ] correlate with the pKa values of the phosphorus ligands and with some

electronic parameters such as Hammet's oP or Bartiks fix for para-substituted mphenyl phosphines

and for PEt3.263 N M R data have a l so been reported for ~rans,frans-[CrH(CO)2(NO)(PR3)2], ( 13C),264 [MH2(C2Ph)2(dppe)2], (M = Mo, W; 13C),265 [(q5-C~Me5>Mo(CO)2(H)(PR3)], ( 13C),266

[ MoH( N ( C 0 M e ) M e ) (dppe)2], (13C),267 [(q5-C~H~)MoOs3(CO>9(p-H)(p-O)(p-CHCH2C6~Me- 4)], (13C),268 [WH2(q6-C6HsMe)(PMe3)3I2+, (13C),269 [W2(H)(CCH=CHMe)(OSiButMe2)61, (13C),270 [ ( q s - C ~ M e g ) C r M e ( 0 ) 2 ] , (13C),271 [ ( q 5 - C 5 H 4 R ) M o M e ( C O ) 3 ] , (13C),272 [(q5- C ~ H ~ ) M ( N B U [ ) ~ M ~ ] , (M = Mo, W; 13C),273 [(~~-C~H~)MO(CO)~(PM~P~~)M~I, (13C),274

[ ( N=Mo(Me)(OBut)]4(NCjH4-4-But)], (13C),275 [(qs-ArSiMe2C5H4)W(Me)(CO)3], (13C),276

[ { W(Me)(CO)3(q5-CsH4CsH4-r15) )2Fe2(C0)4II ( 3C)?77 [Me(OChW(q 5-C5H4C2Me)Co2(C0)61,

(13C),278 [(q5-CgHs>W(CO)2(PPh3)(Me)l, (13C),279 [((q5-CsH5)M(C0)3CH21C4H601, (M = Mo,

n

W; 13C),280 [PhC2( C o 2 ( C O ) 8 } ~ R C H ~ ~ O ( ~ S - C ~ H ~ ) ( C O ) ~ ] , (13C),281 [Mo2C16(p-CH2)2],

( 13C),282 [ ((qs-C-jH5)M(CO)3]2( CH2)n], ( M = Mo, W; 33C),283 [ ( ~ ~ - C ~ M ~ ~ ) M O ( N O ) ( C H ~ -

SiMeg)~], (13C),284 1,2-[Mo(CH2SiMe3)2(q2-ButNCCH2SiMe3)4], (13C),285 [(q5-C5Mes) W(0)-

(NC&-4-Me)(CH2SiMe3)I1 ( 3C) ,286 [ W ( C&(CH2NMe2)-2 ] (=NPh)( =CHS iMe j ) ( CH2SiMe3)],

( 3C) ,287 [ ( 0 C ) s W CH M e N C 5 H 5 ] , ( 3C) ,288 (26) , ( 3C) ,289 [ (q 5 - C5H5)2 MoC(=NMe)NMeC- -

263

264 265

266 267 268 269

270

27 1

272 273

214 275 276 277 278 279 280 28 1 282 283 284 285 286 287 288 289

M. Cano, J.A. Campo, J.Y. Le Gall, R. Pichon, J.Y. Salaun, and M.M. Kubicki, Inorg. Chim. Acta, 1992, 193, 207. A.A.H. van der Zeijden, T. Biirgi, and H. Berke, Inorg. Chim. Acta, 1992,201, 131. A. Hills, D.L. Hughes, N. Kashef. M.A.N.D.A. Lemos, A.J.L. Pombeiro, and R.L. Richards, 1. Chem. S O C . , Dalton Trans., 1992, 1775. M.-J. Tudoret, M.-L. Robo, and C. Lapinte, Organometallics. 1992, 11, 1419. T. Ito, S. Kurishima, M. Tanaka, and K. Osakada, Organometallics, 1992, 11, 2333. J.T. Park, M.-K. Chung, K.M. Chun, S.S. Yun, and S. Kim, Organometallics, 1992, 11, 3313. M.L.H. Green, A.K. Hughes, P. Lincoln, J.J. Martin-Polo, P. Mountford, A. Sella, L.L. Wong, J.A. Bandy, T.W. Banks, K. Prout, and D.J. Watkin, J. Chem. SOC., Dalton Trans., 1992, 2063. S.T. Chacon, M.H. Chisholm, C.M. Cook, M.J. Hampden-Smith. and W.E. Streib, Angew. Chem.. In[. Ed. Engl., 1992, 31,462. S.-K. Noh, R.A. Heintz, B.S. Haggerty, A.L. Rheingold, and K.H. Theopold, J. Am. Chem. Soc., 1992, 114, 1892. P. Hwer, J. Behm, and KJ . Burkert, J. Organomet. Chem., 1992,438,297. U. Radius and J. Sundermeyer, Chem. Ber., 1992, 125. 2183; J. Sundermeyer, U. Radius, and C. Burschka, Chem. Ber., 1992, 125,2379. P. Blenkuon, M.H. Lavender, and M J . Moms, J. Organomet. Chem., 1992,426, C28. W.A. Herrmann. S. BogdanoviC, J. Behm, and M. Denk, J. Organomet. Chem., 1992,430, C33. H. Plenio, J. Organomel. Chem., 1992,435, 21. D. Brown, M.-H. Delville-Desbois. K.P.C. Vollhardt, and D. Astruc, New J. Chem., 1992, 16, 899. E.C. Brehm, J.K. Stille, and A.I. Meyers, Organometallics, 1992, 11, 938. V. Skagestad and M. Tilset, Organometallics. 1992. 11,3293. E. Lindner, M. Pabel, R. Fawzi, and M. Steimann, J. Organomet. Chem., 1992.441.63. H. Lang, M. Leisse, and W. Imhof. Z. Nalurforsch.. B, 1991.46, 1650 (Chem. Absrr., 1991, 116, 151 974). T. Kauffmann, P. Fiegenbaurn, M. Papenberg, R. Wieschollek, and J. Sander, Chem. Ber., 1992, 125, 143. E. Lindner, M. Pabel, R. Fawzi, H.A. Mayer, and K. Wurst, J. Organomet. Chem., 1992,435, 109. P. Legzdins, P.J. Lundmark, E.C. Phillips. S.J. Rettig, and J.E. Veltheer, Organometallics, 1992, 11, 2991. J.E. Hill, P.E. Fanwick, and I.P. Rothwell, Polyhedron, 1992, 11, 2825. P. Legzdins. E.C. Phillips, S J . Rettig, J. Trotter, J.E. Veltheer, and V.C. Yee, Organometallics. 1992, 11, 3104. P.A. van der Schaaf, WJJ. Smeets, A.L. Spek, and G. van Koten, 1. Chem. Soc.. Chem. Commun., 1992, 717. F. Cohen. R. Goumont, H. Rudler, J.C. Daran, and R.A. Toscano, J. Organomet. Chem., 1992,431, C6. D.V. Khasnis, J.M. Burton, H. Zhang, and M. Lattman, Organometallics, 1992, 11, 3745.

Page 15: Nmr

Nuclear Magnetic Resonance Spectroscopy 15

OMe]+, (l3C),29O rruns,fruns-[W (C(C02Me)=CH2 1 (C0)2(NO)(PPh3)2], (13C),291 [(q5-C5H5)W-

[ C( O)CHCgH4Me-4 ) (C0)(02CCF3)2], (l 3C),292 [ W(C&I&jH3-2-0-3-Ph)(OC&Ph2-2,6)- (=CHBut)Cl( OEt2)], (13C),293 [W(CH)(dmpe)2(C=CR)], (13C),2g4 [ (q5-CsH5) W (C0)2 ( S (MeS)-

CMe } ] +, (13C) ,295 [(q 5 - C5H 5 ) W( CO) (PMe 3) ( (PPh2)(MeS)CMe)], ( 13C),2g6 [(OC)5-

M=C(Me)=C(NEt2)CMeBut], (M = Cr, W, 13C),297 [(OC)s &=CH=C(Ph)N(Me)CH=&Ph], (M =

- - Cr, W; 13C),2g8 [(OC)5M=i]C(OEt)=kORe(CO)s], (M = Cr, Mo, W; 13C)?99 [(OC)sCr=CMe-

NR 'R2], ( 3C),300 [(OC)4 &=C(~Mc-4)NHC(OBut)=&, ( 13C),301 [ (OC)5M=C(NEt2)CMe=C-

(OEt)CH2C7H7], (M = 0, W; 13C),u)2 [ ( O C ) 4 d r = C ( ~ R 7 ) N H C & k I 2 - 2 ] , (13C),303 [(Oc)s-

Cr=C(OMe)C$IqPh], (13C),304 [(OC)5M=C(OMe)C=CPh], (M = Cr, W; 13C),305 [(OC)zCr=C-

(OMe)C*-2-C&s-q6], (13C)?06 [(OC)sCr=C(OEt)CH=C(OMe)C3H5], ( 13C),307 [ [ (OC)5Cr=C-

(OMe)CH2C&€7-q4 1 Fe(C0)3], (13C),308 [(OC)5Cr=C(OEt)RI1 ( 13Q309 [(OC)5Cr=C(CH2)4OlI

(13C),310 [(OC)5M=C(OR1)( CH=CR2(OR3)]], (M = Cr, W; 13C),311 [(OC)5Cr=C(O)Ar]-,

( 3C),312 [(OC>sCr=C [ OTi( OPri)3 )R], ( 13C),313 [(OC)5Cr=bOCHR1CR2R3hH 21, ( 3C) , 3

[(OC)SM=C(OE~)CHC~H~], (M = Cr, W; 13Q315 [ (OC)~M=C(OR)C~P~CO~(CO)~], (M = Cr, W; - 13Q316 [(q5-C5H5)(0C)LM=CRN=NNC02Me], (M = Mo, W; 13C),317 [(ButN=)2MCl-

(=CHPPh3)], (M = Mo, W; 13C),318 [(OC)gMo=C(OMe)Ar], (13Q319 (27), (E = OMe, SMe,

-

290 M.J. Calhorda, A.R. Dias, M.T. Duarte, A.M. Martins, P.M. Matias, and C.C. Romao, J. Organornet. Chem.,

29 292 F.R. KreiB1, H. Keller, and W. SchiiU, J. Organornet. Chem., 1992, 441, 75. 293 J.-J. Couturier, C. Paillet, M. Leconte, J.-M. Basset, and K. Weiss, Angew. Chem., fnt . Ed. Engl . , 1992, 31,

294 J. Manna, S.J. Geib, and M.D. Hopkins, J. Am. Chem. SOC., 1992. 114, 9199. 295 F.R. KreiBl and N. Ullrich, J. Organomet. Chem., 1992,416, C8. 296 J. Ostermeier, W. SchiiU, and F.R. Kreipl, J. Organomet. Chem.. 1992.436, C17. 297 H. Fischer, 0. Podschadly, A. Fruh, C. Troll, R. Stumpf, and A. Schlageter, Chem. Ber., 1992, 125, 2667. 298 R. Aumann and P. Hinterding, Chem. Ber., 1992, 125, 2765. 299 P.M. Fritz, J. Breimair, B. Wagner, and W. Beck, J. Organomet. Chem.. 1992,426,343. 300 E. Chelain, R. Goumont, L. Hamon, A. Parlier, M. Rudler, H. Rudler, J.-C. Daran, and J. Vaissermann, J. Am.

301 D.B. Grotjahn, F.E.K. Kroll, T. Schafer, K. Harms, and K.H. Ixltz, Organometallics, 1992, 11,298. 302 R. Aumann, Chem. Ber., 1992,125, 1861. 303 K.H. DO&, A. Rau, and K. Harms, Chem. Ber., 1992, 125.2137. 304 S.U. Turner, J.W. Hemdon, and L.A. McMullen, J. Am. Chem. SOC., 1992, 114, 8394. 305 R. Aumann. Chem. Ber.. 1992, 125, 2773. 306 C.A. Merlic, D. Xu, and S.I. Khan, Organornetallics. 1992, 11,412. 307 M. Duetsch, F. Stein, R. Lackmann, E. Pohl. R. Herbst-her, and A. de Meijere, Chem. Ber., 1992, 125, 2051. 308 C. Kelley, M.R. Terry, A.W. Kaplan, G.L. Geoffroy, N. Lugan, R. Mathieu, B.S. Haggerty, and A.L. Rheingold,

309 S. Aoki, T. Fujimura, and E. Nakamura, J. Am. Chem. Soc., 1992, 114. 2985; F. Camps, L. Jordi, J.M.

310 M.R. Sestrick. M. Miller, and L.S. Hegedus, J. Am. Chem. SOC., 1992. 114, 4079.

3 1 2 J.-M. Vernier, L.S. Hegedus. and D.B. Miller, J.0rg. Chem.. 1992,57, 6914. 3 1 3 M. Sabat, M.F. Gross, and M.G. Finn, Organornerallics, 1992, 11. 745. 314 E. Licandro. S. Maiorana, A. Papagni, and A. Zanotti-Gerosa, J. Chem. SOC., Chem. Commun., 1992, 1623. 315 R. Aumann, Chem. Ber.. 1992, 125, 1141. 3 1 6 A. Wienand, H.-U. Reissig, H. Fischer, D. Pflumm, and C. Troll, J. Organornet. Chem., 1992, 427. C9. 317 C.M. Stegmair, W. Ullrich, W. Schiiu, P. Kiprof, and F.R. KreiSI, Chem. Ber., 1992, 125, 1571. 318 J. Sundermeyer, K. Weber, and 0. Niimberg, J. Chem. SOC., Chem. Commun., 1992, 1631. 319 K.H. Wtz and H. Larbig, J. Organomet. Chem., 1992,433. 115; K.H. DOtz and H. Larbig, Bull SOC. Chim. Fr.,

1992. 440, 119. A.A.H. van der Zeijden, H.W. Bosch, and H. Berke, Organometallics, 1992.11.563.

628.

Chem. SOC., 1992, 114, 8088.

Inorg. Chim. Acta, 1992, 198-200, 601.

Moretb, S. Ricart, A.M. CastaRo, and A.M. Echavarren, J. Organomet. Chem., 1992,436, 189.

A. Llebaria, J.M. Morett5. S. Ricart, J. Ros, J.M. ViRas, and R. Y s e z , J. Organomet. Chem., 1992, 440, 79.

Page 16: Nmr

16 Spectroscopic Properties of Inorganic and Organometallic Compounds

NMe2; 13C),320 [(~~-CSH~)MO(PM~~)(NO)(SM~){ =C(OEt)Me)]+, (13C),321 [ (HB(pz)3 ) W(=CH-

CMe2Ph)(=NC&F’r$-2,6)(OTf)lI (13C),322 [ (OC)5W=CNMe2(CH2)nNMe2C=W(CO)5], ( 13C)?23

[ (OC)gW=C(OMe)CH=CHR], ( 13C),324 [(OC)5W=C( CICPh) { N ( CH2CH=CH2)2 ) I, ( l 3C),325 [ ( O C ) 5 W = C ( C = C S i M e 3 ) ( N ( C H 2 C H = C H 2 ) 2 ) ] , (13C),326 (28), (13C),327 [ (OC)sW CH-

( P(NMe2)2)2CH], ( 13C),328 [ ( ~ ~ - C ~ H S ) ( O C ) ( ( M e 0 ) 3 P ) MoaC ( C(COR)CH2CH2 ) I , ( 3C),329 [(q5-C5H5)(OC)2Mo=CN(Et)But], ( 13C),330 [W(=CMe)(q2-MeC=CMe)(PMe3)2Cl], (13C),331

[ W(=CC6H4Me-4)Br(CO)3(PPh3)], ( 13C),332 [HB(3,5-Me2Pz)3W (=CNEt2)(C0)2] , ( 3C),333

[CCQMO(~~-CP~)B~(CO)~(NC~H~)~], (13C),334 [w2( p-CPh(CPh)CPh}(p-CPh)(NMe2)4], (13C),335

[(q6-arene)Cr(C0)2(SnPh3)(SnMe3)], (13C, 119Sn),336 [MO(CO)~(PR~)(~-C~)(~-S~CPR~)- (SnBuC12)I. (13C),337 [W(C0)4( Au(PPh3)}51+, (13C),338 and [W4(13C)(0)(OCH2C5H9)i21,

- (13C).339

(26) (27) (28) l3C NMR spectroscopy has provided evidence that (PhC=CPh)2 donates 6 electrons t o the metal in

[W(S2CNR2)2(q2-PhC=CPh)2] .340 NMR data have also been reported for [Mo(q2-CH2CHMe)-

320 321 322 323 324

325 326 321 328 329 330 33 1 332 333 334

335 336 331 338

339

340

1992, 129, 579. K.H. Ixltz. H. Larbig, and K. Harms, Chem. Ber., 1992, 125,2143. F.R. KreiBl and N. Ullrich. J. Organomet. Chem., 1992,440,335. L.L. Blosch, A.S. Gamble, K. Abboud, and J.M. Boncella, Organometallics, 1992, 11,2342. D.W. Macomber and P. Madhukar, J. Organomet. Chem., 1992,433,279. B.A. Anderson, W.D. Wulff, T.S. Powers, S. Tribbitt, and A.L. Rheingold, J. Am. Chem. SOC., 1992, 114, 10 784. K.H. Ntz and J. Christoffers, J. Organomer. Chem., 1992.426, C58. L. Jordi, J.M. Moret6, S. Ricart, J.M. Vifias, M. Mejias, and E. Molins, Organometallics, 1992, 11, 3507. K.H. Dtltz, T. Schaer, F. Kroll, and K. Harms. Angew. Chem., Int. Ed. Engl. , 1992.31, 1236. E. Fluck, M. Spahn. and G. Heckmann, 2. Anorg. Allg. Chem., 1992.612. 56. J.D. Carter, T.K. Schoch, and L. McElwee-White, Organometallics, 1992. 11.3571. A.C. Filippou. W. Griinleitner, and E.O. Fischer, J . Organomet. Chem., 1992,428, C37. L.M. Atagi. S.C. Critchlow. and J.M. Mayer, J. Am. Chem. SOC.. 1992, 114, 9223. A. Mayr, C.M. Bastos, N. Daubenspeck, and G.A. McDermott, Chem. Ber.. 1992,125, 1583. A.C. Filippou, C. Wagner, E.O. Fischer, and C. VCilkl, J. Organomet. Chem., 1992,438, C15. Y. Yin, H. Sun, and Z. Zhao, Chin. Chem. Left., 1992.3.551 (Chem. Absfr., 1991, 117,234 227); Y. Yin, H. Sun, D. Jin, and Y. Zhu, J. Organomer. Chem., 1992,439,45. M.H. Chisholm, R.-M. Jansen. and J.C. Huffman, Organometallics, 1992, 11, 2305. U. Schubert and J. Schubert, J. Organomet. Chem., 1992,434, 169. D. Miguel, J.A. Wrez-Martinez, V. Riera, and S. Garcia-Granda, Angew. Chem., Int. Ed. Engl., 1992,31,76. T.G.M.M. Kappen, A.C.M. van den Broek, P.P.J. Schlebos. J.J. Boer, W.P. Bosman, J.M.M. Smits, P.T. Beurskens, and JJ . Steggerda, Inorg. Chem., 1992,31,4075. M.H. Chisholm, C.E. Hammond, V.J. Johnston, W.E. Streib, and J.C. Huffman, J . Am. Chem. SOC., 1992, 114, 7056. P.K. Baker, G.A. Cartwright. P.D. Jackson, K.R. Flower, N. Galeotti, and L.M. Severs, Polyhedron, 1992. 11, 1043.

Page 17: Nmr

Nuclear Magnetic Resonance Spectroscopy 17

(=NBu*)2(PMe3)], (13C),341 [ (q6-1,3-(Me3SiCH2)2Et4Csj Mo(C0)2(q2-cyclo-octene)], (13C),342

RC=CF)Co(C0)3], (M = Mo, W; 13C),344 (B), (13C),345 [(rl5-C5H5)2Mo2(C0)4(~,~-C6H10)Ir (13C),346 [(~~-C~H~)~MO~(CO)~(C(-HC=CCECH)], (13C),347 [(r15-C5H5)2M2(C0)2(~-q 1'3'3'1-

1,3,5-hexaaiene- 1,6-diyl)], (M = Mo, W; 3C),348 [(q5-C5H5)2M2(CO)4(~-q I :q2-C=CCH20Me)] - [Na( 15-crown-5)], (13C),349 [ { (q5-CsH5)Mo(C0)2 )2(p-HC=CCH+CH2)1, (13C),350 [WC12(q22-

C2H4)( NNCMe2)(PMe2Ph)2], ( 13C),35 [ W(O=CM~CH~CH~CH=CH~)CIZ(PM~~P~)~], ( 3C),352

[(q5-C5H5)2W(q2-CH2CHCH2CH20H)], (13C),353 [HB(3,5-Me2pz)3W(CO)2(q2-CPh=CH2)], ( 13C),354 [W(PhCCO)(S2CNEt2)(CO)(PMe3)2], (13C),355 [(q5-C5Hs)W(CO)(q2-COCH2Ar)- (@CCF3)], (13C),356 [W12(CO)(CNBu1)(q2-MeC=CMe)J, ( 13C),357 [W(q4-C4Ph)(q2-PhC=CPh)2- (CO)], (13C),358 [HB(~,~-M~~~z)~W(CO)(~~-P~C=CM~)(O~SR)], (13C),359 [HB(3,5-Me2pz)3W-

(CO)(q2-PhCrCMe)(N=CHMe)], (13C),360 [W(q2-PhC=CPh)3(q1-Ph2PCH2PPh2)1, (13C),361

[ W (q2-PhCaCOS i Bu5Ph) (CO)( PMe2R)2C12], ( 3C) ,362 [ HB( 3 5- Me2pz)3 W (CO) (q 2- PhC& - CHMeCH2Ph)I], (l3C),363 [(~~-C~H~)WOS~(CO)~(CCP~CM~CM~)], ( 13C),364 [WRu($'-CsMes)-

(C0)6(NPh) (C(Et)C(Et)C(CF3)CH(CF3)] 1, (13C),365 [(q5-C5H4Pri)2W2X4(p-C4Me4)J, (*3C),366 [ ( ~ ~ ~ ~ H ~ ) W R U ~ ( C ~ ) ~ ( ~ ~ - N P ~ ) ( F ~ C C C H C F ~ ) ] , ( 13C),367 [ (q5-C5H5)( q3-CH2C(C02Me)CHMe) - Mo(C0)2], (13C),368 [(q5-C5H5)(q3-CgH120H)Mo(C0)2], (13C),369 [(q5-C5H4CH2CH2NMe2)-

M O ( C O ) ~ ( ~ ~ - C ~ H ~ ) ] , (13C),370 [(q5-C5Me5)(q3-CH2CHCH=CH2)Mo(C0)2], (13C),371 (30),

[M(S2CNR12)2(C0)(q2-CO)(q2-R2CCOCOR3)]-, (M = Mo, W; 13C),343 [(q5-C5H5)M(CO)2(p-

341 P.W. Dyer, V.C. Gibson, J.A.K. Howard, B. Whittle, and C. Wilson, J. Chem. Soc., Chem. Commun.. 1992,

342 J.C. Barnes, G. Hunter, W. Keller, J.D. Paton, and W. Weissensteiner, Monarsh. Chem., 1992, 123,443. 343 K.A. Belsky, M.F. Asaro, S.Y. Chen, and A. Mayr, Organometallics, 1992, 11, 1926. 344 C.A. Dickson and N.J. Coville, J. Organomet. Chem.. 1992,427, 335. 345 M. Bamber. S.F.T. Froom, M. Green, M. Schulz, and H. Werner, J. Organomel. Chem., 1992,434, C19. 346 A J . Mayr, B. Carrasco-Flores, L. PdrMnyi, and K.H. Pannell, J. Am. Chem. Soc., 1992, 114, 5467. 347 N. Le Berre-Cosquer and R. Kergoat. J. Organornet. Chem., 1992,427,325. 348 C.G. Kreiter, A. Wiirtz, and P. Bell, Chem. Ber., 1992, 125, 377. 349 M.D. Curtis, A. Meyer, and W.M. Butler, Organometallics, 1992,11,4343. 350 N. Le Berre-Cosquer, R. Kergoat, and P. L'Haridon, Organometallics, 1992,ll. 721. 3 5 1 T. Aoshima, T. Tamura, Y. Mizobe, and M. Hidai. J. Organomel. Chem.. 1992,435.85. 352 J.C. Bryan, J.B. Arterburn, G.K. Cook, and J.M. Mayer, Organometallics, 1992, 11, 3965. 353 G.E. Herberich and K. Linn, J. Organomet. Chem., 1992,425, C4. 354 S.G. Feng and J.L. Templeton. Organometallics, 1992, 11, 2168. 355 A. Mayr, S.M. Holmes, and C.M. Bastos, Organometallics. 1992. 11.4358. 356 J.A.K. Howard, J.C. Jeffery, S. Li, and F.G.A. Stone, J . Chem. Soc.. Dalton Trans., 1992. 627. 3 5 7 E.M. Armstrong, P.K. Baker, T. Callow, K.R. Flower, P.D. Jackson, and L.M. Severs. J. Organomel. Chem..

358 W.Y. Yeh and L.K. Liu,J. Am. Chem. Sac., 1992, 114, 2267. 3 5 9 J.L. Caldarelli, P.S. White, and J.L. Templeton, J . Am. Chem. SOC., 1992, 114, 10 097. 360 S.G. Feng and J.L. Templeton, Organomerallics. 1992. 11, 1295. 3 6 1 W.-Y. Yeh, C.-S. Ting, and C.4. Chjh. J. Organomet. Chem.. 1992,427.257. 362 A. Mayr, C.M. Bastos, R.T. Chang, J.X. Haberman, K.S. Robinson, and D.A. Belle-Oudry, Angew. Chem., Int.

363 M.A. Collins, S.G. Feng, P.A. White, and J.L. Templeton, J . Am. Chem. SOC., 1992, 114. 3771. 364 Y. Chi, R.-C. Lin, C.-C. Chen, S.-M. Peng, and G.-H. Lee, J. Organomet. Chem., 1992.439. 347. 365 R.-C. Lin, Y. Chi, S.-M. Peng. and G.-H. Lee, J. Chem. SOC.. Chem. Commun., 1992, 1705. 366 Q. Feng. M.L.H. Green, and P. Mountford. J. Chem. SOC., Dalton Trans., 1992,2171. 367 Y. Chi. H.-F. Hsu, L.-K. Liu, S.-M. Peng, and G.-H. Lee, Organometallics, 1992, 11, 1763. 368 G.-M. Yang, G.-M. Su, and R.-S. Liu. Organomelallics. 1992, 11,3444. 369 AJ. Pearson, S. Mallik, A.A. Pinkerton, J.P. Adams, and S. Zheng, J. Org. Chem., 1992, 57, 2910. 370 T.-F. Wang and Y.-S. Wen, J. Organornet. Chem., 1992,439, 155. 371 S.A. Benyunes, R.J. Deeth, A. Fries, M. Green, M. McPartlin, and C.B.M. Nation, J . Chem. SOC.. Dalton Trans..

1666.

1992, 434. 321.

Ed. Engl., 1992, 31-747.

Page 18: Nmr

18 Spectroscopic Properties of Inorganic and Organometallic Compounds

(13C),372 [M(C0)2(q3-QH5)(2-NC5H4)2NH]+, ( M = Mo, W; 13C)?73 [ H B ( ~ , ~ - M ~ ~ ~ z ) ~ M o ( C O ) ~ -

(q3-C3Hs)], (13C),374 [HB(3-Butpz)3Mo(C0)2(q3-2-MeC3H4)], (13C),375 [HB(pz)3Mo(C0)2(q3-

C7Hg)], (13C),376 [(q3-C3H5)W(=0)(PMe3)2C1], (13C),377 (31), (13C),378 [(q5-C5H5)MoCl(q4-

CqH6)(PMe3)], (13C),379 [ (q4-CH2CHC(Ph)O)gM], ( M = Mo, W; 13C),380 [W(CO)2(dmpe)(q4-

diene)], (l3C),381 and (32), (13C).382

.But

9" / ($-C H

5)(0c)2M07 1- Mo(CO),(q5-C5H,)

Me

t

(OC)4Rej)N( CO),

0 (31) (32)

c 'Re(CO)5

An analysis of the spectra of [ ( ~ ~ - C ~ H ~ ) M ~ M ~ ( C O ) ~ J L ] , MI = Mo, W; M2 = Mn, Re, complexes has revealed that the difference in 31P chemical shifts for the axial and equatorial isomers has given a measure of the steric size of the metal fragments.383 The 133Cs NMR spectrum of Cs[(q5- C ~ H ~ ) M O ( S C ~ ; ~ ) ~ ] shows that J(133CsI9F) is 58 Hz.384 NMR data have also been reported for [(q5- C~H~)C~(CNBU~)~][(~~-C~H~)CI-(C~)~], (13C),385 [(qS-CsHs)Cr(CO)3(SePh)], (13C),386 [(q5- CsHs)Cr(C0)2(SPh)]2 , (13C),387 [ { (q5-C5H5)Cr(EPh))2ECr(CO)5], (E = S, Se; 13C),388 [(q5- CgH4C02Me)Cr(N0)2Me] , (13C),389 [(q5-C5H4CO2Me)Cr(CO)2(NO)], (13C),390 [(q5-C5Me5)-

1992, 3453. 372 S.F. Camper and H. Schmidbaur, Organometallics, 1992, 11,2863. 3 7 3 B.J. Brisdon, M. Cartwright, A.G.W. Hodson, M.F. Mahoh, and K.C. Molloy, J. Organomet. Chem.. 1992,435,

374 J. Ipaktschi, A. H m a n n , and R. Boese, J. Organomel. Chem., 1992,434, 303. 375 J.C. Calabrese and S. Trofimenko, Inorg. Chem., 1992.31, 4810. 376 J. Ipaktschi and A. Hartmann. .I. Organomet. Chem., 1992,431,303. 377 L.M. Atagi, S.C. Critchlow, and J.M. Mayer, J. Am. Chem. SOC., 1992, 114, 1483. 378 C.G. Kreiter. S. Schufft, and G. Heckmann, J . Organomet. Chem., 1992,424, 163. 379 F. Abugideiri, M.A. Kelland,and R. Poli, Organometallics, 1992, 11, 131 1. 380 T. Schmidt and S . Neis, J . Organomet. Chem., 1992,430, C5. 3 8 1 S. Ozkar, C. Kayran, and C.G. Kreiter, J. Organomet. Chem., 1992,434.19. 382 J.C. Jeffery, S. Li, and F.G.A. Stone, J. Chem. SOC., Dalron Trans., 1992, 635. 383 W.L. Ingham and N.J. Coville. Inorg. Chem., 1992, 31, 4084. 384 A.S.F. Boyd, J.L. Davidson, C.H. McIntosh, P.C. Leverd, W.E. Lindsell, and N.J. Sirnpson, J. Chem. Soc..

385 J.K. Shen, J.W. Freeman, N.C. Hallinan, A.L. Rheingold, A.M. Arif, R.D. Ernst, and F. Basolo,

386 L.Y. Goh, Y.Y. Lim, M.S. Tay, T.C.W. Mak, and Z.-Y. Zhou,J. Chem. Soc., Dalron Ikans., 1992. 1239. 387 L.Y. Goh, M.S. Tay, T.C.W. Mak, and R.-J.Wang, Organometallics, 1992, 11, 171 1. 388 L.Y. Goh, M.S. Tay, Y.Y. Lim. W. Chen, Z.-Y. Zhou, and T.C.W. Mak, J. Organomet. Chem.. 1992.441. 5 1 . 389 Y.P. Wang and Y.H. Yang.Donghai Xuebao, 1991, 32.483 (Chem. Abstr., 1991, 116, 41 673). 390 Y.P. Wang, Y.H. Yang. and J.H. Liaw, Donghai Xuebao, 1991.32.495 (Chem. Abstr., 1991, 116.41 674).

319.

Dalton Trans., 1992,2531.

Organometallics, 1992, 11, 3215.

Page 19: Nmr

Nuclear Magnetic Resonance Spectroscopy 19

Cr(NO)(OPri)2], (13C),391 [(q5-C5H5)2MoCNBut], (13C),392 [ (q5-CsH5)2MoNBut] , (13C),393

[ { 5,10,1 5,20-(3,5-But2C6H3)4porphyrin I I n M o ( q 5 - C s H ~ ) ( C O ) 3 1 , (13C, 1 7 0 ) , 3 9 4 [ [ (2,4,6-

But3C6H20)[(Et2N)MeC=CH] )P=Mo(q5-C5Hs)(CO)2], (13C),395 [(q5-CsH5)2M2(C0)5(p-EP- C6H2Me3-2,4.6)], (M = Mo, W; E = S, Se; 13C),396 [(q5-C~H5)2M02(C0)4(p-Ph2POPPh2)l, (13C),397 [(q5-C5H5)2M02(C0)4(C1 lHleS)] , (13C),398 [ (q5-C5Hs)M(CO)(PR 'Ph2) { S(Ph2P)-

C=NR2]], (M = Mo, W; 13C),399 [ ( T ~ - C ~ H ~ ) M C ~ ~ ( N R ) ] , ( M = Mo, W; 13C),400 [ ( ( q 5 - C s H ~ ) M o ) -

(S2CH2)(p-SCH2)(p-SMe)Mo(q5-CsHS)1+, (13C)1401 [(q5-C~H5)MoCl(PMe3)3ZnC131, (13C),402

[(q5-C5H4CH2CH2NMe2)Mo(C0)2IlI (13C),403 [Mo2(q5-CsH4PPh2)(q5-C~H5)(CO)sl, (13c),404

[MOM~(~-C~H~PP~~)(CO)~(PP~~H)I, (13C),405 [(q5-C5H4R)2M02(CO)41, (95Mo),406 [(q5- C S M ~ ~ C H = C H ~ ) M ~ ( C O ) ~ ( N O ) ] , (13C),407 [(~~-C~M~~>MO(NO)(NCM~)~]~+, (13C),408 [(q5- CgH5)W(q7-C7H7)1, (13C),409 [(q5-CsHs)W(CO>2(q2-MePPBu~)l, (13C),410 J(qS-C~H4R)2W2(p-

C1)2(C1)2(CO)4], ( 3C) ,4 and [ WRu3 (q5-CsH5)(H)( CO) 1 1 BH], ( Bh412

The methyl group of [(q6-1-CH2D-2-Cl-C6H5)Cr(CO)-j] shows an AB signal with 2H coupling for the CH2 group due to cryptoclastic diastereotopism. The 13C NMR spectrum was also recordeda4I3 NOE measurements have been made o n [ [ q6-HN[ CMe=C(C02Et)]2CHC6H5 ]Cr(CO)3].414 Linear

relationships have been found between oxidation potentials, carbonyl force constants and 6(I3CO) for

63 [(q6-arene)Cr(CO)3] complexes.415 Metal-side chain interactions in Cr(C0)3 complexes of phenyl acetylenes have been studied using 13C and 29Si chemical shifts.416 J(19F13C) has been determined

f o r the carbonyls in [(q6-2-Me-6-F-C6H3-C6H3-2-Me-6-F)Cr(CO)3] and [(q6- 1 , l o - F ~ -

phenanthrene)Cr(C0)3].417 The syn-eclipsed and anri-eclipsed conformer populations of the Cr(C0)3

3 9 1 J.L. Hubbard and W.K. McVicar, Inorg. Chem., 1992,31,910. 392 A.M. Martins, M.J. Calhorda, C.C. Romso, C. Vdlkl, P. Kiprof, and A.C. Fi1ippou.J. Organomel. Chem., 1992,

393 J.C. Green, M.L.H. Green, J.T. James, P.C. Konidaris, G.H. Maunder, and P. Mountford, J. Chem. SOC., Chem.

394 S . Takagi, Y. Kato, H. Furuta, S. Onaka, and T.K. Miyamoto, J. Organomel. Chem., 1992,429,287. 395 H. Lang, M. Leise, and L. Zsolnai, Polyhedron, 1992, 11, 1281. 396 U.-A. Hirth, W. Malisch, and H. Kab, J. Organomel. Chem., 1992,439, C20. 397 V. Riera, M.A. Ruiz, and F. Villafafie, Organomelallics, 1992, 11, 2854. 398 W. Ziegler, D. Wormsbacher, and U. Behrens, J. Organomet. Chem., 1992,431, C11. 399 H. Pfister and W. Malisch, J. Organomel. Chem.. 1992,439, C11. 400 M.L.H. Green, P.C. Konidaris, P. Mounford, and S.J. Simpson, J. Chem. SOC., Chem. Commun., 1992, 256. 401 P. Bematis, R.C. Haltiwanger, and M.R. DuBois, Organomerallics, 1992, 11, 2435. 402 F. Abugideiri, M.A. Kelland, R. Poli, and A.L. Rheingold, Organomefallics, 1992, 11, 1303. 403 T.-F. Wang, T.-Y. Lee, J.-W. Chou, and C.-W. Ong , J . Organomet. Chem., 1992,423, 31. 404 T.J. Duckworth. M.J. Mays, G . Conole, and M. McPartlin, J. Organomel. Chem., 1992, 439, 327. 405 M.J. Doyle, T.J. Duckworth, L. ManojloviE-Muir, M.J. Mays, P.R. Raithby, and F.J. Robertson, J. Chem. Soc..

406 H. Brunner, R. GraBI, W. Meier, J. Wachter, B. Nuber, and M.L. Ziegler, J. Organomer. Chem.. 1992,434.63. 407 C.P. Gibson, D.S. Bern, S.B. Falloon, T.K. Hitchens, and J.E. Cortopassi, Organomerallics, 1992, 11, 1742. 408 T.T. Chin, P. Legzdins, J. Trotter, and V.C. Yee, Organomerallics, 1992, 11, 913. 409 M.L.H. Green and D.K. Ng, J. Chem. SOC., Chem. Commun., 1992, 11 16. 410 W. Malisch, K. Hindahl, and R. Schemm, Chem. Ber., 1992, 125, 2027. 411 Q. Feng, M. Ferrer, M.L.H. Green, P. Mountford, and V.S.B. Mtetwa, J. Chem. Soc., Dalton Trans.. 1992, 1205. 4 1 2 C.E. Housecrofi, D.M. Matthews, A.L. Rheingold, and X. Song, J. Chem. Soc., Dalfon Trans.. 1992, 2855. 4 1 3 A. Restelli and J.S. Siegel, J. Am. Chern. SOC. , 1992, 114, 1091. 4 1 4 T.L. Hubler, S.B. Meikrantz, T.E. Bitterwold, N.R. N a d e , D.J. Triggle, and Y.W. Kwon, J. Med. Chem., 1992,

415 A.D. Hunter, V. Mozol, and S.D. Tsai, Organomelallics, 1992, 11, 2251. 416 J. Szewczyk and A. Gryff-Keller, J. Organomer. Chem., 1992.424.41. 417 P. Szczecinski and K. Wisniewski, J. Organomel. Chem., 1992,423, C13.

423, 367.

Commun., 1992, 1361.

Dalton Trans., 1992,2703.

35, 1165 (Chem. Absrr., 1991, 116, 151 936).

Page 20: Nmr

20 Spectroscopic Properties of Inorganic and Organometallic Compounds

tripod in several fluorobenzene-Cr(C0)g complexes have been studied using J ( 19F13C).418 A statistical prediction of the 19F NMR chemical shifts of fluoro-substituted arene chromium mcarbonyl

complexes has been published.419 Subsequently, the analysis was refined.420 NMR data have also been reported €or [ (PhC(NSiMe3)2)Cr], (29Si)$21 (33), (13C)P22 [ ( O C ) ~ C ~ ( T @ C ~ H ~ P P ~ ~ C H ~ C H ~ - CH2PPh2)Fe(q5-CsH5)(C0)2J2+, (13C),423 [ ((OC)2Ni(Ph2PC6H4-q6-PPh2)2Ni(C0)2) Cr l ,

( 13C),424 [ (q6-C6HsCHCH2)Cr( CO) 31, ( 13C),425 [ (q6- arene)Cr( CO)-j], ( l3C) ,426 [ (OC)3 Cr(q 6-

indcn y l- C7H7-q6)Mo( CO) 31, ( 13C),427 [ (OC)3Cr ( q 6-C6H5C(o) ) M nL( CO)41, ( I C),428 [ { (q 5- C S H ~ M ~ ) F ~ ( C O ) ~ C ~ H ~ - ~ ~ ] Cr(CO)3], (13C)$29 [ (OChCr (r16-2,6-C~oH6[(C~H4-T15)Fe(r15- C5H5) ]2}], (13C),430 [ ( N ( C H ~ C H ~ N = C H C ~ H ~ - V ~ [ Cr(CO)3] -4-CH=NCH2CH2)3N ) Cu2I2+,

(13C),431 [Au(PPh3)(p-q I:q6-FC6H4)Cr(CO)3], (13C),432 [($-naphthalene)2Mo], ( 13C),433 and

[ ($-C~H~MOI(R~PCH~CH~PR~)] , ( 13C).434

,---- &R .-*A

\ / Ci(C0)3

(33) Hahn-echo extended pulse sequences have been used to determine lJ(31P15N) and the one bond

isotope shift of 3IP due to 14N/15N in [(OC)5M( B u ~ P ( N S N ) P R I R ~ M ( C O ) ~ ] , M = Cr, Mo, W. The

31P CP/MAS NMR spectra were also reported.435 The 95Mo chemical shifts of 28 molybdenum

carbonyl complexes of isonimles and amines have been reported. A correlation was found between

418 419

420 421

422 423

424 425 426

427 428 429

430 43 1 432 433

434

435

P. Szczecinski, J. Organomel. Chem., 1992,423,23. B. Armstrong. A. Grier, J.B. Hamilton, H. Khuu, C.A.L. Mahaffy, J. Rawlings, and J.R. Nanney, lnorg. Chim. Acta, 1992, 191, 189. J.R. Nanney and C.A.L. Mahaffy. Inorg. Chim. Acta, 1992, 201, 55 . J.K. Buijunk, M. Noltemeyer, and F.T. Edelmann, Z. Naturforsch., B, 1991,46, 1328 (Chem. Absfr., 1992, 116, 33 249). K. Chaffee, J.B. Sheridan, and A. Aistars, Organomerallics, 1992, 11, 18. D.A. Brown, J. Bums, I. El-Gamati, W.K. Glass, K. Kreddan, M. Salama, D. Cunningham, T. Higgins, and P. McArdle, J. Chem. SOC., Chem. Commun., 1992, 701. C. Elschenbroich, J. Sebbach, B. Metz, and G. Heikenfeld, J. Organomel. Chem., 1992,426, 173. T.E. Bitterwolf and X. Dai, J . Organomel. Chem.. 1992, 440, 103. T.R. Baumberger and N.F. Woolsey, J. Polym. Sci., Part A: Polym. Chem., 1992, 30. 1717 (Chem. Absrr., 1991, 117, 70 463); J.A. Morley and N.F. Woolsey, J. Org. Chem., 1992, 57, 6487; H.-G. Schmalz, B. Millies, J.W. Bats, and G. Durner, Angew. Chem., Int. Ed. Engl., 1992, 31, 631; J. Aubk, J.A. Heppert, M.L. Milligan, M.J. Smilh. and P. Zenk, J . Org. Chem., 1992, 57, 3563; J. Schulz, M. Nieger, and F. Vogtle, J . Chem. SOC., Perkin Trans. 2 , 1992,2095; A. Ceccon. A. Gambaro, F. Manoli, A. Venzo. P. Ganis, D. Kuck, and G. Valle. J. Chem. SOC. Perkin Trans. 2, 1992, 1111; J. Schulz, S. Bartram, M. Nieger, and F. Vogtle, Chem. Eer.. 1992, 125, 2553. J. Breirnair, M. Wieser. and W. Beck, J. Organomer. Chem., 1992,441.429. S. Lotz, M. Schindehutte, and P.H. van Rooyen, Organometallics, 1992, 11.629. J. Li, A.D. Hunter, R. McDonald, B.D. Santarsiero, S.G. Bott, and J.L. Atwood. Organometallics. 1992, 11, 3050. A.D. Hunter, D. Ristic-Petrovic, and J.L. McLernon. Organomerallics, 1992, 11.864. M.-T. Youinou, J. Suffert. and R. Ziessel, Angew. Chem., Int. Ed. Engl., 1992, 31. 775. P.H. van Rooyen, M. Schindehutte, and S. Lotz, Organometallics, 1992, 11, 1104. N.P.D. Thi. S. Spichiger. P. Paglia, G. Bernardinelli. E.P. Kiindig, and P.L. Timms, Hefv. Chim. Acra, 1992, 75, 2593. M.L.H. Green, D.K.P. Ng, and R.C. Tovey, J. Chem. SOC., Chem. Commun., 1992, 918. B. Wrackmeyer, 8. Kupte, S.M. Frank, S. Gerstmann, and M. Herberhold, Phosphorus. Sulfur. Silicon, 1992.69, 179.

Page 21: Nmr

Nuclear Magnetic Resonance Spectroscopy 21

the 95Mo chemical shifts and ligand x-acceptor ability was found.436 T h e 13C and 1 7 0 Ti values for the carbonyl ligands in [WL(CO)5] have been measured and the 1 7 0 quadrupole coupling constant

determined which has permitted the assessment of the magnitude of the CO ~ b a c k b o n d i n g . ~ ~ ~ NMR data have also been reported for [CH~(CH~CM~~)~NBC~(CO)S], ("B, 13C),438 [MeC(CH2NC)n-

{ C H 2 N C C r ( C 0 ) 5 ) 3-n], ( 13C),439 [ ( 0 C ) s C r C N CHF21, ( 3C),440 [ ( 0 C ) s C r C N CFClCF2C11,

( 1 3 C l U 1 [Zn ( N C W ( C 0 ) s ) 412-, ( 13C),442 (34), (13C),443 [(FsC2)2PCH2CH2P(C2F5)2Cr(C0)5I1 (13C),444 [(OC)sMP(v 1-C~Me5)=PC6H2But3-2,4,6], (13C),445 (33, (13C),446 [ { (OC)sCr}2(P4)Pt-

(PPh3)21, (195Pt),447 [Crq(C0)20(v22-~2-Te3)l2-, (125Te),448 [ (2-Br-4,5-Me2C5H2P)nM~(cO)6-n], (n

= 1 or 2; 13C),449 [ W ( C O ) S ( N C C H ~ C O ~ H ) I , (13C).450 [(OC)5WN(Ph)N(Ph)=C(OMe)R], ('3C,

15N),451 [(OC)sW [PH(menthyl ) (CH2Pr i ) ) ] , (13C),452 [(OC)5W { P(Me)CH2CHPh}], (13C),453

[(OC)5WP(CH=CH2)CH2CH2], ( 13C),454 (36), (13C),455 [Ph2(9-anthracyl)PW(CO)5], ( 13C),456 [ ( ( 0 C ) s W ) 2 ( P h 2 P C r C C r C P P h 2 ) ] , (13C),457 [ ( O C ) 5 W S ( H ) ( P h ) P R 3 ] , (13C),458 a n d

- -

(34) (35) (36) 95Mo chemical shifts have been determined for [Mo(CO)4(piperidine)2+Ln], L = substituted

pyridine, and have been found to correlate with the PKa values of the p y r i d i n e ~ . ~ ~ The I3C chemical

shifts of CO of [Mo(C0)4{ P(OMe)20)2SiR1R2] and [Mn(C0)3Br( P(OMe)20)2SiR1R2] correlate

436 C.A. Merlic and B. Adams, J. Organomet. Chem., 1992,431, 313. 437 S.P. Wang, M.G. Richmond, and M. Schwartz, J. Am. Chem. SOC., 1992, 114,7595. 438 D. Dou, G.L. Wood, E. Duesler, R.T. Paine, and H. Nllth, Inorg. Chem., 1992,31, 3756. 439 F.E. Hahn and M. Tamm, Chem. Ber., 1992, 125, 119. 440 D. Lentz and D. Preugschat, J. Organomet. Chem., 1992,436, 185. 441 D. Lentz and D. Preugschat, J. Chem. Soc.. Chem. Commun., 1992, 1523. 442 M. Fritz, D. Rieger. E. BL, G. Beck, J. Fuchs, G. Holzmann. and W.P. Fehlhammer. Inorg. Chim. Acta, 1992,

443 A. Zschunke, C. Mugge, M. Von Lllwis, F. Krech, L. Weber, H. Schumann, and H.G. Stammler, Z . Anorg. AIIg.

444 M. Brookhart, W. Chandler, R.J. Kessler, Y. Liu. N.J. Pienta, C.C. Santini, C. Hall, R.N. Perutz, and J.A.

445 P. Jutzi, U. Meyer. S. Opiela. B. Neumann, and H.-G. Stammler, J. Organomet. Chem.. 1992.439, 279. 446 L. Weber, R. Kirchhoff, H.-G. Stammler, and B. Neurnann, Chem. Ber.. 1992. 125, 1553. 447 M. Scheer, M. Dargatz, and A. Rufirlska, J. Organomer. Chem., 1992,440, 327. 448 L.C. Roof, W.T. Pennington, and J.W. Kolis. Inorg. Chem., 1992.31, 2056. 449 P. Le Floch, D. Carmichael, L. Ricard, F. Mathey, A. Jutland, and C. Amatore, Organornelallics, 1992, 11, 2475. 450 DJ. Darensbourg. E.V. Atnip, and J.H. Reibenspies, Inorg. Chem., 1992.31, 4475. 4 5 1 C.T. Maxey, H.F. Sleiman, S.T. Massey, and L. McElwee-White, J. Am. Chem. SOC.. 1992, 114, 5153. 452 R. de Vaumas, A. Marinetti, L. Ricard, and F. Mathey, J. Am. Chem. SOC., 1992, 114, 261. 453 J.-T. Hung and K. Lammertsma, Organornetallics, 1992,11,4365. 454 S. Haber, P. Le Floch, and F. Mathey, J. Chem. Soc., Chem. Commun.. 1992, 1799. 455 N.H.T. Huy, S.A. Marinetti, L. Ricard, and F. Mathey, Organornetallics, 1992.11, 1438. 456 J. Wesemann, P.G. Jones, D. Schomburg, L. Heuer, and R. Schmutzler, Chem. Ber., 1992, 125, 2187. 457 C.J. Adams, M.I. Bruce, E. Horn, and E.R.T. Tiekink, J. Chem. Soc., Dalton Trans., 1992, 1157. 458 H. Fischer, K.H. Fluck, and C. Troll, Chem. Ber., 1992. 125, 2675. 459 H. Fischer, K. Treier. and U. Gerbing, J. Organomet. Chem., 1992,433, 127. 460 J. Malito. E.C. Alyea, and R.A. Gossage, Specrrochim. Acia. Part A , 1992.48.873.

198-200, 513.

Chem., 1992, 610, 127.

Timney, J. Am. Chem. SOC.. 1992, 114, 3802.

Page 22: Nmr

22 Spectroscopic Properties of inorganic and Organometall ic Compounds

with the electron releasing properties of R1 and R2.461 NMR data have also been reported for (37), (13C),462 [M(C0)4(C6H402PNMeCH2CH2NMe2-N,P)], ( M = Cr, Mo; 13C),463 [RINPNRILi] ,

[ { R1N=PN(R2)P=NR1 ) M ( C 0 ) 4 ] , (M = Cr, Mo; R1 = 2,4,6-Me$gH~; 7Li, 13C),464 [M(C0)4-

( Ph2PCH2C(But)=NN=C(But)CH2PPh2-P,P)], (M = 0, Mo, W; 13C)$65 [ M o ( P ~ ~ P C ~ O H ~ ~ N H - - N,P)(C0)4], ( 13C),466 cis- [ M o ( C 0 ) 4 ( R POCH2CMe2CH20)2], (13C, 95Mo),467 [ (OC)4Mo( Ph2P-

CH~)~CHCH(CH~PP~~)~MO(CO)~I, (13C),468 [ (Mo(C0)4[P(OMe)31) ~ I c ~ - [ P ~ N P ( O C H ~ C F ~ ) ~ ~ ) I, ( 13C),469 c is - [ ( R 3 P ) ( O C ) 4 W = N N M e z ] , (13C, 15N),470 [ ( O C ) 4 ( P h 3 P ) W C N C 6 I i 4 - 1,4-

CNW(CO>2(PEt3)2Br21, (13C, 14N).471 (381, (13C),472 and [ (Me0)3P(OC)4W[ Os(CO)3(PMej) 121,

(1 3C) .473 R

fJN>crF0)4 N

Me2

. . .

Ph Ph

(37) (38) The nature of the phosphorus ligand in fac-[Mo(C0)3L3] has been probed by 95Mo NMR

spec t ro~copy.4~4 NMR data have also been reported ~O~~~C-[HC(CH~CH~CH~NC)~M(C~)~], ( M =

Cr, W; 13C),475 (39), (M = Cr, Mo; 29Si),476 (40), (13C).477 [Mo(CO)3(Pri2NP0)4Mo(CO)2-

W(CO)3] , (13C),480 [ H B ( ~ , ~ - M ~ ~ P Z ) ~ W ( C O ) ~ ] , (13C),481 [Mo(C0)3(E,Z-Ph2PCH2CBut=N- (PPh3)], ( 13C),478 [Mo4( p3-OH)4(CO) 1 214-, ( 9 5 M 0 ) , ~ ~ ’ fa^-[ N ( CH2CH2CH2OC6H4-3-CN)3-

461 V. Sum. M.T. Patel, T.P. Kee, and M. Thornton-Pett, Polyhedron, 1992,ll. 1743. 462 K.H. mtz, A. Rau, and K. Harms. J. Organomel. Chem., 1992.439.263. 463 T. Kaukorat, A. Fischer, P.G. Jones, and R. Schmutzler, Chem. Ber., 1992, 125, 301. 464 R. Detsch, E. Niecke, M. Nieger, and F. Reichert, Chem. Ber., 1992, 125, 321. 465 S.D. Perera, B.L. Shaw, and M. Thornton-Pett, J. Chem. Soc., Dalton Trans., 1992, 1469. 466 S.D. Perera, B.L. Shaw, and M. Thomton-Pett, J. Organomel. Chem., 1992,428.59. 467 G.M. Gray and W. Watt, J. Organomei. Chem., 1992,434, 181. 468 M.R. Mason, C.M. Duff, L.L. Miller, R.A. Jacobson, and J.G. Verkade, Inorg. Chem., 1992,31, 2746. 469 V.S. Reddy, S.S. Krishnamurthy. and M. Nethaji, J. Organomet. Chem., 1992,438.99. 470 B.A. Amdtsen, T.K. Schoch, and L. McElwee-White,J. Am. Chem. SOC., 1992, 114, 7041. 471 D.S. Grubisha, J.S. Rommel, T.M. Lane, W.T. Tysoe, and D.W. Bennett, Inorg. Chem., 1992,31, 5022. 472 N. Maigrot, L. Ricard, C. Charrier, and F. Mathey, Angew. Chem., In[. Ed. Engl. , 1992, 31, 1031. 473 R.J. Batchelor, H.B. Davis, F.W.B. Einstein, V.J. Johnston, R.H. Jones, R.K. Pomeroy, and A.F. Ramos,

474 E.C. Alyea and S. Song, Inorg. Chem., 1992, 31, 4909. 475 F.E. Hahn and M. Tamm, Angew. Chem.. Int. Ed. Engl., 1992,31, 1212. 476 M. Driess, M. Reisgys, and H. F’ritzkow, Angew. Chem., Int. Ed. Engl., 1992.31, 1510. 477 M.R. Mason and J.G. Verkade, Organometallics, 1992, 11, 1514. 478 H. Yang, E.H. Wong, J.P. Jasinski, R.Y. Pozniakov, and R. Woudenberg, Organometallics, 1992, 11, 1579. 479 A. Beyerholm, M. Brorson, M. Minelli, and L.K. Skov, Inorg. Chem., 1992.31, 3672. 480 F.E. Hahn and M. Tamm, Organornetallics, 1992, 11, 84. 481 C.C. Philipp, P.S. White, and J.L. Templeton, Inorg. Chem., 1992, 31, 3825.

Organometallics, 1992, 11, 3555.

Page 23: Nmr

Nuclear Magnetic Resonance Spectroscopy 23

N=CBuCH2PPh2)] , (13C),482 [(OC)~(M~~P)~MO(S~CHPM~~)]+, (13C),483 (41), (13C),484

rfrl!co)$.5.~s!3d21, (77Se),485 [W(oPh)(Co)2(No)(PMe3)21, (13c),486 [(OC)2(ON)(Me3P)2W-

OCHRICH=CRdI], ( 13C)>87 [W(CO)z(cl-S)W(S2CNEt2)2( SCNEt2)I [HB(3 .5-Me2pz)lI ( 3C)$88

[(Et2NCS2)2Mo(O)(CN)(OSiMeg)], (‘3C, 29Si)>89 [(~,~-Bu%C~H~-~,~-S~)~MO(CO)(PP~~)], (l3C)>90 [HB(~,~-M~~~Z)~W(CO)(CI)NC(O)M~], (13C),491 and [W(OCH2-2-Cs&N-CJ)(CO)-

(NO)(PMe3)2], (13C).492

NPr‘, I

Pri2N-,!,-?o~~-NPri2 I P-0

( W 3

( W 3 0’:- Mo(C0)2X2

X~(OC)~MO’ \NPri,

(41)

P-/si- / M L P

/ HPh/ PhHSi/ pl si

HPh (39) (40)

Two-dimensional 183W correlation spectroscopy has been applied to A-a-[ SiMo2W90341 lo- and the

magnitudes of 34183W183W) determined. The 51V chemical shifts and linewidths were & s c ~ s s e d . ~ 9 ~

Theoretical calculations of the 95Mo chemical shifts of [MoO4-nSnI2- have been rep0rted.49~ A 183W study has shown that [ (PhP(O)} 2Xn+W 11039](8-”)-, X = P, Si, possesses Cs symmetry in CH3CN or CHC13 and [ (PhP(O)] (PhP(O)(OH)}PWl 103914’ possesses C1 ~yrn rne t ry .~g~ NMR data have also

been reported for [HB(~,~-M~~~Z)~MO(NO)C~(NHC~H~-~-CH=CHCH=CM~CH=CHCH=CM~- CH=CHR)], (13C),496 trans-[MoCl(NCHMeC02Me)(dppe)2]+, (13C),497 [Mo( N(Ph)C(O)N-

(l3C),5O0 [MO2Cl2(tmeda)], (M = Mo, W; 13C),501 [Mo(NC6H3Pri2-2,6)2(OBu[)2], (13C),502

[ Mo( NC6H3Pri2-2,6)2C12( MeOCH2CH20Me)], ( 13C),So3 [ Mo2( NC6H4Me-4)2 [ S 2P(OEt)2 ] S -

C6H3Pri2-2,6-N,N] 2(OB ~‘)2] , ( 13C),498 [MoN(OPh)4], (I 3C),499 [CdMo02( S2CNEt2)3( OHz)],

482 S.D. Perera, B.L. Shaw, and M. Thornton-Pett, J. Chem. SOC., Dalton Trans., 1992, 1469. 483 A. Galindo, E. Gutibrrez-Puebla, A. Monge, M.A. Mulloz, A. Pastor, C. Ruiz. and E. Carmona, J. Chem. SOC..

484 M.M. Turnbull, C. Valdez. E.H. Wong, E.J. Gabe, and F.L. Lee, Inorg. Chem., 1992.31, 208. 485 S.C. O’Neal, W.T. Pennington, and J.W. Kolis, Inorg. Chem., 1992,31,888. 486 A.A.H. van der Zeijden, H.W. Bosch, and H. Berke, Organometallics, 1992,11.2051. 487 A.A.H. van der Zeijden, D. Veghini, and H. Berke, Inorg. Chem., 1992.31, 5106. 488 C.G. Young, M.A. Bruck, P.A. Wexler, M.D. Carducci, and J.H. Enemark.Inorg. Chem., 1992.31, 587. 489 H. Anoumanian, C. Corao, H. Krentzien, R. Lopez. and H. Teruel. J . Chem. Soc., Chem. Commun.. 1992.856. 490 D. Sellmann, F. Grasser, F. Knoch, and M. Moll, Inorg. Chim. Acra, 1992, 195.25. 491 P.J. Perez, L. Laun, P.S. White, M. Brookhard. and J.L. Templeton, J . Am. Chem. SOC.. 1992, 114, 7928. 492 A.A.H. van der Zeijden and H. Berke. Helv. Chim. Acta. 1992,75,513. 493 E. Cadot, R. Thouvenot, A. T e d , and G. Hew6 Inorg. Chem., 1992,31,4128. 494 Y. Sun, L. Zhu, X. You, and Y. Jiang. Theor. Chim. Acta, 1992, 82, 213 (Chem. Abstr., 1991, 116, 267 702). 495 G.-S. Kim, K.S. Hagen, and C.L. Hill, Inorg. Chem., 1992,31, 5316. 496 B.J. Coe, CJ . Jones, and J.A. McCleveny, Polyhedron, 1992,11,546. 497 D.L. Hughes, S.K. Ibrahim, C.J. Macdonald, H. Mohd. Ali, and C J . Pickett, J. Chem. Soc., Chem. Commun..

498 M. Jolly, J.P. Mitchell, and V.C. Gibson. J . Chem. Sac.. Dalton Trans., 1992, 1329. 499 S. Buth, S. Wocadlo, B. Neumueller, F. Weller, and K. Dehnicke, Z. Naturforsch.,E, 1992, 47, 706 (Chem.

500 T. Venkataraman and K.S. Nagaraja, Polyhedron, 1992.11, 185. 501 K. Dreisch, C. Andersson, and C. Stalhandske. Polyhedron, 1992.11.2143. 502 M. Jolly, J.P. Mitchell, and V.C. Gibson, J. Chem. SOC., Dalton Trans., 1992, 1331. 503 H.H. Fox, K.B. Yap, J. Robbins, S. Cai, and R.R. Schrock. Inorg. Chem., 1992.31, 2287.

Dalton Trans., 1992,2307.

1992, 1762.

Abstr., 1991, 117, 61 555).

Page 24: Nmr

24 Spectroscopic Properties of Inorganic and Organometall ic Compounds

(02CMe)(S NCHz)], ( 15N).504 [Mo(N0)2( S2C(jH4)21, ( 13C, 14N, 95Mo) ,505 [ (Et2NCS2)2Mo2(0)2-

( P - N C ~ H ~ S ) ~ ] , ('3C, l4N. 95M0),506 [ M O ~ O ~ ~ ( M O N C ~ H ~ M ~ - ~ ) ] ~ - , (13C),507 [Mw(NAr1)2-

( S2P( OEt )2 ) 2(p- S)(p.-02CR)( p- S N N Ar2)], ( 5N) ,508 [HB(3,5-Me2pz)3 W 02C11, (l 3C) ,509

[(C6H11)7Si709 { OW(NMe2)3)], ( l3C).5l0 [ W 4 ( lSNNMe2)( 15NHNMe2)]-, (13Q51 [ (THF)C14- W =NC6H4-4-N=W C14(THF)], (13C),512 [ W(O)(OSiMe2But)4( NCSHS)], ( 13C),5 [ W(NC1)-

C14(0PMe3)], ( 13C),514 [W2(0B Ut)6( NC( C6H4But-4)CMe2) 21, ( 3C),5 [W2(0CH2B ut)6-

( N C S H ~ ) ~ ] , (13C),516 [W(NPMe3)C12(PMe3)3]+, ( 3C),5 l7 fW(NCgH4Me-4) { S2P(OEt)2) S]4,

(15N),518 [W2(NMe2)(OCioH 19)5], ( 13Q519 [W2(0CH2Pri)6(dmpm)], (13C),520 [(p-WSe4>-

{ Cu(PMe2Ph)2)2], (77Se),521 cis-[Mo02(02-1,2-C&I3-3-CH=NPh)2], (13C),522 [M(O)2L2]2-, { M =

U, Mo. W; L = (42); 13C} ,523 [Mo2(OCMe2Et)6], (13C),524 [(Ph2Sn)2(p-OH)2(p-Mo04)2I2-, (170),525 S2P(OR1)2)2(S2CNR22)2l, (13c),526 [Co2(0H)4M010034(OH)6M060i819-, (170, 59C0, 95Mo),527 [SiV3Mo3040]7-. (51V),528 [ { (q5 -C~Mes)Rh )8(M012036)(MoO4)]~+, (13C),529

rrans-[M0(S)(CS4)2]~-, (13C),530 [WO{ S2C2(CN)2}2I2-, (13C),531 [W2( 1 ,lq-bi-2-naphtholate)2-

(OBut)2], (13C),532 [PTiWi 1040]~- , (183W),533 [SiWg037(Ga(OH2))3]7-, (183W),534 [H2SiW9A13-

504 E.K. Haub, J.F. Richardson, and M.E. Noble, Inorg. Chem.. 1992.31.4929. 505 D. Sellmann, F. Grasser, F. Knoch, and M. Moll, Z . Narurforsch., B . 1991.46, 1343 (Chem. Absrr., 1991, 116,

506 M. Minelli. R.L. Kuhlrnan. S.J. Shaffer, and M.Y. Chiang, Inorg. Chem., 1992.31, 3891. 507 Y. Du, A.L. Rheingold, and E.A. Maatta. J. Am. Chem. SOC., 1992. 114. 345 (Chem. Absrr., 1991, 116, 33

508 E.K. Haub, A.C. Lizano, and M.E. Noble, J. Am. Chem. Soc.. 1992. 114, 2218. 509 L.L. Blosch, A.S. Gamble, and J.M. Boncella, J. Mol. Catal., 1992, 76. 229. 510 M.H. Chisholm. T.A. Budzichowski, FJ. Feher, and J.W. Ziller, Polyhedron, 1992, 11, 1575. 511 S.G. Sakharov, S.A. Zarelua, Yu.V. Kokunov, and Yu.A. Buslaev, Inorg. Chem., 1992.31, 3302. 512 M. Liang and E.A. Maata, Inorg. Chem., 1992,31,953. 513 M.H. Chisholm, C.M. Cook, K. Folting, and W.E. Streib, Inorg. Chim. Acra, 1992. 198-200, 63. 514 J.D. Lichtenhan, J.W. Ziller, and N.M. Doheny, Inorg. Chem., 1992,31,4210. 515 M.D. Curtis, M.S. Hay, W.M. Butler, J. Kampf, A.L. Rheingold, and B.S. Haggerty, Organometallics, 1992, 11,

516 M.H. Chisholm, V.J. Johnston, 0. Eisenstein, and W.E. Streib, Angew. Chem., Int. Ed. Engl., 1992, 31, 896. 517 J.D. Lichtenhan, J.W. Ziller, and N.M. Doherty. Inorg. Chem., 1992,31, 2893. 518 M.L. Sampson, J.F. Richardson, and M.E. Noble, Inorg. Chem., 1992.31, 2726. 519 I.P. Parkin and K. Folting, J . Chem. SOC., Dalton Trans., 1992, 2343. 520 M.H. Chisholm, V J . Johnston, and W.E. Streib, Inorg. Chem., 1992,31. 4081. 521 C.C. Christuk, M.A. Ansari, and J.A. Ibers, Inorg. Chem., 1992,31,4365. 522 A.M. El-Hendawy, E.G. El-Kourashy, and M.M. Shanab, Polyhedron, 1992.11, 523. 523 W.P. Griffith and S.I. Mostafa, Polyhedron, 1992. 11,871. 524 T.M. Gilbert, A.M. Landes, and R.D. Rogers, Inorg. Chem., 1992,31, 3438. 525 B. Krebs, B. Lettmann, H. Pohlrnann, and R. Froehlich, Z . Kristallogr., 1991, 196, 231 (Chem. Abstr., 1991,

526 R. Ratnani, G. Srivastava, and R.C. Mehrotra, Transition Met. Chem. (London), 1992, 17, 137 (Chem. Absrr.,

527 M.A. Fedotov, L.O. Gavrilova, I.V. Tat'yanina, and E.A. Torchenkova, Zh. Neorg. Khim., 1991, 36, 194 (Chem.

528 E. Wang, Y. Shan, Z. Liu, C. Hu, and J. Liu, Gaodeng Xuexiao Huaxue Xuebao, 1991, 12, 1012 (Chem. Absrr.,

529 H.K. Chae, W.G. Klernperer, D.E.P. Loyo. V.W. Day, and T.A. Eberspacher, Inorg. Chem., 1992,31, 3187. 530 D. Coucouvanis. M.E. Draganjac, S.M. Koo, A. Toupadakis, and A.I. Hadjikyriacou, Inorg. Chem.. 1992, 31,

5 3 1 S. Sarkar and S.K. Das, Proc. - Indian Acad. Sci., Chem. Sci., 1992, 104, 533 (Chem. Absrr., 1991, 117, 162

532 S.D. Dotz. N.W. Eilerts, and J.H. Heppert, Angew. Chem., Inr. Ed. Engl., 1992,31,66. 533 T. Yamase, T. Ozeki, and S. Motomura, Bulf. Chem. SOC. Jpn., 1992, 65, 1453. 534 J. Liu, F. Ortkga, P. Sethuraman. D.E. Katsoulis, C.E. Costello, and M.T. Pope, J. Chem. Soc., Dalton Trans.,

14 837).

267).

2884.

116, 41 755).

1991, 116. 206 674).

Abstr., 1991, 116, 11 788).

1991, 116, 119 673).

1186.

937).

1992, 1901.

Page 25: Nmr

Nuclear Magnetic Resonance Spectroscopy 25

- O m -0 / 0

Complexes of Group 7.---1H T i measurements have been used to formulate [MnHg(dmpe)2] as

a (H2) complex.537 T I measurements on [ReH7{P(CgHqX-4)3) 21 have shown that T1 values

decrease with increasing electron withdrawing ability of X, and were interpreted in terms of changes in

H-H d i s t a n ~ e s . 5 ~ ~ There is a Ti minimum for the hydride signal of [ReH5(PhzPCHzCH2)NPh]

corresponding to a classical structure, while [ReH6(Ph2PCH2CHz)NPh]+ is a H2 complex.539

Rhenium relaxation contributes to the hydride and 31P relaxation of [HRe(C0)4(PPh3)] and this has

been interpreted in terms of scalar c0upling.5~0 NMR data have also been reported for [Mn2(p-H)(p2-

r11,q2-CR=CH2)(Co)6(p-dppm)], (13C),541 [HTc(CO)(dppe)2], (99Tc),542 [ReH3(R02CCH=CH-

C02R) (PhP(CH2CH2CH2PCy2h 1 I, (13C),543 [(r15-C4H4S)ReH2(PPh3)21, (33C),544 [(Ph3P)2(OC)-

Re(p-H)Ru(NCMe)(PPh3)21, (13C),545 [Re2(C0)7(pL-CH2CNMe2)(~-H)], ( 13C),546fac-[ Mn(CH3)-

(CO)g(bipy)], (13C),547 [C9H19Mn(C0)5]. (13C),548 (43), ( l 'B, 13C),549 [(OC)4MnC6H3-2-C(O)-

Me-4-C(O)Me], ( 13C),550 (44). (13C),551 (4% (13C),552 [(q5-C&R1)Mn(C0)2 ( C ( 0 ) R 2 ) 1, (13C),553fuc-[M(C0)3(dppe)(C02R)], (M = Mn, Re; 13C),554 [(q5-CsH5)(OC)2Mn=CPh]+, (13C),555 (46), (M = Mn, Re; 13C),556 [(T~~-C~M~~)(OC)(P~~P)M~=CROM~], (13C),557 [ (q5-

- 535 Y. Chen, L. Qu, and J. Peng, Huaxue Xuebao, 1991,49,889 (Chem. Absrr., 1991,117, 38 980). 536 Y. Jeannin, G. Hervt, and A. Proust, lnorg. Chim. Acra, 1992, 198-200. 319. 537 C. Perthuisot, M, Fan, and W.D. Jones, Organomerallics, 1992, 11, 3622. 538 D. Michos, X.L. Luo, J.A.K. Howard, and R.H. Crabtree. lnorg. Chem., 1992,31, 3914. 539 D. Michos, X.L. Luo, and R.H. Crabtree, J. Chem. SOC., Dalron Trans., 1992, 1735. 540 T. Beringhelli. G. DAlfonso, M. Freni, and A.P. Minoja, Inorg. Chem., 1992.31, 848. 541 F.J.G. Alonso, V. Riera. M.A. Ruiz. A. Tiripicchio, and M.T. Camellini, Organometallics, 1992, 11, 370. 54* L. Kaden, M. Findeisen. B. Lorenz, K. Schmidt, and M. Wahren, Inorg. Chim. Acra, 1992, 193. 213. 543 Y. Kim, J. Gallucci, and A. Wojcicki, Organometallics, 1992, 11, 1963. 544 G.P. Rosini and W.D. Jones, J . Am. Chem. SOC., 1992, 114, 10767. 545 Z. He, D. Neibecker, N. Lugan, and R. Mathieu, Organometallics, 1992, 11,817. 546 R.D. Adams, G. Chen, Y. Chi, W. Wu, and J. Yin, Organomelallics, 1992, 11, 1480. 547 F.J.G. Alonso, A. Llamazares, V. Riera, M. Vivanco, S.G. Granda, and M.R. Diaz, Organomerallics, 1992,11,

548 J.-A.M. Andersen and J.R. Moss, J . Organomet. Chem., 1992,439, 025. 549 S.W.Helm, G. Linti, H. Nbth, S. Channareddy, and P. Hofmann, Chem. Ber.. 1992, 125.73. 550 N.P. Robinson, L. Main, and B.K. Nicholson, J. Organomer. Chem., 1992,430, 79. 5 5 1 R.C. Cambie, M.R. Metzler, C.E.F. Rickard, P.S. Rutledge, and P.D. Woodgate, J. Organomet. Chem., 1992,

552 R.C. Cambie, M.R. Metzler, C.E.F. Rickard, P.S. Rutledge, and P.D. Woodgate, J. Organornet. Chem.. 1992,

553 J. Sheridan, R.S. Padda, K. Chaffee, C. Wang, Y. Huang, and R. Lalancette, J. Chem. SOC., Dalton Trans., 1992,

554 S.K. Mandal, D.M. Ho, and M. Ofchin, Polyhedron, 1992, 11,2055. 5 5 5 H. Fischer and C. Troll, J. Organomet. Chem., 1992,427, 77. 5 5 6 C. Kelly, L.A. Mercando, M.R. Terry, N. Lugan, G.L. Geoffroy, 2. Xu, and A.L. Rheingold, Angew. Chem., Int.

557 C. Kelly, N. Lugan, M.R. Terry, G.L. Geoffroy, B.S. Haggerty. and A.L. Rheingold. J. Am. Chem. SOC., 1992,

2826.

425, 59.

426, 213.

1539.

Ed. Engl., 1992, 31, 1053.

114, 6735.

Page 26: Nmr

26 Spectroscopic Properties of Inorganic and Organometallic Compounds

CsH4Me)(OC)2Mn=CPhOMe], (13C),558 [(p5-In)( Mn(C0)4}512-, (13C),559 [(q1-C5H5jTc(=N-

C6H3Pri2-2,6)3], ( 13C),560 [RRe03], (l3C, I7O) ,56 [ (q5-CsH5) Re( NO) (PPh 3)( p-CH2)3(Ph3P) - (ON)Re($-CgHg)], ( 3C),562 [ (q5-C5H5)(OC)2Re( p-CH2)2Pt(PPh3)21, (2H, 3C) ?63 fac- [(OC)3-

(diar s )Re( 0)( CO)CH=CHC02Me], ( 3C) ?64 [ (OC)2( PR3)2 deO=CB u$=CHPh], ( C) ? 65 [ (OC) 3 -

@~~P)R~NH=CHNRC=CHCF~H~X-~] , ( 13C),566 [(~~-C~M~~CH~PM~~)R~(CO)~C~JF~I, (13C),567

fac- [Re(CO)3(dppe)COzH], ( l3C) ?68 and [ Re(=CR l)( =CHR l)(0R2)21, ( 3C).569

-

(43) Me0 Me

I t

(44)

(45 1 (46) 13C and 170 T1 measurements have been made for [ ( ~ ~ - C S H ~ ) R ~ ( C O ) ~ ] as a function of

temperature. The major 13C T1 contribution is scalar coupling, and for 170 is quadruple coupling.570

NMR data have also been reported for [(q5-CsHs)Mn(C0)2(q2-C7H10)1. (l 3C),571 [(q5-C5H5)-

Mn($-Ph2PC=C=NWMe-4)(C0)2], ( l3C),S7* [ (q5-C5H5)Re(q2-alkene)(NO)(PPh3)]+, ( 3C) ,573

[(q5-C5H~>Re(q2-allene)(NO)(PPh3)]+, (13C),574 [(q5-C5H5)Re(q2-HC=CR)(NO)(PPh3)]+,

5 5 8 B.L. Baker, M. Cazonove, M. Sabat, and M.G. Finn, Organornetallics, 1992,ll. 1759. 5 5 9 M. Schollenberger, B. Nuber, and M.L. Ziegler, Angew. Chern., Int. Ed. Engl., 1992, 31, 350. 560 T.K. Burrell and J.C. Bryan, Organometallics, 1992.11, 3501. 5 6 1 C. de M6ric de Bellefon, W.A. Herrmann, P. Kiprof, and C.R. Whitaker, Organometallics, 1992.11, 1072. 562 C. Roger, T.-S. Peng, and J.A. Gladysz, J. Organomet. Chem., 1992,439, 163. 5 6 3 C.P. Casey, Y. Wang, L.M. Petrovich, T.L. Underiner, P.N. Hazin, and J.M. Desper, Inorg. Chirn. Acta, 1992,

564 R.D. Simpson and R.G. Bergman, Organometallics, 1992, 11,4306. 5 6 5 S. Ferracin, H.-U. Hund. H.W. Bosch, E. Lippmann, W. Beck, and H. Berke, Hefv. Chim. Acta, 1992,75, 1305. 566 L.L. Padolik, J.J. Alexander, and D.M. Ho, J. Organomet. Chem., 1992.440, 153. 567 A.H. Klahn, M.H. Moore, and R.N. Perutz, J. Chem. Soc., Chem. Commun., 1992, 1699. 568 S.K. Mandal, D.M. Ho, and M. Orchin, J. Organomet. Chem., 1992,439, 53. 569 R. Toreki, R.R. Schrock, and W.M. Davis, J. Am. Chem. Soc., 1992, 114, 3367. 570 P. Yuan, M.G. Richmond, and M. Schwartz, J. Organornet. Chern.. 1992,424,331. 571 H.-J. Chiang and C.-S. Liu, J. Organomet. Chern., 1992,438, C9. 572 W. Ziegler and U. Behrens, J. Organomet. Chem., 1992,423, C16. 573 T.-S. Peng, A.M. Arif, and J.A. Gladysz, Helv. Chim. Acta, 1992, 75, 442. 574 J. Pu, T.-S. Peng, A.M. Arif, and J.A. Gladysz, Organometallics, 1992, 11, 3232.

198-200, 557.

Page 27: Nmr

Nuclear Magnetic Resonance Spectroscopy 27

(13C),575 [Mn(Ph2PCH2-q3-CHCHCHMe)(C0)3], (13C),576 [(q5-C5Me5)(OC)2Re(q3-CH2C=C- Me)]+, (13C),577 [(q4-CloHg)(q6-C6H5Ph)Mn]-, (13C),578 [Mn ( q 4 - C 6 M e 4 ( C H 2 ) 2 ) (C0)31- ,

(13C)?79 [(r15-C6H6CsH~)Mn(CO)3], (13C),5s0 I((q5-C5Hs>Mn(CO>2)2Sl, (13c),581 [(0C>3Mn(q5-

C5QC=C)Fe(C0)2(qs-C5H4CH=CHPh)], (13C),582 [ (OH)RC( (C5H4-q5)M(C0)3 121, ( M = Mn,

Re; 13C),583 [(q5-C5&Me)2Mn2(CO)2(p-COSiHBu[)2], (13C, 29Si),584 [(q5-C5H4CR1=CR2R3)-

M n ( C O ) 31, (1 3 C ) , 5 8 5 [ (OC)3M n { q 5 - C g H 4 C H = C HC(OC)~COCO(CO)~CC~&-~~) Re(C0)3],

( 13C) ,586 [ ( q 5 4 3 S i M e 2 H ) ~ ) Mn (CO)3], ( 13C) ,5g7 [ ( ~)5-C5C13- 1 ,3- (S H)2 ) Mn ( C 0 ) 3 I, ( 3C) ,588

[ ( ~ ~ - C S H ~ ) R ~ F ( N O ) ( P P ~ ~ ) ] , (13C),589 [(q5-C5H5)Re(O=CR1 R2)(NO)(PPh3)1+, ( l 3C),590 [(q5-

C5Me5)Re(OR)(NO)(PPh3)], ( 13C),591 [(q6-C6Me6)Mn(C0)2ScHscPh3]+, ( 3C),592 [2-MeC&-

S02C(CN)CNRe(CO)5], (13C, 14N),593 [Mn(C0)4(dimethyl maleate)]-, (13C),594 [Tc(C0)4S2NEt21,

( 9 9 T ~ ) , ~ 9 5 [ R e B r ( C 0 ) 4 ( CNPr") ] , ( 13C),596 [(OC)3 { ( M e 3 S i 0 ) 2 M e S i ) Fe(~-dppm)Re(C0)4] ,

(13C),597 [Re2(CO)8L1L2], (13C),598 (47), (13C),599 [(OC)3Mn(dppm)2(p-S)Rh(CO)], (l3CL6Oo

[Mn2(p-q1,q2-N=CMe)(C0)6(p-dppm)], (13C),601 [Tc(C0)3Cl(PPh3)2], (99T~),602 [Tc(C0)3(Ph-P-

glycopyranoside)Br], ( 9 9 T ~ ) , ~ O 3 [(Ph3P)(OC)3Re02C=Fe(q5-C5H5)(CO)(PPh3)l, (13C),604fuc-

- -

575 J.A. Ramsden, W. Weng, and J.A. Gladysz, Organomefallics, 1992, 11, 3635; J.A. Ramsden, T.4. Peng, and

576 M.A. Paz-Sandoval, P.J. Saavedra, N.Z. Villarreal, M.J.R. Hoz, P. Joseph-Nathan, R.D. Ernst, and A.M. Arif,

577 C.P. Casey and C.S. Yi, J. Am. Chem. Soc., 1992, 114, 6597. 578 K. Jonas, C.-C. Haselhoff, R. Goddard, and C. Kriiger, Inorg. Chim. Acfa, 1992, 198-200, 533. 579 J.W. Hull, jun., K.J. Roesselet, and J.W. Gladfelter, Organomefallics, 1992, 11, 3630. 580 T.-M. Chung and Y.K. Chung, Organomefallics, 1992, 11,2822. 5 8 1 G. Beuter, S. Drobnik, I.-P. Lorenz, and A, Lubik, Chem. Ber.. 1992, 125, 2363. 5 8 2 C. L o Sterzo, J. Chem. Soc., Dalton Trans., 1992, 1989. 583 N.M. Loim, A.G. Ginzburg. and M.V. Galakhov, Melalloorg. Khim.. 1991,4,969 (Chem. Absfr., 1991, 116,

584 H. Handwerker. H. Beruda, M. Kleine, and C. Zybill, Organomefallics, 1992, 11, 3542. 5 8 5 E.J. Miller, C.A. Weigelt, J.A. Serth, R. Rusyid, J. Brenner, L.A. Luck, and M. Godlewski, J. Organomef.

586 C. Lo Sterzo, G. Bandoli. and A. Dolmella, J. Chem. Soc., Dalfon Trans.. 1992, 697. 587 K. Siinkel and J. Hofmann, Organometallics, 1992, 11, 3923. 5 8 8 K. Siinkel and A. Blum, Chem. Ber., 1992, 125, 1605. 5 8 9 S.K. Agbossou, C. Roger, A. Igau, and J.A. Gladysz, Inorg. Chem., 1992,31,419. 590 G. Bnngmann, 0. Schupp, K. Peters, L. Walz, and H.G. von Schnering, J . Organomel. Chem., 1992, 438, 117;

591 F. Agbossou, J.A. Ramsden, Y.-H. Huang, A.M. Arif, and J.A. Gladysz, Organomefallics. 1992, 11,693. 592 J.L. Moler, D.P. Eyman, and L.M. Mallis, Inorg. Chem., 1992.31, 1816. 593 E. Fritsch. K. Polborn, K. Siinkel, W. Beck, H. Kohler, and L. Jager, Z. Anorg. Allg. Chem., 1992,617, 110. 594 L.L. Padolik, F. Ungvary, and A. Wojcicki, J. Organomef. Chem., 1992,424, 319. 5 9 5 B. Lorenz, M. Findeisen, and K. Schmidt, Isofopenpraxis, 1991.27, 266 (Chem. Abslr., 1991, 116, 14 754). 596 L.-C. Chen, M.-Y. Chen, J.-H. Chen, Y.-S. Wen, and K.-L. Lu, J. Organomef. Chem., 1992,425,99. 597 M. Knorr and P. Braunstein, Bull. SOC. Chim. Fr . , 1991, 129, 663. 598 W.L. Ingham and N.J. Coville, J. Organomef. Chem.. 1992,423, 51. 599 J.T. Mague and C.L. Lloyd, Organomefallics, 1992, 11.26. 6oo 0. Heyke, G. Beuter, and I.P. Lorenz, Z. Nalurforsch.. B , 1992.47, 668 (Chem. Absfr., 1991, 117, 82 281). 601 F.J.G. Alonso, M.G. Sanz, V. Riera, A.A. Abril, A. Tiripicchio, and F. Ugozzoli, Organomerollrcs, 1992, 11,

602 R. Alberto, W.A. Hemnann, P. Kiprof, and F. Baumgilrtner, Inorg. Chem., 1992,31,895. 603 L. Kadem, M. Findeisen, B. Lorenz, K. Schmidt, and M. Wahren, Isofopenpraxis, 1991, 27,265 (Chem. Absfr.,

604 D.H. Gibson, M. Ye, and J.F. Richardson, J . Am. Chem. SOC., 1992, 114, 9716.

J.A. Gladysz, Bull. SOC. Chim. F r . , 1992, 129, 625.

Organomeiallics, 1992, 11,2461.

6693).

Chem., 1992, 440, 91.

I. Saura-Llamas, D.M. Dalton, A.M. Arif, and J.A. Gladysz, Organometallics. 1992, 11,683.

801.

1991, 116. 33 214).

Page 28: Nmr

28 Spectroscopic Properties of Inorganic and Organometallic Compounds

[ Re(OC&Me-4)( CO)3( PMe3)2], ( 13C),605fuc- [ C13Re( C 0 ) 2 ( NO)]-, ( 13C),606 [ Mn [ teuamethyl-2-

butenediylidenebis(morganophosphorane)- 1,2,3,4-tetracarboxylate )X21, ( 13C),607 [NCl(phen)2Tcl+,

(99Tc),60* [Tc02(NC~Hs)4]+ , ( 9 9 T ~ ) , ~ ~ (48), ( 13C).610 [(HBpz3)Re(O)(O2C2H4>1, (13C),611 [Re-

(O)(PPh3)(tropolonate)2]+, (13C),612 [ (Me3Sn)2NRe03] . ('3C, 19Sn),613 [ ( q 5 - C 5 H 5 ) C o -

( P ( O E t ) 2 0 ) 3 T c 0 3 ] , (99Tc),614 [OSiBut (ORe03)]4 , (29Si),615 and [ ( ~ ~ - C ~ H ~ C O ~ M ~ ) C O -

(P(OMe)20)3ReOX2],(13C).616 (OC)47!3 - 7 e ( C 0 ) 4

Me2pY PMe2 Me2P, ,CO (y Ir,

Me,P\ re* PMe2

(C0)4Re - Re(CO),

(47)

Complexes of Group 8.-A review entitled 'High nuclearity clusters and beyond' contains I3C NMR data on large osmium carbonyl ~ l u s t e r s . 6 ' ~

4J(1H1H) in [(qs-C=jH5)FeH(dppm)] is determined by geometry. For the fragment CH2PFeH, one 4J(1H1H) is 0 Hz and the other is 5.3 Hz and this was attributed to 'W-coupling'.618 A small T1 of 8 ms in [RuH(H~)(CO)(P~~PCH~CH~)~PP~] has been used to justify the formulation as a H2

complex. 619 Similarly, [RuH(H2)CI( C O ) ( PPri3)2] and [ Ru(H)2( H2)( C O ) ( PPri3)2] have been

characterised by 'H, 2H, l3C and 3 l P NMR spectroscopy as H2 complexes.620 l H T I measurements

have been used to distinguish between [(qS-C5Mes)Ru(H2)(dppm)]+ and [(q5-C5Meg)Ru(H)2-

( d p ~ r n ) ] + , ~ ~ I and to show that [M(octaethylporphyrin)(THF)(H2)], M = Ru, Os, is a H2 complex.622

The semi-bridging carbonyl in [(~-H)~(~~-C~H~)MOS~(CO)~O], M = Co, Rh, Ir, is shifted to lower

605 R.D. Simpson and R.G. Bergman, Angew. Chem., Int. E d . Engl. , 1992, 31, 220. 606 J.L. Hubbard, K.L. Kimball, R.M. Bums, and V. Sum, Inorg. Chem., 1992,31,4224. 607 C.A. McAuliffe and P.T. Ndifon, Inorg. Chim. A m , 1992, 192, 227. 608 M.J. Clarke and J. Lu, Inorg. Chem., 1992, 31, 2476. 609 M. Findeisen, P. Kraenke, and B. Lorenz, Zf-Mi l t . , 1901, 166, 113 (Chem. Absfr., 1991, 116, 267 651). 610 L. Hansen, R. Cini, A. Taylor, jun., and L.G. Marzilli, Inorg. Chem., 1992, 31, 2801. 6 1 1 S.N. Brown and J.M. Mayer, Inorg. Chem., 1992.31.4091. 6 1 2 C.F. Edwards, W.P. Griffith, A.J.P. White, and D.J. Williams, J. Chern. Soc.. Dalton 7rans. . 1902, 957. 6 1 3 U. Wirringa, H.W. Roesky, H.-G. Schmidt. and M. Noltemeyer, Chem. Ber., 1992, 125. 2359. 6 1 4 J.A. Thomas and A. Davison, Inorg. Chem.. 1992,31. 1976. 615 N. Winkhofer. H.W. Roesky, M. Noltemeyer, and W.T. Robinson, Angew. Chem.. In t . E d . Engl. , 1992.31, 599. 6 1 6 B. Dyckhoff, H.-J. Schulte, U. Englert, T.P. Spaniol, W. Kllui, and P.A. Schubiger, %. Anorg. Allg. Chem.,

6 1 7 B.F.G. Johnson, L.H. Gade, J. Lewis, and W.T. Wong, Muter . Chem. Phys., 1991, 29, 85 (Chem. Abstr., 1992,

6 1 8 M. Cotrait, J.P. Bideau, B. Gallois, J . Ruiz, and D. Astruc. Bull. SOC. Chim. F r . , 1992, 129, 329. 6 1 9 D. Michos, X.L. Luo, and R.H. Crabtree, Inorg. Chem., 1992, 31,4245. 620 D.G. Gusev, A.B. Vymenits, and V.I. Bakhmutov, Inorg. Chem., 1992.31, I . 6 2 1 G. Jia, A.J. Lough, and R.H. Morris, Organomefallics, 1992, 11, 161. 622 J.P. Collman, P.S. Wagenknecht, J.E. Hutchison, N.S. Lewis, M.A. Lopez, R. Guilard, M. L'Her, A.A. Bothner-

1992, 614, 131.

116, 14 666).

By, and P.K. Mishra, J. Am. Chem. SOC., 1992, 114, 5654.

Page 29: Nmr

Nuclear Magnetic Resonance Spectroscopy 29

frequency on going from cobalt to iridium.623 NMR data have also been reported for [H2Fe(C0)2-

(PBun3)2], (13C),624 [(qs-CsH~)(OC)FeH(SnBun3)21, (13C),625 [HFe(C0)3 (P(OR)3 1 I-, (13C),626

mer- [Fe( C 0 ) 3 (PPhzH)(H)( SiPhg )I, ( 13C) ,627 [ Fe(H)(CO)2 ( P ( OP h)3 1 21 - , ( C ) ,628 [ { (q 5- C5H5 1- Fe 12(pL-H)(p-PPh2)(p-dppm)l, (13C),629 [Fe2(Co)4(p-Co)(p-H)(p-PPh2)(~1-dppm)I, (13c),630 [HF~Ru~(~-CNM~~)(CO)~(PP~~)]. ( 13C).631 [HFe4(C0)12BHAu ( P(2-hkC6&)3) I , (11B),632 [(TI4-

(C3H8)(CO)(PPh3)2], ( IB),635 [P(CH~CH~PP~~)~RUHC~T~]~~+, (205Tl),636 [ ( (q5-C5Me5)Ru(p-

q2-HSiMeCy))&-H)H], (13C, 29Si),637 [(~S-CSM~~)RU(~-H)~(~-P~C=CP~)RU(T~~-C~M~~)], (13C),638 (49), (13C),639 [Ru3H3(p3-2-aminopyridine)(~O)8], (13C),640 [ (p-H)2Ruq(C0)8-

[ MeC=C(H)C(H)=NPri)2], (I3C),@l [(~-H)~RU~(~~-CP~)(~-CO)(CO)~(~~-CSHS)I, (13C),642 [(p- H)2[ ~~-$-CH(CH~)C=NE~}RU~(CO)~], (13C),M3 [Ru3(p-H)(p3-q2-2-amino-6-methylpyridine)-

I15-C8H12)Ir(p-H)2RuH(PPh3)3J, (13C),633 [RuC~(~ZH)(H)(B&)(DMSO)~]-, ( I 'B, 13C),634 [RuH-

(PPh3)n(CO)8-n], (13C),644 [@-H)Ru3{ p3-SCWHPr)NPh I (CO)9I, (13C)3645 [(P-H)Ru3(C0)9(CL- R ~ C E C R ~ ) ] , (13C),646 [Ru~(J.L-H)(~-P~NC~H~N)(~-P~CCHP~)(CO)~], (13C),647 [(p-H)Ru3(V3-

CHCHCMe)(CO)g(PPh3)], (13QM8 [(pL-H)Ru3(C0)lo{p-S(C=CMe2)CMe=CH2) I , (13C),649 [Rug-

( H ) ~ ( C O ) I ~ B ] - , (IlB),650 [HRw(C0)12BHCPhCPhH], ( l 1B),651 [HMCo3(CO)l l(NMe3)], (M = Fe,

623 L.Y. Hsu, W.L. Hsu, D.A. McCarthy, J.A. Krause, J.H. Chung, and S.G. Shore, J. Organomei. Chem., 1992,

624 J.-J. Brunet, G. Commenges, F.-B. Kindela, and D. Neibecker, Organomeiallics, 1992, 11, 1343. 625 S. Zhang and T.L. Brown, Organomerallics, 1992, 11,2122.

J.-J. Brunet, G. Commenges, F.-B. Kindela, and D. Neibecker, Organomeiallics, 1992, 11, 3023. 627 G. Reinhard, B. Hirle, and U. Schubert, J . Organomer. Chem.. 1992.427, 173. 628 M.Y. Darensbourg, S.A. Wander, and J.H. Reibenspies, Organomeiallics, 1992, 11,3185. 629 H.G. Raubenheimer, F. Scott, S. Cronje, and P.H. van Rooyen, J . Chem. SOC., Dalton Trans., 1992, 1859. 630 G. Hogarth and M.H. Lavender, J . Chem. Soc.. Dalton Trans., 1992,2759. 631 D.S. Parfitt, J.D. Jordan, and J.B. Keister, Organometallics, 1992, 11,4009. 632 S.M. Draper, C.E. Housecroft, J.E. Rees, M.S. Shongwe. B.S. Haggerty, and A.L. Rheingold. Organometallics,

633 J.T. Poulton, K. Folting, and K.G. Caulton, Organometallics, 1992, 11, 1364. 634 M.M. Taqui Khan, N.M. Khan, R.I. Kureshy. and K. Venkatasubramanian, Polyhedron, 1992, 11,431. 635 I.D. Burns, A.F. Hill, A.R. Thompsett. N.W. Alcock. and K.S. Claire, J. Organomer. Chem.. 1992,425, C8. 6 3 6 C. Bianchini, D. Masi, K. Linn, C. Mealli, M. Peruzzini, and F. Zanobini, Inorg. Chem., 1992, 31, 4036. 637 B.K. Campion, R.H. Heyn, and T.D. Tilley, Organomeiallics, 1992, 11, 3918. 638 H. Omori. H. Suzuki, T. Kakigano, and Y. Moro-oka, Organometallics, 1992,11,989. 639 E. Bonfantini, P. Vogel, A. Marin, and A.A. Pinkerton, Bull. SOC. Chim. Fr., 1992, 129, 632. 640 J.A. Cabeza, J.M. Fernhndez-Colinas. A. Llamazares, and V. Riera, J. Mol. Caial., 1992,71, L7. 641 W.P. Mul, C.J. Elsevier, M.Van Leijen, K. Vrieze, W.JJ. Smeets, and A.L. Spek, Organometallics, 1992, 11,

642 L.R. Nevinger, J.B. Keister, C.H. Lake, and M.R. Churchill, Organometallics, 1992, 11, 1819. 643 M. Day, W. Freeman, K.I. Hardcastle, M. Isomaki, S.E. Kabir, T. McPhillips, E. Rosenberg. L.G. Scott, and E.

644 J.A. Cabeza, A. Llamazares, V. Riera, S. Triki, and L. Ouahab, Organomeiallics, 1992,11, 3334. 645 E. Boroni, G. Predieri. A. Tiripicchio, and M.T. Camellini, Organomeiallics, 1992, 11, 3456. 646 A. VessPres. S. Top, C. Vaillant, D. Osella, J.-P. Momon, and G. Jaouen, Angew. Chem., Int. Ed. Engl., 1992,

647 N. Lugan, F. Lauren4 G. Lavigne. T.P. Newcomb. E.W. Lilmatta, and J.-J. Bonnet, Organometallics, 1992. 11.

648 K.M. Rao, R.J. Angelici. and V.G. Young, jun., Inorg. Chim. Acia, 1992, 198-200, 211. 649 N. Choi. Y. Kabe, and W. Ando. Organomeiallics, 1992, 11,607. 650 C.E. Housecroft, D.M. Matthews, A.L. Rheingold, and X. Song, J. Chem. SOC.. Chem. Commun., 1992, 842. 651 C.E. Housecroft, J.S. Humphrey, A.K. Keep, D.M. Matthews, N.J. Seed, B.S. Haggerty, and A.L. Rheingold,

426, 121.

1992, 11, 2356.

1877.

Wolf, Organometallics, 1992, 11, 3376.

31, 753.

1351.

Organometallics, 1992, 11,4048.

Page 30: Nmr

30 Spectroscopic Properties of Inorganic and Organornetallic Compounds

Ru; [ (RqH(CO)1;?B)2M4(p-C1)], ( M = Cu, Ag; 1B),653 [ ( q 6 - C a 3 M e 3 ) 0 s H 2 C N M e 1 ,

(CH3)(C0)2(PR3)2I1 (13C),657 [H(q1:q2-O=CMeCH=CH2)(CO)(PPri3)2], ( l 'B, 13C),658 [HOs-

[ p-SCH2CMeCH2(CH2)]], (13C),661 [Os3(C0)9(p3-q2-C2CH2CH2)(p-SPh)(p-H)l, (13C),662 [(p- H)OS~(CO)~O(~-SCH~CM~~CH~F)], (13C),663 and [ (p-H)Oq(CO) lo( p-q2-Si(OMe)3 11, (13C).664

( 13C),654 [OS~(~-H)~(CO)~(~~-C~~)I, (13C),655 [(c~-H)~OS~(CO)~(C~~-~~-O~PP~)I, (13C),656 [OsH-

(NH3)4(q*-H2N=CHEt)l2+, (13C),659 [ ( ~ - H ) ~ O S ~ ( C O ) ~ ( ~ ~ - B C O ) ] , (' 'B, 33C),660 [(p-H)@Q(C0)6- n

04&c0)3 Ru'

( W 3

(49) In [(q5-CsH5)2Fe2(CO)3(p-SiHBut)], the 29Si NMR signal is at 6 254.4. The l3C NMR spectrum

was also rep0rted.6~5 J(29Si29Si) has been measured for [(q5-CsH5)Fe(C0)2SiMe2SiMe20Rl, [(q5-

C5H5)Fe(CO)(SiMe2)(SiMeOR)OR], and [(OC)4FeSiMePhCH2CH2Si MePh] using INEPT INADE-

QUATE. The 13C NMR spectra were also reported.666 Similarly, 29Si INEPT INADEQUATE has been applied to 1,3-[ ((r15-C5Hg)Fe(C0)2)2SigMe10].667 NMR data have also been reported for (50), (13C),668 [ (q5-C5H5)M(C0)2CH2X], ( M = Fe, Ru; 13C),669 [ ( ~ S - C S H ~ ) F ~ ( C O ) ~ C H M ~ B ~ ] , (13C),670 [ ( ~ S - C ~ HS)F~(CO)~CH~S~M~~S~M~~S~M~~], (l3C, 29Si),671 [ ( ~ ~ - C S H ~ ) F ~ ( C O ) ~ -

C(OMe)3], (13C),672 [(q5-C5Hs)Fe(C0)2CH=CHCOMe], (13C),673 [ ($ -CSH~)F~(CO)~CP~=CP~- SBut], (13C),674 [(OC)3Fe(q4-C(0)C(Ph)=C( F ~ ( C O ) ~ ( ~ ~ - C S H ~ ) ) =CH2], (13C),675 [(q5-C5H5>-

- 652

653

654 655

656 657

658

659 660 661 662 663 664 665 666 667 668 669 670 67 1 672 673 674 675

P. Braunstein, L. Mourey, J. Rose, P. Granger, T. Richen, F. Balegroune, and D. Grandjean, Organomelallics, 1992, 11, 2628. S.M. Draper, A.D. Hattersley, C.E. Housecroft, and A.L. Rheingold, J . Chem. Soc.. Chem. Commun., 1992, 1365. T. Poker, A. Ellebracht, W. Kiefer, U. Wecker, and H. Werner, J . Organomef. Chem., 1992,438, 319. B.F.G. Johnson, F.J. Lahoz, J. Lewis, N.D. Prior, P.R. Raithby, and W.-T. Wong, J . Chem. Soc., Dalton Trans., 1992, 1701. G.R. Frauenhoff, J.-C. Liu, S.R. Wilson, and J.R. Shapley, J. Organomet. Chem., 1992,437, 347. M.A. Esteruelas, F.J. Lahoz, J.A. Lopez. L.A. Oro, C. Schliinken, C. Valero, and H. Werner, Organomelallics, 1992, 11, 2034. M.A. Esteruelas, M.P. Garcia, A.M. Lbpez, L.A. Oro, N. Ruiz, C. Schliinken, C. Valero, and H. Werner, Inorg. Chem., 1992.31, 5580. J. Bmera, S.D. Orth, and W.D. Harrnan,J. Am. Chem. Soc., 1992, 114, 7316. D.-Y. Jan, D.P. Workman, L.-Y. Hsu, J.A. Krause, and S.G. Shore, Inorg. Chem., 1992, 31, 5123. R.D. Adams, J.A. Belinski, and M.P. Pornpeo, Organomefallics, 1992, 11, 2016. R.D. Adams, G. Chen, X. Qu, W. Wu, and J.H. Yarnarnoto, J . Am. Chem. SOC., 1992, 114, 10 977. R.D. A d a m and M.P. Pompeo, Organometallics, 1992, 11, 1460. R.D. Adams, J.E. Cortopassi, and M.P. Pornpeo, Inorg. Chem., 1992, 31, 2563. Y. Kawano, H. Tobiu, and H. Ogino, J . Organomel. Chem.. 1992,428, 125. K. Ueno, H. Tobita, and H. Ogino, J. Organomel. Chem., 1992,430,93. E. Hengge and M. Eibl, J. Organomef. Chem., 1992, 428, 335. S.L. Colletti and R.L. Halterman, Organomelallics, 1992, 11, 980. J.L. Hubbard and W.K. McVicar,J. Organomef. Chem.. 1992,429,369. C.P. Carey and L.J.S.Vosejpka, Organomefallics, 1992, 11, 738. K.H. Pannell, T. Kobayashi, and R.N. Kapoor, Organomelallics, 1992, 11, 2229. R.D. Theys and M.M. Hossain, Tefrahedron Left . , 1992, 33, 3447. M.N. Mattson and P. Helquist, Organomerallics. 1992. 11,4. M. Akita, S. Kakuta, S. Sugimoto, M. Terada, and Y. Moro-oka, J. Chem. Soc., Chem. Comrnun., 1992, 451. G.H. Younf, R.R. Willis, A. Wojcicki, M. Calligaris, and P. Faleschini, Organomefallics, 1992, 11, 154.

Page 31: Nmr

Nuclear Magnetic Resonance Spectroscopy 31

Fe(C0)2C=CC=CFe( C O ) ~ ( $ - C ~ H S ) ] , (13C),676 [(q 5-C5H5)Fe(C0)2CNSC6H4], ( 3C),677 [(T15-

C s M e s ) F e ( C 0 ) 2 ( = C ( O M e ) M e ) I + , (13C),678 [ (~5-CsHs>Fe(CO>2C(0)Rl, (13C),679 [(q5- C5Hs)Fe (CO)2C(O)(CX2)3C(O)Fe(C0)2(q 5-CsHs>l, ( 3C),680 [(11 5-C~H5>2Fe2(Co>2(P- c o ) ( p- C(CN)SMe2]]+, ( [Fez(q l:q 3-CR1CR2CCNR3)(C0)6], ( 13C),682 [(q5-R lCgH6)Fe(C0)2-

SiMen(SiMeg)3-,] , ('3C, 29Si),683 [ (q5-CsH~)(OC)2FeSiR20H], (13C),684 cyclo-[ 1,3-( (q5- C ~ H S ) F ~ ( C O ) ~ } ~ S ~ ~ M ~ ~ O ] , (29Si),685 [(q5-C5H5)Fe(C0)2GeH2Rl1 ( 13C),686 [(q5-CsHs)Fe(CO)-

(PPh3)CH2CH20Me], (13C),687 [(qS-CsHs)Fe(CO)( P(OPh)3 ) CH2CHRS03Me1, [($-

CgPhg)Fe(CO)(PMe2Ph) (C(O)Et) ] , (13C, including CPMAS),689 (5 l), (l3C),690 [ ( q 5 - C s H ~ ) F e -

(CH=CMePh)(dppm)], (13C),691 [(qS-CsHs)Fe{ ( P h 2 P h C H ) (C2MeBut)], (13C),692 [($-CsHs)Fe-

(=C=CHR)(dppe)]+, (13C),@3 [MeFe(C0)2I(PMe3)2], (13CL6g4 (52), (Ar = 2,4.6-Me3C6H2; E = CO2Me; %),695 (53), (13C),696 [Fe(SnPhg) {q2-C(0)NPr i2) (C0)2(PPh3)], (13C),697 [PhFe(Ph2P-

CH~CH~SIIP~~-P,S~)(CO)~I, ( 13C),698 [Fe2(CO)6(p-HC=CH2)(p-dppm)l+, (13C),699 [(p-MeC=O)-

( J . L - P ~ ~ P ) F ~ ~ ( C O ) ~ ] , (13C),700 [(q :q 3- M eS C C H C H 2 ) F e 2 ( C O ) 6 ] , ( l 3C) ,701 [(p-o,n-

k=CHCH=CHb)(p-ButS)Fe2(C0)6], (I3C),7O2 (54), ("B, I3CJ7O3 ( 5 3 , (I3C),7O4 (56), (13C),705

[ ( (OC)3( Ph3P)FeCO( C 0 ) 3 } [ p-C( C 0 2 M e ) = C H 2 } 1, ( 3C) ,706 [Fe3( C 0 ) 9 C C F e ( C0)4l2- , ( 3C) ,707

676 R. Crescenzi and C. Lo Sterzo, Organomerallics, 1992, 11,4301. 677 H.G. Raubenheirner, F. Scott, S. Cronje, P.H. van Rooyen, and K. Psotta, J. Chem. SOC., Dalton Trans.. 1992,

678 S. Nlate, V. Guerchais, and C. Lapinte. J. Organomel. Chem., 1992,434, 89. 679 R.S. Bly, M. Raja, and R.K. Bly, Organomerallics, 1992, 11, 1220. 680 S J . Archer, G.A. Harvey, J.R. Moss, and A.M. Crouch, Inorg. Chim. Acta, 1992. 201,43. 6 8 1 L. Busetto, V. Zanotti, S. Bordoni. L. Carlucci, V.G. Albano, and D. Braga, J. Chem. SOC., Dalton Trans.. 1992,

682 T.E. Snead, C.A. Mirkin, K.-L. Lu, H.L. Beckman, G.L. Geoffroy, A.L. Rheingold, and B.S. Haggerty,

683 K. Pannell, J. Castillo-Rarnirez, and F. Cervantes-Lee, Organometallics, 1992, 11, 3139. 684 W. Adam, U. Azzena, F. Prechtl, K. Hindahl. and W. Malisch, Chem. Ber.. 1992,125, 1409. 6 8 5 M. Eibl, U. Katzenbeisser, and E. Hengge, Phosphorus Sulfur Silicon, 1992,65,43. 6 8 6 A. Castel, P. Riviere, M. Ahbala, J. Satge, M. Soufiaoui, and N. Knouzi, J . Organomer. Chem., 1992,427.91. 687 D.H. Gibson, J.O. Franco, M.T. Harris, and T.4. Ong, Organomefallics, 1992, 11, 1993. 688 W.A. Schenk and J. Pfeffermann, J. Organomer. Chem., 1992,440,341, 689 P. Brkgaint, J.-R. Hamon, and C. Lapinte, Organometallics, 1992, 11, 1417. 690 D J . Crowther, Z. Zhang. G.J. Palenik, and W.M. Jones, Organometallics, 1992. 11,622. 6 9 1 M.P. Gamasa, J. Gimeno, E. Lastra, M. Lanfranchi, and A. Tiripicchio, J . Organomel. Chem.. 1992,430, C39. 692 M.P. Gamasa, J. Girneno, E. Lastra, B.M. Martin, A. Aguirre, S. Garcia-Granda, and P. Pertierra, J. Organomer.

693 S. Nakanishi, K.4. Goda. S.4. Uchiyarna, and Y. Otsuji, Bull. Chem. SOC. Jpn., 1992,64, 2560. 694 G. Bellachioma, G. Cardaci, A. Macchioni, and G. Reichenbach, Inorg. Chem., 1992,31, 3018. 695 R.P. de Boer, P.P.M. de Lange, H.-W. Fruhauf, and K. Vrieze, J. Chem. Soc., Chem. Commun., 1992, 581. 696 J. Park, S. Kang, D. Whang, and K. Kim, Organomerallics, 1992, 11, 1738. 697 S. Anderson, A.F. Hill, and G.R. Clark, Organometallics, 1992, 11, 1988. 698 U. Schubert, S. Grubert, U. Schulz, and S. Mock, Organometallics. 1992, 11, 3163. 699 J. Boothrnan and G. Hogarth, J . Organomer. Chem., 1992,437,201. 700 D. Seyferth, K.S. Brewer, T.G. Wood, M. Cowie, and R.W. Hilts, Organomelallics, 1992, 11, 2570. 701 D. Seyferth, L.L. Anderson, W.B. Davis, and M. Cowie, Organometallics, 1992, 11, 3736. 702 D. Seyferth, L.L. Anderson, F. Villafaiie, M. Cowie, and R.W. Hilts, Organomerallics, 1992, 11, 3262. 703 T.E. Snead, C.A. Mirkin, K.-L. Lu, S.-B. Nguyen, W.-C. Feng, A.L. Rheingold, and B.S. Haggerty,

704 C.A. Mirkin, T.J. Oyer, M.S. Wrighton, T.E. Snead. and G.L. Geoffroy, J . Am. Chem. SOC., 1992, 114, 1256. 705 J . 3 . Song, G.L. Geoffroy, and A.L. Rheingold, Inorg. Chem., 1992.31, 1505. 706 1. Moldes. J. Ros, R. Mathieu, X. Solans, and M. Font-Bardia, J . Organomet. Chem., 1992,423,65. 707 M.P. Jensen. D.A. Phillips, M. Sabat. and D.F. Shriver, Organometallics. 1992, 11, 1859.

1009.

1105.

Organometallics, 1992, 11,942.

Chem., 1992, 429, C19.

Organometallics, 1992, 11, 2613.

Page 32: Nmr

32 Spectroscopic Properties of Inorganic and Organometallic Compounds

trans-[ClFe(dmpe)2(C~CC6H4C~C)(dmpe)~FeCl], (13C),708 [(q5-C=jH5)Ru(OC)2RuCH2C=CPh],

( 13C) ,709 [ (q5-C5H5) (OC) d u ( =C(OMe)CH2CH$?H2 ) 1, ( 3C)? lo [ (q 5- CsMes)Co(q 5-E t2C2B 3H-

C12-$)Ru( =C(OMe)Ph) (CO)2], (“B, l3C),7l1 [(q5-C5Hs)2Ru2(CO)2(p-CH2)21, (13C),712 [(q5- CSM~~)~RU~(~-C~)~(~-CHCH=CP~~)]. (13C),713 (571, (13C),714 [(q6-C6Me6)RU ( =C(OMe)-

CH=CMe2]Cl(PMe3)] , (13C),715 [(q6-1 ,2,4,5-C6MeqH2)Ru( = C ( O C H 2 C H = C H 2 ) C H = C H R ] -

Cl(PMe3)], (13C),716 [(But)2(HMPA)Si=Ru(CO)4], (13C, 29Si),717 [MeRu(CO)3(PMe3)2]+,

(13C),718 [Ru(C0)2(PEt3)2(C=CC=CSiMe3)2], (13C),’19 [Ru(C(CO2Me)=C(COOMe)H](CO)2- (PMe2Ph)2]+, ( 1 3C) ,720 [ (4-MeCa)Ru (a)( PPh3)z ( (benzomazole)2B H 2 } 1, ( 3C) ?2 [ Ru( C0Et) -

( C O N R 2 ) (CO)(PPh3)], ( 13C),722 [ Ru ( C(0)CH=CHR1 } (CNR2)3( PPh3)2]+, ( 13C),723 trans- [Ru(SnPh3)2(CNPh)4I1 (13C),724 [ R u ( = C = C = C ( O M e ) C H = C P h 2 ) 2(dppm)2I2+, (13C),725

[ d u C l ( CN(CH2Ph)CH2CH2N(CH2&H4)) (PPh3)2], (13C),726 [Ru(=CCH=CPh2)C12(PPh3)2], - ( 13C)?27 [ R u ~ ( C O ) ~ ( ~ - N C ~ H ~ ) ~ ] , ( 13Q728 [Ruz(CH3)(1)( CO)4(PriN=CMeCMe=NPri)], ( 13C),729

[Ru2(dmpm)2(C0)3 { P-C2(C%Me)2 (C(O)C(O)C2(C02Me)2 1, (13c),730 [(11’-C5Me5)2RU2(CO)2-

(p-SiPh2)2], (13C),731 [ R u ~ ( ~ - C ~ H ~ I N ~ ) ( p-q1:q2-PhC=C(H)Ph}(C0)5], (13C),732 (58) , (13C),733

[ (qS-CsMe5)3Ru3( p-C1)2( p-CO)( p3-CH)I2+, ( 3C),734 [ (q6- 1 , ~ , ~ - C ~ H ~ M ~ ~ ) ~ S R ( C O ) I ] , ( 13C),735 [ {OsCl(CO)(PPh3)2Si(OH)2)20], ( 2 9 S i ) , 7 3 6 [ ( H ~ N C H ~ C H Z N H 2 ) 2 -

-

708 L.D. Field, A.V. George, G. Laschi, E.Y. Malouf, and P. Zanello, J. Organomet. Chem., 1992,435, 347. 709 C.E. Shuchart, R.R. Willis, and A. Wojcicki, J. Organomel. Chem., 1992,424, 185. 710 R.L. Trace, J. Sanchez, J. Yang, J. Yin, and W.M. Jones, Organometallics, 1992, 11, 1440. 711 K.E. Stockman, M. Sabat, M.G. Finn, and R.N. Grimes, J. Am. Chem. Soc.. 1992, 114, 8733. 7 1 2 M. Akita, T. Oku, and Y. Moro-oka, J. Chem. Soc., Chem. Commun., 1992. 1031. 7 1 3 M.R. Gagnt. R.H. Grubbs, J. Feldman, and J.W. Ziller, Organometallics, 1992, 11,3933. 7 1 4 L.A. Brady, A.F. Dyke, S.E. Gamer, V. Guerchais, S.A.R. Knox, J.P. Maher, S.M. Nichols, and A.G. Orpen, J.

715 D. Pilette, K. Ouzzine, H. Le Bozec, P.H. Dixneuf, C.E.F. Rickard, and W.R. Roper, Organometallics, 1992,11,

7 1

7 1 7 H. Handwerker, C. Leis, S. Camper, and C. Zybill, Inorg. Chim. Acta, 1992,198-200, 763. 7 1 * G. Bellachioma, G. Cardaci, A. Macchioni. and G. Reichenbach, J. Organomet. Chem., 1992,427, C37. 719 Y. Sun, N.J. Taylor, and A.J. Carty, Organometallics, 1992, 11. 4293; Y. Sun, N.J. Taylor, and A.J. Carty, J .

720 J.R. Crook, B. Chamberlain, R J . Mawby, F.C.F. Korber, AJ . Reid, and C.D. Reynolds, J. Chem. Soc.. Dalton

721 J. Cartwright and A.F. Hill, J. Organomet. Chem., 1992, 429. 229. 722 F. Ozawa, S. Chikaoka, X . Z . Cao, and A. Yamamoto, J. Organomet. Chem., 1992,424, 173. 723 J. Montoya, A. Santos, J. Lbpez, A.M. Echavarren, J. Ros, and A. Romero, J. Organomet. Chem., 1992, 426,

724 J.A. Corella, sec., R.L. Thompson. and N.J. Cooper,Angew. Chem., Int. Ed. Engl., 1992.31, 83. 725 N. Pirio, D. Touchard, P.H. Dixneuf, M. Fettouhi, and L. Ouahab, Angew. Chem.. Int. Ed. Engl., 1992,31,651. 726 M.A. Owen, P.L. b e , B. Piggott, and M.V. Capparelli, J. Organomet. Chem., 1992,434, 351. 727 SB.T. Nguyen, L.K. Johnson, R.H. Grubbs. and J.W. Ziller. J. Am. Chem. Soc., 1992, 114, 3974, 728 B.R. Cockerton and AJ. Deeming, J. Organornet. Chem., 1992,426, C36. 729 M.J.A. Kraakman, K. Vrieze, H. Kooijman, and A.L. S p k , Organometallics, 1992.11. 3760. 730 K.A. Johnson and W.L. Gladfelter. Organometallics, 1992.11.2534. 731 H. Suzuki, T. Takao, M. Tanaka, and Y. Moro-oka, J. Chem. Soc.. Chem. Commun., 1992, 476. 732 J.A. Cabeza, J.M. Femhdez-Colinas, A. Llamazares, and V. Riera, Organometallics, 1992.11.4355. 733 W. Ziegler and U. Behrens, J. Organomet. Chem., 1992,427,379. 734 D. Rondon, X.-D. He, and B. Chaudret, J. Organornet. Chem., 1992,433, C18. 735 U. Wecker and H. Wemer, J. Organomet. Chem., 1992,424, 199. 736 C.E.F. Rickard, W.R. Roper, D.M. Salter, and LJ . Wright, J. Am. Chem. Soc., 1992, 114. 9682.

Chem. Soc., Chem. Commun., 1992, 310.

809. D. Pilette, H. Le Bozec, A. Romero, and P.H. Dixneuf, J. Chem. Soc., Chem. Commun., 1992, 1220.

Organomet. Chem., 1992,423, C43.

Trans., 1992, 843.

383.

Page 33: Nmr

Nuclear Magnetic Resonance Spectroscopy 33

~ s = C ( C H ~ ) C ( C H ~ ) = C ( C H ~ ) C H ~ H ~ ] , ( 13C),737 [ [ meso-(4-MeC&)4-porphyrin )Os=C(Cf,H4Me-

4)2], (13C),738 [(OCMe2CMe2O)Os(O)(CH3)2], (13C),739 (13C, 170)?40 [ O S C ~ ~ ( = C H O C H ~ C H ~ -

PPri2)(q2-Pri2PCH2CH2OMe)], ( 13C),74 [Os3( CO) 10 { p-OC(O)C=CH ) (p2-C=NHPr)], (13C),742

[Fe2(CO)6(MeC2Ph)2], (13C),743 [Fe2(C0)4(p-PPh2)(p2-q2-CnCPri)(p-dppm)l, (13C),744 [(q5- CSH~)~F~~(~-CO)~(~~-CCN)], ( 13C),745 [ Fe3( CO) 10 ( p3-q2-C=CH(OEt) ) ] , ( 13C),746 [ Fe3(CO)9C-

CR]fl-, (13C),747 [Fe3(CO)g(MeCN)(p3-CF)2], (13C),748 [F~~(CI-C=C=CP~~)~(CO)~I, (13c),749

[Fe3(Co)9{PriPC(0)C(CH3)C(NEt2)}], (13C).750 [ ((q5-CsH5)Fe) {(~5-CsHs)Ni)2Ni(CO)2(p-CO)- (pq-CzH)], (13C),751 [ F ~ ~ ( C O ) ~ ( ~ - C C O ) C U I ] ~ + , (13C),752 [ R u ~ ( C 0 ) 6 ( C4H2[(C5H4-q5)Fe(q5-

-

OMe

737 L. Pu, T. Hasegawa, S. Parkin. and H. Taube, J. Am. Chem. SOC., 1992, 114, 7609. 738 L.K. Woo and D.A. Smith, Organomerallics, 1992,11,2344. 739 W.A. Henmann and P. Watzlowik, J. Organomet. Chem., 1992,437,363. 740 W.A. Henmann, S.J. Eder, P. Kiprof, and P. Watzlowik. J. Organomet. Chem.. 1992,428, 187. 741 H. Werner, B. Weber, 0. Niimberg, and J. Wolf, Angew. Chem.. I n [ . Ed. Engl. , 1992.31, 1025. 742 K.-L. Lu, C.-J. Su. Y.-W. Lin, H.-M. Gau, and Y.-S. Wen, Organomerallics, 1992, 11, 3832. 743 D. Osella, 0. Gambino. C. Nervi, and M. Ravera. J. Organomer. Chem., 1992.433, 287. 744 A.A. Cherkas, S. Doherty, M. Cleroux. G. Hogarth. L.H. Randall, S.M. Breckenridge. N.J. Cany, and A.J. Carty,

745 L. Busetto, S. Bordoni, V. Zanotti. V.G. Albano. and D. Braga, New J. Chem., 1992, 16,693. 746 D. Lentz and M. Reuter, Z. Anorg. Allg. Chem., 1992,614, 121. 747 M.P. Jensen and D.F. Shriver, Organomerallics, 1992, 11, 3385. 748 D. Lentz and H. Michael-Schulz, Z. Anorg. Allg. Chem., 1992,618, 1 1 1. 749 M. Iyoda, Y. Kuwatani, and M. O&, J. Chem. Soc.. Chem. Commun., 1992,399. 750 B. Eber, G. Huttner, W. Imhof, J.C. Damn, and Y. Jeannin, J. Organomer. Chem., 1992.426, 87. 75 M. Akita. M. Terada. M. Tanaka, and Y. Moro-oka, Organometallics, 1992.11, 3468. 752 A.S. Gunale, M.P. Jensen, D.A. Phillips, C.L. Siern, and D.F. Shriver, Inorg. Chem., 1992, 31, 2622. 753 A.A. Koridze, A.I. Yanovsky, and Yu.T. Struchkov. J. Organomer. Chem.. 1992,441,211. 754 E. Boroni. M. Costa, G. Predieri, E. Sappa. and A. Tiripicchio, J. Chem. SOC.. Dalton Trans., 1992. 2585. 755 P. Braunstein. F.Y. Jiao, J. Rod. P. Granger, F. Balegroune. 0. Bars, and D. Grandjean, J. Chem. SOC., Dalion

756 W.P. Mul, C.J. Elsevier. K. Vrieze, W.J.J. Smeets, and A.L. Spek, Organomerallics, 1992, 11, 1891. 757 J.F. Comgan, S. Doherty, NJ. Taylor, and A J . Cany, Organomerallics, 1992, 11, 3160. 758 C.J. Adams, M.I. Bruce, MJ. Liddell, B.W. Skelton, and A.H. White, Organomeiallics, 1992, 11, 1182. 759 C.J. Adams. M.I. Bruce, B.W. Skelton, and A.H. White, J. Organomer. Chem., 1992, 430,181. 760 C J . Adams, M.1. Bruce, M.J. Liddell, B.W. Skelton, and A.H. White, J. Chem. Soc., Chem. Commun., 1992,

761 Y.-W. Lin, H.-M. Gau. Y.-S. Wen,and K.-L. Lu, Organometallics, 1992,11, 1445.

Organometallics, 1992, 11, 1701.

Trans., 1992, 2543.

1314.

Page 34: Nmr

34 Spectroscopic Properties of Inorganic and Organometallic Compounds

( 5 5 ) (57)

@ ..I. 0' NHC4H4Me-4

/,RU(CO), (OC)~RU- RU

(C0)3

(58) 1J(13C113C) has been determined for [Os(CO)4(q2-l3C2Hq)] as 39.0 Hz.762 NMR data have also

been reported for [(q5-C5H5)Fe(CH2C&-2-CH2CH=CH2-q2)(CO)], (13C),763 [(q5-C5Me5)Fe-

(C0)2(q2-1,7-octadiene)]+, (13C),764 (59), (13C),765 [ (7-(4-ClCgH4)azabenzonorbornadiene ) -

Fe(CO)4], ( 13C)?66 (a), ( 13C)?67 (6 1 ), (13C),768 [ (q5-CsH5)Ru(q2-C2H4)(PMe2Ph)21+, ( l 3C),769

[(q5-CsMes)Ru(q3-2-MeC3H4)(q2-C2H4)], (13C),770 [os2(r12:q2'-C6H60)(NH3)io12+, (13C),771

[Os3(C0)8(PPh3)(~3-r12:q2:q2-c6H6], (13C),772 [ F e ( q 3 - M e 2 C C ( S ) C M e 2 ) (CO)3], (13C),773

[ F e ( C 0 ) 2 {q3-(CH2)2C) CH2CH2(q3-CHCMeCH2)] , ( 13C),774 [Fe( q3-HB(H)2S C H S R ) ( C 0 ) -

(PMe3)2], (13C),775 [Fe(qf-ButCgCHBut)( PPh(OEt)2)4]+, (13C),776 [Fe(q3-HRC=C3R)(dmpe)21+,

-

762 763 764 765 766

767 768 769 770 77 1 772

773 774 775 776

B.R. Bender, J.R. Norton, M.M. Miller, O.P. Anderson, and A.K. Rap@, Organometallics, 1992, 11, 3427. G. Thoma and B. Giese, Helv, Chim. Acra, 1992.75, 1123. V. Guerchais, S. LRvEque, A. Homfeck, C. Lapinte, and S . Sinbandhit, Organomerallics, 1992, 11, 3926. HJ . Mettemich, E. Niecke, and J.F. Nixon, J . Chem. SOC.. Chem. Commun., 1992, 627. L.-K. Liu, C.-H. Sun, C.-Z. Yang, Y.3 . Wen, C.-F. Wu, S.-Y. Shih, and K.6 . Lin, Organomerallics, 1992, 11, 912. D. Seyferth, L.L. Anderson, F. Villafae, and W.M. Davis, J. Am. Chem. SOC., 1992, 114,4594. HJ . Mettemich, E. Niecke, and J.F. Nixon, J. Chem. SOC., Chem. Commun., 1992, 232. J.R. Lomprey and J.P. Selegue, J . Am. Chem. Soc., 1992, 114, 5518. U. Koelle, B . 4 . Kang, T.P. Spaniol, and U. Englert, Organometallics, 1992, 11,249. M.E. Kopach, W.G. Hipple, and W.D. Harrnan, J. Am. Chem. Soc., 1992, 114, 1736. M.A. Gallop, M.P. Gomez-Sal, C.E. Housecroft, B.F.G. Johnson, J. Lewis, S.M. Owen, P.R. Raithby, and A.H. Wright, J. Am. Chem. Soc., 1992, 114, 2502. N. Choi, Y. Kabe. and W. Ando, Organometallics, 1992, 11, 1506. L. Girard, M.C. Baird. B.S. Haggerty, and A.L. Rheingold, Organomerallics, 1992, 11,2329. D.V. Khasnis, N. Pirio, D. Touchard, L. Toupet, and P.H. Dixneuf, Inorg. Chim. Acra, 1992, 198-200, 193. G. Albertin, S. Antoniutti, E. Del Ministro, and E. Bordignon, J. Chem. Soc., Dalton Trans., 1992, 3203.

Page 35: Nmr

Nuclear Magnetic Resonance Spectroscopy 35

(13C),777 [(q5-C5H5)Ru(q3-C3H5)(NCMe)2l2+, ( 13C),778 [(q5-C5Me5)(q3-CH2CHCHCHO)- (PPh3)], ( 13C),779 [P(CH2CH2PPh2)3Ru(q3-PhCCCCHPh)]+, (13C),780 (62), ( 13C),781 [Fe(q4-

CgMegH)(dppe)(CO)], (13C) ,782 (63), ("B, 13C) ,783 (64), (13C) ,784 [Fe (q4-PhCH=CH-

CR1=C=CHC02R2)(C0)3], (13C),785 [Fe(q4-PhCH=CHCBut=C=O)(C0)3], ( 13C),786 [Fe(q4-

B u t s (0)2CH=CHCMe=C=O } (CO)3], (l3C) ,787 [Fe(q4-diene)(CO)3], ( 3C),788 [Fe(q4-PhCH=CH-

CMe=O)(CO)2(PBun3)], (13C),789 [Fe(q4-PhCH=CHCMe=O)( C 0 ) 2 [ PPh2( neomenth y 1) ) 1, ( 3C),790

[(q4-1,5-CgH12)Ru(q4-2,3-Me2butadiene)(NCMe)], (13C),791 [Ru(q5-2 ,4-Me2C5H5)(q4-

C7H12)L]+, (13C),792 [(q5-C5Me5)Ru(q4-C7H12)Cl], (13C),793 [(q5-C5H5)Ru(q4- 1,5-CgHi2)1,

( 13C),794 [(q4-1,5-CgH12)Ru(OH2)4I2+, (13C),795 and [(q6-C6Me6)RU('r14-c4~s)], (13C).796

777 L.D. Field, A.V. George, G.R. Purches, and I.H.M. Slip, Organomeiallics, 1992, 11 , 3019. 778 H.-L. Ji, J.H. Nelson, A.De Clan, and J. Fisher, Organomeiallics, 1992, 11, 1618. 7 7 9 U. Koelle, B . 4 . Kang, and U. Thewalt, Organomeiallics, 1992, 11,2893. 7 8 0 C. Bianchini, C. Bohanna, M.A. Esteruelas, P. Frediani, A. Meli, L.A. Oro, and M. Peruzzini, Organomeiallics,

781 C.M. Adams, E.S. Crawford, and E. Salim, Teirnhedron Leii., 1992.33, 3963. 782 P. Hamon, J.-R. Hamon, and C. Lapinte, J . Chem. SOC., Chem. Commun., 1992, 1602. 783 H. Schulz, H. Pritzkow, and W. Siebert, Chem. Ber., 1992, 125,987. 784 A.J. Pearson, R.J. Shively, jun., and R.A. Dubben, Organomeiallics, 1992, 11,4096. 785 S.P. Saberi and S.E. Thomas, J. Chem. Sac., Perkin Trans. I , 1992, 259. 786 K.G. Morris, S.P. Saberi, A.M.Z. Slawin, S.E. Thomas, and D.J. Williams, J. Chem. Soc.. Chem. Commun.,

1992, 1788. 787 A. Ibbouon, A.C.R. dos Reis, S.P. Saberi, A.M.Z. Slawin, S.E. Thomas, G.J. Tustin, and D.J. Williams, J .

Chem. SOC., Perkin Trans. I , 1992, 1251. 788 R.E. Penier, C.S. Frampton, and M.J. McGlinchey, J. Organomel. Chem., 1992,435, 357; A.J. Pearson, A.M.

Gelormini, and A.A. Pinkerton, Organomeiallics, 1992, 11 , 936; K. Nunn, P. Mosset, R. GrCe, R.W. Saalfrank, K. Peters, and H.G. v. Schnering, Angew. Chem., Ini. Ed. Engl., 1992, 31, 224; K. Nunn, P. Mosset, R. Cree, and R.W. Saalfrank, J. Org. Chem., 1992, 57, 3357; A. Mukherjee. E.M.M. Venter, and W.J. le Noble, Teirahedron Leii., 1992.33, 3837; D. GrCe, R. GrQ, T.B. Lowinger, 1. Martelli, J.T. Negri, and L.A. Paquette, J. Am. Chem. SOC., 1992, 114, 8841; H.-J. KnBlker, M. Bauermeister, and J.-B. Pannek, Chem. Ber., 1992, 125, 2783; J.P. Lellouch, A. Gigou-Barbedette, and R. G r k , Bull. SOC. Chim. Fr., 1992, 129, 605.

7 8 9 B.R. Bender, M. Koller, A. Linden, A. Marcuzzi, and W. von Philipsborn, Organomerallics, 1992,11,4268. 790 A. Marcuzzi, A. Linden, D. Rentsch, and W. von Philipsborn, J. Organomei. Chem.. 1992,429,87, 791 M.A. Bennett, and X.-q. Wang, J. Organomei. Chem., 1992,428, C17. 792 D.N. Cox, T. Lumini, and R. Roulet, J. Organomei. Chem., 1992, 438, 195. 793 H.W. Bosch, H.U. Hung, D. Nietlispach, and A. Salzer, Organomerallics, 1992, 11,2087. 794 K . Masuda, K. Nakano, T. Fukahori, H. Nagashima, and K. Itoh, J. Organomei. Chem., 1992,428, C21. 795 U. Kolle, G. Flunkert, R. Gorissen, M.U. Schmidt, and U. Englert, Angew. Chem.. Ini. Ed. Engl., 1992, 31,

7 9 6 S. Luo, T.B. Rauchfuss, and S.R. Wilson, J. Am. Chern. Soc., 1992, 114, 8515.

1992, 11, 3837.

440.

Page 36: Nmr

36 Spectroscopic Properties of Inorganic and Organometallic Compounds

1H NMR spectroscopy has been used to investigate Ir;e(q5-CgH&)2] complexes to determine the

electronic structure and conformation.797 The 6Li NMR spectrum of [LiCH(qs-C5H4)2Fe2(q5-

C5H4)CH2] shows J(13C6Li).798 1H NOE measurements have been made to determine the

conformation of (65), R = CHM~NM~CH~CH~N(CH~CH~OCH~CHZOCH~CH~)~O,~~ and [(q5- C5fiR)Fe(CO)(PPhg)I].800 The 'H, 13C, 29Si, and 3 lP NMR signals of [ (q5-1,3-(Me3Si)2C5H3)-

Fe(CO)(L)I] have been assigned using NOE measurements and the values correlated with the Tolman cone angle and electronic effects.801 NMR data have also been reported for [(q5-C5H5)Fe(q5-C5&-

C 3 a ) ] + , (13C),802 [(q5-C5Hs)Fe{ q5-C5&C(O)CHC(OH)CH3}], ('3C, including CP/MAS),803

[(r15-CsHs)Fe(l15-CsH4R)I, (13C),804 (661, IR = (q5-CsH5)Fe(q5-CsH); 13C 1 ,805 [ ( (q5-C5H5)-

R U ( C O ) ~ ( C ~ & - ~ 5, 1 Fe(q5-C5Hg)l, (13C),806 [Os3(CO) 1 1 (PrizPC5H4-tl5)Fe(q5-CgHg)l, ( l 3C> ,807

[(r15-Cs~s)Fe(r15-CsH4)CH2CH(c02)2Pt(NH3)2~, (195~t),808 [(q5-cs~5)~e(q5-cs~)~7~ig0 121. ('3C, 29Si),809 (67), (13Q810 (68), (E = S, Se, Te; 7Li. 13C),811 (69), (13C),812 [(q5-CsH~)Fe(q5-

~ - ( C H ~ X ) - ~ - B U ~ S ~ C ~ H ~ ) ] , (13C, 119Sn),813 [M(q~-C5I-4C=CCMe2OH)2], (M = Fe, Ru; 13C),814

[Fe(r15-C5Me4(CH2)3(oCH2CH2)30Me)21. [(OC)2Co(r15-CsMe4(CH2)3(OCH2CH2)30Me 11, (13C,

59Co),s15 [(GjH4C5H4-q5)2Fe1, (13C),816 [(q5-C5H4C=CSiMe3)2Fe], ( 13Q817 [Fe{q5-CsH4-

SiMe2CCog(CO)g 1 (q5-CsH4SiMe2H)1, (29Si),8 [Fe(q5-C5fiSiMe2)2( CH=CH)], ( 3C, 29Si) ,819

[Fe(15-Csfi)2(SiMe2)ln, (13C, 29Si),820 [Fe(qs-C5bSnBun3)2], ( 13C),821 [Fe(q5-CsH4PPhPri)2-

797 Y. Okada and T. Hayashi. Magn. Reson. Chem., 1992.30.892. 798 6. Davidsson, M. Uwendahl. and P. Ahlberg, J. Chem. SOC.. Chem. Commun., 1992, 1004. 799 M. Sawamura, H. Nagata, H. Sakamoto, and Y. Ito, J. Am. Chem. SOC., 1992,114,2586.

N J . Coville. M.S. Loonat, D. White, and L. Carlton, Organometallics, 1992. 11, 1082. 801 D. White, L. Carlton, and N.J. Coville. J . Organomet. Chem.. 1992.440, 15. 802 G.K.S. Prakash, H. Buchholz. V.P. Reddy, A. De Meijere, and G.A. Olah, J. Am. Chem. SOC., 1992, 114. 1097. 803 W. Bell, J.A. Crayston, C. Glidewell. M.A. Mazid, and M.B. Hursthouse, J . Organomet. Chem.. 1992.434, 115. 804 K.L. Kott and R.J. McMahon. J . Org. Chem., 1992. 57, 3097; H.K. Sharma, F. Cervantes-Lee, and K.H.

Pannell, J. Organomet. Chem., 1992, 438. 183; A. Houlton, N. Jasim, R.M.G. Roberts, J. Silver, D. Cunningham, P. McArdle, and T. Higgins, J. Chem. SOC., Dalton Trans., 1992, 2235; H. Plenio, Organometallics, 1992, 11, 1856; J.C. Barnes, W. Bell, C. Glidewell, and R.A. Howie, J . Organomet. Chem., 1992, 424. 343; G.R. Knox, P.L. Pauson. and D. Willison, Organometallics, 1992, 11, 2930; B. Delavaux- Nicot, N. Lugan, and R. Mathieu, Inorg. Chem., 1992. 31, 334; F. Gelin and R.P. Thummel, J. Org. Chem., 1992, 57, 3780.

805 L. Kollik and B. Floris, J. Organomet. Chem.. 1992,441. 117. 806 M. Herberhold, W. Feger. and U. Kblle. J . Organomet. Chem., 1992,436,333.

808 A. Rosenfeld. J. Blum, D. Gibson. and A. Ramu, Inorg. Chim. Actu, 1992,201,219, 809 G. Calzafem and R. Imhof, J. Chem. Soc., Dalton Trans., 1992, 3391. 810 W.S. Trahanovsky and J.M. Ferguson, Organometallics, 1992,11,2006. 811 H. Gornitzka, S. Besser. R. Herbst-her, U. Kilimann, and F.T. Edelmann. Angew. Chem., Int. Ed. Engl., 1992,

812 J.-P. Sutte.r, M. Pfeffer, A. De Cian. and J. Fischer, Organometallics, 1992,11,386. 813 Q. Zhang. B. Yan, S. Shi, and G. Xu, Bopwue Zuzhi, 1991,8,479 (Chem. Abstr., 1992, 116, 194 539). 814 M. Buchmeiser and H. Schottenberger, J . Organomet. Chem., 1992,441,457. 815 U. Siemeling, J. Chem. Soc.. Chem. Commun., 1992, 1335. 816 M.E. Huttenloch, J. Diebold. U. Rief, H.H. Brintzinger, A.M. Gilbert, and T.J. Katz, Organometallics, 1992, 11,

817 M. Buchmeiser and H. Schottenberger, J. Organomet. Chem.. 1992, 436, 223; J.K. Pudelski and M.R.

818 J. Borgdorff, EJ. Ditzel, N.W. Duffy, B.H. Robinson. and J. Simpson, J. Organomet. Chem., 1992,437, 323. 819 W. Finckh, B.Z. Tang, A. Lough. and I. Manners, Organometallics, 1992,11,2904. 820 D.A. Foucher, B.Z. Tang, and I. Manners, J. Am. Chem. SOC., 1992. 114,6246. 821 J.A. Adeleke. Y.-W. Chen, and L.-K. Liu, Organometallics. 1992,11, 2543.

W.R. Cullen. S.J. Rettig, and T.C. Zheng, Organometallics, 1992, 11, 3434.

31, 1260.

3600.

Callstrom, Organometallics, 1992, 11,2757.

Page 37: Nmr

822 L.K.Liu and J.C. Chen, Bull. Inst. Chem.,Acad. Sin., 1991.38.43 (Chem. Abstr., 1992, 116, 59 584). 823 T.-J. Kim, S.-C. Kwon, Y.-H. Kim, N.H. Heo, M.M. Teeter, and A. Yamano,J. Organomet. Chem.. 1992,426,

824 T.S. Andy, S.P. Neo, C.S. Tan, T.C.W. Mak, K.W.P. Leung, and R.-J. Wang, Inorg. Chem., 1992,31,4510. 825 M. Heberhold, G.X. Jin, A.L. Rheingold, and G.F. Sheats, Z. Naturforsch., B. 1992, 47, 1091 (Chem. Abstr.,

826 P. Li and S. Shi, Gaodeng Xuexiao Huaxue Xuebao, 1992,13,770 (Chem. Abstr., 1992,117, 151 116). 827 Q. Zhang, B. Yan, P. Li, S. Shi, and G. Xu, Huaxue Xuebao, 1992. 50,488 (Chem. Abstr., 1992, 117, 111

828 M. Hisatome, S. Yoshida, and K. Yamakawa. Bull. Chem. SOC. Jpn., 1992.64, 3491. 829 U. Siemeling and P. Jutzi, Chem. Ber., 1992, 125.31. 830 R.A. Brown, A. Houlton, R.M.G. Roberts, J. Silver, and C.S. Frampton, Polyhedron, 1992, 11, 261 1. 8 3 1 D. O'Hare, J.C. Green, T. Marder, S. Collins, G. Stringer. A.K. Kakkar, N. Kaltsoyannis, A. Kuhn, R. Lewis, C.

832 G.E. Herberich, T. Carstensen, N. Klaff, and M. Neuschiitz, Chem. Ber., 1992, 125, 1801. 833 B. Deschamps and F. Mathey, Organomelallics, 1992,11, 1411. 834 N. Maigrot, M.L. Sierra, C. Charrier, L. Ricard, and F. Mathey, Polyhedron, 1992, 11,601. 835 J.L. Atwood, S.D. Christie, M.D. Clerk, D.A. Osmond, K.C. Sturge. and M.J. Zaworotko, Organomefallics,

836 M.-H. Delville, M. Lacoste, and D. ASUUC, J. Am. Chem. SOC., 1992, 114, 8310. 837 R.M.G. Roberts, J. Organomel. Chem., 1992, 430, 327; M.M. Kubicki, B. Gautheron, W. Sreinfeldt, and H.

Singer, Inorg. Chim. Acfa, 1992, 192, 211; F. Moulines, B. Gloaguen, and D. Astruc, Angew. Chem., In[. Ed. Engl., 1992.31.458; AS. AM-El-Aziz and D.C. Schriemer, Inorg. Chim. Acta, 1992, 202, 123; A.J. Pearson, J.G. Park, and P.Y. Zhu, J . Org. Chem., 1992,57, 3583.

838 R.C. Cambie. S.J. Janssen, P.S. Rutledge, and P.D. Woodgate, J . Organomel. Chem.. 1992, 434, 97. 839 A.J. Pearson and M.P. Burello, Organometallics, 1992. 11,448. 840 W.A. Donaldson, P.T. Bell, and M-J. Jin, J. Organomet. Chem., 1992, 441,449. 841 P. Jutzi and S. Opiela. J. Organomel. Chem.. 1992.431, C29. 842 W. Weigand, Z. Naturforsch.. B , 1991.46, 1333 (Chem. Abstr., 1992, 116, 59 602). 843 W. Clegg, N.A. Compton, R.J. Errington, G.A. Fisher, D.C.R. Hockless. N.C. Norman, A.G. Orpen, and S.E.

844 H. Nakazawa, M. Yamaguchi, K. Kubo. and K. Miy0shi.J. Organomel. Chem.. 1992,428, 145. 845 J.E. King and S.J. Simpson, J. Organomel. Chem.. 1992,424, 57. 846 D. Bhaduri, J.H. Nelson, C.L. Day, R.A. Jacobson, L. SolujiC, and E.B. Milosavljevit, Organomeiallics, 1992,

847 A. Bader, D.D. Pathak, S.B. Wild, and A.C. Willis, J . Chem. SOC., Dalton Trans., 1992, 1751. 848 W.P. Fehlhammer, A. SchrMer, W. Sperber, and J. Fuchs, Chem. Ber., 1992, 125, 1087. 849 L. Busetto, L. Carlucci. V. Zanotti. V.G. Albano. and M. Monari, Chem. Ber., 1992. 125, 1125. 850 W.P. Fehlhammer, A. SchrCder, J. Fuchs, and E . 4 . Wiirthwein, Angew. Chem.. Int. Ed. Engl. , 1992.31, 590.

71.

1992, 117, 251 538).

751).

Mehnert. P. Scott, M. Kurmoo. and S . Pugh, Organometallics, 1992, 11.48.

1992. 11. 337.

Stratford, J . Chem. Soc., Dalton Trans., 1992, 3515.

11, 4069.

Page 38: Nmr

38 Spectroscopic Properties of Inorganic and Organometallic Compounds

Fe2(C0)2(p-CNMe2)I2+, ( 13C),851 [(q5-C5Me5)Fe(C0)2 ( b(=PC@2Me3-2,4,6)OCR=Nl!4C(O)R)],

(13C)>52 [ (q5-C~Mes)(oC)&eP ( NC(O)N(Ph)C(O)N } bCgH2Me3-2,4,6], ( 3C) ,853 (701, ( C) ,854

[ ( ~ ~ - C ~ M ~ S ) ( O C ) ~ F ~ P R ~ R ~ ] , (13C),855 [(&-C2)2 ( (q5-C5Me5)Fe ) ~ R u ~ ( c o ) ~ 4 ( ~ - c o ) ~ ] , (13C),856

[(q5-CsMes)Ru(q5-CgHg)], (13C),857 [(q5-C5H5)M(q5-C5H&Ph2)]+, ( M = Ru, 0s ; 3C),858 [($-

C5Meg)Ru( qs-(CF3)4C50SiEt3}], (13C, 29Si),859 [(q5-CsMe5)Ru(q5-CsF5)], (13C),860 [Ru(q5-

CgMeqN)2], (13C),861 [ (q5-CsHs)Ru( CO)(PPh3) (SC4H4)] +, ( 13C),862 [ ( q 5 - C ~ M e s ) R u ( bipy )L] +,

(13C),863 [(~~-C~HS)RU(~~-P~~PH=CH~)(~~-P~~PH=CH~)], ( 13C),864 [(q5-C5Mes)Ru(PPri2Ph)-

(ORf)], ( 3C) ,865 [ (q -CsH5)Ru(PPh3)2S (0)2Ph], (13C) ,866 [ (q 5- CgHg)Ru( dppe) ( S =CHPh)] +, ( 13C),867 [(~~-C~H~)RUC~(PP~~)(PP~~CH~CH~OM~)], ( 13C),868 [ ( (q5-CgMeg)RuC12} 20.dibenzo-

thiophene], (13C),869 [(~~-CSH~)RU(EP~~)(S~CNCN)I, (E = P, As, Sb; 13C),870 [Ru(q6-C16H16)-

(q5-C6H6CN)]+, (13C),871 [(q6-arene)Ru(q5-CSHg)l+, (13C),872 [(q6-arene)Ru(q5-C5Meg)l+, (13C),873 (71), (13C),874 [(q6-C6H6)RuC1(Cy2PcH2cH2Pcy2)]+, (13C),875 [(q6- 1,3,5-Me3CgH3)-

(13C),877 [ ( (q6-C6Me6)Ru )2(p-SPh)31+, (13C),878 and [(q6-MesC6CHzCH2CH2~CH2CH2S)Tlu- (SCH=CH2)], (13C).879

851 G . Cox, C. Dowling, A.R. Manning, P. McArdle, and D. Cunningham, J. Organomei. Chem., 1992,438, 143. 852 L. Weber. H. Bastian, A. Mueller, and H. Boegge, Z. Naiurforsch.,B, 1992, 47, 231 (Chem. Abstr., 1992,

853 L. Weber, H. Bastian, R. Boese, H.G. Stammler, and B. Neumann, Chem. Ber.. 1992, 125, 1821. 854 L. Weber, R. Kirchhoff, H A . Stammler, and B. Neumann, J. Chem. SOC., Chem. Commun., 1992, 819. 855 L. Weber, M. Frebel, and R. Boese. 2. Anorg. Allg. Chem., 1992.607, 139. 8 5 6 M. Akita, S. Sugimoto, M. Tanaka, and Y. Moro-oka, J. Am. Chem. Soc., 1992, 114, 7581. 857 W. Trakampruk, A.M. Arif, and R.D. Emst, Organomeiallics, 1992,11, 1686. 858 U. Turpeinen, A.Z. Kreindlin, P.V. Petrovskii, and M.I. Rybinskaya, J. Organomet. Chem., 1992,441, 109. 8 5 9 M.F. Ryan, A.R. Sidle, MJ. Burk, and D.E. Richardson, Organometallics, 1992,11,4231. 860 O.J. Curnow and R.P. Hughes, J. Am. Chem. Soc.. 1992, 114, 5895. 861 WJ. Kelly and W.E. Parthun, Organometallics, 1992, 11,4348. 862 J.W. Benson and R.J. Angelici, Organometallics, 1992, 11, 922. 863 G.G.A. Balavoine, T. Boyer, and C. Livage, Organomeiallics, 1992, 11,456. 864 H.L. Ji, J.H. Nelson, A. DeCian, J. Fischer, L. SolujiC, and E.M. Milosavljevit, Organomeiallics, 1992, 11,401. 865 T.J. Johnson, J.C. Huffman. and K.G. Caulton, J. Am. Chem. Soc., 1992, 114. 2725. 866 W.A. Schenk. J. Frisch, W. Adam, and F. Precht, Inorg. Chem., 1992,31, 3329. 867 W.A. Schenk, T. Stur, and E. Dombrowski, Inorg. Chem., 1992.31.723. 868 B. de Klerk-Engels, J.H. Groen, K. Vrieze, A. M&kel, E. Lindner, and K. Goubitz, Inorg. Chim. Acia, 1992,

869 K.M. Rao, C.L. Day, R.A. Jacobson, and RJ. Angelici, Organomeiallics, 1992, 11, 2303. 870 R. hasad and U.C. Aganvala. Polyhedron, 1992.11.11 17. 871 M.R.J. Elsegood, J.W. Steed, and D.A. Tocker, J. Chem. SOC., Dalton Trans., 1992, 1797. 872 A.J. Pearson and J.G. Park, J . Org. Chem., 1992,57, 1744. 873 I. Chavez, M. Otero, E. Roman, and U. Mueller, J. Organomet. Chem., 1992,427, 369; Y.-S. Huang, S. Sabo-

Etenne. X.-D. He, B. Chaudret. K. Boubekeur, and P. Batail, Organometallics, 1992, 11,3031; D. Vichard, M. Gruselle, H. El Amouri, G. Jaouen, and J. Vaissermann, Organomeiallics, 1992, 11, 2952; D. Vichard, M. Gruselle, H.E. Amouri, G. Jaouen, and J. Vaissermann, Organomeiallics, 1992, 11, 976; S.P. Nolan, K.L. Martin, E.D. Stevens, and P.J. Fagan, Organomeiallics, 1992,11, 3947.

874 H. Adams, N.A. Bailey, P. Blenkiron, and M.J. Moms, J. Chem. Soc., Dalton Trans., 1992, 127 875 F.L. Joslin and D.M. Roundhill, Organomefallics, 1992, 11, 1749. 876 M. Gaye, B. Demerseman, and P.H. Dixneuf, J. Organomet. Chem.. 1992,424.65. 877 J.R. Dilwonh, Y. Zheng, S . Lu, and Q. WU, Inorg. Chim. Acia, 1992, 194, 99. 878 H.T. Schacht, R.C. Haltwanger, and M.R. DuBois, Inorg. Chem., 1992.31, 1729. 879 M.A. Bennett, L.Y. Goh. and A.C. Willis, J. Chem. Soc., Chem. Commun., 1992, 1180.

116,174 368).

195, 237.

Page 39: Nmr

Nuclear Magnetic Resonance Spectroscopy 39

Me

(71) 13C NMR spectroscopy has been used to study bridging ligands on polynuclear complexes of

principally Fe, Ru, and Os.880 lJ(57Fe15N) of 6.1 Hz as well as the isotope induced shift 1A34/32S

have been determined for [Fe2(C0)6(p-HNS)]. The 13C, 14N, l5N, 1 7 0 , 29Si, and l19Sn NMR spectra were recorded for this and related compounds.881 Correlations between the 2J(1wHg31P) and the corresponding halogen electronegativities have been observed for [Ru~H~~~~(C~OHSN~)(CO)~- (PPri3)2].882 NMR data have also been reported for [Fe2(C0)8l2-, ( 13C),883 [ F ~ ( C O ) ~ ( P ~ C ~ B U ~ ~ ) ] ,

(13C),884 [Fe2(C0)8(~~-CuPBut3)2], (13C),885 [ ( O C ) ~ F ~ ( N C S ~ - ~ - N = N P ~ ) ] , ( 13C),886 [(OC)3Fe-

{ (Ph2P)2CHCH2PPh2}Rh(CO)C12Rh(C0)2], (13C),887 [(tram-2,2,3,4,5-Mey 1 -Ph-phosphetane)2-

Fe(C0)3] , ( 13C),888 [Fe2(CO)6(p-C0)(pL-R2PCH2PR2)], (13C),889 [But3P3Fe2(C0)61, (13C),890

- 880 881

882

883

884 885 886

887 888

889

890

A.A. Cherkas, S.M. Breckenridge, and A.J. Carty, Polyhedron, 1992.11.1075. B. Wrackmeyer, E. Kupte, B. Distler, K. Dimberger, and M. Herberhold, 2. Naturforsch., B , 1991, 46, 1679 (Chem. Abstr., 1992, 116, 98 224). J.A. Cabeza, J.M. Femandez-Colinas, S. Garcia-Granda, V. Riera, and J.F. Van der Maelen, Inorg. Chem., 1992, 31, 1233. H. Deng and S.G. Shore, Inorg. Chem., 1992, 31, 2289: J.M. Cassidy, K.H. Whitmire, and G.J. Long, J . Organomet. Chem., 1992,427. 355. M. Birkel, J. Schulz, U. Bergswsser, and M. Regitz, Angew. Chem., Int. Ed. Engl., 1992, 31, 879. H. Deng, D.W. Knoeppel, and S.G. Shore, Organomeiallics, 1992.11.3472. M.N. Ackermann, J.W. Naylor. E.J. Smith, G.A. Mines, N.S. Amin, M.L. Kerns, and C. Woods, Organomefallics, 1992, 11, 1919. P.A. Dolby, M.M. Harding. N. Newar. and A.K. Smith, J . Chem. SOC., Dalton Trans.. 1992, 2939. D.W. Bennett, D.S. Grubisha, S.E. Cremer, and A.C. Peterson, J. Crystallogr. Specrrosc. Res., 1992, 22, 83 (Chem. Abstr., 1992, 116, 225 295). N.M. Doherty, G . Hogarth, S.A.R. Knox, K.A. Macpherson, F. Melchior, D.A.V. Morton, and A.G. Orpen, Inorg. Chim. Acta, 1992, 198-200, 257. Y.W. Li, M.G. Newton, N.K. Bhattacharyya, and R.B. King, Inorg. Chem., 1992,31, 2069.

Page 40: Nmr

40 Spectroscopic Properties of Inorganic and Organometallic Compounds

[Fe2(Co)&l-PBu5)2], ( 1 3 Q 8 9 1 [FeRu(CO)5(PPh3)(PriN=CHCHNPri)], (13C),892 [FeqRh2-

(CO) I@]-, ( l 1B),893 [F~Ru~(w-CCH~)(C~~-SM~)(~-SM~)(C~-PP~~)~(CO)~~I, (13C),894 [ F e 3 R u 5 ( ~ -

C ) ( P ~ - C ) ( ~ - P P ~ ~ ) ~ ( C O ) I ~ ] , (13C),895 CO adduct of Ferl hybrid basket-handle porphyrins, (13C, l5N, 57Fe),896 [Ru2(C0)6(p-PriNCH2CH2NPri)], (13C),8g7 [ ( RLI~(~~-$-NH~-~-NC~H~-~-M~)(CO)~ ) -

CH2CH(O)C4H602) 3, (13C),900 [Ru~(~-C~>(~-PP~~>~(CO)~I, (13C),901

(P~-H~)M(~'-C~H~)(CO)~], (M = Mo, W; 13C),898 [ R u ~ ( C O ) ~ B ~ ] - , (' 1B),899 [RU3(CO)8{ HO-

PPh2)(CO)lo(P(OMe)3 11. (13C)?02 [Rus(~ls-Cz>(p-sMe>2(~1-PPh2)2(CO)i21, (13C)1903 [RudTe2)7- (CO) 1212-, ( 13C, l25Te),9W [RUOSg(CO)15(q6-CsHg)], (13C),905 [Ru6(CO) 17B(AuPPh3)], ( I lBL9O6

[HB (pz)gRu(PPh3)( CO)( CNBut) ]+ , ( 3C),907 [Ru( CO)(N02)(02CCH3)(PPh3)21, ( 3C),908

[ ((PhNCHS)Ru(CO)(PPhg))2(p-MoS4)], (13C)?09 [(OC)4(ButNC)OsOs(CO)3(CNBut)W(CO)~], (13C),910 [Os3Ni4C(CO)15]2-, (13C),911 [OsloC( C 0 ) 2 4 [ HgFe(qS-CsHs)(C0)2 }I-, ( 13C),912 and

[os 18Hg3C2(C0)421~-, ( 13c)-913 Sterically distorted Fe-CN bonds created by 'strapped' FeIrl porphyrins exhibit a large low

frequency shift in the cyanide I5N NMR ~ i g n a l . 9 1 ~ There is a correlation between 3 I P and 57Fe

chemical shifts o f FeII porphyrins bound to phosphorus axial ligands.915 T h e 1 7 0 NMR spectra

indicate that the F e - 0 2 moiety in some haemoprotein models is highly polarisable.916 I3C NMR

spectra have shown that the proximal histidyl imidazole carbons in the deoxy form of 02-binding

haemoproteins can be observed and are sensitive probes for the electronic structure of h i ~ t i d i n e . 9 1 ~ A

linear relationship has been found between I3C chemical shifts and Eox for some mixed ligand RuI1 polypyridine c0mplexes.91~ T h e 1H NMR spectra of [Ru(bipy)2(bipy-4-R-4'-R')]2+ have been fully

89 1 892 893 894 895 896 897 898

899

900 90 1 902 903 904 905

906 907 908 909

910 911 912 913 914 915 916 917 918

M.R. Adams, J. Gallucci. A. Wojcicki, and C.J. Long, Inorg. Chem., 1992, 31, 2. MJ.A. Kraakman, K. Vrieze, K. Goubitz, and M. Numan, Inorg. Chim. Acla, 1992,202, 197. A.K. Bandyopadhyay, R. Khattar. J. Puga. T.P. Fehlner, and A.L. Rheingold. Inorg. Chem., 1992,31,465. C.J. Adams, M.I. Bruce, B.W. Skelton, and A.H. White, J. Chem. SOC., Dalron Trans., 1992, 3057. C.J. Adams, M.I. Bruce, B.W. Skelton, and A.H. White, Inorg. Chem., 1992,31, 3336. M. Landergren and L. Baltzer, J. Chem. SOC.. Perkin Trans. 2 , 1992,355. MJ.A. Kraakman. C.J. Elsevier, K. Vrieze, and A.L. Spek, Organomelallics, 1992, 11,4250. P.L. Andreu, J.A. Cabeza, A. Llamazares. V. Riera, S. Garcia-Granda, and J.F. Van der Maelen, J. Organomel. Chem., 1992,434, 123. S.M. Draper. C.E. Housecroft, A.K. Keep, D.M. Matthews, and A.L. Rheingold, J. Organomet. Chem.. 1992, 423, 241. S . Bhaduri, N. Sapre, H. Khwaja, and P.J. Jones, J. Organornet. Chem., 1992,426, C12. J.A. Cabeza, F.J. Lahoz, and A. Martin, Organometallics, 1992, 11,2754. C.J. Adams, M.I. Bruce, B.W. Skelton, and A.H. White, J. Organomel. Chem., 1992,423, 119. C.J. Adams, M.I. Bruce, B.W. Skelton, and A.H. White, J. Chem. SOC., Chem. Commun., 1992, 26. S.P. Huang and M.G. Kanalzidis, J. Am. Chem. Soc., 1992, 114, 5477. R.K. Henderson, P.A. Jackson, B.F.G. Johnson, J. Lewis, and P.R. Raithby, Inorg. Chim. Acra, 1992,198-200, 393. C.E. Housecrofi, D.M. Matthews, and A.L. Rheingold, Organometallics, 1992, 11, 2959. N.-Y. Sun and SJ . Simpson, J. Organomel. Chem., 1992,434, 341. A. Yousfi and R. Mathieu, J. Organornet. Chem., 1992, 426, C33. M. Kato, M. Kawano, H. Taniguchi, M. Funaki, H. Moriyama, T. Sato, and K. Matsumoto, Inorg. Chem., 1992, 31, 26. R.J. Batchelor, F.W.B. Einstein, R.K. Pomeroy, and J.A. Shipley, Inorg. Chem., 1992, 31, 3155. G.B. Karet. R.L. Espe, C.L. Stem, and D.F. Shriver. Inorg. Chem., 1992.31.2658. L.H. Gade, B.F.G. Johnson, J. Lewis, M. McPartlin. and H.R. Powell, J. Chem. SOC., Dalton Trans., 1992,921. L.H. Gade, B.F.G. Johnson, J. Lewis, G. Conole, and M. McPartlin, J. Chem. SOC., Dalton Trans., 1992. 3249. G . Avilts and C.K. Chang, J. Chem. SOC., Chem. Commun., 1992, 31. L.M. Mink, K.A. Christensen, and F.A. Walker, J. Am. Chem. SOC., 1992, 114, 6930. I.P. Gerothanassis, B. L m k . and M. Momenteau, J . Chem. SOC., Chem. Commun., 1992, 598. Y. YamaotoandR. ChCjjG, J. Chem. SOC., Chem. Commun.. 1992, 87. T. Matsumura-Inoue and M. Haga, Anal. Sci., 1991, 7 (Suppl., Proc. Int. Congr. Anal. Sci., 1991, Pt.

Page 41: Nmr

Nuclear Magnetic Resonance Spectroscopy 41

analysed using COSY.919 NOESY has been used to demonstrate minor groove binding of [Ru(phen)3 I2+ t o [d(CGCGATCGCG)]2.920 NMR data have also been reported for [ (NC)5Fe ( bipy(CH2)nbipy.~-cyclodextrin] Fe(CN)5I4-, ( I3C),g2l [Fe2( N0)4( p-SMe)(k-NHMe)],

(13C),922 [Fe~(SMe)2(N0)4 ] , (13C. 15N),923 (72), (13C),924 trans-[Ru(NO)(OH)(bipy)2]2+, (13c),925 [RuL2]2+, ( L = (73); l3C] ,926 [Ru~(CL~-~)(C~-P~CO~)~(NC~H~)~]+, (13C),9Z7

[RuCl2(dmg-H2)@MS0)21, ( 13C),928 [RuCl(NO)(SO)(PPh3)2], ( 13C)?29 [ Ru(PPhg)([ 1 5]aneS5)I2+,

(13C),930 [RuC12( P (Ca4-3 -S03Na)3 131, (13C),931 [RuC12(DMS0)2L], ( L = (74); 13C) ,932 ( 7 3 ,

( C ) ,933 [0s(=NHCH2CH2NH2)2(en)l2+, ( 13C),934 [ (phthaloc yaninato)Os( NCgHg)2], (13C),935

[ ( C ~ H ~ N ) ~ O S ( O C F ~ C F ~ O ) ( 0 ) 2 ] , ( l 3C) ,936 Lilfac- R u C l n B r 3 -n( D M S 0) 31. (7Li, 37Ci) ,937

- - [Ru2( 1,1',2,2'-ethanetetra(thioglycolate)) (OH&& (13C),938 and [Os([9]aneS3)2I2+, (13C).g39

H H

2 ) , 1723 (Chem. Abstr., 1992, 116,243 718). 919 Y.Z. Yousif and J.M.A. Al-Rawi, Polyhedron, 1992, 11, 1411. 920 M. Eriksson, M. Leijon. C. Hiort, B. Nordkn, and A. Gfislund, J. Am. Chem. SOC., 1992, 114, 4933. 921 R.S. Wylie and D.H. Macartney, J. Am. Chem. SOC., 1992, 114, 3136. 922 C.-N. Chau and A. Wojcicki, Polyhedron, 1992, 11, 851. 923 A.R. Butler, C. Glidewell, and S.M. Glidewell. J. Chem. Soc., Chem. Commun., 1992, 141. 924 E. Fujita, S.J. Milder, and B.S. Brunschwig, Inorg. Chem., 1992, 31, 2079. 925 T. Togano, H. Kuroda, N. Nagao, Y. Maekawa, H. Nishimura. F.S. Howell, and M. Mukaida, Inorg. Chim. Acia,

926 R. Dash and P.G. Potvin, Can. J . Chem., 1992. 70, 2249. 927 M. Abe, Y. Sasaki, T. Yamaguchi, and T. Ito, Bull. Chem. SOC. Jpn., 1992,65, 1585. 928 M.M.T. Khan and K. Venkatasubramanian, Indian J . Chem., Sect. A, 1992,31, 17 (Chem. Absir., 1992, 116,98

929 0. Heyke, G. Beuter. and I.-P. Lorenz, J. Organomet. Chem., 1992.440, 197. 930 AJ. Blake, G. Reid, and M. SchrlSder, Polyhedron, 1992, 11,2501. 931 E. Fache, C. Santini, F. Senocq, and J.M. Basset, J. Mol. Caial., 1992,72, 331. 932 D. Carrnichael, P. Le Floch, L. Ricard, and F. Mathey, Inorg. Chim. Acta, 1992, 198-200, 437. 933 M. Kitamura, M. Tokunaga, and R. Noyori, J. Org. Chem., 1992.57.4053. 934 P.A. Lay and A.M. Sargeson, Inorg. Chim. Acta, 1992, 198-200.449. 935 M. Hanack, A. Gill, and L.R. Subramanian. Inorg. Chem., 1992,31, 1542. 936 W.A. Hemnann, S.J. Eder, and W. Scherer, Angew. Chem., Int. Ed. Engl., 1992.31, 1345. 937 E. Alessio, B. Milani, M. Calligaris, and N. Bresciani-Pahor. fnorg. Chim. Acta, 1992, 194, 85. 938 M.M.T. Khan, R.I. Kureshy. and N.H. Khan, Polyhedron, 1992.11, 1053. 939 M.N. Bell, AJ . Blake, R.M. Christie, R.O. Gould. A.J. Holder, T.I. Hyde, M. SchrMer, and L.J. Yellowlees, J.

1992, 196, 57.

200).

Chem. SOC., Dalton Trans., 1992, 2977.

Page 42: Nmr

42 Spectroscopic Properties of Inorganic and Organometallic Compounds

Complexes of Group 9.-A review entitled '59Co NMR spectroscopy in coordination chemistry'

has a ~ p e a r e d . 9 ~ ~

13C NMR spectroscopy, including 2J(13CMlH), has been used to show that CO is cis to SiH2C1 or G e H 3 in compounds such as [RhH(SiH2Cl)Cl(CO)(PEt3)2] and [IrH(GeH3)C1(CO)(PEt3)2].941 NMR data have a l so been reported for [CoRh(p-H)(C0)3(pL-dppm)2]+, ( 13C),942 [ R h H 2 ( 0 N 0 2 ) - (PPh3)3], (13C, 103Rh).943 [(q5-CsMes)RhH[SC(S)H)(PMe3)], (13C),944 [RhH(PH3)Cl(CO)-

(PEt3)2]+, (13C),945 [RhHC12(PPri3)2], (13C),946 [ { (Pr5PCH2CH2PPri2)Rh )2(p-N=CHMe)(p-H)],

( 13C),g47 [(P~~P)~(OC)I~(I-H)(~-T~~:~~-CH=CH~)P~(PP~~)~]+, (13C),948 [IrH(q l:q3-CgH12)-

(dppm)], (13C),949 [MeC(CH2PPh2)31rH(q3-Cf,H9)], (13C),950 [HB(3,5-Me2pz)31rH(q3- l-endo- MeC3&)], (13C) ,951 and [ IrH(HBpz3)( CONHPm) (CO)] , ( 13C) .952

13C and 15N NMR spectroscopy has been used t o investigate cobalt-to-cyanide bonding in [cyano(YCH~)cobaloximes].~~~ The 1H and 13C NMR signals of (76) have been assigned and the

chemical shifts correlated and discussed.954 The 1H NMR spectra o f some alkyl cobalamins have

been assigned and conformational analysis performed o n the alkyl gr0ups.9~5 l H , 13C, COSY,

ROESY, HOHAHA, and inverse detection NMR spectroscopy has been used to assign the NMR

signals of a-5'-deoxyadenosyl-cobinamide and - ~ o b a l a m i n . g ~ ~ NMR data have also been reported for

(771, (13C),957 [(q5-C5H5) do{ CH2SC(CN)=C(CN)h ] [ P ( O M e ) 3 ) 1, ( 13C),958 ethyl cobalamin,

(13C)?59 ROCH2CH2-cobalamin or cobinamide, (13C),960 [(q5-C5H5) h C R l R 2 k R 3 = C R 4 h ] , ( M =

CO, Rh; 13C),961 (781, (13C),962 (79), (I3C, 59Co),963 [ ( ~ ~ - C ~ H ~ > C O ( C F ~ ) { P ( O ) ( O M e ) 2 } -

940 94 1 94 2 943

944 945 946 94 7 94 8 949 950

95 1 952

953 954 955 956 957 958

959 960 96 1 962

963

A. Yamasaki, J. Coord. Chem., 1991.24.211. E.A.V. Ebsworth and S. Moreton. J. Organomef. Chem., 1992, 439, 213. D.J. Elliot, J J . Vittal. R.J. Puddephatt, D.G. Holah, and A.N. Hughes, Inorg. Chem., 1992, 31, 1247. B.T. Heaton, J.A. Iggo, C. Jacob, H. Blanchard, W.B. Hursthouse, 1. Ghatak, M.E. Harman, R.G. Somerville, W. Heggie, P.R. Page, and I. Villax, J. Chem. SOC., Dalton Trans., 1992. 2533. W.D. Jones and A.D. Selmeczy, Organomefallics, 1992,ll. 889. A. Conkie, E.A.V. Ebsworth, R.A. Mayo, and S. Moreton, J. Chem. SOC.. Dalfon Trans., 1992, 2951. T. Rappert, J. Wolf, M. Schulz, and H. Werner, Chem. Ber., 1992, 125, 839. M.D. Fryzuk, W.E. Piers. and S.J. Rettig, Can. J. Chem., 1992, 70, 2381. P.J. Stang, Y.-H. Huang, and A.M. Arif, Organomefallics, 1992, 11,845. M.A. Esteruelas, M. Olivhn, L.A. Oro, M. Schulz, E. Sola, and H. Werner, Organomefallics, 1992, 11, 3659. C. Bianchini, K.G. Caulton, K. Folting, A. Meli, M. Peruzzini, A. Polo, and F. Vizza, J. Am. Chem. Soc., 1992, 114, 7290. P.J. Perez, M.L. Poveda, and E. Carmona. J. Chem. SOC., Chem. Commun., 1992. 8. M.J. Femandez, J. Modrego, M.J. Rodriguez, M.C. Santamaria, and L.A. Oro, J. Organomel. Chem.. 1992,441, 155. K.L. Brown and S. Satyanarayana. J. Am. Chem. SOC., 1992. 114, 5674. L.G. Marzilli, A. Gerli, and A.M. Calafat, Inorg. Chem., 1992, 31,4617. R.J. Anderson, R.M. Dixon, and B.T. Golding, J. Organomel. Chem.. 1992, 437, 227. K.L. Brown and X. Zou. J. Am. Chem. SOC., 1992, 114, 9643. A. Gerli and L.G. Marzilli, Inorg. Chem., 1992.31, 1152. M. Sakurada, M. Kajitani, H. Hatano, Y. Matsudaira, T. Suetsugu. S. Ono, T. Akiyama, and A. Sugimori, Organometallics, 1992, 11, 2337. X. Zou, K.L. Brown, and C. Vaughn, Inorg. Chem., 1992.31, 1552. K.L. Brown, L. Salmon, and J.A. Kirby, Organomelallics, 1992,11,422. M. Sakurada, M. Kajitani, K. Dohki, T. Akiyama, and A. Sugimori, J. Organomel. Chem., 1992,423, 141. M. Kajitani, H. Hatano, T. Fujita, T. Okumachi, H. Nagao, T. Akiyama. and A. Sugimori, J. Organomef. Chem., 1992.430, c64. P. Kofod, E. W e n , S. Larsen, C.H. Petersen, J. Springborg, and D.-N. Wang, Acra Chem. Scand., 1992, 46, 841.

Page 43: Nmr

Nuclear Magnetic Resonance Spectroscopy 43

(PPh2NHCHMePh)], (13C),964 [(q5-indenyl)Co(I)(C3F7)(Ph2PNHCHMePh)], (13C),965 [(q5-

indenyl)Co(I)RfL], ( 13C),966 [(q5-C5H5)( PhMe2P) CoC(=CH2)NMeC(=S)S], ( I C ) ,967 [ ( H 2 0 ) -

( 1,4,8,1 l-tetra-azacyclotetradecane)CoC(0)Me~]2+, (13C),968 trans-[ Co(en)2(OD2)(C02Et)12+,

(13C),969 [ ( O C ) 4 C o G a R 2 L ] , (13C),970 [ ( ~ - E Q N C H ~ C H ~ C H ~ G ~ ) ( C o ( C O ) 4 ) 2 1 , (13C),971

[PhMe2SiCo(CO)3(PMePh2)1, (13C, 29Si),972 [Sn2( Co(CO)4),], ( 1 1 9 5 1 - 1 ) ~ ~ ~ ~ [M-Ge { C02(p- GeMe2)(C0)61 (Co2(CO)7 11, (13C),974 [Sb( Co(C0)3[P(OPh)313 131, (13C),975 [CH2(q5-C5H4)2-

R h 2 M e q (PPri3)2], (1 3 C ) ,g76 (80), (13C) ,g7 [ RhIrMe (CO) 3 (d ppm ) 21 + , ( 3C) ,978 [ ( (2,4,6-

Me3C6H2)4porphyrin)2Rh2(CH2)4], (13C),979 [(q5-C5H5) Rh(CH2CH2CHMe)PPri3], (13C),980

- - -

[(qs-indenyl) Ah( CH2CEt=CEth=O)( PPh3)], ( 13C),981 [ Rh2( p-pz)(p-CHR)(CN B ut)4C12], ( 3C)?82 [PhRhC12(PPh3)2], (13C),983 (81), (13C),984 [ 1,4- [ M(NCMe)(Cl)(PPh3)2(cO)C=C)2C6H4], (M =

Rh, Ir; 13C),985 [RhI(S2PPh2)(COMe)(PPh3)], (13C),986 [ ((2,4,6-Me3CsH2)4porphyrin 12-

R h 2 ( C ( O ) C H 2 ] 2 ] , (13C),gg7 [(q5-C5H5)(Pri3P)RhC(0)ONCPh], (13C),988 [ R h z ( p - q : q 2 -

PhNCO)(CO)2(p-dppm)2], (13C),g89 trans-[RhCl(=C=CH2)(AsPri3)2], (13C),990 [q5- 1 -ButN-2-

MeBC3H2-3-CH2CH2CH2CH=Rh(PPh3)2], (llB),991 rrans-[RhC1(=C=CHCMe=CH2)(PPri3)21, ( 13C),992 [ Rh(NCgHg-8-SiMe2)3], (29Si),993 [(qS-C5Me4CH2CPh2OH)IrMe(CO)Ph], (13C),994

[(q5-CsMe5)(Me3P)Ir(CH2)2CHC6H90], (13C),995 [Ir(CH2Ph)(q2-C2H4)(CO)(dppe)], (13C),996

- -

964 965 966 967 968 969 970 97 1 972 913

974 975 976 977 978 979 980 98 1 982 983 984 985 986 987 988 989 990 99 1 992 993 994 995 996

C.R. Jablonski, H. Ma, and R.C. Hynes, Organometallics, 1992, 11,2796. C. Jablonski, Z. Zhou, and J.N. Bridson, J. Organomel. Chem.. 1992, 429, 379. C.R. Jablonski and Z. Zhou, Can. J. Chem., 1992.70, 2544. H. Werner, L. Xiaolan, and 0. Niirnberg, Organometallics, 1992.11.432. A. Bakac, J.H. Espenson, and V.G. Young, jun., Inorg. Chem., 1992,31,4959. D.J. Szalda. M.H. Chou, E. Fujita, and C. Creutz, Inorg. Chem., 1992,31, 4712. R.A. Fischer and J. Behm, Chem. Ber., 1992, 125, 37. R.A. Fischer, J. Behm, and T. Priermeier, J. Organomer. Chem., 1992, 429, 275. B.T. Gregg and A.R. Cutler, Organomerallics, 1992, 11,4276. J.-F. Carpentier, Y. Castanet, E. Monflier, A. Mortreux, S. Pellegrini. and F. Petit, J. Mol. Card.. 1992, 74, 465. S.K. Lee, K.M. Mackay, B.K. Nicholson, and M. Service, J. Chem. SOC., Dallon 7rans.. 1992, 1709. N.C. Norman, P.W. Webster, and L.J. Farrugia, J. Organomet. Chem.. 1992,430,205. H. Werner, M. Treiber, A. Nessel, F. Lippert, P. Betz, and C. Kriiger, Chem. Ber.. 1992, 125, 337. H. Nishiyama, T. Hirai, and K. Itoh, J. Organomel. Chem., 1992, 431, 227. F. Antwi-Nsiah and M. Cowie, Organometallics, 1992, 11, 3157. A.G. Bunn and B.B. Wayland, J. Am. Chem. SOC., 1992, 114,6917. E.B. Tjaden and J.M. Stryker. Organometallics, 1992.11, 16. M.A. Huffman, L.S. Liebeskind, and W.T. Pcnnington. Organornefallics, 1992, 11, 255. M.A. Ciriano, M.A. Tena, and L.A. Oro, J. Chem. SOC., Dalton Trans.. 1992, 2123. J. Fawcett, J.H. Holloway, and G.C. Saunders, Inorg. Chim. Acra, 1992, 202, 1 1 I . K. Hiraki, Y. Fuchita, Y. Ohta, J. Tsucsumida, and K.I. Hardcastle, J. Chem. Sac.. Dalton 7rans.. 1992, 833. P.J. Stang and R. Tykwinski, J. Am. Chem. SOC., 1992, 114,441 1. J.A. Cabeza, V. Riera, M.A. Villa-Garcia, L. Ouohab, and S. Triki, J. Organomer. Chem.. 1992, 441, 323. B.B. Wayland, A.E. Sherry, G. Poszmik, and A.C. Bunn,J. Am. Chem. Soc., 1992, 114, 1673. H. Werner, U. Brekau, 0. Niimberg, and B. Zeier, J. Organomet. Chem.. 1992,440, 389. Y.-W. G e and P.R. Sharp, Inorg. Chem., 1992,31, 379. H. Werner, P. Schwab, N. Mahr, and J. Wolf, Chem. Ber., 1992, 125,2641. G. Schmid and W. Meyer-Zaika, Z. Naiurforsch., B , 1992,47,635. T. Rappert, 0. Niirnberg, N. Mahr, J. Wolf, and H. Werner, Organometallics, 1992, 11,4156. P.I. Djurovich, A.L. Safir, N.L. Kedcr, and R.J. Watts, Inorg. Chem., 1992,31, 3195. J.A. Miguel-Garcia, H. Adams, N.A. Bailey, and P.M. Maitlis, J. Chem. Sor., Dalton Tmns.. 1992, 131. E.B. Tjaden, K.E. Schwiebert, and J.M. Stryker, J. Am. Chem. Soc., 1992, 114, 1 1 0 . B.P. Cleary and R. Eisenberg, Organomerallics, 1992, 11, 2335.

Page 44: Nmr

44 Spectroscopic Properties of Inorganic and Organometallic Compounds - [( q5-indenyl)Ir(Ph) ( C(0)Me) (PMe3)], ( 3C),997 [ N(SiMezCH2PPh2)2Ir=C= CH21, ( C) ,998 and

[I~~(~-P~)(C~-SBU~)(S~C~~)(CO)~I P(OMe)3 121, ( 193n).999

Me

Me

(79)

Me

Me

2+

U (77)

The 1H NMR spectrum of rruns-[Rh(q2-C2fi)C1(HPBu'2)2] has been analysed to yield 2J(31P31P)

of 403.2 Hz. The 13C NMR spectrum was also recorded.1ooo The l9F NMR spectrum of [Rh(q2-

C2&)(q2-C2F4)(acac)] is [AB]2X at 282 MHz, rather than A4X, as reported previously at 56 MHz.

The 13C NMR spectrum was also reported.loO1 NMR data have also been reported for [(q5- C5Me4CH2CH2CH=CH2-q2)Co(q2-C2H4)], ( 13C),1002 [(q5-C5Me4CH2CH2CH=CH2-q2)Co(q2- Me$iC=CR)], ( 3C), Oo3 [(q5-CsH4CH2CH2PBut2)Co(q2-P hC=CH)] , ( C) , I Oo4 [ (p-alky ne)-

Co2(CO)6], ( 3C).1 Oo5 [ (~M~O~CCSCCO~M~)CO~(CO)~(PP~~H)], ('3C), Oo6 [Me$ iC=CCCo3-

( C O ) 91, (' 3 C ) , loo' [(q 5- C 5 H 5) Rh (q 2 - C 2 H 4 ) S 0 2 1 , (' 3 C ) , O o 8 [(q 2 - C 2 H 4 ) -

997 T. Foo and R.G. Bergman, Organometallics, 1992.11, 181 1. 998 M.D. Fryzuk, L. Huang, N.T. McManus, P. Paglia, S.J. Rettig, and G.S. White. Organomefalfics. 1992, 11,

2979. 999 M.T. Pinillos. A. Elduque. J.A. Lbpez, F.J. Lahoz, L A . Oro, and B.E. Mann, J. Chem. Soc., Dalron Trans.,

1992,2389. loo0 B. Walther, H.-C. BClttcher, M. Scheer, G. Fischer, D. Fenske, and G. Suss-Fink, J. Organomer. Chem., 1992,

431, 307. lool 0.1. Curnow. R.P. Hughes, and A.L. Rheingold, J . Am. Chem. Soc., 1992, 114, 3153. Ioo2 K.H. Zimmermann, R.S. Pilato, I.T. Horvilth, and J. Okuda, Organometallics, 1992, 11, 3935. loo3 J. Okuda and K.H. Zimmermann, Chem. Ber., 1992, 125.637. loo4 H. Butenschi%, R.T. Kettenbach, and C. Kriiger, Angew. Chem., Inr. Ed. Engf., 1992,31, 1066. loo5 S.C. Bennett, A. Gelling, and M.J. Went, J . Organomer. Chem., 1992,439, 189; S.D. Najdi, M.M. Olmstead,

and N.E. Shore, J . Organomet. Chem., 1992, 431, 335; P. Magnus, P. Carter, J. Elliott, R. Lewis, J. Harling, T. Pitterna, W.E. Bauta, and S. Fortt, J . Am. Chem. SOC., 1992. 114, 2544; H. Lang. U. Lay, and M. Weinmann, J. Organomel. Chem., 1992,436,265; W.E. Lindsell, P.N. Preston, and P.J. Tomb, J. Organomet. Chem., 1992, 439, 201.

loo6 A.J.M. Caffyn, M J . Mays, G. Conole, M. McPartlin, and H.R. Powell, J . Organomel. Chem.. 1992,436,83. loo7 G.H. Worth, B.H. Robinson, and J. Simpson, Organomefallics, 1992, 11,501. loo8 0. Heyke and I.-P. Lorenz, Phosphorus Sulfur Silicon, 1992.71, 139.

Page 45: Nmr

Nuclear Magnetic Resonance Spectroscopy 45 - R~{N(H)C(P~)(CH~CH=CH~)CM~Z)C~], (13C),1009 [RhCl( Se(CH2CH2CH=CH2)2}]3, ( 13C),1010

[(qs-in&nyl)1r(q2-~2~)2], (13~),1011 [(q5-csHs)Ir(q2-c2~)("r12_c6;6)1, (13C),lo12 [ ~ 6 - C s ~ 6 ) -

Co(q3-CqPbH)], (13C),lol3 [(q3-R1R2CCR3CHNHR4)Co(CO)3], ( 13C, 59Co),lol4 [(q5-CsMes)-

R~(~~-SCHCHCHCHCHCHCH=CHS-~~)RII(~~-C~M~~)], ( 13C),*O15 [Rh(q3-R lCHCR2CHR3)X-

(CO)(SbPh3)2]+, (13C),1°16 [(q4-C&)Co(q5-H3C3NMeBBu')l, (l 'B, l3C),lol7 [(q4-QH5BR)Co-

(CO)2PMe], ("B, 13C),lol8 (82), ('3C, 29Si),1019 (83), (13C),1020 [Rh(q5-CsPh~)(q4-1,3-C8H12)],

borabicyclo[3.3.1]nonane(3-R-pz)~)(q4-1,5-CgHi2)1, (13C, lsN),lOza [Rh2(p-S(CH2)3NMe2)2(q5- ( 3C) ,lo21 (84), ( '3C), lm2 [ (q5-C5H5)2Rh2Pt(CO)( CF3C2CF3)(q4- 1,5-C8H 12)], ( 3C),1 023 [Rh { 9-

1,5-QH12)], (13C),1025 [M(r\4-1,5-CgH12)CH2{P(S)Ph2)2]+, (M = Rh, k 13C),1026 [Rh(q4-1,5-

C8H12)(Ph2PCH2CO2)], (13C),1027 (85), (M = Rh, k 13C),1028 [Rh(p-SPh)(q4-1 ,5-C8H12)]2,

(13C),1029 [Rhz(q4-nbd) { 2-(2'-pyridyl)-4,5-Me2phosphinine) 212+, ( l 3C),1030 [ ( (q5-CgMeg)Rh-

(PMe3) ) 2( 1 ,2-q2-3,4-q2-C ioHs)], ( 3C), lo3 [(q '-CsH5)2Rh2 { p-( 1,2,5 ,6-q2-0,3 ,4-q )-CgH9 1 I+, SiMe3

co

loo9 R.B. Cheikh, M.C. Bonnet, R. Chaabouni, and F. Dahan, J. Organornet. Chem.. 1992,438,217. l o 1 O E.W. Abel, D.G. Evans, J.R. Koe. V. Sik, M.B. Hursthouse, and M. W i d , Polyhedron. 1992.11.401. l o l l0 l2 T.W. Bell, M. Helliwell, M.G. Partridge, and R.N. P e ~ t z . Orgunomerallics, 1992,11, 1911. lo l3 G.E. Herberich, W. Klein. U. Klllle, and D. Spiliotis, Chem. Ber.. 1992, 125, 1589. lol4 O.C.P. Beers, C.J. Elsevier. J.-M. Emsting, D.J.A. De Ridder, and C.H. Stam, Organomeiallics, 1992, 11,

lol5 W.D. Jones and R.M. Chin, J. Am. Chem. Soc., 1992, 114, 9851. l0l6 C.S. Chin, S.Y. Shin, and C. Lee, J. Chem. Soc., Dalton Trans., 1992, 1323. lol7 G. Schmid and M. SchUtz. Organomeiallics, 1992.11, 1789. lol8 G.E. Herberich, T. Carsmsen, and U. Englert, Chern. Ber., 1992. 125,2351. lol9 H. Wadephl, W. Galm, H. Pritzkow, and A. Wolf. Angew. Chem., Int. Ed. Engl., 1992.31, 1058. lo20 R. Gleiter. B. Treptow. D. Kratz. and B. N u k . Teirahedron Lea, 1992,33,1733. lo21 J . Baghdadi, N.A. Bailey, A.S. Dowding. and C. White, J. Chem. Soc.. Chem. Commun.. 1992, 170. 1022 H. Bang, TJ . Lynch, and F. Basolo, Organomeiallics. 1992,11,40. 1023 R.S. Dickson, G.D. Fallon, K.D. Heazle. and MJ. Liddell. J. Orgunomei. Chem., 1992,430,221. 1024 M. Bortolin, U.E. Bucher, H. Riiegger, L.M. Venanzi, A. Albinati, F. Lianza. and S. Trofimenko,

1025 A. Polo, C. Claver, S. Castill6n. A. Ruiz. J.C. B a y h , J. Real, C. Mealli, and D. Masi, Organometallics, 1992,

1026 J . Browning, G.W. Bushnell. K.R. Dixon. and R.W. Hilts, J. Organomei. Chem., 1992,434,241. 1027 M. Onishi. K. Hiraki. M. Yamaguchi, and J . Morishita, Inorg. Chim. Acia, 1992,195, 151. 1028 IJ. Hart, Polyhedron. 1992.11.729. 1029 M.A. Ciriano, J J . P&ez-Torrente. FJ. Lahoz. and L.A. Om. J. Chem. SOC., Dafron Trans., 1992, 1831. lo30 B. Schmid, L.M. Venanzi, T. Gerfin. V. Gramlich. and F. Mathey, Inorg. Chem., 1992,31,5117. lo31 R.M. Chin.L. Dong, S.B. Duckeu. and W.D. Jones, Organomeiallics. 1992, 11,871. 1032 I.C. Quarmby and W.E. Geiger, Orga~meiulfics. 1992.11.436. 1033 R. Aumann and M. Runge, Chem. Ber.. 1992. 125.259. 1034 A.E. Skaugset. T.B. Rauchfuss, and S.R. Wilson. J. Am. Chem. Soc.. 1992. 114. 8521. lo3' R.W. Chin and W.D. Jones,Angew. Chem., Ini. Ed. Engl.. 1992.31.357.

T. Foo and R.G. Bergman. Organomeiallics, 1992,11, 1801.

3886.

Organomeiallics. 1992.11.2514.

11. 3525.

Page 46: Nmr

46

( 13c). 1036

Spectroscopic Properties of Inorganic and Organometallic Compounds

(84)

@OEt

Rh (acac)

(86) The lo3Rh chemical shift of [($-C5bX)Rh(C0)2] correlates with the rate constants of carbonyl

displacement.1037 T h e l3C N M R spectra of [(~$CsMes)M(bipy)], M = Rh, Ir, have been measured and used to discuss the electronic N M R data have also been reported for [ 1,3,5- [ ( ~ 5 -

C~H~)CO(~~~-CS~CONHCH~)}~C~H~~, (13C),1039 [(r15-CsMe~)M(r15-CsHg(C3Ph3))]+, (M = Co, Rh; 13C),1040 [ [ (q5-CsMes)Co(~fTsILl ) ) 212+, ( 3C),1041 [(q5-C5H5)CoI( CNMeNBd)(CNBut)],

(13C),1042 (87), (13C, 29Si, 59C0, (119Snj,1043 [CH2("rl5-C5H4)2M2(CO)3], (M = Co, Rh; 13C),1044 r-

[(q5-CgHg)Co(CHRECPh=CPhh)], (E = S, Se; 13C, 77Se),1045 [(q5-C5H5)Co( P ( O E t ) 2 0 ) gZnR],

(l3C),lM6 [(~~-CSM~~H)CO(PM~~)(O~CCF~)~], ( 13C),lM7 [(q5-C5H5)Co{ q5-(Pr$N)BHCHC(Me)-

CHBH(NPri2))] , ( l 'B, 13C),1048 [(q5-1,2,3-But3C5H2)Rh(q5-indenyl)]+, (2H, 13C),1049 [[qs-l- Me-2-MeC(O)C5H3}3Rh3(p-C0)3], (13C),1050 [($-substituted indenyl)Rh(CO)2], (13C),1051 [($-

C5Me5)M(PMe3)(p-CI)2Pt(Ph2PCH2)2CH2I2+, (M = Rh, Ir; 13C),1052 and ( (q5-C5Me5)M-

S2C2(CN)2], (M = Rh, Ir; 13C).1053

1036 J.F. Frazier and J.S. Merola, Polyhedron, 1992.11.2917. 1037 M. Koller and W. Von Philipsborn, Organometalfics. 1992, 11,467. 1038 M. Ladwig and W. Kaim, J. Organomet. Chem., 1992,439,79. 1039 P.D. Beer. D. Hesek. J. Hodacova, and S.E. Stokes, J. Chem. Soc., Chem. Commun.. 1992, 270. Io4O N.G. Connelly, P.M. Hopkins, A.G. Orpen, and J. Slater, J. Chem. Soc., Dalton Trans., 1992, 3303. lo41 S. Rittinger, D. Buchholz, M.-H. Delville-Desbois, J. Linarts, F. Varret. R. Boese, L. Zsolnai, G. Huttner, and

1042 1. Beaumont and A.H. White, J. Organomel. Chem.. 1992,425, C11. 1043 U. Sierneling, P. Jutzi, B. Neurnann, H.-G. Stamrnler, and M.B. Hursthouse, Organometallics, 1992, 11, 1328. 1044 H. Werner, D. Schneider, and M. Schulz, Chem. Eer.. 1992, 125, 1017. 1045 M. Sakurada, J. Okubo, M. Kajitani, T. Akiyama, and A. Sugimon, Phosphorus Sulfur Silicon 1992,67, 145. l o 4 ~ A. Looney, M. Cornebise, D. Miller, and G. Parkin, Inorg. Chem., 1992,31,989. 1047 H. Werner, F. Lippert, K. Peters, and H.G. von Schnering, Chem. Eer., 1992, 125, 347. 1048 G. Gabbert, W. Weinmann, H. Pritzkow. and W . Sieben, Angew. Chem., Int. Ed. Engl., 1992,31, 1603. 1049 B.T. Donovan, R.P. Hughes, H.A. Trujillo, and A.L. Rheingold, Organometallics, 1992, 11.64. lo50 T.E. Bitterwolf, T.L. Hubler. and A.L. Rheingold, J. Organomer. Chem., 1992,431, 199. I o 5 l A.K. Kakkar, N.J. Taylor, T.B. Marder, J.K. Shen, N. Hallinan, and F. Basolo, Inorg. Chim. Acta, 1992, 198-

1052 P.J. Stang, Y.-H. Huang, and A.M. Arif, Organomerallics, 1992, 11, 231. 1053 R. Ziessel, M.-T. Youinou, F. Balegroune, and D. Grandjean, J. Organomet. Chem., 1992,441, 143.

D. Astruc, Organometallics, 1992.11, 1454.

200, 219.

Page 47: Nmr

Nuclear Magnetic Resonance Spectroscopy 47

(87) The 3 l P NMR spectrum of [Rh2( 1-Me- l-CN-4-CNC(Me)2-C6Hg)2(dppm)2]2+ has been fully

analysed to yield J(31P31P).1054 Although lJ(13C1H) is 126 Hz for the methyl group in truns- [Rh(CO)(8-Me-quinoline)(PPh3)2]+, indicating no agostic interaction, J(1°3Rh13C) is 2 Hz for the

methyl group.1055 NMR data have also been reported for [Co2(p-dppm)2(CO)4], ( 13C),1056 [MeNC-

Pt@-dppm)2Rh (CNMe)#+, (195Pt),l 057 [ (0C)zRh 1: 2- (Ph2P)-6- (MeO)-CsH3N ) Cl] , ( 13C), 058

[Rh6(CO)14(~~2-r1~-dp~e)], (13C),1059 [(Ph3P)q(OC)2M12( p-M2(CN)4)I2+, (M1 = Rh, Ir; M2 = Pd, Pt; 13C),lo60 [RhCl(CO)(Me2PCH2CH2SiF3)2], (29Si),1061 [RhCl(CO)(PPh3)21, (13C),1062

[Rh(acac)(C0)(2-EtO- li3,2-diheterop hospholane)], (13C),1063 [ (bipy)Rh [ p-(4-MeC6H4)NNN-

(C6H4Me-4)) 2Rh(CO)(q I-dppe)] , ( 3C), loU [ Ir(C0)3F3], (13C), 065 HX adducts of [ Ir(C0)2(PH3)-

(PEt3)2]+, (13C),1066 and [Ir(o-quinone monoimide)Cl(CO)(PPh3)2], ( 13C).1067

Evidence for cobalt to cyanide x-bonding has been determined using 13C and 15N NMR spectroscopy for cyano(ligand)cobaloximes.1068 59Co NMR chemical shifts have been interpreted in

mgonally distorted cobalt(II1) c0mplexes.1~~9 The 13C chemical shifts of coordinated carboxylates in

complexes such as [Co(malonate)2(en)]- are very solvent dependent and are correlated linearly t o the

electrophilic ability of solvents.1070 Ortho-substituents on the phenyl ring of six-coordinate cobalt(II1)

tetraphenylporphyrin complexes have been shown to affect the 59Co chemical shift and linewidth. The l3C NMR spectra were also recorded.lo71 IH and I3C T I measurements have been carried out on bis(2,3-alkanedionedioximato)(PhNH~)~CoC1 complexes to study side chain mobility.1072 Solvent

-

1054 C.A. Daws, M.G. Hill, J.P. Bullock, and K.R. Mann, Inorg. Chem.. 1992,31, 2948. 1055 M. Neve, M. Ghedini, and A. Crispini, Organometallics, 1992, 11. 3324. 1056 D.J. Elliot, D.G. Holah, A.G. Hughes, V.R. Magnuson, I.M. Moser, and R.J. Puddephatt, Bull. SOC. Chim. Fr . .

1057 A.L. Balch and V.J. Catalano, Inorg. Chem., 1992,31,3934. lo5* C.G. Arena, F. Faraone, M. Lanfranchi, E. Rotondo, and A. Tiripicchio, Inorg. Chem., 1992,31,4797. 1059 S.P. Tunik, A.V. Vlasov, N.I. Gorshkov. G.L. Starova, A.B. Nikol'skii, M.I. Rybinskaya, A S . Batsanov, and

lo60 J. KO, M. Lee, M. Kim, and S.O. Kang, Bull. Korean Chem. Soc., 1992, 13, 158 (Chem. Absir., 1992, 117,

lo6I J. Gmbe, R. Martin, G. Huttner, and L. Zolnai. Z. Anorg. Allg. Chem., 1992,607, 79. loci* G.A. Korneeva, M.P. Filatova, R.V. Chekhova, V.G. Avakyan, M.M. Potarin, E.V. Shivinskii, and S.M.

lofi3 E.E. Nifant'ev, A.V. Shishin, A.T. Teleshev, and A.R. Bekker, Zh. Obshch. Khim., 1991, 61, 2481 (Chem.

1064 N.G. Connelly, T. Einig, G.G. Herbosa. P.M. Hopkins, C. Mealli, A.G. Orpen, and G.M. Rosair, J. Chem.

1065 S.A. Brewer, J.H. Holloway, E.G. Hope, and P.G. Watson, J. Chem. SOC., Chem. Commun., 1992, 1577. 1066 S. Moreton, Inorg. Chim. Acta, 1992, 202,225. 1067 P.J. Brothers, G.R. Clark, C.E.F. Rickard, and H.W. Heine, J. Organomef. Chem., 1992,433,203. l o 6 ~ K.L. Brown and S. Satyanarayana, Inorg. Chem., 1992,31, 1366. lo69 N. Juranic, J. Serb. Chem. Soc., 1991,56,723 (Chem. Abstr., 1992, 116, 267 645) . 1070 T. Taura, Polyhedron, 1992,11, 1463. lo71 H. Bang, J.O. Edwards, J. Kim. R.G. Lawler, K. Reynolds, W.J. Ryan, and D.A. Sweigart, J. Am. Chem. Soc.,

1072 S. Kinoshita. H. Yoshimura, and H. Wakita, Fukuoka Daigaku Rigaku Shuho, 1992, 22.67 (Chem. Absir.,

1992, 129, 676.

Yu.T. Struchkov, J. Organomet. Chem., 1992,433, 189.

82 273).

Loktev, Koord. Khim., 1992, 18,636 (Chem. Abstr., 1992, 117, 183 731).

Abstr., 1992, 116, 266 138).

SOC., Chem. Commun., 1992, 143.

1992. 114, 2843.

Page 48: Nmr

48 Spectroscopic Properties of Inorganic and Organometallic Compounds

effects on the 3 lP chemical shift of [PhP(CH2CH2CH2PPh2)2RhCl] have been d i ~ c u s s e d . 1 0 ~ ~ NMR

data have also been reported for [(H3N)~CoNHC(O)-2-phenanthroline]2+, (13C),1074 [Co(H2NCH2-

CH2NHCH2C02)(NH3)(en)I2+, (13C),1075 [CO(%CCH~CH~NHCH~CH~NHCH~CH~CO~)(~~)]+, (13C),1076 [Co(L-tartrate)2(en)2]-, (13C),1077 [Ni( Co(NH2CH2CH2S)2(en))2I4+, (13C),1078 trans- [ Co( Schiff s base)^]-, (13C). O79 [ Co( pyrimidine-2- thiolate), (en)3-n] (3-n)+, (13C), Io80 (8 8), (l3C),lo8I [Co( ( H ~ N C H ~ C H Z C H ~ ) ~ N } (02CCX3)2]+. (13C),1082 [ { C O ( N H ~ C H ~ C H ~ S ) ~ j4Zn4-

016+, (13C),1083 [Co{ H ~ N C H ( ~ - C S H ~ N ) ~ ) (N02)31, (13C),10s4 cis-[Co(tn)2(NCMe)2I3+, (13C),1085

[I MeC(CH2SCH2CH2NH2)2(CH2NHCH2CH2NH2) 1 Co13+, ( 13C),1086 [(CH2CHEtNH)4CoBr2]+,

( 3 C ) , [ [ ~ H ~ N H C H ~ C H ~ C H ~ N H C H ~ C H ~ N H C H ~ C H ~ N H C H ~ ~ ( M ~ ) ( N H Z ) ) C ~ ] ~ + , ( 13C),1088 [(CH2(CH2NHCH2CH2NHCH2)2C(Me)(NH2)) CoC1]2+, (13C),1089 [ [ H e C C H ( C H 2 -

N H C H ~ C H ~ N H C H Z ) ~ M ~ N O ~ ) Co(OH2)]3+, (13C),1090 trans- [Co( 1,4,7,1O-tetraazacycloocta- decane)Chl+, ( l 3C),1w1 [(~~~~~~~~~~)CO(NH~CH~CH~NHCH~CH~NHCH~CH~NH~)]+, ( %),log2

[(~alicylaldimide)CoN(CH2CH2NH2)3]~+, (33C),1093 [Co(OH2) ( HN(CH2CH2NH2)2 1 [ (H2NCH212-

CHOHl13+, (13C).1094 [ C O C I { H N ( C H ~ C H ~ N H ~ ) ~ I [(H2NCH2)2CHOH]]3+, (13C),1095 [ (C13Sn-

(ON=CMeCMe=N0)3SnC13)Co]-, (13C, 59C0, l9Sn),lm6 [Co( [N-(4-Me-2-sulfamoyl-A2-1,3,4- thiodiazolin-5-ylidene)] acetamide ]2( NCgH5)2(OH2)2], ( 13C) ,log7 A222-fuc(S)-[ Cot D-penicill-

imine)#-, (13C),1098 [Co(L)(DMSO)]2+, ( L = (89); 13Cj ,1099 [Cuq( Rh(SCH2CH2NH2)3)2( Rh2-

1992, 117.82 071).

M.D. Johnson and R J . Balahura, Inorg. Chem., 1992.31, 1832. 1073 L.D. Martin and X. Xu, Bopuxue Zurhi, 1991.8.327 (Chem. Abstr., 1992, 116.41 746).

1075 T. Yasui, T. Ama, H. Kawaguchi, K. Okamoto, and J. Hidaka, Bull. Chem. Soc. Jpn., 1992.65.1920. 1076 H. Kawaguchi, N. Maruyama, T. Ama, and T. Yasui, Bull. Chem. SOC. Jpn.. 1992,65, 175. 1077 H. Tomizawa. K. Harada, E. Miki, K. Mizumachi, T. Ishimori, and M. Nakahara. Bull. Chem. SOC. Jpn., 1992,

lo7* T. Konno, K. Okamoto, and J. Hidaka, Inorg. Chem., 1992.31, 160. 1079 F. Jwsik and T. Jursik, Proc. Conk Coord. Chem., 1991, 103 (Chem. Abstr., 1992, 116, 142 640). lo80 K. Yamanari, K. Okusako. and S. Kaizaki,J. Chem. SOC., Dalton Trans., 1992, 1615. loS1 K. Yamanari. K. Okusako, Y. Kushi, and S. Kaizaki,J. Chem. Soc.. Dallon Trans.. 1992, 1621. lo8* S.S. Massoud and M.A. Haiza. Polyhedron, 1992,11, 1443. 1083 T. Konno, T. Nagashio. K.4. Okamoto, and J. Hidaka, Inorg. Chem., 1992,31, 1160. 1084 P.V. Bernhardt, P. Comba, A. Mahu-Rickenbach. S. Stebler, S. Steiner, K. V h a g y , and M. Zehnder, Inorg.

1085 S.S. Massoud and A.M. Ismail, Polyhedron, 1992, 11, 1269. 1086 T.M. Donlevy, L.R. Gahan, T.W. Hambley, and R. Stranger.Inorg. Chem., 1992.31.4376. 1087 S. Tsuboyama. Y. Shiga, Y. Takasyo, T. Chijimatsu, K. Kobayashi. K. Tsuboyama, and T. Sakurai, J. Chem.

1088 G.A. Lawrance. M. Martinez, B.W. Skelton. and A.H. White, J . Chem. Soc., Dalton Trans., 1992, 1649. 1089 G.A. Lawrance, T.M. Manning, M. Maeder, M. Martinez. M.A. OLeary. W.C. Padinghug, B.W. Skelton, and

1090 T.W. Hambley, G.A. Lawrance, M. Maeder. and E.N. Wilkes. J. Chem. Soc., Dalton Trans.. 1992, 1283. 1091 T. Tsuchimoto and J. Fujita, Bull. Chem. SOC. Jpn.. 1992, 65, 191. 1092 Y. Yamamoto, E. Toyota, T. Kumon, and H. Sekizaki, Bull. Chem. SOC. Jpn., 1992.65. 283. 1093 E. Toyota and Y. Yamamoto. Bull. Chem. SOC. Jpn., 1992,64. 3627. log4 P. Comba. W.G. Jackson, W. M y , and L. Zipper, Helv. Chim. Acta, 1992.75. 1147. 1095 P. Comba, D.A. House. W.G. Jackson. W. Many, H. Stoeckli-Evans, and L. Zipper, Helw. Chim. Acta, 1992,

1°96 Y.Z. Voloshin, V.K. Belsky. and V.V. Trachevskii. Polyhedron, 1992.11, 1939. log7 G. Alzuet, S. Ferrer, J. Borrds. A. Castilleiras, X. Solans, and M. Font-Bardia, Polyhedron, 1992,11,2847. 1098 K. Okamoto, T. Yonemura, qnd J. Hidaka. Bull. Chem. SOC. Jpn., 1992, 65, 794. 1°99 J.D. Tan, S.E. Hudson, S.J. Brown, M.M. Olmstead. and P.K. Mascharak, J. Am. Chem. Soc., 1992, 114,

65, 2490.

Chem.. 1992, 31, 4194.

SOC., Dalton Trans., 1992, 1783.

A.H. White. J. Chem. Soc., Dalton Trans.. 1992, 1635.

75, 1130.

384 1.

Page 49: Nmr

Nuclear Magnetic Resonance Spectroscopy 49 - (SCH2CHzNH2)(L-~ysteinate))]~, (13C),1100 [ ( Rh(NH2CH2CH2Se)3)4Zn4Ol6+, (13C),l lol (901, (13C),1102 [(phen)2Rh(OH2)(nucleoside)]3+, (13C),1103 thiamin diphosphate-RhII' complexes, (13C),1104 [Rh(Mez[ 18]aneN2Sq-H)]2+, (13C),1105 truns-[Rh(N02)4C12]3-, ( 14N, 35C1),1106 and trans- [(NC)*d( p-dpprn)2RhClLlt ( 3C). O7

(88) (89) (90) The 59Co chemical shift of nitro substituted acetylacetonate complexes of CoIII is sensitive to nitro

substitution, and Ti was measured.1108 Hydrolysis products of [Rh(OH2)6]3+, such as [(H~O)~€UI(~-OH)~R~(OH~)~]~+ have been characterised by 170 and 103Rh NMR spectroscopy.11~ 103Rh NMR spectroscopy has been used to study a number of rhodium complexes such as [RhBrn(OH2)6n]3- and [Rh(NH3)6]3+. [RhF(OH2)5]*+ is at 6 10 524.1110 Mixed fluoro complexes of have been identified by 19F NMR spectroscopy.1111 NMR data have also been reported for

[( 1 ,l'-binaphthy1-2-0-2'0)4Rh2], ('3C),l l2 [RhC13(TeC4H&] and [M&(TeCqH8)2], (M =Pd, Pt; 125Te, 195pt).1113

Complexes of Group 10.-195Pt,lH shift correlation has been applied to t r u n s -

[PtH(C6F4CN)(PCy3)2].1114 15N NMR spectroscopy has been used to establish nitroso N coordination in (91). The 13C NMR spectrum was also reported.1115 195Pt chemical shift differences for a series of [ (T)~-C~HS)P~R~] complexes have been rationalised primarily on the basis of substituent

electronic pr0penies.l l6 [PtEt(ButLPCH2CH2PBub)]+ and [PtEtI 1 , ~ - ( B U C H ~ ) ~ C ~ H ~ ) ] + show

agostic methyl groups with 1J(13C1H) of 60 and 75 Hz respectively.1117 For cis-[PtPh2(CO)L], there

loo T. Konno. K.-i. Okamoto. and J. Hidaka. Inorg. Chem., 1992,31.3875. 1101 K.4. Okamoto, Y. Watanabe. T. Konno, and J. Hi&, Bull. Chem. SOC. Jpn., 1992,65,3015. 1102 H. Nishiyama, S. Yamaguchi, M. Kondo. and K. Itoh. J . Org. Chem., 1992.57.4306. 1103 R.E. Mahnken, M.A. Billadeau, E.P. Ntowicz, and H. Momson, J . Am. Chem. Soc., 1992, 114,9253. lo4 J.C. Lautens and R. Kluger. 1. Org. Chem., 1992,57,6410. 1°5 D. Collison, G. Reid, and M. S c W e r . Polyhedron, 1992, 11,3165.

l106 S.P. Khranenko. M.A. Fedotov, and A.V. Belyaev, Koord. Khim., 1991, 17,860 (Chem. Abstr.. 1992. 116, 50

1107 S. Lu and J. Selbin, Jiegou Huarw. 1992. 11.24 (Chem. Absrr.. 1992. 117, 70 017).

1109 M.C. Read, J. Glaser, M. SandstrClm. and I. Toth, Inorg. Chem.. 1992,31,4155.

256).

*08 T.G. Appleton, LA. Gahan, and P.J. Oliver, Ausr. J . Chern., 1992.45. 797.

lo M.C. Read, J. Glaser. and M. Sandstrllm, J. Chem. Soc., Dalton Trans., 1992,233.

l2 M.C. P m n g and J. Zhang. Tetrahedron Lerr., 1992,33,5987.

l4 S . Hintennann, P.S. Pregosin. H. RUegger, and H.C. Clark, J. Organomet. Chem.. 1992,435, 225.

l6 L.D. Boardman and R.A. Newmark. Magn. Reson. Chem., 1992,30,481.

G.A. Kirakosyan and V.P. Tarasov, Koord. Khim., 1992.18.86.

l1 l 3 T. Kemmitt. W. Levason, R.D. Oldroyd, and M. Webster, Polyhedron, 1992.11.2165.

1115 W. Mossi, A.J. Klaus, and P. Rys, Helv. Chim. Acra, 1992, 75, 2531.

N. Cam, L. Mole, A.G. Orpen. and J.L. Spencer, J . Chem. Soc., Dalton Trans., 1992,2653.

Page 50: Nmr

50 Spectroscopic Properties of Inorganic and Organometallic Compounds

is a correlation of PKa of the tertiary phosphine with lJ(l95Pt3lP) and 'J( 195Pt13C(0)).1118 Pt-H-

N interactions have been investigated by measuring lJ(195PtlH) for the N H proton in (92) as 72 Hz.

15N filtered and 2D N O E S Y 1H NMR spectra were reported.1119 Parameters have been derived

which were used to interpret 19F chemical shifts in [FC&Pt(PR3)2X] in terms of cT-only Pt-X

bonds.1120 NMR data have also been reported for [(qS-C~Hs)Pt(SiMe20SiMe3)2H], (13C, 29Si,

195Pt),1121 [ P t 3 ( p z - d p p m ) 3 ( ~ 3 - H ) ( P ( O R ) 3 ) ] + , ( 195Pt),1 122 rrans-[PtH(HNS02CF3)(PEt3)2], (15N),1123 [MeNi{ 1-S-2-(MeS)-CgH4)2]-, (13C),1124 [ ((tmeda)Li)2Ni(CqH8)2], (13C),1125 [PhNi-

(Ph2PCHCMeO-P,C)(CH2PPri3)], (13C),1126 rrans-[Ni(CH2R)X(PMe3)2], (13C),l 127 [(tmeda)- N i e C C 6 H 103, (13C) ,l 128 (93), ( 3C), Il29 [ (Pri2PCH2CH2PPri2) Ni(CH=CH)S n [ CH(SiMe3)2 ) 21,

(l3C),Il3O [1,3-{ frans-NiBr(PMe3)2)2C6H4], (13C),1131 [ 1 { trans-NiBr(PMe3)21-3- (NiBr(PMe3)-

q3-CH2 ) C&l4], ( 3C), 132 [ (q5-C5H5)3Ni3 (C6I-k$Me-2)3], ( 3C) , I 33 (94), ( I3C), 1134 [ (q5-CsH5)-

Ni(CO)Ga(CH2But)2(THF)], [(q5-CsH5)Ni(CO)In(CH2CH2NM e 2121, ( 1 3 C ) , 1 1 3 5 [ [ B u t -

n - -

kCH2CH2N(But)de I nNi(C0)4-,], ( 3C, 5N, l 7 0 ) , * 136 ( 93 , ( l3C) . I 37 [ (Me2NCS 2)Pd(PEt3)-

{ C H ( C F 3 ) C H 3 I], (13C),1138 [MeN(CH2CH2NMe2)2PdPh]+, (l3C),I139 (96), (13C),1140 (97),

( l3C) , l l4 l [3,5-Me2-2-PhN=CHC&PdBr]2, ( l3C) ,1I42 (98), (l3C),1143 [ (3- th iophenyl -2-

C(NMe2)=Se)PdC112, (13C),1144 [Pd(C=CR)2(PMe3)2], ( 13C),1145 [C1(Et3P)2M1C=CM2(PEt3)2C1],

- I l l 8 R. Romeo, G. Arena, and L.M. Scolaro. Inorg. Chem., 1992,31,4879.

l9 P.S. Pregosin, H. Ruegger, F. Wornbacher, G. Van Koten, D.M. Grove, and I.C.M. Wehman-Ooyevaar. Magn. Reson. Chem., 1992.30, 548. R.S. Drago, N.M. Wong, and D.C. Ferris, J. Am. Chem. SOC., 1992, 114,91.

121 L.D. Boardman, Organometallics, 1992. 11,4194. 122 R. Ramachandran, D.4 . Yang. N.C. Payne, and R.J. Puddephatt, Inorg. Chem., 1992.31.4236.

1123 D.R. Schaed and C.R. Landis, Orgunomefallics, 1992,11,2024. 1124 D. Sellmann, H. Schillinger, F. Knoch, and M. Moll, Inorg. Chim. Acta, 1992, 198-200, 351. 1125 H.-0. Frtihlich, R. Wyrwa, and H. Gtlrls, J. Organomef. Chem., 1992,441, 169.

126 K.A.O. Starzewski and L. Born, Organometallics, 1992,11,2701. T.R. Belderrain, D.A. Knight, D.J. Irvine, M. Paneque, M.L. Poveda, and E. Carmona, J. Chem. SOC., Dolfon Trans., 1992, 1491.

1128 R. Fischer, D. Walther, G. Bdunlich, B. Undeutsch, W. Ludwig, and H. Bandmann, J. Organomef. Chem., 1992, 427, 395.

129 J. Cilmpora, E. Carmona, E. Gutitrrez. P. Palma, M.L. Poveda. and C. Ruiz, Organomefallics, 1992, 11, 11. 130 C. Pluta, K.R. Poerschke, I. Ortmann, and C. W g e r , Chem. Ber., 1992, 125, 103.

1131 J. Cilmpora, E. Gutikrrez, M.L. Poveda, C. Ruiz, and E. Carrnona, J. Chem. Soc., Dullon Trans.. 1992, 1769. 1 3 2 J. C h p o r a , E. Gutitrrez, A. Monge, M.L. Poveda, and E. Carmona, Organometallics, 1992, 11, 2644. 133 A. Pietnykowski and S. Pasynkiewicz, J . Organomef. Chem., 1992,440,401. 134 D. Sellmann, W. Prechtel, F. Knoch, and M. Moll, Organomefallics, 1992, 11. 2346.

1135 R.A. Fischer, J. Behm, E. Herdtweck. and C. Kr0nseder.J. Organomef. Chem., 1992,437, C29. 1136 W.A. Herrmann, M. Denk, J. Behm. W. Scherer, F.-R. Klingan. H. Bock, B. Solouki, and M. Wagner, Angew.

Chem.. In[ . Ed. Engl.. 1992, 31, 1485.

D.L. Reger, D.G. Garza, and L. Lebioda, Organornefollics, 1992, 11,4285.

Commun., 1992, 1420. M. Ghedini. F. Neve, D. Pucci, E. Cesarotti, and M. Grassi, J. Organomef. Chem., 1992,438, 343.

Trans., 1992, 3119.

137 A.P. Wells and W. Kitching, Organomefallics, 1992, 11, 2750.

1139 B.A. Markies, P. Wijkens, H. Kooijman, A.L. Spek, J. Boersma, and G. van Koten, J. Chem. Soc., Chem.

1141 S. Chakladar, P. Paul, A.K. Mukherjee, S.K. Dutta, K.K. Nanda. D. Podder. and K. Nag, J. Chem. Soc., Dalfon

1142 J. Albert, R.M. Ceder, M. Gbmez, J. Graneli, and J. Sales, Organomefallics, 1992, 11, 1536. 1143 P. Espinet, M.Y. Alonso, G. Garcia-Herbosa, J.M. Rarnos, Y. Jeanin. and M. Philoche-Levisalles, Inorg. Chem.,

1992, 31, 2501. H. Mizuno, M. Kita, J. Fujita, and M. Nonoyama, Inorg. Chirn. Acta, 1992, 202, 183.

1145 H.-F. Klein, B. Zettel, U. Fltlrke, and H.-J. Haupl, Chem. Ber.. 1992, 125, 9.

Page 51: Nmr

Nuclear Magnetic Resonance Spectroscopy 51

( M I , M 2 = Pd, Pt; l3C),l 146 [trans- (PdCl(PEt3)2} C(=NPh)C(=NPh)C=C( Pt(PEt3)2Cl] -trans], (13C),1147 [ (b ipy)Pd( C(O)Me}(CO)]+, (13C),1148 [PdI(C(O)Me](b ipy) ] , (13C),1149 trans-

[Pd{ C ( 0 ) A r ) (P(O)(OEt)2)(PMe3)2], (13C),l150 [M{C(NHR)(NHCH2CH[OEt]2)]4]2-, (M = Pd, Pt;

13C),1151 [(Cy2PCH2CH2PCy2)Pd(SiMe2H)2], (13C),1152 [PtMe3(SSPPh2)]2, (195Pt),1153

[PtMe2{ (Ph2PCH2)2C=CH2)], ( 13C, 195Pt),1 154 [PtMe2Br(SMe2)(C$LtCHNCH2Ph)], ( 13C),1155

[ P t M e 2 { R 1 C ( O ) C H C ( O ) R 2 ) ] 2 , (13C),1156 [ P t 2 M e z ( ~ - C s H 4 P P h 2 ) 2 ] , (13C, 195Pt),1157 trans-

[MePt(=CCH2CH2CH20)(PPh3)2]+, (13C),115s [Pt(3-R1-4-R2-C6H3CH2CH2)C1(6-MeC5H3N-2- CH=NPh)(q2-C2H4)1, ( 3C), 159 [Pt(CHzCMe2Ph)( CH2Ph)(dppe)], ( 3C), 160 (99), ( l3C) , l l 6

[(q4-1,5-C8H12)Pt( CHClP(O)(OMe)2}Cl] , (13C),1162 (loo), (‘3C, 15N, l95Pt),1163 cis-[PtCl-

(C7F1 l)(PPh3)2], ( 3C), 164 cis- [Ph2Pt( CO)( 5-H2N-quinoline)], ( l3C), 165 cis- [Pt ( C 6 h C H ( Me)-

NMe2-(R)-C,N ) 23, ( 3C), 66 [PtX2( C N ) ( C6H3( CH2NMe2)2-2,6) ], ( C), 67 ( 10 I), ( l3C),

[2,5- ( trans-PtC1(PBun3)2)2-thiophene], (13C),l 169 [Pt(CgFg)F(Bu5PCH2PBu’;!)], ( 13C, 195Pt),1 170

[ P t ( C r CP h)2( PMe2Ph)2], ( C), [ Pt(PB un 3)2C=CC=CC=C] n , ( 13C), 1 1 7* [ Pt( =C7Hg) Br- (PPh3)2], (13C, 195Pt),1 173 [(Cy2PCH2CH2PCy2)Pt(SiH2SiH3)2], (13C),1174 [(Ph3P)2Pt { 1,2- - ( M e ~ S i ) 2 C 6 H 4 )I. (13C),l 175 [Pt(Me2GeCH2CH2GeMe2)(NCgHg)2(PPh3)2], ( 3C>, 76 [Pt(2,9-

-

1146 K. Onitsuka, T. Joh, and S. Takahashi, Bull. Chem. SOC. Jpn., 1992,65, 1179. 1147 K. Onitsuka, T. Joh, and S. Takahashi, Angew. Chem., Int. Ed. Engf., 1992.31, 851. 1148 M. Brookhart, F.C. Rix, J.M. DeSimone, and J.C. Barborak. J. Am. Chem. SOC.. 1992, 114, 5894.

149 B.A. Markies, M.H.P. Rietveld, J. Boersma. A.L. Spek, and G. van Koten, J. Organomet. Chem., 1992, 424, c12. H. Nakazawa, Y. Matsuoka, I. Nakagawa. and K. Miyoshi, Organomefallics, 1992, 11, 1385. W.P. Fehlhammer. T. Bliss, J. Fuchs, and G. Holzmann, Z. Naturforsch., B, 1992.47, 79.

52 Y. Pan, J.T. Mague, and M.J. Fink, Organomefallics, 1992, 11, 3495. 153 S. Chaudhury, V.K. Jain, V.S. Jakkal, and K. Venkatasubramanian, J. Organomet. Chem., 1992,424, 115. 154 B.L. Shaw and J.D. Vessey, J. Chem. SOC., Dalton Trans., 1992, 1929. 155 M. Crespo, M. Martinez, J. Sales, X. Solans, and M. Font-Bardia, Organometallics, 1992, 11, 1288.

5 6 K. Kite and A.F. Psaila, J. Organomef. Chem.. 1992,441. 159. 1157 M. Lin, K.A. Fallis, G.K. Anderson, N.P. Rath, and M.Y. Chiang, J. Am. Chem. SOC., 1992, 114, 4687. 1158 P.J. Stang and Y.-H. Huang, J. Organomet. Chem., 1992, 431, 247.

159 V. De Felice, A. De Renzi, D. Tesauro. and A. Vitagliano, Organometallics, 1992, 11, 3669. B.G. Ankianiec, D.T. Hardy, S.K. Thomson, W.N. Watkins, and G.B. Young, Organometallics, 1992, 11,2591. J.O. Hoberg and P.W. Jennings, Organometallics, 1992, 11. 3452.

162 G. Ferguson, J.F. Gallagher, A.J. McAlees. R. McCrindle, J. Phillips, and G.J.B. Williams, J. Organomet. Chem., 1992,430, C23.

163 C. Allevi. L. Garlaschelli, M.C. Malatesta, F. Ganazzoli, and A. Albinati, Gnzz. Chim. ffal., 1992, 122, 215. (Chem. Abstr., 1992, 117, 212 707).

1164 P.P.K. Claire, C.J. Jones, J.A. McCleverty, P.L. Coe, and M.G.B. Drew, J. Organomel. Chem.. 1992, 424, 105.

1165 L.M. Scolaro, G. Alibrandi, R. Romeo, V. Ricevuto, and S. Campagna, Inorg. Chem., 1992.31, 2074, 1 1 6 6 I.C.M. Wehman-Ooyevaar. D.M. Grove, H. Kooijman, P. van der Sluis, A.L. Spek, and G. van K0ten.J. Am.

1167 J. KO, M. Kim, S. Kim, and Y. Shin, Bull. Korenn Chem. SOC., 1992, 13, 135. 1168 G.S. Hanan. J.E. Kickham, and S.J. Loeb, Organometaflics, 1992, 11, 3063. 1169 S. Kotani, K. Shiina, and K. Sonogashira, J. Organomel. Chem.. 1992, 429, 403.

1171 S. Yamazaki, Polyhedron, 1992, 11, 1983. 1172 J. Lewis, M.S. Khan, A.K. Kakkar, B.F.G. Johnson, T.B. Marder, H.B. Fyfe, F. Wittmann, R.H. Friend, and

1173 Z. Lu, K.A. Abboud, and W.M. Jones, J. Am. Chem. Soc., 1992, 114, 10991. 1174 M.J. Michalczyk, J.C. Calabrese, C.A. Recatto, and M.J. Fink, J. Am. Chem. Soc., 1992, 114. 7955.

* 1 7 ~ J. Barrau, G. Rima, V. Cassaro, and J. SatgC, Inorg. Chim. Acta, 1992, 198-200, 461.

Chem. Soc., 1992, 114, 9916.

170 P. Hofmann and G. Unfried, Chem. Ber., 1992, 125,659.

A.E. Day, J. Organomel. Chem., 1992, 425, 165.

175 M. Tanaka and Y. Uchimaru, Bull. SOC. Chim. Fr . , 1992, 129, 667.

Page 52: Nmr

52 Spectroscopic Properties of Inorganic and Organometallic Compounds

Me2-l,10-phen)(C1)(SnMe2Cl)(q2-alkene)], (l19Sn, 195Pt),1177 [PtBr(SnBrMe2)( 1 -CloHgNMe2-8- CJV)21, (13C, 119Sn),1178 and [Pt(SnCl3-,Brn)5]3-, (119Sn).1179

n pJNyN)rJ S‘ 1‘s

L

(acac) (acac)

(97)

(99) One- and two-dimensional ‘H, I3C, and 3lP NMR studies on Pd(1I) complexes containing q3-

CloH15 or q3-C4H7 and S(-)BINAP have been reported. Use was made of NOESY to determine the

177 V.G. Albano, C. Caskllari, V. De Felice, A. Panunzi, and F. Ruffo, J . Orgammer. Chem., 1992,425, 177. 1178 I.C.M. Wehman-Ooyevaar, D.M. Grove, P. de Vaal, A. Dedieu, and G. van Koteii, fnorg. Chem., 1992, 31,

1179 K.R. Koch, Magn. Reson. Chem., 1992.30, 158. 5484.

Page 53: Nmr

Nuclear Magnetic Resonance Spectroscopy 53

three-dimensional structures.1180 NMR data have also been reported for [(R3P)2Ni(q2-XC=CR)],

( l3C) , I l8 l [Ni(CzPh4P2)(PR3)2], (13C),1182 [(OC)3Ni (q I-C~~-(P~~~NCP)~)N~(CO)~], (13C),1183

[ N i ( P C y 3)2( l 3 CO 2)], ( 3C), 84 [ (But2P C H 2 P B u 5) N i ( q 2 - O=C =C P h 2)], ( C) , 85 ( 102),

[Pd2C12( P(2-pyridy1)j) 2(p-Me02CC=CC02Me)], (13C),1187 [ ( (R2PCH2CH2PR2)Pd 12-

( P - C ~ H ~ ) ] , (13C),1188 [Pt(q2-C2H4)( P(OCgH40Me-2)3 }2], (Ig5Pt),l 189 [(Ph3P)Pt(q2-CH2=CH-

SiMe2)20], (I3C),ll9O [PtC12(q2-CH2=CHR1)(R20C6H4CH=CHC5H4N)], (l3C),Il9l [(PhgPhPt-

(q2-2-MeC&L+C=CC=CPh)], ( 13C),I1g2 [Pt2(dba)g], (195Pt),1193 [Pt3(02CCF3)(p3-q2-Me02CC=C- C 0 2 M e ) ( p - d p p m ) 3 ] + , (195Pt),1194 [Ni(q3-MeCHCMeCHOSiMe2But)C1]2, (13C),1195 (103), (13C),1196 [ ( q s - C ~ H s ) N i ( q3-CH2CHC(SiMe3)2) ] , (13C),1197 [(q5-1,2,4-But3CsH2)(q3- 1,2,4-

Bu$C5H4)Ni], (13C),11g8 [ (2,2'-Me2-6,6'-(PPh2)2-biphenyl) M(q3-C3H4R)]+, (M = Ni, Pd, Pt;

13C),1199 [ (q3-(MeC02)C6Hg)PdC1]2, (13C),1200 [(q3-(Me02C)C6Hg)Pd(03SCF3)]2, (13C),1201

[(q3-2-MeC3H4)Pt(PMe3)2]+, (13C),1202 [ (q3-CH2C(=NEt2)CH2)Pt(PPh3)2]+, (13C),1203 [ ( ( 2 6

Me2CgH3-diazabutadiene)Ni}2( 02(1,4),q4( 1-4)-C4H4)], (13C),1204 (104), ("B, l3C),I2O5 (105),

(13C),1206 [(q5-C5Me5)2Ni2(CO)2], (I3C),l2O7 [(q5-C5H5)Ni(t72-SPR2)], (13C),1208 [M3(CN)(p3-

C O ) ( ~ - d p p m ) 3 ] + , ( M = Pd, Pt; I3C),l2O9 [P&(p3-C0)4(PMe3)7] , ( 13C),1210 [Pt3(p-CNBut)3-

l l80 C.J. Ammann, P.S. Pregosin, H. Riiegger, A. Albinad, F. Lianza, and R.W. Kunz, J. Organomef. Chem.. 1992,

1181 T. Bartik, B. Happ, M. Iglewsky, H. Bandmann, R. Boese, P. Heimbach, T. Hoffmann and E. Wenschuh,

1182 G. Sillett, L. Ricard. C. Patois, and F. Mathey, J. Am. Chem. Soc., 1992, 114, 9453. 1183 1. Grobe, D. Le Van, M. Hegemann, B. Krebs, and M. Llge,Angew. Chem.. I n f . Ed. Engf., 1992, 31,95. 11g4 P. Mastrorilli, G. Moro, C.F. Nobile, and M. Latronico, Inorg. Chim. Acfa, 1992, 192, 189.

423, 415.

Organometallics, 1992, 11, 1235.

P. Hofmann. L.A. Perez-Moya, 0. Steigelmann, and J. Riede, Organomeraflics. 1992, 11, 1167. L. El Firdoussi, A. Benharref, S. Allaoud, A. Karim, Y. Castanet, A. Mortreux, and F. Petit, J. Mol. Coral., 1992, 72, L1.

1187 Y. Xie, C.-L. Lee, Y. Yang, SJ. Rettig, and B.R. James, Can. J. Chem., 1992,70,751. 1188 J. Krause, W. Bonrath, and K.R. Ptlrschke. Organometaflics, 1992.11, 1158.

M.J. Baker, K.N. Harrison, A.G. Orpen, P.G. Pringle, and G. Shaw,J. Chem. Soc.. Dalton Trans., 1992, 2607. I l g 0 G. Beuter, 0. Heyke, and I.P. Lorenz. Z. Naturforsch.. B. 1991,46, 1694 (Chern. Absfr., 1992, 116. 129 224).

J.P. Rourke, F.P. Fanizzi, D.W. Bruce, D.A. Dunmur, and P.M. Maitlis, J. Chem. Soc., Dalton Trans., 1992, 3009. N.L. Pocard. D.C. Alsmeyer. R.L. McCreery, T.X. Neenan, and M.R. Callstrom. J . Am. Chem. Soc., 1992, 114, 769. L.N. Lewis, T.A. Krafft, and J.C. Huffman, Inorg. Chem., 1992,31. 3555.

11g4 M. Rashidi, G. Schoettel. J.J. Vittal, and R.J. Puddephatt, Organomeraflics, 1992, 11, 2224. 1195 B.A. Grisso, J.R. Johnson, and P.B. Mackenzie, J. Am. Chem. Soc., 1992, 114. 5160.

R. Taube and S. Wache, J. Organomel. Chem., 1992,428,431. * g7 S. Pasynkiewicz. M. Poplawska, and R. Mynott, J . Organomef. Chem., 1992,429, 135. 11g8 J.J. Schneider and C. Kriiger, Chem. Ber., 1992. 125, 843. 1199 A. Knierzinger and P. Schtinholzer, Helv. Chim. Acra, 1992.75, 121 1. I2Oo F. Btlkman, A. Gogoli, L.G.M. Petlersson, 0. Bohman, and H.O.G. Siegbahn. Organometallics, 1992, 11,

1201 K.L. Granberg and J.-E. Blckvall, J. Am. Chem. Soc., 1992. 114, 6858. I2O2 F. Ozawa, T. Son, S. Ebina, K. Osakada, and A. Yamamoto, Organomefalfics, 1992, 11, 171. 1203 J.-T. Chen,T.-M. Huang, M.-C. Cheng, Y.-C. Lin, and Y. Wang, Organometaflics. 1992, 11, 1761. I2O4 S. Michaelis, K.R. Porschke, R. Mynou R. Goddard, and C. Kriiger, J. Organomef. Chem.. 1992,426. 131. 1205 H. Schulz, H. Pritzkow, and W. Siebert, Chem. Ber., 1992. 125,993. 1206 P. Bergerat, J. Blumel, M. Fritz, J. Hiermeier, P. Hudeczek, 0. Kahn. and F.H. Ktihler, Angew. Chem., In [ . Ed.

1207 N.M. Boag, A J . Goodby, and R. Quyourn, Organornefallics, 1992, 11,3135. 1208 E. Lindner, A. Northdurft, R. Fawzi. and C. Maichle, J. Organomer. Chern., 1992,435,213. I2O9 M.C. Jennings, R.J. Puddephatt, Lj. ManojloviE-Muir. K.W. Muir, and B.N. Mwariri, Organornefalfics, 1992,

1784.

Engf.. 1992, 31, 1258.

11,4164. H.-F. Klein, M. Mager, U. Fltlrke, and H.-J. Haupt, Organomerallics, 1992, 11,3915.

Page 54: Nmr

54 Spectroscopic Properties of Inorganic and Organometallic Compounds

(CNBut)3], (13C),1211 [Pt~Au(p-SO~)(PCy~)~(CNxylyl)~l+, (195Pt),1212 and [Pt3Hg2(PR3)3X2], ( 195pt). 121 3

$pdc,

2

Me I

Me

(104)

(105)

NOESY has been used to determine the conformation of [(4-XC6H4kHOCH2CR1R2hH)MC12- (PPh3)], M = Pd, Pt. The 13C NMR spectra were also re~orded.121~ The products of the reaction of

cis-[Pt(NH3)2(OH2)2l2+ with L-(+)-cystathionhe and seleno-L-methionine have been characterised

using 'H, l3C, 77Se, l95Pt, 13C( 1HJ DEPT, COSY and NOE difference NMR spectroscopy.1215

Complex formation bet ween [ PtCk] 2-, cis- [ P t (NH3)2C12], [ Pt(en)C12], and [ Pt(bipy)C12] with

polyaziridine has been investigated using 14N and 195Pt NMR spectroscopy.1216 1H and l3C NMR

spectroscopy has been used to determine the solution conformations for cis-[Pt(NHg)2(guano-

sine)2l2+.I2l7 'HI l5NJ inverse detection has been applied to the products of cis-[Pt( 15NH3)2C12]

and guano~ine-5'-rnonophosphate.~~~~ The effects of trans-[Pt(NH3)2C12] on hydrogen bonds

between guanosine and cytidine have been studied using 1H and 13C NMR spectroscopy.1219

2J( 195Pt13C) can differentiate between cis- and rran~-[Pt(NCR)2C12].12~~ NMR data have also been

reported for [Ni(7,16-Et2-5,6,7,8,9-pentahydrodibenzo[b,i][ 1,4,8,1 l]tetraazacyclotetradecane)X], ( 13C),1221 [Ni( 3,10-(4-RC6H4N2)-4,9-Me2-5,8-diazadodeca-2,11 -dione-3,9-diene)], ( 13C),1222

(106), (13C),1223 (107), (13C),1224 (lOS), (13C),1225 (109), (l3C),l226 (l lO), (13C),1227 and (11 l) ,

121

1212 C.M. Hill, D.M.P. Mingos, H. Powell, and M.J. Watson, J . Organomet. Chem.. 1992, 441, 499. 1213 A. Albinati, K.H. Dahmen, F. Demartin. J.M. Forward, C.J. Longley, D.M.P. Mingos, and L.M. Venanzi,

1214 A. Albinati, F. Lianza, H. Berger, C. Arz, and P.S. Pregosin. Inorg. Chim. Acta, 1992, 198-200, 771. 1215 J.A. Beaty, M.M. Jones, and L. Ma, Chern. Res. Toxicol., 1992, 5,647 (Chem. Absrr., 1992, 117, 154 110). 1216 L. Barbosa and A. Von Zelewsky, Inorg. Chem., 1992,31,2300. 1217 D. Ding, J. Hu, and X. Han, Jiegou Huaxue, 1991, 10,282 (Chem. Abstr., 1992, 116, 187 591). 1218 S.J. Bemers-Price, T.A. Frenkiel, J.D. Ranford, and P.J. Sadler, J. Chem. SOC., Dalron Trans., 1992, 2137. 1219 Y. Dong, S. Zhu. W. Tang, and A. Dai, Huaxue Xuebao, 1991,49,975 (Chem. Abstr., 1992, 116, 33 306). 1220 D. Fraccarollo, R. Bertani, M. Mozzon, U. Belluco, and R.A. Michelin, Inorg. Chim. Actu, 1992,201, 15. 1221 M. Hashimoto and K. Sakata, J. Hererocycl. Chem., 1992,29,493 (Chem. Absrr., 1992, 117,82 402). 1222 M. Fujiwara, N. Ezoe, and H. Wakita, Fukuoka Daigaku Rigaku Shuho, 1991,21, 127 (Chem. Absir., 1992,

1223 J.H. Cameron and S. Graham, J. Chem. Soc., Dalton Trans., 1992, 385. 1224 J.H. Cameron, H.B. Harvey, and I. Soutar, J. Chem. SOC., Dalton Trans., 1992, 597. 1225 J.H. Cameron, H.B. Harvey, and I. Soutar. Inorg. Chim. Acm, 1992,192,253. 1226 C.K. Chang, W. Wu, S.-S. Chem, and S.-M. Peng, Angew. Chem., Int. Ed. Engl. , 1992, 31, 70. 1227 B. Korybut-Daszkiewicz, J. Chern. SOC., Dalton Trans., 1992, 1673.

A.D. Burrows, H. Fleischer, and D.M.P. Mingos, J. Organomel. Chem., 1992,433, 31 1.

Inorg. Chem., 1992,31, 2223.

116, 14 715).

Page 55: Nmr

Nuclear Magnetic Resonance Spectroscopy 55

(M = Pd, Pt; 13C).12*8 Me

N O /o: N >N(

O2N 2 Me

Me Y NMeCH2Ph Me Me

.H.

CI2 M y \ M ' N \ G M C \ / \ / 12

H25C12 ? ? C12H25

? J N H25C12 0 C12H25

(1 11) The l95Pt N M R spectra of five platinum metalloporphyrin complexes have been reported and the

shifts discussed in terms of d-n* backbonding between the filled P t 5d orbitals and empty porphyrin n*(eg) 0 r b i t a l s . l ~ ~ 9 N M R data have also been reported for [Ni(2,2,3,9,10,10-Me6-5,7-dioxa-6- hydro- 1,4,8,1l-tetraazacyclotetradeca-3,8,1 I , 13-tetraene)], (13C),1230 [ M ( (SC&4-2-N=CHC5H4- q5>Fe(q5-C5H5))2], ( M = Ni, Pd, Pt; 13C),1231 [ M { NH~CH~CH~CH(NHBOC)CH~NHB~C 12C121,

( M = Pd, Pt; 13C),1232 [Pd(3-Phpz)2C12], (13C),1233 [M{4,4'-(RC02)2bipy) Clz], ( M = Pd, Pt;

1228 I. Gurol, V. Ahsen, and 0. Bekaroglu, J . Chem. SOC.. Dalton Trans.. 1992, 2283. 1229 L.R. Milgrom, RJ. Zuurbier. J.M. Gascoyne, D. Thompsett, and B.C. Moore, Polyhedron, 1992, 11, 1779. 1230 S.S. Chen. R.S. Woosley, and E.G. Vassian, Inorg. Chim. Acra, 1992, 191, 91. 1231 T. Kawamoto and Y. Kushi, J . Chem. Soc.. Dofton Trans., 1992, 3137. 1232 J. Altman, E. Schuhrnann, K. Karaghiosoff, E. Eichin-Karaghiosoff. and W . Beck, Z. Narurforsch., B , 1991.46,

1233 M.T. Alonso, 0. Juanes, J. de Mendoza, and J.C. Rodriguez-Ubis, J . Organomel. Chem., 1992,430,335. 1473 (Chern. Abar . , 1992, 116, 151 122).

Page 56: Nmr

56 Spectroscopic Properties of Inorganic and Organometallic Compounds

13C),lU4 [ { 2-[2,4-(MeO)2C,jH3]phen)PdC12], (13C),1U5 Pd and Pt containing tetrapyridinotetraaza-

porphin cationic dye, (13C),1236 [M2X2(pMe2Ppy)2], (13C),1237 [MXzL], { M = Pd, Pt; L = (1 12);

13C),1238 (113), (13c),1239 (114), (13C),1240 (115), (M = Pd, Pt; 13C),1241 [Pd2( 4-CH30CgH4-

N=C(COPh)Ph ) ~ ( P - O ~ C C H ~ ) ~ ] , ( 13C),1242 t rans- [Pd( 2 - 0 C ( Bu')(OMe)CsH4N 121. ( 3C), 1243

[&I( l -Me2k-2-(4-Mew$e)-4-Me-C6H3] C121, (M = Pd, Pt; 125Te, 195Pt),1244 [Pt(NH3)4]2+,

(195Pt),1245 [ { rrans-PtCl(NH3)2]2( H2N(CH2)nNH2}]2+, (13C, 15N, 195Pt),1246 [Pt(02CPr)2C12-

(NH2C6H11)(NH3)], (l95Pt),1B7 [PtC12(quinoline)(NH3)], (195Pt),1248 truns-[PtC12(PPh3)(RNH-

CHC&-3-SnBun3)], (13C),la9 cis-[Pt(cyclohexylethylamine)~X~], ('3C, l95Pt),lZ0 cis-[(ClCH2-

CH2NH2)2PtC12I7 (l95Pt),1251 [(NH2CHPhCHPhNH2)2Pt2(02CCH2CH2S03)2], (13C),1252

[Pt [ 1,l- (NH2CH2)2C,jH 1 0 } P t [ S ( 0 ) R 1 R2) Cl] , ( 195Pt), 1253 [Pt (men) ( (O)C( NH2) Me ] ] 2+, ( 3C), 1254

[(dien)PtI]+, ('3C, l95Pt),1255 rram-[PtCl2{ 6,13(NH3)2-6,13-Me2-1,4,8,1 l-tetraazacyclotetradec- anel]", ( 13C),1256 trans-[Pt(PyX)(DMSO)I2], ( 195Pt),1257 [Pt2(bipy)2(a-pyrr0lidonate)2]~+, (I3C,

195Pt),1258 [Pt(trpy)(SR)]+, ('3C, 195Pt),1259 [Pt2(trpy)2(guanidine)]3+, (13C),1260 cis-[PtClz(DMF)-

(p~2CH2)]+ , (13C, 195Pt),1261 [Pt( NPhS(0)2NPh] [P(NEt2)Ph2}2], (13C),1262 [Pt( (H2N)(HN=)C-

C6Hq-4-NH3)2C12]2+, ( l3C),1263 PtIv-NHzOH complexes, (195Pt),1264 [ i t ( N(COMe)CH2C(O)b) -

- 1234 N. Garelli and P. Vierling, Inorg. Chim. Acta, 1992, 194, 247. 1235 R.A. Berthon, S.B. Colbran, and D.C. Craig, Polyhedron, 1992,11,243. 1236 J.E. Scott, T.W. Kyffin. and G.A. Morris, Eur. J. Basic Appl. Hisrochem., 1991, 35, 7 (Chem. Abslr. , 1992,

1237 T. Suzuki and J. Fujita, Bull. Chem. SOC. Jpn., 1992,65, 1016. 1238 S.D. Perera. B.L. Shaw. and M. Thomton-Pett, J. Chem. SOC., Dalton Trans.. 1992,999. 1239 J.H.K.A. Acquaye and M.F. Richardson, Inorg. Chim. A m , 1992, 201. 101. 1240 C. Schmidt, H.-U. Wagner, and W. Beck, Chem. Ber., 1992,125,2347. 1241 C. Schmidt, K. Polborn, and W. Beck, Chern. Ber., 1992, 12561. 1242 J.L. Garcia-Ruano, I. L6pez-Solera, J.R. Masaguer, C. Navarro-Ranninger, and S. Martinez-Carrera,

1243 K. Hiraki, M. Nakashima. T. Uchiyama, and Y. Fuchita. J . Organomel. Chem.. 1992, 428,249. 1244 B.L. Khandelwal and K. Uppal, Polyhedron, 1992,11, 1755. 1245 B. Breinnum, H.S. Johansen, and L.H. Skibsted, Inorg. Chem., 1992,31,3023. 1246 Y. Q u and N. Farrell, Inorg. Chem., 1992.31.930. 1247 J.F. Hartwig and S.J. Lippard, J. Am. Chem. Soc., 1992, 114, 5646. 1248 M. Van Beusichem and N. Farrell, Inorg. Chem., 1992.31.634. 1249 I.M. Al-Najjar and S.S. Al-Diab, Asian J. Chem., 1991.3.307 (Chem. Absrr., 1992, 117,61 442). 1250 A.R. Khokhar and Y. Deng, J. Coord. Chem., 1992,25,349. 1251 A.R. Khokhar, Q. Xu, R.A. Newman, Y. Kido, and Z.H. Siddik, J. Inorg. Biochem., 1992.45.211. 1252 R. Muller, P.J. Bednarski, and H. Schoenenberger, Inorg. Chim. Acra, 1992, 195, 77. 1253 J. Landi, M.P. Hacker, and N. Farrell, Inorg. Chim. Acta. 1992, 202, 79. 1254 T.C. Woon and D.P. Fairlie, Inorg. Chem., 1992,31,4069. 1255 R. Alul, M.B. Cleaver, and J .4 . Taylor, Inorg. Chem., 1992.31, 3636. 1256 P.V. Bernhardt, G.A. Lawrance, and T.W. Hambley.Inorg. Chem., 1992,31,631. 1257 T.B.T. Ha, P. Castan, J.P. Souchard, and F. Wimmer, J. Chem. Res., Synop., 1992, 112. 1258 K. Matsumoto, K. Harashima. H. Moriyama. and T. Sato, Inorg. Chim. ACIU, 1992. 197, 217. 1259 A.K. Fazlur-Rahman and J.G. Verkade, Inorg. Chem., 1992.31.2064. 1260 H.-K. Yip, C.-M. Che. Z.-Y. Zhou. and T.C.W. Mak. J. Chem. SOC., Chem. Commun., 1992, 1369. 1261 J.A. Broomhead, L.M. Rendina, and M. Sterns, Inorg. Chem., 1992.31, 1880. 1262 R.D.W. Kernrnitt, S. Mason, M.R. Moore. and D.R. Russell, J. Chem. Soc.. Dalron Trans., 1992, 409. 1263 C. Navarro-Ranninger, P.A. Ochoa, J.M. Perez, J.H. Rodriguez, J.R. Masaguer, and C. Alonso, J. Inorg.

Biochem.. 1992.48, 163. N.V. Vorob'ev-Desyatovskii, Yu.N. Lukin, and Yu.N. Kukushkin. Zh. Obshch. Khim., 1992, 62, 521 (Chem. Absrr., 1992. 117. 263 636).

116, 17 889).

Organometallics, 1992, 11, 3013.

Page 57: Nmr

Nuclear Magnetic Resonance Spectroscopy 57

(PPh3)2], (13C),1*65 [Pt (N(O)CMe20NCMe2}C12], (13C, 195Pt),1266 N-substituted iminodiacetato- platinum complexes, (13C),1267 [Pt(cyclooctane-a-dioxime)2Cl]2, (13C),1268 [Pt2Cl2(pL-NO)(p-

d p p m ) 2 ] + , (195Pt),1269 [Pt(methionine)C1(2-hydroxypyrimidine)]+, (13C), 2 7 0

[Pt( S C H Z C H ( C ~ ~ H ) N H ~ ) (PMe3)2]+, (13C),1271 [Pt(SC5H9NMe)2(dppe)l, (195Pt),1272

[Pt( SC(=NPh)NPh}(dppe)], (13C),1273fuc-[PtC13(S4N4)]-, ('5N, 195Pt),1274 and [Pt(NqSe~P2Plq)-

C12(PEt3)], (77Se).1275

- - CI, p 3

yd- 0

M& P h 2 Ho+r* \ o-pp-ci

Me N Me "Me2 H R3P

(1 15) Two-dimensional 31P COSY has been applied to a series of dinuclear Pt(1) complexes containing

phosphine ligands. The sign and magnitude of 2J(195Pt31P) were detem1ined.12~6 NMR data have

also been reported for [(q1-C5H5P)4Ni], (13C),1277 [M(SCH2CH2PR2)2], (M = Ni, Pd, Pt;

13C),1278 [Pd(MeHPCH2CH2PHMe)2I2+, (13C),1279 cis-[Pt(OH)(PMe3)2], (I3C, 195Pt),1280

1265 R.D.W. Kemmitt, S. Mason, J. Fawcett, and D.R. Russell, J. Chem. Soc.. Dalton Trans., 1992, 1165. 1266 V.Yu. Kukushkin, V.K. Bel'skii, E.A. Aleksandrova, V.E. Konovalov, and G.A. Kirakosyan, Inorg. Chem.,

1267 Z. Yang, Z. Yang, J. Hu, and D. Ding, Gaodeng Xuexiao Huuxue Xuebao, 1992, 13, 154 (Chem. Absfr., 1992,

1268 L.A.M. Baxter, G.A. Heath, R.G. Raptis, and A.C. Willis, J. Am. Chem. Soc.. 1992, 114, 6944. 1269 F. Neve, M. Ghedini, A. Tiripicchio, and F. Ugozzoli, Organomefallics, 1992, 11,795. 1270 B.T. Khan, K. Annapoorna, S. Shamsuddin, and K. Najmuddin, Polyhedron, 1992,11,2109. 1271 K.S. Wyatt, K.N. Harrison, and C.M. Jensen. Inorg. Chem., 1992,31. 3867. 1272 M. Capdevila, W. Clegg, P. GonzAlez-Duarte. B. Harris, I. Mira, J. Sola, and I.C. Taylor, J. Chem. SOC., Dalton

1273 W. Henderson, R.D.W. Kemmitt, S. Mason. M.R. Moore, J. Fawcett, and D.R. Russell, J . Chem. Soc., Dalton

1274 P.S. Belton, V.C. Ginn, P.F. Kelly, and J.D. Woollins. J. Chem. Soc., Dalton Trans., 1992, 1135. 1275 T. Chivers, D.D. Doxsee, R.W. Hilts, A. Meetsma, M. Parvez, and J.C. van de Grampel, J . Chem. Soc.. Chem.

1276 J.V.Z. Krevor, U. Simonis, A. Karson, C. Castro, and M. Aliakbar, Inorg. Chem., 1992, 31, 312; J.V.Z.

1277 C. Elschenbroich, M. Nowoiny. A. Behrendt. W. Massa, and S. Wocadlo, Angew. Chem., Inr. Ed. Engl., 1992,

1278 M. Kita, T. Yamamoto, K. Kashiwabara, and J. Fujita, Bull. Chem. SOC. Jpn., 1992,65,2272. 1279 C. Toulhoat, M. Vidal, and M. Vincens, Phosphorus Sulfur Silicon, 1992, 11, 127. 1280 K. Miyamoto, Y. Sizuki, and H. Ichida, Bull. Chem. SOC. Jpn., 1992,65, 3386.

1992. 31, 3836.

117, 123 412).

Trans., 1992,2817.

Trans., 1992.59.

Commun., 1992, 1330.

Krevor, U. Simonis, and J.A. Richter, sec., Inorg. Chem., 1992,31,2409.

31, 1343.

Page 58: Nmr

58 Spectroscopic Properties of Inorganic and Organornetall ic Compounds

[Pd(acac)~(PPhg)], (13C),1281 [(Ph3P)2PdS02], (13C),1282 [MX2L2], {M = Pd, Pt; 1. = (1 16); 13C) [Pt(O3PPh)(PMePh2)2], (13C),1284 cis-[Pt (Ph2P(CH2CH20)4CH2CH2PPh2-P,P’,O) -

( 0 H 2 ) l 2 + , (13C),1285 [P t ( S(O)(CH2)4SO}(PPh3)2], (13C),1286 [ ((EtO)(O)PS2)Pt ((Ph2PCH2)2-

C(Me)CH2PPh2]], (195Pt),1287 [(Ph2P(CH2)nPPh2)Pt( S(CH2)mS)], (13C),1288 [PtCl(PEt3) (CH2-

- - [P(S)Ph2][P(S)Bu’z]-S,S)]+, (I3C, 195Pt),1289 [ (Pt(PEt3)2}2(~2-Te)2], (‘3C, 195Pt),1290 cis-[PtC12-

(PEt3) (ClP=C(SiMe3)2)], (29Si),1291 [(R2PCH2CH2PR2)PtX2], (13C),1292 and [Pt( Ph2PN(Et)-

CH(Et)CH2OPPh2) Clz], (13C).1293

MeVMe

Me 47 Ph, 0

(1 16) 195Pt NMR studies of [PtC13(RlR%O)]- have shown that the order of shielding is Ph2SO >

M e P h S O > M e 2 S 0 . 1 2 g 4 T h e l95Pt NMR spectrum o f [ P t 3 ( S 2 C N B u n 2 ) 6 A g 2 I 2 + shows

J(195Pt107/1mAg) of 194 Hz.1295 N M R data have also been reported for (1 17), (13C),1296 complexes - of HNCH2CH2NHC=S with NiI1, PtIv, and ZnlI, (13C),1297 [N-e)2I2-, (13C),1298

[NiLz], (L = (1 18); 13C) ,1299 [Ni&e4(Se3)~(Se4)]~-, [Ni4Te4(Te2)2(Te3)4I4-, (77Se, 12sTe),1300 [ P d ( 2,6,10- tr i t hia[ 1 1 ] -m -c yc lophane) ] +, ( 3C), 1301 a n d complexes of 2- (2’-pyridyl)phenyl(4-

BuHN NHBu

S e = ! ( s I s e - NHBu s Se-

N S 8 N f N s’ s BuHN

(1 17) (1 18)

1281 S.R. Childress and R.A. Holwerda, Synth. React. Inorg. Metal-Org. Chem., 1992, 22, 57. 1282 0. Heyke. A. Neher, and I.-P. Lorenz, Z. Anorg. Allg. Chem., 1992,608, 23. 1283 S.D. Perera, B.L. Shaw, M. Thornton-Pett, and J.D. Vessey, Inorg. Chim. Acto, 1992, 198-200, 149. 1284 R.D.W. Kemmitt, S. Mason, J. Fawcett, and D.R. Russell, J . Chem. Soc., Dalton Trans.. 1992, 851. 1285 A. Varshney, M.L. Webster, and G.M. Gray, Inorg. Chem., 1992,31,2580.

1287 R. Colton and V. Tedesco, Inorg. Chim. Acto, 1992,202.95. 1288 A.K. Fazlur-Rahman and J.G. Verkade, Inorg. Chem., 1992.31.5331. 1289 D.E. Berry, J. Browning, K.R. Dixon. R.W. Hilts, and A. Pidcock. Inorg. Chem., 1992,31, 1479. 1290 A.L. Ma, J.B. Thoden, and L.F. Dahl, J. Chem. Soc., Chem. Commun.. 1992, 1516. 1291 V.D. Romanenko, L.S. Kachkovskaya, A.V. Ruban, and M.I. Povolotskii, Zh. Obshch. Khim., 1992.62,474

12g2 A. Zhang, Q. Jiang, and L. Zhang, Bopuxue Zazhi, 1991.8,215 (Chem. Abstr., 1992, 116, 21 242). 1293 A.L. Bandini, G. Banditelli, E. Cesarotti, G. Minghetti, and B. Bovio. Inorg. Chem., 1992.31.391. 12g4 S.G. De Almeida, J.L. Hubbard, and N. Farrell, Inorg. Chim. Acta, 1992,193, 149. 1295 M. Ebihara, K. Tokoro, K. Imaeda, K. Sakurai, H. Masuda, and T. Kawamura, J . Chem. Soc.. Chem. Commun.,

1296 G.R. Frauenhoff, F. Takusagawa. and D.H. Busch, Inorg. Chew., 1992,31,4002. 1297 L. Mishra and A.K. F’andy, Polyhedron, 1992.11.423. 1298 C.A. Marganian, N. Baidya, M.M. Olmstead, and P.K. Mascharak, Inorg. Chem., 1992,31,2992. 1299 R.M. Olk, B. Olk, J. Rohloff, I. Sieler, K. Triibenbach, R. Kirmse, and E. Hoyer, 2. Anorg. Allg. Chem., 1992,

l 3 O o J.M. McConnachie, M.A. Ansari, and J.A. Ibers. Inorg. Chim. Acta. 1992, 198-200,85. 1301 G.R. Giesbrecht, G.S. Hanan, J.E. Kickham. and S.J. Loeb. Inorg. Chem., 1992.31.3286.

W. Weigand, G. Bosl, C. Robl, and W. Amrein, Chem. Ber., 1992, 125, 1047.

(Chem. Abstr., 1992, 117, 203 948).

1992, 1591.

609, 103.

Page 59: Nmr

Nuclear Magnetic Resonance Spectroscopy 59

E t O w ) T e with PdC12 and PtC12, ( 125Te, 19%).1302

Complexes of Group ll.-lH and l3C NMR spectroscopy has been used t o study the nature of the copper-alkene bond.1303 Only a singlet is observed for the 33s NMR spectrum of [(NC)M1S2M2S2I2-, M1 = Cu, Ag; M2 = Mo, W.1304 NMR data have also been reported for

[Pb9Cu(acacen)14-, (207Pb),1305 cis-[AuMe2(CO2R)(PPh3)], (l3C).l3O6 cis-[ AuMeR2(PPhg)],

( 13C),1307 [HC(PPh2AuMe)g], ( 13C),1308 [(PrigPAu)&]2+, (%),I309 [ Au(C&-2-N=kPh) (CH2-

C(0 )R I C11, ( 3C), 310 [ Cu(phen)(HC=CPh)] +, ( 3C), [ Cu(q 2-B utC=CCH=CHC02EtLiB u')] n,

(13C),1312 [Cu(CN)( (Ph2P)2NH}(PPh3)], (l3C),1313 (1 19), (13C),1314 and [ClPh2Sn(p-CN)Ag-

(CN)]-, (119Sn).1315

(1 19) 'H NMR spectroscopy has been used to investigate the structure of Cu(1) [2]-catenates.1316 NMR

data have also been reported for [Cu2( (2-py-CH2CH2)2NCH2CH2CH2N(CH2CH2-2-py)2)]2+, (13C),1317 [(Cu[3,6-(2-pyridyl)2pyrazinel )414-, (13C),1318 [Cu[ 1,4-(5-amino-1,2,4-maz01-3-yl)but- ane 1 (OH2)(N03)2], (13C),1319 [Cu( RNC(CF3)CHC(CF3)0} (PMe3)], (13C),1320 [Cu(biquin-

olyl)2]+, (13C, including CP/MAS),1321 (120), (13C),1322 (121), ( l3C), l3Z3 [ ( 2-(bipy)-

CH~N(SO~C&LI-M~-~)CH~CH~}~N(SO~C&-M~-~)A~]+, (13C),1324 [Ag( N - [ N - ( (5-Me-2-thien-

1302 S.A. Mbogo, W.R. McWhinnie, and T.S. Lobana, Inorg. Chim. Acta, 1992, 193, 5 . 1303 T.H. Baum, C.E. Larson, and G. May, J. Organomet. Chem., 1992,425, 189. 1304 M. Kony, R.T.C. Brownlee, and A.G. Wedd, Inorg. Chem., 1992,31,2281. 1305 X. Wang, L. Lu, and X. Yang, H w u e Tongbao, 1991.38 (Chem. Abstr., 1992,117, 19 205). 1306 S. Komiya, T. Sone, S. Ozaki, M. Ishikawa, and N. Kasuga, J. Organomet. Chem., 1992,428,303. 1307 S. Korniya, S. Ozaki, I. Endo, K. Inoue, N. Kasuga, and Y. Ishizaki, J. Organomel. Chem., 1992,433,337. 1308 A. Stiitzer, P. Bissinger, and H. Schrnidbaur, Chem. Ber., 1992, 125, 367. 1309 H. Schmidbaur, B. Brachthiiuser, 0. Steigelmann, and H. Beruda. Chem. Ber., 1992,125,2705, l3lo J. Vicente, M.-D. Bemlidez, M.-P. Carrillo, and P.G. Jones, J. Chem. SOC., Dalron Trans., 1992, 1975. 1311 M. Munakata, S. Kitagawa, I. Kawada, M. Maekawa, and H. Shimono, J . Chem. SOC.. Dalton Trans., 1992,

1312 N. Krause, J. Org. Chem., 1992,57, 3507. 1313 J. Ellermann, F.A. Knoch, KJ. Meier, and M. Moll, J. Organomet. Chem., 1992,428, C44. 1314 G.A. Ardizzoia, E.M. Beccalli. G. LaMonica, N. Masciocchi, and M. Moret, Inorg. Chem., 1992,31,2706. 1315 M. Carcelli, C. Ferrari, C. Pelizzi, G. Pelizzi, G. Predieri, and C. Solinas, J. Chem. Soc., Dalton Trans., 1992,

1316 J.-C. Chambron, D.K. Mitchell, and J.-P. Sauvage, J. Am. Chem. Soc.. 1992, 114, 4625. 1317 K.D. Karlin, Z. Tyeklh, A. Farooq, M.S. Haka, P. Ghosh, R.W. Cruse, Y. Gultneh. J.C. Hayes, P.J. Toscano,

1318 M.T. Youinou, N. Rahmouni, J. Fischer, and J.A. Osborn, Angew. Chem., Int. Ed. Engl., 1992. 31, 733. 1319 E.L. Kasatikova, M.I. Barmin, A.N. Grebenkin, M.L. Syrkina, and V.V. Mel'nikov, Izv. Vyssh. Uchebn. Zuved.,

1320 H.-K. Shin, M.J. Hampden-Smith, T.T. Kodas, and A.L. Rheingold, J. Chem. Soc.. Chem. Commun., 1992,

1321 U.M. Frei and G. Geier. Inorg. Chem., 1992.31. 187. 1322 D.A. Nation, M.R. Taylor. and K.P. Wainwright, J. Chem. SOC., Dalton Trans., 1992, 2411. 1323 D.E. Fenton and P.C. Hellier, Inorg. Chim. Acta, 1992, 198-200, 577. 1324 P.D. Beer, J.W. Wheeler. and C.P. Moore, J. Chem. SOC., Dalton Trans., 1992,2667.

2225.

2127.

and J. Zubieta, Inorg. Chem.. 1992.31, 1436.

Khim. Khim. Tekhnol., 1992. 35,33 (Chem. Abstr., 1992, 117, 82 324).

217.

Page 60: Nmr

60 Spectroscopic Properties of Inorganic and Organometallic Compounds

y1)methylidene)-L-methionyl]histamine]]+, (109Ag),1325 [ 1,2-[ (Ph3PAu)3N]2Cd-i4]2+, (13C),l326

and [Au(hexahydro-l,3-diazepine-2-thione)2]+, (13C).1327

( 120) (121) The 3 lP NMR spectrum of [Cu(PMe3)4]+ shows lJ(63fi5Cu31P) at low temperature. The 13C NMR

spectrum was also reprted.1328 The B S i NMR spectrum of [(Bu'0)3SiSAg]4 shows J(lmAg29Si) of

4.49 Hz and J(107Ag29Si) of 3.90 Hz and 6('09Ag) is 725.8. T1(Io9Ag) was also measured and is due to chemical shift anisotropy.1329 NMR data have also been reported for [(hfac)Cu(PMeg)],

(13C),1330 [LCu(PR3)], (L = acac, tfac, hfac; R = Bu, Ph; *3C),1331 [Cu(OSiPh3)(PMe2Ph)]2, (13C, 29Si),1332 [Cu(PPh3)2( SC(NMe2)(NHMe)]X], (13C),1333 [BrCu(PMePh2)2]2, (13C),1334 [ (Bub- (Cl-jSi)P)AgBr], ('3C, 29Si),1335 [Au(SR)(PPh3)], (I3C),1336 [C(CH2PPh2AuC1)4], (13C),1337

(122), (13C),1338 [Ag(sC6H2Pri3-2,4,6)In, (13C),1339 [ A U S ~ ~ C = C ( C N ) Z ] ~ ~ - , (77Se),1340 and [NaAu12Se8l3-, (23Na, 77Se).1341

1325 J.F. Modder, K. Vrieze, A.L. Spek, G. Challa, and G. Van Koten, Inorg. Chem.. 1992,31, 1238. 1326 A. Grohmann and H. Schmidbaur, Inorg. Chem., 1992,31,3378. 1327 A.A. Isab, H.P. Penanowski, and A.R.A. Al-Arfaj, Transition Met. Chem. (London), 1992,17, 557. 1328 K.-M. Chi, J. Farkas, M.J. Hampden-Smith, T.T. Kodas, and E.N. Duesler, J. Chem. Soc., Dalfon Trans., 1992,

1329 A. Schwenk. U. Piantini, and W. Wojnowski, 2. Narurforsch.,A, 1991,46,939 (Chem. Absrr., 1992, 116.14

1330 H.-K. Shin, K.M. Chi, J. Farkas, M.J. Hampden-Smith, T.T. Kodas, and E.N. Duesler, Inorg. Chem., 1992.31,

1331 H.-K. Shin, M.J. Hampden-Smith, E.N. Duesler, and T.T. Kodas, Can. J. Chem., 1992,70, 2954. 1332 M.J. McGeary, R.C. Wedlich, P.S. Coan, K. Folting, and K.G. Caulton, Polyhedron, 1992, 11, 2459. 1333 R. Singh and S.K. Dikshit, Polyhedron, 1992, 11, 2099. 1334 D.K. Srivasrava, N.P. Rath, and L. Barton, Polyhedron, 1992, 11, 1251. 1335 R. Martens, W.W. Du Mont, and L. Lange, Z. Narurforsch., B , 1991.46, 1609 (Chem. Absfr., 1992. 116, 129

1336 E. Delgado and E. Hernandez, Polyhedron, 1992,11,3135. 1337 H. Schmidbaw, A. Stuetzer, and P. Bissinger, Z. Narurforsch., B , 1992, 47, 640 (Chem. Absrr., 1992, 117, 26

1338 R. Castro, M.L. Dudn, J.A. Garcia-VBzquez, J. Romero, A. Sousa, E.E. Castellano, and J. Zukerman-Schpector,

1339 M. Steiner, H. Griitzmacher, L. Zolnai, and G. Huttner, J . Chem. Soc., Chem. Commun.. 1992, 689. 1340 W. Dietzsch, A. Franke. E. Hoyer, D. GruS, H.-U. Hummel. and P. Otto, Z. Anorg. Aflg. Chem.. 1992, 611,

1341 S.-P. Huang and M.G. Kanatzidis. Angew. Chem.. Inr. Ed. Engl., 1992, 31, 787.

3111.

602).

424.

071).

675).

J . Chem. SOC., Dalton Trans., 1992, 2559.

81.

Page 61: Nmr

Nuclear Magnetic Resonance Spectroscopy 61

Complexes of Group 12.-Two relevant reviews have appeared: ‘199Hg NMR parameters’l342 and ‘Solvation effects on the NMR parameters and suucture of organomercury compounds. New

multiparamemc solvent scale from factor analysis’.l”3

l3C and 2H isotope effects on the ‘H, l3C, and I99Hg chemical shifts and J(199Hg1H),

J(199Hgl3C), and J(13C1H) have been examined in Me2Hg.1344 lJ(199Hg13C) has been used to correlate with trans-influence in [LHgMe] complexes and compared with ab initio calculations.1345

Solvent effects on 1H, 13C, and 199Hg of [MeHgCl] have been studied in 37 solvents.1346

Substituent effects on 1wHg chemical shifts in some Ar2Hg and [ArHg(2-benzothiazolylthio)] have been ~tudied.134~ NMR data have also been reported for [ZnRgl-, (R = Et, CH2But; 13C),1348

[ILi(tmeda))2Zn{CH2((JH2)3CH2}1, (13C),1349 [ButCH2ZnE2CNEt2], (E = S, Se; 13C),1350 (123),

( 13C),1351 [RZn(SeCgH2Pri3-2,4,6)], (M = Zn, Cd, Hg; 13C),1352 [Zn { C(SiMe3)2(SiMe2H) ] 21,

(13C),1353 [M{C6H2(CF3)3-2,4,6)2], (M = Zn, Cd; 13C),1354 [MeHg]+ complexes of 7-azaindole,

(13C, 199Hg),1355 [MeHgX], [Me2TlX], (X = 2-furanthiocarboxyhydrazide; l3CY l99Hg, 205T1),1356

[RHgXl, [R2TIXl, {R = Me, Ph; X = (124); 13C, 205T1),1357 [(RCH2)2Hg], (13C),1358 [BrHg-

CH2R1, ( l 3C, 199Hg), 359 [Et(BuQ)CHCH2HgBr], ( 3C), 360 ( 1 2 3 , [ S n( CHR1CR2=CR3H)4],

(13C),1361 (126), (199Hg),1362 [(2,4,6-Me3CgH2P=CH)2Hg], (13C, 199Hg),1363 [PhHgRfl, (13C,

- 199Hg),1364 [(4-XG&)HgCI(L)], (L = (127); 13C) [2-(PhCH=N)-5-X-C6H3HgCl], (13C),1366

1342 B. Wracheyer and R. Contreras, Annu. Rep. Specirosc., 1992,24,267 (Chem. Abslr.. 1992,117,203 624) 1343 D.V. Bazhenov, Yu.K. Grishin, and Yu.A. Ustynyuk, Meialloorg. Khim., 1992, 5, 297 (Chem. Abslr., 1992,

1344 Yu.K. Grishin, V.A. Roznyatovskii, V.N. Torocheshnikov, and Yu.A. Ustynyuk, Melalloorg. Khim., 1991.4,

1345 J. Reinhold, N. Steinfeldt, M. Schiiler, and D. Steinborn, J. Organomet. Chem., 1992,425, 1. 1346 D.V. Bazhenov, V.L. Yarnykh. Yu.K. Grishin, and Yu.A. Ustynyuk, Vestn. Mosk. Univ., Ser. 2 : Khim., 1991,

1347 L. Yang, J. Chen, X. Lei. Y. Wu, and M. Song, Chem. Res. Chin. Univ. , 1992. 8, 81 (Chem. Abslr., 1992,

1348 A.P. Purdy and C.F. George, Organomerallics, 1992, 11, 1955. 1349 H.-0. FrOhlich, B. Kosan, B. Muller, and W. Hiller, J. Organomel. Chem., 1992,441, 177. 1350 M.A. Malik. M. Motevalli. J.R. Walsh, and P. OBrien, Organomerallics, 1992. 11, 3136. 1351 S.E. Denmark, J.P. Edwards, and S.R. Wilson, J. Am. Chem. SOC., 1992, 114, 2592. 1352 M. Bochmann, A.P. Coleman, and A.K. Powell, Polyhedron, 1992, 11, 507. 1353 S.S. Al-Juaid, C. Eaborn. A. Habtemariam, P.B. Hitchcock, and J.D. Smith, J. Organomel. Chern., 1992,437,

1354 S. Brooker, N. Bertel, D. Stalke, M. Noltemeyer. H.W. Roesky, G.M. Sheldrick, and F.T. Edelmann,

1355 M. Dufour, A.-M. Lebuis, M.-C. Corbeil, A.L. Beauchamp, P. Dufour. Y. Dartiguenave, and M. Dartiguenave,

1356 J.S. Casas, A. CastiAeiras, A. Macias. M.C. Rodiguez-Arguelles, A. Sanchez, and J. Sordo, Inorg. Chim. Acla,

1357 M.S.G. Tasende, A. Shchez, J.S. Casas, and J. Sordo, Inorg. Chim. Acra, 1992,201, 35. 13” M.J. Rozema, D. Rajagopal, C.E. Tucker, and P. Knochel, J. Organomel. Chem., 1992,438, 11. 1359 P. Kotovsf and J. srogl, J. Org. Chem.. 1992, 57, 4565. 1360 J.L. Courtneidge and M. Bush, J. Organomel. Chem.. 1992,437,57. 1361 J. Cai and A.G. Davies, J. Chem. SOC., Perkin 7rans. I , 1992, 3383. 1362 V.R. Kartashov, E.V. Skorobogatova, T.N. Sokolova, O.V. Vasil‘eva, N.V. Malisova, Yu.K. Grishin, D.V.

1363 S.J. Goede, H.P. van Schaik, F. Bickelhaupt, H. Kooijman. and A.L. Spek, Organomerallics, 1992, 11, 3844. 1364 H. Layeghi, D. Naumann, and W. T y m , J . Organomel. Chem., 1992,441,355. 1365 J. Kaur and G.S. Sodhi,J. Inorg. Biochem., 1992,48. 305. 1366 K. Ding, Y. Wu, H, Hu, L. Shen, and X. Wang, Organomelallics, 1992, 11, 3849.

117. 171 500).

1067 (Chem. Absir., 1992, 116, 21 182).

32, 590 (Chern. Abslr., 1992, 116, 142 518).

117, 251 460).

41.

Organometallics, 1992, 11, 192.

Can. J . Chem., 1992.70, 2914.

1992, 197, 163.

Bazhenov, and N.S. Zefirov, Zh. Org. Khim., 1991.27, 1240 (Chem. Absv., 1992, 116, 59 540).

Page 62: Nmr

62 Spectroscopic Properties of Inorganic and Organometallic Compounds

[ (2-(2-pyridyl)phenyl)HgI], [ (2-(2-pyridyl)phenyl)TeX3], ('3C, 125Te, 199Hg),1367 and [HgCl( C&I(CO2H)-6-(OMe)3-2,3,4)], (' 3C).1368

(1 25)

I N, HgCl Me

(126) (1 27) 113Cd NMR measurements, including NOE and T I determinations, have been made on Cd2+-

polyaminocarboxylic acid complexes.1369 The metal coordinating residues in the DNA binding

domain o f the glucocortcoid receptor have been identified by 1 I3Cd-IH heteronuclear NMR spectroscopy.1370 T h e measurement of small through-hydrogen-bond and through-space 1 13Cd-lH

and 199Hg- l H coupling has been achieved in metal-substituted rubredoxin from Pyrococcus

f u r i o ~ u s . ~ ~ ~ ~ 199Hg NMR spectroscopy has been used to investigate the solution structure of Hg(I1)

complexes of oligopeptides containing cys teine and histidine residues.1372 NMR data have also been reported for (128), (13C),1373 [ L i Z n ( N(SiMe3)2)3], ('3C, 29Si),1374 [MeN(MezSiNEt)2Zn-

(NC5Hg)], (13C, 29Si),1375 [((4-MeC6H4)3(4-ROC6H4)porphyrin)Zn], (13C),1376 zinc porphyrin

polyethers, (13C),1377 (129), (13C),1378 complexes of HN(CH2-2-C5HgN)2 with Znll and CdII,

(13c),1379 (130), (13C),1380 [ZnL(OH2)]2+, ( L = (131); l 3 C } l-aryl-3-alkyl-CgHq-5-(2- benzothiazoly1)formazanate complexes of ZnIIand CdII, (13C),1382 [ { HB(3-But-5-Me-pz)3Zn)202CO],

1367 T.S. Lobana and W.R. McWhinnie, Indian J . Chem.. Secr A , 1992, 31, 460 (Chem. Absfr., 1992, 117, 171

1368 J. Vicenle. J.-A. Abad, A. Sandoval, and P.G. Jones, J . Organornet. Chem., 1992,434, 1. 1369 R. Song, Y. Mao, and J . Ding, Bopuxue Zuzhi, 1992.9.67 (Chem. Absfr., 1992, 117, 123 191). 1370 E. Kellenbach, B.A. Maler, K.R. Yarnamoto, R. Boelens, and R. Kaptein, FEBS Lei[., 1991, 291, 367 (Chem.

1371 P.R. Blake, B. Lee, M.F. Summers, M.W.W. Adams, J.B. Park, Z.H. Zhou, and A. Bax, J . Biomol. N M R , P.R. Blake, J.B. Park, M.W.W. Adarns, and M.F.

614).

Abstr., 1992, 116, 34 713).

1992, 2 , 527 (Chem. Abstr. , 1992, 117, 247 962); Summers, J. Am. Chem. Soc., 1992, 114, 4931.

1372 H. Adachi, N. Ueyarna, and A. Nakamura. Inorg. Chim. Acta, 1992, 198-200, 805. 1373 T. Koike, E. Kirnura, I . Nakarnura, Y. Hashirnoto, and M. Shiro, J . Am. Chem. Soc., 1992, 114, 7338. 1374 M. Westerhausen, Z . Anorg. Allg. Chem., 1992, 618, 131. 1375 A.J. Elias, H.-G. Schmidt, M. Nolterneyer, and H.W. Roesky, Organometallics, 1992, 11,462. 1376 P.R. Ashton, M.R. Johnston, J.F. Stoddart, M.S. Tolley, and J.W. Wheeler, J . Chem. SOC., Chem. Commun.,

1377 E. Scamporrino and D. Vitalini, Macromolecules, 1992.25. 1625 (Chem. Absfr., 1992, 116, 129 770). 1378 G. Gumus, Z.Z. h i i r k , V. Ahsen, A. Giil, and 0. BekProglu, J . Chem. Soc.. Dalfon 7rans., 1992, 2485. 1379 J . Glerup. P.A. Goodson, D.J. Hodgson, K. Michclsen, K.M. Nielsen, and H. Weihe, Inorg. Chem., 1992, 31,

I3*O E. Kirnura, H. Kurosaki, Y. Kurogi, M. Shionoya, and M. Shiro, Inorg. Chem., 1992, 31,4314. 1381 P.N.W. Baxter, J.A. Connor, W.B. Schweizer, and J.D. Wallis,J. Chem. SOC., Dalron 7rans.. 1992, 3015. 1 3 8 2 L.V. Shrnelev, I.G. Pervova, G.N. Lipunova. L.I. Rusinova, A . V . Kessenikh, and I.N. Lipunov, Koord. Khim.,

1992, 1128.

4611.

Page 63: Nmr

Nuclear Magnetic Resonance Spectroscopy 63

(13C),1383 [ ( l ,2-(pz)C2H4)2Znl2+, [ { 1,2-(pz)CzH4 1 3Cd12+, (13C),1384 [HB(3,5-Pri2pz)3Zn-

{ OP(0)(OC6H~N02-4)O)Zn(pz-Pri2-3,5)3BH], (13C),1385 [MX2(AMP)21, ( M = Zn, Cd, Hg;

13C),1386 [Cd(3,6,9,12-teuaazatetradecane-l, 14-diamine)12+, (113Cd),1387 [ IHzNCH(CH2NHCH2-

C H 2 N H C H 2 ) 2 C H N H 2 ) CdI2+, ( 13C),1388 [(bipy)Cd( SSi(OBut)3 ] 21, ( l 3C, 29Si),1389 [ (O(CH2-

CH2OCH2CH2OCH2CH2)2NMe ) HgC121, ( 3C), 390 and [ Hg(SC@2But3)2( N C S H ~ ) ] , ( 3C). 391

1992, 18, 312 (Chem. Absrr., 1992, 117, 244 535). 1 3 8 3 A. Looney, G. Parkin, R. Alsfasser, M. Ruf, and H. Vahrenkamp, Angew. Chem., Int. Ed. Engl., 1992, 31,92. 1384 A. Lorenzotti, F. Bonati, A. Cingolani, D. Leonesi, and C. Pettinari, C a n . Chim. Iial., 1991, 121, 551 (Chem.

1385 S. Hikichi, M. Tanaka, Y. Moro-oka, and N. Kitajima, J . Chem. SOC. , Chem. Commun., 1992, 814. 1386 J.G. Contreras, G.V. Segue], and J.A. Gnecco, Specrrochim. Acta, Part A , 1992.48,525 (Chem. Abstr., 1992,

1387 H. Strasdeit, Z. Naturforsch., B , 1992, 47,829 (Chem. Abstr., 1992, 117, 82 365). 1388 P.V. Bernhardt, P. Comba, T.W. Hambley, G.A. Lawrance, and K. V h a g y , J . Chem. Soc.. Dalton Trans., 1992,

1389 W. Wojnowski, B. Berker, L. Walz, K. Peters, E.M. Peters, and H.C. Von Schnering, Polyhedron, 1992, 11,

1390 K.A. Byriel, K.R. Dunster, L.R. Gahan. C.H.L. Kennard, and J.L. Latten, Inorg. Chim. Acta, 1992, 196, 35. 1391 M. Bcchmann, K.J. Webb, and A.K. Powell, Polyhedron, 1992, 11, 513.

Abstr., 1992, 116, 267 861).

117, 39 020).

355.

607.

Page 64: Nmr

64 Spectroscopic Properties of Inorganic and Organometallic Compounds

35C1 NMR spectroscopy has been used to show that [C104]- is coordinated in [Hg(S2CNEtz)(PCyg)- (ClO4)] in CD2Cl2 at low temperature. The 199Hg NMR spectrum was also reported.1392 31P NMR spectroscopy has been used to study the interactions between [Zn( S2P(OBui)2)2] and a commercial poly(isobuteny1)succinimide polyamine dispersant.1393 The '3Cd NMR spectrum of cadmium- metallothionein from rabbit liver shows the presence of c lu~ters .1~9~ A 113Cd relaxation study of the protein calbindin D ~ K has been p ~ b l i s h e d . l ~ 9 ~ NMR data have also been reported for [Cd9(OC2H40Me)18], (13C, 113Cd),1396 [(p-SePh)6(MSePh)4I2-, (M = Zn, Cd; l3C, 77Se),1397 (132), (13C, 77Se),1398 [M{TeSi(SiMe3)3)2], (M = Zn, Cd, Hg; 13Cd, 125Te),1399 [C&(p+E)(p- SPri)12(CdX)4I2-, (E = S, Se; l3C, 77Se, ll3Cd),l4W [(Ca10S2-1,2)2M]~-, (I13Cd, 199Hg),1401 and [Hg(SC6Hii)2I7 (13C3).1402 [".iIs;r+er s ~e Se

(1 32)

3 Dynamic Systems

This section is in three main parts: (i) 'Fluxional Molecules', dealing with rate processes involving no molecular change, (ii) 'Equilibria', dealing with the use of n.m.r. spectroscopy to measure the position of equilibria and ligand-exchange reactions, including solvation, and (iii) 'Course of Reactions', dealing with the use of n.m.r. spectroscopy to monitor the course of reactions. Each section is ordered by the Periodic Table.

Six relevant reviews have appeared: 'Relevance of Gif chemistry to enzyme mechanisms', which contains the use of dynamic l3C NMR spectroscopy in iron containing ~ystems,1~O3 'The structure and dynamics of alkali silicate liquids: a view from NMR spec t r~scopy ' ,*~O~ 'Measurement of intracellular sodium with NMR methods',1405 'Measurement of myocardial intracellular potassium by 39K NMR spectroscopy',1406 'Application of multinuclear magnetic resonance spectroscopy to solvation and aggregation phenomena in solution',1407 and 'Study of sol-gel chemical reaction kinetics by NMR', which contains 2% NMR data.1408

1392 B.F. Abrahams. D. Dakternieks, B.F. Hoskins. and G. Winter, fnorg. Chim. Acra, 1992. 201.95. 1393 P.G. Harrison, P. Brown, and J. McManus, Wear, 1992,156,345 (Chem. Abstr., 1992, 117, 254 563). 1394 P. Palumaa, E.A. Mackay, and M. Vasek, Biochemistry. 1992.31.2181 (Chem. Abstr., 1992, 116, 101 333). 1395 J. K6rdel. C. Johansson, and T. Drakenberg, J. Magn. Reson.. 1992,100, 581. 1396 S. Boulmaaz. R. Papiemik, L.G. Hubert-Pfalzgraf, J. Vaissermann, and J.C. Daran, Polyhedron, 1992,11, 1331. 1397 JJ. Vittal, P.A.W. Dean, and N.C. Payne, Can. J. Chem., 1992.70, 792. 1398 H. Poleschner, R. Radeglia, and J. Fuchs. J. Organomt. Chem., 1992,427,213. 1399 P.J. Bonasia and J. Arnold, fnorg. Chem., 1992,31, 2508. l4Oo P.A.W. Dean, J.J. Vittal. and Y. Wu, Can. J. Chem.. 1992.70.779. 1401 N. Govindaswamy, J. Moy, M. Millar, and S.A. Koch, fnorg. Chem.. 1992,31, 5343. 1402 T. Alsina, W. Clegg, K.A. Fraser, and J. Sola, J . Chem. Soc., Dalton Trans., 1992, 1393. 1403 D.H.R. Barton and D. Doller, Appl. Enzyme Biotechnol., [Proc. Tex. A&M Univ., IUCCP Symp.], 9th. 1991,

1404 J.F. Stebbins, I. Farnan, and X . Xue, Chem. Geol., 1992,96,371 (Chem. Abstr., 1992, 117, 238 423). 1405 R.B. Hutchison and J.I. Shapiro, Concepts Magn. Reson., 1991, 3.215 (Chem. Absrr., 1992, 116, 79 537). 1406 S. Kuki. H. Takami, and H. Matsuda, Med. Philos., 1992, 11, 111 (Chem. Absrr., 1992, 117, 87 650). 1407 J J . Delpuech, Analyst (London), 1992, 117.267 (Chem. Absrr., 1992, 116,222 355). I4O8 R.A. Assink and B.D. Kay, Annu. Rev. Muter. Sci., 1991, 21,491 (Chem. Abstr., 1992, 116, 26 138).

87. Ed. J.W. Kelly and T.O. Baldwin (Chem. Abs~r. , 1992, 117, 166 241).

Page 65: Nmr

Nuclear Magnetic Resonance Spectroscopy 65

Fluxional Molecules.-Lithium. 13C NMR spectroscopy has been used to characterise [(q3- Me2CCHCMe2)Li(tmeda)]. There is syn-anti CMe2 exchange and AH* and ASs were determined. Lithium reorientation and tmeda exchange were also studied.1409 The dynamics of allyllithium complexes have been studied using 1H NMR specmscopy.~410 Rotation of the phenyl group in [($- PhCHCRCH2)Li(tmeda)] is hindered with AG* of cu. 40 W mol-1. The 6Li-lH HOESY and l3C NMR spectra were measured.1411 There is rapid lithium/selenium exchange in (133) according to 13C and 77Se NMR spectroscopy.1412 The temperature dependence of l9F Ti of Li03SCF3 has been attributed to CF3 reorientation with AGS = 24.20 f 0.69 kJ mol-1.1413

Lanthanum. The activation energy for rotation about the La-Ca bond in [ (qs-CsMe~)M- (CH(SiMe3)2)2], M = La, Lu, has been determined and the 13C CP/MAS NMR spectra measured.1414

Europium. Variable temperature 1H NMR studies of [Eu( N(SiMe3)zJ 3(Ph2C0)] show restricted rotation about the Eu-N bond. The 13C NMR spectrum was also re~orded.1~15

Thorium. The rearrangement of the eight coordinate complex and hindered rotation of w H ~ M e 3 - 2,4,6 have been studied for [(HBpq)Th( OC6H2Me3-2,4,6),C12-,J, and [Th(OC6H2Me 3- 2,4,6)41,l4l7 using IH NMR spectroscopy.

Uranium. Variable temperature 1H NMR spectra of [( PhC(NSiMe3)2)3UMe] show the exchange of SiMeg signals with AG' of ca. 69 kJ mol-l. The IB NMR spectrum of [ (PhC(NSiMe3hJ 3UB&] was also reported.1418 Exchange of the pyrazolyl rings in [(HBpz3)2U(SPri)2] has been investigated using lH NMR spectroscopy and AGs determined as 46 f 3 kJ mol-l. 14'9

1409 J. Cabral and G. Fraenkel, J . Am. Chem. SOC., 1992, 114,9067. l4lo A.V. Lubnin and O.A. Rozinova. Meralloorg. Khim., 1992, 5,419 (Chem. Abstr., 1992, 117. 212 545). I4 l1 H. Balzer and S. Berger, Chem. Ber.. 1992, 125, 733 (Chem. Abstr., 1992, 116, 174 205). 1412 H.J. Reich. B.O. Gudrnundsson. and R.R. Dykstra. J . Am. Chem. Soc.. 1992,114, 7937. 1413 M. Mortirner, E.A. Moore, and M.A.K. Williams, J . Chem. Soc., Faraday Trans., 1992,88. 2393. 1414 C.J. Schaverien and GJ. Nesbiu, J . Chem. SOC., Dalton Trans., 1992, 157. 1415 M. Allen, H.C. Aspinall. S.R. Moore, M.B. Hursthouse, and A.I. Karvalov, Polyhedron, 1992, 11,409. 1416 A. Dorningos, J. Maqalo, and A. Pires De Matos, Polyhedron. 1992.11.909. 1417 J.M. Berg, D.L. Clark, J.C. Huffrnan. D.E. Moms, A.P. Sattelberger, W.E. Streib, W.G. Van Der Sluys, and

1418 M. Wedler, F. KnOsel. F.T. Edelmann, and U. Behrens, Chem. Ber., 1992, 125, 1313. 1419 A. Dorningos, A. Pires de Matos, and I. Santos, Polyhedron, 1992. 11. 1601.

J.G. Watkins. J . Am. Chem. Soc., 1992, 114, 10 81 1.

Page 66: Nmr

66 Spectroscopic Properties of Inorganic and Organometallic Compounds

Titanium. 1H NMR spectroscopy has been used to examine the dynamics of [(qs-C5H5)4Ti2(~- SiR2H)(p-H)] which shows exchange with [($-C5H5)4Ti2(pSiR2H)2] and [ ( Q S - C ~ H ~ ) ~ T ~ ~ H ~ ( V - H)].1420 1,3-shifts of the ally1 group in [(q5-C5H5)Ti(q l-CH2CHCHR1)(OR2)2] have been investigated by 1H NMR spectroscopy. l3C and 49Ti NMR spectra were also dete~mined.l~~l lH NMR spectroscopy has been used to show that [(q5-CgH5)2Ti(A~2Me4)]2~+ is dynamic with one methyl signal at 25' and two at -70°C. The 14N NMR spectrum of [(q5-CsH5)2Ti(S4N4)I2+ was also reported. 1422 Cyclopentadienyl exchange in [(T~~-C~H~)ZT~(~-SC~~H~X-~)~MO(CO)~] has been studied by IH NMR spectroscopy and AG' determined as ca. 30 kJ r n 0 1 - l . l ~ ~ ~ The bamers to cyclopentadienyl rotation in [ {$-1,3-(Me3Si)2C5H3)2TiX2], X = F, C1, have been determined. The 13C NMR spectrum was rep0rted.1~24 The mechanisms of axial and equatorial DMSO exchange in [Ti(O)(DMSO)s]2+ have been investigated using variable temperature and pressure 'H NMR spectroscopy.14~

Zirconium nnd Hafnium. Variable temperature lH NMR spectroscopy has been used to demonstrate exchange of the terminal and bridging hydrides in [Zq&(BH4)6(PMe3)4] with an activation energy of 12.6 f 0.1 kcal mol-1. The 31P NMR spectrum also showed exchange. The llB NMR spectrum was recorded for this and the corresponding hafnium compound. 1426 NMe exchange in [(q5-C5H5)(q5- C5H4CMe2Ph)Zr(q2-CH2NMe2)Cl] occurs with AH' = 17.1 k 0.8 kcal mol-l and AS' = 2.3 k 2.7 e.u.1427 Restricted rotation of the E-Ph bond has been observed for [(qs-C5H5)(qS- CsMe5)M(EPh3)Cl], M = Zr, Hf; E = Si, Ge, Sn. The 13C and 2% NMR spectra were reported.1428

Enantiomerization of [($-CSH~)~~!~N=C(P~)CH~CH=CHCH~C(P~)=~] has AGS323 of 15.5 k 0.3 kcal mol-1. The 13C NMR spectrum was also r e ~ 0 r t e d . l ~ ~ ~ Ligand exchange on [(qS-CsH5)2-

hCH(C@Et)CH(C@Et)b] occurs with AG' of 22 k 1 kcal mol-1. The 13C NMR spectrum was also reported.1430 The dynamic behaviour of [ ( (qS-CsH4Me)2ZrS ) 2AlMe31 has been invest- igated.1431 Variable temperature 19F NMR spectroscopy has been used to show exchange in [TlzZr{ OCH(CF3)2)6] and the m5Tl NMR spectrum r e ~ 0 r d e d . l ~ ~ ~

Niobium and Tantalum. 1H NMR spectroscopy has been used to demonstrate exchange in [ ( [q5-

R(Me3Si)C5H3]2NbH(p-H)2) Cu]. The hydride signal changes from AB2 at room temperature to

1420 J.F. Harrod, Y. Mu, and E. Samuel, Can. J. Chem., 1992.70, 2980. 1421 A. Hafner, R.O. Duthaler, R. Marti, G. Rihs, P. Rothe-Streit, and F. Schwarzenbach, J. Am. Chem. Soc., 1992,

1422 P. Gowik, T.M. Klafltke, and T.S. Cameron, Phosphorus Sulfur Silicon, 1992.65, 181. 1423 M.Y. Darensbourg, M. Pala. S.A. Houliston, K.P. Kidwell, D. Spencer, S.S. Chojnacki, and J.H. Reibenspies,

1424 C.H. Winter. X.X. Zhou, and MJ. Heeg, Inorg. Chem., 1992.31, 1808. 1425 I. Dellavia. L. Helm, and A.E. Merbach, Inorg. Chem., 1992.31.4151. 1426 J.E. Gozum, S.R. Wilson, and G.S. Girolami, J. Am. Chem. Soc., 1992, 114, 9483. 1427 K. Plossl, J.R. Norton, J.G. Davidson, and E.K. Barefield, Orgunomefallics, 1992, 11, 534. 1428 H.-G. Woo. W.P. Freeman, and T.D. Tilley, Organometallics, 1992, 11,2198. 1429 G. Erker, R. Pfaff, C. Krilger, M. Nolte. and R. Goddard, Chem. Ber., 1992, 125, 1669. 1430 G. Erker. M. Rump, C. KrUger, and M. Nolte, Inorg. Chim. Acfa. 1992, 198-200,679. 1431 G. Erker. M. Albrecht, and C. Psiorz, Z. Nufurforsch.,B, 1991,46, 1571 (Chern. Absrr., 1992,117, 26 711). 1432 J.A. Sarnuels, J.W. Zwanziger, E.B. Lobkovsky, and K.G. Caulton, Inorg. Chem., 1992,31,4046.

114, 2321.

Inorg. Chem., 1992, 31, 1487.

Page 67: Nmr

Nuclear Magnetic Resonance Spectroscopy 67

ABC at low temperature and AGS was determined.1433 The fluxional processes in exo-[ (q5- C5H=j)2M(q2-CH3CH=CH2)H], M = Nb, Ta, have been investigated by magnetization transfer and EXSY, using 1H and 13C NMR spectroscopy. Rate constants for three separate processes have been determined. A mechanism involving agostic q2-alkyl ligands has been proposed.1434 Bridge-terminal hydride exchange in [(qS-indenyl)2Nb(p-H)2BH2] occurs with AG' = 55.2 f 1.6 kJ mol-l. The pyridine ligand in [(q5-in&nyl)2Nb(H)(NCgH5)1 undergoes restricted rotation with AG' = 52 & 1 kcal mol-1. The 1H and 13C NMR spectra were recorded.1435 The variable temperature 1H NMR spectrum of [(q5-C5H5)Nb(q2-PhC=CPh)(p-SPri)2Mo(CO)4] shows three cyclopentadienyl signals at low temperature and one at mom temperature due to the position of the SPri gr0up.1~3~

Chromium, Molybdenum, and Tungsten. The two inequivalent cyclopentadienyl groups in [ (q5- CsH5)2Moz(p-H)(p-PHPh)(CO)4] exchange with AGS = 62.2 f 0.6 kJ mol-l. The l3C NMR spectrum was also rep01ted . l~~~ The l3CO NMR signal of (134) shows carbonyl exchange with AG' = 13.7 kcal mol-1.1438 Exchange of the inequivalent tolyl groups in [(q5-C~H~)MoOs3(CO)10(CL3- C&Me-4)2(p-H)] with AGS = 15.2 f 0.2 kcal mol-' has been investigated. The fluxionality of [(q5-

C ~ H ~ ) M O O S ~ ( C O ) 11 ( C L ~ - ~ ~ - C ( O ) C H ~ C ~ H ~ M ~ - ~ ] ] was examined using variable temperature 3C NMR spectroscopy.1439 l H NMR spectroscopy has been used to demonstrate exchange of the bridging hydride in [(qS-CsMes)WRu3(CO) lo(pyH)(p3-PPh)] between the W-Ru and Ru-Ru edges. The 13C NMR spectrum was also reported.1440

MO ( W 3

(134) Variable temperature l3C solution and CP/MAS NMR spectroscopy have been carried out on [(q5-

C5H5)2Mq(C0)4 [ pL-(q5-C5H5)Fe(q5-C~H&HC=CF'9))]+. There is one cyclopentadienyl signal at room temperature and four at low temperature.lU1 The variable temperature 'H NMR spectrum of [ ( ~ S - C ~ M ~ S ) W ( M ~ ) ~ ( ~ ~ - ~ ~ N H ~ ~ ~ N H ~ ) I + shows one NH proton at 40 "C and two at low temperatures. The 13C and 15N NMR spectra were also reported.'&* Variable temperature 'H NMR spectra of [ ( HB(~,~-M~~~z)~)(OC)~W=C(E~)P~]+ have shown that there is a barrier of 11.7 kcal mol-I for interconversion of agostic e n a n t i ~ r n e r s . ' ~ ~ ~ The I3C NMR spectra of [(q2-C8H 14)-

1433 A. Antiflolo, F. Carrillo, J. Fernandez-Baeza, A. Otero, M. Fajardo, and B. Chaudret, fnorg. Chem., 1992, 31,

1434 M.L.H. Green, A. Sella, and L.L. Wong, Organometallics, 1992, 11, 2650. 1435 M.L.H. Green and A.K. Hughes, J. Chem. Soc., Dalton Trans., 1992. 527. 1436 S. Woodward, M.D. Curtis. A.L. Rheingold. and B.S. Haggerty, Organometalfics, 1992,11,2140. 1437 S . Woodward and M.D. Curtis, J . Organomet. Chem., 1992,439, 319. 1438 J.R. Bleeke, L.A. Bass, Y.-F. Xie, and M.Y. Chiang,J. Am. Chem. Soc.. 1992, 114, 4213. 1439 J.T. Park, J.J. Cho, K.M. Chun, and S.S. Yun, J . Organomet. Chem., 1992,433, 295. 1440 R.-C. Lin. Y. Chi, S.-M. Peng, and G.-H. Lee, fnorg. Chem.. 1992.31, 3818. 1441 C. Cordier. M. Gruselle, J. Vaissermann, L.L. Troitskaya. V.I. Bakhmutov. V.I. Sokolov, and G . Jaouen,

1442 T.E. Glassman, M.G. Vale, and R.R. Schrock, J. Am. Chem. SOC., 1992, 114, 8098. 1443 S.G. Feng, P.S. White, and J.L. Templeton, J. Am. Chem. SOC. , 1992, 114, 2951.

5 156.

Organometallics, 1992, 11, 3825.

Page 68: Nmr

68 Spectroscopic Properties of Inorganic and Organometallic Compounds

$~(=CCH~CH~CH~&H~)(OCH~BU~)~B~]+ show restricted rotation of the carbene.Iw AG' has been determined for hydrogen transfer from the CHO to CO in [ (HB(3,5-Me2pz)3) W(CO)(CHO)(=NPh)], and the 13C NMR spectrum rep0rted.l~~5 The fluxionality of [ (q5-C~Mes)Ni(p-CO)(p- CH2)W(CO)2(q5-C5H5)] has been investigated using l3C NMR spectroscopy.Iu6

1H NMR spectroscopy has been used to investigate restricted rotation of the N - C bonds in tram- [B~(BU~NC)~M(T$E~~NC=CNE~~)]+ , M = Mo, W, and AGS determined. The 13C NMR spectrum was also measured.1447 'H and 13C NMR spectroscopy has been used to study the fluxionality of [(q5-CsH5)2M02(C0)4(p-RC=CMe)] due to the interconversion of the orientations of the semi- bridging carbonyl.lU8 The 1H and l3C NMR signals have been assigned for [W2(0CH2BuL)6(q2- C2H&]. Magnetization transfer was used to determine the kinetics for exchange and AH' and AS' measured. MeCkCMe rotation on [(q5-C5Me5)W(OPh)(q2-MeC=CMe)2] has been investigated by lH NMR spectroscopy and AG' determined. The l3C NMR spectrum was also recorded.1450 The barriers to alkyne rotation in[(Et2NCS2)2(0C)W(q2-Ph2PC=CPPh2)M(CO)4], M = Cr, Mo, W, have been determined by 3lP NMR spectroscopy. The 13C NMR spectra were also r e ~ 0 r d e d . I ~ ~ ~

1H and 13C NMR spectroscopy has been used to investigate the fluxionality of [W2(q3- QH7)2(NMe2)4]. Both ends of the ally1 equilibrate and there is an anti-gauche equilibrium.1452 The l3C NMR spectra of (135), M = Cr, Mo, W, are temperature dependent due to carbonyl scrambling.1453 The fluxionality of cis-[ML1L2(q4-metallole)], M = Mo, W, has been studied in detail using 'H, I3C and 3'P NMR spectroscopy, and the factors governing fluxionality di~cussed.1~54 Carbonyl scrambling in [(q4-diene)M(CO)j{ P(OMe)3)], M = Cr, Mo, W, has been investigated using 13C NMR spectroscopy.1455

(135) The C r - C r bond energy of [(qs-CsRs)2Cr2(CO)4L2] determined by 'H NMR spectroscopy differs

from that determined using other techniques.1456 The dynamics of [CH2(r15-CgH4)2M2(C0)6], M =

Cr, Mo, W,1457 and [CH2(q5-C5H4)2Cr2(CO)~(~-S)],1458 have been investigated by IH NMR spectroscopy. Sulfur inversion in sulfur derivatives of ( v ~ - C ~ H S ) ~ M , M = Mo, W, has been

1444 J. Kress and J.A. Osbom, Angew. Chem.. Int. Ed. Engl., 1992, 31, 1585. 1445 L. Luan. M. Brookhart, and J.L. Templeton, Organomefallics, 1992, 11, 1433. 1446 M.J. Chetcuti, K.J. Deck, J.C. Gordon, B E Grant, and P.E. Fanwick, Organometallics, 1992, 11,2128. 1447 A.C. Filippou, C. VOM. W. Griileitner, and P. Kiprof, J . Organomel. Chem., 1992,434, 201. 1448 S. Tondu, G. Jaouen, M.F. DAgostino, K.L. Malisza, and M.J. McGIinchey. Can. J. Chem., 1992, 70, 1743. 1449 S.T. Chacon, M.H. Chisholm. 0. Eisenstein, and J.C. Huffman, J. Am. Chem. SOC., 1992, 114, 8497. 1450 M.B. ORegan, M.G. Vale, J.F. Payack, and R.R. Schrock, fnorg. Chem., 1992.31, 1 1 12. 1451 A.K. Powell and M.J. Went, J . Chem. Soc., Dalfon Trans., 1992.439. 1452 R.H. Cayton, M.H. Chisholm, M.J. Hampden-Smith, J.C. Huffman, and K.G. Moodley, Polyhedron, 1992. 11,

1453 S. Ozkar. N.K. Tunali, and C.H. Kreiter, J. Orgonomet. Chem., 1992,428,345. 1454 G. Cerveau, E. Colomer, H.K. Gupta, M. Lheureux, and A. Cave, Organomernflics, 1992, 11, 214. 1455 C.G. Kreiter, M. Komian, S. bzkar, and I. Abu-Mour, J . Organomer. Chem., 1992,431, 159. 1456 W.C. Watkins, T. Jaeger. C.E. Kidd, S. Fortier, M.C. Baird. G. Kiss, G.C. Roper, and C.D. Hoff, J. Am. Chem.

1457 H. Brunner, R. GraBI, J. Wachter, B. Nuber, and M.L. Zieg1er.J. Organomet. Chem.. 1992,431, 143. 1458 H. Brunner, R. GraBI, and J. Wachter. J. Organomef. Chem.. 1992,431, 151.

3197.

Soc., 1992, 114, 907.

Page 69: Nmr

Nuclear Magnetic Resonance Spectroscopy 69

investigated. 1459

The barrier to arene rotation in (136) has been calculated and compared with that determined from NMR measurements.1460 A 13C NMR spectroscopic and EHMO study of tripodal rotation in [(q- benzyl)Cr(C0)3]+ and [(q6-fulvene)Cr(CO)3] has been reported.1461 The stereodynamics of ethyl group and metal tripod rotation have been examined by 1H and 13C NMR spectroscopy for Cr(C0)3 complexes of 1,4-R2-2,3,5,6-EtqC6, R = MeO, MeOCH2, ButCMe2.1462 Hindered arene rotation in [ { [q6-1,4-(Ph2P)2C&]Cr(CO)2(PPh3)) Rh(CO)Cl]n has been observed with AG* = 1 1.7 f 0.1 kcal mol-1 using 31P NMR spectroscopy. The 13C NMR spectrum was also reported.1463 The barrier to rotation about the metal-arene bond in [ (q6- 1,4-(BuQCH2CH2)2-2,3,5,6-EtqC6) Mo(C0)3] has been determined using l3C NMR spectroscopy.1464

(1 36) AG* for sulfur inversion in [M(CO)s(RSCH2SR)], M = Cr, W, has been determined using IH and

l3C NMR spectroscopy.1465 3lP NMR spectroscopy has been used to monitor the rearrangement of (137) to (138), and to study ring inversion in (138). The 13C NMR spectra were also reported.1466 The variable temperature 1H NMR spectrum of [Mo(CO)4( (2-thiophenyl)CH2SCH2CH2SCH2(2- thiophenyl)]] shows a CH2 singlet and an AB pattern at -80 0C.1467 lH NMR spectroscopy has been used to demonstrate exchange of free and coordinated pyridyl in cis-[W(CO)4(q2-terpy)], fac- [ReBr(C0)3)(q2-terpy)], and [PtC1Me3(q2-terpy)], and AG' determined.1468 13C and 1 7 0 Ti measurements have been made on [W(CO)s(PMe3)] to investigate the reorientational dynamics, and the rates of internal rotation about the W-P and P-C bonds determined.1469 According to 13C NMR measurements, carbonyl exchange occurs in [W(CO)4(@C&)]2- with &Ys = 12.0 & 0.7 kcal mol-1 and ASs = -4.5 f 2.5 cal K-1 Sulfur or selenium inversion in [(OC)sW - kCH(OEt)CH2&HPh] occurs with AG' = 44 kT mol-1, E = S, and >58 kJ mol-1, E = Se.1471 1H and 13C NMR measurements have been used to show 1,3-shifts in [W(CO)5(R1SCH2SR2)], and the

1459 M. De Deus Corceiro de Carvalho, Report, 1990, Order No. PB91-209320, 121 pp. Avail. NTIS. From Gov.

1460 M. Nambu, K. Hardcastle, K.K. Baldridge, and J.S. Siega1.J. Am. Chem. SOC., 1992, 114, 369. 1461 P.A. Downton, B.G. Sayer, and MJ. McGlinchey, Organometallics. 1992.11.3281. 1462 K.V. Kilway and J.S. Siegel, J. Am. Chem. Soc., 1992, 114, 255. 1463 M.E. Wright, L. Lawson, R.T. Baker, and D.C. Roe, Polyhedron, 1992,11,323. 1464 K.V. Kilway and J.S. Siegel, Organometallics, 1992,ll. 1426. 1465 E.W. Abel, K.G. Orrell, H. Rahov, V. Sik. M.A. Mazid. and M.B. Hursthouse, J . Organomet. Chem., 1992.

1466 K. Burgess, MJ. Ohlmeyer, and K.H. Whitmire, Organomefallics, 1992, 11,3588. 1467 H. Wu and C.R. Lucas, Inorg. Chem., 1992,31,2354. 1468 E.W. Abel, N J . Long, K.G. Orrell, A.G. Osborne, H.M. Pain. and V. Sik, J . Chem. Soc.. Chem. Commun.,

1469 S.P. Wang and M. Schwartz, J. Mol. Liq., 1991,SO. 61. 1470 D.J. Darensbourg, K.K. Klausmeyer, B.L. Mueller, and J.H. Reibenspies, Angew. Chem., Int. Ed. Engl., 1992,

j 4 ' * H. Fischer, C . Kalbas, and U. Gerbing, J . Chem. Soc.. Chem. Commun., 1992, 563.

Rep. Anounce. Index (U. S.), 1991, 91, Abstr. No. 151 802 (Chem. Abstr., 1992, 116, 255 760).

437. 191; E.W. Abel, K.G. Orrell, H. Rahoo, and V. Sik, J . Organomer. Chem., 1992,441,255.

1992,303.

31, 1503.

Page 70: Nmr

70 Spectroscopic Properties of lnorganic and Organometallic Compounds

activation parameters were determined.1472

(2-Me2NC6H4)PhP

(137) (1 38) The barrier to rotation about the MoEMo bond has been estimated from 3IP NMR measurements as

9.9 kcal m01-1.14~3 31P NMR spectroscopy has been used to measure the barrier to rotation of the M-N and M-P bonds in [M2(PR2)2(NMe2)4], M = Mo, W.1474 The rotational barriers about the 6 M bond in [M2{5-(4-MeCgH4)-2,3,7,8,12,13,17,18-Etgporphyrin}2j have been determined as 10.8 f 0.1 kcal mol-1, M = Mo, and 12.9 k 0.1 kcal mol-1, M = W.1475 Exchange of the pyrazolyl signals is observed in [HB(3,5-Me2pz)3W(S)(S2CNEt2)1.1476 1H NMR spectroscopy has been used to show that [W(NC6H4Me-4)(OR)4] is dynamic.1477 Exchange of the N R 2 groups in [W(O)(CH2But)(NR2)] has been observed by IH and 13C NMR spe~troscopy.'~~8

Manganese and Rhenium. At room temperature, the 1H NMR spectrum of [Re2H~(dppe)3]+ shows a broad hydride signal which splits on cooling into three bridging and two terminal hydride ~ignals.1~'~ Carbonyl fluxionality in [(p-H)(pL-C=CR)Re2(C0)7Lj has been investigated by 13C NMR spectroscopy.14s0 A d for Re-N rotation in [Re3(pL-NMe2)3(NMe&(p3-H)2] has been determined as 1 1.1 kcal mol-I and the I3C NMR spectrum rec0rded.1~~~ Three dynamic processes in [ Re2Pt(p- H)2(CO)g(1,5-C8H12)] have been identified as rotation of the PtH( 1,5-C8H12) group, rotation of the (1,5-CgH12) group, and hydride jump between the two Re-Pt edges. The 13C NMR spectrum was also reported.I48* E , has been determined for hydnde exchange in [R~~(JL-H)~(CO)I~]~-.~~~~

The *H and 13C NMR spectra of (139) show two CMe signals at -55 O C and one at room t e m p e r a t ~ r e . 1 ~ ~ ~ 3lP NMR spectroscopy has been used to show restricted rotation about the ReCECM bond in [(q5-C~Me5)Re(N0)(PPh3)C=CPd(PEt3)2Cl] and [(q5-C5Mes)Re(NO)(PPh3)-

1472 E.W. Abel, K.G. Orrell, H. Rahoo, and V. Sik, J. Organomef. Chem.. 1992,441, 441. 1473 F.A. Cotton, J.L. Eglin, B. Hong. and C.A. James, J . Am. Chem. Soc., 1992, 114, 4915. 1474 W.E. Buhro, M.H. Chisholm, K . Folting, J.C. Huffman, J.D. Martin, and W.E. Streib, J . Am. Chem. Soc.,

1475 J.P. Collman, J.M. Gamer, R.T. Hembre, and Y. Ha, J. Am. Chem. SOC., 1992, 114, 1292. 1476 C.G. Young, M.A. Bruck, and J.H. Enemark, Inorg. Chem., 1992.31, 593. 1477 W. Clegg, R.J. Errington. and C. Redshaw. J . Chem. Soc., Dahon Trans., 1992, 3189. 1478 J.P. Le Ny, M.T. Youinou, and J.A. Osborn, Organomefallics, 1992, 11, 2413. 1479 K.E. Meyer, D.R. Root, P.E. Fanwick, and R.A. Walton, Inorg. Chem., 1992,31, 3067. 1480 S. Top, M. Gunn, G . Jaouen, J . Vaissermann, J.C. Daran, and M.J. McGlinchey, Organomelallics, 1992, 11,

I4g1 D.M. Hoffman, D. Lappas, and E. Pulilina, Inorg. Chem., 1992,31, 79. 1482 P. Antognazza. T. Beringhelli, G. D'Alfonso, A. Minoja, G. Ciani, M. Morel. and A. Sironi, Orgunomerallics,

1483 T. Beringhelli, G . D'Alfonso, A.P. Minoja, G. Ciani, and A. Sironi, J . Organomel. Chem.. 1992, 440, 175. 1484 W.A. Herrmann and P. Watzlowk, J . Organomef. Chern.. 1992,441,265.

1992, 114, 557.

1201.

1992, 11. 1777.

Page 71: Nmr

Nuclear Magnetic Resonance Spectroscopy 71

C=CRh(PPh3)2(CO)IY and AGS determined.1485 The IH NMR spectrum of (140) is dynamic due to inversion of the six-membered ring. The 13C NMR spectrum of [Re2(C0)6(p-OMe)3]- was also

Carbonyl exchange in [Re6C(~-CO)(CO)18]2-y1487 and [Re7C(CO)21 [P(OPh)3)]-,1488 has been studied by 13C NMR spectroscopy.

Me

( 139) (140) The dynamic behaviour of (141), M = Cry Mo, W, has been studied by IH and l3C NMR

spectroscopy. 1489 Dienyl rotation in exo-($-6-PhC&j) derivatives of manganese and rhenium has been studied.1490 The variable temperature 1H and l3C NMR spectra of [($-C=,H5)Re(NO)(PPh3)- (NMez)] show one NMe signal at -44 OC and two at - 114 "C which interconvert with AG' = 7.8 kcal mol-1.1491

(141) 13C and 31P NMR spectroscopy has been used to study phosphorus inversion in f u c -

[Re(Co)3(PMe3)2(PHCy)].1492 Sulfur exchange and inversion infuc-[Re(C0)3X (2,6-(RS)CgH3N I ] have been studied using 1H NMR spectroscopy.1493

Iron, Ruthenium, and Osmium. The fluxionality of [FeH3(PBunPh2)3(SiMePh~)I has been investigated. The 3lP NMR spectrum shows two signals in the ratio 1:2 at low temperature.1494 [P(CH2CH2PPh2)3FeH(H2)]+ is very fluxional. A variable temperature 1H and 31P NMR investigation has yielded AG', AH', and At room temperature there is one hydnde signal for

1485 J.A. Ramsden, W. Weng. A.M. Arif, and J.A. Gladysz, J. Am. Chem. SOC., 1992, 114, 5890. 1486 W.A. Hemnann, D. Mihalios, K. bfele, P. Kiprof, and F. Belrnedjahad, Chem. Ber., 1992, 125, 1795. 1487 T. Beringhelli, G. DAlfonso, H. Molinari, and A. Sironi, J. Chem. SOC., Dalton Trans., 1992, 689. 1488 S.W. Simerly. S.R. Wilson, and J.R. Shapley, Inorg. Chem., 1992,31, 5146. 1489 M. Wieser, K. Siinkel, C. Robl, and W. Beck, Chem. Ber., 1992, 125, 1369. 1490 R.D. Pike, T.J. Alavosus, W.H. Hallows, N.S. Lennhoff, W.J. Ryan, D.A. Sweigart, C.H. Bushweller, C.M.

DiMeglio, and J.H. Brown. Organomefallics, 1992, 11, 2841. 1491 M.A. Dewey, D.A. Knight, A. Arif, and J.A. Gladysz. Chem. Ber., 1992, 125, 815. 1492 R.D. Simpson and R.G. Bergman. Organomefallics, 1992.11, 3980. 1493 E.W. Abel, D. Ellis, and K.G. Orrell, J. Chem. Soc.. Dalton Trans., 1992, 2243. 1494 U. Schubert, S. Gilbert, and S. Mock, Chem. Ber.. 1992, 125,835. 1495 C. Bianchini, M. Peruzzini, A. Polo, A. Vacca, and F. Zanobini, Garz. Chim. lfal., 1991, 121, 543 (Chem.

Page 72: Nmr

72 Spectroscopic Properties of Inorganic and Organometallic Compounds

[Fe(H)2(C0)2{ (C2F5)2PCH2CH2P(C2F5)2)] and two at low temperature. AG' is 9.9 k 0.2 kcal mol-1 for hydride exchange. The 13C NMR spectrum was also reported.1496 A variable temperature IH and 3lP NMR study of [ ( (q5-CsH5)Fe[q5-C5H3- l-(CHMeNMe2)-2-(PPri2)1 )2(q2-H2)Ru(p- C1>2(pL-H)RuH(PPh3)2] has shown hydride exchange.1497 The 1H NMR spectrum of [ H R U ~ ( C O ) ~ ~ B A U ~ ( P ~ ~ P C ~ H ~ - ~ ~ ) ~ F ~ ] shows four types of cyclopentadienyl protons at low temperature and two at higher temperature. The 1lB NMR spectrum was also rep0rted.1~98 The trigonal twist mechanism in [RuH2(CO)(PPh3)3] has been demonstrated using EXSY for the hydride signals.1499 Dynamic behaviour has been observed by 'H, 13C, and 31P NMR spectroscopy for [Ru3(p-H) [ pPhPCH2CMe(CH2PPh2)2) (CO)8].1500 The fluxional behaviour of [ Ru3(p-H)(p3-q2- CsCBut)(CO)g] has been reinvestigated by l3C NMR spectroscopy using EXSY and magnetization transfer. The lowest energy process is a tripodal rotation of the unique Ru(CO)3 group with AG' =

59.1 kJ mol-1. There are two further processes, the rotation of the alkynyl group around the Ru3 mangle, coupled with hydride migration with AG' = 67.0 kJ mol-1, and tripodal rotation of the other Ru(C0)3 groups with AG' =72.0 kJ Variable temperature I3C NMR spectroscopy has

been used to demonstrate CO exchange in [(p-H)2Ru4(C0)12(p3-PPh)I,~~~~ and [HMioC(C0)241-, M = Ru, 0 s . (including EXSY).1503 The IH NMR spectrum of [Os3(p-H)2(p3-S)(CO)7(p-dppm)] shows hydride exchange.1504 The variable temperature 19F NMR spectrum of [ (p- H)Os-j(CO)l&[ON(CF3)2]] shows hindered rotation of the N(CF3)2 gr0up.1~~5

13C T1 measurements have been used to determine the activation energy for methyl group rotation in [ ( ~ ~ - C ~ H S ) F ~ ( C O ) ~ C H ~ ] as 2.8 kcal m01-1.15~6 1H T 1 measurements and l3C CP/MAS NMR spectra have been used to investigate the dynamic behaviour of [(r15-C5H5)2Fe2(p-CO)(C0)2{ p- CHn(CN)2-,)].15°7 The variable temperature 31P NMR spectrum of [(q5-C5Hg)Fe(=C=CHPh)- (dppm)] shows the signals change from AX to A2. The 13C NMR spectrum was also reported.lSo8 Restricted rotation of the C-Cp bond of the p-tricyanobutadienylidene ligand in [(q5-C5H5)2FezL2-

[ p-C=CHC(CN)=C(CN)2]], L2 = (C0)2. dppe, has been observed in the *H and 13C NMR spectra. When L2 = (C0)2, AG'298 = 16 & 1 kcal mol-l, while when L2 =dppe, AG'211 = 10 * 0.2 kcal

Variable temperature 13C NMR spectra of [Fe2(C0)6(p-PPh2)(p2-r11:r12-CH=CH2)1 show

Absir., 1992, 116, 226 959). 1496 M. Brookhart, W.A. Chandler, A.C. Pfister, C.C. Santini, and P.S. White, Organomerallics, 1992, 11, 1263. I4g7 C.R.S.M. Hampton, I.R. Butler, W.R. Cullen, B.R. James, J.-P. Charland. and J . Simpson, Inorg. Chem., 1992,

1498 S.M. Draper, C.E. Housecroft, and A.L. Rheingold, J . Orgunornet. Chem.. 1992,435,9. 1499 G.E. Ball and B.E. Mann, J . Chem. Soc., Chem. Commun.. 1992, 561. I5O0 J.L. Le Grand, W.E. Lindsell, K.J. McCullough, C.H. McIntoch, and A.G. Meiklejohn, J. Chem. Soc., Dullon

l S o 1 LJ. Farmgiaand S.E. Rae, Organomefallics. 1992, 11, 196. I5O2 F. Van Gasel. J.F. Corrigan, S. Doherty, N.J. Taylor, and A J . Carty, Inorg. Chern., 1992,31,4492. I 5 O 3 P.J. Bailey, L.H. Gade, B.F.G. Johnson, and J . Lewis, Chem. Ber.. 1992, 125, 2019. 1504 K.A. Azam. S.E. Kabir, A. Miah, M.W. Day, K.I. Hardcaslle, E. Rosenberg, and A.J. Deeming, J . Organomel.

31, 5509.

Trans., 1992, 1089.

Chem., 1992,435, 157. H.G. Ang, C.H. Koh, and W.L. Kwik,J. Organomel. Chem., 1992,435, 149.

I5O6 S.C. Mackie and M.C. Baird, Organomerallics, 1992, 11,3712. I5O7 S. Aime. L. Cordero, R. Gobetto. S. Bordoni, L. Busetto, V. Zanotti. V.G. Albano. D. Braga, and F. Grepi0ni.J.

Chem. SOC., Dalron Trans., 1992, 2961. M.P. Gamasa, J. Gimeno, E. Lastra, B.M. Martin, A. Anillo, and A. Tiripicchio, Organomerallics, 1992, 11, 1373.

I5O9 M. Etienne, J . Talarmin, and L. Toupet, Organornetuflics, 1992, 11, 2058.

Page 73: Nmr

Nuclear Magnetic Resonance Spectroscopy 73

three independent processes, two low energy tigonal rotations and a much higher equilibrium of the two non-equivalent Fe(C0)3 sites.1510 The 13C NMR spectrum of [Hg( Fe2Rh(pyCOMe)(p- CO)(C0)6(q5-CgHg))2] shows carbonyl exchange. The 199Hg NMR spectrum was also reported.1511 The Berry exchange of carbonyls in [H2(HMPA)Si=Fe(CO)q] has been studied by l3C NMR spectroscopy and has AGS = 40.5 k 5 kJ mol-1. The 29% NMR spectrum was also reported.1512 EXSY shows Me-Ge-Me exchange in (142). The 13C and 29Si NMR spectra were reported for M = Si,1513 and 13C NMR spectra for M = Ge.1514 The temperature dependence of the 1H and 13C NMR spectra of [RU(CH~CH~CH~SR)CI(CO)(PP~~)~] has been used to study sulfur inversion.1515 The 13C and 31P NMR spectra of [Ru(R)(enolate)(PMe3)4] show fluxionality.1516 The fluxionality of (143) has been studied by 31P NMR spectroscopy and the 13C NMR spectrum reported. AGS218 = 41 kJ rn01-1.151~ The mercury fragment of [Os10C(C0)24(HgX)]- is mobile over the cluster according to variable temperature l3C NMR ~pectroscopy.15~~

Me CI 0. I ,PP$,CH,CH,OMe

(142) (1 43) The dynamic behaviour of (144) has been observed by 13C NMR spectroscopy and the ruthenium

moves from one ring to the other.1519 The fluxionality of [R~3(p-CO)(C0)9(q2-ethynylestradiol)] has been studied by 13C NMR spectroscopy.1520 Five independent fluxional processes have been observed for [Osg(C0)8(q2-CH2=CHR)(p3-q2:q2:q2-C&)] using one- and two-dimensional IH and 13C NMR spectroscopy. 13C CPMAS NMR spectra were also recorded.1521 The variable temperature 1H and 13C NMR spectrum of [OS~(~~-~~-P~NCOM~)(~~-CI)(CO)~O] shows resticted rotation about the N-Ph bond.1522 The fluxional behaviour of [Fe(C0)3(p-q3:q2-C7H7)Pd(q5- C ~ H S ) ] has been studied using IH and 13C NMR spectroscopy.15*3 The variable temperature IH NMR spectrum of (145) shows the agostic hydrogen moving from the methyl group to the allylic CH2 group.1524 According to 1H and l3C NMR spectra, [Ru(q4-C4Me4S)(q5-C4Me4S)] is dynamic due to

l 5 l 0 S.A. MacLaughlin, S. Doherty, N J . Taylor, and A.J. Carty, Organomelaflics, 1992, 11, 4315. 151 A. Bianchini and L.J. Farmgia. Organomeiallics, 1992, 11,540. 1512 C. Leis, D.L. Wilkinson, H. Handwerker, C. Zybill. and G. Miiller, Organomelallics, 1992, 11, 514. 1513 J.R. Koe, H. Tobita. and H. Ogino. Organome&allics. 1992, 11, 2479. 1514 J.R. Koe, H. Tobita, T. Suzuki, and H. Ogino, Organomelalfics, 1992. 11, 150. 1515 K. Hiraki, Y. Fuchita, H. Kawabata, K. Iwamoto, T. Toshimura, and H. Kawano, Bull. Chem. SOC. Jpn., 1992.

65, 3027. 1516 J.F. Hartwig, Reporf, 1990, LBL-30200; Order No. DE91014229, 417 pp. Avail. NTIS. From Energy Res.

Abslr., 1991, 16. Abstr. No. 23685 (Chem. Abslr., 1992, 116. 235 669). 1517 H. Werner, A. Stark, M. Schulz, and J. Wolf, Organomeraflics. 1992. 11. 1126.

L.H. Gade, B.F.G. Johnson, and J. Lewis,J. Chem. Soc., Dalton Trans., 1992, 933. 15l9 M. van Wijnkoop, P.P.M. de Lange, H.-W. Friihauf. K. Vrieze. Y. Wang, K. Goubitz, and C.H. Stam,

Organometallics, 1992, 11, 3607. 1520 D. Osella, 0. Gambino, R. GobeUo, C. Nervi, M. Ravera, and G. Jaouen, fnorg. Chim. A m , 1992, 192,65.

M.A. Gallop, B.F.G. Johnson, J. Keeler, J. Lewis, S.J. Heyes, and C.M. Dobson, J. Am. Chem. SOC., 1992, 114, 2510.

1522 D.L. Ramage. G.L. Geoffroy, A.L. Rheingold. and B.S. Haggerty, Organomelaflics, 1992,11, 1242. 1523 M. Airoldi, G. Deganello. G. Gennaro, M. Moret, and A. Sironi, J. Chem. Soc.. Chem. Commun., 1992. 850. 1524 M.A. Bennett, L.Y. Goh, I.J. McMahon, T.R.B. Mitchell, G.B. Robertson, T.W. Turney, and W.A.

Page 74: Nmr

74

interchange of the q%q5 rings.1525

Spectroscopic Properties of Inorganic and Organometallic Compounds

Me02C\ p i

C02Me

(144) (145) The fluxionality of [Ru(q5-C8H9)C1(PPh3)2] and [Ru( (2,3,4,5,6-q)-bicycl0[5.1 .O]octadienyl) -

RuCl(PPh3)2] has been studied using IH, 13C, and 31P NMR spe~troscopy.152~ The 31P NMR spectrum of [Ru($-~,~-M~~CSHS)(PM~~)~]+ shows dienyl rotation, and AGS was derived. The 13C NMR spectra were also reported for this compound and [Ru(1-$-2,4-Me2CgHg)(q~-diene)X1.152~ The variable temperature 'H NMR spectrum of (146) shows fluxionality; AGS was determined. The 13C NMR spectrum was also determined.1528 The barrier to ring rotation in [ (qS5-2,5-(Me3Si)2-3,4-Me2- stibole)2Fe] has been determined by 1H and 13C NMR spectroscopy as 13 kcal mol-1.1529 13CO exchange in [(q5-CsH5)2Fe2(CO)4] has been re-examined using 13C DANTE and EXSY. There is no direct c i s ~ c i s exchange, but the exchange goes via the ~ runs - i somer .~~3~ The 'H and l3C NMR spectra of [Fez(q5-C5H5)2(C0)4-,(CNMe),] have been re-investigated, and the activation energies for CO and CNMe exchange determined.1531 Carbonyl exchange in [Me2Si(C5H4- rl5)2Fe2(C0)4-,(CNR),] has been investigated by l3C NMR spe~ t roscopy .1~~~ The fluxional behaviour of [(~5-CsMe~)FeCo2(Cl-C0)2(C0)6[ (q2-C=CC~H4-qs)Fe(q5-C5H5))] has been investigated using variable temperature l3C NMR spe~troscopy.15~3 Acetate rotation in [(qs- C5Meg)Ru (qs-Cs(Hg@CCH3)5)] stops at low temperature according to 13C NMR spectroscopy. 1534

The 31P NMR spectrum of [(q5-CsHs)Ru( 1 -Ph-3,4-Me2phosphole)(PhSCH=CH2)]+ shows sulfur inversion and AGS was determined. 1535

,- - - - -, ,-----,

Fe Fe

Wickramasinghe, Organometallics, 1992,11,3069. 1525 S. Luo, T.B. Rauchfuss, and S.R. Wilson, Organomerallics, 1992,11, 3497. 1526 G. Alibrandi and B.E. Mann, J . Chem. SOC., Dalton Trans., 1992, 1439. 1527 T. Lurnini. D.N. COX, R. Roulet, and K. Schenk. J . Organomer. Chem.. 1992,434, 363. 1528 M. Sato and M. Asai, J . Orgammer. Chem., 1992,430, 105. 1529 A.J. Ashe, tert., J.W. Kampf, and S.M. Al-Taweel, Organometallics, 1992.11, 1491. 1530 LJ. Farmgia and L. Mustoo. Organometallics, 1992,11,2941. 1531 M.A. Guillevic, E.L. Hancox, and B.E. Mann, J . Chem. SOC.. Dalton Trans., 1992, 1729. 1532 S. Nakanishi, Y. Taniki. and Y. Otsuji, Bull. Chem. SOC. Jpn.. 1992, 65, 2309. 1533 M. Akita, M. Terada, and Y. Mom-oka, Organomerallics, 1992.11, 1825. 1534 C.H. Winter, Y.-H. Han, and M.J. Heeg, Organometallics. 1992.11.3169. 1535 H.-L. Ji. J.H. Nelson, A. De Cian. J. Fischer. L. SolujiC. and E.B. MilosavljeviE, Organome[allics, 1992, 11,

1840.

Page 75: Nmr

Nuclear Magnetic Resonance Spectroscopy 75

13C NMR spectroscopy has been used to investigate the ligand dynamics of [Fe(CO)2(CNR1)(R2N=CHCH=NR2)].1536 The dynamics of bridge- terminal exchange in

[Fe2(CNPh)9] have been investigated by 13C NMR specuoscopy.1537 The mechanism of carbonyl scrambling found by 13C NMR spectroscopy in [Fe3(CO)ii(CNCF3)] has been shown to be the concerted bridge opening-closing mechanism.1538 Ligand exchange dynamics have been studied for [(pg-E)(p.3-PR)Fe3(C0)7L2], E = S, Se, Te, using 3lP NMR spectroscopy. 13C NMR spectra were also r e ~ 0 r d e d . l ~ ~ ~ The fluxionality of [ R U ~ ( C O ) ~ ( S ~ C & I ~ ) ] involves carbonyl scrambling between the bridging and equatorial positions and was investigated by 13C NMR spectroscopy.1540 The fluxionality of [Ru(CO)C12(L-O,P)(L-P)], L = Ph2PCH2CH20Me,1541 or Ph2P(o~etanyl-2-Me),'~~~ has been investigated by 13C and 3lP NMR spectroscopy. A IH, 13C, I9F, and 3IP NMR investigation of cismer-[RuX2(CO)( PhP(CH2CH2PCy2)2)], X = BF4 or 03SCF3, has demonstrated fl~xionality.15~3 The 1H NMR spectrum of [ O S ~ ( ~ - S ~ R ) ~ ( C O ) I O ] shows selenium inversion.1544 Carbonyl scrambling in [OsRhs(C0)16]- has been investigated by 13C NMR spectroscopy.1545 The fluxionality of compounds such as [Os(CO)Br2(L-O,P)(L-P)], L = Ph2PCH2CH20Mel has been studied by l3C and 31P NMR spe~troscopy.15~~ The variable temperature 31P NMR spectrum offuc- [RuC1(02CMe) ( ( C Y ~ P C H ~ C H ~ C H ~ ) ~ P P ~ }] shows an AX2 spectrum at room temperature and A M X

at low temperature. The 13C NMR spectrum was also r e ~ 0 r d e d . l ~ ~ ~

Cobalt. In (147), the bridging ligand changes from cobalt to cobalt and, using lH and 13C NMR spectroscopy, the activation parameters were determir1ed.15~8 Carbonyl exchange in [MeCCo3(C0)8(PCy3)] has been studied using I3C EXSY. It was also demonstrated that rotation about the C-P and P-C bonds are slowed at low temperature.1549 I3C T i values and NOE measurements have been used to study restricted phenyl rotation and molecular diffusion in [CO~(CO)~(~-P~C~CH)].~~~~ Ligand exchange in [Co{ l,l3-(8-quinolyl)~-l,4,7,10,13-pentaoxatn

1536 P.P.M. de Lange, M.J.A. Kraakman, M. van Wijnkoop, H.-W. Friihauf, K. Vrieze, W.J.J. Smeets. and A.L.

1537 J. Ruiz, V. Riera, M. Vivanco, S. Garcia-Granda, and P. Pertierra, Organomefallics, 1992, 11, 2734. 1538 B.E. Mann, Organomefallics. 1992. 11,481. 1539 W. Irnhof. G. Huttner, B. Eber, and D. Gunauer, J. Organomet. Chem.. 1992,428, 379. 1540 L. Hoferkamp, G. Rheinwald, H. Stoeckli-Evans, and G. Suss-Fink, Hefv. Chim. Acta, 1992,75, 2227. 1541 E. Lindner. A. Mtickel, H.A. Mayer, and R. Fawzi, Chem. Ber.. 1992, 125, 1363. 1542 E. Lindner and A. Mkke l , 2. Naturforsch., B, 1992.47.693 (Chem. Abslr., 1992, 117, 19 283). 1543 P.W. Blosser, J.C. Gallucci, and A. Wojcicki, Inorg. Chem., 1992,31, 2376. 1544 A.J. Arce, P. Arojo, Y. De Sanctis, A.J. Deeming, and D.J. West, Polyhedron, 1992, 11, 1013. 1545 A. Furnagalli. S. Martinengo, G. Ciani, M. Moret, and A. Sironi, Inorg. Chem., 1992,31, 2900. 1546 E. Lindner, H. Rothfuss, R. Fawzi, and W. Hiller, Chem. Ber.. 1992, 125, 541. 1547 G. Jia, A.L. Rheingold, B.S. Haggerty, and D.W. Meek, Inorg. Chem., 1992.31, 900. 1548 W.D. Jones and R.M. Chin, Organometaflics, 1992. 11,2698. 1549 L. Li, M.F. DAgostino, B.G. Sayer, and M.J. McGlinchey, Organomefallics, 1992, 11, 477. 1550 P. Yuan, M.J. Don, M.G. Richmond, and M. Schwartz, Inorg. Chern., 1992.31, 3491.

Spek, Inorg. Chim. A m , 1992, 196, 151.

Page 76: Nmr

76 Spectroscopic Properties of Inorganic and Organometallic Compounds

decane)12+ has been studied by l H and 13C EXSY NMR spectroscopy.'551

Rhodium. 1H and 13C NMR spectroscopy has been used to show that [(q5-C5Me5)RhH(q4-diene)]+ is an q3-enyl complex with agostic interaction. The agostic hydrogen is transferred from one end of the ally1 to the other and the activation energy determined.1552 The hydride signal of [(q5- C5H5)Rh { P(OMe)3 )(q2-C2&)H]+ is broad due to exchange with the C2H4 and AH' and ASs were determined. The l3C NMR spectrum was measured.1553 31P NMR spectroscopy has been used to study ring inversion in [ (2,2'-(Ph2PCH2CH2)2-biphenyl)RhH(CO)(PPh3)] with AG' = 15.5 kcal mol-I. The 13C NMR spectrum was also re~0rted.l~~~ IH NMR spectroscopy has been used to show that [(qS-CsMe5)2Rh2(pCH2)2(p-SH)]+ is dynamic with four CH2 proton signals at low temperature and two at high. The l3C and l03Rh NMR spectra were also detem1ined.15~~ The barrier to ligand rotation in ~(~,~-M~~~Z)~R~(~~-P~N=C=NCH~BU~)(CNCH~BU~)] has been measured and the '3C

NMR spectra reported. 1556 [(OC)(q2-C2&)Rh(qs-CgH4CHO)] has the lowest AG' so far reported for C2H4 rotation in this

type of cornp0und.155~ Dynamic 1H and l3C NMR spectroscopy shows that there is restricted rotation about the Rh-S bond in [(q5-CsMe~)Rh{ (SC4Me4-q4)Rh(qs-CsMeg))21.1558 The 3lP NMR spectrum of [Rh2(C0)3(dmpm)2] is [ABX]:! at -75 OC and [A2X]2 at room temperature. The l3C NMR spectrum was also given.1559 The variable temperature 'H NMR spectrum of [Rh2(@CCH3)&2], L = (148), shows exchange due to hydrogen bonding of the NH to acetate.1560 (qNO*

Mey Lk>) H

(148)

fridium. The 3lP NMR spectrum of [IrH(CH=CH2)C1(PPri3)2(CO)] is an AB at -70 "C and is a singlet at room temperature due to restricted rotation of the vinyl group. The 13C NMR spectrum of [IrH(CH=CHz)Cl(q 1-Pri2PCH2CH20Me)(q2-Pri2PCH2CH20Me)] was also reported. 1561 'H NMR specuoscopy has been used to investigate exchange between the hydride and the ortho phenyl position

1551 F.L. Dickert, M. Feigl, W. Gmeiner, and H.U. Meissner, Z. Naturforsch.,B, 1992, 47. 911 (Chem. Abstr.,

1552 M.A. Bennett, I.J. McMahon, S. Pelling. M. Brookhart, and D.M. Lincoln, Organometallics. 1992, 11, 127. 1553 M. Brookhart, E. Hauptman, and D.M. Lincoln, J . Am. Chem. SOC., 1992, 114. 10394. 1554 C.P. Casey, G.T. Whiteker, M.G. Melville, L.M. Petrovich, J.A. Gavney, jun., and D.R. Powell, J. Am. Chem.

1555 Y. Ozawa. A.V. de Miguel. and K. Isobe. J. Organomet. Chem.. 1992,433, 183. 1556 H.T. Hessell and W.D. Jones, Organometallics, 1992,11, 1496. 1557 M. Arthurs, J.C. Bickerton, M. Kirkley. J. Palin, and C. Piper, J. Organomet. Chem., 1992,429, 245. 1558 S. Luo, A.E. Skaugset, T.B. Rauchfuss, and S.R. Wilson, J . Am. Chem. Soc., 1992, 114, 1732. 1559 J.A. Jenkins and M. Cowie, Organometallics. 1992.11,2767. 1560 H.T. Chifotides, K.R. Dunbar. J.H. Matonic, and N. Katsaros, Inorg. Chem., 1992,31,4628. 1561 M. Schulz and H. Werner. Organometallics, 1992.11.2790.

1992, 117, 142 308).

Soc., 1992, 114, 5535.

Page 77: Nmr

Nuclear Magnetic Resonance Spectroscopy 77

in (149), L = PPh3.1562 The fluxionality of [ { MeC(CH2PPh2)3)Ir(H)(C2b) { Au(PPh3))I has been investigated by 1H and 31P NMR spectroscopy.1563 The fluxionality of [Ir4(CO)11H]- has been investigated by 13C EXSY and two mechanisms were found.1564 The dynamics of carbonyl scrambling about each face in [Ir4(CO)l1 (PHzPh)] have been investigated using I3C magnetisation transfer. The interconversion of three isomers of [Ir4(CO)ll(PHPh2)] was studied using 31P NMR spectroscopy.1565 The equilibrium between the bridged and unbridged forms of [ I ~ ~ ( C O ) ~ ( J . L ~ - 1 3 3 - mthiane)] has been investigated by 13C NMR spectroscopy at both normal and high pressure.1566 Variable temperature 13C NMR spectroscopy has been used to investigate C O exchange in [Irg(CO)ls{ Cu(NCMe)]]-, and the exchange pathway was defined using EXSY.1567

Nickel. Equilibration of the two phosphorus ligands in [Ni(C@)(PCy3)2] has been studied by 31P NMR spectroscopy and AG' = 39.3 kJ mol-1. The l3C NMR spectrum was also r e ~ 0 r d e d . l ~ ~ ~ The fluxionality of [Ni( (Ph)(R)C=C=O)(PPh3)2] has been investigated by IH and 13C NMR spectroscopy.15@ Variable temperature 1H and 31P NMR spectroscopy has been used to show nickel migration from one end of the anthracene molecule to the other in [(~4-C14Hlo)Ni(PR3)2J, and AH' and AS* were determined.1570 The variable temperature IH and l3C NMR spectra of (150) show that the structure is non-planar due to steric hindrance and the structure A dynamic process in (151), which is probably acyl rotation, has been observed by IH and 13C NMR spectroscopy.1572 The racemization of [ ((pyrR2R3)(NRlS))2Ni] has been studied by IH NMR spectroscopy and AHt and AS' determined.1573 The temperature dependence of IH NMR spectra of [4-Me-9- (4-Me-9-(6- CF3CONHC&+5,8-diazadeca-3,8-dien-2-onato) Nil has indicated a substantial energy barrier for enantiomeric interconversion of these chiral ~ompounds.15~4

1562 A.C. AlMniz. G . Schulte, and R.H. Crabtree. Organomeiallics, 1992, 11,242. 1563 C. Bianchini. A. Meli, M. Peruzzini, A. Vacca, F. Vizza. and A. Albinati, Inorg. Chem., 1992, 31, 3841. 1564 M.J. Davis and R. Proulet, Inorg. Chim. Acta, 1992, 197. 15. 1565 B.E. Mann. M.D. Vargas. and R. Khauar, J . Chem. SOC.. Dalton Trans., 1992, 1725. 1566 A. Orlandi, U. Frey, G . Suardi, A.E. Merbach, and R. Roulet. Inorg. Chem., 1992.31. 1304. 1567 R.D. Pergola, L. Garlaschelli, F. Demartin, M. Manassero, and N. Masciocchi, J . Organomei. Chem., 1992,

1568 M. Aresta, R. Gobetto, E. Quaranta, and I. Tommasi, Inorg. Chem.. 1992.31.4286. 1569 A. Miyashita, R. Sugai, and J. Yamamoto, J. Organomef. Chem., 1992,428,239. 1570 A. Stanger and K.P.C. Vollhardt. Organomeiallics. 1992, 11,317. 1571 C.J. Medforth, M.O. Senge, K.M. Smith, L.D. Sparks, and J.A. Shelnuti, J . Am. Chem. SOC., 1992. 114,

1572 M. Kwiatkowski and G. Bandoli, J . Chem. SOC., Dalton Trans., 1992,379. 1573 A. la Cour. B. Adhikhari, H. Toftlund. and A. Hazell, Inorg. Chim. Actu, 1992,202, 145. 1574 B. Singh, P. Srivastava, and A.K. Srivastav. Synih. React. Inorg. Metal-Org. Chem., 1992.22,299.

436, 241.

9859.

Page 78: Nmr

78 Spectroscopic Properties of Inorganic and Organometallic Compounds

Et

Palladium and Platinum. The hydride signal of [HPt(P(CH20H)3)4]+ is a quintet with platinum satellites at -10 "C, while at -65 "C it is a doublet of quartets with platinum ~ate11i tes . l~~~ The IH and l3C NMR spectra of (152) show two dynamic processes, ligand site exchange and ring i n ~ e r s i 0 n . l ~ ~ ~ Sulfur inversion in [ { (1-naphthyl)CH(Me)NMe2} Pd(Ph2PCH2CH2SMe)]+ has a IH coalescence temperature of -90 0C.1577 'H NMR spectroscopy has been used to investigate pyrazolyl exchange in

[PtMe3I(p~CH2)2C=CH2].1~~8 The fluxionality of [(PtMe31)2(SCH2SCH2SCHMe)] has been studied by 1H and 195Pt NMR spectroscopy.l579 Alkene exchange in [Me2Pt ( S(CH2CH2CH=CH2- q2)(CH2CH2CH=CH2))] has been investigated by 'H NMR spec t ro~copy.~5~~ Variable temperature 13C NMR spectroscopy has been used to show that the fluxionality of [Pt(q l-C5Mes) ( PPh2(2- MeOC6H4)) (CO)Cl] is nearly stopped at 187 K.1s8l The fluxionality of [ (73- M ~ C H C ~ H S ) M ( R ~ P C H ~ C H ~ P R ~ ) ] + , M = Pd, Pt, R = But, C6H11, has been investigated by 'H, 13C, and 31P NMR spectroscopy.1582 One- and two-dimensional NOE measurements on [ (73-2- MeC3J3&Pt2(pz4B)]+ have shown fast intramolecular interconversion between conformational isomers. 1583

-

+

L OMe

(152) Rearrangements of square-planar and square-pyramidal complexes of Pd*I and Ptrr containing the

enantiomers of (+)-MePh(8-quinolinyl)As have been investigated by variable temperature NMR

1575 J.W. Ellis, K.N. Harrison, P.A.T. Hoye, A.G. Orpen, P.G. Pringle, and M.B. Smith, fnorg. Chem., 1992, 31,

1576 G . Tresoldi, E. Rotondo, P. Piraino, M. Lanfranchi, and A. Tiripicchio, fnorg. Chim. Acta, 1992,194,233. 1577 S.Y.M. Chooi. T.S.A. Hor, P.H. Leung, and K.F. Mok,fnorg. Chem., 1992,31, 1494. 1578 A.J. Canty, R.T. Honeyman. B.W. Skelmn, and A.H. White, J . Chem. Soc., Dalfon Trans., 1992, 2663. 1579 E.W. Abel, D. Ellis, K.G. Orrell, and V. Sik, J . Chem. SOC., Dalion Trans., 1992, 3497. 1580 E.W. Abel, D.G. Evans, J.R. Koe, M.B. Hursthouse, and M. Mazid, J . Chem. Soc., Dalton Trans., 1992,663. 1581 N.M. Boag. R. Quyoum, and K.M. Rao, J . Chem. Soc., Chem. Commun., 1992, 114. 1582 L.E. Crascall and J.L. Spencer, J . Chem. SOC., Dalton Trans., 1992, 3445. 1583 K. Ohkita, H. Kurosawa, T. Hasegawa, T. Shirafuji, and I. Ikeda, fnorg. Chim. Acca, 1992, 198-200, 275.

3026.

Page 79: Nmr

Nuclear Magnetic Resonance Spectroscopy 79

~ p e c t r o s c o p y . ~ ~ ~ Variable temperature 31P NMR spectra of rrans-[PtC1(PEt3)2(Ph4P2N4S2But)] are AB at low temperature and A2 at high temperature, due to restricted rotation about the Pt-S bond.1585 Variable temperature 3lP NMR spectra have shown that [Pt(PPhg)( 1,5-Ph&NqS2)]2 is fluxional with an interconversion barrier of 10.2 f 1.2 kcal mol-l. l3C and l95Pt NMR spectra were also recorded.1586 Restricted rotation in trans-[(But2PriP)2MC12], M = Pd, Pt, has been investigated by dynamic 'H, 13C, and 31P NMR spectroscopy.1587 Sulfur inversion and exchange in [M ( P ~ P ( C ~ H ~ S M ~ - ~ ) ~ } X Z ] have been investigated by 'H one- and two-dimensional NMR spec troscopy.1588

Copper. 1H and 13C NMR studies have shown that [(q2,q2- 1,5-hexadiene)Cu(03SCF3)] is f l u ~ i o n a l . ~ ~ ~ 9 Alkyne exchange in [ ( (bipy)Cu)2(q2:q2'-alkyne)] has been investigated by 1H and 13C NMR s p e c t r o ~ c o p y . ~ ~ 9 ~ Variable temperature NMR spectroscopy has been used to show the interconversion of diastereomers of (153) with AG' = 59.8 k 0.6 W mol-1.1591 The fluxional behaviour of [Cu3Li( SC6Hq(CH2NMe2)-2}3Me] has been investigated by 'H and 13c NMR spectroscopy. 1592

r n t

Zinc, Cadmium, and Mercury. 3lP and 199Hg NMR spectroscopy has been used to investigate ligand exchange in [Hg( N(CH2CH2PPh2)3}Me]+.1593 The fluxionality of [HB(3,5-Me2pz)3HgR] has been investigated by 'H, 13C, and 199Hg NMR spe~troscopy.l~9~ 1H NMR spectroscopy has been used to investigate pyrazole exchange in [LZnC12], L = (154), with AGt = 11.9 f 0.2 kcal mol-1.1595

1584 1585

1586 1587

1588

1589 1590 1591 1592

1593

G. Salem and S.B. Wild, Inorg. Chem., 1992, 31, 581. T. Chivers, M. Edwards, R.W. Hilts, A. Meetsma, and J.C. van de Grampel, J. Chem. SOC.. Dalton Trans., 1992, 3053. T. Chivers, M. Edwards, A. Meetsma, J.C. Van de Grampel, and A. Van der Lee, Inorg. Chem., 1992,31,2156. C.M. DiMeglio, K.J. Ahmed, L.A. Luck, E.E. Weltin, A.L. Rheingold, and C.H. Bushweller, J. Phys. Chem., 1992, 96, 8765. E.W. Abel. J.C. Dormer, D. Ellis, K.G. Orrell, V. Sik. M.B. Hursthouse, and M.A. Mazid, J. Chem. Soc.. Dalton Trans., 1992, 1073. T. Nickel, K.R. Ptirschke, R. Goddard, and C. Kriiger, Inorg. Chem., 1992,31,4428. D.L. Reger and M.F. Huff, Organomerallics, 1992, 11, 69. D.A. Nation, M.R. Taylor, and K.P. Wainwright, J. Chern. Soc.. Dalton Trans., 1992, 1557. D.M. Knotter, D.M. Grove, W.J.J. Smeets, A.L. Spek, and G. Van Koten, J. Am. Chem. Soc., 1992, 114, 3400. C.A. Ghilardi, P. Innccenti, S. Midollini, A. Orlandini, and A. Vacca, J. Chem. Soc.. Chem. Commun., 1992, 169 1.

15g4 G.G. Lobbia, P. Cecchi, F. Bonati, and G. Refaini, Synth. React. Inorg. Meial-Org. Chem., 1992, 2 2 , 775

1 5 9 5 C.J. Tokar, P.B. Kettler, and W.B. Tolman, Organomerallics, 1992, 11, 2737. (Chem. Abslr.. 1992, 117, 131 307).

Page 80: Nmr

80 Spectroscopic Properties of Inorganic and Organometallic Compounds

Boron. log, IlB, and 14N Ti measurements for aqueous solutions of BH3NH3 have been reported. The quadrupole coupling constants agree with the literature and the activation energy for reorientation is 11.7 k 0.6 W m01-1.'~9~ The l lB NMR spectra of B ~ H ~ o - R S H have shown that the B(1,3) signals coalesce at 70 OC. On cooling, the em-em, endo-endo, and em-endo invertomers were detected.1597 The l l B chemical shifts and topomerization barrier for [B8H9]- are consistent with calculations.1598 Variable temperature 31P NMR spectra of [6,6,6,6-(OC)2(Ph3P)2-nido-6-WB9H13] show PPh3 exchange. The l l B NMR spectrum was also rep0rted.l~9~ Variable temperature 'H and l lB NMR spectroscopy has shown that cornmo-Fe-[ ( l-Fe-2-Me-2,3,5-C3B7Hg 121 is fluxional.1600 The activation parameters of the permanent allylic rearrangement in ally1 and methylallyl boranes and in [ l,l-(Pr2BCH2)C=CH2] were determined by dynamic lH and l3C NMR spectroscopy.1601 The fluxionality of [CH2=CHCH=CHCH2BPr2] has been studied using lH and l3C NMR spectroscopy and AGt was determined. It was concluded that the mechanism is 1,3 shifts. The B and l3C NMR spectra were also reported.lm2 lH NMR spectroscopy has been used to determine the activation energy of ring inversion in (155) as 9.9 kcal mol-I. The I I B and I3C NMR spectra were also r e p 0 r t e d . 1 ~ ~ ~ AHt has been determined for inversion of (156) as 33.8 kcal mol-1. The 13C NMR spectrum was also reported.16" I3C NMR spectroscopy has been used to investigate restricted rotation about the B-mesityl bond in [ 1,3,5- ((me~ityl)2B)3C6H3].~~~~ Variable temperature lH

NMR spectroscopy has been used to determine the activation energy for rotation about the B-P bonds in [PhB(P(mesityl)B(mesityl)~)~] as 18 kcal mol-l. The l lB NMR spectrum was also reported.1606 Variable temperature 13C and 29Si NMR spectra have shown that [Cy7Si7012B]2 has a structure with a mgonally planar boron and there is a dynamic process for equilibrating all the siloxy groups attached to boron. 607

1596 G.H. Penner. S.I. Daleman, and A.R. Custodis, Can. J. Chem., 1992.70, 2420. 1597 H. Binder, P. Melidis, S. SSylemez, and G. Heckmann, Phosphorus Sulfur Silicon, 1992.64, 1. 1598 M. Biihl, A.M. Mebel, O.P. Charkin. and P. von RaguC Schleyer. Inorg. Chem., 1992.31.3769. 1599 M.G.B. Drew, P.K. Baker, M.A. Beckeu, and L.M. Severs, Polyhedron, 1992, 11. 3095. l6O0 C.A. Plumb, P.J. Carroll, and L.G. Sneddon. Organomefollics. 1992, 11, 1672. 1601 Yu.N. Bubnov, M.E. Gurskii. I.D. Gridnev. A.V. Ignatenko, Yu.A. Ustynyuk, and V.I. Mstislavskii, J.

1602 M.E. Gurskii, I.D. Gridnev, A.V. Geiderikh. A.V. Ignatenko, Yu.N. Bubnov, V.I. Mstislavskii, and Yu.A.

1603 P. Willershausen. C. Kybart. N. Slamatis, W. Massa, M. Biihl, P. von RaguC Schleyer, and A. Berndt, Angew.

1604 K. Okada. H. Inokawa, T. Sugawa, and M. Oda, J. Chem. SOC.. Chem. Commun., 1992,448. 1605 K. Okada. T. Sugawa. and M. Oda. J . Chem. SOC.. Chem. Commun., 1992.74.

1607 F.J. Feher, T.A. Budzichowski, and J.W. Ziller, Inorg. Chem., 1992, 31, 5100.

Organornet. Chem., 1992,424, 127.

Ustynyuk. Organomefallics, 1992. 11,4056.

Chem.. Int. Ed. Engl.. 1992, 31, 1238.

606 D.C. Pestana and P.P. Power, Organomefalfics, 1992, 11.98.

Page 81: Nmr

Nuclear Magnetic Resonance Spectroscopy 81

-

L

(155)

Aluminium. Resmcted rotation of the I-mentholate group in [R2AlO-mentholate] has been investigated by 1H and 13C NMR spectroscopy.16o8

Gallium. Variable temperature IH NMR spectroscopy has been used to determine the activation energy for rotation about the Ga-P bond in [Bu%GaP(C6H2But3-2,4,6)(SiPh3)] as 12.7 kcal m01-1.1609 The activation energy for restricted rotation of the Ga-Te bond in [ ((Me3Si)2CH)2GaTeSi(SiMe3)3] has been determined as 50 kJ mot1 by 'H, 13C, and 29Si NMR spectr0sc0py.'610

Silicon, Germanium, and Tin. The variable temperature 1H and 29Si NMR spectroscopy has been used to show axial-equatorial hydride exchange.I6l1 The lH and l3C NMR spectra of (157), M = Si, Ge, Sn, have been determined, Activation energies for syn-anti exchange when M = Ge, Sn, have been determined.l6l2 Variable temperature lH and l3C NMR spectroscopy has been used to

investigate 2-Me-c6H4 rotation in [MeSi(wMe-2)3] and [E1E2(wMe-2)3]+, E1 = 0, S, Se; E2 = P, As, and the activation energy determined.1613 l3C NMR spectroscopy has been used to demonstrate double bond isomerism in (158) and A c t was determined as 5.9 f 0.3 kcal mol-1.1614 Full lineshape analysis has been applied to the lH and 29Si NMR spectra of [(Me3Si)3CSiX3] to determine the rotational barrier.1615 The rotational barrier in [Bu5SiFN(SiFR1R2)2] has been determined by NMR spectroscopy.1616 Variable temperature 19F NMR spectroscopy has been used to study pseudorotation in [(4-Xw)PhSiF3]-. The 13C NMR spectra were also reported and used to discuss charge d i ~ t r i b u t i o n . 1 ~ ~ ~ 1H NMR spectroscopy has been used to study 1,5-shifts in [(OC)3Mn(q5-CsH4CMe2CsHjBut-ql)SnMe2Br]. 13C and 119Sn NMR spectra were also

1608 M.L. Sierra, R. Kumar, V.S.J. De Mel, and J.P. Oliver, Organomeiallics, 1992, 11, 206. 1609 M.A. Rtrie, K. Ruhlandt-Senge, and P.P. Power. Inorg. Chcm., 1992.31.4038. l6*0 W. Uhl, M. Layh, G. Becker, K.W. Klinkhammer. and T. Hildenbrand, Chern. Ber., 1992,125, 1547. 1611 R. Comu. C. Gu6rin. B. Henner. and Q. Wang. Inorg. Chim. Acia, 1992, 198-200, 705. 1612 LE. Nifant'ev. V.L. Yarnykh, M.V. B o m v , B.A. Mazurchik, V.I. Mstislavskii, V.A. Roznyatovskii, and Yu.A.

Ustynyuk, Metalloorg. Khim., 1991, 4, 1269 (Chen. Absir., 1992, 116, 106 408). 1613 J.A.S. Howell, M.G. Palin, P.C. Yates. P. McArdle, D. Cunningham, 2. Goldschmidt, H.E. Goulieb. and D.

Heuoni-Langerman, J . Chem. SOC., Perkin Trans. 2, 1992, 1769. 1614 G. Maier, R. Wolf, and H.-0. Kalinowski, Angew. Chem.. h i . Ed. Engf . , 1992,31, 738. 1615 A.G. Avent. S.G. Bott, J.A. Ladd, P.D. Lickiss, and A. Pidcock, J . Organomel. Chern., 1992.427,9. 1616 S. Walter, U. Klingebiel, M. Noltemeyer, and D. Schmidt-Baese, Z . Naturforsch.. B , 1991. 46, 1149 (Chem.

I 6 l 7 K. Tamao. T. Hayashi, Y. Ito, and M. Shiro, Organornefallics. 1992, 11, 182. Absrr., 1992. 116. 6614).

Page 82: Nmr

82 Spectroscopic Properties of Inorganic and Organometallic Compounds

recorded.1618 The fluxionality of [Ph2SnCl(S2CNEt2)] has been investigated by IH, 13C and 119Sn NMR ~pectroscopy.~~l9 The inter- and intra-molecular dynamics of [Ph2SnC12F]-, [PhSnC12F2]-, and related compounds have been studied by I9F and I19Sn NMR spectroscopy.~6~

Me2

(=& /M\

Me Me

, p y SiMe, Se de. PMe2

4' p Y2 SiMe3

Me2

(1 57) (158) (159) Pseudorotation in [Si(OEt)s]- has been investigated by lH and 29Si NMR spectroscopy.1621

Inversion at germanium in (159) has been investigated by lH NMR spectroscopy and the 13C NMR spectrum was reported. 1621

Lead. Axial-equatorial pyrazolyl exchange in [ ( H2B(pz)2]2Pb] has been investigated by lH NMR spectroscopy. The 207Pb NMR spectrum was

Phosphorus. lH and I3C NMR spectroscopy has been used to demonstrate rapid shifts around the five-membered ring in C5Me5P=NRI R = 2,4,6-Bu&&I2, SiPri3, SiMe3. The I3C CP/MAS NMR spectrum was also r e ~ 0 r t e d . l ~ ~ ~ The 31P NMR spectrum of [C13PNC12NPC12NP(O)Cl2] shows signal broadening and hindered rotation of the N-P(O)C12 bond was suggested. 1625 The activation energy for pseudorotation in [(2,6-MezC6H3S)P(9,10-02C14H8)(2,2'-biphenyl)] has been determined.l6Z6

Arsenic. [SCH~CH~SASAS(CI)SCH~CH~]~+ is fluxional and a dissociative mechanism was suggested. 1627

Bismuth. AGS has been measured for inversion at bismuth in [4-MeCgHq hCgHqC(b)(CFg)2], using

l9F NMR spectroscopy.1628 Restricted aryl ring rotation in [Bi ((2-MeC&)4porphyrin)]+ has been observed.

1618 I.E. Nifant'ev, M.V. Borzov, P.V. Ivchenko, V.L. Yarnykh, and Yu.A. Usiynyuk, Organomeiallics, 1992, 11,

1619 D. Daktemieks, H. Zhu, D. Masi, and C. Mealli, Inorg. Chem., 1992. 31, 3601. 1620 D. Daktemieks and H. Zhu, Organomeraffics, 1992,11,3820. 1621 K.C.K. Swamy and R.R. Holmes, Magn. Reson., 1991, 187. Ed. by C.L. Khetrapal and G. Govil (Chem. Absfr.,

1622 H.H. Karsh, G. Baumgartner, S. Gamper, J. Lachmann, and G. Miiller, Chem. Ber., 1992, 125, 1333. 1623 D.L. Reger, M.F. Huff, A.L. Rheingold, and B.S. Haggerty,J. Am. Chem. Soc., 1992, 114, 579. 1624 D. Gudat, H.M. Schiffner, M. Nieger, D. Stalke, A.J. Blake, H. Grondey, and E. Niecke, J. Am. Chem. SOC.,

1625 D. Bougeard, C. Br6mard. R. De Jaeger, and Y. Lemmouchi, J. Phys. Chem., 1992.96.8850. 1626 J. Hans. R.O. Day, L. Howe, and R.R. Holmes, Inorg. Chem.. 1992, 31, 1279. 162' N. Burford, T.M. Parks, B.W. Roym, B. Borecka, T.S. Cameron, J.F. Richardson, E.J. Gabe, and R. Hynes, J.

1628 Y. Yamamoto, X. Chen, and K. Akiba, J. Am. Chem. SOC., 1992, 114, 7906. 1629 T. Barbour, WJ. Belcher, P.J. Brothers, C.E.F. Rickard, and D.C. Ware,Inorg. Chem., 1992,31,746.

3462.

1992, 117, 191 907).

1992, 114, 8857.

Am. Chem. SOC., 1992, 114, 8147.

Page 83: Nmr

Nuclear Magnetic Resonance Spectroscopy 83

Selenium and Tellurium. Pseudorotation in (160), M = Se, Te, has been studied using IH and 13C NMR spectroscopy.1630 (8 M

( 160)

Equilibria.-Solvation Studies oflons. The dynamic properties of water molecules coordinated to alkali, alkaline earth, and tetraalkyl ammonium ions in supercooled solutions have been investigated by NMR spectroscopy.1631 The theoretical expectations for nuclear longitudinal relaxation rate enhancements for water molecules in the presence of Gd3+, [VO]2+, Mn2+, Fe3+, Ni2+, and Cu2+ have been published.1632 The nuclear magnetic spin-lattice relaxation rates of water protons have been determined for solutions of MnII, CuII, and CrIII cage complexes of the sarcophagine type.1633 Lithium. The translational mobility of Li+ and the librational vibration of water molecules in the first hydration sphere of the Li form of the sulfonic ion exchanger has been studied by NMR s p e ~ t r o s c o p y . ~ ~ ~ 4 The 7Li Ti and T2 values have been measured for concentrated aqueous solutions of LiC1.1635 6Li, 7Li, 13C, and 31P NMR spectroscopy has been used to investigate the solvation of aggregates of [Li(3,5-Me3C6H30)] by (Me2N)3P0.1636 The solvation of Li+ in mixtures of tetraethylene glycol dimethyl ether and propylene carbonate has been investigated.1637 Sodium and Porassium. The solvation of Na+ in Me2NCHONeOH mixtures has been investigated by 2H, 14N, and 23Na NMR spectroscopy.163* The hydration and alkali-ion binding of an aggregate of [(Bu0)2P02]- has been studied by 17O,23Na, and 39K NMR spectroscopy.1639 Lanthanum and the Lanthanides. The hydration numbers of various dysprosium polyaminocarboxylates have been determined from DyIII induced 1 7 0 NMR water shifts.1640 1H NMR spectroscopy has been used to determine the exchange of DMF on Ln3+.lM1 The complexation of lanthanide ions with 2-tetrahydropyranylmethanol in 2-tetrahydropyranylmethanol/water has been

1630 S. Ogawa, S. Sato, T. Erata, and N. Furukawa, Tefrahedron Len., 1992,33, 1915. 1631 E.W. Lang, S. Bradl, W. Fink, H. Radkowitsch, and D. Girlich, Liq. Maffer, Proc. Liq. Mafrer Con5 Eur. Phys.

Sac., Is f , 1990, (pub. 1991), SA195. Ed. by S. Bratos, J.-P. Hansen, J.-C. Hansen, and J.-C. Leicknam (Chem. Absfr . , 1992, 116, 47 212).

1632 I. Bertini, F. Capozzi, and C. Luchinat, Magn. Reson. Imaging. 1991, 9, 849 (Chem. Absrr., 1992, 116, 206 371).

1633 L.S. Szczepaniak, A. Sargeson, 1.1. Creasei, R.J. Geue, M. Tweedle, and R.G. Bryant, Bioconjugafe Chem., 1992, 3, 27 (Chem. Abstr., 1992, 116, 54 718).

1634 V.I. Volkov, YuG. Eliseev, Yu.E. Kirsh. Yu.A. Fedotov, and S.F. Timashev, Zh. Fiz. Khim., 1992, 66, 1618 (Chem. Abstr., 1992, 117,220 744).

1635 T. Hasebe, R. Tamamushi, and K. Tanaka, J . Chem. Soc., Faraday Trans., 1992,88,205. 1636 L.M. Jackman and X. Chen, J . Am. Chem. SOC., 1992, 114,403. 1637 D. Fish and J. Smid, Electrochim. Acra, 1992, 37, 2043 (Chem. Absfr., 1992, 117, 179 334). 1638 A. Sacco, M.C. Piccinni, and M. Holz, J . Solution Chem., 1992, 21, 109. 1639 M. Iida and Y. Hata, Bull. Chem. SOC. Jpn., 1992,65, 707. 1640 M.C. Alpoim, A.M. Urbano, C.F.G.C. Carlos, and J.A. Peters, J. Chem. SOC.. Dalton Trans., 1992, 463. 1641 M.K. Lee, C.J. Yoon, and Y.S. Choi, J . Korean Chem. SOC., 1992, 36, 345.

Page 84: Nmr

84 Spectroscopic Properties of Inorganic and Organometallic Compounds

studied using 13C, 170, 35Cl, and 1391, shift and relaxation rneasurements.la2 Titanium. DMF exchange on [Ti(DMF)6J3+ has been studied as a function of temperature and pressure by IH and 1 7 0 NMR spectroscopy. The negative volume of activation suggests an associative i n t e r ~ h a n g e . 1 ~ ~ Zirconium and Hafnium. The hydration of zirconium and hafnium hydroxychlorides has been investigated using 'H NMR spectroscopy.164l Vanadium. DMSO exchange on [V(DMS0)6I2+ has been studied as a function of temperature and pressure by IH NMR spectroscopy.1a5 Manganese. Water exchange kinetics of Mn2+ complexes of ethylene-NjV-disuccinic acid complexes have been studied by NMR spectroscopy.la6 Technetium and Rhenium. 1 7 0 NMR spectroscopy has been used to investigate the rate of water

t 1

exchange on [(O)M( SCH2C(O)NH(CH2)4NHC(O)CH2S )I-, M = Tc, Re.1647 Iron. Ligand exchange on [FeL6]"+, n = 2, 3; L = DMF, DMSO, MeC(O)NH2, MeC(O)NMe2, OP(OMe)3, NCMe, has been investigated in NCMe by IH NMR spectroscopy.1648 2H NMR spectroscopy has been used to investigate the binding of MeOH to [O=Fe( 5,10,15,20-(2,6- C12Ca3)4porphyrin}]. Nickel. The solvent exchange between ethylenediamine molecules in the bulk solvent and coordinated to Ni2+ in neat ethylene diamine and mixtures with DMF has been studied by 'H, 13C, and 14N line broadening measurements.1650 Palladium. Variable temperature IH and 13C NMR spectroscopy has provided evidence for MeCN binding to [Pd([ 101-aneS3)212+.1651 Copper. The coordination of HMPA to organocyanocuprates has been investigated by 13C NMR spectroscopy .I652

Zinc. IH and 2H T I values and IH self-diffusion coefficients in aqueous ZnBr2 solution have been determined by NMR spectroscopy and the dynamics of the water molecule discussed.1653 Cadmium. The influences of D20-DMS0, DzO-CH~OD, and D20-dioxan mixtures on the intramolecular processes of [Cd( ethylene(oxyethylenenit~ilo)~tetraacetate}]~- have been studied by 1H NMR spectroscopy.1654 Boron. The nature of the interaction between B5H9 and THF has been investigated by IlB NMR

1642 E.G.K. Quartey, H.Van Bekkum, and J.A. Peters, J . Chem. SOC., Dalton Trans.. 1992. 1139. 1643 I. Dellavia, L. Helm, and A.E. Merbach, Inorg. Chem., 1992, 31,2230. 1644 K.1. Arsenin, L.A. Malinko, I.A. Sheka, I.Ya. Pishchai, and A.N. Antishko. Zh. Neorg. Khim., 1991,36, 2665

1645 I. Dellavia, P.Y. Sauvageat, L. Helm, Y. Ducommun. and A.E. Merbach. Inorg. Chem., 1992.31, 792. 1646 N.N. Tananaeva, V.V. Strashko, and R.V. Tikhonova, Teor. Eksp. Khim., 1991, 27, 506 (Chem. Abstr., 1992.

1647 B. Chen, MJ. Heeg, and E. Deutsch, Inorg. Chem., 1992,31,4683. 1648 K. Kirchner, R. Jedlicka, and R. Schmid, Monaish. Chem., 1992, 123,203. 1649 K. Yamaguchi. Y. Watanabe, and 1. Morishima, J . Chem. SOC.. Chem. Commun.. 1992, 1721. 1650 S. Soyama, M. Ishii, S. Funahashi, and M. Tanaka, Inorg. Chem.. 1992.31, 536. 1651 S. Chandrasekhar and A. McAuley, Inorg. Chem., 1992,31,2663. 1652 R.D. Singer and A.C. Oehlschlager, J. Org. Chem., 1992,57, 2192. 1653 T. Takamuka, T. Hirano, T. Yamaguchi. and H. Wakita, J. Phys. Chem., 1992,96.9487. 1654 R. Song, F. Li. and C. Zhang, J . Chem. SOC., Dalton Trans., 1992, 709; R. Song, C. Zhang, and F. Li, Chin.

(Chem. Abstr., 1992, 117, 34 562).

116, 201 905).

Chem. Lett., 1991, 2,655 (Chem. Abstr., 1992, 116. 202 041).

Page 85: Nmr

Nuclear Magnetic Resonance Spectroscopy 85

spectroscopy .I655 Aluminium. 1H and 27Al NMR spectroscopy has been used to study Al(C104)3 in aqueous mixtures of Me2NCHO and Nitrogen. 'H, 13C, and 14N T i measurements have been used to study [(C5H11)4N]+ in MeCN solution.1657 Fluorine. 19F NMR spectroscopy has been used to investigate the interaction between HOF and the MeCN solvent, and the formation constant determined.1658 lH, 2H, and l9F Ti studies of undercooled aqueous KF solutions under high pressure have been used to study the effect of KF on the hydrogen bonding n e t ~ o r k . l ~ ~ g Chlorine and Bromine. 'H, 2H, and l7O NMR spectroscopy has been used to study the dynamics of aqueous strong acid solutions.16m Xenon. 129Xe NMR spectroscopy has been used to study xenon diffusion in water, and activation energies determined.1661

Ionic Equilibria. 1H NMR spectroscopy has been used to investigate complex formation between Na+, Mg2+, and Ca2+ with cyclosporin A.1662 A new method has been presented to study the coordination of diamagnetic metal ions by the relaxation line broadening of paramagnetic metal ions. The method was applied to the coordination of Ti4+ and Zn2+ with alanine, lysine, and glycine, in the presence of Mn2+ or Fe3+.1663 1H NMR Ti measurements have been used to study complexation with [EDTA]2- of Gd3+, Fe2+. Fe3+, Co2+, Ni2+, and Cu2+. The stability of the complexes decreases along the series Fe3+>Ni2+>Cu2+>Gd3+>Co2+.1664 1H NMR spectroscopy, including H 2 0 T I measurements, has been used to investigate the complexation of (4-carboxy-3-Me-3-azabutyl)3N by Ni2+, Cu2+, Zn2+, and Cd2+.1665 The interaction of pyridonecarboxylic acids with a wide range of metal ions has been investigated by 1H and 13C NMR spectroscopy.1666 Group 1. The 7Li NMR spectrum of [ ((Me3Si)2N)2AlH2Li.2Et20] shows J(7LilH) at -50 "C but is a singlet at mom temperature.1667 The equilibrium between [MeLi]4 and [Et2NCu] in THF and Et20 has been examined by 1H and l3C NMR spectroscopy and various species such as [(MeCuNEt2)Li]

655 S.M. Cendrowski-Guillaume. and J.T. Spencer, Organomerallics, 1992, 11,969. 1656 A. Fratiello, V. Kubo-Anderson, S. Azirni, C. Fowler, E. Marinez, R. Perrigan, S. Shayegan, and B. Yao. Magn.

1657 E.W. Lang, S. Bradl, W. Kunz, and P. Turq, J . Phys. Chem., 1991,95, 10 576. 1658 E.H. Appelman, 0. Dunkelberg, and M. Kol. J. Fluorine Chem., 1992,56. 199 (Chem. Abstr., 1992, 117, 183

1659 H. Radkowitsch and E.W. Lang, Ber. Bunsenges. Phys. Chem., 1992.96, 162. 1660 H.G. Hertz, R. Maurer, and S. Killie. Z. Phys. Chem. (Munich), 1991, 172, 157 (Chem. Abstr., 1992, 116,68

661). 1661 H. Weingaertner, R. Haselmeier. and M. Holz, Chem. Phys. Letr., 1992, 195, 596 (Chem. Absrr., 1992, 117,

158 045). J.A. Carver, N.H. Rees, D.L. Turner. S.J. Senior, and B.Z. Chowdhry, J . Chem. SOC.. Chem. Commun., 1992. 1682.

Reson. Chem., 1992,30, 280.

719).

1663 J. Hu, H. Liu, and X. Liu. Chin. Sci. Bull., 1991.36, 1711 (Chem. Absrr., 1992, 117,65 824). 1664 K. Radotic and S. Ratkovic, J . Serb. Chem. Soc.. 1991,56,717 (Chem. Absfr., 1992, 116, 160 029). 1665 C.F.G.C. Geraldes, E. Briicher, S. Cortes, S.H. Koenig, and A.D. Sheny,J. Chem. Soc.. Dalton Trans., 1992,

1666 Y. Okabayashi, F. Hayashi, Y. Terui, and T. Kitagawa, Chem. Pharm. Bull., 1992, 40,692 (Chem. Abar..

1667 A. Heine and D. Stalke, Angew. Chem.. Int. Ed. Engl., 1992.31,854.

25 17.

1992, 116, 262 392).

Page 86: Nmr

86 Spectroscopic Properties of Inorganic and Organometallic Compounds

identified.1668 Vicinal2H induced 6Li NMR isotope shifts have been found for [CgDgLi] and used to investigate aggregati0n.1~~9 1H and 13C NMR chemical shifts observed in THF for [(2- Me2NC6H4CH2)LiI are indicative of an equilibrium between a high temperature 173 and a low temperature q1 species. The 6Li( 1H) HOESY NMR spectrum was also recorded.1670 One- and two-

dimensional lH and 6Li NMR spectroscopy has been used to prove the formation of (161). The activation energy of Li+ exchange was derived.1671 I3C NMR spectroscopy has been used to study the equilibrium between contact and solvent separated ion pairs of Li salts of [R1R2CCCPh]-.1672

(161) 7Li and 13C NMR spectroscopy has been used to determine the equilibrium constant between Li+ and

~(~(CH~CH~N(M~)CH~CH~)~NCH~CH~N(CHZP~)CH~(!H~. 1673 7Li and 23Na NMR spectroscopy has been used to determine the rate of metal ion exchange for 4,7,13,16-tetraoxo-1,10- diazabicyclo[8.8.8]hexacosane.~674 1H and 13C two-dimensional NMR spectroscopy has been used to investigate the binding of LiCl with cyclosporin A.1675 The binding of nigericin to Li+, Na+, K+, Rb+, and Cs+ has been investigated using 1H line broadening.1676 The binding of two Li+ ions to 10,22,28,32-tetraoxa- 1,4,7,13,16,18-hexaazatricyclo[ 17.5.5.57~13]tetratriacotane has been studied by 7Li and 13C NMR ~pectroscopy.16~~ The binding of Li+ to (162) has been studied by 7Li NMR spectroscopy.1678 The intercalation of Li+ and Na+ into DNA has been investigated by 7Li and 23Na NMR spectro~copy.16~9 The self-diffusion coefficients of 7Li+ have been measured in molten LiN03, and depend on the 6Li/lLi isotopic composition.1680 The effects of higher-rank multipoles on the spectral lineshapes of I = 5 quadrupolar nuclei near the null point in the inversion-recovery experiments

have been investigated for the 7Li NMR spectrum of LiCl dissolved in (CD3)2CDOD/D20.1681 The

1668 R.K. Dieter, T.W. Hanks, and B. Lagu, Organometallics, 1992, 11, 3549. 1669 0. Eppers and H. Giinther, Helv. Chim. Acia, 1992,75,2553. 1670 H. Ahlbrecht, J . Harbach, T. Hauck, and H.O. Kalinowski, Chem. Ber., 1992, 125, 1753. 1671 M. Eiermann and K. Hafner, J . Am. Chem. SOC., 1992, 114, 135. 1672 P.I. Dern'yanov, I.M. Styrkov, D.P. Krut'ko, M.V. Vener. and V.S. Petrosyan, J . Organomer. Chem., 1992,

1673 A. Bencini, A. Bianchi, M. Ciampolini. P. Dapporto, M. Micheloni, N. Nardi, P. Paoli, and B. Valtancoli, J.

1674 S.F. Lincoln and A.K.W. Stephens, Inorg. Chem., 1992.31, 5067. 1675 M. K&k, H. Kessler, D. Seebach, and A. Thaler, J . Am. Chem. Soc., 1992, 114, 2676. 1676 R. Aha, J.A. Lugo-R., E. Azrt, J . Cerbon, B.E. Riviera, M. Toro, and S. Esuada-O., J . Bioenerg. Biomembr.,

1677 A. Bencini. A. Bianchi, M. Ciampolini, P. Dapporto, V. Fusi, M. Micheloni, N. Nardi, P. Paoli, and B.

1678 Z. Chen, O.F. Schall, M. Alcala, Y. Li, G.W. Gokel, and L. Echegoyen, J . Am. Chem. SOC., 1992, 114,444. 1679 M. Hald and J.P. Jacobsen, Biophys. Chem., 1991,41, 113 (Chem. Absir., 1992, 116, 33 937). 16*0 C. Herdlicka, J. Richter, and M.D. Zeidler, Z. Naiurforsch., A, 1992, 47, 1047 (Chem. Absir., 1992, 117, 240

1681 W.S. Price, N.-H. Ge, and L.-P. Hwang, J. Magn. Reson., 1992,98, 134.

438, 265.

Chem. SOC., Perkin Trans. 2. 1992, 181.

1992, 24, 125 (Chem. Abstr., 1992, 116, 189 731).

Valtancoli, J. Chem. Soc., Dalton Trans., 1992, 2049.

178).

Page 87: Nmr

Nuclear Magnetic Resonance Spectroscopy 87

binding of Li+, Na+, and K+ to (163) has been investigated by 7Li and 23Na NMR spectroscopy.1682 7Li NMR spectroscopy has been used to study the exchange kinetics of Li+ with 15-crown-5 and monobenzo-15-crown-5.1683 7Li and 133Cs NMR spectroscopy has been used to study complexation

of Li+ and Na+ with benm-15-crown-5 complexes.1684 7Li and 23Na NMR spectroscopy has been

used to investigate the transport of Li+ and Na+ across liposomal membranes by bouquet molecules

based on crown ethers.1685 A self-diffusion study of Li+ complexation by cryptand C211 in lithium

dodecyl sulphate solution has been studied using lH and 7Li PGSE NMR self diffusion measurements.1686 A NMR study of differences between 6Li and 7Li ion transport across human red blood cell membranes has been repo1-ted.168~ 1H and 7Li Ti and Tip measurements have been made to

study the microscopic motion of Li+ cations in poly(ethy1ene 0 x i d e ) - L i C 1 0 4 , ~ ~ ~ ~ and poly(ethy1ene

oxide)-LiBF4 which shows J(19FTLi).1689 The ionic conductivity mechanism of network polymers

containing LiC104 has been investigated by 7Li Tip measurernents.lm

Me Me * \ / qNO2 Me -

0 /\/"O

\ I Y o O O 7 w0w0wN N

L O - O d CH2(CH2OCH2)nCH2

( 162) (163) The equilibrium phases in the system NaCl-H20-MeCN-hexane have been studied using 14N NMR

spectroscopy.1691 23Na NMR spectroscopy has been used to study the exchange of Na+ with

(164).16g2 l H T i studies on Na2S04 and MgS04 in aqueous dioxan have been rep0rted. l~9~ %i NMR spectroscopy has been used to monitor changes in alkali metal-silicate equilibria as cryptand

2.1.1 or 2.2.2 is added to the s 0 1 u t i o n . l ~ ~ ~ Blue potassium and potassium/sodium solutions in THF or tetraglyme containing various complexing agents have been investigated by 23Na and 39K NMR

1682 K. Kimura. T. Yamashita, and M. Yokoyama, J. Chem. SOC., Perkin Trans. 2, 1992,613. 1683 K.M. Brihe and C. Detellier, J. Phys. Chem., 1992.96.2185. 1684 M. Shamsipur and M.K. Amini, Iran. J. Chem. Chem. Eng., 1991, 10.40 (Chem. Abstr., 1992, 117, 221 083). 1685 M.J. Pregel, L. Jullien, and J.-M. Lehn, Angew. Chem., Int. Ed. Engl., 1992, 31, 1637. 1686 M. Ginley and U. Henriksson, J. Colloid Interface Sci., 1992, 150,281 (Chem. Abstr., 1992, 116, 181 804). 1687 A. Abraha, E. Dorus, and D. Mota de Freitas, Lithium, 1991.2, 118 (Chem. Abstr., 1992, 116, 75 663). 1688 W. Goreclri. E. Belorizky. C. Berthier, P. Donoso, and M. Armand. Electrochim. Acta, 1992.37, 1685 (Chem.

1689 S. Panero, B. Scrosati, and S.G. Greenbaum, Electrochim. Acta, 1992.37, 1533 (Chem. Abstr., 1992, 117, 122

1690 K. Ichikawa and W.J. MacKnight. Electrochim. Acta, 1992,37, 1511 (Chem. Abstr., 1992, 117, 122 181). 1691 V.A. Frankovskii, S.I. Tyukhtenko, and I.N. Rebik, Zh. Prikl. Khim. (Leningrad), 1991, 64, 1573 (Chem.

1692 J.C. Medina. T.T. Goodnow. M.T. Rojas, J.L. Atwood, B.C. Lynn, A.E. Kaifer, and G.W. Gokel, J. Am. Chem.

1693 A. Kannappan and V. Rajendran, Indian J. Pure Appl. Phys.. 1992, 30, 178 (Chem. Abstr., 1992. 117, 240

1694 S.D. Kinrade and D.L. Pole, Inorg. Chem., 1992.31.4558.

Abstr., 1992, 117, 123 204).

182).

Abstr.. 1992, 116. 114 430).

Soc., 1992. 114, 10 583.

742).

Page 88: Nmr

88 Spectroscopic Properties of Inorganic and Organornetallic Compounds

spectroscopy.~69~ T h e role of the solvent in the dissociation kinetics and cation exchange mechanism of [Na(benzo-15-crown-5)]+ has been examined by 23Na N M R spectroscopy.1696 13C NMR spectroscopy has been used to examine the cyclohexane ring inversion in the NaC104 complex of cis- syn-cis-dicyclohexano-24-crown-8 with AGt = 51 .O * 0.6 kcal mol-1.1697 23Na NMR spectroscopy has been used to examine the complexation of Na+ by (165).1698 23Na NMR spectroscopy has been used to study the competitive binding o f alkali counterions to polyethylene sulfonate in aqueous solutions .I699

Et Me 2+

Anisotropic *3Na spin relaxation in liquid crystals has been studied.l7W Director fluctuations and 2H and 23Na nuclear-spin relaxation in lyotropic nematic liquid crystals have been studied with calamitic and discotic phases of the system Na dodecylsulfate-decan~l-water.~~~~ I7O and 23Na NMR spectroscopy has been used to study multiple quantum transitions in a lyotropic nematic liquid crystal, N a dodecylsulfate-decanol-water. 1702 T h e molecular nature of hydrotropic action of Na toluenesulfonate in micellar solutions of anionic surfactants has been studied using 1H and 23Na NMR s p e c t r o ~ c o p y . ~ ~ ~ 3 Lyotropic mesophases from Na 2-ethylhexyloxypropionate and water have been investigated by 2H and 23Na NMR s p e c t r o ~ c o p y . 1 ~ ~ The l H and l 3 C NMR spectra of Na bis(2- ethylhexy1)sulfosuccinate in C&j -D20 have been recorded.1705 2H and 23Na NMR relaxation has been used to determine the micelle size in lyotropic nematic me so phase^.^^^^

The formation of a second-rank tensor in 23Na double-quantum-filtered NMR has been taken as an indicator for order in a biological t i ~ s u e . 1 ~ 0 ~ Monensin-induced modifications of ionic gradients on

1695 Z.J. Jedlinski, M. Sokol. and J. Grobelny, J. Phys. IV, 1991, l(C5, Colloq. Weyl 7, 1991). (3-291

1696 K.M. Britre and C. Detellier, Can. J. Chem., 1992.70.2536. 1697 G.W. Buchanan, Y. Leu, and C. Bensimon, Can. J. Chem., 1992, 70, 1688. 1698 J.L. Sessler, T.D. Mody, R. Ramasamy, and A.D. Sherry,NewJ. Chem., 1992, 16, 541. 1699 G.S. Nagarkar, M.E. Kotun, G.B. Savitsky, and H.G. Spencer, Polym. Commun., 1991, 32,486 (Chem. Absfr..

l 7 O o P.-0. Quist, I. Blorn, and B. Halle, J. Magn. Reson., 1992, 100, 267. 1701 B. Halle, P.O. Quist, and I . Fur6, Phys. Rev. A , 1992, 45, 3763 (Chem. Absrr., 1992, 116, 205 072). 1702 I. Fur6 and B. Halle, Mol. Phys., 1992, 76, 1169. 1703 V.A. Gaevoi, V.S . Kuts. and V.I. Kovalev. 7’eor. Eksp. Khim., 1991, 27, 606 (Chem. Absrr., 1992. 117. 77

I7O4 K.C. Gounden, P. Ganguli, and G.J.T. Tiddy, J. Phys. Chem., 1992.96.4627. I7O5 A. Yoshino, N . Sugiyama, H. Okabayashi. K . Taga, T. Yoshida, and 0. Karno, Colloids Surf., 1992, 67. 67

1706 P.O. Quist, B. Halle, and 1. Fur6, J. Chem. Phys.. 1992. 96. 3875. 1707 U. Eliav. H. Shinar, and G. Navon, J. Magn. Reson., 1992, 98. 223.

(Chem. Abstr., 1992, 117, 77 654).

1992, 116,42 440).

173).

(Chem. Absrr., 1992, 117, 263 312).

Page 89: Nmr

Nuclear Magnetic Resonance Spectroscopy 89

streptococcus faecalis have been studied by 23Na and 31P NMR spectroscopy.17o8 Phosphate dependent sodium transport in streptococcus faecilis has been studied by 23Na and 31P NMR spectroscopy.1709 23Na NMR spectroscopy has been used to determine the true intracellular concentration of free Na+ in a halophilic eubacterium.1710 Conditions modulating the ionic selectivity of transport by monensin have been examined on streptococcus faecalis by 23Na NMR spectroscopy.1711 A dynamic 23Na NMR technique has been applied to the exchange of Na+ ions present inside and outside unilamellar vesicles.1712 The influence of intercalation on the 23Na correlation times and quadrupolar coupling constants has been investigated for 23Na in DNA.1713 Salt concentration and temperature effects on DNA in solution have been investigated by 23Na NMR s p e ~ t r o s c o p y . 1 ~ 1 ~ 23Na NMR spectroscopy has been used to determine sodium concentration in guinea pig erythrocytes.1715 23Na and 3gK relaxation has been used to study these ions in the eye lens.1716 23Na NMR relaxation has been used to investigate the state of intracellular Na+ in rat livers.1717 23Na and 3lP NMR spectroscopy has been used to study perfused mouse liver during nitrogen h y p o ~ i a . 1 ~ 1 ~ l W 3 N a and l W 3 N a double frequency tuned birdcage coils have been used to study in vivo CCl4 induced hepatotoxicity in rats.1719 Metabolism and ion flux in isolated cardiomyocytes have been studied using 19F, 23Na, and 31P NMR spectroscopy.1720 23Na Ti measurements have been made of the intracellular 23Na signal from an isolated perfused rat heart during hypoxia and r e ~ x y g e n a t i o n . ' ~ ~ ~ 23Na NMR spectroscopy has been used to study cation co- transport in human red blood cells.1722 The intracellular Na+ concentration in human red blood cells has been determined from l H and 23Na NMR measurements.1723 Amiloride in ouabain-induced acidification, inotropy and arrhythmia in perfused hearts has been investigated by 23Na and 3lP NMR spectroscopy. 1724

1708 F. Rabaste, J. Guyot, G. Dauphin, G. Jeminet, and A.M. Delort. J . Chim. Phys. Phys.-Chim. Biol., 1992, 89,

1709 F. Rabaste, G. Dauphin, G. Jeminet, J. Guyot, and A.M. Delort, Biochem. Biophys. Res. Commun., 1991,181,

I7 l0 H. Gilboa, M. Kogut, S. Chalamish, R. Regev, Y. Avi-Dor. and NJ. Russell, J . Bacteriol., 1991, 173, 7021

1711 F. Rabaste, G. Jeminet. G. Dauphin, and A.M. Delort, Biochim. Biophys. Acta, 1992, 1108, 177 (Chem.

1712 H. Tanaka, K. Matsunaga, and H. Kawazura, Biophys. J., 1992,63,569 (Chem. Abstr.. 1992,117, 184 709). 1713 M. Hald and J.P. Jacobsen, Chem. Phys., 1992, 159,257 (Chem. Abstr., 1992, 116, 124 214). 1714 T.E. Stnelecka and R.L. Rill, J. Phys. Chem., 1992,96,7796.

217 (Chem. Abstr.. 1992,116. 190 832).

74 (Chem. Abstr., 1992, 116, 3391).

(Chem. Abstr., 1992,116, 3078).

Abstr., 1992, 117. 128 020).

l5 Y. Hotta, H. Ando, R. Eto. K. Talceya, M. Haruna, K. Ito. and J. Sakakibara, Nippon Yakurigaku Zusshi, 1992, 100, 143 (Chem. Abstr., 1992. 117, 127 622).

1716 A. Stevens, P. Paschalis, and T. Schleich, Biophys. J . , 1992,61, 1061 (Chem. Abstr., 1992,117,43 810). I7 l7 A. Lai, G. Saba, M. Casu, and M.A. Dessi, Biophys. Chem., 1992. 42,73 (Chem. Abstr., 1992, 116, 124

1718 J.L. Bowers, A. Lanir, K.R. Metz, J.B. Kruskal, R.G.L. Lee, J . Balschi, M. Federman, U. Khettry, and M.E.

1719 R.A. Towner, E.G. Janzen. S.C. Chu, and A. Rath, Magn. Reson. Imaging. 1992, 10,679 (Chem. Absrr., 1992,

1720 M. Osbakken, T. Ivanics, D. Zhang, R. Mifra, and H. Blum, J . Biol. Chem., 1992,267, 15340 (Chem. Abstr.,

1721 L.S. Prince, S.K. Miller, G.M. Pohost, and G.A. Elgavish, Magn. Reson. Med., 1992,23,376 (Chem. Abstr.,

1722 M. Cacciafesta. V. Marigliano. C. Ferri, G. Piccirillo, A. Scuteri, L. Guidoni, A.M. Luciani, A. Rosi. and V.

1723 A. Rottman, H. Gilboa, Y. Schechter, and B.L. Silver, Anal. Biochem., 1992, 201,48 (Chem. Abstr., 1992,

1724 C.S. Lotan, S.K. Miller, G.M. Pohost. and G.A. Elgavish. J . Mol. Cell. Cardiol., 1992, 24,243 (Chem. Abstr.,

224).

Clouse, Am. J. Physiol.. 1992, 262, G636 (Chem. Abstr., 1992, 117, 24 121).

117, 206 630).

1992,117, 127 764).

1992, 116, 169 153).

Viti, Am. J. Physiol., 1992, 262(5. Pt. l), C1292 (Chem. Abstr.. 1992, 117, 43 829).

116, 124 215).

Page 90: Nmr

90 Spectroscopic Properties of Inorganic and Organometallic Compounds

Potassium solutions in THF containing 15-crown-5 have been studied using 39K NMR spectroscopy.17~ The interactions between the ionophore lasalocid and K+ have been studied by IH

and 13C NMR spectroscopy.1726 The 133C.s chemical shift has been used to study the interaction of Cs+ with some crypt and^.'^^^ A

sample cell for high precision temperature-dependence NMR experiments has been described and demonstrated with 2H and 133Cs NMR measurements on the Cs pentadecafluorooctanoate/water liquid crystal ~ystem.1~28 The cation binding properties of aqueous furcellaren have been investigated by 133Cs NMR spectroscopy.1729 Ion transport and subcellular compartmentation in maize root tissue have been examined by l33Cs NMR spe~troscopy.1~3* The physical basis for the resolution of intra- and extra-cellular 133Cs NMR resonances in Cs+ loaded hyman erythrocyte suspensions in the presence and absence of shift reagents has been examined.1731 Beryllium. The equilibrium of [Be(0H2)4l2+ with 3-HO-2-Me-pyridin-4-one has been investigated using 9Be NMR s p e ~ t r o s c o p y . ~ ~ ~ 2 The ternary system F-/Be2+/ADP has been investigated using a combination of 9Be, I9F, and 3IP NMR s p e ~ t r o s c o p y . ~ ~ 3 ~ Band-3 mediated uptake of beryllofluoride complexes by human erythrocytes has been studied using 9Be and Magnesium. NMR spectroscopy has been used to study the complexation of Mg2+ by some crown ethers.1735 The role of Mg2+ in the biosynthesis of cyclic monoterpenoids has been investigated by l3C and 3lP NMR spe~troscopy.1~36 The Mg2+-DNA interaction has been studied using 25Mg NMR spectroscopy.1737 25Mg NMR spectroscopy has been used to study the binding of Mg2+ to erythrocyte constituents,1738 yeast enolase and rabbit muscle pyruvate k i n a ~ e . ' ~ ~ ~ The influence of Mg2+ on anion binding to sarcoplasmic reticulum membranes has been detected by 35C1 NMR spectroscopy .I740

Calcium. 43Ca NMR spectroscopy has been used to study calcium binding lysozymes and a- lactalbumins. 1741 Ytfrium. 13C and 89Y NMR spectroscopy has been used to examine complex formation between Y3+

NMR spectroscopy. 1734

1992, 117, 83 124). 1725 Z. Grobelny, A. Stolarzewicz. M. Sok61, J . Grobelny. and H. Janczek, J . Phys. Chem., 1992,96, 5193. 1726 R. Lyasghi, A. Cuer, G. Dauphin, and J. Juillard, J . Chem. SOC., Perkin Trans. 2, 1992, 35. 1727 L.L. Soong, G.E. Leroi, and A.I. Popov, J . Inclusion Phenom. Mol. Recognit. Chem.. 1992, 12,253 (Chem.

1728 N. Boden, S.A. Come, P. Halford-Maw, D. Fogarty, and K.W. Jolley, J. Magn. Reson., 1992,98,92. 1729 W. Zhang, L. Piculell, and S. Nilsson, Biopolymers, 1991,31, 1727 (Chem. Abstr., 1992, 116, 174 591). 1730 P.E. Pfeffer, D.B. Rolin, J.H. Schmidt, S-I. Tu, T.F. Kumosinski, and D.D. Douds, jun., J. Plant Nufr., 1992.

1731 L. Wittenkeller, D. Mom de Freitas, C.F.G.C. Geraldes, and A.J.R. Tome, Inorg. Chem., 1992,31, 1135. 1732 D.F. Evans and C.Y. Wong, J . Chem. SOC., Dalton Trans., 1992, 2009. 1733 J.P. Issartel, A. Dupuis, C. Morat, and J.L. Girardet, Eur. Biophys. J., 1991, 20, 115 (Chem. Absfr., 1992,

1734 A.S.L. Xu, M.B. Morris, and P.W. Kuchel, Biochemistry, 1992,31,9263 (Chem. Abstr., 1992, 117, 145 002). 1735 Y. Zhang, Z. Zhou, and L. Shen, Fenxi Ceshi Tongbao, 1991,10,26 (Chem. Abstr., 1992, 116, 119 647). 1736 D.I. Ito, S. Izumi, T. Hirata, and T. Suga. J . Chem. SOC., Perkin Trans. I , 1992, 37. 1737 W.H. Braunlin, L. Nordenskioeld. and T. Drakenberg, Biopolymers, 1991.31, 1343 (Chem. Absfr., 1992, 116,

1738 J.L. Bock, G.B. Crull, A. Wishnia, and C.S. Springer, jun., J . Inorg. Biochem., 1991,44, 79. 1739 M.E. Lee and T. Nowak, Arch. Biochem. Biophys., 1992,293,264 (Chem. Abstr., 1992, 117, 65 450). 1'40 S.T. Janetzky, H. Hanssurn, G . Spatz-Kuembel, and H.G. Baeumert, Biochim. Biophys. Acta, 1992, 1105, 278

174* J.M. Aramini, T. Drakenberg, T. Hiraoke, Y . Ke, K. Nitta, and H.J. Vogel, Biochemistry, 1992, 31, 6761

Abstr., 1992. 116, 202 038).

15, 913 (Chem. Abstr., 1992, 117. 110 709).

116, 36 754).

53 877).

(Chem. Absfr., 1992, 117, 64 941).

(Chem. Absfr., 1992,117, 85 863).

Page 91: Nmr

Nuclear Magnetic Resonance Spectroscopy 91

and (166).1742 89Y NMR spectroscopy has been used to determine the formation constants of [SCNI- complexes of Y3+ in DMF.1743

0

0 (166)

Lanthanum. The complexes formed between La3+ and 1,lO-phenanthroline have been investigated by lH, 13C, 170, and 1391, NMR spectroscopy.17a The structure, protonation and dynamics of the complexes of (4-carboxy-3-Me-3-azabutyl)gamine with La3+ and Zn2+ have been investigated by 'H NMR spectroscopy.1745 The complex formation of o-pheny lenediamine-N,N,"'-tetraacetate with La3+ has been investigated by 'H and 139La NMR spectroscopy.1746 The interactions of La3+ with anions in aqueous solutions have been studied using 139La NMR spectroscopy.1747 The Lanthanides. 15N NMR spectroscopy has been used to study cerium nitrate complexes in aqueous solvent m i ~ t u r e s . 1 ~ ~ ~ The kinetics of D ~ N C H Z C H ~ N D ~ with Pr3+, Nd3+, Eu3+, Er3+, and Yb3+ have been studied by 'H NMR spe~troscopy.1~49 l5N NMR spectroscopy has been used to examine the [N03]-/Nd3+ contact ion pair formation at low t e m p e r a t ~ r e . 1 ~ ~ ~ The stability and rates of formation and of dissociation of the Gd3+ complex with 1,4,7,10-tetraazacyclododecane- 1,4,7,10- tetracarboxylic acid have been investigated by NMR s p e ~ t r o s c o p y . 1 ~ ~ ~ The T I - ] profiles of Gd3+ complexes of similar ligands have been determined.1752 The complexation of Gd3+ by DTPA- (methoxyethylamide)2 has been investigated using 'H and l3C NMR spectroscopy.1753 I3C NMR spectroscopy has been used to study the complexation of ascorbic acid by Gd3+ and Mn2+. 1754 Thorium and Uranium. A low temperature study of Th(N03)4 and UO2(NO3)2 with (Bu0)3PO has been carried out using 'H and 31P NMR spectroscopy.1755 'H, I3C, and *5N NMR spectroscopy has

1742 C.D. Hall, J.H.R. Tucker, A. Sheridan, S.Y.F. Chu, and D.J. Williams, J. Chem. SOC., Dulron Trans., 1992,

1743 R . Takahashi and S.4. Ishiguro,J. Chem. SOC., Faraday Trans,, 1992,88. 3165. 1744 M. Frkchette, I.R. Butler, R. Hynes, and C. Detellier, Inorg. Chem., 1992, 31, 1650 (Chem. Absrr., 1992, 116,

1745 C.F.G.C. Geraldes, E. Brucher, S. Cones, S.H. Koenig, and A.D. Sherry, J. Chem. SOC., Dalron Trans., 1992,

1746 M. Yarnarnoto, N. Nakasuka. and M. Tanaka, Bull. Chem. SOC. Jpn., 1992,65, 1566. 1747 Z. Chen and C. Detellier, J. Solution Chem., 1992. 21, 941. 1748 A. Fratiello. V. Kubo-Anderson, S. Azirni, E. Marinez, D. Matejka, R. Perrigan, and B. Yao, J. Solufion.

1749 J.H. Forsberg, T.J. Dolter, A.M. Carter, D. Singh, S.A. Aubuchon, A.T. Timperman, and A. Ziaee, Inorg.

1750 A. Fratiello, V. Kubo-Anderson, S. Azimi, F. Laghaei, R.D. Perrigan, and F. Reyes, J. Solurion Chem., 1992,

1751 X. Wang, T. Jin, V. Comblin, A. Lopez-Mut, E. Merciny, and J.F. Desreux, Inorg. Chem., 1992, 31, 1095. 1752 S. Airne. P.L. Anelli, M. Both, F. Fedeli, M. Grandi, P. Paoli, and F. Uggeri, Inorg. Chem., 1992, 31, 2422. 1753 D.H. White, L.A. DeLearie, T.J. Dunn, E.N. Rizkalla, H. Irnura, and G.R. Choppin, Invesr. Radiol., 1991,

1754 J. Hu and S. Yao, Bopuxue Zazhi, 1992,9,27 (Chem. Abstr., 1992, 117, 179 319). 1755 A.M. Rozen, A.S. Nikiforov, N.A. Kartasheva, N.V. Neumoev, V.S. Markov, V.E. Yushrnanov, and P.Yu.

3133.

206 591).

2517.

Chem., 1992, 21, 651.

Chem., 1992,31, 5555.

21, 1015.

26(Suppl. l), S229 (Chem. Absrr., 1992, 117, 3394).

Page 92: Nmr

92 Spectroscopic Properties of Inorganic and Organometallic Compounds

been used to study the UVI sol-gel process.1756 The kinetics of F- exchange with [U02F5]3- and [v@F4]2- have been studied by l9F NMR spectroscopy.1757 Titanium. The kinetics and thermodynamics of intra- and inter-molecular rearrangement in binaphtholate complexes of TiIv have been investigated by NMR spectroscopy.1758 Zirconium. The equilibrium of [Zr(BHq)4] with AM3 in Et2O has been investigated by 2H, 'B, and 27Al NMR spe~troscopy.1~59 The coordination of [B(CgHqF-4)4]- to (167) has been investigated by 13C and l9F NMR specmscopy.1760

r Me +

(167) Vanadium. The complexation of inosine with vanadate has been investigated by 51V NMR spectroscopy. 1761 Complex formation between vanadate and nucleosides has been investigated by IH and 13C NMR spectro~copy.1~~2 5lV NMR spectroscopy has been used to investigate the interaction of peroxovanadates and pep tide^.'^^^ The inhibition of chloroplast CF1- ATPase by vanadate has been investigated by 5lV NMR 'H and 5lV NMR studies of the interaction of vanadate and 2-vanadio-3-phosphoglycerate with phosphoglycerate mutase have been reported. 1765 Niobium. 7Li, 13C, and 93Nb NMR spectroscopy has been used to investigate lithium niobium alkoxide solutions during sol-gel processing of LiNb03.1766 The extraction of niobate from aqueous HCl by (Bu"O)3PO has been investigated by 31P and 93Nb NMR spectroscopy.1767 Chromium. 23Na NMR spectroscopy has been used to investigate lyotropic liquid crystals of Na[C~(L-tart2H)(phen)2] in water and splitting was 0 b ~ e r v e d . l ~ ~ ~

Shkarin, Zh. Fiz. Khim., 1991.65, 2983 (Chem. Absrr., 1992, 116.47 195).

1990, 180, 1075 (Chem. Abstr., 1992, 116, 29 613). 1756 C.M. King, R.B. King, A.R. Garber, M.C. Thompson, and B.R. Buchanan, Marer. Res. SOC. Symp. Proc.,

1757 M. Harada, Y. Fujii, S. Sakamaki, and H. Tomiyasu, Bull. Chem. SOC. Jpn. , 1992,65, 3022. 1758 TJ. Boyle, D.L. Barnes, J.A. Heppert, L. Morales, F. Takusagawa, and J.C. Connolly, Organometallics, 1992,

1759 S.I. Bakum, V.I. Privalov, S.F. Kuznetsova, and M.S. Ismailova, Zh. Neorg. Khim., 1992, 37, 963 (Chern.

1760 A.D. Horton, Organometallics, 1992, 11,3271. 1761 J. Richter and D. Rehder, Z . Naturforsch., B , 1991, 46, 1613 (Chem. Absrr., 1992, 116, 137 121). 1762 X. Zhang and AS. Tracy, Acra Chem. Scand.. 1992.46. 1170. 1763 A.S. Tracey and J.S. Jaswal, J. Am. Chem. SOC., 1992, 114, 3835. 1764 C. Carmeli, 0. Tadmor, Y. Lifshitz, R. Ophir, and S. Carmeli. FEBS Lett., 1992, 299, 227 (Chern. Abstr.,

1765 S. Liu, M.J. Gresser. and A S . Tracey, Biochemistry, 1992. 31,2677 (Chem. Absrr., 1992, 116, 123 781). 1766 D.J. Eichorst, K.E. Howard, and D.A. Payne, Ultrastruct. Process. Adv. Muter., [Proc. Inr. Conf. Ultrastruci.

Process. Ceram., Glasses Compos.1. 4th 1989, (Pub. 1992). 87. Ed. by D.R. Uhlmann and D.R. Ulrich (Chem. Abstr., 1992, 117, 176 742).

1767 S.B. Randarevich and Yu.G. Shestak, Zh. Neorg. Khim., 1991,36, 3167 (Chem. Absrr., 1992, 116,92 502). 1768 N. Koine, M. Iida. T. Sakai, N. Sakagami, and S. Kaizaki,J. Chem. SOC.. Chem. Commun.. 1992, 1714.

11, 1112.

Abstr., 1992. 117, 225 218).

1992, 117, 22 303).

Page 93: Nmr

Nuclear Magnetic Resonance Spectroscopy 93

Molybdenum. l5N and l9F NMR spectroscopy has been used to study exchange reactions of [ (MogClg)( 5NCS)nX~n]2-. 1769 The complexation of 1 -hydrox yethylidenediphosphoric acid with MoVI has been investigated by 31P NMR spectroscopy.177o Protonation and the coordination of [V@]+ to [PM12-nVn030](%")- have been studied by 3lP and 5lV NMR S ~ ~ C ~ X D S C O P Y . ' ~ ~ ~

Tungsten. Dinuclear tungstate complexes of alditols have been studied in aqueous solution by 13C and 183W NMR specmscopy.1772 Isopolytungstates have been studied in aqueous solution between pH 8 and 1.5 using 'H, 1-70. and 183W NMR spectroscopy.1773 Electron transfer between some tungstoruthenate(II,III,IV,V) heteropolyanions has been studied by 3 lP and 83W NMR

Manganese. The magnetic field dependence of the aqueous IH NMR longitudinal relaxation rate has been studied for eight Mn2+ macrocyclic complexes.1775 IH and l3C Ti measurements have been made to investigate the stucture and kinetics of MnILleuenkephalin binding e q ~ i 1 i b r i a . l ~ ~ ~ A IH and l3C NMR study of the interaction between melanin free acid and Mn2+ has been p ~ b 1 i s h e d . l ~ ~ ~ Technetium and Rhenium. The kinetics of pyridine and water exchange on truns-[M02(NCgH5)4]+, M = Tc, Re, have been investigated using 'H and 1 7 0 NMR spectroscopy.1778 The equilibrium between [Re(H)2(CO)2(PMe2Ph)3]+ and [Re($-H2)(C0)2(PMePh2)3]+ has been investigated by 1H and l3C NMR spectroscopy, including T1 m e a s ~ r e m e n t s . l ~ ~ 9 l3C and l7O NMR studies of the solution and equilibrium behaviour of selected oxocyanorhenate complexes have been reported. 1780 Iron. Electron exchange between oxidised and reduced forms of ferrocene derivatives has been measured by the NMR line broadening method.1781 The exchange of [SMe]+ in [(qs- C5H5)Fe(C0)2(MeSSMe)]+ with [($-C5H5)Fe(C0)2(SMe)]+ has been investigated using 1H NMR spectroscopy. 1782 Aggregate formation in anionic and cationic iron tetraphenylporphyrin p-0x0 dimers has been studied using lH and l3C NMR spectroscopy.1783 Ruthenium and Osmium. The rate constants for the atomlelectron self-exchange for the pairs [(q5-

CSH~)~R~I~[(~~~-CSHS)~R~B~I+. [("r1-CsHs)2Rull[(r5-C5H5)2RuIl+, and [(r15-CsH5)20sll[(r15- CsH5)20sI]+ have been measured by IH NMR line-broadening techniques.1784 1H NMR spectroscopy has been used to investigate the rate of electron transfer in [ ( ~ ~ - C S H ~ R ) R U ( ~ ~ -

spectroscopy. 1774

1769 W. Preetz. P. Brasack. K. Harder, and G. Peters, Z. Anorg. Allg. Chem., 1992,612,7. 1770 E.O. Tolkacheva, I.A. Krol. Z.A. Starikova, V.S. Sergienko, V.S. Popov. and M.Z. Gurevich, Zh. Neorg.

1771 O.A. Kholdeeva and R.I. Maksimovskaya. Zh. Neorg. Khim., 1992,37, 1349 (Chem. Abstr., 1992, 117, 225

1772 S. Chapelle and J.F. Verchere, Inorg. Chem., 1992.31.648. 1773 J.J. Hastings and O.W. Howarth, J . Chem. SOC., Dalton Trans., 1992, 209. 1774 C. Rong and M.T. Pope, J . Am. Chem. SOC., 1992, 114. 2932. 1775 S.C. Jackels, M.M. Durham, J.E. Newton, and T.C. Henninger, Inorg. Chem., 1992,31,234. 1776 E. Gaggelli, A. Maccotta, and G. Valensin, J . Inorg. Biochem., 1992,48, 173. 1777 S. Aime, M. Fasano, E. Terreno, C. Sarzanini, and E. Mentasti, Magn. Reson. Imaging. 1991,9, 963 (Chem.

1778 L. Helm, K. Deutsch, E.A. Deutsch, and A.E. Merbach, Helv. Chim. A m . 1992,75,210. 1779 X.L. Luo, D. Michos, and R.H. Crabtree, Organometallics, 1992.11.237. 1780 A. Roodt, J.G. Leipoldt, L. Helm, and A.E. Merbach, Inorg. Chem., 1992.31,2864. 1781 c. Duan, L. Zho, H. Sun, and X. You, Chin. Chem. Lett., 1992.3.57 (Chem. Abstr., 1992, 117.90 457). 1782 P.M. Treichel and E.K. Rublein, J . Organomet. Chem.. 1992,423. 391. 1783 A. Salehi, A, Shirazi, and T.C. Bruice, Inorg. Chim. Acta, 1992, 194, 119. 1784 K.A. Anderson, K. Kirchner, H.W. Dodgen, J.P. Hunt, and S. Wherland, Inorg. Chem., 1992,31,2605.

Khim., 1992. 37, 315 (Chem. Abstr.. 1992, 117, 203 887).

202).

Abstr., 1992, 116, 147 288).

Page 94: Nmr

94 Spectroscopic Properties of Inorganic and Organometallic Compounds

C ~ H & H ~ - ~ S ) R U X ( ~ ~ - C ~ H ~ R ) ] + , and AG* determined. The I3C NMR spectra were reported. 1785 Temperature dependent 1H NMR spectroscopy has been used to measure rate constants for IH exchange in ~~~~~-[RU(DMGH)(DMGH~)(NO)C~]+.~~~~ The influence of the 5-substituent of uracils and uridines on q 2 coordination of [Ru(edta)]- has been investigated by IH and 19F NMR spectroscopy.1787 NH exchange in [Os(2,3-diamino-2,3-dimethylbutane)3]2+ has been investigated by 1H and l3C NMR s p e ~ t r o s c o p y . 1 ~ ~ ~ Cobalt. 13C NMR spectroscopy has been used to investigate the acid-base chemistry of a-alkyl

cobalamins.1789 13C and 15N Ti measurements of [CNI-, [NCOI-, and [NCSI- binding to cobalt and zinc carbonic anhydrase have been rep0rted.l~9~ The solvation of [CoC1(NH3)5l2+ in water-DMSO has been investigated by 1H NMR spectroscopy.~791 1H and 3lP NMR spectroscopy has been used to study the binding of [(MeO)zP02]- to [(cyclen)Co(OH2)2]2+, and the subsequent hydro1ysis.l79* Ligand exchange in solutions of CoII amino acid complexes has been studied by IH NMR s p e ~ t r o s c o p y . 1 ~ 9 ~ Electron exchange rates of [Co( 1,4,7-trithiacyclodecane)2]2+/[ Co( 1,4,7- trithiacyclodecane)2]3+ have been determined using 59Co NMR spectroscopy. IH and 13C NMR spectra were also reported.17g4 Rhodium. Stepwise exchange reactions of acetate groups have been observed for [Rh2(02CCH3)3 ( (C6H4)PPh2) (H02CCH3)], by IH NMR spe~troscopy.1~95 The electron self- exchange rate constant of [Rh2(02CMe)4(0D2)]/[Rh2(02CMe)4(OD2)]+ has been determined by lH and 13C NMR line br0adening.1~96 Nickel. The interaction of NiII carboxypeptidase with phosphate and pyrophosphate has been investigated by 'H, 13C, and 31P NMR spectroscopy.~797 The binding of several carboxylate inhibitors to NiII substituted carboxypeptidase A has been investigated by 1H and 13C NMR spectroscopy.1798 The dissociation of [RSI- from [Ni(SR)4]- has been studied by IH NMR spectroscopy. 1799

Palladium and Platinum. Cyanide exchange of [MePt(CN)3]2- has been investigated by 13C NMR spectroscopy.1800 Ethene-exchange kinetics of Pd*I and PtII chloro ethene complexes have been studied as a function of temperature by IH line shape analysis. The 195Pt NMR spectrum was also

1785 M. Watanabe, T. Iwamoto, H. Sano, A. Kubo, and I. Motoyama, J. Organomet. Chem., 1992,441, 309. 1786 L.F. Szczepura, J.G. Muller, C.A. Bessel, R.F. See, T.S. Janik, M.R. Churchill, and K.J. Takeuchi, Inorg.

Chem., 1992, 31, 859. R.E. Shepherd, S. Zhang, F.T. Lin. and R.A. Kortes,lnorg. Chem., 1992.31, 1457.

1788 A. Patel, A. Ludi, H.B. Biirgi, A. Raselli, and P. Bigler, Inorg. Chem., 1992,31, 3405. 1789 K.L. Brown and D.R. Evans, Inorg. Chim. Acra, 1992, 197, 101. 1790 I. Bertini, C. Luchinat, R. Pierattelli, and A.J. Vila, Inorg. Chem.. 1992, 31, 3975. 1791 W.L. Reynolds and S. Davis, Croar. Chem. Acfa 1992, (Pub. 1991). 64, 663 (Chem. Abslr. , 1992, 116, 222

1792 J.H. Kim and J . Chin,./. Am. Chem. Soc., 1992, 114, 9792. 1793 V.G. Shtyrlin, Ya.E. Zil'berman, O.V. Kukushkina, and A.V. Zakharov, Zh. Neorg. Khim., 1992, 37, 642

1794 S. Chandrasekhar and A, McAuley, Inorg. Chem., 1992,31,480. 1795 P. Lahuerta and E. Peris, Inorg. Chem., 1992,31,4547. 1796 D.A. Foucher and D.H. Macartney. J . Chem. Res. (S), 1992, 346. 1797 J.M. Moratal, A. Donaire, J . Castells, H.R. JimCnez, J . Salgado, and F. Hillems, J . Chem. SOC., Dalron Trans..

1798 J.-M. Moratel, J . Castclls, A. Donaire, J. Salgado, and H.R. JimCnez, J . Chem. SOC.. Dalron Trans.. 1992, 3317. 1799 T. Yamarnuraand H. Arai, Bull. Chem. SOC. Jpn., 1992,65, 1799. l8O0 A.Y.C. Hung, J.C. Woolcock, M.F. Rettig, and R.M. Wing, Inorg. Chem., 1992.31, 810.

536).

(Chem. Absrr., 1992, 117, 179 180).

1992, 713.

Page 95: Nmr

Nuclear Magnetic Resonance Spectroscopy 95

recorded.1801 195Pt NMR spectroscopy has been used to investigate the coordination of [3k]aneN4 to [Pt(CN)4]2-.1802 IH and 13C NMR spectroscopy has been used to investigate the interaction between cis-[Pt(NH3)2(0H2)2] and a-dipalmitoylglycerylphosphatidylcholine.1803 The PKa values of cis- [PtCl(OH2)(NH3)2]+ and cis-[Pt(OH2)2(NH3)2]2+ have been determined by the use of 1H( 15N ) inverse detection,18w and by 15N and 195Pt NMR spectroscopy.1805 The coordination of methionine to PtII has been investigated by IH and 13C NMR spectroscopy.18o6 The solution equilibria of cis -[Pt(OH)2(PMe3)2] in the presence of HN03 have been studied using 3lP NMR spectroscopy.1807 Copper. 1H and 15N T1 and T2 measurements of purine in the presence of Cu2+ have shown that the Cu2+ binds to the imidazole.1808 Complex formation in the CuS04-HsP02-H20 system has been studied by 1H and 31P NMR spectroscopy.1809 The interaction of bile acids with CuII has been studied using NMR spectroscopy.1810 The correlation time of the rotational motion of Cu2+ aqua complex ions grows during its adsorption on micelles of sodium dodecylsulfate.1811 1H NMR spectroscopy has been used to study phase transitions in the discogen [ ( 1,3-(4-n-octyl-O- CgHq)propane-l,3-dionato)2C~].~~~~ The complexation between carboxymethyl chitin and Cu2+ in aqueous systems has been investigated by 13C NMR spectroscopy.1813 NMR self exchange relaxation of C U ~ ~ / C U ~ macrocyclic tetrathioether complexes in aqueous solutions has been studied. 1814 Silver. 'H and l3C NMR spectroscopy has been used to show that Ag+ complexes with 4- nitroimidazole dissociate in solution. The l3C CP/MAS NMR spectrum was also recorded.1815 Gold. l3C NMR spectroscopy has been used to examine exchange between [Au(CO)]+ and [Au(C0)2]+.1816 13C NMR spectroscopy has been used to investigate the disproportionation of [(thioglu~ose)Au(~3CN)],~~~~ and the binding of [Au(thiomalate)] to ergothionine.1818 Zinc and Cadmium. The complexation of Zn2+ by (2-pyridy1)gP and (2-pyridyl)3As has been

lSo1 A. Olsson and P. Kofod, Inorg. Chem., 1992,31, 183. 1802 A. Bencini, A. Bianchi, P. Dapporto, E. Garcia-Espafla, M. Micheloni, J.A. Ramirez, P. Paoletti, and P. Paoli,

1803 K. Wang, D. Liu, and J. Zhuo, Gaodeng Xuexiao Huaxue Xuebao, 1991. 12, 1382 (Chem. Absrr., 1992, 117,

1804 S.J. Berners-Price. T.A. Frenkiel, U. Frey, J.D. Ranford, and P.J. Sadler. J . Chem. Soc., Chern. Commun.,

1805 T.G. Appleton. A.J. Bailey, KJ. Barnham, and J.R. Hall, Inorg. Chem., 1992,31, 3077. 1806 T. Grochowski and K. Samochocka, J . Chem. Soc., Dalton Trans., 1992, 1145. 1807 T.K. Miyamoto, Y. Suzuki, and H. Ichida, Chem. Lett., 1992,839 (Chem. Absrr., 1992, 117, 39 083). 1808 S. Steinkopf, Q. Liu, N.A. Froystein, and E. Sletten, Acra Chem. Scand.. 1992, 46,446. 1809 N.A. Kostromina, V.B. Chernogorenko, Sh.B. Tasybaeva, and P.B. Tikhonova. Ukr. Khim. Zh. (Russ. Ed.),

I 8 l 0 M. Mizutani, M. Nakamura, and T. Aoki, Biomed. Res. Trace Elem., 1990. 1,275 (Chem. Abstr., 1992, 116,

1811 L.S. Podenko, S.N. Plotnikov, S.I. Dmiuiev, L.P. Panicheva, N.Yu. Tret'yakov, and A.Ya. Yuffa, Khim. Fiz.,

1812 M. Bose and B.K. Sadashiva, Mol. Cryst. Liq. Cryst., Lerr. Sect., 1991, 8. 59 (Chem. Absrr., 1992, 116, 73

1813 T. Matsumoto and H. Zenkoh, J . Chem. SOC., Furaday Trans., 1992,88,2183. 1814 N.E. Meagher, K.L. Juntunen, C.A. Salhi, L.A. Ochrymowycz, and D.B. Rorabacher, J . Am. Chem. SOC., 1992,

1815 I. Skgalas and A.L. Beauchamp, Can. J . Chem., 1992,70,943. 1816 H. Willner, J . Schaebs, G . Hwang, F. Misuy, R. Jones, J . Trotter, and F. Aubke, J . Am. Chem. Soc., 1992,

1817 A.A. Isab, J. Inorg. Biochem., 1992,46, 145. 1818 A.A. Isab, J. Inorg. Bwchem., 1992,45, 261.

Inorg. Chem., 1992, 31, 1902.

184 380).

1992,789.

1991, 57, 563 (Chem. Absrr., 1992, 116, 222 443).

189 873).

1991, 10, 1575 (Chem. Absrr.. 1992, 116. 28 647).

027).

114, 10411.

114, 8972.

Page 96: Nmr

96 Spectroscopic Properties of Inorganic and Organometallic Compounds

investigated by 1H and 13C NMR spe~troscopy.1~19 The stability constants for binary Complexes formed between Zn2+ and Cd2+ with cytidine and glycylglycine and for the ternary complexes have been determined by 1H and 13C NMR spectros~opy.1~2~ Complex formation between Zn2+ and L-

histidine, 1,2-diaminoethane, 1,3-diarninopropane, or glycine has been studied using l3C NMR spectroscopy.1821 13C and 15N NMR spectroscopy has been used to investigate the formation of complexes of ZnC12 with adenosine.1822 Cu2+ and Zn2+ sequestering by the borate- (amino)polyhydroxyoxime systems in aqueous solution has been investigated using 'B, 13C, and 113Cd NMR spectroscopy.18~ The mobilization of cadmium from biological materials by EDTA has been investigated by 113Cd NMR spectroscopy.1824 The stability constant of the 1:l Cd2+/phosphinate complex in the aqueous phase and in a cation exchanger has been determined by 3lP NMR spectroscopy.1825 Cadmium binding to saccharopolyspora erythrea 20 kDa protein has been investigated by IH and 113Cd NMR spectroscopy.1826 The binding of Zn2+ and Cd2+ to human and dog serum albumins has been investigated by 113Cd NMR spectroscopy.1827 A 113Cd NMR study of the binding of Cd2+ and Lu3+ to silver hake parvalbumin has been reported.1828 The cadmium binding sites of datura innoxia have been characterised by l3Cd NMR spectroscopy.1829 Zinc complexation by rneso-2,3-dimercaptosuccinic acid has been investigated by 1H and 13C NMR spectroscopy.183o Ab initio MO calculations of 113Cd NMR shieldings of a variety of Cd2+/C1-/(OH2) complexes have been reported. 1831 Boron. IH NOE spectroscopy has been used to investigate ion pairing between [ Q N ] + and [BH4]-.1832 The equilibria between CF2CH20H and NaBH4, giving species such as [ (CF3CH20)3BH]-, have been studied by B NMR spectroscopy.1833 Equilibria between [MeB(OH)2] and polyols have been investigated by l B NMR ~pectroscopy.183~ Complex formation between 4-boronophenylalanine with some monosaccharides has been investigated by l B NMR spectroscopy.1835 High temperature NMR measurements have been ma& on l l B in B2O3 and 1 7 0 in K20.4Si02 glass and melts have been made.1836 lH NMR studies of the complexing of boron,

1819 R. Gregorzik, J. Wirbser, and H. Vahrenkamp, Chem. Ber., 1992,125, 1575. 1820 B. De Castro, J. Pereira, P. Gameiro, and J.L.F.C. Lima, J. Inorg. Biochem., 1992,45, 53. 1821 L.D. Couves, D.N. Hague, and A.D. Moreton. J . Chem. Soc., Dalton Truns., 1992, 217. 1822 E. SzJyk and I. Womska. Polyhedron. 1992, 11, 3147. 1823 J. Van Haveren, J.A. Peters, J.G. Batelaan. and H. Van Bekkum Inorg. Chim. Acru, 1992,192,261. 1824 J.A. Beaty. M.M. Jones, D.J. Wilson, and L. Ma, Chem. Res. Toxicol., 1992, 5 , 568 (Chem. Abstr., 1992,

1825 Y. Miyazaki and H. Waki, Polyhedron, 1992,11,3031. 1826 N. Bylsma, T. Drakenberg, I . Andersson, P.F. Leadlay. and S. Forstn. FEBS Leu. , 1992, 299,44 (Chem.

1827 W. Goumakos, J.P. Laussac, and B. Sarkar, Biochem. Cell Biol., 1991.69.809 (Chem. Abstr., 1992. 116, 145

1828 C. Zhang and DJ. Nelson. J . Alloys Compd., 1992, 180, 349 (Chem. Absrr., 1992, 116,230 420). 1829 H.Y.D. Ke and G.D. Rayson, Environ. Sci. Technol., 1992.26, 1202 (Chem. Absrr., 1992,116, 220 829). 1830 M. Rivera and Q. Fernando, Chem. Res. Toxicol., 1992.5, 142 (Chem. Absrr., 1992, 116, 165 013). 1831 P. Butterworth, I.H. Hillier, N.A. Burton, D.J. Vaughan, M.F. Guest, and J.A. Tossell, J . Phys. Chem., 1992,

1832 P.M. Stone, T.C. Pochapsky, and E. Callegari. J . Chem. Soc.. Chem. Commun., 1992, 178. 1833 J.H. Golden, C. Schreier, B. Singaram. and S.M. Williamson, fnorg. Chem., 1992,31, 1533. 1834 R. Pizer and C. Tihal, Inorg. Chem.. 1992.31, 3243. 1835 Y. Mori, A. Suzuki, K. Yoshino, and H. Kakihana. Pig. Cell Res., 1989, 2, 273 (Chem. Absrr.. 1992, 116,

1836 H. Maekawa. Y. Imagaki, S. Shimokawa, Y. Nakamura. T. Maekawa, and T. Yokokawa, Marer. Sci. Forum.

117. 84 800).

Absrr., 1992, 116, 250 678).

622).

96, 6494.

27 927).

1991, 73-75(Molten Salt Chem. Technol.), 123 (Chem. Abstr., 1992, 117, 32 164).

Page 97: Nmr

Nuclear Magnetic Resonance Spectroscopy 97

aluminium and lithium alkoxides in solution,1837 and the interactions of boric acid and 2,3-Me2-2,3- butanediol,lm8 have been reported. 1lB NMR spectroscopy has been used to study the interaction of (2,3-dihydroxypropyl)cellulose borax solutions, and equilibrium constants determined. 1839

Aluminium. 27Al NMR spectroscopy has been used to investigate the coordination of 242’- hydroxypheny1)-Zoxazolines with Al3+. 1H NMR investigations showed exchange between fuc and mer isomers.lm Complex formation of A1111 with F- and amino acids in aqueous solutions has been studied by 1% NMR spectroscopy.1~1 27Al and 31P NMR spectroscopy has beem used to study the interaction between an aluminium-EDTA complex and [H2PO4]-.1842 The influence of temperature on the concentration of [Al1304(OH)2A(OH2)12]7+ has been investigated by 27Al NMR spectroscopy.1843 The hydrolysis of polyammonium chloride has been studied using 27Al NMR spectroscopy.1~ 27Al NMR spectroscopy has been used to study the formation of [S04A112(OH)24(H20)12]10+ from [SO&- and hydrolysed aluminium chloride.1845 The water and H2 solubilities in an albiite melt have been investigated using 1H NMR spectroscopy.1~6 Metal speciation in the A13+-lactate-hydroxide- water system has been investigated using 1H and 13C NMR ~pectroscopy.18~7 The interaction of A13+-(+)-tartrate complexes with alkali, alkaline earth, transition, and group 13 metal ions in aqueous solution has been studied with the use of ‘H, 13C, 170, and 27Al NMR s p e ~ t r o s c o p y . 1 ~ ~ ~ A 27Al NMR study of the H+-A13+-L(+)-ascorbic acid system has been reported.1849 13C, 23Na, and 27Al NMR spectroscopy has been used to investigate the interaction of fructose and sucrose with hydrolysed AlIII.1850 27Al NMR spectroscopy has been used to study calcium aluminosilicate melts and g 1 a ~ s e s . l ~ ~ ~ High temperature 27Al NMR spectroscopy has been used to study silica-alumina melts.l8S2 Sulfate complexes of Al3+ have been studied by 27Al NMR spectroscopy.1853 The binding of aluminium lactate to ATP and to phospholipids has been investigated by 27Al and 31P NMR spectroscopy.18” 27Al NMR spectroscopy has been used to study the binding of Al3+ to human

1837 Z.T. Dmieieva, S.V. Sosnina. and N.G. Mezhibor, J . Mol. Sfruct., 1992,267.415. 1838 A. Kamars. I.A. Skripko, and E.M. Shvarts, Latv. PSR Zinar. Akad. Vestis, Kim. Ser., 1990, 658 (Chem.

1839 T. Sato, Y. Tsujii, T. Fukuda. and T. Miyamoto, Macromolecules, 1992. 25, 3890 (Chem. Abstr., 1992, 117,

1840 H.R. Hoveyda, V. Karunaralne, SJ. Rettig. and C. Orvig, Inorg. Chem., 1992,31,5408. 1841 S.P. Petrosyants, M.A. Malyarik, and E.R. Buslaeva, Zh. Neorg. Khim., 1991, 36, 2854 (Chem. Abstr., 1992,

1842 T. Yokoyama. S. Kinoshita, H. Wakita, and T. Watanabe, Anal. Sci., 1991,7,429 (Chem. Abstr.. 1992, 116,

1843 J.T. Kloprogge, D. Seykens, J.W. Geus, and J.B.H. Jansen, J . Non-Cryst. Solids, 1992,142.87 (Chem. Absfr.,

1844 J. Wu, Y. Jin, Z. Zhou, and L. Zhang, Huadong Huagong Xueyuan Xuebao, 1992.18, 124 (Chem. Abstr., 1992,

1845 S. Lin, W. He. and Z. Li, Water Treat.. 1991.6.293 (Chem. Abstr., 1992. 116. 113 235). 1846 N.L. Bennen, V.A. Zharikov. M.B. Epel’baum, V.O. Zavel’skii, Yu.P. Dikov. N.L. Suk, and S.K. Koshemchuk,

1847 B. Corain, B. Longato, A.A. Sheikh-Osman, G.G. Bombi, and C. Macca, J. Chem. SOC.. Dalton Trans., 1992,

1848 F.R. Venema, J.A. Peters, and H. van Bekkum, Inorg. Chim. Acfa, 1992, 197, 1. 1849 L.O. c)hman and A. Nordin. Acta Chem. Scad. , 1992.46, 515. 1850 M. TonkoviC. H. Bilinski. and M.E. Smith, Inorg. Chim. Acra, 1992, 197. 59. 18s1 B. Cote. D. Massiot. F. Taulelle, and J.P. Coutures, Chem. Geol.. 1992, 96, 367 (Chem. Abstr., 1992, 117,

1852 B.T. Poe, P P . McMillan, B. Cote, D. Massiot. and J.P. Coutures. J . Phys. Chem., 1992,96, 8220. 1853 V.W. Rudolph and S. Schoenherr, Z. Phys. Chem. (Munich), 1991, 172, 31 (Chem. Abstr., 1992, 116, 68

1854 K. Panchalingam, S. Sachedina, J.W. Pettegrew, and T. Glonek, fnr. J. Biochem., 1991, 23, 1453 (Chem.

Absfr., 1992, 116, 28 839).

51 061).

116, 33 314).

202 034).

1992, 116,247 132).

117, 219 565).

Confrib. Mineral. Pefrol., 1991, 109, 89 (Chem. Absfr., 1992, 116, 24 911).

169.

238 455).

612).

Page 98: Nmr

98 Spectroscopic Properties of Inorganic and Organometallic Compounds

serum albumin and transfemn.1855

There have been numerous studies of melts of [ 1 -Et-3-Me-imidazolium] [AlC4],1856 using 1H,1857

2H,l858 13C and 27A1,1859 and 27Al and 35C1 NMR spectroscopy.1860 The chemistry of proton in ambient-temperature chloroaluminate molten salts has been investigated using 1H and 2H NMR

spectroscopy.1861 The effect of cation on chloroaluminate melts has been investigated by 27Al,1862

and 13C, 23Na, and 27Al N M R s p e c t r o ~ c o p y . ~ ~ ~ ~

Gallium. T h e complexation of GaF3 with semicarbazide and carbonylhydrazide in aqueous solutions

has been investigated by 19F NMR s p e ~ t r o s c o p y . 1 8 ~ ~ T h e complexation of Ga3+ with several

complexons and hydroxycarboxylic acids has been studied using 1H N M R spectroscopy.~865 29Si

and 716, N M R spectroscopy has been used to investigate alkylammonium gallosilicate solutions.1866

71Ga N M R spectroscopy has been used to study the equilibrium between Ga3+ and C1- and the

formation of [GaCln(OH2)6-n]3-n.1867

Indium. Mixed ligand indium fluoro complexes with 2,2’-bipyridine and 1,lO-phenanthroline have

been studied by 1% NMR spectroscopy.1868

Thallium. The equilibrium and dynamics of the system [Tl(edta)]-l[Tl(edta)X]2- have been investigated

by lH, 13C, 15N, and 2o5Tl NMR spectroscopy.~869

Carbon. The dissociation and dynamics of HCN in aqueous solution have been investigated by 13C

NMR spectroscopy.1870

Silicon. Complexation between NaOSiMeg and THF, HMPA, and 15-crown-5 has been studied by I H and 29Si N M R spectroscopy.1871 29Si NMR spectroscopy has been used to investigate the

Abstr., 1992, 116, 35 846). 1855 S. Jemil, A. Fatemi, D.J. Williamson, and G.R. Moore, J. Inorg. Biochem., 1992, 46, 35. 1856 P.C. Truelove and R.A. Osteryoung, Proc. - Elecrrochem. SOC., 1992, 16(Proc. Int. Symp. Molten Salts,

8 th . 1992). 292 (Chem. Abstr., 1992. 117, 240 752); R.T. Carlin, P.C. Truelove, and R.A. Osteryoung, Electrochim. Acta, 1992.37, 2615 (Chem. Absrr.. 1992, 117, 241 598).

1857 J.L. Campbell and K.E. Johnson, Proc. - Elecrrochern. Soc., 1992, 16(Proc. Int . Symp. Molten Salts, 8 th . 1992), 317 (Chem. Abstr., 1992, 117, 240 753).

lg5* P.C. Truelove and R.A. Osteryoung. Inorg. Chem.. 1992.31, 3980. 1859 W.R. Carper, J.L. M u g , and J.S. Wilkes, Inorg. Chim. Acra, 1992, 202, 89; W.R. Carper, J.L. Pflug, A.M.

Elias, and J.S. Wilkes, J. Phys. Chem., 1992, 96, 3828; W.R. Carper, C.E. Keller, P.A. Shaw, M. Parrish, and J.S. Wilkes, Proc. - Electrochem. Soc., 1992, 16(Proc. Int. Symp. Molten Salts, 8 t h . 1992), 335 (Chem. Absrr., 1992, 117,240 737).

Ig6O S. Takahashi, M.L. Saboungi, R.J. Klingler, M.J. Chen, and J.W. Rathke, Proc. - Elecrrochem. Soc., 1992, 16 (Proc. Int. Symp. Molten Salts, 8 t h , 1992). 345 (Chem. Absri-., 1992, 117, 259 363).

I g 6 l P.C. Truelove and R.A. Osteryoung, Proc.-Electrochem. Soc., 1992, 16 (Proc. Int. Symp. Molten Salts, 8 th , 1992), 303 (Chem. Absrr.. 1992, 117, 221 118).

1862 K. Ichikawa. M. Izumi, T. Jin, and T. Matsurnoto, Chem. Leu., 1992, 1651 (Chem. Abstr.. 1992, 117, 233 325); N. Koura, K. Ueda, and K. Takeishi, /‘roc.-Elecfrochern. SOC., 1992, 16 (Proc. Int. Symp. Molten Salts, 8 th , 1992). 438 (Chem. Absrr., 1992, 117, 202 538).

1863 W.R. Carper, J.L. Pflug, and J.S. Wilkes. Inorg. Chim. Acra, 1992, 193, 201. 1864 A.N. Popov, M.G. Ivanov, and 1.1. Kalinichenko, Koord. Khim.. 1992, 18,243 (Chem. Absrr., 1992, 117, 203

1865 V.N. Volkov, G.A. Berkova, and A.P. Zharkov, Zh. Obshch. Khim., 1991.61, 2090 (Chem. Absrr., 1992, 116,

1866 R.F. Mortlock, A.T. Bell, and C.J. Radke,J. Phys. Chem., 1992.96, 2968. 1867 E. Brendler, B. Thomas, and S. Schoenherr, Monaish. Chem., 1992, 123, 285. 1868 M.A. Malyarik, S.P. Petrosyants, A.B. Ilyukhin, and Yu.A. Buslaev, Zh. Neorg. Khim., 1991,36,2816 (Chem.

1869 J. Blixt. J. Glaser, P. Solymosi, and I. T6th, Inorg. Chem., 1992, 31, 5288. Ig7O I. BAnyai. J. Blixt, J. Glaser. and I. T61h. Acia Chem. Scond., 1992, 46, 138; I. BBnyai, J. Blixt, J. Glaser, and

I. Tbth. Acra Chem. Scand., 1992.46, 142, O.V. Kononov. S.Ya. Lazarev, V.D. Lobkov, V.E. Gurari. T.E. Simonova, K. Kalnins, and A.D. Kutsenko, Zh. Obshch. Khim., 1991.61. 1763 (Chem. Absrr., 1992, 116, 174 244).

921).

160 020).

Absrr.. 1992, 116, 50 313).

Page 99: Nmr

Nuclear Magnetic Resonance Spectroscopy 99

aqueous complexation between silicic acid and some orfho- di and triphenolic c0mpounds.18~2 The influence of temperature and impurities on the properties and the constitution of sodium water glass solutions has been studied using lH, 23Na. and 29Si NMR s p e ~ t r o s c o p y . ~ ~ ~ 3 Oxygen exchange between the bridging and non-bridging sites in Na2Si205 has been studied using NMR spectroscopy.1874 23Na, 27Al. and 29% NMR spectroscopy has been used to investigate the effects of high temperature on silicate liquid structure.1875 The molecular composition of concentrated (commercial) water glasses has been investigated by 29Si NMR spectroscopy.1876 Tin. The interaction of R3SnX compounds with oxoanions has been studied by 119Sn NMR spectroscopy.1877 Variable temperature 13C, 19F, and "9Sn NMR measurements have been used to investigate the reactions of F- with Ph3SnC1 and Me3SnC1.1878 Cation-anion interactions in pentacoordinate organotin compounds such as [Me3SnX2]- have been investigated using lH, 13C, and 119Sn NMR spectroscopy. The 13C and 119Sn CP/MAS NMR spectra were also ~ e c o r d e d . l ~ ~ 9 Complex formation between [SnMe2I2+ and iminodiacetate, oxydiacetate, and thiodiacetate has been studied using IH, 13C, and 119Sn NMR spectroscopy.1880 The constitution of aqueous SnIV chloride and bromide solutions has been investigated using 1 19Sn NMR spectra.1881 Nitrogen. The phase behaviour of some mixtures of PbII carboxylates with phosphatidylcholines has been examined by 13C, 3lP, and 207Pb NMR spectroscopy.1882 Phosphorus. The solution equilibria of [P(CHC12)Cls+(CN)n]- have been studied using 31P NMR spectroscopy .I883 Arsenic. The interaction of arsenate with various molecules of biological interest has been investigated using 75As NMR spe~troscopy.188~ Antimony. Five of the ten possible [SbCInF6-n]- anions have been identified using 19F, 121Sb, and 123Sb NMR spe~troscopy.1~85 Sulfur. I4N and 15N NMR spectroscopy has been used to study the deprotonation of cyclic sulfur imides and sulfur-ammonia solutions.1886 Tellurium. 6Li, 7Li, 13C, 31P, and 125Te NMR spectroscopy has been used to study PhLi/PhzTe exchange r e a ~ t i 0 n s . l ~ ~ ~ Chlorine. 35C1 NMR spectroscopy has been used to investigate the binding of C1- to (168).1888 Null-

1872 I.F. Sedeh. L.-0. Ohman, and S. Sjbberg, Acts Chem. Scand., 1992,46,933. 1873 D. Hcebbel, R. Ebert, J. Pauli, and D. Kruschke. 2. Anorg. A&. Chem., 1992,614,95. 1874 S.L. Webb, Chem. Geol., 1992,96,449 (Chem. Abstr., 1992, 117,238 458). 1875 J.F. Stebbins and I. Faman, Science , 1992, 255, 586. 1876 W. Kozlak, Przem. Chem., 1992.71, 279 (Chem. Abstr.. 1992. 117, 114 596). 1877 K. Fluri, J. Koudelka, and W. Simon, Helv. Chim. Acra, 1992.75, 1012. 1878 D. Dakternieks and H. Zhu, Inorg. Chim. Acts, 1992. 196, 19. 1879 S.E. Johnson and C.B. Knobler, Organomerallics, 1992, 11, 3684. 1880 V. Cucinotta, A. Gianguzza, G. Maccarrone. L. Pellento, R. Purrello, and E. Rizzarelli, J . Chem. SOC., Dolton

l a 8 1 M.J. Taylor and J.M. Coddington, Polyhedron, 1992, 11, 1531. 1882 H.D. Burrows, C.F.G.C. Geraldes, M. da G.M. Miguel, T.J.T. Pinheiro, and J.J.C.C. Pinto, Thermochim. Acra,

1883 R.D. Chambers, K.B. Dillon, and T.A. Straw, Eur. J . Solid State Inorg. Chem., 1992, 29, 899 (Chem. Abstr.,

1884 C.F.G.C. Geraldes, M.E. Saraiva, and B.A. Dias, J . Inorg. Biochem., 1992, 46.99. 1885 M.F.A. Dove and J.C.P. Sanders, J. Chem. Soc., Dalton Trans., 1992, 331 1. 1886 T. Chivers and K.J. Schmidt, Can. J . Chem.. 1992,70, 710. 1887 H.J. Reich, D.P. Green, N.H. Phillips. J.P. Borst, and I.L. Reich, Phosphorus Sulfur Silicon, 1992, 67, 83. 1888 E.A. Arafa, K.I. Kinnear, and J.C. Lockhart, J . Chem. SOC., Chem. Commun., 1992, 61.

Trans., 1992, 2299.

1992, 206,203 (Chem. Abstr., 1992. 117, 240 669).

1992, 117, 234 118).

Page 100: Nmr

100 Spectroscopic Properties of Inorganic and Organometallic Compounds

point spectra in inversion recovery experiments for studying I = 5 quadrupole nuclei involved in

exchange processes have been applied to 35C1 NMR spectroscopy to study C1- binding to human serum albumin, in the presence of sodium dodecyl ~ulphate.1~89 37C1 NMR spectroscopy has been used to study the binding of salicylic acid and other hydroxybenzoic acids to the band 3 anion transport protein of human erythrocytes.18m

c e Equilibria among Uncharged Species. Magnesium. 1H and 13C NMR spectroscopy has been used to investigate the equilibrium in Scheme 1.1891

Me

MgMe Scheme 1

Yttrium. lH, 29Si, and *9Y NMR spectroscopy has been used to study aggregation of yttrium alkoxide, siloxide, and acetylacetonate compounds.1892 Lanthanides. Variable temperature IH and 31P NMR spectroscopy has been used to investigate Ph3PO exchange on [La(N(SiMe3)212(PPh2)(Ph3P0)21.1893 Thorium. 1H and 13C NMR spectroscopy has been used to demonstrate an equilibrium between [Th(OCHF'r$)41 and the dimer.1894 Uranium. Exchange between [U(NPh2)4] and [U(NPh2)4L], L = THF or NCsHg, has been investigated and equilibrium constants dete1mined.l*9~ Laser irradiation 170 NMR studies of photo- induced effects on the ligand reactions of uranium(V1) have been rep0rte4il~9~ Titanium. The equilibrium between [Ti(OBu)s] and [AIEts] has been investigated by I3C NMR s p e ~ t r o s c o p y . ~ ~ 9 ~ 47.4% NMR spectroscopy has been used to investigate charge transfer structures of aromatic compounds with TiC14.18g8 l3C NMR spectroscopy has been used to investigate the binding of Tic4 to 2-PF-2-MeOCH2-rranr-decalin-3-one. 1899

1889 N.H. Ge. W.S. Price. L.Z. Hong, and L.P. Hwang, J . Magn. Reson., 1992,97,656. 1890 T. Minami, W.S. Price, and DJ. Cutler, J . Phurm. Sci., 1992.81.419 (Chem. Absfr., 1992, 117,62 334). 1891 E.K. Watkins and H.G. Richey. jun., Organomerallics, 1992,ll. 3785. 1892 P.S. Coan, L.G. Hubert-F'falzgraf. and K.G. Caulton. Inorg. Chem., 1992,31. 1262. 18g3 H.C. Aspinall, S.R. Moore. and A.K. Smith, J . Chern. Soc., Dalron Trans.. 1992, 153.

1895 S.E. T m a n and W.G. van der Sluys. Polyhedron, 1992,ll. 3139. 1896 M. Harada, S. Sakamaki, T. Yamaguchi. and H. Tomiyasu. Nippon Kagaku Kaishi, 1992.951 (Chem. Absrr.,

1897 D. Wang, X. Zhao. and F. Wang. Synfh. Mer., 1992,48,49 (Chem. Absrr., 1992. 117, 77 495). 1898 K. Briiggermann, R.S. Czemuszewicz. and J.K. Kochi, J . Phys. Chem., 1992,96,4405. 1899 R.C. Corcoran and J . h4a.J. Am. Chem. Soc., 1992, 114.4536.

D.L. Clark, J.C. Huffman. and J.G. Watkins, J . Chem. Soc.. Chem. Commun.. 1992, 266.

1992, 117. 201 657).

Page 101: Nmr

Nuclear Magnetic Resonance Spectroscopy

Zirconium. The equilibrium in Scheme 2 has been investigated by NMR s p e c t r o s ~ o p y . ~ ~ ~

101

P Me2

Scheme 2 Vanadium. 5lV NMR spectroscopy, including EXSY, has been used to show that [V(O)(OCgHg)3] in non-aqueous media shows exchange between monomer and dimer. The l3C NMR spectrum was given.1901 Chromium. Ligand exchange between [(q5-c5H5)2c~(c0)6] and [(q5-C5H5)Cr(CO)3X], X = H, Br, I, results in coalescence of the cyclopentadienyl signals.Iw2 Molybdenum. 3lP NMR spec~oscopy has been used to demonstrate the equilibrium in Scheme 3.I9O3

2khmSLi The rate of interconversions of syn and anri rotamers of [Mo(CHCMe2Ph)(NAr)(OR)21 has been determined by 1H NMR spectroscopy and Act, AHt, and ASt determined.1904 Variable temperature 13C and 31P NMR spectroscopy has been used to investigate the equilibrium in Scheme 4.lw5

H2 Me,

s 7%. s Y,co PriO<: :yq-PMe, = PriO<: :Mo,YMe

PMe, s $0 0 Me3

Scheme 4 PhCECMe exchange with [Mo( q3-C(CF3)C( CF3)CR=CR( SCgFg) 1 (CF3C=CCF3)(q5-C5H5)] has been studied by 1% NMR Tungsten. Variable temperature 1H NMR spectroscopy has been used to demonstrate the equilibrium

between [(OChH(qS-C5H5)W(pL-PPh2)Pt(C0)(PPh3)]+ and [(OC)2(q5-CgHg)W(p-H)(p-PPh2)Pt- (CO)(PPh3)]+.1907 13C and 31P NMR spectroscopy has been used to demonstrate an equilibrium between [W(PMe3)6] and [HW(q2-CH2=PMe2)(PMe3)4].l9oS The cis-trans equilibrium for [(q5-

C~H~)(CO)~W(~.L-PC~~)P~(CO)(PC~~H)] has AH0 of 7.1 k 0.4 kJ mol-1 according to 31P NMR

- -

1900 H.H. Karsch, G. Grauvogi, B. Deubelly. and G. Miiller, Organometallics, 1992,11,4238. 1901 F. Hillerns, F. Olbrich, U. Behrens, and D. Rehder, Angew. Chem.. Int. Ed. Engl., 1992,31,447. 1902 C.A. MacConnachie, J.M. Nelson, and M.C. Baird, Organometallics, 1992. 11, 2521. 1903 M.H. Chisholrn, K. Folting, J.C. Huffman, K.S. Kramer, and RJ. Taw, Organometallics. 1992.11.4029. 1904 J.H. Oskam and R.R. Schrcck, J . Am, Chem. SOC., 1992,114,7588. 1905 L. Contreras, A. Monge, A. Pizzano, C. Ruiz, L. Sanchez, and E. Carmona, Organometallics, 1992,11,3971. 1906 N.M. Agh-Atabay and J.L. Davidson, J . Chem. SOC., Dalton Trans., 1992,3531. 1907 J. Powell, J.F. Sawyer, and S.J. Smith, J . Chem. Soc.. Dalton Trans., 1992, 2793.

D. Rabinovich, R. Zelman. and G. Parkin, J . Am. Chem. Soc., 1992, 114,4611.

Page 102: Nmr

102 Spectroscopic Properties of Inorganic and Organometallic Compounds

spec t ro~copy.19~ Solution equilibria of [W(O)(OR)4] have been studied by 1H and lg3W NMR spectroscopy.1910 Manganese. The equilibrium constant for the hydrogenation of [Mn2(CO)lo] in supercritical C02 has been measured using 1H and 55Mn NMR s p e c t r ~ s c o p y . ~ ~ ~ Rhenium. Interconversion of diastereomers of [ ( q s - C ~ H s ) R e ( NO)( P P h3)(PHR)] has been investigated by l3C and 3lP NMR spectroscopy.1912 The equilibrium in Scheme 5 has been studied by IH NMR spectroscopy. The 13C NMR spectrum was also reported.1913

Me Me

"e*e"e

Me

Lkhl!zi Iron. The equilibrium constant for the equilibrium between [FeMe(CNBut)(CO)2(PMe3)2] and [Fe(q2-ButN=CMe)(C0)2(PMe3)2] has been determined using 13C NMR spectroscopy.1914 The equilibrium in Scheme 6 has been investigated by NMR spectroscopy.1915

..

Me Me

s&!w5 The aggregation of anionic and cationic iron tetraphenylporphyrin p-0x0 dimers has been investigated by lH and I3C NMR spectroscopy.1916 ROESY has been developed to study chemical exchange in paramagnetic model haems with short T I and T2 relaxation times.1917 Ruthenium. 13C NMR spectroscopy has been used to investigate dynamic exchange between two isomers of [ ( ~ - H ) R u ~ ( C O ) ~ ~ ( ~ - P P ~ ~ ) (p4-q l(P),ql(P),Tl l(P),q ',q2-(C6H4)PPh Equilibria between mono- and bi-dentate acetates in [ Ru2(p-O)(pL-@CCH3)2(02CCH3)2(OH2)(MeOH)(PPh3)2] have been investigated.1919 Osmium. The equilibrium of [OsHCl(CO)(PMeBut2)2] with H2 to give [OsH(q2-H2)C1( C 0 ) -

1909 P. Braunstein, E. de Jeslis, A. Dedieu, M. Lanfranchi, and A. Tiripicchio. Inorg. Chem., 1992.31.399. l9lo W. Clegg, RJ. Errington, P. Kraxner, and C. Redshaw, J . Chem. Soc., Dalton Tram., 1992, 1431. 1911 R.J. Klingler and J.W. Rathke, Inorg. Chem., 1992,31,804. 1912 B.D. Zwick, M.A. Dewey, D.A. Knight, W.E. Buhro, A.M. Arif, and J.A. Gladysz, Organomefallics, 1992, 11,

1913 M.-G. Choi and R.J. Angelici, Organomefallics, 1992, 11, 3328. 1914 G. Bellachioma, G. Cardaci, A. Macchioni, and G . Reichenbach, fnorg. Chem., 1992,31,63. 1915 C. Jablonski, Organomefallics, 1992, 11,658. 1916 A. Salehi, A. Shirazi, and T.C. Bruice, fnorg. Chim. Acta. 1992, 194, 119. I9l7 U. Simonis, J.L. Dallas, and F.A. Walker, Inorg. Chem., 1992,31, 5349. 1918 J.F. Corrigan, S. Doherty, N.J. Taylor, and AJ. Carty, J . Am. Chem. Soc.. 1992, 114, 7557. 1919 T. &hi, Y. Sasaki, T. Tamaguchi, and T. Ito, Chem. Leff. , 1991,2019 (Chem. Absfr., 1992, 116, 72 866).

2673.

Page 103: Nmr

Nuclear Magnetic Resonance Spectroscopy 103

(PMeBub)2] has been investigated by IH NMR spectroscopy.1920 Cobalt. The equilibrium constants for the hydrogenation of [Cw(CO)8] with H2 in supercritical C02 to give [HCo(CO)4] have been determined by 'H and 59Co NMR spectroscopy.1921 Equilibration of isomers of [ ( pL-q2,q2-R1C2C(OH)R2R3) Co2(CO)s(PPh3)] has been investigated by lH and l3C NMR spectroscopy and NOE measurements were used to determine ~tereochemisny.~9~~ Rhodium. 1H NMR spectroscopy has been used to demonstrate the equilibrium between [HRhL] and [H(L)RhRh(LH)], L = 1,4,8,1 1,15,18,22,25-octapentylphthalocyanato.1923 'H, 13C, and 31P NMR spectroscopy, including NOESY, has been used to investigate exchange between [Rh(q2;q2- 1 3 - CsH12)(L)CI] and [ ( Rh(q2;q2-1,5-C8H12)Cl)2(p-L)], L = 7-Ph2P-2,4-Me2-1,8-naphthyridine.l9~ Iridium. Variable temperature 1H and 3IP NMR spectroscopy, including Ti measurements have been made to demonstrate an equilibrium of [IrCl(H)2(PPr$)2] with H2 to give [IrC1(H)2(pL- Hz)(PPr$)2].1925 Palladium and Platinum. The association constant of (169), M = Pd, Pt, with phenol has been determined by 'H NMR spe~troscopy.*92~ lH, 13C, and 195Pt NMR spectroscopy has been used to investigate the hydration equilibria of [(4,4'-B~5-bipy)Pt(CN)2].19~~ The temperature dependent equilibrium between two isomers of [Pd2(p-2-S- 1,3-N2C4H3)2C12(PMe3)2] has been investigated by lH NMR spectroscopy.1928 Palladium coordination and cyclometallated complexes derived from 1-

But-pyrazole have been investigated by variable temperature 1H and I3C NMR spectroscopy and a cis- trans equilibrium identified.1929 3 l P EXSY of cis[Pt(NH3)2(AMP)2] and cis-

[Pt(NH3)2(GMP)2] shows exchange between isomers.1930 31P NMR spectroscopy has been used to demonstrate the exchange given in Scheme 7, and the 195Pt NMR spectrum reported.1931

N Me,

Scheme7

I9*O M.A. Esteruelas. L A . Oro, and C. Valero, Organomefallics, 1992, 11, 3362. 1921 J.W. Rathke. R.J. Klingler. and T.R. Krause, Organometalfics, 1992, 11, 585. 1922 D.H. Bradley, M.A. Khan, and K.M. Nicholas, Organomefallics, 1992, 11,2598. 1923 M.J. Chen and J.W. Rathke, J . Chem. SOC., Chem. Commun., 1992, 308. 1924 M. Grassi. G . De Munno, F. Nicolb, and S. Lo Schiavo, J . Chem. SOC., Dallon Trans., 1992, 2367. 1925 M. Mediati, G.N. Tachibana, and C.M. Jensen, Inorg. Chem., 1992,31, 1837. 1926 P.L. Alsters. P.J. Buesjou. M.D. Janssen, H. Kooijman, A. Sicherer-Roetman, A.L. Spek, and G . van Koten,

1927 K.-C. Shih and R.H. Herber, Inorg. Chem., 1992, 31, 5444. 1928 G.P.A. Yap and C.M. Jensen, Inorg. Chem., 1992,31,4823. 1929 M.T. Alonso. 0. Juanes, J . De Mendoza, and J.C. Rodriguez-Ubis, J. Organomet. Chem., 1992,430, 349. 1930 D. Li and R.N. Bose, J . Chem. SOC., Chem. Commun.. 1992, 1596. 1 9 3 1 T. Chivers and R.W. Hilts, Inorg. Chem., 1992, 3 1 , 5272.

Organometallics, 1992, 11.4 124.

Page 104: Nmr

104 Spectroscopic Properties of Inorganic and Organometallic Compounds

1H and 31P magnetization transfer measurements have been used to investigate cis-rram equilibria for [PdC12 (Ph2PCH2C(O)Me)2].1932 Variable temperature 31P NMR spectroscopy has been used to investigate the complexing of MegSiXl to [Pd2X22(dppm)21.1933 Copper. 31P NMR spectroscopy has been used to investigate the coordination of norbornadiene to [C~Cl(PEt3)]4.19~~ The IH NMR spectrum of [Cug ( SC~H~[(~)-CH(M~)NM~~]-~)~(CECBU~)]~ shows three interconverting conformers at low tempera t~re . l9~~ Gold. Variable temperature 1H and l3C NMR spectroscopy has been used to investigate the dissociation of [Au(S2CAr)(PPh3)2] to [Au(S2CAr)(PPh3)] and PPh3.1936 Variable temperature 31P NMR spectroscopy has been used to investigate ligand exchange on [LAuCI], L = ( 170).1937

Ph (170)

Zinc. The equilibrium between [(RS)2Zn2(p-SR)( p-N(SiMe3)2}] and [Zn( N(SiMe3)2)2] and (Zn(SR)2] has been investigated by 13C and 2% NMR spectroscopy. The 29% CP/MAS NMR spectrum was also reported.1938 1H EXSY has been used to show the exchange of the ligand [A1{ M~C(O)C(CSH~N-~)C(O)M~)~] with (171).1939 Ligand binding by some Zn(I1) porphyrin dimers has been investiga

(171) Mercury. 13C and 1wHg NMR spectroscopy has been used to determine the formation constants for complexation of HgC12 and Ag03SCF3 with a series of alkenes.1941 The interaction of HgC12 with membranes has been investigated by 1wHg NMR spectro~copy.19~*

1932 E.M. Georgiev, H. Tom Dieck, G . Fended . G . Hahn, G. Petrov, and M. Kinlov, J . Chem. Soc., Dalfon Trans.,

1933 R.U. Kirss,Inorg. Chem., 1992.31, 3451. 1934 M. Onishi and K. Hiraki, Inorg. Chim. Acfa, 1992,202.27. 1935 D.M. hotter, A.L. Spek, D.M. Grove, and G. van Koten, Organomerallics, 1992.11.4083. 1936 L.A.M. Manotti, F. Ugozzoli, F. A m , G. Pellizer. N. Marsich, and A. Camus. Inorg. Chim. Ada , 1992, 192.

1937 E.C. Alyea, J. Malito. S. Attar, and J.H. Nelson. Polyhedron, 1992, 11.2409. 1938 H. GrUtmacher. M. Sleiner, H. Pritzkow, L. Zsolnai, G. Huttner. and A. Sebald, Chem. Eer., 1992, 125,2199. 1939 L.G. Mackay, H.L. Anderson, and J.K.M. Sanders, J . Chem. SOC., Chem. Commun., 1992.43. 1940 Y. Uemori, A. Nakatsubo, H. Imai, S. Nakagawa, and E. Kyuno, Inorg. Chem., 1992,31,5161. 1948 $d.S.?Y$pdhan and R.D. Bach. J. Org. Chem., 1992,57,4948. 194? .M, Deltbmdedieu, A. Boudou, D. Georgescauld, and E.J. Dufourc, Chem.-Biol. Inreracr., 1992.81,243 (Chem.

1992. 1311.

271.

uAbm-., 1992, 116, 145 550).

Page 105: Nmr

Nuclear Magnetic Resonance Spectroscopy 105

Boron. The equilibrium between [Me2NBF2], [(Me2NBF2)2], and [Me2NBF2S02] in liquid S o 2 has been examined by temperature dependent 1H NMR s p e ~ t r o s c o p y . 1 9 ~ ~ Association of [B (O(CH2)nNR'R2}3] has been investigated by 1 l B NMR s p e ~ t r o s c o p y . l 9 ~ ~ 1 l B NMR spectroscopy has been used to examine halogen exchange in the BX3-BY3, X, Y = C1, Br, I, system.1945 Aluminium. The dimer-trimer equilibrium of [Me2A1(OR)In has been observed by 'H, 13C, 170, and 27Al NMR spectroscopy.1946 Cis-trans isomerism of [(ButCH2)2AlNH(adamanty1)]2 has been investigated by IH NMR spectrosc0py.~9~~ Gallium. Cis-trans isomerism of [Me2Ga(pL-NHBut)]2 has been investigated by IH and l3C NMR

Tin. l19Sn NMR spectroscopy has been used to investigate the equilibrium between [(2,4,6- (F3C)3C6H2}2Sn=C=NC6H2Me3-2.4.6] and [(2,4,6-(F3C)3CsH2}2Sn] and C=NC6H2Me3- 2,4,6.1949 The solution behaviour and redistribution reactions of tetraorganodistannoxane dimers have been investigated by 19F and l19Sn NMR spectroscopy, including EXSY.1950 The aggregation of 2.2-Bu- 1,3,2-dioxastannane has been investigated by 119Sn NMR s p e c t r o ~ c o p y . l 9 ~ ~ l3C and 119Sn NMR spectroscopy has been used to show exchange between two isomers of ( 1 7 2 ) F

spectroscopy * 1948

( 172) Lead. Adduct formation with R3PbX has been studied using 31P and m7Pb NMR spectroscopy.1953 Phosphorus. The keto-enol equilibrium of dicyclohexoyl- and diadamant- 1 -0ylphosphine has been investigated by lH, l3C, and 31P NMR spectroscopy.1954 The fluxional behaviour of [1,5- (R1R2P)2N4S2] has been investigated using 31P NMR spectroscopy.1955 Sulfur. 'H, l3C. 15N. 29Si, and 3lP NMR spectroscopy has been used to show that RIN=S=NR2 undergoes E/Z w Z / E equilibria. 1956

Selenium. The molecular composition of sulfur-selenium melts has been studied using 77Se NMR spectroscopy. 1957 Exchange processes in Se2X2 and SeSX2 have been investigated using 77Se

1943 I.C. Tomiepth-Oetting and T.M. Klaptltke, Polyhedron, 1992,11,2183. 1944 K.D. Edwards, G.H. Pearson, M.K. Woodrum, and K. Niedenzu, Inorg. Chim. Acta, 1992,194.81. 1945 P.D.W. Boyd, and M.J. Taylor, Inorg. Chim. Acta, 1992, 193, 1. 1946 J.H. Rogers, A.W. Apblett, W.M. Cleaver, A.N. Tyler, and A.R. Barron, J. Chem. Soc., Dalton Trans., 1992,

1947 S.J. Schauer, W.T. Pennington. and G.H. Robinson, Organometallics, 1992, 11, 3287. 1948 J.T. Park, Y. Kim, J. Kim, K. Kim, and Y. Kim, Organometallics. 1992, 11, 3320. 1949 H. Grlitzmacher, S. Freitag. R. Herbst-Inner, and G.S. Sheldrick,Angew. Chem., Int. Ed. Engf., 1992,31,437. 1950 V.K. Jain, V.B. Mohl , and P. Sandor, Magn. Reson. Chem., 1992.30. 1158. 1951 T.B. Grindley, R. Thangarasa, P.K. Bakshi, and T.S. Cameron, Can. J. Chem., 1992,70, 197. 1952 C.I.F. Denekamp, D.F. Evans, A.M.Z. Slawin, D.J. Williams, C.Y. Wong, and J.D. Woollins, J . Chem. Soc.,

1953 H.J. Eppley, J.L. Ealy. C.H. Yoder, J.N. Spencer, and A.L. Rheingold, J. Organomet. Chem.. 1992,431. 133. 1954 G. Becker, M. Schmidt, W. Schwan, and M. Westerhausen. 2. Anorg. Alfg. Chem., 1992,608,33. 1955 T. Chivers, D.D. Doxsee, M. Edwards, and R.W. Hilts. Stud. Inorg. Chem., 1992. 14 (Chem. Inorg. Ring

1956 M. Herberhold. C. Kohler, and B. Wrackmeyer. Phosphorus Sulfirr Silicon, 1992.71.75. 1957 T. Chivers. R.S. Laitinen, and K.J. Schmidt, Can. J . Chem., 1992.70, 719.

3 179.

Dalton Trans., 1992,2375.

Syst.), 271 (Chem. Absrr., 1992, 117. 151 029).

Page 106: Nmr

106 Spectroscopic Properties of Inorganic and Organometallic Compounds

EXSY.lgS8 Tellurium. 125Te NMR spectroscopy has been used to demonstrate a fast equilibrium between [C6H4( 192-CH2)2Te(S2CNEt2)2] and [C6H4( 1,2-CH2)2Te( S2P(OEt)2)] to give [C6H4( 1,2- CH2)2Te(S2CNEt2) { S2P(OEt)2}].1959

Course of Reactions.-The kinetics of epimerization of BaII, LaII1, ZnII, and CdIl complexes of 2- hydroxypropane- 1,3-diaminetetraacetic acid have been monitored by l H NMR spectro~copy.19~ Lithium. The reductive coupling of ClMe2SiSiMe2Ph with Li has been monitored by lH, 13C, and 2% NMR spectroscopy.1961 Sodium and Potassium. The reaction of Na- and K- with oxetane has been monitored by l3C, 23Na, and 39K NMR spectroscopy.1962 Magnesium. 1H NMR spectroscopy has been used to monitor the reaction of [($-CsH5)2MoH2] with [Me2Mg] and tmeda to give [Mg{M0H(qS-CgH5)2)2(trneda)].l9~~ The reaction of PhC(O)CH(OR)CH3, R = SiPri3, ButPh2Si9 BdMezSi, or Et3Si, with [MezMg] has been monitored by 1H and 13C NMR spectr0scopy.19~ Uranium. l H CIDNP has been observed during the photolysis of uranyl succinate containing 30% 23% in CD30D and D20.1965 Titanium. IH NMR spectroscopy has been used to determine the rate of thermolysis of [(q5- C~Meg)2TiR] . l9~~ IH and 13C NMR spectroscopy has been used to investigate the mechanism of trimethylsilylation of various aldehydes catalysed by [Ti(OW)4]-P1-i2tamate.196~ Zirconium. 3lP NMR spectroscopy has been used to monitor the reaction of [((q5- C~M~~)~Z~(H)(PH~))~(CL-N~)] under N2 with hex- 1 -ene.1968 1H NMR spectroscopy has been used to monitor the reaction of (173) with ButNC to give (174) and AG' was derived. The 13C NMR

( 173) (174) spectrum was also r e ~ 0 r t e d . l ~ ~ ~ lH NMR spectroscopy has been used to follow the reaction of [($-

1958 J. Milne and A.J. Williams, lnorg. Chem.. 1992, 31. 4534. 1959 J.O. Bogason, D. Dakternieks. S. Husebye, K. MaarUnann-Moe. and H. Zhu, Phosphorus Sulfur Silicon, 1992,

1960 R. Song, F. Li, and L. Li, Magn. Reson. Chem., 1992,JO. 367. 1961 K.E. Ruehl, M.E. Davis, and K. Matyjaszewski, Organometallics, 1992.11.788. 1962 Z. Jedlidski, A. Misiolek, A. Jankowski, and H. Janeczek. J. Orgammer. Chem., 1992,433,231. 1963 O.N.D. Mackey and C.P. Morley, Polyhedron. 1992.11, 389.

X. Chen, E.R. Hortelano, EL. Eliel. and S.V. Frye, J. Am. Chem. Soc., 1992, 114, 1778. 1965 S.V. Rykov, I.V. Khudyakov, E.D. Skakovskii. I.Yu. Tychinskaya, and M.M. Ogorodnikova, J. Phofochem.

Photobiol.. 1992,66, 127 (Chem. Absfr., 1992, 117. 100 749); E.D. Skakovskii, M.M. Ogorodnikova, L.Yu. Tychinskaya. S.V. Rykov. and I.V. Khudyakov. Vestsi Akad. Navuk Belarusi, Ser. Khim. Navuk, 1992, 116 (Chem. Absw., 1992, 117, 36 336).

71.13.

1966 G.A. Luinsva and J.H. Teuben. J . Am. Chem. SOC., 1992, 114,3361. 1967 M. Hayashi, T. Matsuda, and N. Oguni. J. Chem. SOC., Perkin Trans. 1 , 1992. 3135. 1968 S. Nielsen-Marsh, R.J. Crowte, and P.G. Edwxds, J. Chem. SOC., Chem. Commun., 1992,699. lq69 F.R. Lemke. D.J. Szalda, and R.M. Bullock, Organometallics, 1992, 11.876.

Page 107: Nmr

Nuclear Magnetic Resonance Spectroscopy 107

C~Me5)2Zr(oH)Ph] with RICSR2. The 13C NMR spectrum was also r e ~ 0 r t e d . l ~ ~ ~ Vanadium. The hydrolysis of [V(O)(O-adamantyl)3] has been studied by l3C and 51V NMR spectroscopy.1971 51V NMR spectroscopy has been used to investigate the oxidation of 2,3,6- Me3C6H20H in the presence of [HgPMoloV2040],19~2 and to monitor the conversion of the peroxyvanadium(V) species to dioxovanadium(V) species during the dioxovanadium(V) catalyzed oxidation of B r by H202.1973 The reaction of VOCl3 with various 1,3-propandiol derivatives has been studied by 'H, 13C, and 51V NMR spe~troscopy.~9~~ Tantalum. 1H NMR spectroscopy has been used to determine the kinetic isotope effect in the conversion of [($-CsMe5)2Ta($-SCH2)H] to [($-CsMe5)2Ta(=S)CH3]. The 13C NMR spectrum was also reported.1975 1H NMR spectroscopy was used to monitor the isomerism of [(2,6- - - Pri2C&130)2C1TaC(But)=CHCH=CBut] to [(2,6-Pr$C&130)2C1TaCH=C(But)CH=CBut]. The 13C NMR spectrum was also 1eported.l9~~ Chromium. The reaction of [(tetraphenylporphy~in)CxCl] with Me3C02H has been monitored by 2H NMR spectroscopy.1977 Molybdenum and Tungsten. lH NMR spectroscopy has been used to show that protonation of [WH4(PMePh2)4] with anhydrous HCI in THF goes via [WH3(112-H2)(PMePh2)41+ to [WH~(PMePh2)4]+.19~~ 2H NMR spectroscopy has been used to study the exchange of deuterium with H20 for [W(C0)3(PPri3)2(D2)] under D2.1979 1H NMR spectroscopy has been used to monitor the reaction of [HW2(C0)9(NO)] with PPh3 and the 15N NMR spectrum was r e ~ 0 r t e d . l ~ ~ ~ lH NMR spectroscopy has been used to investigate the reaction of [ ( T ~ ~ - C S H ~ ) M O C ~ ~ ( P M ~ ~ ) ~ ] with PhI- C12,1981 and to monitor the decomposition of tran~-[Mo(N2)2(PMePh2)4].~~~~ The reaction of [MCl2(PMe3)4], M= Mo, W, towards oxidation by a variety of oxygen, sulfur, and nitrene donors has been followed using lH NMR spectroscopy. The 13C NMR spectrum of [Mo(NBut)(PMe3)3C121 was also rec0rded.l~~3 'H NMR spectroscopy has been used to investigate axial++equatorial isomerization of [C13W(p-SEt2)(pL-SEt)(p-Cl)WCl3]2- and the signals assigned using COSY.1984 The polymerization of B U T C H catalyzed by MoCl5 has been monitored by 1H NMR spe~troscopy.~9~~ Manganese. The reaction of [Mn2(p-H)2( p-(Et0)2POP(OEt)2) (CO)6] with [Mo(C0)6] has been

1970 M.J. Carney, P.J. Walsh, F.J. Hollander, and R.G. Bergman, Organometallics. 1992.11.761. 1971 D.C. Crans, H. Chen, and R.A. Felty, J. Am. Chem. SOC., 1992, 114, 4543. 1972 O.A. Kholdeeva, A.V. Golovin, R.I. Maksimovskaya, and I.V. Kozhevnikov, J. Mol. Catal., 1992,75, 235. 1973 R.I. De la Rosa, M.J. Clague, and A. Butler, J. Am. Chem. Soc., 1992, 114, 760. 1974 D.C. Crans, R.W. Marshman, M.S. Gottlieb, O.P. Anderson, and M.M. Miller, Inorg. Chem., 1992,31,4939. 1975 J.E. Nelson, G. Parkin, and J.E. Bercaw, Organometallics, 1992, 11,2181. 1976 D.P. Smith, J.R. Strickler, S.D. Gray, M.A. Bruck, R.S. Holmes. and D.E. Wigley, Organometallics, 1992, 11,

1977 A.L. Balch, L. Latos-Grazynski, B.C. Noll, M.M. Olmstead, and E.P. Zovinka, fnorg. Chem., 1992, 31, 1148. 1978 K.E. Oglieve and R.A. Henderson, J. Chem. SOC., Chem. Commun., 1992, 441. 1979 G.J. Kubas, C.J. Bums, G.R.K. Khalsa, L.S. Van Der Sluys. G. Kiss, and C.D. Hoff, Organometallics, 1992,

1980 J.T. Lin, P.S. Huang, T.Y.R. Tsai, C.Y. Liao, L.H. Tseng, Y.S. Wen. and F.K. Shi, fnorg. Chem., 1992, 31,

1981 R. Poli, B.E. Owens, and R.G. Linck, J. Am. Chem. Soc., 1992, 114, 1302. 1982 M.A. MAilez, M.C. Puerta. P. Valerga, and M.G. Basalhe, J. Chem. SOC., Dalton Trans., 1992, 1291. 1983 K.A. Hall and J.M. Mayer, J. Am. Chem. SOC., 1992, 114, 10 402. 1984 P.M. Boorman, X. Gao, and M. Parvez, J. Chem. SOC., Dalton Trans., 1992, 25. 1985 H. Liu, S. Liao, D. Li, H. Yuan, and Q. Sun, Cuihua Xuebao, 1992, 13, 312 (Chem. Abstr., 1992, 117, 172

1275.

11. 3390.

4444.

235).

Page 108: Nmr

108

followed by lH and 31P NMR spectroscopy.1986 Rhenium. J(lH2H) = 6.5 Hz for cis-[(qS-C5H5)(oC)2ReHD] which therefore may be in equilibrium with cis-[(q5-CsH5)(OC)2Re(q2-HD)]. IH NMR spectroscopy was used to monitor the rate of isomerization of ~ i s + t r a n s . ~ 9 ~ ~ IH NMR spectroscopy has been used to monitor the exchange of P(CD3)3 with [(~~-CSH~)R~(CH~)(NO)(PM~~)] and with [(q5-C5Hg)Re [ C(O)CH3] (NO)- (PMe3)].1988 The reaction of [(~~-C~H~)R~(CO)~(CH=CHCH~BU~)(CH~C=CH)] to give (175) has been followed by 'H NMR spectroscopy and the l3C NMR spectra were recorded.lg89 The epimerization of (R,R,R,R)-[($-C5H5)Re(NO)(PPh3)(menthol)] has been investigated.1990

Spectroscopic Properties of Inorganic and Organometallic Compounds

'0 (175)

Iron. 13C NMR spectroscopy has been used to investigate the reaction of [(OC)4FeC02Et]- with C1COCOC1.1991 The cis+fruns isomerism of [(q5-CsMe5)2Fe2(C0)3(p-SiHC&Me-4)] has been followed by 1H NMR spectroscopy. The l3C NMR spectrum was also reported.1992 Similarly, cis+trum isomerism of [(r$-C~Me5)2Fe2(CO)3 [ p-Si(CH3)(SiMe3)]] has been m0nitored.l~9~ 'H NMR spectroscopy has been used to follow the isomerism of [ (q4-7-exo-acyl-cyc1oheptatriene)- Fe(CO)3] to [(q4-5-exo-acyl-cycloheptamene)Fe(CO)~] to [ (q4-6-exo-acyl-cycloheptamene)Fe(C0)3]. The 13C NMR spectra were also reported. 1994

Ruthenium. The reaction of [Ru2MeI(C0)4(PR3)(PriN=CMeCMe=NPri)] with CO in a high pressure NMR tube has been monitored by 1H and 31P NMR spectroscopy. The l3C NMR spectrum of [RuMe(C0)2(PirN=CMeCMe=NPri)]+ was also rep01ted.l~~~ 31P NMR spectroscopy has been used

to monitor the reaction of [Ru(C(O)NAro)(dppe)(CO)2] with MeOH. The 13C NMR spectrum was also rep0rted.199~ The substitution of NCsD5 for the terminal pyridines in [Ru3(p3-0)(p- @cCH3)6(NCsH5)3]+ has been followed by lH NMR spe~troscopy.l9~~ Osmium. The rate of &-+trans isomerism of [Os2(CO)2Br2(p-OCNHPri)(p-Br)] has been determined by 1H NMR spectroscopy and the 13C NMR spectrum reported.l99*

- 1986 R. Carreflo, V. Riera, M.A. Ruiz, C. Bois, and Y. Jeannin, Organomerallics, 1992, 11,4022. 1987 C.P. Casey, R.S. Tanke, P.N. Hazin, C.R. Kemnitz, and R.J. McMahon, Inorg. Chem., 1992.31, 5474. 1988 C.P. Casey, R.A. Widenhoefer, and J.M. OConnor, J. Organomei. Chem., 1992,428, 99. 1989 C.P. Casey, T.L. Underiner, P.C. Vosejpka, J.A. Gavney, jun., and P. Kiprof, J. Am. Chem. Soc., 1992, 114,

1990 I. Saura-Llamas and J.A. Gladysz, J. Am. Chem. Soc., 1992, 114, 2136. 1991 J.-Y. Salaiin, G. le Gall, P. Laurent, and H. des Abbayes, J. Organomer. Chem., 1992,441,99. 1992 Y. Kawano, H. Tobita, and H. Ogino, Organomeiallics, 1992.11.499. 1993 K. Ueno, N. Hamashima, and H. Ogino. Organomerallics, 1992, 11, 1435. 1994 G.M. Williams and M.J. Pino, Organometallics, 1992, 11, 345. 1995 M.J.A. Kraakman, B. de Klerk-Engels, P.P.M. de Lange, K. Vrieze, W.J.J. Smeets, and A.L. Spek,

1996 J.D. Gargulak. A.J. Berry. M.D. Noirot, and W.L. Gladfelter, J . Am. Chem. Soc., 1992, 114, 8933. 1997 M. Abe, Y. Sasaki, A. Nagasawa, and T. 110, Bull. Chem. SOC. Jpn., 1992.65, 1411. 1998 K.L. Lu, H. Lo, Y.-C. Lin. and Y. Wang, Inorg. Chem., 1992,31,4499.

10 826.

Organometallics, 1992, 11, 3714.

Page 109: Nmr

Nuclear Magnetic Resonance Spectroscopy 109

Cobalt. The deuteriation of [a( 1,4,7-triazocy~lononane)(NH2CH2CH~SCH2CH2CH2NH2)1~+ has been monitored by 13C NMR spe~troscopy.~999 The kinetics of chloride release from cis- [Co(en)(tn)(RNH2)C1I2+ have been investigated by l3C NMR spectroscopy.2000 13C NMR spectroscopy has been used to monitor the reaction of [Co(oxalato)(spermine)]+ in D20 to give complexes containing 1,3-diaminopropane.2001 Rhodium and Iridium. The addition of H2 to [Rh(q4-nbd)(PMe2Ph)3]+ to give [HzRh(PMe2Ph)3(S)]+ and [HzRh(PMe2Ph)4]+ has been followed by 'H, l3C and 3lP NMR spectroscopy.2OO2 The mechanism of hydrosilylation catalysed by [(q5-C5H5)Rh(q2-C2H,d(SiR3)H] has been studied by 'H, 13C, and 2% NMR spectroscopy.2m3 31P NMR spectroscopy has been used to follow the reaction of [ClIr(PEtg)j] with KSCH=CHCH=CH2 to give the reactions in Scheme 8.2004

KSCH=CHCH=CHZ - I r ( P E 1 3 ) l f ~ ~ I r ( p E t ~ ) 3 - %, / WEf3)3 . [Cllr(PEt3)d +

schm!s The sequential transformation of [( 1,4,7-Me3- 1 ,4,7-triazacyclononane)RhMe2(q2-C2H4)] into

[( 1,4,7-Me3- 1,4,7-triazacyclononane)Rh(H)(q3-C3Hg)] has been followed by lH and 13C NMR spectroscopy and Eu and ASt determined.2005 The reaction between [Rh2(COMe)2(CO)2bl2- and tertiary phosphines and PPh(OMe)2 has been studied using l3C and 31P NMR spectroscopy.2006 The mechanism of methyl acrylate dimerization catalysed by [ (q5-C5Me5)RhH(q2-C2H&]+ has been investigated by lH and 13C NMR s p e c t r o s ~ o p y . ~ ~ ~ Para-hydrogen induced polarization used to investigate the hydrogenation of PhHC=C(mEt)NHC(O)Me catalysed by [Rh(q4-nbd)(chiraphos)] has been studied using IH NMR spectroscopy.2008 The homogeneous hydrogenation of a-pinene, catalysed by [(q4-1,5-QH12)Ir(PCy3)(NC5H5)] has been investigated by 13C{ 2H) NMR spectroscopy .2009 High pressure hydrogenation using [(q 5 - C5 Me 5)R h (q - 1,2,5,6-

tetrahydropyridine)(NCMe)3]2+ has been investigated using 1H and 13C NMR s p e c t r o s ~ o p y . ~ ~ ~ Ligand redismbution in tram-[M(OTf)(CO)(PPh3)2] and trans-[MCl(CO)(PPh3)2], M = Rh, Ir, has

1999 P. Kofod, E. Larsen, C.H. Petersen, and J. Springborg, Acfu Chem. Scund., 1992,46, 1149. 2ooo S.K. Chawla and S.S.S. Aka, Polyhedron, 1992, 11, 1679. 2o01 M. Yashiro, T. Mori, M. Sekiguchi. S. Yoshikawa, and S. Shiraishi, J . Chem. Soc.. Chem. Commun., 1992,

2o02 J.C. Tsai and K.M. Nicholas, J . Am. Chem. Soc., 1992, 114, 5117. 2003 S.B. Duckat and R.N. Perutz. Organomefulfics, 1992,11,90. 2004 J.R. Bleeke. M.F. Ortwenh, and M.Y. Chiang. Orgunomefuffics, 1992,11,2740. 2005 L. Wang and T.C. Flood, J . Am. Chem. SOC., 1992, 114,3169. 2o06 H. Adams. N.A. Bailey, BE. Mann. and C.P. Manuel, fnorg. Chim. Acfu, 1992. 198-200, 11 1. 2007 M. Brookhart and E. Haupunan, J . Am. Chem. Soc., 1992,114,4437. 2o08 M.S. Chinn and R. Eisenberg, 1. Am. Chem. Soc.. 1992, 114, 1908. 2009 J.M. Brown. A.E. Demne. G.D. Hughes, and P.K. Monaghan, Ausf. J. Chem.. 1992.45, 143. 2010 E. Baralt, SJ. Smith, J. Hurwitz. I.T. Horvsth. and R.H. Fish, J . Am. Chem. Soc., 1992, 114, 5187.

1167.

Page 110: Nmr

110 Spectroscopic Properties of Inorganic and Organometallic Compounds

been investigated by 1H NMR spectroscopy.2011 3lP NMR spectroscopy has been used to monitor the reaction of anri-[Rh2Brg(PEt3)3] with PMe3.2012 'H, I3C, and 3IP NMR spectroscopy has been used to show [ ( C H : ! ( P B u t 2 ) 2 } 2 R h 2 ( p L - C 1 ) 2 ] reacts with pyridine to give [ ( CH~(PBU~L)~}R~C~(NC~H~)].~~~~ Nickel. 1H NMR spectroscopy has been used to monitor the rearrangement of [(1,4,8,1 I-Me4- 1,4,8,1 1-tetraazatetradecane)Nil2+ from the RSRR to RSRS isomer.2014 Palladium. By monitoring by 1H NMR spectroscopy, it has been shown that the formation of alkylaromatic palladacycles proceeds through an electrophilic aromatic substitution.2015 Palladium- catalyzed carbonyl allylation of allylic alcohols with stannous chloride has been studied using 'H, I3C, and 119Sn NMR spectroscopy.2016 The reaction of [Pd2X6I2- with S4N4 has been investigated by 14N NMR spectroscopy.2017 Platinum. The elimination kinetics from [ ( (C&)2PCH2CH2P(C&)2] PtPh2] have been determined from IH NMR measurements and the 13C NMR spectrum was reported.2018 3lP NMR spectroscopy has been used to monitor the reaction of tram-[Pt( C(Me)=CH2](CO)(PPh3)2]+ with I- to give trans- [Pt { C(Me)=CH2)I(PPh3)2] and fram-[Pt{ C(O)C(Me)=CH2]I(PPh3)2]. The I3C NMR spectra were also rec0rded.2~~9 'H NMR spectroscopy has been used to study the coupling reactions of trans- [Pt( C(Me)=CH2](C@Et)(PPh3)2]. The 13C NMR spectrum was also recorded.2020 The reaction of

tram-[PtH(PEt3)2(solvent)]+ with O=P(C=CBut)3 to give trans-[ [ (O)(ButC=C)PC(=CHBut)C(=C- Bu[))Pt(PEt3)2(solvent)]+ has been followed by 31P NMR spectroscopy.2021

The rate of decomposition of [Pt(NH3)4]2+ in electroplating baths has been investigated by 195Pt NMR spectroscopy.2022 Reactions of L-histidine, N-acetyl-L-histidine, and glycyl-L-histidine with [(NH3)2Pt( 1 -Me-cytosine)(OH2)]2+ have been monitored by 1H and 195Pt NMR spectroscopy.2023 The rates of displacement of guanosine from cis-[ (NH3)2Pt(guanosine)2]2+ have been investigated by 13C NMR spectro~copy.2~2~ l95Pt NMR spectroscopy has been used to investigate the reaction of [ ( c~~-P~I~(NH~)}H~N(CH~)~NH~( cis-PtI2(DMSO)]] with ~ y r i d i n e . ~ ~ ~ ~ IH and l95Pt NMR spectroscopy has been used to study the hydrolysis of [Pt(en)X2].2026 The solvolysis in DMSO of [Pt(aminomethylpyridine)Cl2] has been studied by 195Pt NMR spectroscopy.2027 Reactions of L-

,

2011 P.J. Stang and Y.-H. Huang. J . Organomet. Chem., 1992,435, 185. 2012 F.A. Cotton, J.L. Eglin, and S.-J. Kang, J . Am. Chem. Soc., 1992, 114, 4015. 2013 P. Hofmann, C. Meier, U. Englert, and M.U. Schmidt, Chem. Ber., 1992, 125, 353. 2014 J.R. R6per and H. Elias, Inorg. Chem.. 1992.31, 1202. 2015 M. Catellani and G.P. Chiusoli, J . Organomet. Chem.. 1992,425, 151 (Chern. Abstr., 1992, 116, 235 838). 2016 J.P. Takahara, Y. Masuyarna, and Y. KUNSU. J . Am. Chem. SOC., 1992, 114, 2577. *017 V.C. Ginn, P.F. Kelly, A.M.Z. Slawin, DJ. Williams, and J.D. Woollins. J . Chem. Soc.. Dalton Trans., 1992,

2018 R.K. Merwin, R.C. Schnabel, J.D. Koola. and D.M. Roddick, Organometallics. 1992, 11, 2972. 2019 P.J. Stang, 2. Zhong, and A.M. Arif, Organometallics, 1992, 11. 1017. 2020 P.J. Stang and Z. Zhong, Organometallics, 1992, 11. 1026. 2021 X. Li, C.M. Lukehart. and L. Han, Organometallics, 1992, 11, 3993. 2022 R.L. Penven, W. Levason, and D. Pletcher, J . Appl. Electrochem., 1992, 22, 415 (Chem. Abstr., 1992, 116,

2023 T.G. Appleton, FJ. Pesch, M. Wienken, S. Menzer, and B. Lippert, Inorg. Chem., 1992,31, 4410. 2024 J.A. Beaty and M.M. Jones, Inorg. Chem., 1992.31. 2547. 2025 Y. Qu, S. Gama de Almeida, and N. Farrell, Inorg. Chim. Acta, 1992,201, 123. 2026 F.D. Rcchon, R. Melanson, and A. Morneau, Magn. Reson. Chem., 1992,30,697. 2027 T. Al-Allaf. P. Castan, R. Turpin, and S. Wimmer, C.R. Acad. Sci., Ser. I I , 1992, 314, 1029 (Chem. Abstr.,

963.

264 380).

1992, 117, 119 373).

Page 111: Nmr

Nuclear Magnetic Resonance Spectroscopy 111

methionine with [ P a ] 2 - have been studied in aqueous solutions using 'H, I3C, l5N, and 195Pt NMR spectroscopy.2028 195Pt NMR spectroscopy has been used to examine the reaction of [Pt(DMSO)C13]- with nitriles.2029 31P NMR spectroscopy has been used to monitor the isomerization of (176a) to (176b).The15N NMR spectrum of mer-[PtCl~(S4~~N4)(PMe2Ph)] is complicated due to J(I5Nl5N). The 195Pt NMR spectrum was also recorded.2030 The hydrosilation of PhCH=CH2 with HSi(0Et)s in the presence of [(Ph3P)2Pt02] has been studied using lH NMR spectroscopy.2031 The deuteriation of benzoic acid in the presence of K2PtC4 has been studied by IH NMR spectroscopy.2o32

Me,PhP* 7 '. N Me,PhP' 7'- S CI CI

(176a) (176b) x g Zinc. The hydrolytic stability of [Zn(S2P(OR)2)2] has been studied using 3 l P NMR spectroscopy .2033

Mercury. CIDNP effects have been studied during photolysis of Ph2Hg in different solvents. The most pronounced effects were observed in CD30D at 273K.2034 1H and 13C NMR studies have shown that (177) is an intermediate in the conversion of [2-02NC&CH(OCHO)CH2CHi&l] to [2- ONC6HqC(O)CH2CH2HgCl] .2035 Boron. The reaction of Me2C=CMe2 with [H3BS(CH2CH2)20] to give [HCMe2CMe2BH2] and S(CH2CH2)20] has been followed by 1 IB NMR spectroscopy.2036 The reaction between [HB(02C&)] and alkenes catalysed by [RhCl(PPh3)3] has been monitored by 2H, 'B, 13C, and 31P NMR spectroscopy.2037 l l B NMR spectroscopy has been used to monitor the reaction of [CsHi3B(OEt)2] with 2BCl3 to give C6H13BC12 and BC120Et. The I3C NMR spectra were also reported.2038 The reaction of B2Brq with CC4 has been studied using IB NMR spectroscopy.2039 A l u m i n i u m . 27Al NMR spectroscopy has been used to optimise the yield of [A104A112(OH)24(OH2)12]7+.2040 The modification of [Al(OCHMeEt)3] by EtCO2H has been studied by 27Al NMR spectroscopy.2041 The hydrolysis of a complex aluminium silicon alkoxide, which is

*02* R.E. Norman, J.D. Ranford, and P.J. Sadler. Inorg. Chem., 1992,31,877. 2029 F.D. Rochon, R. Boughzala, and R. Melanson, Can. J . Chem., 1992, 70 , 2476. 2030 P.F. Kelly, R.N. Sheppard. and J.D. Woollins, Polyhedron. 1992, 11,2605. 2031 D. Yu, C. Wang, S. Chen, and M. Shi, Fenxi Ceshi Tongbao, 1991, 10,77 (Chem. Absrr., 1992, 116, 129

2032 M. Kanska and R. Kanski, J . Radioanal. Nucl. Chem., 1992, 162, 179 (Chem. Absrr., 1992, 117, 250 913). 2033 A.J. Bum, I. Gosney, P.S.G. Tan, and J.P. Wasile. J . Chem. SOC., Perkin Trans. 2 , 1992, 1725. 2034 E.D. Skakovskii, S.V. Rykov, A.A. Erdrnan, and Yu.A. Ol'dekop, Dokl. Akad. Nauk USSR, 1991, 35, 803

2035 S.S. Mochalov, S.G. Bandaev, Yu.S. Shabarov, and N.S. Zefirov, Dokl. Akad. Nauk SSSR, 1991, 321, 988

2036 H.C. Brown and A.K. Mandal, J . Org. Chem., 1992, 57,4970. 2037 K. Burgess, W.A. Van der Donk, S.A. Westcott, T.B. Marder, R.T. Baker, and J.C. Calabrese, J . Am. Chem.

2038 H.C. Brown, A.M. Salunkhe, and A.B. Argade, Organomerallics, 1992, 11,3094. 2039 L. Ahmed, J. Castillo, D.A. Saulys, and J.A. Morrison. Inorg. Chem., 1992, 31. 706. 2040 J.T. Kloprogge, D. Seykens, J.B.H. Jansen, and J.W. Geus, J . Non-Crysi. Solids, 1992, 142, 94 (Chem. Abstr.,

2041 V. Hebert, S. Vilminot, and D. Brion, Maier. Res. soc. Symp. Proc.. 1990. 180, 365 (Chem. Abstr., 1992,

013).

(Chem. Absir.. 1992, 116, 95 419).

(Chem. Absrr., 1992, 116, 194 489).

Soc., 1992, 114, 9350.

1992, 116, 267 926).

116. 10 136).

Page 112: Nmr

112 Spectroscopic Properties of Inorganic and Organometallic Compounds

used as a cordierite precursor, has been followed by 27Al and 29Si NMR spectroscopy.2o42 The direct carbonylation of C C 4 to CC13COC1, catalysed by AlC13/MCl,JCuCl, has been followed by 1 7 0 and

Gallium. 1H NMR spectroscopy has been used to follow ligand redistribution reactions of [Me2Ga(Cfi~)] and [ M e G a ( C ~ H 5 ) 2 1 . ~ ~ Silicon. The chemical evolution of (MeHSi), to S i c has been followed by 29Si NMR spectro~copy.2"~ The thermal conversion of R1R2Si(H)CH20R3 to R1R2MeSiOR3 has been followed by 1H NMR spectroscopy. l3C and 29Si NMR spectra were also The initiation and early stages of propagation in the cationic ring-opening polymerization of 2-Me-2- oxazoline by Me3Si03SCF3 and Me3SiI have been investigated by lH NMR spectroscopy. 13C and 2 9 S i NMR spectra were a l so reported.2047 Acid induced cyclization of (silylamino)(imino)(chalcogeno)phosphoranes has been investigated by variable temperature 'H, 13C, and 3lP NMR spectroscopy.2048 The hydrolysis and initial polycondensation processes of [Mez(Et0)2Si] have been investigated by 29Si NMR spectroscopy.2049 The kinetics of the reaction of [ ( H O S i M e 2 h w ] and R1R2SiC12 have been determined by 29Si NMR spectroscopy.2o50 l9F NMR spectroscopy has been used to study the reaction of [Ph8Sh] with CF3S03H.2051 An NMR study of the first steps of hydrolysis condensation for [MeSi(OEt)j] and [CH2=CHSi(OEt)3] has been reported.2052 The effects of self-oligomerization of [(ZH2NCH2CH2CH2)Si(OEt)3] coupling agent on the adhesion of thin polyimide films to a native-oxide silica surface have been studied using IH and 29Si NMR spectroscopy.2o53

Simplified kinetics have been used to analyse the 29Si NMR signals of the hydrolysis of [Si(OCH3)4].2054 29Si NMR spectroscopy has been used to measure the hydrolysis rate constants for [(MeO)qSi], [(EtO)qSi], and [((Et0)3Si)20].2055 IH and I3C NMR spectroscopy has been used to monitor the hydrolysis of [(EtO)qSil by NH3.2056 The use of very small quantities of acid catalyst

2 7 ~ 1 NMR s p e c t r o ~ o p y . 2 ~ 3

2042 T. Fukui. C. Sakurai, and M. Okuyama, J . Non-Cryst. Solids, 1992, 139,205 (Chem. Absir.. 1992, 116, 179

2043 E. Monflier, A. Mortreux, F. Petit, and S. LRcolier. J . Chem. SOC.. Chem. Commun., 1992,439. 2°44 O.T. Beachley. jun., T.L. Royster, jun., and J.R. Arhar, J . Organomei. Chem., 1992,434. 11. 2045 Z.F. Zhang. Y. Mu, F. Babonneau, R.M. Laine. J.F. Harrod, and J.A. Rahn, lnorg. Organornet. Oligomers

Polym., Proc. IUPAC Symp. Macromol., 33rd 1990, (Pub. 1991), 127. Ed. by J.F. Harrod and R.M. Laine (Chem. Absrr., 1992, 116. 89 555).

2046 R. Tacke. F. Wiesenbexger, B. Becker, R. Rohr-Aehle. P.B. Schneider, U. Ulbrich, S.M. Sarge. H.K. Cammenga, T. Koslowski, and W. Von Niessen, Chem. Ber.. 1992, 125,591.

2047 J.S. Hrkach and K. Matyjaszewski. Mucromolecules, 1992,25,2070 (Chem. Abstr., 1992, 116, 174 830). 2048 N. Burford. S. Mason, R.E.H. Sjtence, J.M. Whalen, J.F. Richardson, and R.D. Rogers, Organometallics, 1992,

2049 Y. Sugahara, S. Okada, K. Kurcda, and C. Kato, J . Non-Crysr. Solids, 1992, 139.25 (Chem. Absrr., 1992,

2050 G.N. Babu and R.A. Newmark, Macromolecules, 1992,25,2561 (Chem. Absir.. 1992. 116, 194 939). 2051 J. Chrusciel, M. Cypryk, E. Fossum. and K. Matyjaszewski. Organomeiullics, 1992.11, 3257. 2052 L. Malier, F. Devreux. F. Chaput, and J.P. Boilot, Chem. Process. Adv. Mater.. 1992,59. Ed. by L.L. Hench

and J.K. West (Chem. Absfr., 1992,117,218 436). 2053 C.J. Lund and P.D. Murphy. J . Adhes. Sci. Technol.. 1992, 6, 33 (Chem. Abstr., 1992, 116, 256 625); F.

Surivet. Lam Thanh My, J.P. Pascault. and Pham Quang Tho, Macromolecules, 1992.25.4309 (Chem. Abstr.. 1992. 117.90 858).

2054 J.T. Van Beek, D. Seykens, and J.B.H. Jansen, J . Non-Cryst. Solids, 1992, 146, 11 1 (Chem. Absir.. 1992, 117, 218 177).

2055 J. Sanchez and A. McCormick. J . Phys. Chem., 1992,96.8973. 2056 I. El Bakali. E. El Rheos, C. Rousselot, R. Mercier. and M.-F. Mercier. Can. J . Chem., 1992.70, 1612.

563).

11. 2241.

116. 89 769).

Page 113: Nmr

Nuclear Magnetic Resonance Spectroscopy 113

slows the hydrolysis of [(EtO)qSi] enough to be monitored by 29Si NMR spectroscopy.2057 29Si NMR spectroscopy has been used to monitor the hydrolysis of [(OSi(OMe)2)4].2058 IH NMR spectroscopy has been used to monitor the polymerization of K2[Si(02C6H4)3] in water.2059 The incorporation of iron 2-ethylhexanoate thermal stabilizer into silicone rubber has been studied by 29Si NMR spectroscopy.2o6o Tin. IH NMR spectroscopy has been used to monitor the reaction of [(CgHi 1)CH(CH3)Sn(Pri)(Ph)-

Me] with [(4-MeCgH4)Li] .2061 The equilibrium between [R2SnSn(R)zSnR 21 and n

[R2&C(Ph)=CH$nR2] and [R2Sn=SnR2], R = 2,4,6-ki3C6H2, has been monitored by 13C and 119Sn NMR spectroscopy.~~6* 119Sn NMR spectroscopy has been used to monitor the allylation of [PhBC12] by [(C3H5)SnBun3] and the methylation of [P3N3C16] by [SnMe4], catalysed by [Pd(PPh3)4].m63 The two-step hydrolysis of [(MeO)zSn( (4-MeCgH4)4porphyrin)] has been studied by 'H and l19Sn NMR spectroscopy.2o64 Nirrogen. Analysis of the 15N NMR spectra of HN3 isolated from labelled N2H4 and HNO2 shows no rearrangement.2065 The preparation of SNSAsF6 from S4N4, S8, and AsF5 has been investigated in sinc by 14N NMR spectroscopy, with and without traces of Br2.2066 Phosphorus. The synthesis of [(HO3SC6H4)3P] has been monitored by IH, I3C, and 31P NMR spectroscopy.2067 Reactions of C6H6. PCl3, and AlCl3 have been monitored by 31P NMR spectroscopy and species such as [PhPHC12][AlC14], [PhClPPhC12][ A12C171, and [ Ph2PPClPh2][ A12C171 detected.2068 The preparation of [ C13P=N( C12P=N)nP( 0) C12] from [C13P=NP(O)C12] has been monitored by 3IP NMR s p e c ~ o s c o p y . ~ ~ ~ ~ Arsenic. I7O NMR spectroscopy has been used to monitor the 1 7 0 exchange of [RAs03H2] and [R2As@H] with 170H2.2O70 Selenium and Tellurium. The reactions of [(2,4,6-Me&jH2)Sb]4 or [EtSb], with [R2E]2, E = Se, Te, have been monitored by IH NMR spectroscopy.2o71 The reaction of [Ar3Se]+ with PhLi to give [Ph4Se] or of [Ar2Te] with PhLi to give [Ph3Te]- has been monitored by 'H, 13C, 77Se, and 3251.e NMR spectroscopy.2o72 The ligand coupling kinetics of [PbSe] and [PkTe] have been studied by variable temperature IH NMR spectroscopy.2073 Auto-transformations of 2-thiopheneselenol have

2057 J. Sanchez and A. McCormick. Chem. Process. Adv. Maier., 1992,43. Ed. by L.L. Hench and J.K. West (Chem.

2058 U. Darnrau and H.C. Marsrnann, J. Non-Crysi. Solids, 1991, 135. 15 (Chem. Absir., 1992, 116. 10 085). 2059 C.C. Perry and Y. Lu, J. Chem. Soc., Faraday Trans., 1992.88.2915. 2060 H. Ishida and J. Dunkers, Polymer, 1992.33, 3841 (Chem. Absir., 1992, 117, 193 409). 2061 H.J. Reich, J.P. Borst. M.B. Coplien, and N.H. Phillips, J. Am. Chem. SOC., 1992, 114, 6577. 2062 A. Schaefer. H. Kilian, S. Pohl. W. Saak, and H. Marsmann, Chem. Ber., 1992, 125, 563, 2063 H. Rolland. P. Potin. J.-P. Majoral, and G. Bertrand, Tetrahedron h i . , 1992,33,8095. 2064 C.C. Tsai, Y.J. Chen, J.H. Chen. and L.P. Hwang, Polyhedron, 1992, 11, 1647. 2065 R.J. Gowland, K.R. Howes, and G. Stedman, J . Chem. Soc., Dalion Trans., 1992, 797. 2066 E.G. Awere and J . Passmore. J. Chem. Soc., Dalion Trans., 1992. 1343. 2067 T. Bartik, B. Bartik, B.E. Hanson, T. Glass, and W. Bebout, Inorg. Chem., 1992.31.2667. 2068 R.I. Tarasova, T.V. Zykova, F.Sh. Shagvaleev, T.Sh. Sitdikova, and V.V. Moskva, Zh. Obshch. Khim., 1991,

2069 G. DHalluin, R. De Jaeger, J.P. Charnbrette. and P. Potin. Macromolecules, 1992, 25, 1254 (Chem. Absir.,

2070 A. Okumura, M. Fushirni, H. Hanaki, A. Yarnada, Y. Gofuku, M. Kagawa, N. Niwa, M. Yarnamoto, and M.

2071 H.J. Breunig, S. Giilec, and R. Kaller, Phosphorus, Sulfur. Silicon, 1992. 67. 33. 2072 S. Ogawa, S. Sato, Y. Masutorni, and N. Furukawa, Phosphorus. Sulfur. Silicon, 1992,67, 99. 2073 S. Ogawa, S. Sato, and N. Furukawa, Tetrahedron Leu., 1992. 33, 7925.

Abstr., 1992, 117, 238 626).

61, 2529 (Chern. Absir., 1992, 116, 214 600).

1992, 116. 84 220).

Iida, Bull. Chem. SOC. Jpn., 1992, 65 , 1397.

Page 114: Nmr

114 Spectroscopic Properties of Inorganic and Organometallic Compounds

been studied by means of 'H and l 3 C NMR spectroscopy.2074 The reaction of [TeFsI- with various hydroxycarboxylic acids has been studied by I3C, l9F, and I25Te NMR spectroscopy.2075

4 Paramagnetic Complexes

In this section, compounds of d-block transition elements will be considered first and then those of the lanthanide and actinide elements. Papers concerning the use of paramagnetic complexes as 'shift reagents' are usually omitted.

Three reviews have appeared: 'Advances in the NMR investigations of paramagnetic molecules in solution',2o76 'Determination of the magnetic moments of cations of transition elements by the proton NMR meth~d' ,ZO~~ 'Iron-sulfur proteins: an insight into their electronic structure through proton NMR spectroscopy.2078

The Transition Metals.---*H and l 3 C NMR spectroscopy has been used to determine spin distribution in some metallocenium i0ns.20~9 A general expression adopting a non-multipole expansion method has been derived for the pseudocontact contribution to the NMR chemical shift arising from the electron orbital angular momentum and electron spin dipolar-nuclear spin angular momentum interaction of a 3 8 system in a strong crystal field of tetragonally distorted tetrahedral symmetry.2080 An NMR shift reagent method has been developed which makes the measurement of the micelle-water partition coefficient more accessible.2081 The effect of paramagnetic ions on 'H NMR spectra in aqueous solutions for the precision measurement of the IH gyromagnetic ratio has been investigated.2*82 Problems have been observed in the standardization of NMR spectrometers using paramagnetic salt solutions as standards. Methods for overcoming these difficulties were discussed.2083 A correction has been given for the Evans' method when using a high-field NMR spectrometer to correct for the difference i n the effective magnetic field experienced by a molecule in the ~ a m p l e . 2 ~ ~ ~ NMR data have also been reported for [(r15-CsMe5)M(r15-C5HqC5Hq-r15)M(~5-

CsMes)], (M = V, Fe, Co, Ni; I H , 13C),2085 [ ~ I N ( C H ~ C H ~ I ~ S ~ M ~ ~ B U ~ ) ~ ] , (M = V, Cr, Fe; lH),*OS6 and Co", Nirl, ZnI1, and Ag' complexes with 4-(2-thiazolyl)thiosemicarbazide, ( l4N).20g7

2074 V.Yu. Vvedenskii, S.V. Zinchenko, E.D. Shtefan, M.V. Ul'ev. A.R. Zhnikin, T.A. Shkarupa, and E.N.

2075 Yu.V. Kokunov, V.M. Afanas'ev, M.P. Gustyakova, and Yu.A. Buslaev, Zh. Neorg. Khirn., 1992, 37, 811

2076 L. Banci, M. Piccioli, and A. Scozzafava, Coord. Chem. Rev., 1992, 120, 1. 2077 X. Ou, Q. Wang, and C. Wang, Daxue Iiuaxue, 1990, 5 ,46 (Chem. Absrr., 1992, 116, 267 284). 2078 L. Banci, I. Bertini, F. Briganti, C. Luchinat, and A. Scozzafava, Top. Mol. Organ. Eng., 1991, 8 , 73 (Chem.

2079 J. Bliimel, N. Hebendanz, P. Hudeczek, F.H. Kohler, and W. Suauss, J. Am. Chem. SOC., 1992, 114,4223. 2080 D.H. Kim and K.H. Lee, Bull. Korean Chem. Soc., 1991, 12,518 (Chem. Absrr., 1992, 116,97 935). 2081 H. Fujiwara, K. Kanzaki, T. Kano, A. Kimura, K. Tanaka, and Y.-Z. Da, 1. Chem. SOC., Chem. Commun.,

2082 A.R. Lim, K.S. Ryu, C.S. Kim, and S.H. Choh, Sue M u f l i , 1992,32, 239 (Chem. Absfr., 1992, 117, 82 080). 2083 G.A. Kozlov, A.G. Kozlov, V.V. Pokrovskii, and V.V. Ushakov, Zuvod. Lab., 1991, 57, 30(Chem. Absfr.,

2084 E.M. Schubert, J. Chem. Educ., 1992, 59.62. 2085 P. Hudeczek and F.H. Kehler, Orgonomefallrcs, 1992. 11, 1773. 2086 C.C. Curnmins, J. Lee, R.R. Schrock, and W.D. Davis, Angew. Chem., Ini. Ed. Engl., 1992,31, 1501. 2087 L. Mishra, V.K. Singh, and U.C. Agarwala, Asiun J. Chem., 1992, 4, 333 (Chem. Absrr.. 1992, 117, 82 239).

Deryagina, Sulfur Left., 1992. 14, 129 (Chem. Absfr., 1992, 117, 131 290).

(Chem. Absfr., 1992, 117, 162 849).

Abstr., 1992, 116, 146 221).

1992, 736.

1992, 116, 33 022).

Page 115: Nmr

Nuclear Magnetic Resonance Spectroscopy 115

Titanium. The electronic relaxation of [Ti(OH2)6]3+ has been detected by solvent water 1H NMR spectroscopy. The electronic relaxation time is of the order of 10-11 s and the water exchange rate is 2.4 x 106 s-l a t 293 K.2°88

Vanadium. The nuclear magnetic relaxation dispersions of the oxyvanadiurn(1V) ion in water and in water-glycerol solutions have been studied.2089 The 1H NMR spectrum of (178) has been reported.2090

Chromium. l l B T i measurements and l l B and 13C chemical shifts of l , l ' -commo-[Cr(2,3- (Me3Si)2-2,3-C2B4%)2] have been reported.2@'1 Variable temperature 1H and 19F NMR spectra of [ Cr2(02CR)4L2] show that these compounds possess temperature dependent partial paramagnet- ism.2092 2H chemical shifts of CrlI1 complexes with deuteriated malonato and/or acetylacetonato ligands have been measured and discussed.2093 2H NMR data have also been reported for [Cr{ (02CCH2CH2)2NCH2CH2N(CH2CHK02)2 )]-,2°94 CrIII complexes of nicotinic acid,2095 [Cr(a~ac)2(H-tartrate)]~- ,~~~~ cis-(malonat0)2Cr~~~ and [Cr( (02CCH2CH2)2NCH2- CH2NH( CH2CH2C02) ) (OHz)] .2w8

Molybdenum. IH NMR data have also been reported for [ ( (q5 -CsH~)MoCl )2(p-C1)~(p3-O)],2099 [MO( CO)~F~~S~ ( S C ~ H ~ - ~ - O M ~ ) ~ ] ~ -~~~ mer-[M0C13(PMe3)31?~~~ and [M02C16(PMenEt3-n)4].2*02

2088 I. Bertini, C. Luchinat, and X. Zia ,Inorg . Chem., 1992,31, 3152. 2089 I. Bertini, Z. Xia. and C. Luchinat, J. M a p . Reson., 1992, 99, 235. 2090 E. Solari, S. De Angelis, C. Floriani, A. Chiesi-Villa, and C. Rizzoli, Inorg. Chem., 1992.31.96. 2091 A.R. Oki, H. Zhang, J.A. Maguire, N.S. Hosmane, H. Ro, W.E. Hatfield, M. Moscherosch, and W. Kaim,

2092 F.A. Cotton, H. Chen, L.M. Daniels, and X. Feng, J. Am. Chem. Soc., 1992, 114, 8980. 2093 S. Kaizaki, N. Hirota, C. Tanaka, J. Tano, L.X. Lan, and J.I. Legg, Inorg. Chim. Acra, 1992,197, 185. 20g4 N. Sakagami, M. Hayashi, and S. Kaizaki, J. Chem. Soc.. Dalton Trans., 1992,285. 2095 M. Vicens, J.J. Fiol, A. Terron, V. Moreno, D.M.L. Goodgame, and R.N. Sheppard, Inorg. Chim. Acta, 1992,

2096 M. Nakahanada, T. Fujihara, N. Koine, and S. Kaizaki, J . Chem. Soc., Dalton Trans.. 1992, 3423. 2097 S. Kaizaki, N. Hirota, K. Segawa, M. Tanabe, A. Okumura, M. Yamamoto, and J.I. Legg, Inorg. Chim. Acfa,

2O9* N. Sakagami and S. Kaizaki, Inorg. Chim. Acra, 1992, 195, 187. 2099 A.A. Cole, J.C. Gordon, M.A. Kelland, R. Poli, and A.L. Rheingold, Organometallics, 1992.11, 1754. 2100 D. Coucouvanis, S.A. Al-Ahmad, A. Salifoglou. V. Papaefthymiou, A. Kostikas, and A. Simopoulos, J. Am.

2101 K.Yoon, G. Parkin, and A.L. Rheingold, J. Am. Chem. Soc., 1992, 114, 2210. 2102 R. Poli and J.C. Gordon, J . Am. Chem. SOC., 1992, 114, 6723.

Organometallics, 1992, 11.4202.

192, 139.

1992, 191, 249.

Chem. Soc., 1992, 114, 2472.

Page 116: Nmr

116 Spectroscopic Properties of Inorganic and Organometallic Compounds

Tungsten. 183W NMR spectroscopy and the Evans' method have been used to study spin densities in mixed-valence heteropoly blues.2103

Manganese. Spin crossover, dimerization, and structural dynamics of manganocenes have been probed by 'H, 2H, and l3C NMR s p e ~ t r o s c o p y . ~ ~ ~ The influence of porphyrin aggregation on the relaxation enhancement of water protons by MnlI1 porphyrins has been studied.2105 'H NMR data

have also been reported for [ M n ( ~ a l p n ) ( O H 2 ) ] + , ~ ~ ~ [(2-ON-4-C1CgH30)3Mn],2107 [Mn402jOAc)7- (8-hydroxyquinolinat0)2]-,2108 and [MQO~C~(@CCH~)~(NC~H~)~].~~~

- Iron. The temperature and location dependence of 1H and 13C NMR shifts between 1,3- and 1,2- diamines coordinated to low-spin tetracyanoferrate(II1) has been studied.211° 2H NMR spectroscopy has been used to locate the signals for coordinated methyl and ethyl groups in [RFe(Pb-porphyrin)]. The methyl signal is at 6 532.2111 It has been shown that 'H COSY spectra can be used to determine the coupling pattern of the pyrrole H resonances of two unsymmetric mono-ortho-substituted tetraphenylporphyrinatoiron(III)-bis(N-methylimidazole) complexes. The observed coupling pattern confirms the importance of preferential spin delocalization into one of the two 3e(n) orbitals of the porphyrin ring.2112 The 1H and 2H NMR chemical shifts of Fe(I1) nitrosyl x-cation radicals of octaethylchlorin and octaethylisobacteriochlorin show a non-Curie law behaviour, which was interpreted in terms of valence isomerism.2113 1H COSY and NOESY NMR spectra have been used to assign signals of oxidised cytochrome ~ 3 . 2 1 1 ~ NMR data have also been reported for [(qs-

C 5 M e 5)3 (Ph2C2S 2)Fe4S 51, (1 H ) ,2115 peroxy complexes of iron porphyrins, ( 1 H ) ,2116 [ClFe(octaethylporphyrin)], ( lH)F1 l7 two-electron-reduced iron(II1) meso- or P-pyrrole-substituted porphyrins, (IH, 2H)F118 [(F containing porphyrin)FeCl], ( 19F),2119 highly oxidised iron complexes of N-methyltetra-p-tolylporphyrin, ( lH),ZlzO low-spin bis-ligated(porphyrinato)Fe(III) complexes,

2103 N. CasaA-Pastor and L.C.W. Baker, J . Am. Chem. Soc., 1992, 114, 10 384. 2104 F.H. K6hler and B. Schlesinger, Inorg. Chem., 1992,31,2853. 2105 K.E. Kellar and N. Foster, Inorg. Chem., 1992.31, 1353. 2106 J.W. Gohdes and W.H. Armstrong, Inorg. Chem., 1992,31,368. 21 O7 P. Basu and A. Chakravorty, J . Chem. Soc., Chem. Commun., 1992,809. 2108 E. Bouwman, M.A. Bolcar. E. Libby, J.C. Huffman, K. Folting, and G. Christou, Inorg. Chem., 1992, 31,

2109 D.N. Hendrickson, G. Christou, E.A. Schmitt, E. Libby, J.S. Bashkin, S. Wang, H.-L. Tsai, J.B. Vincent,

21 lo Y. Kuroda, M. Goto, and T. Sakai, Buff. Chem. SOC. Jpn., 1991,64, 3503. 21

2112 Q. Lin. U. Sirnonis, A.R. Tipton, C J . Norvell, and F.A. Walker, Inorg. Chem., 1992,31,4216 (Chem. Abstr.,

2113 S. Ozawa. H. Fujii, and I. Morishima. J. Am. Chem. Soc., 1992, 114, 1548. 21 l4 M. Sola and J.A. Cowan. Inorg. Chim. Acta, 1992, 202, 241. 21 l5 S. Inomata, H. Tobita, and H. Ogina, Inorg. Chem., 1992.31.722. 2116 A.L. Balch, Imrg. Chim. Acra, 1992, 198-200, 297. 2117 A.L. Balch, L. Latos-Grazynski, B.C. Noll. M.M. Olmstead. and E.P. Zovinka. Inorg. Chem., 1992,31, 2248. 21

2119 A. Suzuki, H. Toi. Y. Aoyama. and H. Ogoshi, Heterocycles, 1992, 33, 87 (Chem. Abstr.. 1992. 116, 235

2120 A.L. Balch, C.R. Comman, L. Latos-Grazynski, and M.W. Renner, J. Am. Chem. Soc., 1992. 114,2230.

5185.

P.D.W. Boyd, J.C. Huffman, K. Folting, Q. Li. and W.E. Streib. J. Am. Chem. Soc., 1992, 114, 2455.

Z. Li and H.M. Goff, Inorg. Chem., 1992.31, 1547.

1992, 117,203 756).

K. Yamaguchi and I. Morishima. Inorg. Chem., 1992,31,3216.

305).

Page 117: Nmr

Nuclear Magnetic Resonance Spectroscopy 117

(1H),2121 alu (0x0) iron(1V) porphyrin x-cation radical, (1H),2122 [FeO(tetramesityl porphyrin)],

(1H),2123 [ (7,8-dihydro-5,10,15,20-(2,4,6-Me3C6H2)4porphyrin)Fe]+, (2H),2124 [Fe( (2-N-

Mepyridyl)4porphyrin}ln+, (n = 1, 2, 3,4; 'H, 2H)?125 and iron(II1) dioxoisobacteriochlorin, (lH, 2 ~ ) . 2 126

1H COSY, TOCSY, and EXSY have been used to study [Fez( 2,6-[(2-CsH4NCH2)2NCH2]2-4- M e C 8 3 0 ) (02P(OPh)2)2]"+, n = 1 or 2.2127 2H NMR spectroscopy has been used to provide

evidence for intramolecular NH-.S hydrogen bonds in compounds such as [Fe(Z-Cys-Pro-Val-Cys-

OMe)2I2-?lB and [Fe(Z-Cy~-Ala-Pro-Cys-OMe)2]~-?~~9 I H NMR data have also been reported for

[Fe2( 2,6-[( l-Me-2-C3H2N2CH2)2NCH2]2-4-MeCgH30) ( i . ~ - 0 2 C P h ) 2 ] ~ + , ~ ~ ~ * [Fe2(3,5-But2-

C ~ H Z O ~ ) ~ ( N C ~ H ~ ) ~ ] ? ~ ~ ~ [Fe3(p-OH)2(p-O2CCH3)4 (P(2-N2C3H2- 1,4-Me2)3)2]3+?132 [Fe( cis- C6Hlo(CO-Cys-PMe)2-1 ,2)2]2-,2133 [Fe&(SEt) ( 1,4,7-[4-SC6H4C(0)]3- 1,4,7-triazacyclonon-

ane)]2- ,2134 [MI S C 6 H 4 - 2 - N H C ( O ) B u t ) 4 I 2 - , M = FeII, Co11,2135 [Fe(SEt)4]-,2136 and [NiFe3S4(PPh3)(SEt)3]2-.2137

Ruthenium. NMR data have also been reported for RulI1 nucleotide complexes, ( lH, l3C, 31P),2138

and [ RuCl(NCMe)3(PPh3)2]2[ RuzC12(02CC&-4-Me)4] .2139

O s m i u m . lH NMR data have also been reported for [ O ~ ( t p p ) ( O R ) z ] , ~ ~ ~ ~ and cruns- [OsCl2(PhNCRNPh)z], (13C).2141

Coba l t . lH NMR data have also been reported for [ (~5-C~Meg)3Cog(i .~2-H)3(~13-H)] ,2142

[Co(OH2)4(NCS)2( 18-crown-6)], ( 13C, 14N),2143 [MFe3S4(SCf12Me3-2,4,6)4]2-, M = Co, Ni,2144

2121 M.K. Safo, G.P. Gupta, C.T. Watson. U. Simonis, F.A. Walker, and W.R. Scheidt, J. Am. Chem. SOC., 1992,

2122 H. Fujii and K. Ichikawa, Inorg. Chem., 1992,31, 11 10. 2123 D. Mandon, R. Weiss, K. Jayaraj, A. Gold, J. Terner, E. Bill, and A.X. Trautwein, Inorg. Chem., 1992, 31,

2124 S. Ozawa, Y. Watanabe, and I. Morishima, Inorg. Chem., 1992.31.4042. 2125 K.R. Rodgers, R.A. Reed, Y.O. Su, and T.G. Spiro, Inorg. Chem., 1992, 31, 2688. 2126 K.M. Barkigia, C.K. Chang, J. Fajer, and M.W. Renner, J. Am. Chem. SOC., 1992, 114, 1701. 2127 L J . Ming, H.G. Jang, and L. Que, jun., Inorg. Chem., 1992.31, 359. 2128 N. Ueyama, W.-Y. Sun, and A. Nakamura, Inorg. Chem., 1992.31.4053. 2129 W.-Y. Sun. N. Ueyama, and A. Nakamura, Inorg. Chim. Acia, 1992, 197.47. 2130 M.S. Mashuta, R.J. Webb, J.K. McCusker, E.A. Schmitl, K.J. Oberhausen, J.F. Richardson, R.M. Buchanan,

2131 S.C. Shoner and P.P. Power, Inorg. Chem., 1992.31, 1001. 2132 V.A. Vankai, M.G. Newton, and D.M. Kurtz, jun., Inorg. Chem., 1992,31, 341. 2133 W.-Y. Sun, A. Kajiwara, N. Ueyama, and A. Nakamura, J. Chem. Soc., Dalton Trans., 1992,3255. 2134 D.J. Evans, G. Garcia, G.J. Leigh, M.S. Newton, and M.D. Santana. J. Chem. Soc.. Dalton Trans., 1992, 3229. 2135 N. Ueyama, T.-a. Okamura, and A. Nakamura, J . Chem. SOC., Chem. Commun.. 1992, 1019. 2136 L.E. Maelia, M. Millar, and S.A. Koch, Inorg. Chem., 1992.31.4594. 2137 S . Ciurli, P.K. Ross, M.J. Scott, S.-B. Yu, and R.H. Holm. J. Am. Chem. SOC., 1992, 114, 5415. 2138 E. Zato and V. Moreno, An. Quim.. 1991, 87, 730 (Chem. Abstr., 1992. 117, 82 248). 2139 B.K. Das and A.R. Chakravarty, Inorg. Chem., 1992,31, 1391. *140 C.-M. Che, J.-S. Huang, Z.-Y. Li, C.-K. Poon, W.-F. Tong, T.-F. Lai. M.-C. Cheng, C.-C. Wang, and Y.

2141 T. Clark, S.D. Robinson. and D.A. T0cher.J. Chem. SOC., Dalton Trans.. 1992, 3199. 2142 J.L. Kersten, A.L. Rheingold. K.H. Theopold, C.P. Casey, R.A. Widenhoefer, and C.E.C.A. Hop, Angew.

Chem., Int. Ed. Engl., 1992,31, 1341; J.J. Schneider,Angew. Chem., Int. Ed. Engl. , 1992,31, 1392. 2143 Q. Yang, J. Zhang, C. Li, and 2. Yu, Bopuue Zarhi, 1992.9.81 (Chem. Absir., 1992, 117, 123 192). 2144 J. Zhou. M J . Scott, 2. Hu, G. Peng, E. Miinck, and R.H. Holm, J. Am. Chem. Soc., 1992, 114, 10 843.

114, 7066.

4404.

and D.N. Hendrickson, J. Am. Chem. Soc., 1992, 114, 3815.

Wang, Inorg. Chem., 1992.31, 5220.

Page 118: Nmr

118 Spectroscopic Properties of Inorganic and Organometallic Compounds

[(diporphyrin biphenylene)C~Al(OR)],~~~~ [Cq{ 5-[ 1-Me-2-(6'-Me-2-pyridyl)benzimidazolyl] ) 2-

CH2]4+,2146 and [ CoM(4',4"'-Ph2-2,2':6',2": 6",2"': 6"',2""-quinquepyridine)2] 3+ .2 147

Nickel. [PhNi[ 5,20-Ph2-l0,15-(4-MeC&Q)2-21-thiaporphyn)] has been examined by IH and 2H NMR spectroscopy, and possesses a high spin paramagnetic electronic ~tate.21~8 1H NMR data have also been reported for [Ni(terpy)(2,6-Me~CgH3S)2],21~9 [Ni(terpy)(2,6-Me2C6H3Se2)l,2150 zinc finger peptides with Ni2+ and Fe2+,2151 and NiII and CuII complexes of 2,7-( 1',5',5'-Me3- pyrrolidine-2,4'-dion-3'-y1)2-3,7-diazaocta-2,6-diene, 170).2152

Copper. NMR data have also been reported for [ (HB(3,5-Pri2C3HN3)3Cu)2(02)], (1H),2153 [Cu2( 2,6-(2-C5H4NCH2CH2)2N-4-MeC&I20)I2+, (2H),2154 and a peroxo-bridged Fe-Cu porphyrin complex, (1H).2155

Complexes of the Lanthanides and Actinides.-Lanthanides. lH T1 and T2 values of lanthanide complexes of 1,4,7,10- tetraazacyclododecane-N,N',"',""-tetraacetate ions have been measured to determine M-H distances.2156 Ti and T2 values for water in the presence of gadolinium complexes of macrocyclic polyamino polycarboxylic acid ligands have been rep0rted.215~ lH and I3C NMR spectroscopy has been used to study the solution structure of the lanthanide complex of glycylglycine.2158 NMR data have also been reported for [ l,l'-(THF)2-commo- l,l'-Eu( 1,2,4- E u C2B 1oH 12)2] 2-, ( B ) ,2159 [ (q 5- C 5H 5)Fe(q 5 - C 5H 3 - 2- C H 2 N Me 2- 1 ) Y b( p- C1)2Li (THF)2], (1H),2160 [(q5-CsMe5)2Sm(NHPh)(THF)], ( IH, 13C),2161 [ [ (q5-C~Meg)Srn ) 2( NHNH)2-

(NHNH2)4(NH3)2], ( lH),2162 [Me2Si(qS-CgH4)(q5-C5H3-(-)-menthyl)SmN(SiMe3)2], ( 1H),2163

2145 R. Guilard, M.A. Lopez, A. Tabard, P. Richard, C. Lecornte, S. Brandes, J.E. Hutchison, and J.P. Collrnan, J.

2146 C. Piguet, G. Bemardinelli, B. Bocquet, A. Quatuopani, and A.F. Williams, J. Am. Chem. SOC., 1992, 114,

2147 E.C. Constable and J.V. Walker, J. Chem. Soc., Chem. Commun., 1992, 884. 2148 P.J. Chrnielewski and L. Latos-Graiyriski, Inorg. Chem., 1992, 31,5231; J. Lisowski, L. Latos-Grazynski, and

2149 N. Baidya, M.M. Olrnstead, J.P. Whitehead, C. Bagyinka, M.J. Maroney, and P.K. Mascharak, Inorg. Chem.,

2150 N. Baidya, B.C. NOH, M.M. Olmstead, and P.K. Mascharak, Inorg. Chem., 1992,31, 2999. 2151 B.A. Krizek and J.M. Berg, Inorg. Chem., 1992,31,2984. 2152 A. Zschunke, U. Bbttger, R. Donau, H. BBgge, A. Miiller, A. Hauser, and R. Luck, Z. Anorg. Allg. Chem.,

2153 N. Kitajima, K. Fujisawa, C. Fujirnoto, Y. Moro-oka, S. Hashirnoto, T. Kitagawa, K. Toriurni, K. Tatsurni, and

2154 M. Mahroof-Tahir, N.N. Murthy, K.D. Karlin, N.J. Blackbum, S.N. Shaikh, and J. Zubieta, Inorg. Chem., 1992,

2155 A. Nanthakurnar, M.S. Nasir, K.D. Karlin, N. Ravi, and Huynh Boi Hanh, J. Am. Chem. SOC., 1992, 114, 6564

2156 S. Aime, L. Barbero, M. Botta, and G. Errnondi, J. Chem. Soc.. Dalron Trans., 1992, 225. 2157 S. Airne, M. Botta, G. Errnondi, F. Fedeli, and F. Uggeri, Inorg. Chem., 1992, 31, 1100. 2158 J. Ren. C. Niu, F. Pei, W. Wang, and J. Ni, Wufi Huaxue Xuebao, 1992, 8.270 (Chem. Absir., 1992, 116, 242

2159 R. Khattar, M.J. Manning, C.B. Knobler, S.E. Johnson, and M.F. Hawthorne, Inorg. Chem., 1992.31, 268. 2160 H. Gornitzka, A. Steiner, D. Stalke, U. Kilimann, F.T. Edelmann, K. Jacob, and K.-H. Thiele, J. Organomet.

2161 W.J. Evans, G. Kociok-Kbhn, V.S. Leong, and J.W. Ziller, Inorg. Chem., 1992,31, 3592. 2162 K.-G. Wang, E.D. Stevens, and S.P. Nolan, Organometallics, 1992, 11, 1011. 2163 M.R. Gagnt, L. Brard, V.P. Conticello, M.A. Giardello, C.L. Stem, and T.J. Marks, Organomeiallics, 1992, 11,

Am. Chem. Soc., 1992, 114, 9877.

7440.

L. Szterenberg, Inorg. Chem., 1992,31, 1933.

1992, 31, 3612.

1992, 614, 87.

A. Nakamura, J. Am. Chem. Soc., 1992, 114, 1277.

31, 3001.

(Chem. Absrr.. 1992, 117, 61 560).

716).

Chem., 1992,439, C6.

Page 119: Nmr

Nuclear Magnetic Resonance Spectroscopy 119

[M(H(p-H)B(3,5-Me2pz)2]3], (M = Ce, Sm, Yb, U; ‘H, 1B),2164 [(PhC(NSiMe3)2}3Ml, (M =

Eu, Yb, Nd; 1H),2165 [M2(octaethylporphyrin)3], (M = Ce, Pri; 13C),2166 (179), (13C),2167 and lanthanide complexes of N-thiophene-2-carboxamidosalicylaldimine, (‘H, 13C).2168

3+

(179) The contact and pseudocontact contributions to the chemical shifts of lanthanide complexes of

1,4,7,l0-tetraazacyclododecane-~~’~”~”’-te~a(rnethylene phosphonate) have been separated.2169

A lH and 13C NMR study of lanthanide complexes of DOTA has been rep0rted.21~0 The shift reagent

properties of eleven [Ln(TTHA)]3- complexes have been studied for 2H, I7O, 23Na, and 35C1.2171

13C NMR spectroscopy has been used to study D-pantothenic acid with lanthanide ions in aqueous solution. The shifts were separated into the contact and dipolar components.2172 NMR data have also been reported for Ce3+, Nd3+, and Sm3+ complexes of 1,4,7-triazacyclononane-N,N’,”’- tri(methy1ene ethylphosphonate), (31P),2173 lanthanide complexes of 3-acetyltetramic acid, (‘H,

13C),2174 [Ln(acac)3(0PPh3)3], ( lH, l3C, 31P),2175 [(Ph3P0)4LnC12][CuC12], (31P),2176 poly(1actic

acid) containing Ho(acac)g, (‘H, 13C),2177 rare earth complexes with triethylene glycol dimethyl ether,

(13C),2178 and [Ln(N03)3 [ (Et0)2P(O)CH2C(O)OEt ]nl.H201 (13C, 31P).2179

Actinides. The hydride signal of [ ( I ~ ~ - C ~ & B U ~ ) ~ U H ] - is at 6 521.3.2180 NMR data have also been

2003.

1481. 2164 A. Carvalho, A. Dorningos, P. Gaspar, N. Marques, A. Pires de Matos, and I. Santos, Polyhedron, 1992, 11,

2165 M. Wedler, F. Kn(Ssel, U. Pieper, D. Stake, F.T. Edelrnann, and H.-D. Arnberger, Chem. Ber.. 1992, 125, 2171. 2166 J.W. Buchler, J. Loeffler, and M. Wicholas, Inorg. Chem., 1992.31, 524; 1730. 2167 T. Tsubornura, K. Yasaku, T. Sam, and M. Morita, Inorg. Chem., 1992,31,447. 2168 B. Singh, P.K. Singh, and V.P. Tiwari, Proc. - Indian Acad. Sci., Chem. Sci., 1991, 103,701 (Chem. Abstr.,

2169 C.F.G.C. Geraldes, A.D. Sherry, and G.E. Kiefer, J. Mugn. Reson., 1992,97,290. 2170 S. Airne. M. Botta, and G. Ermondi, Inorg. Chem., 1992.31.4291. 2171 S. Hua, R. Song, and G. Huang, Gaodeng Xuexiuo Huuxue Xuebuo, 1992, 13,81 (Chem. Abstr., 1992, 117,

2172 J. Ren, F. Pei, and W. Wang, Chin. J. Chem., 1991.9, 212 (Chem. Abstr., 1992, 116, 267 643). 2173 I. Lazar, R. Ramasamy, E. Bruchner, C.F.G.C. Geraldes, and A.D. Sherry, Inorg. Chim. Acta. 1992, 195,89. 2174 A. Zschunke, U. Boettger. R. Donau, and C. Muegge, .I. Prukt. Chem.lChem.-Ztg., 1992,334, 179. 2175 S. Su and S. Yang, Chin. Chem. Lett., 1991, 2,957 (Chem. Abstr., 1992, 117, 82 229). 2176 M. Zhang. X. Wang, X. Jing, and J. Wang, Wuji Huaxue Xuebuo, 1990.6, 377 (Chem. Abstr., 1992, 116, 14

2177 R.J. Murnper and M. Jay, Pharm. Res., 1992.9, 149 (Chem. Abstr., 1992, 116.91 350). 2178 L. Cai, K. Yao, and L. Shen, Huaxue Xuebuo, 1991,49,987 (Chem. Abstr., 1992, 116, 50 289). 2179 A. Lothian and A.W.G. Platt, Polyhedron, 1992.11.2983. 2180 J.-C. Berthet, C. Villiers, J.-F. Le Markchal, B. Delavaux-Nicot. M. Lance, M. Nierlich, J. Vigner, and M.

1992, 116, 119 7 12).

162 680).

702).

Page 120: Nmr

120 Spectroscopic Properties of Inorganic and Organometallic Compounds

reported for [ (q -C5&R)3UH], ( * H)? [ (q 5-C4MeqP)3UH], ( H) ,2 82 [ (q 5-C4Me4P)2U (B&)21-,

(1H) >183 [U(qg-CgHg)( B a ) (OR)] , ( I H) ,2184 [ (q5-CsH4S iMe3)3UOCHO], ( 'H) ,*I 85 [ U( NH-2,6- Pri2C6H3)5]2-, ( 1H),2186 and [Pa( BH3CH3)4], ( IH, 1B).21g7

5 Solid-state NMR Spectroscopy

This section consists of three main parts: 'Motion in Solids', 'Structure of Solids', and 'Molecules Sorbed Onto Solids'.

A number of reviews have appeared, entitled 'Dynamics of hydrogen in intermetallic hydrides',2188 'Dynamical processes in crystalline organometallic complexes',2189 'Solid-state NMR studies of d- block and p-block metal nuclei: applications to organometallic and coordination chemist1y'?~9~ 'Solid state 31P NMR spectroscopic studies of tertiary phosphines and their complexes',2191 'Study of diffusive motion of atoms and point defects i n insulating solids by NMR',2192 'NMR and NQR studies of high Tc superconductors',2193 'Probing the electronic structure of ytmum barium copper oxide super conductors by 63Cu and 65Cu NQR and NMR',21g4 'NMR studies of spin dynamics in high Tc materials',*195 'Spin fluctuations and high temperature superconductivity in the anti-ferro magnetically correlated oxides yttrium barium copper oxide and lanthanum strontium copper oxide',2196 'NQR and NMR in high Tc super~onductors',219~ 'Some nuclear magnetic resonance results on neodymium-iron-boron phases',2198 'Use of NMR spectroscopy in the study of glass structure. 11. Solid state NMR ~pectroscopy',2~99 'Determining the structure of fused oxides',2200 'Structural characterization of noncrystalline solids and glasses using solid state NMR',2201 'NMR

Ephritikhine. J. Organomef. Chem., 1992.440, 53.

Trans., 1992, 1573.

Commun., 1992, 1720.

2181 J.-C. Berthet, J.-F. Le Markhal, M. Lance, M. Nierlich, J. Vigner, and M. Ephritikhine, J. Chem. SOC., Dalfon

2182 P. Gradoz, C. Boisson, D. Baudry, M. Lance, M. Nierlich, I. Vigner, and M. Ephritikhine,J. Chem. Soc.. Chem.

2183 P. Gradoz, D. Baudry, M. Ephritikhine, F. Nief, and F. Mathey. J. Chem. SOC.. Dalfon Trans.. 1992, 3047. 2184 T. Arliguie, D. Baudry, M. Ephritikhine, M. Nierlich, M. Lance, and J. Vigner, J. Chem. Soc.. Dalion Trans..

2185 J.-C. Berthet and M. Ephritikhine. New J. Chem., 1992. 16, 767. 2186 J.E. Nelson, D.L. Clark, C.J. Bums, and A.P. Satielberger, Inorg. Chem., 1992, 31, 1973. 2187 W.K. Kot, 1991, LBL-30652; Order No DE91016251, 150 pp. Avail. NTIS. From Energy Res. Absir., 1991,

2188 D. Richter, R. Hempelmann, and R.C. Bowman, jun., Top. Appl. Phys.. 1992, 67 (Hydrogen Intermet.

2189 D. Braga, Chem. Rev., 1992,92, 633. 2190 J.A. Davies and S. Dutremez, Coord. Chem. Rev., 1992, 114, 201. 2191 J.A. Davies and S. Dutremez, Coord. Chem. Rev., 1992, 114,61. 2192 0. Kanert, Radiat. Efl. Defecis Solids, 1991, 119, 1 (Chem. Absir., 1992, 116, 206 149). 2193 X. Wu, Wuli. 1991, 20. 519 (Chem. Absir., 1992, 116, 186 118). 2194 D. Brinkmann, Z. Naturforsch.. A , 1992, 47, 1 (Chem. Abstr., 1992, 116, 185 239). 2195 M. Takigawa. Electron. Prop. Mech. High TC Supercond., Proc. Int. Workshop, 1991, (Pub. 1992). 123 (Chem.

'21% D. Pines, Physica C (Amsrerdam), 1991, 185-189, 120 (Chem. Absir.. 1992, 116, 97 700). 21g7 K. Asayama, Y. Kitaoka, and G.Q. Zheng, Z. Naiurforsch.,A, 1992. 47.7 (Chem. Abstr., 1992, 116, 185 240). 21g8 J.I. Budnick, M. Wojcik, Y.D. Zhang, K. Erdmann, and M. Rosenberg, NATO AS1 Ser.. Ser. C. 1991,331, 283

2199 M. Mazur, P. Pelikan, M. Valko, V. Mlynarik. M. Liska, and H. Hulinova, C e r a m . - S i l i k . , 1991, 35. 391

2200 K. Kawamura, Kagaku (Kyoto), 1992,47,425 (Chem. Absir., 1992, 117, 77 561). 2201 H. Eckert, Prog. Nucl. Magn. Reson. Specirosc., 1992, 24. 159.

1992, 1019.

16, Abstr. No. 27875 (Chem. Absfr., 1992, 117, 118 724).

Compd. 11). 97 (Chem. Absir., 1992, 117, 137 801).

Abstr., 1992, 117, 263 080).

(Chem. Abstr., 1992. 116, 74 433).

(Chem. Absir., 1992, 116, 260 613).

Page 121: Nmr

Nuclear Magnetic Resonance Spectroscopy 121

studies of glass structure', which contains l3C and 27Al NMR spectroscopy,2202 'NMR determination of structural parameters for glassy states',2203 'The impact of NMR spectroscopy in molecular sieve characterization. I. Low silicon/aluminium materials',"" 'I1 Investigations of highly siliceous systems',2205 'Nuclear magnetic resonance spectroscopy of geological materials', which contains 170, 27Al, and 29Si NMR spectra,2206 'NMR study of interfacial phenomena',2207 'Sol-gel kinetics by NMR',220* 'NMR - a powerful tool in cement and concrete research', which contains IH, 13C, 27Al, and 29Si NMR spectra,22w 'New field of use of wide IH NMR lines. Strength of Brgnsted acid centres on the surface of solids (as illustrated by zeolite HY)'?210 'Solid state 3lP NMR of inorganic phosphates',22lI 'NMR spectroscopy in studies of catalysts',2212 ''H NMR MAS studies of heterogeneous catalysis',2213 and '129Xe NMR as a probe for the study of microporous solids: a critical reviewI.2214

Motion in Solids.-Nuclear spin-spin relaxation of isotropic impurities in solid hydrogen has been investigated.2215 Nuclear quadrupole relaxation due to hydrogen diffusion in metal-hydrogen systems has been estimated to dominate magnetic dipolar relaxation.2216 Computer simulations of the diffusion of H2 in structurally disordered alloys have been made.2217 The relationship between glass structure and ionic transport has been investigated by MAS NMR spectroscopy.2218

7Li and 23Na NMR spectroscopy has been used to show that Li+[ (N(CH2CH2NMeCH2- CH2)3N)Na] has a phase transition at -75 k 3 0C.2219 Lithium ion mobility in LiCl-ZnO-Si02 xerogels has been investigated using 7Li and 29Si NMR spectroscopy.2220 A comparison of NMR and conductivity in (polyethylene oxide)Li(C104) and y-LiAlO2 has been carried out.2221 The 7Li and

2202 R. Dupree. S.C. Kohn, M.G. Mortuza, and D. Holland, Phys. Non-Cryst. Solids, 1992, 718. Ed. by L.D. Pye,

2203 B. Schnabel and P. Losso, Exp. Tech. Phys.. 1990, 38,329 (Chem. Abstr., 1992, 117, 18 835). 2204 C.A. Fyfe, H. Grondey, Y. Feng, H. Gies, and G.T. Kokotailo. NATO AS/ Ser., Ser. C, 1992, 352 (Zeolite

2205 C.A. Fyfe, H. Grondey, Y. Feng, H. Gies, and G.T. Kokotailo, NATO AS/ Ser., Ser. C, 1992, 352 (Zeolite

2206 J.F. Stebbins, MRS Bull., 1992, 17.45 (Chem. Abslr., 1992, 117, 134 591). 2207 J. Grandjean, Annu. Rep. NMR Spectrosc., 1992, 24, 181. 2208 R.A. Assink and B.D. Kay, Polym. Prepr. (Am. Chem. SOC., Div. Polym. Chem.) , 1991, 32, 5 0 6 (Chem.

2209 H. Justnes, I. Meland, J.O. Bjorgum, J. Krane, and T. Skjetne, Adv. Cem. Res., 1990,3, 105. 2210 P. Batamack, C. Doremieux-Morin, and J. Fraissard, Khim. Tekhnol. Topl. Masel, 1992, 25 (Chem. Abstr.,

2211 A.R. Grimmer, J . Chim. Phys. Phys.-Chim. Biol., 1992,89,413 (Chem. Abstr., 1992, 116, 186 135). 2212 H. Pfeifer, NATO AS/ Ser., Ser. B, 1991, 265, 151 (Chem. Abstr.. 1992, 116, 159 726). 2213 V.M. Mastikhin, I.L. Mudrakovskii, and A.V. Nosov, Prog. Nucl. Magn. Reson. Spectrosc., 1991, 23, 259

2214 P.J. Banie and J. Klinowski, Prog. Nucl. Magn. Reson. Spectrosc., 1992, 24, 91. 2215 M. Rall, D. Zhou, E.G. Kisvarsanyi, and N.S. Sullivan, Phys. Rev. B: Condens. Matter, 1992,45,2800 (Chem.

2216 S.W. Kelly, C.A. Sholl, and E.F.W. Seymour, J. Less-Common Met., 1991, 173, 572 (Chem. Abstr., 1992,

2217 N . Adnani and J.M. Titman, J. Less-Common Met., 1991, 173, 579 (Chem. Abstr., 1992, 116, 50 104). 2218 G.N. Greaves, Phys. Non-Cryst. Solids, 1992,453. Ed. by L.D. b e , W.C. La Course, and H.J. Stevens (Chem.

2219 J.L. Eglin, E.P. Jackson, K.J. Moeggenborg, J.L. Dye, A. Bencini, and M. Micheloni, J . inclusion Phenom.

2220 M. Tsai, S.P. Szu, B. Wang, and M. Greenblatt, J. Non-Crysi. Solids, 1991, 136, 227 (Chem. Abstr., 1992,

2221 W. Gang, J. Roos, D. Brinkmann, F. Capuano, F. Croce, and B. Scrosati, Solid Staie lonics, 1992, 53-56, 1102

W.C. La Course, and H.J. Stevens (Chem. Abstr.. 1992, 117, 136 053).

Microporous Solids:

Microporous Solids:

Synth., Struct., React.), 225 (Chem. Abstr., 1992, 117, 123 023).

Synth., Struct., React.), 247 (Chem. Abstr.. 1992. 117, 123 024).

Abstr., 1992, 116, 65 079).

1992, 117, 81 855).

(Chem. Abstr., 1992. 116, 182 222).

Abstr., 1992, 116, 142 522).

116, 50 103).

Abslr.. 1992. 117, 155 943).

Mol. Recognit. Chem., 1992, 12, 263 (Chem. Abstr., 1992, 117, 39 008).

116. 49 465).

Page 122: Nmr

122 Spectroscopic Properties of Inorganic and Organometallic Compounds

1lB NMR spectra and Ti measurements on both the stationary l B in lithium chloroborate glass and on the mobile 7Li in both the lithium chloroborate and lithium thiosilicate glasses have yielded information about the static and dynamic properties of these glassy fast ionic conductors?222 The diffusive motion in LiC12 has been studied by P-NMR spectroscopy.2223 7Li NMR spectroscopy has

been used to investigate lithium mobility in graphite oxide, and Ea was dete~mined.222~ Li+ diffusion in lithium nitride has been investigated by P-irradiation detected *Li nuclei in 7LigN single crystals.2225

The dynamic properties of 7Li+ in some Li ceramics, Li20, lithium silicates, aluminates, zirconate, plumbate, and Li9N2C13 have been analysed.2226 The 7Li T i has been determined as a function of temperature for a series of mixed-alkali Li Na disilicate glasses, and interpreted in terms of the Elliott and Owen diffusion-controlled relaxation model.2227 7Li, 29Si, and 3 l P NMR spectroscopy has been used to investigate Li+ conduction in LiCl-Li20-P205-SiO2 glasses.2228 Lithium dynamics in LiqSiO4-Li3PO4 solid solution have been studied using 29Si and 31P NMR ~ p e c t r o s c o p y . ~ ~ ~ 9 Ionic diffusion in lithium germanate glasses has been investigated using 7Li spin r e l a ~ a t i o n . 2 ~ ~ ~ 7Li and 19F T1 and T2 measurements have been used to investigate the dynamic properties of fluoride glasses from LiF, BaF2, LaF2, AlF3. and ZrF4.2231 l5N NMR spectra of polycrystalline (KCN),(NaCN)l., show a two part freezing of CN motion.2232 23Na and l33Cs NMR Ti measurements have been made to study crown ether motion in Cs+[( 18-crown-6)2Na]- and Cs+[( 1 5 - ~ r o w n - 5 ) 2 N a ] - . ~ ~ ~ ~ Ionic diffusion in alkali silicate glasses has been investigated using MAS NMR spectroscopy.2234 The dynamics of K,& have been investigated by 13C NMR spectroscopy.2235 87Rb NMR spectra have been used to investigate phase transitions in monoclinic RbH2P04.2236

(Chem. Abstr., 1992, 117, 223 738). 2222 M. Trunnell, Report, 1991, IST-1525; Order No. DE91012677, 81 pp. Avail. NTIS. From Energy Res. Abstr.,

1991, 16, Absu. No. 20856 (Chem. Absfr., 1992, 116. 225 628); M. Trunnell, D.R. Torgeson, S.W. Martin, and F. Borsa, J. Non-Cryst. Solids, 1992, 139,257 (Chem. Abstr., 1992, 116, 179 384).

2223 A. Schirmer, P. Heitjans, W. Faber, and J.E. Fischer, Mafer. Sci. Forum, 1992, 91-93 (Intercalation Compd., Pt. 2). 589 (Chem. Absfr., 1992, 117, 162 688).

2224 A.F. Manukhin, A.K. Tsvetnikov, L.A. Matveenko, and V.M. Buznik, Mafer. Sci. Forum, 1992, 91- 93(Intercalation Compd., Pt. 2), 517 (Chem. Abstr., 1992, 117, 142 213).

2225 B. Bader, P. Heitjans, H.J. Stoeckmann, H. Ackermann, W. Buttler, P. Freilaender, G. Kiese, C. Van der Marel, and A. Schirmer, J. Phys.: Condens. Matter, 1992,4,4779 (Chem. Absrr., 1992, 117, 37 707).

2226 N. Igawa, H. Ohno, T. Nagasaki, Y. Ishii. K. Noda, H. Watanabe, T. Matsuo, and K. Igarashi, Ceram. Trans., 1992, 27 (Fabr. Prop. Lithium Ceram. 3). 135 (Chem. Abstr.. 1992, 117, 95 646).

2227 R.D. Williams and S.R. Elliott, J. Non-Crysf. Solids, 1992, 146,43 (Chem. Abstr., 1992, 117, 196 738). 2228 P.P. Tsai, S.P. Szu, and M. Greenblatt, J. Non-Crysi. Solids, 1991, 135, 131 (Chem. Absrr., 1992, 116, 26

2229 M. Smaihi, D. Petit, F. Gourbilleau, F. Chaput, and J.P. Boilot, Solid S m e fonics, 1991, 48, 213 (Chem.

2230 S. Rueckstein, 0. Kanert, H. Jain, and K. Funke, Radiat. E'. Defecfs Solids, 1991, 119, 123 (Chem. Absfr.,

2231 S . Estalji, 0. Kanert, J. Steinert, G. Balzer-Joellenbeck, H. Jain, and K.L. Ngai. M a w . Sci. Forum, 1991,67-

2232 N.L. Adolphi and M.S. Conradi, Phys. Rev. B: Condens. Mufrer, 1992.45, 13 057 (Chem. Absfr., 1992, 117,

2233 M.J. Wagner, L.E.H. McMills, A S . Ellaboudy, J.L. Eglin, J.L. Dye, P.P. Edwards, and N.C. Pyper, J . Phys.

2234 G.N. Greaves, S.J. Gurman. C.R.A. Catlow, A.V. Chadwick, S. Houde-Walter, C.M.B. Henderson, and B.R.

2235 R. Tycko, G. Dabbagh, M.J. Rosseinsky, D.W. Murphy, R.M. Fleming, A.P. Ramirez, and J.C. Tully, Science,

22% I.P. Aleksandrova, Yu.G. Elizar'ev, Yu.N. Moskvich, I S . Kabanov, and L.A. Shuvalov. Fiz. Tverd. Tela

221).

Absir., 1992, 116, 73 286).

1992, 116, 163 270).

68 (Halide Glasses VI), 607 (Chem. Absfr., 1992, 117, 54 200).

38 836).

Chem., 1992,96, 9656.

Dobson, Philos. Mag. A, 1991,64, 1059 (Chem. Absfr., 1992, 116, 11 423).

1991, 253, 884,

(Leningrad), 1991,33,2938 (Chem. Absfr., 1992, 116,204 917).

Page 123: Nmr

Nuclear Magnetic Resonance Spectroscopy 123

NMR spectroscopy has been used to study the dynamics of the solidification of some The l H TI,, values of Mg(OH2)6SnC16 have been measured to investigate ionic motion.2u8

Interstitial hydrogen motion in scandium, yttrium, and lutetium has been investigated.2239 Fluoride

ion diffusion in K Y ~ F I o crystal and xNaF.yYF3 solid solutions,2240 and Lal_xSrxF3-x,2241 has been

investigated by NMR spectroscopy. Hydrogen diffusion in Z r 2 C u q . 2 has been observed.2242 IH T I and T l p measurements have been

made to study hydrogen diffusion in Ti2PdHp2243 T h e mobility of hydrogen in Zr3PD3-x has also been investigated.2244 Ion transport in SnF2-ZrFq-PbF2 glass conductors has been studied using 19F

NMR spec t roscopy.2~5 19F nuclear spin relaxation in fluorozirconate glass has been attributed to F- diffusion.2246 Hydrogen mobility in Li6Zr6C118H has been investigated using IH and 7Li NMR spec troscopy.2247

1 H NMR studies of diffusion anisotropy in a-ScHo.25 and P-V2H have been rep0r ted .22~~ The

results of a 1H NMR survey of hydrogen motion and electronic structure of Nb1.,MoYHx have been reported.2249 T h e macroscopic diffusivities and T I of 1 H and 2H in tantalum have been

investigated.2250 T h e diffusion of Li+ in V2O5 has been investigated using NMR spectroscopy.2251

The reorientation of ND4 about one three-fold axis in N D 4 V 0 3 has been studied using 2H NMR spectroscopy.2252

The dynamic behaviour of [($-C5Me5)2FeIl [(q5-CgMe5)Rh(C0)21, [(~5-C~Me5)2Cr2(CO)41, [(q5-

C5Me5)2Fe2(CO)4], and [ (qS-C5Me5)2Rh2Ck] has been investigated by IH T I High-resolution solid state l3C NMR studies of ferrocene have been used to study m0tion.225~ The

2237 Z. Varga, M. Rakos, J. Bzdil, E. Cizmarova, I . Hradocka, and S. Sagnowski, Zb. Ved. Pr. Vys. Sk. Tech.

2238 K. Horiuchi and D. Nakamura, 2. Nafurforsch.,A, 1992,47,277 (Chem. Absfr., 1992, 116, 206 392). 2239 R. Barnes, J. Less-Common Ma., 1991, 173,509 (Chem. Absfr., 1992, 116.74 621). 2240 A.D. Toshmatov, F.L. Aukhadeev, D.N. Terpilovskii, V.A. Dudkin, R.Sh. Zhanov, S.L. Korableva, Sh.1.

2241 M.A. Denecke, W. Gunsser. A.V. Privalov. and V.I. Murin. Solid Sfare Ionics, 1992, 52, 327 (Chem. Absir.,

2242 R.C. Bowman, jun., J.S. Cantrell, A.J. Maeland, A. Attalla, and G.C. Abell, J. Alloys Compd.. 1992, 185, 7

2243 R.C. Bowman, jun., A. Attalla, G.C. Abell, J.S. Cantrell, and A.J. Maeland, J. Less-Common Met., 1991, 173,

2244 M. Buszko, J. Tegenfeldt, P.J. Ahlzen, and Y. Anderson, J. Less-Common Mef., 1991,173,618 (Chem. Absfr.,

2245 V.Ya. Kavun. V.K. Goncharuk, E.B. Merkulov, and T.I. Usol'tseva, Zh. Neorg. Khim., 1991,36,2875 (Chem.

2246 0. Kanert, R. Kuechler, S. Estalji. K.L. Ngai, and H. Jain, Phys. Non-Crysf. Solids, 1992, 178. Ed. by L.D.

2247 J. Zhang. R.P. Ziebarth, and J.D. Cork t t , Inorg. Chem., 1992,31, 614. 2248 H.C. Hoke, H.E. Schone, C.A. Sholl, S.P. Usher, R.G. Barnes, D.R. Toregeson, R. Hempelmann, and G.A.

2249 E. Ibanez-Meier, D.R. Torgeson, and R.G. Barnes, J. Less-Common Mei., 1991, 173, 649 (Chem. Absfr., 1992.

2250 M. Hampele, G. Majer, R. Messer, and A. Seeger, J. Less-Common Met., 1991, 173, 631 (Chem. Absfr., 1992,

2251 N. Baffier, J. Livage, and R. Messina, Reporf, 1990, Order No. PB91-160283, 34 pp. Avail. NTIS. From

2252 E.E. Ylinen, Z.T. Lalowicz, S.F. Sagnowski, M. Punkkinen. E. Koivula, and L.P. Ingman, Chem. Phys. L e f f . ,

2253 S. Aime, D. Braga, L. Cordero, R. Goberto, F. Grepioni. S. Righi, and S. Sostero, Inorg. Chem., 1992, 31,

22S4 I.J. Shannon, K.D.M. Harris, and S. Arumugam, Chem. Phys. Lett., 1992, 196, 588 (Chem. Absfr., 1992,

Kosiciach 1989, (Pub. 1990). 81 (Chem. Absfr., 1992, 117,75 139).

Yagudin, and L.D. Livanova, Paramagnit. Rezonans, 1990, 107 (Chem. Absir., 1992, 116, 113 996).

1992, 117, 142 110).

(Chem. Absfr., 1992, 117, 261 944).

643 (Chem. Absrr., 1992, 116, 67 825).

1992, 116, 74 622).

Absfr.. 1992, 116, 32 282).

Pye, W.C. La Course, and H.J. Stevens (Chem. Absfr., 1992, 117,155 910).

Styles, J. Less-Common Mer., 1991, 173, 603 (Chem. Absfr., 1992, 116, 50 105).

116, 142 479).

116, 50 106).

Gov. Rep. Announce. Index (US.), 1991, 91, Abstr. No. 127 886 (Chem. Absfr., 1992, 116, 161 010).

1992, 192, 590 (Chem. Absrr., 1992, 117, 38 802).

3054.

117, 183 435).

Page 124: Nmr

124 Spectroscopic Properties of Inorganic and Organometallic Compounds

molecular dynamics o f [ ( ~ ~ - C ~ H S ) ~ F ~ I [ P F ~ ] have been probed by solid state 2H N M R spec t roscopy.22~~ The molecular motions in deoxycholic acid-femocene solid inclusion compounds have been studied by 1H and 13C N M R spectroscopy.2256 13C chemical shift powder patterns of [(q5-C5H5)2Fe] enclathrated in p- and y-cyclodextrins have been measured by one-dimensional

switching-angle sample spinning N M R spectroscopy.2257 [SbF6]- reorientation in [SbF6]- salts of mixed valence biferrocenes has been investigated by 19F NMR s p e ~ t r o s c o p y . 2 2 ~ ~ T h e structure and dynamics of [ ( ~ ~ - C S H ~ ) F ~ ( C O ) ~ ( E M ~ ~ ) ] + complexes, E = S, Se, Te, have been investigated by high resolution solid state 13C NMR spe~troscopy.22~9 Solid state 2H NMR spectroscopy has been used to investigate the motion of CDC13 in [Fe30(02CMe)6(4-MeC5H4N)3](CDC13).2260

The temperature dependence of the second moment and I H NMR absorptions has been measured for complexes of [ (EtNHCH2CH2NHEt)2Ni]2+.2261

The mechanisms of ion diffusion in AgS2:AgP03 glasses have been investigated using 31P NMR spec troscopy.2262

T h e llCd NMR spectrum of C~~(CN)~O(H~O)~.~C~H~~OH shows two distinct cadmium atoms. 2H NMR spectra show that the four water molecules rapidly exchange at 250K, whereas the cyclohexanol hydroxyl is undergoing an anisotropic motion. 13C NMR results indicate that the whole cyclohexanol molecule i s i n motion at room t e m p e r a t ~ r e . ~ ~ ~ 3 Fluoride motion in Fe0.46Znoa54F2 has been investigated by 19F N M R s p e ~ t r o s c o p y . 2 2 6 ~ T h e presence o f thermal fluctuations in the *7Rb lineshape of Rb2ZnC12 has been investigated.2265 The I H second moment and T I values have been measured in (NH&ZnBrq, to study [N&]+ reorientation.2266 1H NMR spectroscopy has been used to investigate molecular reorientation in (MeNH3)2CdBr4.2267 Proton dynamics in KzHgC14.HzO have been investigated by IH NMR lineshape measurements.2268

Intramolecular rearrangement of [A12H7]- in MA12H7.L has been investigated using lH, 7Li, 23Na, and 27Al NMR spectroscopy.2269 Molecular motions in N-base adducts of ( 1,5-cyclooctanediyl- boryl)20 have been investigated using * l B NMR spe~troscopy.22~0 Phase transitions and molecular

2255 R.J. Webb, M.D. Lowery, Y. Shiomi, M. Sorai. R.J. Wittebon, and D.N. Hendrickson, Inorg. Chem., 1992, 31,

2256 2. Narankevich. A.L. Blyumenfel'd, and V.1. Sokolov, I z v . Akad. Nauk, Ser. Khim., 1992, 586 (Chem. Absrr.,

2257 F. Imashiro, D. Kuwahara, N. Kitazaki, and T. Terao, Magn. Reson. Chem., 1992, 30, 796. 2258 R.J. Webb, P.M. Hagen, R.J. Wittebon, M . Sorai, and D.N. Hendrickson, Inorg. Chem.. 1992,31, 1791. 2259 A.P.M. Kentgens, H. Karrenbeld, E. De Boer, and H. Schumann, J . Organornet. Chern.. 1992,429, 99. 2260 H.G. Jang, R.J. Witlebort, M. Sorai, Y. Kanedo, M. Nakano, and D.N. Hendrickson, Inorg. Chem., 1992, 31,

2261 A. Ghosh, D. Nakamura, and R. Ikeda, B e r . Bunsenges. Phys. Chem., 1992,96,919. 2262 M. Cutroni, A. Magistris, and M. Villa, Solid Slate lonics, 1992, 53-56, 1232 (Chem. Abslr., 1992, 117, 202

2z63 S. Nishikiori, C.L. Ratcliffe, and J .A. Ripmeester, J . Am. Chem. SOC., 1992, 114, 8590. 2264 J.C. Sartorelli, Phys. Rev. B : Condens. M a u e r , 1992,45, 10779 (Chem. Abslr., 1992. 117, 19 037). 2265 A.M. Fajdiga, T. Apih, J . Dolinsek, R. Blinc, A.P. Levanyuk, S .A. Minyukov. and D.C. Ailion, Phys. Rev.

2266 K.P. Ramesh, N. Devaraj, D. Vijayaraghavan, and J. Ramakrishna, Phase 7ransilions. 1992, 37. 203 (Chem.

2267 H. Nakayama, T. Eguchi, and N. Nakamura, J. Chem. Soc., Faraday 7rans.. 1992.88, 3067. 2268 S.S. Ray and P. Raghunathan. Chem. Phys. Leu., 1992, 195, 303 (Chem. Abslr., 1992, 117, 123 226). 2269 V.I. Simagina, V.M. Masdkhin, I.V. Stoyanova, and V.A. Likholobov, Koord. Khim., 1992, 18, 120 (Chem.

2270 M. Yalpani, R. Koester, and R. Boese, Chem. B e r . , 1992, 125, 309.

521 1.

1992, 117, 131 426).

2265.

653).

Len., 1992, 69. 2721 (Chem. Absrr., 1992, 117, 244 352).

Absrr., 1992, 117, 61 209).

Absw., 1992. 117. 142 317).

Page 125: Nmr

Nuclear Magnetic Resonance Spectroscopy 125

motions of Me2NH2BF4 have been studied by lH and l9F NMR spectroscopy.2271 l H and l l B T i measurements of solid Me4NBF4 have been used to study molecular m 0 t i o n . 2 ~ ~ ~ Phase transitions and ionic motion including self-diffusion in (CH3)3NHBF4 have been studied by 1H and 19F NMR spectroscopy.2273 Molecular dynamics in [ ( (CH2)10NMe2) n]”+[BF4]-n have been investigated by applying one- and two-dimensional methods.2274

Molecular diffusion has been used to determine pore size distribution in [email protected] Dynamic proton exchange in [H302]- of [Na(H302)]2[SiA104]6 has been observed by l H MAS NMR spectroscopy.2276 7Li T1 measurements have been used to investigate diffusion induced relaxation in glassy and crystalline LiA1Si206.2277 Kink hopping in the one-dimensional ionic conductor, potassium aluminium priderite, has been invesigated using Ti mea~urements.22~8 The kinetics of the dehydration of the P-cages of sodium faujasites have been studied by 1H NMR spectroscopy.2279 Diffusion anisotropy in zeolites has been observed by pulsed field gradient NMR spectroscopy.2280 NMR spectroscopy has been used to study ionic motion in tris(guanidinium)hexafluoroaluminate.2281

The rotational dynamics of Gjo have been determined by 13C NMR spectroscopy.2~2 The diffusive and rotational motion of [PF6]- intercalated in graphite has been investigated.2283 Phase transitions, structures and molecular dynamics in C2F fluorographite, intercalated by MeCN have been studied.2284 A l H NMR study of molecular motions in polydimethylsiloxane and its mixtures with Aerosils has been reported.2285 The conformation and dynamics of a polysiloxane containing rigid groups have been studied by variable-temperature high-resolution 29Si NMR spectroscopy.2286 NMR investigations into free-chain dynamics in vulcanised siloxane chains swollen by polymer chains have been Silicate sol-gel kinetics have been investigated by 29Si NMR spectroscopy.2288 Motion in solid organotin(1V) coordination polymers has been investigated by two-dimensional exchange MAS 13C NMR The structure and motion of [(Bui3Sn)2C03] and [(Me3Sn)2C03] in solution and in the solid state have been investigated by l3C and 119Sn NMR

2271 H. Ishida, T. Iwachido, and R. Ikeda, Ber. Bunsenges. Phys. Chem.. 1992,96, 1468. 2272 S. Torre and P. Ferloni, 2. Natwforsch.,A, 1992,47,721 (Chem. Abstr., 1992, 117,82 104). 2273 H. Ishida, N. Hayama, and R. Ikeda, Chem. Left., 1992, 1333 (Chem. Abstr., 1992,117, 188 937). 2274 R.R. Rietz, D. Schaefer, W.H. Meyer, and H.W. Spiess, Electrochim. Acta, 1992, 37, 1657 (Chem. Abstr.,

2275 L. Garrido, J.L. Ackerman, and B. Pfleiderer, Cerum. Eng. Sci. Proc.. 1991, 12,2042 (Chem. Abstr., 1992,

2276 G. Engelhardt. P. Sieger, and J. Felsche, Angew. Chem., Int. Ed. Engl.. 1992.31, 1210. 2277 W. Franke and P. Heitjans, Ber. Bunsenges. Phys. Chem., 1992,96, 1674. 2278 T. Ishii,J. Phys. SOC. Jpn., 1991,60.4203 (Chem. Abstr., 1992, 116, 73 412). 2279 W.D. Basler, H.T. Lechert, D. Carboo, and A. Knllchel, Ber. Bunsenges. Phys. Chem., 1992,96, 545. 2280 U. Hong, J. Kaerger. H. Pfeifer, U. Mueller, and K.K. Unger, Z . Phys. Chem. (Munich), 1991. 173,225 (Chem.

2281 M. Grottel, A. Kozak, H. Maluszynska, and Z. Pajak, J . Phys.: Condens. Matter. 1992,4, 1837 (Chem. Abstr.,

2282 R.D. Johnson, C.S. Yannoni, H.C. Dorn, J.R. Salem, and D.S. Bethune, Science, 1992,255, 1235. 2283 M. Kraus, I. Stang, and K. Lueders, Mater. Sci. Forum, 1992, 91-93 (Intercalation Compd., Pt l), 289

2284 A.M. Panich and N.F. Yudanov, Zh. Sirukt. Khim., 1991, 32. 79 (Chem. Abstr., 1992, 116, 31 907). 2285 V.M. Litvinov and H.W. Spiess. Makromol. Chem., 1991, 192,3005 (Chem. Abstr., 1992, 116. 22 067). 2286 T. Takayama and I. Ando, J. Mol. Struct., 1992, 271, 75. 2287 J.P. Cohen-Addad and 0. Girard, Macromolecules, 1992.25.593 (Chem. Abstr., 1992,116.42 326). 2288 R.A. Assink. C.J. Brinker, and B.D. Kay, Inorg. Organomet. Oligomers Polym., Proc. IUPAC Symp.

2289 D.C. Apperley. N.A. Davies, R.K. Harris, S. Eller. P. Schwan;, and R.D. Fischer, J . Chem. Soc., Chem.

1992, 117. 142 111).

116, 26 387).

Abstr.. 1992. 116, 201 756).

1992, 116, 162 993).

(Chem. Abstr., 1992. 117, 142 108).

Macromol., 33rd 1990, (Pub. 1991). 229 (Chem. Abstr.. 1992, 116,89 760).

Commun., 1992, 740.

Page 126: Nmr

126 Spectroscopic Properties of Inorganic and Organometallic Compounds

spectroscopy.2290 Molecular motions in CD3NH3PbBr3 have been investigated by 1H NMR spec troscopy.2291

Cationic self-diffusion in the highest-temperature solid phase of N h C l and N h B r has been studied by 1H NMR s p e c t r o s ~ o p y . ~ ~ 9 ~ NMR spectroscopy has been used to study molecular dynamics and phase transitions of A2BX4 type double salts containing [N2H5]+, "&I+, or [MeNH3]+.2293 Cationic dynamics in (MeNH3)3Bi2Brg and (MeNH3)3Sb2Brg have been studied using I H NMR spectroscopy .2294

The molecular dynamics of some polyphosphazenes have been studied by 'H, 13C and 31P NMR spectroscopy.2295 Molecular motions in [Me4Sb][PF6] have been investigated by IH and 19F NMR s p e ~ t r o s c o p y . 2 2 9 ~ The temperature behaviour of the 19F NMR spectra of MSbF5 has been in~es t iga t ed .229~ Cationic dynamics in [NMe4]3[ Sb2C191 have been investigated using 1H T1 m e a ~ u r e m e n t s . ~ ~ g ~ 'H Ti, Tip, and second moment measurements have been used to study the motion of [MeNH3]+ in [MeNH3]3[Sb21g].2299 Phase transitions in [MeNH3]3[Sb219] and [MeNH3]3[Bi219] have been investigated using IH Ti measurements.2300 Cationic dynamics and phase transitions in [MeNH3]3[Bi2Brg] have been studied by l H NMR spectroscopy.2301

IH Ti measurements have been used to study cationic motion in [Me3S]2[SeC16].2302 The dynamics of [MeNH3]+ in [MeNH3]2[TeX6] have been investigated by 2H and 14N NMR spectroscopy.2303

Structure of Solids.--Hydride pairing has been examined as a relaxation mechanism for I H in metal hydrides, and considered to be unlikely.2304 A theoretical treatment of the higher order truncations in solid state 14N, 170, 23Na, and 27Al NMR spectroscopy has been d i s c ~ s s e d . 2 ~ ~ 5 A

robust algorithm for isotropic reconstruction of MAS solid-state NMR spectra has been described and applied to l3C, 3 l P and 79Br NMR spectra.2306 Rotational resonance enhanced double quantum

2290 J. Kiimmerlen, A. Sebald, and H. Reuler, J. Organomei. Chem., 1992,427, 309. 2291 Q. Xu, T. Eguchi, and H. Nakayama, Bull. Chem. SOC. Jpn., 1992,65, 2264. 2292 M. Tansho, Y. Furukawa, D. Nakamura, and R. Ikeda, Ber. Bunsenges. Phys. Chem., 1992,96, 550. 2293 K.P. Ramesh, D. Vijayaraghaven, R. Damle, and J . Ramakrishna, Mngn. Reson., 1991, 236 (Chem. Abstr.,

1992. 117. 102 752). 2294 P. Koziol, Y. Furukama, and R. Jakubas, Ser. Fiz. (Uniw. im. Adatnu Mickiewicza Poznaniu), 1991, 67

(Radio-Microwave Spectrosc.), 329 (Chem. Absir., 1992, 117, 82 083). 2295 J.F. Haw and R.C. Crosby, Solid Stale NMR Polym., [Proc. Annu. Chem. Con& North Am. Solid Slate NMR

Polym.], 3rd 1988, (Pub. 1991), 321. Ed. by L.J. Mathias (Chem. Absir., 1992, 116, 256 365); S.A. Taylor, J.L. White, N.C. Ebaum, R.C. Crosby, G.C. Campbell, J.F. Haw, and G.R. Hatfield, Macromolecules, 1992, 25, 3369 (Chem. Absfr., 1992, 117, 8818).

2296 G. Burbach, N. Weiden, and A. Weiss. Z. Naturforsch.,A, 1992,47,689 (Chem. Absir., 1992, 117, 38 804). 2297 V.I. Sergienko, V.Ya. Kavun, and L.N. Ignat'eva, Zh. Neorg. Khim., 1991,36, 3153 (Chem. Absir., 1992, 116,

2298 B. Jagadeesh, P.K. Rajan, K. Venu, and V.S.S. Sastry, Chem. Phys., 1992, 163, 351 (Chem. Absfr., 1992,

2299 P. KozioJ, Y. Furukawa, D. Nakamura, and R. Jakubus. Bull. Chem. SOC. Jpn., 1992.65, 1707. 2300 R. Jakubas, R. Decressain, and J. Lefebvre, J . Phys. Chem. Solids, 1992, 53, 755 (Chem. Absir., 1992, 117, 37

2301 P. Koziol, Y. Furukawa, and D. Nakamura, J . Phys. SOC. Jpn., 1991, 60, 3850 (Chem. Absir., 1992, 116, 50

2302 M. Kaga, T. Asaji, R. Ikeda, and D. Nakamura, Z. Naturforsch., A , 1992, 47, 274 (Chem. Abstr., 1992, 116,

2303 M.R. MacIntosh, M.L.H. Gruwel, K.N. Robertson, and R.E. Wasylishen, Can. J. Chem., 1992,70, 849. 2304 R.M. CONS, J. Less-Common Met., 1991, 173, 467 (Chem. Abstr., 1992, 116, 50 102). 2305 M. Goldman, P.J. Grandinetti, A. Llor, Z. Olejniczak, J.R. Sachleben, and J.W. Zwanziger, J. Chem. Phys.,

2306 N.C. Elbaum and J.F. Haw, Anal. Chem., 1992, 64, 2555 (Chem. Absir., 1992, 117, 183 498).

117 655).

117, 82 116).

216).

099).

206 391).

1992, 96, 8947.

Page 127: Nmr

Nuclear Magnetic Resonance Spectroscopy 127

filtering has been demonstrated experimentally for double 13C labelled samples of zinc acetate and diammonium oxalate r n ~ n o h y d r a t e . ~ ~ ~ ~ Second-order quadrupolar effects on the centre-band for the MAS solid-state NMR spectra of I = f nuclei dipolar coupled to a quadrupolar nucleus have been

summarised, and examined for 3lP attached to 55Mn, 59C0, and 93Nb.2308 The Hartmann-Hahn CP/MAS of I = f to I = $nuclei has been investigated with reference to 23Na NMR spectroscopy.23w

The quantitative analysis of MAS NMR spectra of quadrupolar nuclei has been published.23 lo

Simulated MAS nutation spectra have been compared with experimental 23Na and 27Al NMR spectra of NaN03 and Ca3A1206.6H20 respectively.2311 The quantitative interpretation of NMR spectra of disordered solids has been examined and applied to IB MAS NMR spectra of vitreous b ~ r a t e s . ~ ~ ~ ~ 13C shielding tensors for metal acetates have been determined by CP/MAS NMR spectroscopy.2313 The general utility of two-dimensional spin-echo correlation SECSY, COSY and homonuclear J - resolved 31P two-dimensional CP/MAS NMR techniques in studying metal phosphine complexes in the solid-state has been discussed.2314 Dipolar S1 P NMR spectroscopy of crystalline inorganic phosphorus compounds has been studied.2315 19F NMR spectroscopy has been used to investigate clustering in fluorite-type anion excess solid solution.2316 Multiple-quantum NMR coherence growth in polycrystalline salts containing 1% has been examined.u17 The NMR chemical shifts of 7Li, 23Na, 35C1, 39K, 63Cu, 65Cu, 79Br, 87Rb, 1271, and 133Cs in alkali iodides, cuprous halides, and silver halides have been determined.2318 Alkali metal and alkaline earth chlorides have been studied by both 35C1 and 37C1 solid-state NMR s p e ~ t r o s c o p y . ~ ~ ~ 9 The CoII, NiII, Cu", and Zn+II complexes with 5- HO-3-Me-4-S-methyldithiocarboxylate-l-Ph pyrazole have been characterized by l3C CP/MAS NMR spec troscopy.2320

6Li, 7Li, and 8Li NMR shifts and relaxation rates in LiC6 have provided evidence of quadrupolar interaction with conduction electrons.2321 7Li and l33Cs ions in polybutadiene coatings have been investigated using solid-state NMR techniques.2322 7Li solid-state NMR spectroscopy has been used to study [Li(tmeda)][C104] and [Li(tn1eda)2][AIMe4].~~~~ The heat-treatment of (LiC1)2-A1203-Si02

2307 N.C. Nielsen, F. Creuzet, R.G. Griffin, and M.H. Levitt, J . Chem. Phys., 1992,96, 5668. 2308 R. Gobetto, R.K. Harris, and D.C. Apperley, J . Magn. Reson., 1992,96, 119. 2309 A.J. Vega, Solid State Nucl. Magn. Reson., 1992, 1, 17 (Chem. Abstr.. 1992, 117, 82 075). 2310 F. Taulle, C. Bessada, and D. Massiot, J . Chim. Phys. Phys.-Chim. Biol., 1992, 89, 379 (Chem. Abstr., 1992,

2311 N.C. Nielsen, H. Bildsw, and HJ. Jakobsen, J . Magn. Reson., 1992,97, 149. 2312 P. Cofrancesco, S. Scotti, M. Villa, P. Mustarelli, and A. Gottvald, Solid State lonics, 1992, 53-56(Pt. 2),

2313 A.A.M. Ali and R.K. Harris, Magn. Reson. Chem., 1992,30,908. 2314 G. Wu and R.E. Wasylishen, Organometallics, 1992, 11, 3242. 2315 D. Lathrop, D. Franke, R. Maxwell, T. Tepe, R. Flesher, Z. Zhang, and H. Eckert, Solid State Nucl. Mugn.

Reson., 1992. 1,73 (Chem. Abstr.. 1992, 117, 123 223). 2316 J.M. Reau, M. Wahbi, J. Senegas. and P. Hagenmuller, Phys. Status Solidi B, 1992, 169, 331 (Chem. Abstr.,

1992, 116, 163 336). 2317 B.E. Scruggs and K.K. Gleason, J. Magn. Reson., 1992,99, 149. 2318 S. Hayashi and K. Hayamizu, J . Phys. Chem. Solids, 1992,53,239 (Chem. Abstr., 1992, 116, 142 534). 2319 F. Lefebvre, J . Chim. Phys. Phys.-Chim. Biol., 1992.89, 1767 (Chem. Abstr., 1992, 117, 263 291). 2320 L. Mishra, V.K. Singh, and VJ. Ram, Spectrochim. Acra, Part A, 1992.48, 751. 2321 P. Lauginie, H. Estrade-Szwarckopf, and J. Conard. Muter. Sci. Forum, 1992,91-93 (Intercalation Compd.,

2322 R. Turoscy, H. Leidheiser, jun., and J.E. Roberts, J. Electrochem. SOC., 1992, 139, 779 (Chem. Abstr., 1992,

2323 T. Pietrass, P.K. Burkert, and H.H. Karsch, Z . Naturforsch.,A, 1992, 47, 117 (Chem. Abstr., 1992, 116, 206

116, 186 331).

868 (Chem. Abstr., 1992,117, 203 773).

Pt. 2 ) , 545 (Chem. Abstr., 1992, 117, 162 686).

116, 226 764).

384).

Page 128: Nmr

128 Spectroscopic Properties of Inorganic and Organometallic Compounds

xerogels has been investigated by 7Li. 27Al, and 29Si NMR spectroscopy.2324 Evidence for x delocalisation has been obtained from analysis of l3C CP/MAS NMR spectra of the solvated lithium enolate of 1 ,3-~yclohexanedione .~~ The possibility of imaging mobile Li+ in a polyethylene oxide- lithium perchlorate film has been investigated by 7Li NMR spectroscopy.2326 The structure and conductivity of polyethylene oxide-Li(03SCF3) have been investigated using IH and l9F NMR s p e ~ t r o s c o p y . ~ 2 ~ The sign of the quadrupole coupling in LiN03 has been determined from 7Li NMR spectroscopy at low temperature.2328 The structure of lithium, sodium metaphosphate glasses has been investigated by 23Na and 31P MAS NMR spectroscopy and correlated with the mixed alkali effect.2329 The (50-x)Li00.5-xLiF-50TeO2 glass has been studied by 7Li and I9F NMR spectroscopy.2330 27Al and 29Si NMR spectroscopy has been used to study Li2S-Al&-SiS2 glasses.2331 The structure of glasses in the system LizSe-SiSe2 has been investigated by 29Si MAS NMR spectroscopy.2332

The l3C MAS NMR spectra of Na[(NC)2C=C(CH=CH)2C=C(CN)2] show changes in both the chemical shift and linewidth of some resonances with temperature.2333 The sodium sites in Na(CN),C11, and Na,KI &N have been investigated using 23Na NMR spectroscopy.2334 The 170 and 23Na NMR spectra of solids have been obtained with dynamic angle spinning and double rotation.2335 The efficient simulation of variable angle spinning lineshapes of quadrupolar nuclei with half-integer spins has been applied to 23Na in Na2MoOq and Na2S04.2336 Multiple quantum NMR spectroscopy has been used as a probe for the dimensionality of hydrogen in polycrystalline powders such as NaHCO3 and CaH2 and diamond film.2337 23Na NMR lineshape in single and multi-domain crystals of ferroelecmc NaN02 has been rep0rted.23~~ 23Na NMR spectroscopy has been used to investigate the temperature dependence of T1 in [email protected] The r.f. field inhomogeneity in a MAS probe has been evaluated by MAS nutation NMR spectroscopy of 23Na in NaN03.2340 The bonding

2324 B. Wang, S. Szu, M. Greenblatt, and L.K. Klein, Chem. Muter.. 1992, 4. 191 (Chem. Abstr.. 1992, 116, 96

2325 M.C. Etter and G. Ranawake, J . Am. Chem. SOC., 1992, 114, 4430. 2326 M. Sonderegger, J. Roos, C. Kugler, M. Mali, and D. Brinkmann, Solid State lonics, 1992, 53-56,849 (Chem.

2327 C. Wang, Q. Liu, Q . Cao, Q. Meng. and L. Yang, Solid State lonics. 1992.53-56, 1106 (Chem. Abstr., 1992,

2328 P.L. Kuhns and J.S. Waugh, J. Chem. Phys.. 1992.97, 2166. 2329 R.K. Sato, R.J. Kirkpatrick, and R.K. Brow, J . Non-Cryst. Solids. 1992, 143, 257 (Chem. Absrr., 1992, 117,

2330 J.M. Rojo, P. Herrero, J. Sanz, B. Tanguy, J. Portier, and J.M. Reau, J . Non-Cryst. Solids, 1992, 146, 50

2331 S.M. Martin and J.A. Sills, J . Non-Cryst. Solids, 1991, 135. 171 (Chem. Abstr., 1992, 116, 26 224). 2332 A. Pradel, V. Michel-Lledos, M. Ribes, and H. Eckert, Solid State lonics, 1992,5346. 1187 (Chem. Abstr.,

2333 P.J. Barrie. CJ . Groombridge, M.C. Grossel. and S.C. Weston, J . Chem. SOC.. Chem. Commun.. 1992, 1216. 2334 S. Elschner. J. Petersson, and W. Wiotte, Exp. Tech. Phys., 1990.38.363 (Chem. Abstr., 1992, 117, 32 179). 2335 K.T. Mueller, Report. 1991, LBL-31125; Order No. DE92000837. 256 pp. Avail. NTIS. From Energy Res.

2336 Z. Zheng, Z. Gan, N.K. Sethi, D.W. Alderman, and D.W. Grant,J. Magn. Reson., 1991,95,509. 2337 D.H. Levy and K.K. Gleason, J . Phys. Chem., 1992,96,8125. 2338 K.T. Han, H.W. Shin, I.W. Park, and S.H. Choh, J . Korean Phys. SOC., 1992, 25, 67 (Chem. Abstr., 1992.

117, 61 210). 2339 L. Pandey and D.G. Hughes, J . Phys.: Condens. Matter, 1992, 4. 6889 (Chem. Absrr., 1992, 117, 162 699);

K.T. Han, S.H. Choh, and K.S. Hong, Sue Mulfi, 1992. 32,448 (Chem. Abstr., 1992, 117, 123 200); M. Igarashi, H. Kitagawa, S. Takahashi, R. Yoshizaki, and Y. Abe, Z. Naturforsch.. A, 1992, 47, 313 (Chem. Absrr.. 1992. 116, 206 397).

540).

Abstr., 1992, 117, 203 772).

117, 223 739).

54 234).

(Chem. Absrr., 1992, 117, 196 739).

1992, 117, 202 648).

Abstr., 1991, 16, Abstr. No. 35 273 (Chem. Abstr., 1992, 117, 82 093).

2340 N.C. Nielsen. H. Bilds@e, and HJ . Jakobsen. J. Magn. Reson., 1992,98,665.

Page 129: Nmr

Nuclear Magnetic Resonance Spectroscopy 129

in sodium fluorophosphate and sodium aluminium fluorophosphate glasses has been investigated by 19F, 27Al, and 31P N M R spectroscopy.2341 T h e structure of sodium dithionite has been investigated by Z N a N M R spectroscopy.2342 MAS NMR spin locking of half-integer quadrupolar nuclei has been applied t o 23Na in NaC104.2343 T h e double quadrupole-quadrupole resonance has been studied for 35C1 and 23Na in NaC104.2344 T h e density matrix describing the evolution o f a I = 5 system excited by a spin-echo N M R sequence has been calculated and compared with experimental measurements for 37C1 i n NaC1.2345

T h e 13C Ti and paramagnetic shift in K 3 C m have been measured.2346 2H M A S N M R spectra have been measured for K2HCO3,2HIO3, Na2HC03, K 2 H S 0 4 and m i ~ t u r e s . 2 3 4 ~ T h e 35C1, 39K, and g7Rb N M R data have been determined for dry polycrystalline samples of KClO4 and RbC104. T h e coupling constants and field gradient tensors have been determined.2348 20311 and 205'll N M R spectra have been measured for thallium impurities in KCl and RbCl crystals.2349 The 1271 NMR spectrum of K I has been reported.2350 A 133Cs NMR study of csxRb3-&0 has been reported.2351 87Rb N M R spectra of hydrogen bonded R b l -x(NH4)xH2P04 have been investigated theoretically.2352 RbCl, RbC104, Rb2S04, RbzCr04, and R b N 0 3 have been examined by 87Rb N M R spectroscopy.2353 Spectra-moment constraints on electron-electron locations in [Cs( 18-crown-6)2] have been studied using 133Cs N M R spectroscopy.2354 T h e 19F N M R spectrum of a CsF single crystal has been reported .2355

T h e solid-state 'H, 9Be, and 31P NMR spectra of beryllophosphate-G have been reported.2356 The disorder of Mg2+ and Al3+ cations between the tetrahedral and octahedral sites in MgA1204 spinel has been determined by 27Al M A S N M R spectroscopy.2357 I H and 27Al M A S NMR spectroscopy has been used to study the decomposition of Mg8-xA1z(OH) 13(C03)x/2.nH20.235* T h e aluminium coordination in magnesium aluminosilicate glasses has been investigated by 27Al M A S N M R

2341 R.K. Brow, Z.A. Osborne, and R.J. Kirkpatrick, J . Muter. Res.. 1992, 7, 1892 (Chem. Abstr., 1992, 117, 95 614).

2342 J.B. Weinrach. D.R. Meyer, J.T. Guy. jun., P.E. Michalski, K.L. Carter, D.S. Grubisha, and D.W. Bennett, J . Crystallogr. Spectrosc. Res., 1992.22, 291 (Chem. Abstr., 1992, 117. 59 537).

2343 A.J. Vega. J. Magn. Reson., 1992,96, 50 (Chem. Abstr., 1992, 116, 119 510). 2344 I.P. Biryukov, M.G. Voronkov, and Yu.1. Khudobin, Dokl. Akad. Nauk SSSR, 1991, 321, 124 (Chem. Abstr.,

2345 P.P. Man, J. Chim. Phys. Phys.-Chim. Biol., 1992, 89, 335 (Chem. Abstr., 1992, 116, 186 333). 2346 W.H. Wong, M.E. Hanson, W.G. Clark, G. Cruner, J.D. Thompson, R.L. Whetten, S.M. Huang, R.R. Kaner,

2347 A.J. Kim and L.G. Butler, J. Magn. Reson., 1992, 99, 292. 2348 V.P. Tarasov, M.A. Meladze, and G.A. Kirakosyan, Koord. Khim., 1992, 18,823 (Chem. Absfr., 1992, 117,

2349 D.M. Hofmann, N.G. Romanov, and J.M. Spacth, J . Phys.: Condens. Matter, 1992, 4,6845 (Chem. Abstr.,

2350 N. Lee, B.C. Santuary, and T.K. Halstead, J. Magn. Reson., 1992,98, 534. 2351 Y. Maniwa, K. Mizoguchi, K. Kume, K. Tanigaki, T.W. Ebbesen, S. Saiio, J. Mizuki, J.S. Tsai, and Y. Kubo,

2352 E. Matsushita, J. Phys. SOC. Jpn., 1992, 61, 1336 (Chem. Absw., 1992, 116, 267 689). 2353 J.H. Baltisberger, S.L. Gann, E.W. Wootcn, T.H. Chang, K.T. Muellcr, and A. Pines. J. Am. Chem. Soc., 1992.

2354 S. Golden and T.R. Tuttle, jun., Phys. Rev. B : Condens. Matier, 1992, 45, 13 913 (Chem. Abstr.. 1992, 117,

2355 A.A. Lundin, Zh. Eksp. Teor. Fiz., 1992, 102, 352 (Chem. Abstr., 1992, 117, 244 338). 2356 E.N. Coker and L.V.C. Rees, J. Chem. SOC., Faraday 'l ians., 1992,88, 263. 2357 R.L. Millard, R.C. Peterson, and B.K. Hunter, Am. Mineral., 1992, 77.44 (Chem. Abstr.. 1992, 116, 87 801). 2358 F. Rey, V. Fornbs. and J.M. Rojo, J. Chem. Soc., Faraday Trans.. 1992, 88, 2233.

1992, 116, 74 634).

F. Diederich. et al., Europhys. Lett., 1992, 18,79 (Chem. Absrr., 1992, 116, 142 380).

162 711).

1992. 117, 162 703).

Solid State Commun., 1992, 82. 783 (Chem. Abstr., 1992, 117, 61 241).

114, 7489.

76 812).

Page 130: Nmr

130 Spectroscopic Properties of Inorganic and Organometallic Compounds

spectroscopy.2359 Aluminium-silicon ordering in natural and synthetic sapphirine has been investigated by 27Al and 2% NMR spectroscopy.2360 1 7 0 NMR results have been used to study the degree of ordering in potassium and potassium magnesium silicate glasses.2361 The structure of binary alkaline earth superphosphate glass has been investigated by 31P NMR spectroscopy.2362

Distortions in the structure of CaC2 have been investigated using l 3 C NMR ~pectra.23~3 The stability of [Ca(dpm)2] and [Sr(dpm)2] has been examined by I H and l3C NMR spectroscopy.2364 The hydration product of calcium-silicate-hydrate has been studied using MAS NMR spectroscopy.U65 29Si NMR spectroscopy has been used to study low-silica calcium aluminosilicate glasses.2366 A BSi NMR study of the pozzolanic activity of condensed silica fume and the hydration of di- and tri-calcium silicates has been rep0rted.23~~ The hardening characteristics of white Portland cement have been investigated using 2% NMR spectroscopy.2368 The progressive changes in the structure of hardened m-calcium silicate cement pastes due to carbonation have been investigated by 2% MAS NMR spectroscopy.2369 The hydration of P-di-calcium silicate has been studied using 2%

MAS NMR s p e c t r o s c o p y . ~ ~ ~ The alkali-aggregates reaction of concrete has been studled using 2%

NMR spectroscopy.~71 29Si NMR spectroscopy has been used to study the decomposition of COO- S i 0 2 - H 2 0 compounds by heating.2372 Aluminium coordination in rapid-setting spherosilicate-type cement powder and the resulting cement has been investigated.2373 Hydrated DSP cement pastes have been studied by 29Si NMR ~pect roscopy.23~~ The anomalous NMR T 1 contribution in 0.4Ca(N03)2.0.6KN03 has been investigated.2375 31P CP/MAS NMR spectroscopy has been used

2359 P.F. McMillan and R.J. Kirkpatrick, Am. Mineral., 1992, 77,898 (Chem. Abstr., 1992, 117, 93 987). 2360 A.G. Christy, B.L. Phillips, B.K. Guettler, and R.J. Kirkpatrick. Am. Mineral., 1992, 77.8 (Chem. Abstr.,

2361 I. Farnan, PJ. Grandinetti, J.H. Baltisberger, J.F. Stebbins, U. Werner, M.A. Eastman, and A. Pines, Nature

2362 D. Stachel and H. Reiss, Rostocker Phys. Manuskr., 1990, 14,48 (Chem. Abstr., 1992, 116, 242 325). 2363 J.R. Long, R. Hoffmann, and H.J. Meyer, Inorg. Chem., 1992.31, 1734. 2364 T. Hashimoto, H. Koinuma, M. Nakabayashi, T. Shiraishi, Y. Suemune, and T. Yamamoto, J. Mater. Res.,

1992, 7 , 1336 (Chem. Absfr., 1992, 117, 74 787). 2365 M.W. Grutzeck. S. Hoyle, S. Kwan, J. LaRosa, and S. Bozich, Reporf , 1991, PSU-AFOSR-91-1, AFOSR-

TR-91-0257; Order No. AD-A235191, 117 pp. Avail. NTIS. From Gov. Rep. Announce. Index (U . S.), 1991, 91, Abstr. No. 149 327 (Chem. Absfr., 1992, 117, 117 166).

2366 C.I. Merzbacher, K.J. McGrath, and P.L. Higby, J. Non-Crysf. Solids, 1991, 136, 249 (Chem. Abstr., 1992, 116, 65 123).

2367 H. Justnes, I. Meland, J.O. Bj~rgum, and J. Krane. Adv. Cem. Res., 1990,3, 111 (Chem. Absrr., 1992, 116. 89 965).

2368 Y. Okada, H. Hitotsuya. and T. Kawano, Onoda Kenkyu Hokoku, 1991, 43,22 (Chem. Abstr., 1992, 116, 10 469).

2369 G.W. Groves, A. Brough, I.G. Richardson, and C.M. Dobson, J. Am. Ceram. SOC. , 1991, 74, 2891 (Chem. Abstr., 1992, 116, 10 484).

2370 H. Ishida, K. Sasaki, A. Mizuno, Y. Okada, and T. Mitsuda, J. Am. Ceram. Soc., 1992, 75, 2779 (Chem. Abstr., 1992,117,238 745); H. Ishida, K. Sasaki, and T. Mitsuda, J. Am. Ceram. SOC., 1992,75, 353 (Chem. Abstr., 1992,116, 135 116); H. Ishida, Y. Okada, and T. Mitsuda, J. Am. Ceram. SOC., 1992,75, 359 (Chem. Absfr., 1992, 116, 135 117).

2371 L. Fernandez, H. Zanni. R. Couty, P. Barret, and D. Bertrandie. J. Chim. Phys. Phys.-Chim. Biol., 1992.89, 453 (Chem. Absfr.. 1992, 116, 179 825).

2372 Y. Okada, H. Sibasaki, N. Yang, and T. Mitsuda, Semento. Konkurito Ronbunshu, 1991.45.64 (Chem. Abstr., 1992, 116,261 172).

2373 A. Lerat, PCT Int. Appl. WO 92 04,295 (Cl. C04B12/00), 19 Mar 1992, CH Appl. 90/2,850, 03 Sep 1990; 37 pp. (Chem. Abstr., 1992, 116, 261 230); A. Lerat, PCT Int. Appl. WO 92 04,294 (CI. C04B12/009, 19 Mar 1992, CH Appl. 90/2,850,03 Sep 1990; 37 pp. (Chem. Absfr., 1992,116,261 231).

2374 G. Sun, P. Lu, S.A. Touse. and J.F. Young, Ceram. Trans., 1991, l6(Adv. Cem. Mater.), 381 (Chem. Abstr.. 1992, 117, 54 643).

2375 K.L. Ngai, U. Strom, and 0. Kanert, Phys. Chem. Glasses, 1992.33, 109 (Chem. Absfr., 1992, 117, 122 218).

1992. 116, 87 798).

(London), 1992,358.31 (Chem. Abstr., 1992, 117, 74 723).

Page 131: Nmr

Nuclear Magnetic Resonance Spectroscopy 131

to lfferentiate between bone mineral and synthetic apatite used to fill bone defe~ts.23~6 The structure and composition of newly formed dental enamel have been investigated by 1H and 31P CP/MAS NMR spectroscopy.2377 Quantitative 19F and 31P NMR spectroscopy has been used to study seven samples of calcium fluoroapatite containing 0.0 to 3.0% Sb3+ in order to determine the site of antimony s~bst i tut ion.23~~ Solid-state 31P NMR studies of the conversion of amorphous mcalcium phosphate to apatitic tricalcium phosphate have been rep0rted.23~9 31P magnetic resonance imaging of hydroxyapatite has been examined as a model for bone imaging.2380 31P NMR investigations of binary alkaline earth phosphate glasses of ultra phosphate composition have been published.2381 Multiphoton processes in CaF2 have been investigated by 19F NMR spectroscopy.2382 2H NMR spectroscopy has been used to investigate deuterium exchange in betaine CaC12(OH2)2.2383

The l l B and 27Al NMR spectra of (Sr0)4(B203)0.93(A1203)0.07 have been reported.2384 The 29Si NMR spectrum of Ba2TiSizOg has been NMR studies have been carried out on Ba3CqFex041.2386 Computer model simulations of phosphate and fluorophosphate glasses, such as Ba(P03)2, have been compared with IH, 19F and 31P NMR measurements.2387 Nuclear spin lattice relaxation time measurements have been made on BaNi2(P04)2.2388 1H MAS NMR spectra of lead and barium phosphate glasses have been used to identify POH groups.2389 The effect of fluoride on the structure of Al(P03)3-BaF2 and Ba(P03)2-CdF2 glasses has been studied by 19F NMR spectroscopy.2390 19F NMR spectra of ZrFq-BaF2 glasses containing LiF, NaF, and CsF have been r e ~ o r d e d . ~ ~ g l B ~ I - ~ B ~ , F ~ + , has been investigated using 19F NMR spectroscopy.2392

139La NMR spectra have been used to measure the magnetic and electronic structure of

2383

2384

2385

2386

2387

2388

2389

2390

2391 2392

2376 K.I. Dawson, I.E. Faman, B.R. Constanz. and S.W. Young, Invesr. Radiol., 1991,26946 (Chem. Absfr., 1992,

2377 L.C. Bonar, M. Shimizu, J.E. Roberts, R.G. Griffin, and M.J. Glimcher, J. Bone Miner. Res., 1991,6, 1167

2378 L.B. Moran, J.K. Berkowitz, and J.P. Yesinowski, Phys. Rev. B: Condens. Maf fer , 1992, 45, 5347 (Chem.

2S79 J.E. Roberts, M. Heughebaert, J.C. Heughebaert, L.C. Bonar, M.J. Glimcher, and R.G. Griffin, Calcif. Tissue

2380 J.L. Ackerman, D.P. Raleigh, and M.J. Glimcher, Magn. Reson. Med., 1992, 25, 1 (Chem. Absrr., 1992, 117,

2381 P. Losso, B. Schnabel, C. Jaeger, U. Sternberg, D. Stachel, and D.O. Smith, J. Non-Cryst. Solids, 1992, 143, 265 (Chem. Absfr., 1992, 117, 54 235).

2382 M. Satoh and N. Akiyama, Okayama Rika Daigaku Kiyo, A, 1990, 26,91 (Chem. Absfr., 1992, 116, 164 825). U. Haecker, K.P. Holzer, D. Michel, and M.J. Petersson, Solid Sfafe Commun., 1992, 83, 81 (Chem. Absrr., 1992, 117, 102 776).

116, 113 474).

(Chem. Abstr., 1992, 116, 171 005).

Abstr., 1992, 116, 226 766).

I n t . , 1991,49,378 (Chem. Absfr., 1992, 116,267 938).

43 641).

T. Huebert, U. Banach. and D. Mueller, Rosiocker Phys. Manuskr., 1990, 14, 33 (Chem. Abstr., 1992, 116, 67 875). D. Voeltzke, T. Mueller, H.P. Abicht, and D. Freude. Silikaffechnik, 1991, 42, 313 (Chem. Absfr., 1992, 116, 33 139). J. Hankiewicz, 2. Pajak, and A.A. Murakhovskii, Ser. Fir. (Uniw. im. Adama Mickiewicza Pozaniu), 1991, 67(Radio-Microwave Spectrosc.), 341 (Chem. Absfr., 1992, 117, 82 002). M. Dubiel and U. Baerenwald, Phys. Non-Crysf. Solids, 1992, 757. Ed. by L.D. Pye, W.C. La Course, and H.J. Stevens (Chem. Abstr., 1992, 117, 155 971). P. Gaveau, J.P. Boucher, A. Bouvet, L.P. Regnault, and Y . Henry, Lect. Nofes Phys., 1991, 393, 23 (Chem. Absfr., 1992. 116, 186 205). H. Hosono, Y. Abe, and K. Deguchi. J . Non-Crysf. Solids, 1992, 142, 103 (Chem. Absfr., 1992, 116, 260 681). V.A. Vopilov, N.N. Gurova, V.M. Buznik, and L.N. Urusovskaya, Fiz. Khim. Sfekla, 1991, 17, 826 (Chem. Abstr., 1992, 116. 260 712). A. Uhlherr and D.R. MacFarlane, J . Non-Cryst. Solids, 1992, 140, 134 (Chem. Abstr., 1992, 116, 134 698). S.K. Soo. J. Senegas, J.M. Reau, M. Wahbi, and P. Hagenmuller, J. Solid State Chem., 1992, 97.212 (Chem. Absfr., 1992, 116, 205 397); J.L. Soubeyroux, J.M. Reau, M. Wahbi, J. Senegas, and S.K. Soo. Solid State Commun., 1992,82,63 (Chem. Abstr., 1992, 117, 59 414).

Page 132: Nmr

132 Spectroscopic Properties of Inorganic and Organometallic Compounds

La2-xSrxNi04+g.2393 The s7Fe NMR spectra of M1-xLaxFe1201g, M = Ba, Pb, have been reported.2394 NMR spectroscopy has been used to investigate high Tc supercond~ctivity.~~9~ 27Al

NMR spectroscopy has been used to show the presence of aluminium in high Tc superconductors and is included in perovskite s r n c t u r e ~ . ~ ~ 9 ~ The absence of the Hebel-Slichter peak in the observed temperature dependence of Ti -l in layered cuprate superconductors has been inve~tigated.~~’ The temperature dependence of the transverse relaxation of 63Cu(2) nuclear spins has been measured in high Tc superconductors.2398 A theoretical model has been proposed for the nuclear magnetic relaxation and Knight shift of 63Cu in cuprate superconductors.239~ NMR spectra of CuO superconductors have been reported.2400 The temperature dependence of TI-1 of 63Cu in Yo.s2sCao.o7sBa2Cu408+6 has been reported.2401 NMR data have been reported for Y B a 2 C ~ 3 0 7 - 6 , ~ ~ ~ ~ (170),2403 (170, 63Cu).2404 (‘70, 89Y),2405 ( ~ ~ C U ) , ~ ~ O ~ (63Cu, 89Y),2407

2393 Y. Furukawa and S. Wada. J . Phys. SOC. Jpn., 1992,61, 1182 (Chem. Abstr., 1992, 116, 247 127). 2394 H. Stepankova, J. Englich. P. Novak, and H. Luetgemeier, J. Magn. Magn. Mater., 1992, 104-107(Proc. Int.

Conf. Magn., 1991, Pt. l), 409 (Chem. Abstr.. 1992, 116, 247 093). 2395 S.I. Mukhin, D. Reefman, and L.J. De Jongh, Phys. Scr., T , 1992, T45(Proc. Cen. Conf. Condens.

Matter Div. Eur. Phys. SOC., 12th, 1992), 47 (Chem. Abstr., 1992. 117, 243 628); H. Fukuyama, T. Tanamoto, and K. Kuboki, Springer Ser. Solid-State Sci., 1992, 106, 85 (Chem. Abstr., 1992, 117, 81 903).

2396 S. Oh, I. Yu, and K.S. Hong, Ungyong Mulli. 1991.4,567 (Chem. Abstr., 1992, 116, 199 396). 2397 M. Zoli, J. Phys. Soc. Jpn.. 1991,60,3838 (Chem. Abstr., 1992, 116, 50 098). 2398 Y. Itoh, H. Yasuoka. Y. Fujiwara. Y. Ueda, T. Machi, I. Tomeno, K. Tai, N. Koshizuka, and S. Tanaka, Physica

C (Amsterdam), 1991, 185-189, 1223 (Chem. Abstr., 1992, 116. 97 958). 2399 A.Yu. Zavidonov, Fiz. Tverd. Tela (S.-Peterburg), 1992. 34, 1212 (Chem. Abstr., 1992, 117, 244 345); S .

Fujirnoto, J. Phys. SOC. Jpn., 1992.61,765 (Chem. Abstr., 1992,116. 226 797). 2400 S.K. Yip and J.A. Sauls, Phys. Rev. Lett., 1992,69,2264 (Chem. Absrr., 1992, 117,243 589). 2401 T. Machi, I. Torneno, T. Miyatake, K. Tai, N. Koshizuka, S. Tanaka, and H. Yasuoka, Physica C (Amsterdam),

1991, 185-189, 1147 (Chem. Abstr., 1992, 116, 119 489). 2402 Y. Maniwa, S. Sato. T. Mituhashi, K. Mizoguchi, and K. Kume, Physica C (Amsterdam), 1991, 185-189, 1761

(Chem. Abstr., 1992, 116, 119 496); G. Krabbes. W. Bieger, J. Thomas, P. Verges, and H. Luetgemeier, Physica C (Amsterdam), 1991, 190, 141 (Chem. Abstr., 1992, 116, 118 621); R.E. Walstedt, High-Temp. Supercond., [Proc. Univ. Miami Workshop Electron. Struct. Mech. High-Temp. Supercond.], 1991,401. Ed. by J. Ashkenazi (Chem. Absfr.. 1992,117, 161 915).

2403 Y. Yoshinari, H. Yasuoka, and Y. Ueda, Physica C (Amsterdam), 1991, 185. 1183 (Chem. Abstr., 1992, 116. 97 952); M. Horvatic, C. Berthier. Y. Berthier, P. Butaud, W.G. Clark, J.A. Gillet, P. Segransan, and J.Y. Henry, Physica C (Amsterdam), 1991, 185, 1139 (Chem. Abstr., 1992, 116.97 949).

2404 C. Berthier, Y. Berthier, P. Butaud, W.G. Clark, J.A. Gillet, M. Horvatic. P. Segransan, and J.Y. Henry, Electron. Prop. Mech. High Tc Supercond.. Proc. Int. Workshop 1991, (Pub. 1992). 347. Ed. by T. Oguchi, K. Kadowaki, and T. Sasaki (Chem. Abstr., 1992, 117, 263 282); N. Bulut and D.J. Scalapino, Phys. Rev. B : Condens. Matter, 1992,452371 (Chem. Abstr., 1992, 116, 142 342); N. Bulut and D.J. Scalapino. Phys. Rev. Lett., 1992, 68, 706 (Chem. Absir.. 1992, 116, 119 513); A.J. Millis and H. Monien, Phys. Rev. B: Condens. Matter. 1992,45,3059 (Chem. Abstr., 1992,116, 119 515); Y. Yoshinari, H. Yasuoka, and Y. Ueda, J. Phys. Soc. Jpn., 1992.61.770 (Chem. Absa.. 1992, 116, 267 670); G.Q. Zheng. Y. Kitaoka, K. Asayama, Y. Kcdama, and Y. Yamada, Physica C (Amsterdam), 1992,193, 154 (Chem. Abstr., 1992, 116,247 118); C. Berthier, Y. Berthier, P. Butaud, W.G. Clark. J.A. Gillet, M. Horvatic, P. Segransan, and J.Y. Henry, Physicu C (Amsterdam), 1991. 185, 1141 (Chem. Abstr., 1992, 116, 97 950); Y. Kitaoka, K. Fujiwara, K. Ishida, S. Ohsugi, and K. Asayarna, Prog. Theor. Phys. suppl., 1990. 101.371 (Chem. Abstr., 1992, 116,205 560); M. Tackiki and S . Takahashi, Physica c (Amsterdam), 1991, 185-189, 1661 (Chem. Abstr., 1992, 116. 119 495); N. Bulut and D.J. Scalapino, Phys. Rev. Lett., 1992, 68. 706 (Chem. Abstr., 1992, 116, 119 513); V. Barzykin and L.P. Gor’kov, Phys. Rev. B: Condens. Matter, 1992,46, 3059 (Chem. Abstr., 1992, 117, 123 141); M. Tachiki, T. Koyarna. and S. Takahashi, Prog. Theor. Phys. Suppl., 1992. 108, 297 (Chem. Abstr., 1992, 117, 141 510).

z405 T. Ohno. K. Mizuno, T. Kanashiro. and H. Alloul, Physica C (Amsterdam). 1991, 185-189, 1067 (Chem. Abstr., 1992, 116, 119 482).

Z4O6 Y. Zha, Q. Si, and K. Levin, Physica c (Amsterdam), 1992,201.289 (Chem. Abstr., 1992, 117,263 202); Y. Iwarnoto, M. Matsumurn, H. Yamagata, K. Ishida, Y. Kitaoka. K. Asayama, H. Takagi, H. Iwabuchi, and S . Uchi&, J . Phys. Soc. Jpn., 1992.61.441 (Chem. Abstr., 1992, 116. 142 537); J.A. Martindale, S.E. Barrat. C.A. mug, K.E. O M , S.M. DeSoto, C.P. Slichter. T.A. Friedmann, and D.M. Ginsberg, Phys. Rev. Lett., 1992, 68,702 (Chem. Abstr.. 1992. 116, 142 504); Q. Shao, J. Tang, Y. Shen, J. Hu, and X . Xu, Fudan Xuebao, Ziran Kexueban, 1991, 30,235 (Chem. Abstr., 1992, 116. 141 423); F. Borsa, A. Rigarnonti, M.

Page 133: Nmr

Corti, J. Ziolo, O.B. Hyun, and D.R. Torgeson, Phys. Rev. Lett., 1992, 68, 698 (Chem. Abstr., 1992, 116, 119 512); R.E. Walstedt, R.F. Bell, L.F. Schneemeyer, J.V. Waszczak, and G.P. Espinosa, Phys. Rev. B: Condens. Matter. 1992,458074 (Chem. Abstr., 1992. 117.81 873); T. Tsuda, T. Ohno, and H. Yasuoka. J . Phys. SOC. Jpn., 1992, 61. 2109 (Chem. Abstr., 1992, 117, 61 233); T. Tsuda, H. Yasuoka. Y. Ueda, K. Kosuge, K. Kishio, K. Kitazawa, and T. Ohno, Physica C (Amsterdum), 1991,185, 1185 (Chem. Abstr., 1992, 116, 97 953); Yu.Ya Lileeva and Yu.S. Stark. Izv. Vyssh. Uchebn. Zuved., Chern. Metall., 1991, 70 (Chem. Abstr., 1992, 116, 33 030); Y. Kitoaka, K. Ishida, S. Ohsugi, K. Fujiwara, and K. Asayama, Physica C (Amsterdam). 1991, 185,98 (Chem. Abstr., 1992, 116, 97 931); J.A. Martindale, S.E. Barrett, C.A. Klug, K.E. OHara, S.M. DeSoto, C.P. Slichter, T.A. Friedmann, and D.M. Ginsberg, Physica C (Amsterdam). 1991, 185, 93 (Chem. Abstr.. 1992, 116, 97 930); M. Takigawa, J.L. Smith, and W.L. Hults, Physica C (Amsterdam), 1991, 185-189, 1105 (Chem. Abstr., 1992, 116,97 945); G. Blumberg and E. Joon, Physica C (Amsterdam), 1991, 185-189, 1063 (Chem. Abstr., 1992, 116, 96 834); Y.Q. Song and W.P. Halperin, Physica C (Amsterdam), 1992, 19, 131 (Chem. Abstr., 1992. 116, 206 364); M.W. Pieper, Physica C (Amsterdam). 1992,190,261 (Chem. Abstr., 1992, 116. 186 313); L. Hu, S.S. Wu, and K.W. Yu, Physica C (Amsterdam), 1991, 185-189, 1113 (Chem. Abstr., 1992, 116, 119 486); D. Ihle and N.M. Plakida, Physica C (Amsterdam), 1991, 185-189, 1637 (Chem. Absrr., 1992, 116. 118 425); Y. Itoh. H. Yasuoka, Y. Fujiwara, Y. Ueda. T. Machi, I. Tomeno, K. Tai, N. Koshizuka, and S . Tanaka, J. Phys. Soc. Jpn., 1992, 61, 1287 (Chem. Abstr., 1992, 117, 102 732); W. Goetz and H. Winter, J. Phys.: Condens. Mailer, 1992, 4, 6253 (Chem. Abstr., 1992, 117, 123 220).

2407 P. Carretta. M. C o d , A. Rigamonti. R. De Renzi, F. Licci, C. Paris, L. Bonoldi, M. Sparpaglione, and L. Zini, Physica C (Amsterdam), 1992, 191,97 (Chem. Abstr., 1992, 116, 186 326); P. Mendels, X. Labouze, G. Collin, and H. Alloul, Physica C (Amsterdam), 1991, 185-189, 1191 (Chem. Abstr., 1992, 116, 247 080).

2408 Z.P. Han, R. Dupree, D.M. Paul, A.P. Howes, and L.W.J. Caves, Physica C (Amsterdam), 1991, 181, 355 (Chem. Abstr., 1992, 116, 14 595); W J . Webster, D.P. Tunstall, P.F. Freeman, and J.R. Cooper, Physica C (Amsterdam), 1991, 185-189. 1079 (Chem. Absfr., 1992, 116, 97 942); P. Carretta and M. C o d , Phys. Rev. Lett.. 1992,68, 1236 (Chem. Abstr., 1992, 116, 186 309); H.B. Brom and H. Alloul, Physica C (Amsferdam). 1991, 185-189, 1789 (Chem. Abstr., 1992, 116. 119 498).

2409 J. Shore, S. Yang, J. Haase. D. Schwartz, and E. Oldfield, Phys. Rev. B: Condens. Matter, 1992, 46, 595 (Chem. Abstr., 1992, 117, 82 117).

2410 H. Niki, H. Kyan, T. Shinohara, S. Tomiyoshi, M. Ornori, T. Kajitani, T. Sato, and R. Igei, Physica C (Amsterdam), 1991, 185-189, 1133 (Chem. Abstr., 1992, 116, 118 382).

2411 V.V. Naletov, A.V. Egorov, R.Sh. Zhdanov, M.S. Tagirov, and M.A. Teplov. Fiz. Nizk. Temp. (Kiev), 1991, 17, 1341 (Chem. Abstr., 1992, 117, 19 016).

2412 D.P. Tunstall and W.J. Webster, High Temp. Supercond., Proc. LT-19 Satell. Conf. 1990, (Pub. 1991). S406 (Chem. Absrr., 1992, 116,267 647).

2413 R. Dupree, A. Gencten. and D.M. Paul, Physica C (Amsterdam), 1992. 193,81 (Chem. Abstr., 1992, 117. 38 789).

2414 Z.P. Han, R. Dupree, A. Gencten, R.S. Liu. and P.P. Edwards, Phys. Rev. Lett., 1992.69, 1256 (Chem. Abstr., 1992, 117, 182 685).

2415 K. lshida, Y. Kitaoka, N. Ogata. T. Kamino, and K. Asayama, Physica C (Amsterdam), 1991, 185-189, 1115 (Chem. Abstr., 1992, 116, 119 487).

2416 H. Alloul, P. Mendels. H. Casalta, J.F. Marucco, and J. Arabski, Phys. Rev. Lett., 1991, 67. 3140 (Chem. Abstr., 1992. 116, 32 470).

2417 H. Alloul, P. Mendels, H. Casalta. J.F. Marucco, and J. Arabski. Physica C (Amsterdam), 1991, 185-189, 1193 (Chem. Abstr., 1992, 116. 164 737).

2418 1. Mangelschots, M. Mali, J. Roos, D. Brinkmann, S. Rusiecki, J. Karpinski, and E. Kaldis, Physica C (Amsterdam), 1992, 194, 277 (Chem. Abstr., 1992, 117, 19 032).

2419 A.S. Alexandrov, Physica C (Amsterdam), 1991, 182, 327 (Chem. Abstr., 1992. 116, 33 026); H. Zimmermann, M. Mali, M. Bankay, and D. Brinkmann, Physica C (Amsferdam), 1991, 185, 1145 (Chem. Abstr., 1992. 116.97 845); T. Machi, I. Tomeno, T. MiyaIake, N. Koshizuka. T. Imai, and H. Yasuoka, Adv. Supercond. I I I , Proc. Int. Symp. Supercond., 3rd 1990, (Pub. 1991), 159. Ed. by K. Kajirnura and H. Hayakawa (Chem. Abstr., 1992, 117, 123 197).

2420 R. Dupree, Z.P. Han, D.M. Paul, T.G.N. Babu, and C. Greaves, Physica C (Amsterdam), 1991, 185. 1219 (Chem. Absfr., 1992. 116, 97 957); P. Carretta, Phys. Rev. E : Condens. Matter, 1992, 45. 5760 (Chem. Abstr., 1992, 116, 186 241).

2421 C.E. Lee. D. White, and P.K. Davies. J . Korean Phys. Soc., 1992, 25 , 244 (Chem. Abstr., 1992, 117. 182 644); J. Conard, C. Pemn, 0. Pena. and M . Sergent, J. Chim. Phys. Phys.-Chim. B i d . , 1992,89,393 (Chem.

Page 134: Nmr

134 Spectroscopic Properties of Inorganic und Organometallic Compounds

Absfr., 1992, 116, 267 659); H.T. Kim and H.B. Kang, Chongi Hakhoe Nonmunchi, 1992.41, 156 (Chem. Absfr., 1992,117, 13 062); B.H. Kim, H.B. Kang, and H.T. Kim, Chongi Hakhoe Nonmunchi, 1992.41, 525 (Chem. Absfr., 1992, 117. 141 496); V.V. Eremenko, V.I. Makarov, V.V. Zhukov, I.V. Krivoshei, I.G. Korsunskaya, V.Z. Kleiner, O.N. Ovcharenko, N.S. Tereshina, and E.N. Khats'ko, Fiz. Nisk. Temp. (Kiev), 1992, 18, 359 (Chem. Absfr., 1992, 117, 243 566).

2422 F. Borsa, M. Corti, T. Goto, A. Rigamonti, D.C. Johnston, and F.C. Chou, Phys. Rev. B : Condens. Marter, 1992, 45, 5756 (Chem. Absfr., 1992, 116, 186 324).

2423 S. Ohsugi, Y. Kitaoka, K. Ishida, and K. Asayama, Physica C (Amsferdam), 1991, 185, 1099 (Chem. Abstr., 1992, 116.96 838).

2424 T. Goto, K. Miyagawa, and T. Fukase, Physica C (Amsferdam), 1991, 185-189, 1081 (Chem. Absfr., 1992, 116, 97 943).

2425 I. Watanabe, K. Kumagai, and H. Nakajima, Physica C (Amsterdam), 1991, 185-189 , 1215 (Chem. Abstr., 1992. 116, 142 270).

2426 O.N. Bakharev, A.G. Volodin, A.V. Duglav, A.V. Egorov, M.S. Tagirov, and M.A. Teplov, Ftz. Nizk. Temp. (Kiev), 1991, 17, 1337 (Chem. Absfr., 1992, 117, 19 015).

2427 K. Kumagai, M. Abe, S. Tanaka, and T . Kishino, Physica C (Amsterdam), 1991, 185-189, 1073 (Chem. Abstr., 1992, 116, 119 483).

2428 S. Oh, I. Yu, and Z.G. Khim, Sue Mulli , 1992,32, 131 (Chem. Abstr., 1992, 116, 267 681). 2429 O.N. Bakharev, A.G. Volodin, A.V. Dooglav, A.V. Egorov, M.V. Eremin. A.Yu. Zavidonov, O.V. Lavazina,

M.S. Tagirov, and M.A. Teplov, Zh. Eksp. Teor. Fiz., 1992, 101, 693 (Chem. Abstr., 1992, 117, 123 209). 2430 N.M. Suleimanov, A.D. Shengelaya, R.G. Mustafin, E.F. Kukovitskii, P.W. Klamut, G.W. Chadzynski, H.

Drulis, and J. Janczak, Physica C fAmsterdam), 1991, 185-189,759 (Chem. Abstr., 1992, 116.97 939). 2431 A.V. Egorov, H. Luetgemeier, D. Wagener, A.V. Dooglav, and M.A. Teplov, Solid State Commun.. 1992,83,

111 (Chem. Absrr., 1992, 117, 122 477). 2432 M.A. Teplov, O.N. Bakharev, A.V. Duglav, A.V. Egorov, M.V. Eremin, M.S. Tagirov, A.G. Volodin, and

R.Sh. Zhdanov, Physica C (Amsterdam), 1991, 185, 1107 (Chem. Absfr., 1992, 116,97 946). 2433 O.N. Bakharev, A.V. Duglav, A.V. Egorov, V.V. Naletov, M.P. Rodionova, M.S. Tagirov, and M.A. Teplov,

Appl. Magn. Reson., 1991, 2, 559 (Chem. Absfr., 1992, 117, 61 212). 2434 0. Okada, T. Oashi, K. Kumagai, T . Noji, Y. Koike, and Y. Saito, Physica C (Amsferdam), 1991, 185-189,

1075 (Chem. Abstr., 1992, 116, 119 484). 2435 F.J.M. Benschop, H.B. Brom, and W.J.A. Maaskant, Physica C (Amsterdam), 1992, 201, 109 (Chem. Abstr.,

1992, 117. 243 572). 2436 Yu.A. Zhdanov, B.A. Aleksashin, K.N. Mikhalev, V.V. Lavrent'ev, E.Yu. Medvedev, S.V. Verkhovskii, A.Yu.

Yakubovskii, V.I. Ozhogin, L.D. Shustov, and A.B. Myasoedov, Fiz. Nizk. Temp. (Kiev), 1991, 17, 1289 (Chem. Absfr., 1992, 116, 226 796).

2437 Y.Q. Song, M. Lee, W.P. Halperin, L.M. Tonge, and T.J. Marks, Phys. Rev. Bc Condens. Matier, 1992, 45, 4945 (Chem. Abstr., 1992, 116, 186 322).

2438 Iu.1. Zhdanov, B.A. Aleksashin, K.N. Mikhalev, V.V. Lavrent'ev, S.V. Verkhovskii, A.Yu. Yakubovskii, V.I. Ozhogin, L.D. Shustov, and A.B. Myasoedov, Physica C (Amsterdam), 1991, 183,247 (Chem. Absfr., 1992, 116, 73 601).

2439 J.T. Moonen, D. Reefman, J.C. Jol, H.B. Brorn, T. Zetterer, D. Hahn, H.H. Otto, and K.F. Renk, Physica C (Amsterdam), 1991, 185-189, 1891 (Chem. Absfr., 1992, 116, 119 500).

2440 T. Goto, T. Shinohara, T. Sato, S. Nakajima, M. Kikuchi, Y. Syono, and T. Fukase, Physica C (Amsterdam), 1991, 185, 1077 (Chem. Abstr., 1992. 116.97 941).

2441 A.K. Rajarajan, A. Sundaresan, R. Kumar, M. Sharon, L.C. Gupta, and R. Vijayaraghavan, J. Phys.: Condens. Mafter , 1992, 4, 6971 (Chem. Abstr., 1992, 117, 162 700).

2442 S. Kambe, Y. Yoshinari, H. Yasuoka, A. Hayashi, and Y. Ueda, Physica C (Amsterdam), 1991, 185-189, 1181 (Chem. Absfr., 1992, 116. 119 491).

2443 K. Fujiwara, Y. Kitaoka, K. Asayama. K. Shimakawa, T. Manako, and Y. Kubo, Physica C (Amsferdam), 1991, 185, 1111 (Chem. Absfr., 1992, 116, 97 947).

Page 135: Nmr

Nuclear Magnetic Resonance Spectroscopy 135

205Tl),2444 (205T1),2445 Pb2Sr2Y0.5Ca0.5Cu308+~, (207Pb),2446 LixBi2Sr2CaCu208+& (7Li),2447

Bi2Sr2Ca2Cu30 10, ( 70),2448 (Bi,Pb)2Sr2Ca2Cu3OY, ('70) ,2449 (63 Cu) ?450 La2Cu04, (63Cu,

13%a),a51 (139La),252 La,Sq,VOg, (51V),2453 and

57Fe NMR spectroscopy has been used to study Lu2Fe17Ax, A = N, C, H.2455 l H NMR

spectroscopy has been used to study CeNiA1HX.2456 The 13C and 29Si NMR data for [(qs- CgMeg)La( CH(SiMe3)2) BPh41 have been reported.2457 147Sm and 149Sm NMR spectra of Sm2Fe17N2.5 have been reported.2458 The l3C CP/MAS NMR spectra of lanthanide Schiff base complexes have been used to determine the lanthanide magnetic m0ment .2~~9 Comparison of

experimental and calculated 23Na NMR spectra of complexes containing lanthanide cations indicate that

paramagnetic effects in MAS NMR spectra can yield quantitative structural infonnation.240 Multiple-

frequency decoupling in MAS NMR spectra of Eu(@CCH3)3.4H20 and NdNa(EDTA).BH20 has

2444 N.E. Alekseevskii, E.G. Nikolaev, A.V. Mitin, E.P. Khlybov, Yu.1. Zhdanov, B.A. Aleksashin, K.N. Mikhalev, S.V. Verkhovskii, V.V. Lavrent'ev. and E.Yu. Medvedev, Physica C (Amsterdam), 1992, 192, 147 (Chem. Abstr., 1992, 116, 186 330).

2445 O.M. Vyaselev, N.N. Kolesnikov, M.P. Kulakov, and I.F. Shchegolev, Physica C (Amsterdam), 1992, 199, 50 (Chem. Abstr., 1992, 117, 183 500); K. Fujiwara, Y. Kitaoka, K. Ishida, K. Asayama, Y. Shimakawa, T. Manako, and Y. Kubo, Physica C (Amsterdam), 1991, 184,207 (Chem. Abstr., 1992, 116, 74 631); T. Goto, T. Shinohara, T. Sato, T. Fukase, S. Nakajima, M. Kikuchi, and Y . Syono, Adv. Supercond. I I I , Proc. Int. Symp. Supercond.. 3rd 1990, (Pub. 1991), 155. Ed. by K. Kajimura and H. Hayakawa (Chem. Abstr., 1992, 117, 123 196); O.M. Vyaselev, NN. Kolesnikov, M.P. Kulalkov, and I.F. Schegoley, Physica C (Amsterdam), 1992, 200.434 (Chem. Abstr.. 1992, 117. 224 178).

2446 T. Kohara, K. Ueda, Y. Kohori, T. Noji, Y. Koike, and Y . Saito, J. Magn. Magn. Mater., 1992, 104- 107(Proc. Int. Conf. Magn., 1991, Pt. 1). 525 (Chem. Abstr., 1992, 116, 226 777).

2447 N.A. Fleischer, J. Manassen, P. Coppens, P. Lee, Y. Gao, and S.G. Greenbaum, Physica C (Amsterdam), 1992, 190, 367 (Chem. Abstr., 1992, 116, 183 41 1).

2448 A.P. Howes, R. Dupree, D.M. Paul, and S. Male, Physica C (Amsterdam), 1991, 185-189, 1137 (Chem. Abstr., 1992, 116, 118 384); A.P. Howes. R. Dupree, D.M. Paul, and S. Male. Physica C (Amsterdam), 1992, 193, 189 (Chem. Abstr., 1992, 116, 267 490).

2449 A. Trokiner, L. Le Noc, J. Schneck, A.M. Pougnet, R. Mellet, J. Primot, and H. Savary, Ferroelectrics, 1992, 128, 149 (Chem. Abstr., 1992, 117, 18 352); L. Le Noc, A. Trokiner, J. Schneck, A.M. Pougnet. R. Mellet, J. Primot. and H. Savary, J. Chim. Phys. Phys.-Chim. Biol., 1992, 89,387 (Chem. Absfr., 1992, 116, 226 782); A. Trokiner, L. Le Noc. J. Schneck, A.M. Pougnet, R. Mellet, and H. Savary, Physica C (Amsterdam), 1991, 185-189, 1143 (Chem. Abstr., 1992, 116, 97 951); N.H. Hur, Y.K. Park, J.C. Park, Y.H. KO, and H.C. Lee, Solid State Commun., 1992, 82, 547 (Chem. Abstr., 1992, 117, 38 061).

2450 B.W. Statt and L.M. Song, Physica C (Amsterdam). 1991, 183,372 (Chem. Abstr., 1992, 116.97 920). 2451 T. Kohara, K. Ueda, Y. Kohori, and Y. Oda, Physica C (Amsterdam), 1991, 185, 1189 (Chem. Abstr., 1992,

116, 97 955); T. Kohara, K. Ueda, Y. Kohori, and Y. Oda, J. Magn. Magn. Mater., 1992, 104-107 (Proc. Int. Conf. Magn., 1991, Pt. l) , 523 (Chem. Abstr., 1992, 116. 226 776).

2452 P.C. Hammel. E.T. Ahrens, A.P. Reyes, R.H. Heffner, P.C. Canfield, S.W. Cheong, Z. Fisk, and J.E. Schirbex, Physica C (Amsterdam). 1991, 185, 1095 (Chem. Absfr . , 1992, 116, 97 944); V.D. Doroshev, V.N. Krivoruchko, M.M. Savosta, A.A. Shestakov, and D.A. Yablonski, Zh. Eksp. Teor. Fiz., 1992, 101, 190 (Chem. Abstr., 1992, 116. 226 799); V.A. Borodin, V.D. Doroshev, S.F. Ivanov, M.M. Savosta, and E.E. Solov'ev, Fir. Tverd. Tela (Leningrad), 1991.33, 1699 (Chem. Abslr., 1992, 116,226 756).

2453 A.V. Mahajan, D.C. Johnston, D.R. Torgeson, and F. Borsa, Physica C (Amsterdam), 1991, 185-189, 1195 (Chem. Abstr., 1992, 116, 164 738).

2454 K. Kobayashi, Y. Goto, S. Matsushima, and G. Okada, J. Mater. Sci. Lett., 1991, 10, 1386 (Chem. Abstr., 1992, 116,65 269).

2455 C. Kapusta, M. Rosenberg, H. Figiel, T.H. Jacobs, and K.HJ. Buschow, J . Magn. Magn. Mater., 1992, 104- 107(Proc. Int. Conf. Magn., 1991, Pt. 2), 1331 (Chem. Abstr., 1992, 117, 19 012).

2456 B. Bandyopadhyay, K. Ghoshray, A. Ghoshray, and N. Chatterjee, Phys. Rev. B: Condens. Matter, 1992, 46, 2912 (Chem. Abstr., 1992. 117, 203 755).

2457 C.J. Schaverien, Organometallics. 1992, 11, 3476. 2458 C. Kapusta, M. Rosenberg, R.G. Graham, P.C. Riedi, T.H. Jacobs, and K.H.J. Buschow, J . Magn. Magn.

Mater., 1992, 104-107(Proc. Int. Conf. Magn., 1991, Pt. 2). 1333 (Chem. Abstr., 1992, 116, 247

2459 K.D. Matthews. S.A. Bailey-Folkes, I.A. Kahwa. G.L. McPherson, C.A. O'Mahoney, S.V. Ley, D.J. Williams,

2460 A.R. Brough, C.P. Grey, and C.M. Dobson, J. Chem. SOC., Chem. Commun., 1992, 142.

101).

C.J. Groomsbridge, and C.A. OConnor, J . Phys. Chem.. 1992.96, 7021.

Page 136: Nmr

136 Spectroscopic Properties of Inorganic and Organometallic Compounds

been observed.2461 The 121Sb Knight shift and 121Sb and 123Sb T i in U3Ni3Sb4 have been

measured.2Q62 170 NMR spectra have been measured for lanthanide oxides.2463 The site preference

of bismuth in YIG epitaxial films has been studied by 57Fe NMR spectroscopy.2464 The procedure of satellite transition spectroscopy for 27Al MAS NMR experiments has been applied to YAG, Al2O3,

and A12TiOs.265 The structure of ytmum aluminosilicate glasses has been investigated using 27Al

and 2% NMR spectro~copy.”~6 The state of aluminium in silica glass doped with neodymium and aluminium has been investigated by 27Al NMR spe~t roscopy.2~6~ NMR spectrometry of non- spinning samples using susceptibility matching has been described and applied to 1%n MAS NMR

spectra of Yb$n207 and N d ~ S n 2 0 7 . ~ ~ ~ ~ 77Se NMR spectroscopy has been used to study valence fluctuation in Sm3Se4.u69 NMR spectra of LiYF4 have been rep0rted.2~0 Metal-metal bonding in

Y2Cl3 has been investigated by 89Y NMR spectroscopy.2q71 Fluorine spin frozen core in Pr3+ doped

LaF3 has been observed by cross relaxation.272

The 47Ti and 49Ti Knight shift and Ti in TiHz have been measured.2473 Anomalous 1H Ti values

have been observed for ZrH2 at high temperat~res.24~4 The 912, NMR signals in the tetragonal phase

of ZrH2 have been mea~ured.24~5 91Zr NMR signals have been observed from ZrH2, ZrC, and

z 1 0 2 . 2 ~ ~ ~ Solid-state 13C CP/MAS NMR spectroscopy has been used to show that the solid reaction

product of [(~5-C5H5)2Zr(13CH3)2] and [Al(CH3)0], is a cation like [(q5-C5H5)2Zr(CH3)]+

species.2477 The polymorphic identification of oxotitanium phthalocyanines has been performed using l3C CP/MAS NMR spectroscopy.2478 Solvent effects on the relaxation of solid-state 13C NMR

2461 D.P. Raleigh, C.P. Grey, N. Soffe. and C.M. Dobson, J . Magn. Reson.. 1992, 97, 162. 2462 T. Ohama, H. Yasuoka, T. Takabatake, S. Miyata, and H. Fujii, J. Phys. SOC. Jpn., 1992, 61,437 (Chem.

2463 S . Yang. J. Shore, and E. Oldfield, J . Magn. Reson.. 1992,99,408. 2464 A. Camps, J. Englich, H. Luetgemeier, M. Marysko, P. Novak, and W. Zinn, J . Mugn. Magn. Mufer., 1992,

2465 C. Jiiger. J. Magn. Reson., 1992,99. 353. 2466 J.T. Kohli. J.E. Shelby, and J.S. Fryer, Phys. Chem. Glasses, 1992, 33, 73 (Chem. Abstr., 1992, 117, 711). 2467 T. Fujiyama, T. Yokoyama, M. Hori, and M. Sasaki, J . Non-Crysf. Solids, 1991, 135, 198 (Chem. Abstr.,

2468 C.P. Grey, C.M. Dobson, and A.K. Cheetham, J . Magn. Reson., 1992,98,414. 2469 S. Takagi, H. Suzuki, A. Ochiai, and T. Suzuki. J . Magn. Magn. Mufer., 1992, 116, 77 (Chem. Absfr., 1992.

117, 244 350). 2470 A.A. Markelov. R.N. Zaripov, A.A. Galeev, D.I. Vainshtein, G.R. Bulka, N.M. Nizamutdinov, N.M.

Khasanova. N.B. Angert, N.I. Borodin, ct al., Spektroskopiya, Kristallokhimiyu i Real. Sfruktura Mineralov i ikh Analogov Kazan, 1990. 92. From Ref. Zh., Geol., 1991, Abstr. No. 9V219 (Chem. Absfr., 1992, 116, 186 288).

2471 R.K. Kremer, H.J. Mattausch, A. Simon, S. Steuernagel, and M.E. Smith. J . Solid Sfate Chem., 1992,96, 237 (Chem. Abstr.. 1992, 116, 96 732).

2472 L.L. Wald. E.L. Hahn, and M. Lukac, J . Opt. SOC. Am. B: Opf . Phys., 1992, 9,789 (Chem. Abstr., 1992, 116, 267 695).

2473 B. Nowak, O.J. Zogal, and K. Niedzwiedz, J . Alloys Compd.. 1992,186,53 (Chem. Absfr., 1992, 117, 123 205).

2474 J.W. Han, D.R. Torgeson, R.G. Barnes, and D.T. Peterson, Phys. Rev. B: Condens. Matter, 1991, 44, 12 353 (Chem. Abstr., 1992, 116, 119 476).

2475 O.J. Zogal. B. Nowak, and K. Niedzwiedz. Solid Stare Commun., 1991,80,601 (Chem. Abstr., 1992, 116,74 619); O.J. Zogal, B. Nowak. and K. Niedzwiedz, Solid Slate Commun., 1992.82.351 (Chem. Absfr . , 1992, 116, 267 699).

U 7 6 T.J. Bastow, M.E. Smith, and S.N. Stuart, Chem. Phys. Lett., 1992, 191, 125 (Chem. Abstr., 1992, 116, 226 801).

2477 C. Sishta, R.M. Hathorn, and TJ. Marks, J . Am. Chem. SOC., 1992, 114, 1112. 2478 T. Enokida, Jpn. J . Appl. Phys.,Parf 2 , 1992,31, L1135 (Chem. Absfr.. 1992. 117, 141 OOO).

Absrr., 1992. 116, 142 536).

104-107(Proc. Int. Conf. Magn., 1991, Pt. l ) , 431 (Chem. Absfr., 1992, 116, 226 709).

1992, 116,26 227).

Page 137: Nmr

Nuclear Magnetic Resonance Spectroscopy 137

spectra of titanylphthalocyanine have been studidB79 Phase formation in the LiFe02-Li4Ti04 system has been studied by 7Li NMR spectroscopy.2480

The establishment of a strong metal-support interaction in R W i @ catalysts has been studied by lH NMR spectroscopy as a function of hydrogen reduction.2481 1 7 0 NMR spectroscopy has been used to study the titania sol-gel polymerization.2482 Perovskite-type complex oxides have been studied by 47Ti and 49Ti NMR spectroscopy.~3 Titania dispersed in a zeolite has been studied using 29% NMR s p e ~ t r o s c o p y . 2 ~ 8 ~ Zirconia-toughened cordierite powders have been examined by 27Al NMR spectroscopy.~5 Solid-state 2% NMR spectroscopy has provided evidence for heternondensation of Si&Ti in organically modified silicon titanates.2486 Porous silica gels and titanidsilica oxides prepared via the sol-gel process have been characterised using 2% NMR spectroscopy.2487 27Al and 29Si NMR spectroscopy has been used to investigate titanium containing silicate glasses.2488 The %i NMR spectrum of the titanium silicate molecular sieve TS-1 has been reported.2489 The variable temperature 2% MAS NMR spectroscopy has been used to correlate the monoclinic-orthorhombic transition temperature of titanosilicalite TS-1 with the titanium content.290 The 51V NMR specaum of V205/Ti02/SiO2 has been reported.2491 Crystalline sodium zirconium phosphates have been investigated by 3lP NMR spectroscopy.2492 Na+ ion exchange in NalxZr2SixP3-x012 has been studied using 23Na nutation NMR spectroscopy.a93 Ultrafine particles of amorphous Ti@, stabilized by an alkylalkoxysilane have been investigated by 29Si NMR spectroscopy, which was used to show that the degree of hydrophobicity is correlated with the dispersion of the p a ~ t i c l e s . ~ 9 ~

Solid-state l3C and 3lP NMR spectra of uniaxially oriented films of layered [Zr(03PCH2COOH)2] have been quantitatively interpreted.2495 The structure of amine-intercalated a-zirconium phosphate

2479 T. Harazono, I. Takagishi, and T. Matsuzaki, Anal. Sci., 1991, 7(Suppl., Proc. Int. Congr. Anal. Sci.,

2480 V.V. Murashko and N.V. Poromikov, Zh. Neorg. Khim., 1992,37,918 (Chem. Abstr.. 1992,117, 162 761). 24*1 J.P. Belzunegui, J. Sanz, and J.M. Rojo. J . Am. Chem. SOC., 1992. 114, 6749. 2482 V.W. Day, T.A. Eberspacher. W.G. Klemperer, C.W. park. and F.S. Rosenberg, Chem. Process. Adv. Muter.,

1992,257. Ed. by L.L. Hench and J.K. West, Wiley, New York (Chem. Abstr.. 1992,117.238 632). 2483 W.J.M. Verrneiren, I.D.M.L. Lenotte, J.A. Martens, and P.A. Jacobs, Stud. Surf. Sci. Catal.. 1991,61, 33

(Chem. Abstr., 1992, 116, 8611). 2484 S. Yarnagata, K. Mineo, N. Murao, S. Ohta, and I. Mizoguchi, Denki Kagaku oyobi Kogyo Butsuri Kagaku,

1991, 59,871 (Chem. Abstr., 1992, 116, 71 958). 2485 M. Okuyarna, T. Fukui, and C. Sakurai, Ceram. Trans., 1991, 22(Ceram. Powder Sri. 4). 675 (Chem.

Absrr., 1992, 116, 219 994). 2486 C.L. Schutte, J.R. Fox, R.D. Boyer, and D.R. Uhlmann, Ultrastruct. Process. Adv. Muter., [Proc. Int. Conf.

Ultrastruct. Process. Ceram., Glasses Compos.], 4rh 1989, (Pub. 1992), 95. Ed. by D.R. Uhlmann and D.R. Ulrich (Chem. Abstr., 1992, 117, 176 846).

2487 M. Schraml-Marth. K.L. Walther, A. Wokaun, B.E. Handy, and A. Baiker, J . Non-Cryst. Solids, 1992, 143.93 (Chcm. Abstr., 1992, 117. 54 404).

2488 E. Schneider, J. Wong, and J.M. Thomas, J . Non-Crysr. Solids, 1991, 136, 1 (Chem. Abstr., 1992. 116, 65 129).

2489 A. Thangaraj and S. Sivasanker, J. Chcm. SOC., Chem. Commun., 1992, 123. 2490 A. Tuel and Y.B. Taarit, J . Chem. Soc., Chem. Commun., 1992, 1578. 2491 J.P. Solar, P. Basu, and M.P. Shatlock, Catal. Today, 1992. 14,211 (Chem. Abstr.. 1992, 117, 15 109). 2492 M.K. Dongare, P. Singh. and P.M. Suryavanshi. Muter. Rex Bull., 1992, 27.637 (Chem. Abstr., 1992, 117,

2493 H. Ohki and N. Nakamura, 2. Naturfarsch.,A, 1992,47, 319 (Chem. Abstr., 1992, 116. 163 371). 2494 S. Okanishi, H. Shimakawa. and N. Kawata, Kagaku Kogaku Ronbunshu, 1992,18,303 (Chem. Abstr., 1992,

2495 D.A. Burwell, K.G. Valentine, and M.E. Thompson, J . Magn. Reson., 1992,97,498; D.A. Burwell, K.G.

1991.R. 2), 1301 (Chem. Abslr.. 1992, 116, 226 781).

38 956).

117, 10 896).

Valentine, J.H. Timmermans, and M.E. Thompson, J . Am. Chem. Soc., 1992, 114,4144.

Page 138: Nmr

138 Spectroscopic Properties of Inorganic and Organornetallic Compounds

has been investigated using solid-state 31P NMR spectroscopy.2496 A 2H NMR study of an oriented

thin film of a microcrystalline ferrocenylethy1amine.zirconium hydrogen phosphate intercalation

compound has shown that the ferrocenyl group lies with its C5 axis parallel to the layers of the host

solid.2497 Phosphate modification of porous ZrO2 has been investigated using 3l P NMR

spectroscopy.2498 13C and 31P MAS NMR spectroscopy has been used to study

[Zr( (03POH),(03PC12H25)1-x) 2].2499 The l9Sn NMR spectrum of ZnSnOg/PbZrO3 has been reported.300 The state of water in Mlx(OH2)y[M2E2], M1 = Na, K; M2 = Ti, V, Nb, Ta, Mo, W; E = S, Se, has been investigated by IH NMR spectroscopy.25o1

'H Ti measurements have provided evidence for the high-temperature spin-relaxation anomaly in Nbo5V0.5H036.2502 lH and 51V Knight shifts and 51V T1-l values have been studied as a function of temperature and hydrogen content.2503 The l 3 C CP/MAS NMR spectrum of

[TaC12( CgH3(CHzNMe2)2-2,6) (=CHBut)] has been reported.25o4

The 7Li NMR spectrum of electrochemically inserted LixV205 has been reported.2505 The 5lV

Knight shift and quadrupole interaction in the low-temperature phase of LiVO2 have been determined.25M The quadrupole coupling constants of 9Li and l1Li in LiNbO3 have been measured by P-NMR spectroscopy.2507 The temperature dependence of 7Li NMR spectra in a ferroelectric

LiTa03 single crystal has been reported.2508 The 7Li NMR spectrum of LiTa03 has been measured using double-quantum coherence dete~t ion.~~O9 The interaction of V2O5 with sepiolite has been studied by 51V solid-state NMR spectroscopy.z10 V2O5 catalysts supported on TiO2-ZrOz have been

characterized by IH and 51V NMR spectroscopy.2511 V2O5 promoted Rh/Si@ catalyst precursors have been characterized by 51V NMR spectroscopy and it was shown that V2O5 is present along with

RhV04.2512 Crystalline CdNb2O6 has been characterised by l3Cd NMR spectroscopy.2513 5lV

2496 D.J. MacLachlan and K.R. Morgan,J. Phys. Chem., 1992.96, 3458. 2497 C.F. Lee, L.K. Myers, K.G. Valentine, and M.E. Thompson, J. Chem. Soc., Chem. Commun.. 1992, 201, 2498 W.A. Schafer. P.W. Cam, E.F. Funkenbusch, and K.A. Parson, J. Chromatogr., 1991,587, 137 (Chem. Abstr.,

2499 K. Segawa, N. Kihara, and H. Yamamoto, J. Mol. Card.. 1992,74,213. 2500 M.J. Hampden-Smith, T.A. Wark, L.C. Jones, and C.J. Brinker. Ceram. Trans., 1992, 25(Ferroelectr.

2501 M. Lobert, W. Milller-Warmuth, H. Katzke, and R. Scht5llhom. Eer. Bunsenges. Phys. Chem., 1992,96, 1564. 2502 D.B. Baker, N. Adolphi, M.S. Conradi, P.A. Fedders, R.E. Norberg, R.G. Barnes, and D.R. Torgeson, Phys.

Rev. B: Condens. Mutter, 1992,46, 184 (Chem. Abstr., 1992, 117. 102 756). 2503 A.V. Skripov. M.Yu. Belyaev, K.N. Mikhalev, and A.P. Stepanov, J. Alloys Compd., 1991, 177,63 (Chem.

Abstr., 1992, 116, 119 481). 2504 H.C.L. Abbenhuis, N. Feiken, D.M. Grove, J.T.B.H. Jastrzebski, H. Kooijman, P. van der Sluis, WJJ. Smeets,

A.L. Spek, and G. van Koten, J. Am. Chem. Sac.. 1992, 114, 9773. 2505 J.M. Cocciantelli. K.S. Suh, J. Senegas, J.P. Doumerc, and M. Pouchard. J. Phys. Chem. Solids, 1992, 53, 57

(Chem. Abstr.. 1992, 116. 164 831); J.M. Cocciantelli, K.S. Suh, J. Senegas, J.P. Doumerc, J.L. Soubeyroux, M. Pouchard, and P. Hagenmuller, J. Phys. Chem. Solids, 1992.53.51 (Ckm. Abstr., 1992, 116, 164 830).

2506 J. Kikuchi, S. Kambe, H. Yasuoka. Y. Ueda, K. Tomimoto. and J. Akimitsu, J. Phys. SOC. Jpn., 1991, 60, 3620 (Chem. Abstr., 1992, 116.50 097).

2507 E. Arnold. J. Bonn, A. Klein, R. Neugart, M. Neuroth, E.W. Otten. P. Lievens, H. Reich, and W. Widdra, Phys. Lett. B , 1992,281, 16 (Chem. Abstr., 1992, 117. 15 322).

2508 T.H. Yeom, S.H. Choh, and K.S. Hong, J. Korean Phys. SOC., 1992,25,62. 2509 P.P. Man, Mol. Phys., 1992. 76, 1119. 2510 M.L. Occelli, R.S. Maxwell, and H. Eckert, J. Catof., 1992,137,36 (Chem. Abstr., 1992, 117, 179 203). 251 B.M. Reddy, E.P. Reddy, S.T. Snnivas, V.M. Mastikhin, A.V. NOSOV, and O.B. Lapina, J. Phys. Chem., 1992,

96, 7076. 2512 O.B. Lapina, V.M. Mastikhin. A.V. Nosov, T. Beutel, and H. Knoezinger, Catal. Lett., 1992, 13,203 (Chem.

Abstr., 1992. 117, 77 478). 2513 S. Boulmaaz, R. Papiernik, and L.G. Hubert-Pfalzgraf, Chem. Process. Adv. Muter., 1992, 239. Ed. by L.L.

1992, 116, 68 256).

Films), 187 (Chem. Abstr., 1992, 117. 32 415).

Page 139: Nmr

Nuclear Magnetic Resonance Spectroscopy 139

N M R spectroscopy has been used to study strongly bound V2O5 in V205-&03 catalysts.2514 The solid-state 13C N M R spectra of dioxovanadate complexes have been reported.2515 Vanado-, ferri- and gallo-silicate catalysts have been characterized by 2% NMR spectroscopy.2516 The nature of vanadium sites in vanadium silicalite has been investigated using 51V NMR spe~troscopy.~~1~ The quadrupole and anisotropic shielding tensors of 51V in NH4VO3 and V2O5 have been de te~mined .~~ l~ Magnetic interactions in a - V O ( H P 0 4 ) . 2 H 2 0 have been studied using 31P solid-state N M R

spectroscopy.~19 The catalyst precursors for the oxidation of butane to maleic acid, prepared from V 2 O 5 and H 3 P 0 4 , have been investigated using 31P,2520 and by both 31P and 51V N M R

spectroscopy.2521 The 31P and 51V NMR spectra of (VO)2P2O7 have been reported.2522 The 2mBi NMR spectra of a ferroelastic BiVO4 single crystal have been investigated.2523 27Al, %i, and 31P

N M R spectroscopy has been used to study the structure of some gels and glasses, such as NaqNb(PO4)g and lead phosphosilicate.2524 NbSej has been investigated using 93Nb N M R

spectroscopy.2525 The intercalation of [A104Al 12(0H)24(0H2)12I7+ into M o o 3 and 2H-TaS2 has been investigated using 27Al NMR spectroscopy.326

The first l83W CP/MAS NMR spectra have been determined.2527 The fitting procedure for the extraction of the characteristic N M R parameters from solid-state NMR powder patterns has been described and applied to 2H in [ E Q N ] [ ~ H C ~ ~ ( C O ) ~ ~ ] , 1H coupled 13C in cis-[(q5-C5H5)2Fe2(CO)3(p- '3CH2)], and (14N1195Pt)-coupled 13C in K2Pt(CN)4.3H20.2528 The principal components of the l3C chemical shift anisotropies of the CO ligands in [(~$-C@@j)Cr(C0)3], and the CS ligand in [(q6-

C6H6)Cr(C0)2(CS)] have been determined.2529 The effect of ring size and bond angle on 8(3lP),

SesMo), 8(183W), 8(195Pt) and lJ(M31P) has been investigated for [M(C0)4( Ph2P(CH2)nPPh2)], M

= Mo, W, and [PtC12(Ph2P(CH2)nPPh2]].2530 The 13C and 31P CP/MAS N M R spectra of two

Hench and J.K. West (Chem. Abstr.. 1992. 117.238 630). 2514 Z. Sobalik, M. Markvart, P. Stopka, O.B. Lapina, and V.M. Mastikhin, J. Mol. Catal., 1992,71,69. 2515 M.H. Lee, Anal. Sci., 1991, 7 (Suppl. Proc. Int. Congr. Anal. Sci., 1991,Pt . 2), 1355 (Chem.

2516 S.B. Hong, C.G. Kim, Y.S. Uh, Y.K. Park, and S.1. Woo, Korean J . Chem. Eng., 1992,9, 16 (Chem. Absir.,

2517 G. Centi, S. Perathoner, F. Trifir6, A. Aboukais, C.F. Ai'ssi, and M. Guelton, J. Phys. Chem., 1992, 96, 2617. 2518 J. Skibsted, N.C. Nielsen, H. Bildsoe, and H.J. Jakobsen, Chem. Phys. Lett., 1992, 188,405. 2519 G. Villeneuve, K.S. Suh, P. Amoros, N. Casan-Pastor, and D. Beltran-Porter, Chem. Muter.. 1992, 4, 108

(Chem. Abstr., 1992, 116, 74 607). 2520 E.A. Lombardo, C.A. Sanchez, and L.M. Cornaglia. Catal. Today, 1992, 15,407 (Chem. Abstr., 1992, 117,

240 526). 2521 J. Li, Report, 1991, IS-T-1454; Order No. DE92001692. 97 pp. Avail. NTIS. From Energy Res. Abstr., 1992,

17, Abstr. No. 1129 (Chem. Abstr., 1992, 117, 153 147). 2522 F.B. Abelouahab, R. Olier, N. Guilhaume, F. Lefebvre, and J.C. Volta, J. Catal . , 1992, 134, 151 (Chem.

Abstr., 1992, 116, 114 293). 2523 A.R. Lim, S.H. Choh, and M.S. Jang, J. Phys.: Condens. Matter, 1992, 4, 1607 (Chem. Abstr., 1992, 116,

142 535). 2524 K.J. Rao and S. Prabakar, Magn. Reson., 1991,243. Ed. by C.L. Khetrapal and G. Govil. (Chem. Abstr., 1992,

117, 136 085). 2525 J. Shi, J. Chepin, and J.H. Ross, jun., Phys. Rev. Lett., 1992, 69, 2106 (Chem. Abstr.. 1992, 117, 224 968);

J. Shi and J.H. Ross, jun., Phys. Rev. B: Condens. Matier, 1992, 45, 8942 (Chem. Abstr., 1992, 116, 247 134); J. Ren and M.H. Whangbo, Phys. Rev. B : Condens. Matter, 1992,46,4917 (Chem. Abstr., 1992, 117, 178 615).

Abstr., 1992, 116, 247 096).

1992, 117, 158 383).

2526 A. Lerf, E. Lalik, W. Kolodziejski, and J. Klinowski, J . Phys. Chem., 1992, 96, 7389. 2527 L.H. Merwin and A. Sebald, Solid State Nucl. Magn. Reson., 1992, 1,45 (Chem. Abstr., 1992, 117, 82 078). 2528 A.J. Kim and L.G. Butler, Concepts Magn. Reson., 1992,4,205 (Chem. Abstr., 1992, 117, 142 113). 2529 Y. Huang, D.F.R. Gilson, I.S. Butler, and F.G. Morin, fnorg. Chem., 1992.31, 322. 2530 E. Lindner, R. Fawzi, H.A. Mayer, K. Eichele, and W. Hiller, OrganometaUics, 1992, 11, 1033.

Page 140: Nmr

140 Spectroscopic Properties of Inorganic and Organometallic Compounds

isomers of [MqCk(dppe)2] have been given and used to monitor the isomerism of the a-form to the

p-form.2531

53Cr and 57Fe NMR spectroscopy has been used to study Cr3+ ion distribution in

Li0.5Fe2.5-~Cr,04.2532 The valence of chromium in a Phillips polymerization catalyst has been

studied by 29Si CP/MAS NMR spectroscopy.2533 1H NMR lineshapes have been used to locate

protons in HxMo03.2534 A 27Al NMR study of molybdenum bronze intercalated with aluminium

polyoxycations has been The effect of hydration on A12(Mo04)3 has been investigated

using solid-state 27Al and 95Mo NMR s p e c t r o s ~ o p y . ~ ~ ~ The sol-gel synthesis of tungsten

trioxide thin films has been investigated using 'H, 13C, and 183W NMR spectroscopy.2537 Vanadium

in Q P V M o 1 1 0 4 0 and N a l . ~ H 2 . ~ V M o i 1 0 4 0 on dehydration has been investigated by 51V NMR spectroscopy.2538 Solid-state 3 lP NMR spectroscopy has been used to show that Cs2.5Ho.5PW12040

is really a mixture of Cs2HPW 12040 and Cs3PW 12040.2539 31P NMR spectroscopy has been used to

investigate H3PW12040xH20 at different hydration levels.2540 Double-pulse echo formation in I =

spin states has been applied to 53Cr in CdCr2Se4.2S41 A 7Li NMR investigation of LigMogS8 has

been complemented with a neutron diffraction s t~dy .25~2 Phonon suppression of the 2051.1 coherence

peak in the NMR spectrum of TlMogSe7.5 has been in~estigated.25~3 The temperature dependence of T1 of 205Tl in TlMOgSeg has been m e a ~ u r e d . ~ ~ ~ 4 205Tl and l19Sn relaxation in TlMogSe7.5 and

Snl.lMO6Se7.5 has been investigated.2545

The 55Mn NMR spectrum of CuMn03 has been reported.2546 99Tc and l33Cs NMR spectroscopy

has been used to study CsTc04 and an anomalous temperature dependence of the 99Tc quadrupole

coupling and disordering of Cs+ positions f0und .25~~ 77Se NMR spectroscopy has been used to

2531 A. McVitie and R.D. Peacock, Polyhedron, 1992,11,2531. 2532 G.N. Abelyashev, V.V. Mal'nev, V.N. Seleznev, N.A. Sergeev, and Yu.V. Fedotov, Fiz. Tverd. Tela (Leningrad),

1991, 33, 1884 (Chem. Absfr., 1992, 116, 267 650). 2533 J.A. Chudek, G. Hunter, C.H. Rochester, and T.F.S. Smith, J . Caful., 1992, 136,246 (Chem. Absfr., 1992,

117, 77 486). 2534 M. Kunitomo, K. Eda, N. Sotani, and M. Kaburagi, J . Solid Siare Chem., 1992.99, 395 (Chem. Absfr., 1992,

117, 202 609). 2535 W. Kolodziejski, E. Lalik, A. Lerf, and J. Klinowski, Chem. Phys. Leu., 1992, 194,429 (Chem. Absfr., 1992,

117, 102 760). 2536 O.H. Han, C.Y. Lin, and G.L. Haller, Cafal. Leu., 1992, 14, 1 (Chem. Abstr., 1992, 117, 119 177). 2537 P. Judeinstein and J. Livage, J. M a w . Chem., 1991, 1,621 (Chem. Absfr., 1992, 116. 13 556). 2538 B. Taouk, D. Ghoussoub, A. Bennani, E. Crusson, M. Rigole, A. Aboukais, R. Decressain, M. Fournier, and M.

2539 T. Okuhara, T. Nishimura. H. Watanabe, and M. Misono, J . Mol. Cafal., 1992,74,247. 2540 G. Chidichimo, A. Golemme, D. Imbardelli, and A. Iannibello, J . Chem. Soc., Faruday Trans., 1992,88,483. 254 G.N. Abelyashev, V.N. Berzhanskii, S.N. Polulyakh, and N.A. Sergeev. Fiz. Tverd. Tela (S.-Pererburg), 1992,

34,676 (Chem. Absfr., 1992, 117, 82 109). 2542 C. Ritter, E. Gocke, C. Fischer, and R. Schoelhorn, Marer. Res. Bull., 1992. 27, 1217 (Chem. Absfr., 1992,

117. 254 296). 2543 Y. Kitaoka, S. Ohsugi, K. Asayama, and T. Ohtani, Physica C (Amsferdam), 1992, 192, 272 (Chem. Absfr.,

1992, 117, 82 070). 2544 H. Nishihara, T. Ohtani, Y. Sano, and Y. Nakamura, Physica C (Amsterdam), 1991, 185-189. 2733 (Chem.

Absfr., 1992, 116, 119 394). 2545 S. Ohsugi, Y. Kitaoka, M. Kyogaku, K. Ishida, K. Asayama. and T. Ohtani. J. Phys. SOC. Jpn.. 1992.61, 3054

(Chem. Abstr., 1992, 117,224 129). 2546 1.0. Troyanchuk, A.A. Shernyakov, and V.K. Prokopenko, Fiz. Tverd. Telu (S.-Peterburg), 1991, 33, 964

(Chem. Absfr., 1992, 116, 246 707). 2547 V.P. Tarasov, G.A. Kirakosyan, and K.E. German, 2. Narurforsch., A, 1992. 47, 325 (Chem. Abstr., 1992,

116, 206 398); V.P. Tarasov, G.A. Kirakosyan. K.E. German, and M.S. Grigor'ev, Koord. Khim., 1991, 17. 1643 (Chem. Absfr., 1992, 116,97 938).

Guelton, J. Chim. Phys. Phys.-Chim. Biol., 1992, 89,435 (Chem. Absfr., 1992, 116, 222 233).

Page 141: Nmr

Nuclear Magnetic Resonance Spectroscopy 141

study bis(tetramethyldithiadiselenofulva1ene)hexafluorophosphate and tetraoxorhenate.2548 The 55Mn

NMR spectrum of CdMnTe has been reported.2549 1H NMR spectroscopy has been used to study cobalt manganese dichloride dihydrate.25so

Trithiafemenophane, desulfurized with PBun3, has been characterised by 13C CP/MAS NMR spectroscopy.~51 Mixed-valence 1 ,l "-biruthenocenium salts have been studied using 'H and 13C CP/MAS NMR s p e c t r ~ s c o p y . ~ ~ ~ Supramolecular [(Me3M1)3M2(CN)6]-, M1 = Sn, Pb; M2 = Fe, Co, have been investigated using 13C, l5N, 59C0, 119Sn, and 207Pb CP/MAS NMR spectroscopy.2553 A solid-state NMR study of ~linoptilolite/[Fe(CN)6]~- has been reported.2554 Three aromatic amine-bridged coordination phthalocy anine ruthenium compounds have been characterized using 13C CP/MAS NMR spectro~copy.25~~ Domain s7Fe NMR spectra of Ti-Co, Ti- Mg, and Ti substituted hexagonal femte have been mea~ured.255~ Quadrupolar effects and magnetic anisotropy have been observed in the 55Mn NMR spectra of Mn3+ in lithium Manganese ion distribution in doped lithium ferrospinels has been investigated using 55Mn NMR spectroscopy.2558 The s7Fe NMR spectrum of Ba3CmFeu041 has been ~ p o r t e d . ~ ~ ~ ~ 'H lineshapes in CsFeC13.2H20 have been determined.2560

The 31P CP/MAS NMR spectrum of [RhH(CO)(PPh3)3] is a tightly coupled ABMX pattern, and 2J(31P31P) was determined. The 31P chemical shift tensors were measured for this compound and for [RhCl(PPh3)3].2561 59Co two-dimensional nutation NMR spectra of solid [Co4(CO)i2] have been used to determine the quadrupole coupling constants.2562 A series of tetrahedral mixed-metal clusters A[MCo3(C0)12], A = H, NEu; M = Fe, Ru, has been studied by 59Co NMR spectroscopy at two different magnetic fields. Only the central transition -hi was detected.2563 The utility of homonuclear J-resolved two-dimensional 3 l P CP/MAS NMR spectroscopy in characterizing [RhCI(PPh3)3] and trans-[Rh(CO)Cl(PPh3)2] in the solid state has been demonstrated.2564 The

2548 B. Gotschy, P. Auban-Senzier. A. Farrall. C. Bourbonnais, D. Jerome, E. Canadell. R.T. Henriques. I. Johansen.

2549 T. Stnrtz, A.M. Witowski. and P. Wyder, Actu Phys. Pol.,A, 1991,80,313 (Chem. Abstr., 1992. 116, 119

2550 K. Zenmyo. H. Kubo. S. Kanbe. and H. Yasuoka, J . Mugn. Magn. Mufer., 1992.104-107 (Proc. Int. Conf.

2551 P.F. B m d t and T.B. Rauchfuss. J . Am. Chem. SOC., 1992, 114, 1926. 2552 M. Watanabe, T. Iwamoto, S. Kawata. A. Kubo, H. Sano, and I. Motoyama, Inorg. Chem., 1992,31,177. 2553 U. Behrens, A.K. Brimah. T.M. Soliman, R.D. Fischer. D.C. Apperley, N.A. Davies, and R.K. Harris.

2554 J. Novosad, J. Jand. and J.D. Woollins, J . Radiounul. Nucl. Chem., 1992, 165,287 (Chem. Abstr., 1992, 117,

2555 M. Hanack and Y.G. Kang, Synth. Met., 1992,48,79 (Chem. Absfr., 1992, 117, 183 637). 2556 H. Stepankova. J. Kohout. and 2. Simsa, J . Magn. Mugn. Muter.. 1992, 104-107 (Proc. Int. Conf.

2557 A.A. Shemyakov and V.A. Klachan, Zh. Eksp. Teor. Fit.. 1992. 101, 1014 (Chem. Abstr.. 1992, 117, 162

2558 A.A. Shemyakov. A.P. Sefant'evskii, L.M. Labeznaya, and V.K. Prokopenko, Neorg. Muter., 1992, 28, 590

2559 J.H. Hankiewicz, 2. Pajak, and A.A. Murakhovskii, J . Mugn. Mugn. Muter, 1991, 101, 134 (Chem. Abstr..

2560 M.J. Rensing and A. Watton. 1. Phys.: Condens. Mutter, 1992.4.6015 (Chem. Abstr., 1992. 117.82 114). 2561 G. Wu, R.E. Wasylishen, and R.D. Curtis, Can. J. Chem.. 1992.70, 863. 2562 T. Eguchi, H. Nakayama, H. Ohki, S. Takeda. N. Nakamura. S. Kernaghan, and B.T. Heaton, J . Orgunomel.

2563 J. Hwhinger, P. Granger. and J. Rose, J. Phys. Chem., 1992.96.4815. 2564 G. Wu and R.E. Wasylishen. Inorg. Chem., 1992.31, 145.

and K. Bechgaard, J. Phys. I , 1992,2,677 (Chem. Abstr.. 1992. 117, 142 103).

353).

Magn., 1991, F't. 31, 1615 (Chem. Abstr.. 1992. 116, 267 666).

Organometullics, 1992, 11, 1718.

120 275).

Magn.. 1991, Pt. 1). 411 (Chem. Abstr., 1992, 116, 247 094).

709).

(Chem. Abstr.. 1992, 117, 202 236).

1992. 116,32 990).

Chem.. 1992,428, 207.

Page 142: Nmr

142 Spectroscopic Properties of Inorganic and Organometallic Compounds

intercalation of [Co(l,3,6,8,10,13,16,19-octaazabicyclo[6.6.6]eicosane)]~+ into magadiite has been investigated using 29Si NMR spectroscopy.2565 The l5N CP/MAS NMR spectrum of [CO(~~NO)(OC&-ZCH=NR)~] has been measured and the l5N shift tensors determined. The 59C0

chemical shift was determined in solution.z66 An NMR study of CoS04.H20 has been reported.z67 59Co NMR spectroscopy has been used to study (Fe1-xCox)7S8.2568 Domain-wall pairing in the three dimensionally ordered phase of CsCoC13 has been studied by l33Cs transverse re laxat i0n.~~9

NMR spectroscopy has been used to study the behaviour of hydrogen in palladium h ~ d r i d e , ~ ~ ~ * and of hydrogen in alumina supported palladium.z71 Solid-state13C, 31P, and 195Pt NMR spectroscopy has been used to study the electronic and geomemc structure of trans-[ClPt(PBun3)2C=CC&-4- C=CPt(PBu"3)2Cl] and trans-[C1Pt(PBun3)2CrCC6H4-4-C=C]n. The 195Pt shielding tensor was determined.2572 The 13C shielding tensor has been measured for KPtC13(q2-C2H4) and trans- [PtC12(q2-C2&)]2.z73 The structure of [(q4-C4H6)M(R2PCH2CH2PR2)]. M = Ni, Pd, Pt, has been investigated using solid-state 13C and 31P CP/MAS NMR s p e c t r o ~ c o p y . ~ ~ ~

The 31P CP/MAS NMR spectrum of [Pd&-S02)2(p3-S02)(MeCN)(PPh3)5] has been reported.z75 The spin dynamics of [Pt(en)2][PtCl2(en)2][ClO4]4 have been studied using 'H Ti measurements.2576 Solid-state l5N NMR spectra have been measured for a series of platinum complexes with two different amine ligands. The l5N chemical shifts and 'J( l95Pt3lP) were measured.2577 Solid-state 13C and 15N CP/MAS NMR spectra of [Pt(bipy)Xz] have been measured.2578 Anisotropies of the 31P chemical shift and lJ( l95Pt3lP) in [PtC12(PR3)2] have been detem1ined.~~9 The ordering process in the Ising-like Heisenberg antiferromagnet on the hexagonal lattice has been studied through the 133Cs NMR spectrum of C S N ~ B ~ ~ . ~ ~ ~ ~ The 19F NMR spectrum of C8PtF6 has been recorded.2581 The 195Pt MAS NMR spectra of M2PtC16, M = N h , Na, K, has been reported and J(195Pt35Cl)

2Sfi5 J.S. Dailey and TJ. Pinnavaia, J. Inclusion Phenom. Mol. Recognir. Chem., 1992, 13,47 (Chem. Absrr., 1992,

2566 C.J. Groombridge, L.F. Larkworthy, A. Madcaux, D.C. Povey, G.W. Smith, and J. Mason, J . Chem. SOC.,

2567 K. Jelsovka, J. Murin, S. Nagyova. and P. Nozar, Z6. Ved. Pr. Vys. Sk. Tech. Kosiciach 1989, (Pub. 1990). 73

2568 M. Sam, T. Kamimura, T. Shinohara, and T. Sam, J. M a p Magn. Mater., 1992, 104-107 (Proc. Int.

2569 T. Kohmoto, T. Goto, S. Maegawa, N. Fujiwara, Y. Fukuda, M. Kunitomio, and M. Mekata, Phys. Lett. A,

2570 T. Erata, KEK Proc., 1992, 92-1 (Curr. Status Future Prospects Diffr.), 14 (Chem. Abstr., 1992, 117,

2571 D.J. Barabino and C. Dybowski, Solid Stare Nucl. Magn. Reson., 1992, 1, 5 (Chem. Absrr., 1992, 117, 179

2572 MJ. Duer, M.S. Khan, and A.K. Kakkar, Solid Srate Nucl. Magn. Reson., 1992, 1, 13 (Chem. Absrr., 1992,

2573 Y. Huang, D.F.R. Gilson, and I.S. Butler, J. Chem. SOC., Dalfon Trans.. 1992, 2881. 2574 R. Benn, P. Betz, R. Goddard, P.W. Jolly, N. Kokel, C. Krueger, and I. Topalovic, Z. Nafurforsch., B , 1991,46,

2575 A.D. Burrows, J.C. Machell, and D.M.P. Mingos, J. Chem. Soc., Dalton Trans., 1992, 1991. 2576 R. Ikeda, A. Ghosh, L.S. Prabhumirashi. D. Nakamura, and M. Yamashita, Mol. Crysf . Li9. Crysf. Sci.

Technol., Sect. A, 1992, 216, 181 (Chem. Absfr., 1992, 117. 82 113). 2577 EJ.W. Austin, P.J. Barrie, and R.J.H. Clark, Inorg. Chem., 1992, 31.4281. 2578 M.J. Coyer, M. Croft, J. Chen, and R.H. Herber, fnorg. Chem., 1992.31, 1752. 2s79 W.P. Power and R.E. Wasylishen, Inorg. Chem., 1992,31, 2176. 2580 M. Chiba, Y. Aijiro, H. Kikuchi. S. Maegawa, and T. Morimoto, J. Phys. SOC. Jpn., 1992.61, 1758 (Chem.

2581 A.K. Tsvemikov, A.A. Uminskii, A.P. Kulikov, and O.V. Falaleev, M a w . Sci. Forum, 1992, 91-93

117, 183 720).

Dalton Trans., 1992, 3125.

(Chem. Absrr., 1992, 116, 267 445).

Conf. Magn.. 1991, Pt. 3). 1961 (Chem. Abstr., 1992, 116. 267 667).

1992, 167,493 (Chem. Absrr., 1992, 117, 123 225).

57 579).

116).

117, 111 776).

1395 (Chem. Abstr., 1992, 116.83 890).

Abslr., 1992, 117, 61 218).

(Intercalation Compd., Pt. 1). 197 (Chem. Absfr., 1992, 117, 263 430).

Page 143: Nmr

Nuclear Magnetic Resonance Spectroscopy 143

deduced.z82 The 13C MAS NMR spectrum of MeqNCuIZn(CN)4 shows 3(63/65Cu14N). The 65Cu NMR

spectrum was also measured.2583 The 1H T I - 1 has been measured for K - ( B E D T - TTF)2Cu[N(CN)2]Br.2584 13C MAS NMR spectra have been used to determine the Knight shift tensors and x-spin densities in (BEDT-'ITF)2Cu(NCS)2.z85 The first examples of lWAg CP/MAS NMR spectra have been obtained for Ag lactate, Ag acetate, Ag tolylsulfonate, Ag(acac), and AgN(S@Me)2.z86

Quadrupole-perturbed quartets are observed in the solid-state 31P MAS NMR spectra of phosphine- C u I complexes.2587 Solid-state 31P CP/MAS NMR spectra have been measured for [ C u (PPh 3) 2(phenylcyanamide)] complexes and J(63C u3 1 P), J (65C u31P), and J (3 l P 3 1P) determir1ed.25~~ The solid-state 31P CP/MAS NMR spectra of [NR4] [Cu(PPh3)X2],2s89 Ph2PCH=CHPPh2 complexes of CuI and AuI,2590 and [(R3P)AgX],z91 have been reported.

The pressure dependence of the electric field gradient at the 63Cu nucleus of CuO in the paramagnetic and antiferromagnetic state has been studied.2592 Solid-state l@Ag NMR spectroscopy has been used to characterize silver dispersed on oxide supports.2593 AgI-AgzO-B203 glasses have been studied by 1WAg NMR spectroscopy.z94 The structure of Ag2S04-AgP03 glasses have been investigated by 31P NMR spectroscopy.2595 Short range order in Ag2S-P2S5 glasses has been studied using 31P MAS NMR spectroscopy.2596

The 13C CP/MAS NMR spectrum of [Zn(tpp)] has been rep0rted.259~ 113Cd NMR shielding tensors have been determined for poly (bis(g1ycine)cadmium chloride] . z 9 8 The interaction between Cd2+ and vitamin B6 has been investigated using 113Cd NMR spectroscopy.2599 The indirect J(' 13Cd14N) has been determined from 113Cd CP/MAS NMR spectroscopy.2600 Solid-state 13C NMR spectra have been used to investigate Hg-Ph interactions in a mercury(I1) complex of 4-Me-2-

2582 S. Hayashi and K. Haymizu, Magn. Reson. Chem., 1992, 30,658. 2583 R.D. Curtis, C.I. Ratcliffe, and J.A. Ripmeester, J. Chem. Soc., Chem. Commun., 1992, 1800. 2584 K. Kanoda, K. Sakao, T. Takahashi, T. Komatsu, and G. Saito, Physica C (Amsterdam), 1991, 185-189, 2667

2585 T. Klutz, I. Hennig, U. Haeberlen, and D. Schweitzer, Appl. Mugn. Reson., 1991, 2,441 (Chem. Abstr., 1992,

2586 L.H. Merwin and A. Sebald, J. Magn. Reson., 1992,97,628. 2587 A. Olivieri, J. Am. Chem. SOC., 1992, 114, 5758. 2588 J.V. Hanna, M.E. Smith, S.N. Stuart, and P.C. Healy, J. Phys. Chem., 1992,96,7560. 2589 G.A. Bowmaker, J. Wang, R.D. Hart. A.H. White. and P.C. Healy, J. Chem. Soc..Dolfon Truns., 1992, 787. 2590 S J . Berners-Price, L.A. Colquhoun, P.C. Healy, K.A. Byriel, and J.V. Hanna, J. Chem. SOC., Duffon Trans.,

2591 LJ. Baker, G.A. Bowmaker, D. Camp, H.P.C. Healy, H. Schmidbaur, 0. Steigelmann, and A.H. White, Inorg.

2592 P.C. Riedi, D. Fowler, R.G. Graham, J.S. Lord, and B.M. Wanklyn, J . Mugn. Magn. Muter., 1992, 104-107

25p3 J.K. Plischke, A.J. Benesi, and M.A. Vannice, J. Phys. Chem.. 1992.96, 3799. 25p4 V. Berbemni, A. Marini, S. Scotti, and M. Villa, Solid Srau Ionics, 1992, 53-56, 1245 (Chem. Abstr., 1992,

25g5 S . Scotti. M. Villa, P. Mustarelli, and M. Cutroni, Solid State lonics, 1992, 53-56, 1237 (Chem. Abnr.. 1992,

2596 Z. Zhang, J.H. Kennedy, and H. Ecken, J. Am. Chem. SOC., 1992, 114, 5775. 25g7 J. Rocha, W. Kolodziejski, J.A.S. Cavaleiro, and J. Klinowski. J. Coord. Chem., 1992, 25, 205. 2598 E. Rivera and P.D. Ellis, Inorg. Chem., 1992.31, 2096. 2599 M.D. Couce, J.M. Varela, A. Sanchez, J.S. Casas, J. Sordo, and M. L6pez-Rivadulla, J. Inorg. Biochem., 1992,

2600 K. Eichele and R.E. Wasylishen, Angew. Chem., Inr. Ed. Engl., 1992.31, 1222.

(Chem. Abstr.. 1992, 116, 119 503).

117, 19 018).

1992.3357.

Chem.. 1992,31, 3656.

(Proc. Int. Conf. Magn., 1991), 503 (Chem. Absfr., 1992, 116, 226 775).

117, 240 183).

117, 202 654).

46, 17.

Page 144: Nmr

144 Spectroscopic Properties of Inorganic and Organometallic Compounds

(lH)-quinoline.2ml Solid-state NMR spectra have been measured for MGeAs2,Px, M = Zn, Cd, (31P, 113Cd),2602 CdMP2, M = Si, Ge, (29Si, 77Se, 113Cd),2603 Cd3P2, (31P),2604 and [HgX(N03)(PPh3)], (31P).2605 The effect of y-radiation and thermal treatment on ZnO-PbO-B203

glasses has been investigated using 1lB NMR spectroscopy.2m The solid-state 31P NMR spectrum

of [Zn(OPPh3)4][BF4]2 shows four signals in agreement with the X-ray smcture.2607 Photochromic

Cd-Al-0-F glasses have been studied using 27Al MAS NMR spectroscopy.2~8 The coordination of

aluminium in Al-Cd-Pb-0-F glasses has been investigated using 27Al NMR spectroscopy.26@ l3C

and 14N indirect coupling constants have been measured in the 13C CP/MAS NMR spectra of [Pm4N][Cd(SCN)3].2610 Pentafluomphenyl capped CdS microcrystallites have been characterized by l9F NMR spectroscopy.2611 NMR data have also been reported for Rb#nClq, (87Rb),2612 and

Cs2HgBr4, (133Cs).2613

The structure of multiplequantum spin space under high symmetry has been studied using the lB

NMR spectrum of [11B&]2-.2614 M2B1fl10 and M2B12H12 have been investigated by 1lB NMR spectroscopy.2615 The l0B spatial distribution of Li~B12H12.4HzO has been detected using an NMR double resonance method.*616 The results of a l lB and 13C NMR study of a series of boron carbide

samples with compositions from B4C to B9C have been presented.261’ Solid-state NMR spectroscopy has been used to study Sic , B12C3, BN, B2O3, and AlN.2618 1H decoupled l l B

dynamic angle spinning NMR spectroscopy has been applied to boric acid.26 M4A12(OH)12( B3@(0H)4)2;sH20 has been characterized by 1lB MAS NMR spectroscopy.262~ The

2601 D.M.L. Goodgame, S.P.W. Hill, and DJ . Williams, Polyhedron, 1992.11, 1507. 2602 D. Franke, K. Banks, R. Maxwell, and H. Eckert, J . Phys. Chem., 1992,96, 1906. 2603 D. Franke, C. Hudalla. and H. Eckert, Solid Stale Nucl. Magn. Reson., 1992, 1, 33 (Chem. Abstr., 1992, 117,

2604 M.A. Matchett. A.M. Viano. N.L. Adolphi, R.D. Stoddard, W.E. Behro, M.S. Conradi, and P.C. Gibbons,

2605 L.J. Baker, G.A. Bowmaker, P.C. Healy. B.W. Skelton, and A.H. White, J. Chem. Soc., Dalfon Trans.. 1992,

2606 H. Doweidar, M.A. Abou a i d , and G.M. El-Damrawy, J. Phys. D: Appl. Phys.. 1991,24,2222 (Chem. Abstr.,

2607 H. el Alaoui el Abdallaoui, P. Rubini, P. Tekely, D. Bayeul, and C. Lecomte, Polyhedron, 1992, 11, 1795. 2608 F. Jie, A. Osaka, Y. Miura, J. Takada. and T. Nanba. Zuiryo, 1992. 41. 578 (Chem. Absfr., 1992, 117, 136

2609 A. Osaka, J. Fu, J. Takada, Y. Miura. and H. Maekawa, Marer. Len., 1991, 12, 369 (Chem. Absfr., 1992, 116.

2610 K. Eichele and R.E. Wasylishen, Solid Sfate Nucl. Magn. Reson., 1992, 1, 159 (Chem. Absrr.. 1992, 117, 142

2611 T. Ogata. H. Hosokawa, T. Oshiro, Y. Wada. T. Sakata. H. Mori, and S. Yanagida. Chem. Letr., 1992, 1665

2612 T. Apih, R. Blinc, J. Dolinsek, F. Milia. and D.C. Ailion, Phys. Slurus Solidi 8 , 1992, 171, 51 (Chem. Abstr..

2613 A.K. Moskalov. A.L. Kriger, I.V. Seryukova, and V.I. Pakhomov, Zh. Neorg. Khim., 1991,36,2860(Chem.

2615 B. Bonnetot, H. Mongeot, A. Aboukhassib, and F. Lefebvre, Inorg. Chim. Acfa, 1992. 193,21. 2616 F. De Luca. R. Campanella A. Bifone, and B. Maraviglia. Chem. Phys. Lett., 1991, 186, 303 (Chem. Absrr..

2617 R.J. Kirkpatrick. T. Aselage, B.L. Phillips, and B. Montez, AIP Conf. Proc., 1991, 231, 261 (Chem. Absrr.,

2618 C. Connor. I n f . SAMPE Symp. Exhib., 1992, 37 (Mater. Work. You 21st Century), 955 (Chem. Abstr.,

2619 M.A. Eastman. PJ. Grandinetti. Y.K. Lee, and A. Pines, J. Magn. Reson., 1992.98, 333. 2620 A. Bhattacharyya and D.B. Hall, Inorg. Chem., 1992,31,3869.

82 076); D. Franke, C. Hudalla. R. Maxwell, and H. Eckert, J. Phys. Chem., 1992,96,7506.

Chem. Muter., 1992,4.508 (Chem. Absw., 1992, 116, 242 487).

989.

1992, 116,65 125).

077).

134 668).

122).

(Chem. Abstr.. 1992, 117, 202 743).

1992. 117, 19 034).

Absrr., 1992. 116, 33 027). J.P. Colps and F.P. Temme, Chem. Phys., 1991. 154.97.

1992, 116, 50 094).

1992, 116.32 020).

1992, 117, 32 254).

Page 145: Nmr

Nuclear Magnetic Resonance Spectroscopy 145

structure and heat treatment effects of sodium borosilicate glasses have been studied by l lB and 29Si NMR spectroscopy.2621 The insertion of boron into a zeolite framework has been demonstrated by 1lB NMR spectroscopy.2622 29Si MAS NMR spectroscopy has been used to study short-range order in lithium borosilicate glasses. llB NMR spectra were also measured.2623 The structure of K20-

B203-A12@-Si@ glasses has been investigated using 1lB NMR spectroscopy.~" 1lB NMR studies of lead borates have been published.2625 Borophosphate glasses have been investigated using IB and 31P NMR spectroscopy.~26 1H and 19F NMR spectra of Me2NNH3BF4 have been published.2627

The preparation of AlN from poly(isopropyliminoa1ane) has been studied by 27Al NMR spectroscopy.26~ Mixed aluminium oxynitride structural units in pl-sialon have been observed using 27Al M A S NMR spectroscopy.2629 15N, 27Al, and 29Si MAS NMR spectroscopy has been used to

study O - s i a l ~ n s . ~ ~ ~ ~ 27Al NMR spectroscopy has been used to investigate thermal transformation sequences of y-A100H.2631 The 27Al NMR spectrum of A1203 was The nature of the

surface of a-, y-, and transition-aluminas has been explored via variable temperature solid-state 27Al

NMR spectroscopy.2633 Phase transitions in y-Al2O3,6-A1203, and &A1203 have been investigated

by MAS NMR spectroscopy.2634 27Al NMR spectroscopy has been used to study preceramic polymers of A1203.2635 Phase transformations in alumina and Na20.6A1203 have been examined by 27Al NMR spectroscopy.2636 The hydration of sodium p"-alumina has been studied using IH T1

measurements.2637 27Al MAS NMR spectroscopy has been used to study the thermolysis of NH4Al(SO4)2.2H20 to A1203.2638 During thermal changes of kaolinite 27Al MAS NMR

2621 G. El-Damrawi, W. Mueller-Warmuth, H. Doweidar, and I.A. Gohar. J. Non-Cryst. Solids, 1992. 146, 137 (Chem. Abstr.. 1992, 117, 218 180).

2622 R. Millini, A. Carati, and G. Bellussi, Zeolites, 1992, 12, 265 (Chem. Absrr., 1992, 116, 206 499); E. BNnner. D. Freude. M. Hunger, H. Heifer. and B. Staudte, Stud. SM. Sci. Catal., 1991, 69 (Zeolite Chem. Catal.), 453 (Chem. Abstr., 1992. 117, 98 249).

2623 S.W. Martin, D. Bain, K. Budhwani, and S. Feller, J . Am. Ceram. Soc.. 1992, 75, 1117 (Chem. Abstr., 1992, 116.260 720).

2624 M.S. Shim, M.J. Kang, M.S. Kim, S.R. Koo. S.K. Oh, S.J. Chung, H.T. Kim. and DJ . Cha, J . Korean Phys. Soc., 1991.24.426 (Chem. Abstr., 1992, 116, 28 568).

2625 D. Ma0 and PJ. Bray, J . Non-Cryst. Solids, 1992, 144,217 (Chem. Abstr.. 1992, 117, 155 992). 2626 J.J. Videau. J.F. Ducel, K.S. Suh, and J. Senegas, J. Alloys Compd., 1992, 188, 157 (Chem. Abstr.. 1992,

2627 H. Ishida, K. Takagi, and R. Ikeda, Chem. Leu.. 1992.605 (Chem. Absrr., 1992, 116. 245 643). 2628 Y. Sugahara, T. Onuma, 0. Tanegashima, K. Kuroda. and C. Kato, Nippon Seramikkusu Kyokai Gakujutsu

2629 M.E. Smith, J. Phys. Chem., 1992.96, 1444 (Chem. Abstr., 1992, 116,96 207). 2630 J. Sjoeberg. R.K. Harris. and D.C. Apperley, J. Muter. Chem., 1992, 2,433 (Chem. Abstr., 1992. 117, 80

2631 R.C.T. Slade. J.C. Southern. and I.M. Thompson, J. Muter. Chem., 1991. 1, 875 (Chem. Absrr.. 1992, 116, 31

2632 S. Srinivasan and A.K. Datye, Prepr. - Am. Chem. Soc.. Div. Pet. Chem., 1991, 36,515 (Chem. Absrr., 1992,

2633 B.A. Huggins and P.D. Ellis, J . Am. Chem. SOC., 1992, 114,2098 (Chem. Abstr., 1992, 116, 114 104). 2634 M. Zhang and G. Li, Shiyou Xuebiao, Shiyou Jiugong, 1991,7,90 (Chem. Abstr., 1992, 116,65 451). 2635 W.S. Rees. jun., and W. Hesse, Muter. Res. SOC. Symp. Proc., 1991, 204, 563 (Chem. Absfr., 1992, 116. 33

2636 S. Prabakar. K.J. Rao, and C.N.R. Rao. J. Muter. Res., 1991.6, 2701 (Chem. Abstr., 1992, 116, 26 466);

2637 P. Donoso. H. Panepucci, Y.G. Gobato, L.N. Oliveira. and D.P. Ferreira de Souza, An. Congr. Bras. Ceram..

2638 G. Wegner. G. Blumenthal, D. Mueller. D.H. Menz, and A. Schrnalstieg. 2. Nururforsch.,B, 1991.46, 1515

117,256 444).

Ronbunshi, 1992.100, 101 (Chem. Abstr., 1992, 116. 111 898).

508).

905).

116. 159 740).

195).

F.R. Chen, J.G. Davis, and J.J. Fripiat. J. Curd., 1992, 133. 263 (Chem. Absfr., 1992. 116, 92 267).

34th, 1990.65 (Chem. Abstr.. 1992. 116, 260 736).

(Chem. Abstr., 1992. 116, 14 603).

Page 146: Nmr

146 Spectroscopic Properties of Inorganic and Organometallic Compounds

spectroscopy shows the formation of A1203.2639 The effect of phosphorus on the structure of P-Ni-

Mo/Al2O3 hydrotreating catalyst precursors has been investigated by 27Al and 3 l P NMR spectroscopy.2640 27Al NMR spectroscopy has been used to investigate the intercalation of 0x0-

hydroxy aluminium cations in the interlayer space of h e ~ t o r i t e . 2 ~ ~ 1 Saponite intercalated with

[A11304(OH)24(OH2)13]7+ has been characterized using 27Al and 29Si NMR spectroscopy.2642 27Al

and 71Ga NMR spectroscopy has been used to show that [Ga04A112(OH)24(OH2)i2]7+ is structurally

analogous to [A104A112(OH)24(OH2)12]7+.2u3 [Al(0)(OH)~OSiEt3)1-x],, has been characterized by

multinuclear NMR spectroscopy.2u4 Solid-state 27Al MAS NMR spectroscopy has been used to

study a new large polyoxyaluminium cluster cation.2645 Single-quantum and multiple-quantum

filtered 23Na and 27Al NMR spectra have been measured.2646

The influence of the nature of the refactory oxide support, ~-Al2O3, a-Al203, Si02-Al203, and Z a - A l 2 0 3 , on the formation processes of cobalt containing catalysts has been studied by 'H, 27Al

and 29Si NMR spectroscopy.2u7 29% MAS NMR spectra of keatite-type aluminosilicates have been reported.2@8 7Li and 2% NMR spectroscopic studies of lithium aluminosilicate gels have been

published.2649 7Li T i measurements have been made on lithium aluminate-doped lithium

o r t h o ~ i l i c a t e . ~ ~ ~ ~ Dehydration and rehydration of Nag+x[ SiA104]6(0H), have been studied by 'H, 23Na, and 29Si NMR spectroscopy.2651 IH MAS NMR spectroscopy has been used to study

orientauond disorder of [@H3]- in Nag[A16Si6024](OH)2.2H20.2652 The nature of the aluminium

cation in alkali metal poly(sialate-disi1oxo)-type aluminosilicate geopolymers has been determined from 27Al NMR m e a s ~ r e m e n t s . ~ ~ ~ 3 The 27Al NMR spectra of a highly siliceous amorphous

al~minosilicate,265~ calcium aluminosilicate glasses,2655 and an aluminosilicate,2656 have been

2639 A.K. Chakravorty, Clay Sci., 1991,8.45 (Chem. Abstr., 1992, 116, 26 492). 2640 E.C. DeCanio. J.C. Edwards, T.R. Scalzo, D.A. Storm, and J.W. Bruno, J. Card., 1991, 132, 498 (Chem.

2641 V. Seefeld, R. Bertram. D. Mueller, and W. Gessner, Silikattechnik, 1991, 42, 305 (Chem. Abstr., 1992, 116,

2642 Z. Liu, D. Jiang, A. Zhang, S. Fan, E. Min, M. He, and X . Zhao, Gaodeng Xuexiao Huaxue Xuebao. 1991, 12,

2643 S.M. Bradley, R.A. Kydd. and C.A. Fyfe, Inorg. Chem., 1992.31, 1181. 2644 A.W. Apbleu, A.C. Warren, and A.R. Barron, Chem. Maler., 1992.4, 167 (Chem. Abstr., 1992, 116, 186 462). 2645 L.F. Nazar, G. Fu, and A.D. Bain. J. Chem. SOC., Chem. Commun., 1992, 251. 2646 N.C. Nielsen, H. Bildse, and H.J. Jakobsen, Chem. Phys. Leu., 1992, 191, 205 (Chem. Abstr., 1992, 116,

2647 AS. Ivanova, O.P. Babushok, V.N. Gavrilin, V.M. Mastikhin, V.I. Zaikovskii, AS. Kalinkin, V.P. Ivanov, and A.V. Pashis, Kinet. Katal., 1992.33, 654 (Chem. Absir., 1992, 117, 220 854).

2648 K. Stumpf-Nothof, N. Weiden. and G. Mueller, Z. Kristallogr., 1992, 200, 265 (Chem. Abstr., 1992, 117.61 238).

2649 S.F. Ho. S.P. Szu, and L.C. Klein, Chem. Process. Adv. Mater.. 1992, 197. Ed. by L.L. Hench and J.K. West (Chem. Abstr., 1992, 117,238 629).

2650 M. Smaihi, D. Petit, J.P. Korb, and J.P. Boilot, J. Solid Siare Chem., 1991, 94, 150 (Chem. Absir., 1992, 116, 26 261); S. Szu, A.M. Buckley, M. Greenblatt, and L.C. Klein, J. Non-Crysr. Solids, 1992, 146, 129 (Chem. Absrr., 1992, 117, 218 179).

Absrr., 1992. 116, 11 701).

89 658).

502 (Chem. Abstr., 1992, 116,47 062).

247 121).

2651 G. Engelhardt, J. Felsche, and P. Sieger, J. Am. Chem. SOC., 1992, 114, 1173. 2652 M. Wiebcke, G. Engelhardt, J. Felsche, P.B. Kempa, P. Sieger, J. Schefer. and P. Fischer, J. Phys. Chem., 1992,

2653 M. Davidovics, N. Davidovits, and J. Davidovits, Fr. Demande FR 2,659,319 (CI. C04B35/18), 13 Sep 1991,

2654 M. Dam and K. Ghosh, J. Indian SOC. Soil Sci.. 1991.39, 560 (Chem. Absrr., 1992, 116, 164 978). 2655 C. Landron, B. Cote, D. Massiot. J.P. Coutures, and A.M. Flank, Phys. Stutus Solidi B , 1992, 171, 9 (Chem.

2656 J. Davidovits, N. Davidovits, and M. Davidovits, Fr. Demande FR 2,666,328 (CI. C04B35/16), 06 Mar 1992,

96, 392.

Appl. 90/2.853,07 Mar 1990; 16 pp. (Chem. Abstr., 1992. 116,87 119).

Abstr., 1992, 117, 19 033).

Appl. 90/10,957, 04 Sep 1990; 18 pp. (Chem. Absrr., 1992, 117. 156 439).

Page 147: Nmr

Nuclear Magnetic Resonance Spectroscopy 147

reported. 23Na and 27Al double rotation NMR of sodalites have been measured.2657 27Al NMR spectroscopy has been used to characterize geopolymeric aluminosilicates manufactured from silica fumes .2658

The results of applying k-means and fuzzy c-means methods of cluster analysis to a set of 29Si NMR data of calcium aluminosilicate glasses have been Aluminium and silicon coordination in silica-alumina glasses and liquids has been studied by 27Al and 29Si NMR spectroscopy.2660 l3C MAS NMR spectroscopy has been used to study C 0 2 speciation in glasses.2661 The interaction between water and aluminosilicate has been investigated by 23Na, 27Al, and 29Si NMR spectroscopy.2662 The structure of pyrope garnet has been studied using 27Al and 2% NMR spectroscopy.2663 The change of pore-opening structure of mordenite upon dealumination by HCl has been investigated by 27Al NMR spectroscopy.2664 Short range aluminium and silicon order in synthetic anorthite has been investigated by 29Si MAS NMR spectroscopy.2665 The effect of fluoride on glass transition behaviour of albite has been studied.2666 29Si MAS NMR spectroscopy has been used to study the structural change of silicate anions with carbonylation of synthetic 118,

t ~ b e r m o r i t e . ~ ~ ~ ~ Dynamic NMR imaging of rapid depth filtration of clay in porous media has been discussed.2668 The solid-state reaction of phenethylammonium chloride and aluminium-exchanged clays has been followed by CP/MAS NMR spectroscopy.2669 The influence of structural factors on 29Si and 27Al chemical shifts of phyllosilicates 2:l has been examined.2670 NMR data have also been reported for mordenite, (27Al, 29Si),2671 aluminium modified sepiolite, (27Al, 29Si),2672

2657 G. Engelhardt, H. Koller, P. Sieger, W. Deprneier, and A. Sarnoson, Solid State Nucl. Magn. Reson., 1992, 1, 127 (Chem. Abstr., 1992, 117, 162 698); A. Stein, G.A. Ozin, and G.D. Stucky, J. Am. Chem. SOC., 1992, 114, 8119.

2658 J. Davidovits, M. Davidovics, and N. Davidovits, PCT Int. Appl. WO 91 13,830 (CI. C01B33/26), 19 Sep 1991, FR Appl. 90/853,07 Mar 1990; 22 pp. (Chem. Abstr., 1992, 116,8483).

2659 F. Ehrentreich, M. Nofz, and H.G. Bartel, Chemom. Intell. Lab. Syst., 1992, 15, 61 (Chem. Abstr., 1992, 117, 74 719).

2660 B.T. Poe, P.F. McMillan, C.A. Angell, and R.K. Sato, Chem. Geol.. 1992, 96, 333 (Chem. Abstr., 1992, 117, 238 453); S. Prabakar, K.J. Rao, and C.N.R. Rao, Eur. J. Solid State Inorg. Chem., 1992, 29, 95 (Chem. Abstr., 1992. 116, 179 373); J.J. Fitzgerald, C. Murali, C.O. N e b , and M.C. Fuerstenau, J. Colloid interface Sci., 1992, 151,299 (Chem. Absrr.. 1992,117,77 390); G. Libourel, C.A. Geiger, L. Merwin, and A. Sebald, Chem. Geol., 1992, 96, 387 (Chem. Abstr., 1992, 117, 238 456); B. Cote, D. Massiot, F. Taulelle, and J.P. Courtures, Phys. Non-Cryst. Solids, 1992, 752. Ed. by L.D. Pye, W.C. La Course, and H.J. Stevens (Chem. Abstr., 1992, 117, 155 970).

2661 S.C. Kohn, R.A. Brooker, and R. Dupree, Geochim. Cosmochim. Acta, 1991.55.3879 (Chem. Abstr., 1992, 116, 87 941).

2662 S.C. Kohn, R. Dupree, and M.G. Mortuza, Chem. Geol., 1992,96, 399 (Chem. Abstr., 1992, 117, 237 333). 2663 C.A. Geiger, L. Merwin, and A. Sebald, Am. Mineral., 1992,77,713 (Chem. Abstr., 1992, 117,73 268). 2664 M. Sawa, M. Niwa, and Y. Murakami, Zeolites, 1991, 12 , 175 (Chem. Absrr., 1992, 116, 159 533). 2665 B.L. Phillips, R.J. Kirkpatrick, and M.A. Carpenter, Am. Mineral., 1992, 77, 484 (Chem. Abstr., 1992, 117,

2666 D.B. Dingwell and S.L. Webb, Am. Mineral., 1992, 77, 30 (Chem. Abstr., 1992, 116, 87 924). 2667 Y. Ikeda, Y. Yasuike, M. Kurnagai, Y.Y. Park, M. Harada, H. Tomiyasu, and Y. Takashima, Nippon

2668 E.J. Fordharn, T.P.L. Roberts, T.A. Carpenter, L.D. Hall, and C. Hall, AIChE J., 1991, 37 , 1900 (Chern.

2669 S. Bank and G. Ofori-Oki, Langmuir, 1992.8, 1688 (Chem. Abstr., 1992, 117, 7414). 2670 J. Sanz and J.L. Robert, Phys. Chem. Miner., 1992, 19, 39 (Chem. Abstr., 1992, 117, 195 291). 2671 H. Stach, J. Jilnchen, H . 4 . Jerschkewitz, U. Lohse, B. Parlitz, B. Zibrowius, and M. Hunger, J. Phys. Chem.,

1992, 96, 8473. 2672 J.B. DEspinose de la Caillerie and J.J. Fripiat, Catal. Today, 1992, 14, 125 (Chem. Abstr., 1992, 117, 15 171);

J.B. D'Espinose de la Caillerie and J.J. Fripiat, Prepr. - Am. Chem. Soc. ,Div. Pe l . Chem., 1991, 36, 423 (Chem. Abstr., 1992, 116, 159 739).

11 530).

Seramikkusu Kyokai Gakujutsu Ronbunshi, 1992, 100, 1098 (Chem. Abstr., 1992, 117, 218 451).

Abstr., 1992, 116, 62 995).

Page 148: Nmr

148 Spectroscopic Properties of Inorganic and Organometallic Compounds

polyoxyaluminium pillared montmorillonite, (27A1),2673 poly(ethy1ene oxide)-silicate intercalation

materials,2674 kaolinite,2675 (IH, 27Al, 29Si),2676 mullite, (27Al, 29Si),2677 (27A1),2678 cordierite,

(27A1),2679 (29Si),2680 garnets, (27Al, 29Si),2681 amphibole,2682 fluoride containing 2: 1 phyllosilicates, ( 19F),2683 pumice, (27A1),26g4 a kaolinite-poly(vinylpyrro1idone) intercalation

compound, (13C),2685 and pillared clays, (27Al, 29Si).2686

The reaction between sodium vapour and zeolites-Na-X, Na-Y, and Na-A has been studied by 23Na NMR spectroscopy.2687 23Na nutation NMR spectroscopy has been used to characterize the cation effect in ion-exchanged NaY zeolites.2688 Monte Car10 simulations have been made of energetics of cation ordering in the faujasite framework and compared with 2% NMR rnea~urements."~9 27Al and 2% NMR specmscopy has been used to examine the effect of dealumination on the structure of H-Y zeolites. The pore structure was investigated by I29Xe NMR spectroscopy.2690 The framework dealumination of faujasite-type zeolites by S i c k , ( m ) $ i F g , and water vapour has been studied by

27Al and 2% NMR ~pectroscopy.*~9~ 27Al and 3lP NMR spectroscopy has been used to investigate

the modification of zeolite Y, mordenite, and ZSM-5 by PC15.2692 DEFT and SEFT have been used for signal to noise ratio enhancement and T2 selective spectra in 29Si MAS NMR spectra of

zeolites.2693 'H MAS NMR spectroscopy has been used to show analogies between partly

dehydrated samples of Si02-Al203 and strongly dealuminated HY 'H MAS NMR

2673 S. Xiang. T. Hus, Q. Jiang, and L. Wang, Chin. Chem. Lett., 1992, 3. 137 (Chem. Absrr., 1992, 117, 116

2674 P. Aranda and E. Ruiz-Hitzky, Chem. Mater., 1992.4, 1395 (Chem. Abstr., 1992, 117,243 398). 2675 R. Miyawaki, S. Tomwa, S. Samejima, M. Okazaki, H. Mizuta, S. Maruyama, and Y. Shibasaki, Clays Clay

Miner., 1991.39.4498 (Chem. Abstr., 1992, 116, 24 803). 2676 S. Hayashi, T. Ueda, K. Hayamizu, and E. Akiba, J. Phys. Chem., 1992,96, 10 923; S. Hayashi, T. Ueda, K.

Hayamizu, and E. Akiba, J. Phys. Chem., 1992,96, 10 928. 2677 J. Guo. C. Ye, Z. He, F. Chen, Z. Wang, and G. Liu, Chin. Sci. Bull., 1991,36, 1467 (Chem. Abstr., 1992,

116, 157 183); H. Schneider, L. Merwin, and A. Sebald, J . Mater. Sci., 1992.27, 805 (Chem. Abstr., 1992, 116, 134 807).

2678 C. Jaeger, J. Rocha. and J. Klinowski, Chem. Phys. Lett., 1992, 188,208 (Chem. Absrr., 1992. 116, 142 521). 2679 M. Okuyama. T. Fukui, and C. Sakurai, J. Non-Cryst. Solids, 1992, 144,298 (Chem. Absrr., 1992, 117, 156

2680 P. Daniels and H. Gies, Phys. Chem. Miner.. 1992.18,383 (Chem. Abstr.. 1992, 116, 177 850). 2681 B.L. Phillips, D.A. Howell, R.J. Kirkpatrick, and T. Gasparik, Am. Mineral., 1992, 77, 704 (Chem. Abstr.,

2682 M. Raudsepp, A.C. Turnock. and F.C. Hawthorne, Eur. J. Mineral., 1991, 3,983 (Chem. Abstr., 1992, 116,

2683 J.F. Joly, L. Huve, R. Ledred, D. Saehr. and J. Baron, Ew. Pat. Appl. EP 503,995 (Cl. COlB33/20), 16 Sep

2684 A.M. Venezia. M.A. Floriano. G. Deganello, and A. Rossi, SM. Interface Anal., 1992, 18,532 (Chem. Abstr.,

2685 Y. Sugahara. T. Sugiyama, T. Nagayama. K. Kuroda, and C. Kato. Nippon Seramikkusu Kyokai Gakujsu

2686 L. Zheng, Y. Hao, L. Tao. Y. Zhang, and Z. Xue. Zeolites, 1992, 12, 374 (Chem. Abstr., 1992, 117, 34 263);

2687 P.A. Anderson and P.P. Edwards, J. Am. Chem. SOC., 1992. 114, 10 608. 2688 K . 4 . Chao and C.-F. Lin, Collect. Czech. Chem. Commun., 1992.57,710. 2689 C.P. Herrero and R. Ramirez, J. Phys. Chem.. 1992. 96, 2246 D. Ding, P. Sun, Z. Li, Q. Jin, and J. Wang,

2690 P.V. Shertukde, W.K. Hall. and G. Marcelin, Cafal. Today, 1992.15,491 (Chem. Abstr., 1992,117.240 531). 2691 S.E. Spiridonov, O.V. Kryukov, N.L. Spiridonova, and S.N. Khadzhiev, Zh. Fiz. Khirn., 1992, 66, 1861

2692 M. Kojima, F. Lefebvre, and Y. Ben T h t , Zeolites, 1992.12,724 (Chem. Abstr.. 1992. 117, 123 473). 2693 M.W. Anderson, Magn. Reson. Chem., 1992,30,898 (Chem. Abstr., 1992, 117, 203 776). 2694 C. Doremieux-Morin, P. Batamack. C. Martin, J.M. Bregeault. and J. Fraissard. Cutal. Lett., 1991, 9, 403

977).

145).

1992, 117,216 343).

110 207).

1992, FR Appl. 91/3,236, 14 Mar 1991; 15 pp. (Chem. Abstr., 1992. 117, 215 618).

1992. 117, 119 189).

Ronbunshi, 1992,100,413 (Chem. Abstr., 1992, 117, 10 907).

D. Zhao, Y. Yang. and X. Guo, Inorg. Chem., 1992,31,4727.

Huaxuc Wuli Xuebao, 1991.4.357 (Chem. Abstr., 1992, 117.56 164).

(Chem. Abstr.. 1992, 117. 240 599).

(Chern. Abstr., 1992,116. 11 696).

Page 149: Nmr

Nuclear Magnetic Resonance Spectroscopy 149

spectroscopy has been used to determine lH-27Al distances in H-Y and SAPO-5 molecular

sieves.2695 The size and location of cobalt clusters in zeolite Na-Y have been studied using 59Co

NMR spectroscopy?696 The distribution of 27Al and 2% NMR spectroscopy has been used to study

the distribution of aluminium and silicon in REUSY zeolites.2697 IH NMR spectroscopy has been used to study the acidity of dealuminated and non-dealuminated HY zeolite.2698 NMR data have also been reported for silica-rich faujasite-type zeolite, (23Na, 27A1, 29Si),2699 ultrastable zeolite Y, (27A1),2700 lanthanum-exchanged Y zeolites, ( 139La),2701 hexafluorosilicate-modified Y-type

zeolites, (29Si),2702 Cs+ exchanged zeolites, (29Si),2703 nepheline-kalsilite crystalline solutions,

(23Na, 27Al, 29Si),2704 zeolites CsZ, (29Si),2705 zeolite beta, ( 13C),2706 silver, sodium halosodalites,

(23Na, 27Al. 29Si),2707 offretite, a-zeolites, (29Si),2708 and silicate/aluminosilicate mesoporous molecular sieves, M41S, ('3C, 29Si).2709

23Na, 27Al, and 29Si NMR spectroscopy, including double rotation, has been used to study a sodalite semiconductor ~ u p r a l a t t i c e . ~ ~ ~ ~ The hydrothermal dealumination of H-ZSM-5 zeolite has

been investigated using 27Al NMR spe~troscopy.2~11 The migration of framework aluminium in

ZSM-5 has been studied.2712 27Al and 29Si NMR spectroscopy has been used to determine the SiJAl

ratio in ZSM-5.2713 Structural investigations of ZSM-5, ZSM-11, and ZSM-12 have been made using 29Si NMR spectroscopy.2714 27Al NMR spectroscopy has been used to study

Brgnsted and Lewis acid sites in H-ZSM-5.2715 IH NMR spectroscopic studies of Brgnsted acid sites

2695 2696 2697

2698

2699

2700 2701 2702 2703

2704

2705

2706

2707 2708 2709

2710 2711

2712

2713

2714

2715

D. Fenzke, M. Hunger, and H. Pfeifer, J. Magn. Reson.. 1992.95.477. Z. Zhang, Y.D. Zhang, W.A. Hines, J.I. Budnick, and W.M.H. Sachtler, J . Am. Chem. SOC., 1992, 114,4843. G. Niu. Q. Li, L. Dai, Z. Xue. Y. Zhao, Y. Hou, and M. Li, Huarue Xuebao, 1992, 50.637 (Chem. Abstr., 1992, 117, 158 042). P. Batamack, C. Doremieux-Morin, and J. Fraissard, Catal. Lett., 1991. 11, 119 (Chem. Abstr., 1992, 116, 182 25 1). F. Dougnier, J. Patarin, J.L. Guth, and D. Anglerot, Zeolifes, 1992, 12, 160 (Chem. Abstr., 1992, 116, 159 771). J. Rocha, S.W. Cam, and J. Klinowski, Chem. Phys. Leu., 1991. 187,401 (Chem. Abstr., 1992. 116. 97 927). B. Herreros. P.P. Man, J.M. Manoli. and J. Fraissard, J. Chem. SOC., Chem. Commun., 1992,464. F. Lonyi and J.H. Lunsford, J. Cataf., 1992, 136, 566 (Chem. Abstr., 1992, 117, 98 437). R. Dimitrijevic, V. Dondur, and N. Petranovic, J. Solid Sfate Chem., 1991, 95, 335 (Chem. Absfr., 1992, 116, 72 833). G.L. Hovis, D.R. Spearing. J.F. Stebbins, J. Roux, and A. Clare, Am. Mineral., 1992, 77, 19 (Chem. Abstr., 1992, 116, 87 799). S. Cartlidge, H.U. Nissen. M.P. Shatlock, and R. Wessicken, Zeolites, 1992, 12, 889 (Chem. Abstr., 1992, 117, 259 094). P. Caullet, J.L. Guth, J.F. Joly, J. Lynch, and F. Raatz, Zeolites. 1992, 12, 240 (Chem. Abstr., 1992, 116, 206 498). A. Stein, G.A. Ozin. P.M. Macdonald. G.D. Stucky, and R. Jelinek, J. Am. Chem. SOC., 1992, 114, 5171. E. Ponthieu. P. Grange, J.F. Joly, and F. Raatz, Zeolites, 1992, 12, 395 (Chem. Abstr., 1992, 117, 34 331). J.S. Beck, J.C. Vartuli, W.J. Roth, M.E. Leonowicz, C.T. Kresge, K.D. Schmitt, C.T.-W. Chu, D.H. Olson, E.W. Sheppard, S.B. McCullen. J.B. Higgins. and J.L. Schlenker, J . Am. Chem. SOC., 1992, 114, 10 834. R. Jelinek. B.F. Chrnelka, A. Stein, and G.A. Ozin, J. Phys. Chem.. 1992, 96. 6744. S. Wang, J. Liang, W. Guo, S. Zhao, and R. Wang, Tianranqi Huugong, 1991, 16, 17 (Chem. Abstr., 1992, 117, 220 934); S. Wang, J. Liang, W. Guo, S. Zhao, and R. Wang, Cuihua Xuebao, 1992, 13, 38 (Chem. Abstr., 1992, 116, 159 785). S. Wang, J. Liang, W. Guo, S. Zhao. and H. Li, Cuihua Xuebao, 1992, 13,279 (Chem. Abstr.. 1992, 117. 162 780). P. Kraak, R. Schoedel, I. Goehl, A. Brand, and W. Schwieger. Chem. Tech. (Leipzig), 1992,44,253 (Chem. Abstr., 1992, 117, 240 504). H. Gies, B. Marler, C. Fyfe, G. Kokotailo. Y. Feng. and D.E. Cox, J. Phys. Chem. Solids, 1991, 52, 1235 (Chem. Abstr., 1992. 116, 96 306). Y. Zhao, D. Zhou, D. Ding, J. Wang, H. Li, and Q. Wang, Cuihua Xuebao, 1992, 13, 123 (Chem. Absfr., 1992, 116, 242 554).

Page 150: Nmr

150 Spectroscopic Properties of Inorganic and Organometallic Compounds

in H-ZSM-5 have been reported.2716 T h e existence of two kinds of Na+ in Na-ZSM-5 has been confirmed by 23Na N M R spectroscopy.2717 Zn-ZSM-5 has been characterized using 27Al NMR spectroscopy.2718 I lB N M R spectroscopy has been used to study boron substitution of ZSM-5.2719 Gallium in H(Ga)-ZSM-5 has been investigated by 29Si and 71Ga NMR spectroscopy.2720 A series of Ga-ZSM-5 catalysts have been characterized by 29Si NMR spectroscopy.2721 M-ZSM-12, M = B, Ga, Ge, has been identified by 2% NMR spectroscopy.2722 Silica enriched ZSM-20 has been characterized using 27Al and 29Si NMR spectroscopy.2723 Solid-state 14N NMR spectra of [PdN]+ in ZK-4 and ZSM-20 have been recorded.2724 ZSM-20 has been studied by one- and two-dimensional 29Si M A S NMR spectroscopy.2725 Defect-free crystals of MFI-type zeolites have been characterized using 29Si M A S N M R spectroscopy.2726 The simultaneous incorporation of A1 and Ti in the MFI- type framework has been demonstrated by 27Al and 29Si NMR spectroscopy.2727 The mechanism of incorporation of boron and aluminium into MFI-type zeolite frameworks has been investigated using l l B NMR spectroscopy.2728

The syntheses of three new microporous aluminophosphates using ethylenediamine as a template have been studied by using l3C CP/MAS NMR s p e ~ t r o s c o p y . ~ ~ ~ 9 T h e effect of hydration of the N i P M o / A 1 2 0 3 hydrotreating catalyst has been studied by 27Al, 3 I P , and 9 5 M o N M R spectroscopy.2730 T h e incorporation of Co2+ into the aluminophosphate framework of a molecular sieve has been monitored by 3 I P Ti measurements.2731 Coherence transfer involving quadrupolar nuclei in solids has been applied to 2 7 A l t t 3 1 P cross-polarization in VPI-5.2732 31P N M R

spectroscopy has been used to study spin diffusion in VPI-5.2733 The fast crystallization of alumino- and silicoaluminophosphates of the VFI-type has been investigated using 27Al, 29Si, and 31P NMR

2716 M. Hunger, D. Freude, D. Fenzke, and H. Pfeifcr, Chem. Phys. Leff., 1992, 191, 391 (Chem. Abstr., 1992,

2717 T. Ohgushi and S. Kataoka, J. Colloid Interface Sci., 1992, 148, 148 (Chem. Absir., 1992, 116.46 887). 2718 J. Liang, W. Tang, M. Ying, S. Zhao, B. Xu, and H. Li, Siud. Suif Sci. Card., 1991, 69(Zeolite Chem.

Catal.), 207 (Chem. Abstr., 1992, 116, 263 241). 2719 M. Derewinski, S. Dzwigaj, J. Haber, R. Mostowicz, and B. Sulikowski, Z . Phys. Chem., (Munich), 1991, 171,

53 (Chem. Absrr., 1992, 116, 28 679); M.W. Simon, S.S. Nam, W.-q. Xu, S.L. Suib, J.C. Edwards, and C.L. O'Young, J. Phys. Chem., 1992, 96, 6381; M. Derewinski, S. Dzwigaj, J . Haber, R. Mostowicz, and B. Sulikowski, Z. Phys. Chem. (Munich), 1991, 171, 53 (Chem. Absrr., 1992, 116, 28 679).

2720 C.R. Bayense, A.P.M. Kentgens, J.W. De Haan, L.J.M. Van de Ven, and J.H.C. Van Hooff, J. Phys. Chem., 1992, 96, 775; Y. Zhi, A. Tuel, Y.B. Taarit, and C. Naccache, Zeoliies, 1992, 12, 138 (Chern. Absrr., 1992, 116, 164 984).

2721 X. Liu and J. Klinowski, J. Phys. Chem.. 1992.96, 3403 (Chem. Absrr., 1992, 116, 182 267). 2722 W. Wang and W. Pang, Gaodeng Xuexiao Iiuaxue Xuebao, 1991, 12,715 (Chem. Abstr., 1992, 116,98 056). 2723 H. Kosslick, M. Richter, V.A. Tuan, R. Fricke, and W. Storek, J. Chem. Soc.,Faraday Trans., 1992.88, 2421. 2724 P.R. Rajamohanan, A. Thangaraj, P.M. Suryavanshi, and S. Ganapathy, Magn. Reson., 1991, 272. Ed. by C.L.

2725 C.A. Fyfe, H. Grondey, Y. Feng, G.T. Kokotailo, S. Ernst, and J . Weitkamp, Zeoliies, 1992, 12, 50 (Chem.

2726 S.A. Axon and J. Klinowski, Appl. Caral . ,A, 1992, 81,27 (Chem. Absrr., 1992, 116, 197 033). 2727 A. Thangaraj, R. Kumar, and S. Sivasanker, Zeolites, 1992, 12, 135 (Chem. Absrr., 1992, 116, 164 983). 2728 R. De Ruiter, J.C. Jansen, and H. Van Bekkum, Zeoliies, 1992, 12, 56 (Chem. Absrr., 1992, 116, 68 253). 2729 L. Yu and W. Pang, Chin. Chem. Len., 1992,3,325 (Chem. Abstr., 1992, 117,61 392) 2730 O.H. Han, C.Y. Lin, and G.L. Haller, Prepr. - Am. Chem. SOC., Div. Per. Chem., 1992.37, 988 (Chem. Abstr.,

2731 S.-H. Chen, S.-P. Sheu, and K.-J. Chao, J. Chem. Soc., Chem. Commun., 1992, 1504. 2732 C.A. Fyfe, H. Grondey, K.T. Mueller, K.C. Wong-Moon, and T. Markus, J. Am. Chem. Soc., 1992, 114, 5876. 2733 W. Kolodziejski, H. He, and J. Klinowski, Chem. Phys. Leti., 1992, 191, 117 (Chem. Absrr., 1992, 116, 267

116, 263 023).

Kheuapal and G. Govil (Chem. Absrr., 1992, 117,263 271).

Absir., 1992, 116, 73 007).

1992, 117, 77 480).

682).

Page 151: Nmr

Nuclear Magnetic Resonance Spectroscopy 151

spectroscopy.2734 27Al and 31P NMR spectroscopy has been used to investigate VPI-5.2735 The

average 27A1-31P distances in AlP04-5 have been determined by using spin echo double

resonance.2736 27Al double rotation NMR spectroscopy has been used to investigate the framework

ordering in VPI-5, AlP04-5, and AlP04-8.2737 AlP04-5, with an unequal molar ratio of A1203 to

P2O5 has been characterized by 27Al and 3 lP NMR spectroscopy.2738 27Al, 29Si, and 3 IP MAS

NMR spectroscopy has been used to examine the substitution of A1 in AlP04-5 and AlPO4-11 by Si

and Fe.2739 The treatment of AlP04-5 and SAPO-5 with S i c 4 has been investigated using 29Si,2740

and 27Al, 29Si, and 31P MAS NMR spectroscopy.2741 The coordination conditions of aluminium in

SAPO-5 have been investigated using 27Al NMR spectroscopy.2742 The structure of SAPO-5 molecular sieves has been studied using 29Si NMR spectroscopy.2743 A SAPO-5 film has been

characterized using 27Al, 29Si, and 3IP NMR spectroscopy.2744 Spectral simulations of 27Al MAS and double rotation NMR spectra have proven the preferential hydration of one tetrahedral site in

AlP04-11, transforming this site reversibly into octahedral aluminium.2745 CoAlP04-11 has been characterized by NMR spectroscopy.2746 NMR data have also been reported for AlP04-14, (13C,

27Al, 31P),2747 SAPO-20, (29Si, 31P),2748 SAPO-37, (27Al, 29Si, 31P),2749 and JDF-20, (13C, 27Al, 31p).2750

Fluoride in silicate glasses has been investigated by 19F, 23Na, 27Al, and 29Si NMR spectroscopy,

2734 H. Cauffriez, L. Delmotte, and J.L. Guth. Zeolites. 1992, 12. 121 (Chem. Absfr., 1992, 116, 186 463). 2735 C.A. Fyfe, K.T. Mueller, H. Grondey, and K.C. Wong-Moon, Chem. Phys. Lett., 1992, 199, 198 (Chem.

Abstr., 1992, 117, 263 289); J. Rocha, W. Kolodziejski, H. He, and J. Klinowski, J. Am. Chem. SOC., 1992, 114,4884; D. Akporiaye and M. Stocker, Zeolifes, 1992, 12, 351 (Chem. Absrr., 1992, 116, 267 700); D. Akporiaye, M. Stocker, and K.-P. Lillerud, Acia Chem. Scand.. 1992, 46, 743; J. Rocha, W. Kolodziejski, I. Gameson, and J. Klinowski, Angew. Chem., Inr. Ed. Engl., 1992,31, 615; L. Maisuiau, Z. Gabelica, and E.G. Derouane. Appl. Caral. A, 1992,81,67 (Chem. Absir.. 1992, 116, 197 042); J.A. Martens, I. Balakrishnan, P.J. Grobet, and P.A. Jacobs, Srud. Surf. Sci. Caial., 1991, 69(Zeolite Chem. Catal.), 135 (Chem. Absrr., 1992, 116. 263 238).

2736 E.R.H. Van Eck and W.S. Veernan. Solid State Nucl. Magn. Reson., 1992, 1, 1 (Chem. Absa., 1992, 117, 183

2737 B.F. Chmelka, Y. Wu. R. Jelinek, M.E. Davis, and A. Pines, Sfud. Surf. Sci. Cafal., 1991, 69(Zeolite

2738 J. Dong, J. Li, G. Liu, F. Wu, J. Chang, and W. Xu, J. Chem. SOC., Chem. Commun.. 1992, 277. 2739 J. Das. C.V.V. Satyanaryana, D.K. Chakrabarty, S.N. Piramanayagam, and S.N. Shringi, J . Chem. SOC., Faraduy

2740 H.X. Li and M.E. Davis, J. Phys. Chem., 1992.96, 331. 2741 A.F. Ojo, J. Dwuer, J. Dewing, P.J. OMalley, and A. Nabhan, J . Chem. SOC., Furaday Trans., 1992,88, 105;

B. Zibrowius. E. Loeffler, and M. Hunger, Zeolires, 1992. 12, 167 (Chem. Absfr.. 1992, 116, 136 860). 2742 D. Zhao. S. Qiu, W. Pang, F. Jing. Y. Wu. and Y. Xiao, Yingyong tiuaxue, 1992,9,61 (Chem. Absrr., 1992,

117, 225 111). 2743 T. Sun, D. Zhao. W. Pang, and D. Jiang, Cuihua Xuebao, 1992, 13,400 (Chem. Absfr., 1992, 117, 240 515). 2744 T. Sano, Y. Kiyozumi, K. Maeda, M. Toba, S. Niwa, F. Mizukami, 1. Mukoyoshi, and H. Shoji, J. Mol. Caial.,

2745 M.P.J. Peeters, J.W. de Haan. L.J.M. van de Ven, and J.H.C. van Hooff, J . Chem. SOC., Chem. Commun.,

2746 S. Prasad and I. Balakrishnan, Caral. Left., 1991, 11, 105 (Chem. Absrr., 1992, 116, 159 749). 2747 B. Zibrowius, U. Lohse, K. Szulzewsky, H. Fichtner-Schmittler, W. Pritzkow, and J. Richter-Mendau, Stud.

Su#. Sci. Caul. , 1991, 65, 549 (Chem. Absfr., 1992, 116, 33 141). 2748 D. Zhao, S. Qui, W. Pang, J. Zhang. Y. Wu, and F. Pei, Gaodeng Xuexiao Huaxue Xuebao, 1992, 13. 717

(Chem. Absrr., 1992, 117, 102 828). 2749 M. Briend. MJ. Pelue, A. Lamy. P.P. Man, and D. Banhomeuf, J . Coral., 1992, 138.90 (Chem. Abstr.. 1992,

117. 258 833); M.J. Franco, J. Perez-Pariente, A. Mifsud, T. Blasco, and J. Sanz, Zeolires, 1992, 12, 386 (Chem. Absrr., 1992, 117, 36 933).

2750 Q. Huo. R. Xu, S. Li, Z. Ma, J.M. Thomas, R.H. Jones, and A.M. Chippindale, J. Chem. SOC., Chem. Commun., 1992, 875.

493).

Chem. Catal.), 435 (Chem. Absfr., 1992, 117. 223 477).

Trans., 1992, 3255.

1992, 77, L19.

1992, 1560.

Page 152: Nmr

152 Spectroscopic Properties of Inorganic and Organometallic Compounds

including 19F+BSi CP/MAS NMR s p e ~ t r o s c o p y . 2 ~ ~ ~ The influence of octahedral polymerization on 23Na and 27Al MAS NMR spectra of alkali fluoroaluminates has been in~estigated.2~52

6%a, 71Ga, and 133Cs NMR spectra have been studied for CsGaD4, and the average Ga-D

distance is 1.64 f 0.1 1 A.2753 The coordination of Ga3+ in PbO-Ga203 glasses has been determined

by 71Ga NMR spe~troscopy.275~ Cloverite, a gallophosphate molecular sieve, has been characterized

by 13C, 31P, and 71Ga MAS NMR spe~troscopy.2~55 19F NMR spectroscopy has been used to study

[(Ga2S3)o.25(GeS2)o.75]0.75(NaF)0.25.2756 The 31P NMR spectrum of InP has been measured and

J(115In31P) determined.2757 The 13C CP/MAS NMR spectra of [(TlMe2)2(S3C2N~)] has been

rep0r ted .2~~~ The l3C CP/MAS NMR spectra of [Tl(tpp)(02CCHj)] have provided evidence for the

acetate being a chelating bidentate ligand.2759 Tl2O3-6 has been studied using 205Tl NMR

spectroscopy.276* The solid-state m5Tl NMR spectrum of [Tl( 18-crown-6)4CuC4][TlC4]2 has been

m e a ~ u r e d . 2 ~ ~ ~ The sp2/sp3 ratio in plasma deposited amorphous hydrogenated carbon films has been determined by

13C CP/MAS NMR spectra.2762 Caesium-graphite intercalation compounds have been investigated by 133Cs NMR spectroscopy.2763 Ternary graphite-M1Fm-M2Fn, M = Nb, B, Ti, and W, phases have

been studied using 19F NMR spectroscopy.27@ 13C MAS NMR spectra of 13Cm and K313Cm,2765

KTl1.5 doped Cm,”66 12.29Cm,2767, and graphite oxide2768 have been recorded.

Silicon network structure and 29Si Ti values have been investigated in amorphous hydrogenated

s i l i ~ o n . 2 ~ ~ ~ l3C and 29Si chemical shift tensors and peak assignments for 6H polytype of Sic have

2751 T. Schaller, D.B. Dingwell, H. Keppler, W. Knoeller, L. Merwin, and A. Sebald, Geochim. Cosmochim. Acta,

2752 P.J. Dirken, J.B.H. Jansen, and R.D. Schuiling, Am. Mineral., 1992, 77, 718 (Chem. Abstr., 1992, 117, 73

2753 V.P. Tarasov, G.A. Kirakosyan, S.I. Bakum, and A.A. Shamov, Zh. Neorg. Khim., 1992,37, 1153 (Chem.

2754 F. Miyaji, K. Tadanaga, T. Yoko, and S. Sakka, J. Non-Cryst. Solids, 1992, 139, 268 (Chem. Abstr., 1992,

2755 A. Merrouche, J. Patarin, H. Kessler, M. Soulard, L. Delmotte, J.L. Guth, and J.F. Joly, Zeolites, 1992, 12, 226

2756 L.A. Baidakov, V.M. Buznik, V.Ya. Kavun, V.M. Kalenik, and T.N. Orkina, Fiz. Khim. Stekfu, 1992, 18,90

2757 N.L. Adolphi, M.S. Conradi, and W.E. Buhro, J. Phys. Chem. Solids, 1992, 53, 1073 (Chem. Abstr., 1992,

2758 M.V. Castaillo, A. Sanchez, J.S. C a w , J. Sordo, and E.E. Castellano, Inorg. Chim. Acta, 1992.201.83. 2759 S.-C. Suen, W.-B. Lee, F.-E. Hong, T.-T. Jong, J.-H. Chen. and L.-P. Hwang, Polyhedron, 1992, 11, 3025. 2760 Y. Yasuoka. A. Hayashi, and Y. Ueda, J. Phys. Soc. Jpn., 1992,61, 1178 (Chem. Abstr., 1992, 116, 247 126). 2761 I.A. Kahwa, D. Miller, M. Mitchel, F.R. Fronczek, R.G. Goodrich, D.J. Williams, C.A. OMahoney. A.M.Z.

2762 J. Seth, A.J.I. Ward, and S.V. Babu, Appl. Phys. Lett., 1992,60, 1957 (Chem. Absrr., 1992, 116, 265 990). 2763 H. Estrade-Szwarckopf, M. Malki, A.M. Faugere, F. Fleury, P. Lauginie, J. Conard. and B. Rousseau, Muter.

Sci. Forum, 1992, 91-93(Intercalation Compd., Pt. 2). 557 (Chem. Abstr., 1992, 117, 162 687). 2764 A. Hamwi. A. Senhaji. D. Djurado. and J.C. Cousseins. Muter. Sci. Forum, 1992, 91-93(Intercalation

Compd., Pt. 1). 79 (Chem. Abstr., 1992, 117, 244 492). 2765 C.C. Chen and C.M. Lieber, J. Am. Chem. SOC., 1992, 114,3141 (Chem. Abstr., 1992, 116, 185 553). 2766 M. Kraus. J. Freytag, S. Gaertner, H.M. Vieth. W. Kraetschmer, and K. Lueders, Z. Phys. B : Condens. Matrer,

*767 Y. Maniwa, T. Shibata, K. Mizoguchi, K. Kume. K. Kikuchi, I. Ikemoto, S. Suzuki, and Y. Achiba, J. Phys.

2768 A.L. Blumenfel’d. V.E. Muradyan, I.B. Shumilova. Z.N. Parnes, and Yu.N. Novikov, Muter. Sci. Forum, 1992,

2769 M.K. Cheung and M.A. Petrich, Phys. Rev. E : Condens Mutter, 1992.45, 9006 (Chem. Abstr., 1992, 116,

1992,56,701 (Chem. Abstr., 1992,116, 155 668).

269).

Abstr.. 1992. 117, 183 502).

116, 179 385).

(Chem. Abstr., 1992, 116, 206 497).

(Chem. Abstr., 1992, 117, 256 438).

117, 123 222).

Slawin, S.V. Ley, and C.J. Groombridge, Inorg. Chem., 1992.31, 3963.

1991, 85, 1 (Chem. Abstr., 1992, 116, 118 337).

SOC. Jpn., 1992, 61, 2212 (Chem. Abstr., 1992, 117, 123 221).

91-93(Intercalation Cornpd.). 613 (Chem. Abstr., 1992, 117, 162 689).

247 135).

Page 153: Nmr

Nuclear Magnetic Resonance Spectroscopy 153

been p ~ b l i s h e d . ~ ~ 7 0 Long range shielding and 13C and 2% NMR chemical shifts have been measured for SiC.2771 The electronic-charge displacement around a stacking boundary in S i c prototypes has

been investigated using 13C and 29Si NMR data.2772 NMR data have also been reported for (13C),2774 (13C, 29Si),2775 and (29Si).2776 The nitridation process of polycarbosilane has been

investigated using 2% NMR spectro~copy.2~~~ Silicon oxycarbide glasses have been characterized

using 29Si NMR spectroscopy.2778 NMR spectroscopy has been used to study the silicon-hydrogen microstructure in hydrogenated

amorphous ~ i l i c o n . 2 ~ ~ 9 29Si solid-state NMR studies have been made of the effect of composition of

amine and alkyl silane blends in tertiary mine-catalysed anhydride-cured epoxy mi~tures.2~80 The pyrolysis chemistry of [Me2SiCdX=C], to give p-Sic has been investigated using 13C and 2%

NMR spectroscopy.2781 NMR data have also been reported for (l,l-Me2SiCH=CHCH2),, ( lH,

l3C, 29Si),2782 poly(d-n-butylsilylene), (IH, 13C, 29Si),2783 [Ol.sSiOSiMe3CH2CH2SiMe2- C&00.5]n7 ('H, l3C, 29Si).27&1 heteropolysiloxane membranes, (29Si)F785 mmethylsilylated silica,

(29Si),2786 functionalized spherosilicates, (13C, 29Si),2787 siloxane-oxide hybrid aryl-

bridged polysilsesquioxanes, ( 13C, 29Si),2789 cross-linked polysiloxanes, (29Si),2790 poly(hydroxy-

2770 M.F. Richardson, J.S. Hartman, D. Guo, and B.G. Winsborrow, Chem. Mater., 1992, 4, 318 (Chem. Abstr.,

2771 D. Guo, J.S. Hartman, and M.F. Richardson, Can. J. Chem., 1992,70,700. 2772 A. Qteish, V. Heine, and R.J. Needs, Phys. Rev. B: Condens Matter, 1992, 45, 6376 (Chem. Abstr., 1992,

2773 0. Chauvet, T. Stoto. and L. Zuppiroli, Phys. Rev. B : Condens. Matter. 1992,46,8139 (Chem. Abstr., 1992,

2774 S.J. Ting, CJ. Chu, and J.D. Mackenzie, J. Mater. Res., 1992, 7, 164 (Chem. Abstr., 1992, 116, 65 469). 2775 T. Taki. J. Inorg. Organomet. Polym.. 1992, 2,269 (Chem. Abstr., 1992, 117, 173 263); J. Lipowitz and G.L.

Turner, Solid State NMR Polym., [Proc. Annu. Chem. Conf. North Am. Solid State NMR Polym.], 3rd 1988, (Pub. 1991). 305. Ed. by L.J. Mathias (Chem. Abstr., 1992, 116, 179 443); G.L. Vignoles, J. Cryst. Growth, 1992. 118, 430 (Chem. Abstr., 1992, 117, 17 695); T. Taki, J. Inorg. Organomet. Polym., 1992, 2. 269 (Chem. Abstr., 1992, 117, 173 263); P. Tougne, H. Hommel, A.P. Legrand, M. Cauchetier, and M. Luce, Diamond Relat. Mater., 1992, 1, 360 (Chem. Abstr., 1992, 117, 51 804).

2776 G.T. Nurns, R.B. Taylor, Y. Xu, A. Zangvil, and G.A. Zank, Chem. Mater., 1992. 4, 1313 (Chem. Abstr., 1992, 117, 218 238).

2777 T. Taki, M. Inui, K. Okamura, M. Sato, and T. Seguchi, Appl. Magn. Reson., 1991, 2.61 (Chem. Abstr., 1992, 117, 50 569).

2778 G.M. Renlund. S. Prochazka, and R.H. Doremus, J. Mater. Res., 1991,6, 2716 (Chem. Abstr., 1992, 116, 26 231); G.M. Renlund, S. Prochazka, and R.H. Doremus, J. Mater. Res., 1991, 6, 2723 (Chem. Abstr., 1992, 116, 26 232).

1992, 116, 157 186).

116, 201 376).

117. 243 314).

2779 K.C. Hsu and H.L. Hwang, Appl. Phys. Lett.. 1992,61,2075 (Chem. Abstr., 1992, 117, 263 295). 2780 S.L. Tidrick, H. Ishida, and J.L. Koenig, Report, 1991, CWRU/DMS/lX-42; Order No. AD-A235 841, 19 pp.

Avail. NTIS. From Gov. Rep. Announce. Index (U. S.), 1991, 91, Abstr. No. 151,826 (Chem. Abstr., 1992, 117, 91 373).

2781 R.J.P. Comu, P. Gerbier, C. Gukrin, B.J.L. Henner, A. Jean, and P.H. Mutin. Organomerallics, 1992.11.2507. 2782 M. Theurig and W.P. W e b , Polym. Bull. (Berlin), 1992.28, 17 (Chem. Abstr., 1992, 116, 214 972). 2783 F.A. Bovey and F.C. Schilling, Solid State NMR Polym., [Proc. Annu. Chem. Conf. North Am. Solid State

2784 P.A. Agaskat. J. Chem. SOC., Chem. Commun.. 1992, 1024. 2785 C. Guizard, N. Ajaka, M.P. Besland, A. Larbot, and L. Cot, Key Eng. Muter., 1991, 61-62(Inorg. Membr.,

ICIM2-91). 537 (Chem. Abstr., 1992, 117. 28 210). 2786 V.V. Brei, Zh. Prikl. Spektrosk., 1992,56, 364 (Chem. Abstr., 1992. 116, 263 062). 2787 P.A. Agaskar, Colloids Surf.., 1992.63, 131 (Chem. Abstr., 1992, 117, 27 325). 2788 S. Dire, F. Babonneau. C. Sanchez, and J. Livage, J. Mater. Chem.. 1992, 2.239 (Chem. Abstr., 1992. 117. 71

2789 K.J. Shea, 0. Webster, and D.A. Loy, Mater. Res. SOC. Symp. Proc., 1990, 180,975 (Chem. Abstr., 1992,

2790 V. Belot, R.J.P. Comu, D. Leclercq, P.H. Mutin, and A. Vioux, J. Polym. Sci., Part A: Polym. Chem., 1992.

NMR Polym.], 3rd 1988, (Pub. 1991). 295 (Chem. Abstr., 1992, 116, 215 315).

716).

116, 129 785).

30,613 (Chem. Abstr., 1992, 116, 129 828).

Page 154: Nmr

154 Spectroscopic Properties of Inorganic and Organometallic Compounds

ether)-poly(dimethylsi1oxane) graft copolymers, (13C),2791 phenyl derivatives of sepiolite and poly(organosiloxanes), ( l3C, 29Si),2792 silica aerogels impregnated with siloxanes, ( 1H),2793 polymers from the hydrolysis of (Me0)3SiC6H4Si(OMe)3, ( 13C, 29Si),2794 arylsilsesquioxane gels, (13C, 29Si),2795 fluorosilicone rubber, ( 1H),2796 heteropolysiloxane-derived membranes, (29Si),2797 and (Et0)Me-phosphosiloxane, ( 13C).2798

IH NMR spectra have been reported for a-SiN,:H films.2799 The pyrolysis of a polyvinylsilazane,

polymeric precursor for silicon carbonimde has been investigated by 'H, l3C, 14N, l5N, and 29Si NMR spectroscopy.28m The value of 15N and l7O NMR spectroscopy for the chemical structure determination of silicates and nitrogen ceramics has been examined.2801 lH imaging techniques have been studied to characterize unfired Si3N4 ceramic components.2802 The microstructure of HPZ- Si3N4 fibre has been investigated by 29Si MAS NMR spectroscopy.2803 Ammonia-induced pyrolytic conversion of a vinylic polysilane to SigN4 has been studied by 13C and 29Si NMR spectroscopy.28M 29Si lineshapes, including 14N quadrupole interactions, have been calculated for silicon oxynitride ceramics.2805

Hydrogenated defects in fused silica have been investigated by 1H NMR spectroscopy.28°6 Two- dimensional J-resolved and SUPERCOSY NMR experiments have been applied to 13C and 2% NMR spectra of the Me3Si ester of cubic octameric ~ i l ica te .280~ High resolution 29Si C P M A S NMR spectroscopy has been used to characterize methyl functionalized silica gels.2808 29Si M A S NMR investigations of silica aerogels have been reported.28@) The cross linking density of gel networks has

2791

2792

2793

2794

2795 2796 2797

2798

2799 2800

2801

2802

2803 2804

2805 2806

2807

2808 2809

A.T. Holohan, M.H. George, J.A. Barrie, and D.G. Parker, Polymer, 1992,33, 852 (Chem. Absrr., 1992, 116, 152 595). A J . Aznar, J. Sanz, and E. Ruiz-Hitzky, Colloid Polym. Sci., 1992, 270, 165 (Chem. Absrr., 1992, 116, 194 412). L. Garrido, J.L. Ackerman, J.M. Vevea, J.E. Mark, and W. Wang, Polymer, 1992, 33, 1826 (Chem. Absfr., 1992, 117, 9059). R.J.P. Corriu, J.J.E. Moreau, P. Thepot, and M.W.C. Man, Chem. M a f e r . , 1992.4, 1217 (Chem. Absrr., 1992, 117. 218 244). K.J. Shea, D.A. Loy, and 0. Webster, J. Am. Chem. Soc., 1992, 114, 6700. H. Yu and L. Ren, Hecheng Xiangjiao Gongye. 1992, 15,231 (Chem. Absrr., 1992, 117,214 283). C. Guizard, N. Ajaka, M.P. Besland, A. Latbot, and L. Cot, Polyim'des Oiher High-Temp. Polym., Proc. Eur. Tech. Symp., 2nd. 1991, 537 (Chem. Abstr., 1992, 117, 235 305). M. Speciale, C. La Rosa, D. Grasso, A. Porto, P. Lanza, and C. Magro, Marer. Res. SOC. Symp. Proc., 1991, 204, 539 (Chem. Absfr., 1992, 116, 89 422). J. Wang and C. Xu, Proc. SPIE-lnf. SOC. Opt. Eng., 1991, 1519, 857 (Chem. Absrr., 1992, 116. 186 298). C. Gerardin, F. Taulelle, and J. Livage, J. Chim. Phys. Phys.-Chim. Biol., 1992, 89, 461 (Chem. Abstr., 1992, 116, 195 045). R.K. Harris, M.J. Leach, and D.P. Thompson, Chem. Mafer., 1992, 4, 260 (Chem. Absfr., 1992, 116, 157 2 17). N. Gopalsami, S.L. Dieckman, W.A. Ellingson. R.E. Botto, P.S. Wong, H.C. Yeh, and J.P. Pollinger, Reporr, 1990, ANL-9027; Order No. DE91010750, 39 pp. Avail. NTIS. From Energy Res. Absrr., 1991, 16, Abstr. No. 17568 (Chem. Absfr., 1992, 116, 179 416); S.L. Dieckman, P. Rizo, N. Gopalsami, and R.E. Botto, M a w . Res. SOC. Symp. Proc., 1991, 217, 169 (Chem. Absrr., 1992, 116, 26 559). V.S.R. Murthy and M.H. Lewis, Curr. Sci., 1992.62.744 (Chem. Absrr., 1992, 117, 196 804). W.R. Schmidt, P.S. Marchetti, L.V. Interrante, W.J. Hurley. jun., R.H. Lewis, R.H. Doremus, and G.E. Maciel, Chem. Mafer., 1992, 4,937 (Chem. Absfr., 1992, 117, 54 305). A. Olivieri, 2. Narurforsch., A , 1992, 47, 39 (Chem. Absir., 1992, 116, 206 378). D.H. Levy, K.K. Gleason, M. Rothschild, J.H.C. Sedlacek, and R. Takke. Appl. Phys. Len., 1992, 60, 1667 (Chem. Abstr., 1992, 116, 201 549). W. Kolodziejski and J. Klinowski, Solid Sfare Nucl. Magn. Reson., 1992, 1, 41 (Chem. Absir., 1992, 117, 82 077). C.A. Fyfe, Y. Zhang, and P. Aroca, J. Am. Chem. Soc.. 1992, 114, 3252. U. Damrau, H.C. Marsmann, 0. Spormann, and P. Wang, J. Non-Crysf. Solids, 1992, 145, 164 (Chem. Absrr., 1992, 117, 176 561).

Page 155: Nmr

Nuclear Magnetic Resonance Spectroscopy 155

been determined by 2% NMR spectroscopy.2810 Silica-pillared derivatives of H+-magadiite have been characterized by 2% MAS NMR spectroscopy.211 Pore structure evolution in silica gel during ageinddrying has been studied using 13C and 2% MAS NMR spectroscopy.2812 High-resolution 29Si NMR studies on synthetic makatite sodium silicate hydrate and crystalline silicic acid have been reported.2813 The formation of microporous silica gels from modified silicon alkoxide has been investigated using 29% MAS NMR s p e c t r o ~ c o p y . 2 ~ ~ ~ Silica gel kinetics have been studied using 29Si

MAS NMR spectroscopy.2815 The influence of the synthesis route on the structure of high surface area silicas has been investigated using 2% NMR spectroscopy.2816 The structural details of Sialons have been studied using MAS NMR spectroscopy.2817 29Si MAS NMR spectroscopy has been used to investigate the structure of micro- and non-crystalline silica minerals.2818 Structural studies have been made of high-surface area silicas using 2% MAS NMR spe~troscopy.~~19 A 2% NMR study of silica has been made.2820 A 2% dipolar dephasing NMR study of amorphous silica has been made.2821 29Si Ti and T2 investigations of E'1 centres in silica fibres have been published.2822 The preparation of amorphous silica from H2SiF6 has been studied using 'H NMR spectroscopy.2823 The 29Si NMR spectrum of polyimide-silica hybrid films has been publ i~hed.2~2~ Multiple-quantum NMR studies of monomeric bonded silica phases have been studied.2825 29Si MAS NMR evidence of structural changes in lithium disilicate has been published.2826 2% chemical shifts have been

2810 H. Kaji, K. Nakanishi, N. Soga, and F. Horii, J. Non-Crysr. Solids. 1992, 145, 80 (Chem. Abstr., 1992, 117,

2811 J.S. Dailey and T J . Pinnavaia, Chem. Marer., 1992.4.855 (Chem. Abstr., 1992, 117, 51 815). 2812 P.J. Davis, C.J. Brinker, D.M. Smith, and R.A. Assink, J. Non-Crysr. Solids, 1992, 142, 197 (Chem. Absrr.,

1992, 117, 54 216); R. Deshpande, D.W. Hua, D.M. Smith, and C.J. Brinker, J. Non-Cryst. Solids, 1992, 144, 32 (Chem. Absrr., 1992, 117, 117 009).

2813 W. Schwieger, K.H. Bergk, D. Heidemann, G. Lagaly, and K. Beneke, Z. Kristallogr., 1991, 197, 1 (Chem. Absrr., 1992, 116, 74 612).

2814 W.G. Fahrenholtz, D.M. Smith, and D.W. Hus, J. Non-Crysr. Solids, 1992, 144.45 (Chem. Abstr., 1992, 117, 117 010).

2815 L. Malier. J.P. Boilot, F. Chaput, and F. Devreux, Phys. Rev. A, 1992, 46, 959 (Chem. Abstr., 1992, 117, 119 135); P. Wilhelmus and J. Wijnen, Report, 1990, ETN-91-99164, 143 pp. Avail. NTIS. From Sci. Tech. Aerosp. Rep., 1991, 29, Abstr. No. N91-22412 (Chem. Absrr., 1992, 117, 136 086); K.Y. Jang and K. Kim, J. Vac. Sci. Technol., A, 1992, 10, 1152 (Chem. Abstr., 1992, 117, 139 335).

2816 L.F. Gladden, P. Chiaranussati, M. Vignaux, R.W. Griffiths, S.D. Jackson, J.R. Jones, A.P. Sharratt, F.J. Robertson, and G. Webb, Phys. Non-Crysr. Solids, 1992, 489. Ed. by L.D. Pye, W.C. La Course, and H.J. Stevens (Chern. Abstr.. 1992,117, 174 436).

2817 J. Sj@berg and R. P o m p , 1nr. Symp. Ceram. Muter. Compon. Engines, 4 f h 1991, (Pub. 1992). 269. Ed. by R. Carlsson, T. Johansson. and L. Kahlman (Chem. Absrr., 1992, 117, 176 634).

2818 O.W. Floerke, H. Graetsch, B. Martin, K. Roeller, and R. Wirth, Neues Jahrb. Mineral., Abh., 1991, 163, 19 (Chem. Abstr., 1992, 116, 24 785).

2819 L.F. Gladden, M. Vignaux, P. Chiaranussati, R.W. Griffiths, S.D. Jackson, S.D. Jones, A.P. Sharratt, F.J. Robertson, G. Webb, er al., J . Non-Cryst. Solids, 1992, 139,47 (Chem. Absrr., 1992, 116, 89 770).

2820 S. hnarde l l i . L. Facchini, C. Fretigny, P. Tougne, and A.P. Legrand, J. Am. Chem. SOC., 1992, 114, 6412. 2821 H. Taibi. H. Hommel, and A.P. Legrand, J. Chim. Phys. Phys.-Chim. Biol., 1992. 89, 445 (Chem. Abstr.,

2822 G. Kordas, Phys. Chem. Glasses, 1992,33, 143 (Chem. Abstr., 1992, 117, 136 133). 2823 V.V. Krot. L.N. Zorya, O.D. Orlova, G.P. Panasyuk, V.B. Lazarev, E.E. Vinogradov, G.N. Tarasova, I.M.

Karataeva, and L.N. Nikolaeva, Zh. Neorg. Khim., 1992,37, 1209 (Chem. Abstr., 1992, 117, 244 482). 2824 M. Kakimoto. A. Morikawa, Y. Iyoku. and Y. Imai. Marer. Res. Soc. Symp. Proc., 1991, 227(Mater. Sci.

High Temp. Polym. Microelectron.), 69 (Chem. Abstr., 1992, 116, 215 426); A. Morikawa, Y. Iyoku, M.-a. Kakimoto, and Y. Imai, Polym. J. (Tokyo), 1992, 24, 107 (Chem. Abstr., 1992, 116, 84 760).

2825 W.V. Gerasimowicz, A.N. Garroway, J.B. Miller, and L.C. Sander, J. Phys. Chem.. 1992, 96, 3658 (Chem. Absrr., 1992, 116, 206 375).

2826 J.W. Adams and S.R. Elliott, Phys. Non-Crysr. Solids. 1992, 742. Ed. by L.D. Pye, W.C. La Course, and H.J. Stevens (Chem. Abstr., 1992, 117, 155 968).

176 550).

1992, 116, 186 332).

Page 156: Nmr

156 Spectroscopic Properties of Inorganic and Organometallic Compounds

calculated for alkali metal silicate glasses.227 Isomorphous substitution of silicon by boron in layered sodium silicate hydrates has been investigated by 1lB MAS NMR spectroscopy.2828 23Na and 2%

MAS NMR investigations of four modifications of synthetic Na2Si205 have been rep0rted.2~29 Sodium and hydrogen octosilicate,2830 and binary silicate glasses,s31 have been characterized by 29Si NMR spectroscopy. The structural role of water in sodium silicate glasses has been investigated by 1H and 29Si NMR spectroscopy.2832 Several 170-enriched silicates have been studied by dynamic angle spinning 170 NMR spectroscopy.2833 The mechanism of hydration of sodium silicate glass has been investigated by 29Si NMR spe~troscopy.283~ l3C. 23Na, and 29Si NMR spectroscopy has been used to study sodium tetramethylammonium silicate hydrate.2835 The local structure around Eu3+ in sodium silicate glasses has been investigated.2836 The fluorination of silica has been studied using MAS NMR spectroscopy.2837 l9F MAS NMR spectroscopy has been used to study structural fluorine in some natural and synthetic 2: 1 layer ~ilicates.283~ Microporous silicogermanates have been characterized by 29Si NMR spectroscopy.2839 NASICON-type compounds have been studied using 29Si and 3lP MAS NMR spectroscopy.2840 29% and 3lP MAS NMR spectroscopy has been used to study the effect of precursors on the structure of phosphosilicate 39K solid-state NMR studies of potassium tecto- and phyllosilicates have been published.2842 Cross-polarization from 19F to 29Si and 119Sn has been observed.2843

The l3C, l5N and 119Sn CP/MAS NMR spectra of [Me3Sn(NH3)2][N(S02Me)2] and [Me2Sn(DMS0)4] [N(S02Me)2]2 have been recorded and the l9Sn chemical shift tensor determined.2B44 l3C and l19Sn CP/MAS NMR spectra of [(q5-C5H5)2Sn] have been used to

determine the absolute signs of coupling c o n ~ t a n t s . 2 ~ ~ 5 Poly(methy1 methacrylate-co-Bun3Sn

2827 T. Uchino, T. Sakka, Y. Ogata, and M. Iwasaki, J. Phys. Chem., 1992,96, 2455. 2828 W. Schwieger and E. Brunner, Colloid Polym. Sci., 1992,270,935 (Chem. Absrr., 1992, 117, 263 470). 2829 D. Heidemann. C. Hubert. W. Schwieger, P. Grabner, K.-H. Bergk, and P. Sam, Z. Anorg. Allg. Chem., 1992,

617, 169. 2830 G. Borbely, H.K. Beyer, H.G. Karge. W. Schwieger, A. Brandt, and K.H. Bergk, Clays Clay Miner., 1991.39,

490 (Chem. Abstr., 1992. 117, 37 225). 2831 D. Sprenger, H. Bach, W. Meisel, and P. Guetlich, Phys. Non-Cryst. Solids, 1992, 42. Ed. by L.D. Pye, W.C.

La Course, and HJ. Stevens (Chem. Abstr., 1992, 117, 155 890); W.A. Buckermann, W. Mueller-Warmuth, and G.H. Frischat, Glasrech. Ber., 1992,65, 18 (Chem. Absrr., 1992, 116, 260 674).

2832 J. Kiimmerlen, L.H. Mewin, A. Sebald, and H. Keppler, J. Phys. Chem., 1992,96,6405. 2833 K.T. Mueller, J.H. Baltisberger, E.W. Wooten, and A. Pines, J. Phys. Chem.. 1992,96, 7001. 2834 T. Uchino, T. Sakka, Y. Ogata. and M. Iwasaki, J . Phys. Chem., 1992.96, 7308. 2835 M. Wiebcke and H. Koller. ACIU Crysrallogr., Sect. B , 1992, 48.449 (Chem. Absrr., 1992, 117, 141 039). 2836 S. Todoroki, S. Tanabe. K. Hirao, and N. Soga, J. Non-Cryst. Solids, 1991, 136, 213 (Chem. Absrr., 1992,

2837 J.H. Clark, A.P. Kybett, AS. Piers, C.J. Williamson, and J.M. Miller, Chem. Modif Surf., Proc. Symp.,4Ih,

2838 L. Huve, L. Delmotte, P. Martin, R. Le Dred, J. Baron, and D. Saehr, Clays Clay Miner., 1992, 40, 186

2839 S. Feng, M. Tsai. S.P. Szu, and M. Greenblait, Chem. Muter., 1992, 4, 468 (Chem. Absir., 1992, 116, 163

2840 Y. Yue, L. Li, F. Zhou, and W. Pang, Bopuxve Zazhi, 1992,9,75 (Chem. Absrr., 1992, 117,263 270). 2841 S.P. Szu, L.C. Klein, and M. Greenblatt, J . Non-Cryst. Solids, 1992, 143, 21 (Chem. Absrr., 1992, 117, 32

2842 J.F. Lambert, R. Prost, and M.E. Smith, Clays'Clay Miner., 1992, 40, 253 (Chem. Absrr., 1992. 117, 254

2843 A. Sebald. L.H. Menvin. T. Schaller, and W. KnBller, J . Magn. Reson., 1992.96, 159. 2844 A. Blaschette, I. Hippel, J. Krahl. E. Wieland, P.G. Jones, and A. Sebald, J. Organomer. Chem., 1992, 437,

2845 B. Wrackmeyer, E. KupEe, G. Kehr, and A. Sebald, Magn. Reson. Chem., 1992,30, 964.

116, 67 895).

1992, 193 (Chem. Absrr., 1992. 117. 77 406).

(Chem. Abstr., 1992. 117,73 257).

296).

427).

991).

279.

Page 157: Nmr

Nuclear Magnetic Resonance Spectroscopy 157

methacrylate) has been characterized by 13C and 119Sn NMR spectroscopy.2846 119Sn MAS NMR spectra have been recorded for four R3SnF c 0 m p o u n d s . 2 ~ ~ ~ 119Sn NMR spectra of 1,3,2- dioxastannolanes and a 1,3,2-dioxastannane have been reported.2848 Organic products in tin oxide

pillared clays have been identified by l3C MAS NMR spectroscopy.2849 l19Sn c.s.a. and indirect

coupling in Sn@ and SnO have been reported%” NaSn2(P04)3 has been characterized by 3lP MAS NMR spectroscopy.2851 NMR data have also been reported for [SnCk(PhN0)2], (13C),2852 and

Pb0.84Bi0.16F2.16, (19F)-2853 The quantitative analysis of phosphorus in phosphate ores has been studied by NMR

spectroscopy.*854 1H and 2H NMR spectroscopy has been used to study amorphous ices at 77K.2855 NMR data have also been reported for 1,5-R4P2N4S2, (3 1P),2856 [RP(S)S]2, (31P),2857

thiaphospholium cations, (31P),2858 poly[(Ph0)2phosphazene], ( l3C, 3 1P),2859 and

[s(Me2C6H20)2P(oCH2CF3)31, (31P).B60

Molecules Sorbed Onto Solids.-This section is divided into two subsections: ‘Water sorbed Onto Solids’ and ‘Atoms and Other Molecules Sorbed Onto Solids’.

Water Sorbed Onto Solids.-The role of hydration sphere on 7Li NMR images of stressed porous discs has been reported.2861 The diffusion coefficients in solutes have been determined by IH and 23Na NMR spectroscopy.2862 The state of water in Nd or Pr oxides has been studied by lH NMR spectroscopy.2863 The reactions of titanium silicate with protic molecules and H202 have been investigated by 170 NMR spectroscopy.2864 The 1H relaxation of water enhanced by suspended a-

2846 A. Ueyama, Y. Tanaka, S. Kubota, and I. Karino, Anal. Sci., 1991, 7, 1293 (Chem. Abstr., 1992, 116, 215

2847 H. Bai and R.K. Harris. J . Magn. Reson., 1992.96, 24. 2848 T.B. Grindley, RE. Wasylishen. R. Thangarasa, W.P. Power, and R.D. Curtis, Can. J . Chem., 1992.70.205. 2849 F.J. Berry, M.S. Beevers, S.P. Bond, and W.R. McWhinnie, Hyperfine Interact. 1991. (Pub. 1992), 68, 181

(Chem. Abstr.. 1992, 116, 222 116); R.C. Ashcroft, S.P. Bond, M.S. Beevers, M.A.M. Lawrence, A. Gelder, W.R. McWhinnie, and F.J. Berry. Polyhedron, 1992, 11, 1001.

2850 C. Cossernent. J. Darville, J.M. Gilles. J.B. Nagy, C. Fernandez, and J.P. Amoureux, Magn. Reson. Chem., 1992, 30, 263.

2851 Y. Yue and W. Pang, J. Mater. Sci. Lert., 1992, 11, 148 (Chem. Absa., 1992, 116, 165 006). 2852 M. Cameron and B.G. Gowenlock, Polyhedron, 1992, 11,2781. 2853 J.P. Donoso, S. Souto, L.N. Oliveira, and A. Cassanho, Radial. Efl. Defecls Solids, 1991, 119, 431 (Chem.

Abstr., 1992. 116, 186 300). 2854 R.N. Zaripov, V.A. Grevtsev, V.F. Krutikov. and A.L. Tuzova, Fiz. Mineralov i ikh Analogov. AN SSSR.

Vses. Mine Ral. 0-ov, L., 1991. 65. From Ref. Zh., Geol.. 1991, Abstr. No. 8V385 (Chem. Abs~r., 1992, 116, 165 3%).

249).

2855 J.A. Ripmeester, C.I. Ratcliffe, and D.D. Klug, J. Chem. Phys.. 1992,96,8503. 2856 T. Chivers, M. Edwards, C.A. Fyfe, and L.H. Randall, Magn. Reson. Chem., 1992.30, 1220. 2857 G. Ohms, G. G m m a n n , and H. Beckmann. Phosphorus Sulfur and Silicon, 1992.65, 127. 2858 R.D. Curtis, B.W. Royan, R.E. Wasylishen, M.D. Lumsden, and N. Burford, Inorg. Chem., 1992.31,3386. 2859 K. Takegoshi, I. Tanaka, K. Hikichi, and S . Higashida. Macromolecules, 1992.25, 3392 (Chem. Abstr., 1992,

2860 T.K. Prakasha, R.O. Day, and R.H. Holmes, Inorg. Chem., 1992.31, 1913. 2861 S.N. Sarkar, AIChE J., 1992.38.603 (Chem. Abstr., 1992, 116, 267 677). 2862 2. Pearl. M. Magaritz, and P. Bendel, J. Magn. Reson., 1992,95. 597. 2863 V.D. Savin. A.V. Elyutin, Yu.B. Muravlev, E.L. Sokolova. and N.P. Mikhailova, Zh. Neorg. Khim., 1992, 37,

2864 G. Bellussi, A. Carati, M.G. Clerici, G. Maddinelli, and R. Millini, J. Catal., 1992, 133, 220 (Chem. Abslr.,

117, 8792).

163 (Chem. Abstr., 1992, 116,226 871).

1992, 116, 105 363).

Page 158: Nmr

158 Spectroscopic Properties of Inorganic and Organornetallic Compounds

Fe2Og particles has been reported.2865 1H T1 measurements have been used to investigate the diffusion of water on suspended A1203 particles>866 and the structure of water adsorbed on y-Al203, montmorillonite, hydromica, and ka0linite.28~~ The surface chemistry of &A1203 powders washed

with PriOH, hexane and water has been examined by 'H and 23Na NMR spectroscopy.2868 The temperature conditions of the formation of hydrous acidic glasses have been investigated by NMR spectroscopy.*869 27Al double rotation NMR spectroscopy has been used to study structural changes in the framework of several aluminophosphate molecular sieves upon adsorption of water.2870 The dynamics of water molecules in VPI-5 and AlP04-5 have been studied by 2H NMR spectroscopy.2871 27Al and 31P MAS NMR spectroscopy has been used to study the effect of water molecules on AlP04- 1 l.2g72 The theory of nuclear spin relaxation in heterogeneous media has been developed and applied to 2H in D 2 0 on ~lays.28~3 The ability of S i c powder to adsorb water has been investigated using 'H Ti measurements.2874 The effects of proton-proton spin exchange in the 29Si CP/MAS NMR spectra of the silica surface have been reported.2875 I H T i measurements of water in sandstone cores saturated with brines have been made.2876 The imaging of brine in sandstone has been described.2877 I H T I measurements for water in hydrated porous S i 0 2 glass, with small concentrations of paramagnetic ions, have been reported.2878

Atoms and Other Molecules Sorbed Onto Solids.---Gas in voids in cement s lumes has been imaged.2879 NMR spectroscopy has been used to study the influence of adsorbed sulfur on hydrogen chemisorption on supported ruthenium catalysts.2880 1H and 13C CP/MAS NMR spectra have been recorded for rhodium/silica catalysts exposed to CObI2.2881 Metal-support interactions have been investigated by 2H NMR spectroscopy for deuterium adsorbed on rhodium supported on MgO, Ti02, Al2O3, NaY zeolite, and Si02.2882 Brgnsted acid sites of D-Y zeolite have been observed by 2H NMR spectroscopy.2883 Hydride-silica surfaces have been characterized using 29Si NMR

2865 E.K. Jang and I. Yu, J. Appl. Phys., 1992, 72, 2984 (Chem. Absfr., 1992, 117, 244 339). 2866 J.O. Kwag, E.K. Jang, and I. Yu, J. Appl. Phys., 1992, 71, 3663 (Chem. Absfr., 1992, 116, 267 686). 2867 P.P. Olodovskii and I.L. Berestova, Inzh.-Fiz. Zh., 1992, 62. 853 (Chem. Absfr., 1992, 117, 137 972). 2868 P.S. Wang, S.G. Malghan, S.M. Hsu, D.C. Bartenfelder, and B. Hegemann, Cerom. Trans., 1991, 22 (Ceram.

2869 A.A. Marakushev, Dokl. Akad. Nauk SSSR, 1991,320, 1217 (Chem. Abstr., 1992, 116, 87 947). 2870 R. Jelinek, B.F. Chmelka, Y. Wu, M.E. Davis, J.G. Wan, R. Gronsky, and A. Pines, Cafal. Len., 1992, 15, 65

2871 D. Goldfarb, H.X. Li, and M.E. Davis, J. Am. Chem. SOC., 1992, 114, 3690. 2872 S. Prasad. I. Balakrishnan, and R. Vetrivel, J. Phys. Chem., 1992,96, 3096. 2873 D. Petit, J.-P. Korb, A. Delville, J. Grandjean, and P. Laszlo, J. Magn. Reson., 1992, 96, 252. 2874 J.C. Roussel, C. Chardaire-Riviere, and M. Robin, Collecf. Colloq. Semin. (Inst. Fr. Pet.), 1992, 50 (Phys.

Chem. Colloids Interfaces Oil Prod.), 156 (Chem. Absrr., 1992, 117, 215 793). 2875 I.S. Chuang. D.R. Kinney, C.E. Bronnimann. R.C. Zeigler, and G.E. Maciel, J. Phys. Chem., 1992, 96, 4027. 2876 U. Bilardo, G.C. Borgia. V. Bortolotti, P. Fantazzini, and E. Mesini, J. Pet. Sci. Eng., 1991, 5 , 273 (Chern.

2877 J.J. Attard, S.J. Doran, N.J. Herrod, T.A. Carpenter, and L.D. Hall, J. Magn. Reson., 1992,96, 514. 2878 K.G. Soga, H. Haranczyk, R.J. Rumm, and M.M. Pintar, Magn. Reson. Imaging. 1991, 9, 727 (Chem. Abstr.,

2879 E.J. Fordham, T.P.L. Roberts, T.A. Carpenter, L.D. Hall, G.C. Maidand, and C. Hall, AlChE J., 1991, 37,

2880 S. Bhatia, B.C. Gerstein, and T.S. King, J. Caral., 1992. 134, 572 (Chem. Absfr., 1992, 116, 201 859). 2881 J.A. Chudek, M.W. McQuire, and C.H. Rochester, J. Catal., 1992, 135, 358 (Chem. Abstr., 1992, 117, 15

2882 T.H. Chang, C.P. Cheng, and C.T. Yeh,J. Phys. Chem.. 1992.96.4151 (Chem. Absir., 1992, 116, 242 543). 2883 T.J. Gluszak, D.T. Chen, S.B. Sharma, J.A. Dumesic, and T.W. Root, Chem. Phys. L e f f . , 1992, 190, 36

Powder Sci. 4), 217 (Chem. Absfr., 1992, 116, 219 955).

(Chem. Abstr., 1992, 117, 178 916).

Absfr., 1992, 117, 215 772).

1992, 116, 157 124).

1895 (Chem. Absfr., 1992, 116, 65 677).

loo).

Page 159: Nmr

Nuclear Magnetic Resonance Spectroscopy 159

spectroscopy.28a Extra-framework Na+ sites in sodium zeolite Y have been probed by 23Na double-rotation NMR

spectroscopy.2885 The surface excesses of Na+ and C1- in synthetic imogolite and allophanes with varying AYSi molar ratios have been determined using 23Na and 35C1 NMR spectroscopy.2886 A (ButCH2)jZrIV complex grafted to the surface of a partially dehydroxylated silica has been characterized by 13C MAS NMR s p e c t r o ~ c o p y . ~ 8 ~ High-resolution 13C NMR spectroscopy has been used to characterize adsorbed [Mo(C0)6] and [Mo(CO)~(NCSH~)] in y-alumina.2888 The photo- oxidation of [Mo(C0)6] in Na-Y zeolite has been examined using 23Na M A S D O R NMR spectro~copy.~~*9 31P MAS NMR spectroscopy has been used to study [H3PW12040] supported on silica.2890 Small ruthenium and platinum containing particles supported on silica have been characterized by 1H NMR spectra of adsorbed hydrogen.2891 13C NMR spectroscopy has been used to study [Fe3(C0)121 and [Ru3(CO)12] adsorbed on metal oxide s ~ r f a c e s . ~ ~ 9 2 [C12Ru( MeO(CH2)2- PPh(CH2)3Si(OMe)3)3] on Si02 has been characterized using 29Si and 31P CP/MAS NMR spectroscopy.2893 The electronic structure of small copper particles on silica has been probed using 63Cu NMR spectroscopy.2894 Polymer-supported highly reactive copper reagents have been investigated using l3C and 31P NMR spectroscopy.2895 ZnF2, CdF2 and CuF2 adsorbed on montmorillonite have been investigated using 19F, 27Al, and 2% NMR spectroscopy.2896 The effects of acid treatment of montmorillonite clay on its activity as a support for ZnC12 alkylation catalysts have been investigated by 29Si MAS NMR spectroscopy.2897 The sorption of aluminium and gallium on the phosphorus containing cation exchanger SF 5 from HCl solutions has been studied by using 27Al, 31P, and 71Ga NMR spe~troscopy.2~9~ 31P MAS NMR spectroscopy has been used to monitor the binding of cyclic phosphazenes to A1203.2899

The diffusion of hydrocarbons in A and X zeolites has been investigated by NMR s p e ~ t r o s c o p y . ~ 9 ~ lH and 13C NMR spectroscopy has been used to investigate the adsorption of C2H4, C2H4, C2H2,

(Chem. Abstr., 1992, 116, 181 956).

Absrr., 1992, 117, 98 328). 2884 JJ. Pesek, J.E. Sandoval, C.H. Chu, and E. Jonsson, Chem. Mod.$ Surf., Proc. Symp., 4th. 1992.57 (Chem.

2885 R. Jelinek, S. Ozkar, and G.A. &in, J . Am. Chem. Soc., 1992, 114,4907. 2gg6 C. Su, J.B. Harsh, and P.M. Bertsch, Clays Clay Miner., 1992,40, 280 (Chem. Abstr., 1992, 117,254 994). 2887 F. Quignard, C. Lecuyer, C. Bougault, F. Lefebvre, A. Choplin, D. Olivier, and J.M. Basset, fnorg. Chem.,

2888 S. Shinoda and T. Yamakawa, Hyomen Kagaku, 1991, 12.359 (Chem. Abstr., 1992, 116,68 024). 2889 S. bzkar, G.A. Ozin, and R.A. Prokopowicz, Chem. Muter., 1992, 4, 1380 (Chem. Abstr., 1992, 117, 242

2890 F. Lefebvre, J . Chem. Soc.. Chem. Commun., 1992, 756. 2891 X. Wu, S. Bhatia, and T.S. King, J . Vac. Sci. Technol.,A, 1992, 10, 2729 (Chem. Abstr., 1992, 117, 138

2892 L. Reven and E. Oldfield, Inorg. Chem., 1992,31,243. 2893 E. Lindner, M. Kemmler, and H.A. Mayer, Chem. Ber., 1992, 125, 2385. 2894 M.J. Williams, P.P. Edwards, and D.P. Tunstall, Faraday Discuss. 1991, (Pub. 1992), 92 (Chem. Phys.

2895 R.A. OBrien, A.K. Gupta, R.D. Rieke, and R.K. Shoemaker, Magn. Reson. Chem., 1992,30,398. 2896 F.M. Asseid, J.M. Miller, and J.H. Clark, Can. J. Chem., 1992.70, 2398. 2897 C.N. Rhcdes and D.R. Brown, J . Chem. Soc., Faraday Trans., 1992,88,2269. 2898 S.B. Randarevich, V.Yu. Korovin, N.G. Zhukova, Yu.N. Pogorelov, A.V. Zhuravieva. and M.N. Rastorgueva,

Zh. Neorg. Khim., 1992,37, 142 (Chem. Abstr., 1992, 116, 182 160). 2899 S.D. Burton, W.D. Samuels, G.J. Exarhos, and J.C. Linehan, Marer. Res. SOC. Symp. Proc., 1991, 227, 161

(Chem. Abstr., 1992, 116, 179 423). 2900 D.M. Ruthven, M. Eic, and Z. Xu, Stud. Surf. Sci. Catal., 1991,65,233 (Chem. Abstr., 1992, 116,91 879).

1992, 31. 928.

528); R. Jelinek, S. bzkar, and G.A. Ozin, J. Phys. Chem., 1992.96, 5949; 9582.

557).

Small Met. Part.), 199 (Chem. Abstr.. 1992, 117, 155 558).

Page 160: Nmr

160 Spectroscopic Properties of Inorganic and Organometallic Compounds

C6H6, CO, and N2 on ~eolites.~9O~ VOx grafted AlNbO oxides adsorbing propane have been investigated by 51V NMR spectroscopy.2902 The measurement of diffusion of cyclopropane and propene in zeolite X using pulsed-field gradient NMR spectroscopy has been reported.2903 The aromatization of hexane by [Pt(acac)2] on aluminosilicates has been investigated using 13C MAS NMR spectroscopy.2904 The self-diffusion of n-alkanes in zeolite NaCaA,2905 and ZSM-5,2906 by pulsed- field gradient NMR spectroscopy has been reported.2907 l3C NMR spectroscopy has been used to study the dynamic behaviour of alkyl ligands grafted on silica gels.2gM

The molecular structure of the surface of the methanol oxidation catalyst, vanadium oxide on different oxide supports, has been studied using 31V solid-state NMR spectroscopy.29~ A I3C NMR study of the Cu/ZnO/A1203 methanol synthesis catalyst has been reported.2910 Methanol conversion to gasoline over ZSM-5,2911 and to low molecular weight hydrocarbons over H-SAPO-34 zeolite,2912 and offetite/erionite intergrowths,2913 has been studied using 13C NMR spectroscopy. Ethanol dehydration by [H3PW12040] has been investigated using l3C and 31P MAS NMR spectroscopy.2914 The dehydration of isobutyl a lcoh01,~9~~ and t-butanol,2916 over H-ZSM-5 has been investigated using 13C CP/MAS NMR spectroscopy. NMR spectroscopy has been used to study dioxane adsorbed on ~harcoals.291~ 13C and 29Si NMR spectroscopy has been used to study the adsorption of ketones in pentasil zeolites.2918 The effects of alkali promotion on CO adsorption on supported rhodium catalysts have been investigated by 13C NMR spectroscopy.2919

Porous silica grafted with trialkoxysilane coupling agents has been characterized by 13C and 29Si

2901 J.L. White, L.W. Beck, and J.F. Haw,J . Am. Chem. Soc., 1992, 114, 6182. 2902 P.G. Pries de Oliveira, K.G. Eon, and J.C. Volm, J. Caraf., 1992, 137, 257 (Chem. Absir., 1992, 117, 179

2903 U. Hong, J . Kaerger, B. Hunger, N.N. Feoktistova, and S.P. Zhdanov, J. Calaf., 1992, 137,243 (Chem. Abstr.,

2904 S.B. Hong. E. Mielczarski, and M.E. Davis, J. Caraf., 1992, 134. 249 (Chem. Absrr., 1992, 116, 114 298). 2905 W. Heink, J. K&ger, H. Pfeifer. P. Salverda, K.P. Datema, and A. Nowak, J. Chem. Soc., Faruduy Trans., 1992,

2906 W. Heink, J. Kilrger, H. Pfeifer, K.P. Datema, and A.K. Nowak, J . Chem. SOC., Faraday Trans., 1992,88,3505. 2907 H. Jobic, M. Bee, J. Caro, M. Buelow, J. KBger, and H. Pfeifer, Srud. Surf. Sci. Caraf., 1991, 65,445 (Chem.

Absrr., 1992, 116, 91 880); N.K. Dvoyashkin, V.D. Skirds, A.l. Maklakov, M.V. Belousova, and R.R. Valiullin, Appf. Magn. Reson.. 1991, 2, 83 (Chem. Abstr., 1992, 116, 258 653); H. Karsh, A. Culfaz, and H. Yucel, Zeolites, 1992, 12, 728 (Chem. Absrr., 1992, 117, 119 098).

2908 K. Albert, B. Pfleiderer, and E. Bayer, Chem. Modif Surf., 1990, 3(Chem. Modif. Oxide Surf.), 233 (Chem. Absrr.. 1992, 117, 142 115).

2909 G. Deo and I.E. Wachs, Stud. Surf. Sci. Caiaf., 1991.67, 13 (Chem. Abstr., 1992, 116, 108 734). 2910 N.D. Lazo, D.K. Murray, M.L. Kieke, and J.F. Haw, J. Am. Chem. Soc., 1992, 114, 8552 (Chem. Abstr.,

1992, 117, 191 139). 2911 W. Kolodziejski and J. Klinowski, Appl. Caraf., A , 1992, 81, 133 (Chem. Abstr., 1992, 116, 197 323); E.J.

Munson, D.B. Ferguson, A.A. Kheir, and J.F. Haw, J. Caraf., 1992, 136, 504 (Chem. Absrr., 1992, 117, 98 512); F.G. Oliver, E.J. Munson, and J.F. Haw, J. Phys. Chem., 1992, 96, 8106; E.J. Munson, A.A. Kheir, N.D. Lazo, and J.F. Haw, J. Phys. Chem., 1992, 96, 7740.

2912 Y. Xu, C.P. Grey, J.M. Thomas, and A.K. Cheetham. Caral. Sci. Technof., Proc. Tokyo Conf,, Is[ 1990, (Pub. 1991), 79. Ed. by S. Yoshida, N. Takezawa, and T. Ono (Chem. Absrr., 1992, 116, 24 340).

2913 M.W. Anderson, M.L. Occelli, and J. Klinowski, J. Phys. Chem., 1992,96,388. 2914 K.Y. Lee, T. Arai, S. Nakata, S. Asaoka, T. Okuhara, and M. Misono, J. Am. Chem. Soc., 1992, 114, 2836. 2915 A.G. Stepanov, V.N. Romannikov, and K.I. Zamaraev, Catul. Leu., 1992, 13, 395 (Chem. Absir., 1992, 117,

2916 A.G. Stepanov, K.I. Zamaraev, and J.M. Thomas, C a r d Lerr., 1992, 13,407 (Chem. Absrr.. 1992, 117, 1 1 1

2917 Y. Xue, Y. Du. C. Ye, and Y. Kong, Wufi Huaxue Xuebao, 1992.8, 113 (Chem. Absrr., 1992, 116, 159 553). 2918 M.A. Garcia-Garibay, M.F. Ottaviani, and N.J. Turro, Mol. Crysr. Liq. Crysr. Sci. Technof., Sect. A, 1992,

2919 D.B. Compton and T.W. Roo1.J. Caraf., 1992, 137, 199 (Chem. Absrr., 1992, 117, 179 141).

144).

1992, 117. 158 477).

88, 515.

110 972).

049).

211, 199 (Chem. Absrr., 1992, 117, 17 061).

Page 161: Nmr

Nuclear Magnetic Resonance Spectroscopy 161

NMR spectroscopy.~~~~ 2H and 13C NMR spectroscopy has been used to examine the adsorption of polypeptides onto silica and hydroxyapatite NMR spectroscopy has been used to show that surface adjacent layers of Triton X-100 adsorbed on carbonized silica gel are sterically oriented.2922 The hydrolysis, adsorption, and dynamics of silane coupling agents on silica surfaces have been investigated by l H and 2H NMR spectroscopy.29B 13C NMR spectroscopy has been used to characterize rhodium complexes with nitrogen-donor ligands anchored on silicic supports.2924 Silanetriol groups on silica surfaces have been observed using solid-state NMR spe~troscopy.292~ Epoxy modified silicas for WLC have been studied by 13C and 29Si NMR spectroscopy.2926 The molecular mobility in the adsorption layer and chain orientation in strained poly(dimethylsi1oxane) networks have been invesigated by 2H NMR spe~troscopy.292~

Ethene hydrogenation over silica supported ruthenium and ruthenium-copper bimetallic catalysts has been investigated using 1H and l3C NMR spectroscopy.2928 l3C NMR studies of ethene adsorbed on Ru-Y zeolite?929 and ethyne cyclotrimerization on WA1203 catalysts?930 have been reported.

'H, 2H, and 13C NMR spectroscopy has been used to investigate the deuteriation of Q H 6 to C & j D 6 catalyzed by I($- CgMeg)Th(CH2Ph)3] on dehydroxylated y - A ~ 0 3 . ~ 9 ~ 2 Dipolar coupling between 195Pt and 1H has been used to determine a Pt-benzene distance of 1.56 k 0.02 A for benzene chemisorbed onto P t / A 1 ~ 0 3 . ~ ~ ~ ~ The geometry and dynamics of benzene on a Pt/Al2O3 catalyst have been investigated using 13C NMR spectroscopy.2934 'H, l3C, and 129Xe NMR spectroscopy has been used to study benzene adsorbed on synthetic faujasite-type zeolites.2935 Multiple quantum NMR spectroscopy has been used to study the dismbution of benzene in NaY zeolite.2936 2H NMR spectroscopy has been used to show two sites for C&j sorbed on the surface of ~ i l i c a l i t e . ~ ~ ~ ~ The structure and dynamics of a poly(dimethylsi1oxane) network swollen with toluene have been investigated by NMR

Transport in zeolites has been investigated by NMR

2920 E. Carlier, A. Guyot, A. Revillon, M.F. Llauro-Danicades, and R . Petiaud. React. Polym.. 1991, 16,41 (Chem.

2921 V.L. Femandez, J.A. Reimer, and M.M. Denn, J. Am. Chem. SOC., 1992, 114,9634. 2922 T.V. Karmazina. N.A. Klimenko, B.P. Nikolaev, A.M. Shlyakov, D.K. Toropov, M.A. Glikin, and N.P.

Alekseeva, Khim. Tekhnol. Vody, 1991. 13,900 (Chem. Abstr., 1992, 116.27 255). 2923 F.D. Blum, W. Meesiri'. H.J. Kang, and J.E. Gambogi, J. Adhes. Sci. Techno/., 1991. 5, 479 (Chem. Abstr.,

1992, 116.22 074). 2924 P. Heman, C. Del Pino, and E. Ruiz-Hitzky, Chem. Muter., 1992,4,49 (Chem. Abstr., 1992,116. 74 771). 2925 J.W. Severin and J.MJ. Vankan, Philips J. Res., 1990, 45,35 (Chem. Absrr., 1992, 116, 165 149). 2926 A. Tuel, H. Hommel, A.P. Legrand, M.F. Gonnord. E. Mincsovics, and A.M. Siouffi, J. Chim. Phys. Phys.-

2927 V.M. Litvinov and H.W. Spiess, Makromol. Chem., 1992, 193, 1181 (Chem. Absrr.. 1992. 117, 9569). 2928 S. Bhatia, X. Wu, D.K. Sanders, B.C. Gemtein, M. h s k i , and T.S. King, Coral. Today, 1992, 12, 165 (Chem.

2929 Y.S. Kye. S.X. Wu, and T.M. Apple, J. Phys. Chem., 1992.96, 2632. 2930 M.J. Lambregts, E.J. Munson, A.A. Kheir, and J.F. Haw, J. Am. Chem. Soc., 1992, 114, 6875. 2931 R.L. Portsmouth and L.F. Gladden. Chem. Eng. Res. Des., 1992.70, 186 (Chem. Abstr.. 1992, 117, 10 540). 2932 M.S. Eisen and T J . Marks, J. Am. Chem. SOC., 1992, 114, 10 358. 2933 C.F. Tirendi. G.A. Mills, C. Dybowski, and G. Neue, J. Phys. Chem., 1992,96. 5045. 2934 M. Engelsberg. C.S. Yannoni, M.A. Jacintha, and C. Dybowski, J. Am. Chem. SOC.. 1992, 114, 8319 (Chem.

Abstr., 1992, 117, 170 706). 2935 S.-B. Liu, J.-F. Wu, L.-J. Ma, M.-W. Lin, and T.-L. Chen, Collect. Czech. Chem. Commun., 1992, 57, 718;

S.-B. Liu. L.-J. Ma, M.-W. Lin, J.-F. Wu, and T.-L. Chen, J. Phys. Chem.. 1992, 96. 8120 J.-F. Wu, T.-L. Chen, L.-J. Ma, M.-W. Lin, and S.-B. Liu, Zeolites, 1992, 12, 86 (Chem. Absrr., 1992, 116. 68 126).

2936 J.G. Pearson, B.F. Chmeka, D.N. Shykind. and A. Pines, J. Phys. Chem., 1992,96, 8517. 2937 R.L. Portsmouth and L.F. Gladden, J. Chem. Soc., Chem. Commun., 1992, 512.

Abstr., 1992, 116, 21 652).

Chim. Biol., 1992.89.477 (Chem. Abstr., 1992, 116, 195 392).

Abstr., 1992, 116. 193 494).

Page 162: Nmr

162 Spectroscopic Properties of Inorganic and Organometallic Compounds

spectroscopy.2g38 2H NMR spectroscopy has been used to investigate ion-molecule interactions of

aromatics included in ze0lites.29~9 2H Ti measurements of NCsD5 and C@5NO2 confined to porous

silica glasses have been used to investigate reorientational d y n a m i c ~ . ~ 9 ~ The radical polymerization

of vinylbenzyl chloride on silica has been investigated using 29Si NMR spectroscopy.2941 The

composition of the carbonaceous compounds responsible for zeolite deactivation has been investigated

by using 13C NMR spectroscopy.2942 'H and 2H NMR spectroscopy has been used to study NH3 adsorption and decomposition on Ti02

supported V205.B43 The role of W 0 3 in mixed V205/W03/Ti02 catalysts on the catalytic reduction of NO with NH3 has been investigated using 1H NMR spectroscopy.29~ NH3 chemisorption in

mordenite has been studied using lH MAS NMR spectroscopy.2945 l5N NMR spectroscopy has been used to study the NO-@-NH3 reaction over ZSM-5.2946 The synthesis of methylamines on alumina,

NaZSM-5, and various mordenite type catalysts has been investigated by solid-state 13C NMR

spectroscopy.2947 A solid-state l3C NMR study of [bN]+/clay complexes has been p ~ b l i s h e d . 2 ~ ~ ~

The 13C NMR spectra of template molecules in AlP04-11 have been published.2949 Lanthanide

relaxation and shifts have been used as 13C NMR probes for the location of (BuO)3PO in ~ l a y s . ~ 9 ~ O A

lH and 3lP MAS NMR study of phosphate adsorption onto CaC03 has been published.2951 2H, 13C,

27Al, and 29Si NMR spectroscopy has been used to study molecular motions in the kaolinite-DMSO

intercalation compound.2952 The characteristics of adsorption on mordenites treated by HCl and HF have been investigated using 29Si NMR spectroscopy.2953

3He NMR studies of 3He on graphite have been p ~ b l i s h e d . ~ 9 ~ ~ 129Xe NMR spectroscopy has been used to characterize the reactions of [Mo(C0)6] in Na-Y zeolite.2955 The formation and growth of a ruthenium cluster,2956 platinum-iridium c l ~ s t e r s J 9 ~ ~ and platinum-copper c l ~ s t e r s T 9 ~ ~ in Y zeolite

2938 A.M. Hecht, A. Guillermo, F. Horkay, S. Mallam, J.F. Legrand, and E. Geissler, Macromolecules, 1992, 25,

2939 M.A. Hepp, V. Ramamurthy, D.R. Corbin, and C. Dybowski, J . Phys. Chem., 1992,96,2629. 2940 S. Xu, J. Zhang, and J. Jonas, J. Chem. Phys., 1992.97.4564. 2941 E. Carlier, A. Guyot, and A. Revillon, React. Polym., 1992, 16. 115 (Chem. Abstr., 1992, 116, 194 988). 2942 M. Guisnet and P. Magnoux, NATO ASI Ser.,Ser. C, 1992, 352(Zeolite Microporous Solids: Synth.,

Struct., React.), 437 (Chem. Abstr., 1992, 117. 150 428). 2943 M.S. Went and J.A. Reimer, J . Am. Chem. SOC., 1992, 114, 5768. 2944 J.P. Chen and R.T. Yang, Appl. Caral., 1992.80, 135 (Chem. Absrr., 1992, 116, 112 643). 2945 H. Stach, J. Jachen, H.-G. Jerschkewitz, U. Lohse, B. Parlitz, and M. Hunger, J. Phys. Chem., 1992.96, 8480

2946 V.M. hbstikhin and S.V. Filirnonova, J . Chem. SOC.. Faraday Trans., 1992.88, 1473. 2947 H. Ernst and H. Pfeifer, J . Catal., 1992, 136,202 (Chem. Absrr., 1992, 117, 89 792). 2948 T.K. Pratum, J. Phys. Chem., 1992, 96,4567. 2949 S. Prasad and R. Vetrive], J. Phys. Chem., 192,96, 3092. 2950 C.J. Hartzell, M.L. Hsu, C.T. Buscher, D.E. Morris, and P.G. Eller, Mol. Crysr. Liq. Crysf. Sci. Technol., Secr.

2951 Z.R. Hindi , S. Goldberg. A.C. Chang. and J.P. Yesinowski, J . Colloid fnferface Sci., 1992. 152, 141 (Chem.

2952 M.J. Duer and J. Rocha, J . Magn. Reson., 1992, 98, 524; M.J. Duer, J . Rocha, and J. Klinowski, J . Am.

2953 Y.T. Han and B.H. Ha, Hwahak Konghak, 1991. 29, 566 (Chem. Abstr., 1992, 116, 181 820 (Chem. Abstr.,

2954 H.M. Bozler, NATO ASI Ser., Ser. B , 1991, 257,467 (Chem. Abstr., 1992, 116, 113 782); J. Saunders, C.P.

2955 C.L. Tway and T.M. Apple, Inorg. Chem., 1992.31, 2885. 2956 SJ. Cho, S.M. Jung, Y.G. Shul. and R. Ryoo. J. Phys. Chem., 1992.96, 9922. 2957 O.B. Yang, S.I. Woo, and R. Ryoo, J . Catal., 1992, 137, 357 (Chem. Abstr., 1992, 117, 220 846). 2958 D.H. Ahn, J.S. Lee, M. Nomura. W.M.H. Sachtler, G. Moretti, S.I. Woo, and R. Ryoo, J . Catal., 1992, 133,

3677 (Chem. Abstr., 1992, 117, 27 712).

(Chem. Abse., 1992, 117, 179 127).

A , 1992, 211, 227.

Abstr., 1992, 117. 138 472).

Chem. Soc., 1992, 114. 6867.

1992, 116, 181 820).

Lusher, and B.P. Cowan. NATO ASI Ser.,Ser. B, 1991, 257,453 (Chem. Abstr., 1992, 116, 113 781).

Page 163: Nmr

Nuclear Magnetic Resonance Spectroscopy 163

supercages have been probed by 129Xe NMR spectroscopy. A 129Xe NMR study of dealuminated mordenite has been published.2959 129Xe NMR spectroscopy has been used to study xenon in zeolites NaA,2960 and CaA.2961 The surface barrier concept in the diffusion in zeolites has been computer simulated and compared with NMR results.2962 Variable temperature 129Xe NMR spectroscopy has been used t o study xenon adsorbed in ~ e o l i t e s . 2 ~ ~ ~ 129Xe NMR spectroscopy has been used to investigate xenon diffusion between zeolite ~ r y s t a l l i t e s . ~ ~ ~ ~ Intracrystallite transport diffusion in zeolites has been studied by 129Xe NMR spectroscopy.2965 A 129Xe study of intra- and inter- crystallite diffusion of cations in faujasite zeolites has been reported.2966 Aggregate size effects in 129Xe NMR spectra of Y-type zeolites have been Xenon adsorption has been used to study metal cluster formation and growth on Y zeolite has been investigated by 129Xe NMR s p e ~ t r o s c o p y . ~ 9 ~ ~ Low temperature 129Xe NMR studies of co-adsorption of xenon and CC4 in NaY zeolite have been reported.2969 The interaction of xenon with alkaline earth cations in Y zeolite supercage has been investigated by 129Xe NMR spectroscopy.2970 ZSM-5 and ZSM-11 zeolites have been studied by 129Xe NMR s p e ~ t r o s c o p y . ~ 9 ~ ~ Coke distribution in HZSM-5 has been investigated by 129Xe N M R spectroscopy.2972 129Xe NMR spectroscopy has been used t o study the crystallization of SAPO-37.2973

The microporosity of nascent polyethylene has been analysed using 129Xe NMR spectroscopy.2974 The temperature dependence of the 129Xe NMR spectrum of xenon dissolved in solid polymers has been investigated in terms of the free volume model of polymers.2975 129Xe NMR spectroscopy has been used to probe polymer blends.2976 Porous carbon has been analysed using 1H and 129Xe NMR s p e ~ t r o s c o p y . ~ 9 ~ ~ 129Xe NMR spectra of optically pumped xenon thin films have been reported.2978

191 (Chem. Absfr., 1992, 116,47 072). 2959 M.A. Springuel-Huet and J.P. Fraissard, Zeolites. 1992, 12,841 (Chem. Abstr., 1992, 117, 258 894). 2960 C.J. Jameson, A.K. Jameson, R. Gerald, sec.. and A.C. De Dios, J . Chem. Phys., 1992, 96, 1676. 2961 C.J. Jameson, A.K. Jameson. R. Gerald. sec., and A.C. De Dios, J. Chem. Phys., 1992.96, 1690. 2962 F. Vigne-Maeder, S. El Amrani, and P. Gelin, J . Catal., 1992, 134, 536 (Chem. Abstr., 1992, 116, 201 762). 2963 Q.J. Chen and J. Fraissard, J. Phys. Chem., 1992, 96, 1809. 2964 Q.J. Chen and J. Fraissard, J . Phys. Chem., 1992,96, 1814. 2965 J. Ktirger, H. Pfeifer, T. Wutscherk, S. Ernst. J. Weitkamp, and J. Fraissard, J. Phys. Chem., 1992, 96, 5059

2966 J. Fraissard. A. Gedeon, Q. Chen, and T. Ito, Stud. Surf. Sci. Catal., 1991, 69 (Zeolite Chem. Catal.), 461

2967 C. Tway and T. Apple, J. Catal., 1992, 133.42 (Chem. Abstr., 1992, 116, 68 309). 2968 R. Ryoo, S.J. Cho, C. P A , and J. Kim, J . Am. Chem. Soc., 1992, 114, 76. 2969 T.T.P. Cheung, J. Phys. Chem., 1992, 96, 5505. 2970 C. Pak and R. Ryoo, J . Korean Chem. Soc., 1992, 36, 351 (Chem. Abstr., 1992, 117, 34 301). 2971 Q. Chen. M.A. Springuel-Huet, J. Fraissard, M.L. Smith, D.R. Corbin, and C. Dybowski, J. Phys. Chem.,

2972 J.L. Bonardet, M.C. Barrage, J.P. Fraissard, L. KubekovA, J. NovakovA, H. Ernst. and D. Freude, Collect. Czech.

2973 T. Ito, N. Dumont, J.B. Nagy, Z. Gabelica, and E.G. Derouane, Stud. Surf. Sci. Cafal., 1991, 60, 11 (Chem.

2974 M.A. Femro, S.W. Webb, W.C. Conner,jun., J.L. Bonardet, and J. Fraissard, Langmuir, 1992,8,2269 (Chem.

2975 T.T.P. Cheung and P.J. Chu, J. Phys. Chem., 1992. 96, 9551. 2976 J.H. Walton, J.B. Miller, and C.M. Roland, J . Polym. Sci.. Part B : Pofym. Phys., 1992, 30, 527 (Chem.

2977 N. Bansal, H.C. Foley, D.S. Lafyatis, and C. Dybowski, Catal. Today, 1992, 14, 305 (Chem. Abstr., 1992,

(Chem. Absfr., 1992, 116, 262 979).

(Chem. Abstr., 1992, 117. 98 080).

1992, 96, 10 914.

Chem. Commun., 1992, 57, 733.

Abstr., 1992, 116, 13 557).

Absfr., 1992, 117. 151 685).

Absfr., 1992, 116, 236 549).

117. 14 951’1. 2q78 D. Raftery, H. Long, L. Reven, P. Tang, and A. Pines, Chem. Phys. Leu., 1992, 191, 385 (Chem. Absrr.,

1992, 116. 247 124).

Page 164: Nmr

164 Spectroscopic Properties of Inorganic and Organometallic Compounds

6 Group 13 Compounds

A review entitled ' l l B NMR spectra of boranes, main-group heteroboranes, and substituted

derivatives. Factors influencing chemical shifts of skeletal atoms' has a~peared.29~9 The quadrupole moment of 8B has been measured.2980

Boron Hydrides and Carboranes-Extremely broad 119Sn resonances have been observed for mmethylstannylboranes as a result of 1J(119SnllB).2981 NMR data have also been reported for

[H3BC02I2-, (11B),2982 (180), (11B),2983 [H~BNRzI-, (11B),2984 [R3NBH3], ( l 'B, 13C),2985 N- borane adducts of imines, ("B, I3C, 15N),2986 [P(BH3)Me3], [PhNHMMe3], (M = Si, Ge, Sn; 13C),2987 [H3BPPh3], ("B, 13C),2988 (181), ("B, l3C),2989 [H3BP(0)20RI2-, (llB),2990 (182),

( l 1B),2w1 [HB(3-BuL5-Me-pz)gTl], ( 13C),*w2 boron containing polymer from ButBH2.NMe3 and isophthalonimle, ( B, 13Q29g3 [ (R 3N)( R2)B(H)X], (1 1 B. 13C) ,2994 1,2,7,3,6-thiadiazidibor- epines, ( l 'B, 13C),2995 and [CH2(CH2CMe2)2NBHGeMe2GeMe2GeMe2Cl], ( 'B, 13C).2996

2919 S. Hefmhek, Chem. Rev., 1992,92, 325. 2980 T. Minamisono, T. Ohtsubo, I. Minami, S. Fukuda, A. Kitagawa, M. Fukuda, K. Matsuta, Y. Nojiri, S. Takeda,

et af., Phys. Rev. Letr., 1992,69, 2058 (Chem. Abstr.. 1992. 117,221 287). 2981 B. Wrackmeyer, E. Kupte, and J. Kuemmerlen, Mogn. Reson. Chem., 1992,30,403. 2982 A. Sood and B.F. Spielvogel, Inorg. Chem., 1992,31, 2654. 2983 EJ. Corey, M. Azimioara, and S. Sarshar, Terrahedron Lert., 1992.33.3429. 2984 G.B. Fisher, J. Harrison. J.C. Fuller, C.T. Goralski, and B. Singaram, Tetrahedron k t t . . 1992,33.4533. 2985 K.E. Bell and H.C. Kelly, Inorg. Chem., 1992,31, 2665. 2986 A. Ariza-Castolo. M.A. Paz-Sandoval, and R. Contreras, Magn. Reson. Chem., 1992.30, 520. 2987 B.K. Barr, AJ. Herman, L.K. Myers, P.1. Young, H.J. Eppley. J.C. Otter, and C.H. Yoder. J. Organomet.

2988 K. Burgess, W.A. van der Donk. S.A. Westcott, T.B. Marder, R.T. Baker, and J.C. Calabrese, J. Am. Chem.

2989 J.-M. Brunel, 0. Pardigon. B. Faure, and G. Buono. J. Chem. SOC.. Chem. Commun., 1992.287. 2990 J. Tomasz, B.R. Shaw, K. Porter, B.F. Spielvogel. and A. Sood. Angew. Chem., In t . Ed. Engf., 1992.31, 1373. 2991 H. Binder, K. Wolfer, W. Ehmann, W.P. Pfeffer, K. Peters. H. Horn, and R. Ahlrichs, Chem. Ber., 1992, 125,

2992 S. Trofimenko, J.C. Calabrese. J.K. Kochi, S. Wolowiec, F.B. Hulsbergen. and J. Reedijk, tnorg. Chem., 1992,

2993 Y. Chujo, I. Tomita, N. Murata, H. Mauermann, and T. Saegusa, Macromolecules, 1992,2527 (Chem. Abstr.,

2994 C.H. Sutton, M.W. Baize, W.J. Mills, and LJ. Todd, fnorg. Chem.. 1992.31.4911. 2995 C.D. &Men, A. Heine, D. Stake. and G.M. Sheldrick. Z. Natuqorsch.. B, 1992.47,697 (Chem. Abstr., 1992,

2996 E.P. Mayer, H. N&h, W. Rattay, and U. Wietelmann, Chem. Ber.. 1992, 125,401.

Chem., 1992,434,45.

SOC.. 1992, 114, 9350.

651.

31, 3943.

19E, 116,42 128).

116. 48 653).

Page 165: Nmr

Nuclear Magnetic Resonance Spectroscopy 165

[ C ~ B ~ H T ] , and 2,3,4,5-[C4B2H6]>w7 and the hypho-compound [BsH12]-,299* have been calculated

using the IGLO method. The l l B COSY and Ti of [BgHg] and ten substituted clusters have been measured including J(31PllB). Factors affecting IB COSY spectra were e~amined.~999 NMR data

have also been reported for [HRu~(CO)~(PP~~)(B~H~)], ( l 1B),3000 [ R U ( B ~ H ~ ) ( P P ~ ~ ) ( P Z ~ B H ) ] , ( I lB)?Oo1 [RuX(B3H8)(CO)(PPh3)2], (X = H, C1, Br, I; 11B),3002 l , l - [ (Me~PhP)~-arachno- 1-

PtB3H71, ("B, 13C),3003 [H2GaB3Hg], (l 1B),3004 [(q5-C5H5)Re(CO)(BaH6)(PPh2)l, (13C),3005

arachno- [ 3-(?l5-C5Mes)Ru(B4H9)(PMe3)I, (l lB),3m [ (q 5-C5Hs)Fe(BgH8)(C0)2], ( 1B),3007 [ (q5- C ~ M ~ ~ ) C O ( E ~ ~ C Z B ~ H ~ - R ) ~ , ("B, 13C),3008 [(q5-C5Me5)Co(Me4C2B3Hz-R)], ("B, 13C),3009

[ { (q5-C~Me5)Co(2,3-Et2C2B3H2-5-X))Ni], ( l lB, 13C),3010 2,3-[p-(Ph3sn)2BsH8], ("B, l3C,

119Sn),3011 l-[(Ph3Sn)B5Hg], ("B, 119Sn)?012 [n-Me-nido-2-CBgH8], (n = 1 to 4; l1B),3Ol3 [l- M ( (q5-C5H5)Fe(q5-C5H4CH2NMe2)) -2-Me3Si-3-R-2,3-C2B4H4], (M = Ge, Pb; 1 lB, 13C),3014

[(?l5-CsMe~)FeH(Et2C2B4~)1, (l B, 13C)?015 [(q5-C~Meg)Co { (Me3Si)2C2B4& )], (1 1B)?ol6 and [ 1 ,l'-SnIV( 2-(Me3Si)-3-Me-2,3-C2B4&)2], ( l 'B, l3C, 19Sn).3017

The '€3 chemical shifts of cho-[C2B6H8], closo-[CB7Hg]-, Cho-[B8H8]2-, [C3BgH7]?018 and

I C ~ B ~ H ~ O ] ? ~ ~ ~ have been calculated using the IGLO method. The 1H and l l B chemical shifts of cZoso-[(OC)(Ph3P)2IrCB7Hsl show a linear ~ o r r e l a t i o n . ~ ~ 2 ~ NMR data have also been reported for

e m - [ 6-( Me3PCH2)- 3,4-Et2-nido-3,4-C2B~H5], (1 1B, 13C) ,3021 [ C Z B ~ H ~ ] -, (1 1B) ,3022 [nido-4,5 - C2B 6H9]-, (' B, 3 c ) ,3023 aruchno- [ 7,6,8- (q6-C6Me6) RuS 2B 6H 81, ( 1 1B),3024 [ 1 - (7\6-C6Me6) -

2997 M. Biihl and P. von RaguC Schleyer, J. Am. Chem. Soc., 1992, 114,477. 2998 M. Biihl, P. von Ragud Schleyer, and M.L. McKee, Heteroal. Chem.. 1991. 2,499 (Chem. Abstr., 1992, 116,

2999 B.H. Goodreau and J.T. Spencer, Inorg. Chem., 1992,31,2612. 3000 C.E. Housecroft, D.M. Mauhews, and A.L. Rheingold. J. Chem. SOC., Chem. Commun., 1992, 323. 3001 N.W. Alcock, I.D. Burns, K.S. Claire, and A.F. Hill, Inorg. Chem., 1992,31,2906. 3002 N.W. Alcock, I.D. Burns, K.S. Claire, and A.F. Hill, Inorg. Chem., 1992.31. 4606. 3003 J. Bould. J.D. Kennedy, and W.S. McDonald, Inorg. Chim. Acta, 1992, 196.201. 3004 C.R. Pulham, A.J. Downs, D.W.H. Rankin, and H.E. Robertson, J. Chem. Soc., Dalton Trans., 1992, 1509. 3005 B.H. Goodreau, L.R. Orlando, and J.T. Spencer, J. Am. Chem. Soc., 1992, 114, 3827. 3006 P.D. Grebenik, M.L.H. Green, M.A. Kelland, P. Mountford, and J.B. Leach, New J. Chem., 1992, 16, 19. 3007 B.H. Goodreau, L.R. Orlando, and J.T. Spencer, Inorg. Chem.. 1992.31, 1731. 3008 K.W. Piepgrass and R.N. Grimes, Organometallics, 1992, 11, 2397; K.W. Repgrass, K.E. Stockman, M.

3009 M.A. Benvenuto, M. Sabat, and R.N. Grimes, Inorg. Chem., 1992.31.3904. 3Ol0 K.W. Piepgrass, X. Meng, M. Holscher, M. Sabat, and R.N. Grimes, Inorg. Chem., 1992.31, 5202. 3011 D.K. Srivastava. N.P. Rath. and L. Barton, Organometallics, 1992,11,2263. 3012 L. Barton and D.K. Srivastava, J. Chem. Soc., Dalton Trans., 1992, 1327. 3013 T. Onak, J. Tseng, D. Tran, M. Correa, S. Herrera, and J. Arias, Inorg. Chem., 1992,31,2161. 3014 N.S. Hosrnane, K.-J. Lu, H. Zhang, J.A. Maguire. L. Jia, and R.D. Barreto, Organometallics, 1992,11,2458. 3015 M. Stephan, J.H. Davis, jun., X. Meng, K.J. Chase, J. Hauss, U. Zenneck, H. Pritzkow, W. Siebert, and R.N.

3016 M.A. Benvenuto and R.N. Grimes, Inorg. Chem., 1992,31,3897. 3017 L. Jai, H. Zhang, and N.S. Hosrnane, Organometallics, 1992, 11,2957. 3018 J.W. Bausch, G.K.S. Prakash, and R.E. Williams, Inorg. Chem.. 1992,31. 3763. 3019 J.W. Bausch, G.K.S. Prakash, M. Buhl, P. von Ragud Schleyer, and R.E. Williams, Inorg. Chem., 1992,31,

3020 B. sti-br, J.D. Kennedy, M. Thomton-Pen, E. DrdAkovB, T. Jelinek, and J. PleSek. Collect. Czech. Chem.

3021 K. Su, PJ. Fazen. P.J. Carroli, and L.G. Sneddon, Organometallics, 1992,11,2715. 3022 T. Onak. J. Tseng, D. Tran, S. Herrera, B. Chan, J. Arias, and M. Diaz, Inorg. Chem., 1992.31, 3910. 3023 S.O. Kang, J.W. Bausch, P J . Carroll, and L.G. Sneddon, J. Am. Chem. Soc., 1992,114,6248. 3024 K. Mazighi, P.J. Carroll, and L.G. Sneddon, Inorg. Chem., 1992.31, 3197.

113 924).

Sabat, and R.N. Grimes, Organometallics, 1992, 11,2404.

Grimes, J. Am. Chem. Soc., 1992, 114, 5214.

3060.

Commun., 1992.57, 1439.

Page 166: Nmr

166 Spectroscopic Properties of Inorganic and Organometall ic Compounds

isocloso-RuBgHg], ( lB)?025 [6-(q-p-cymene)-6-RuBgH13], ( 1B),3026 [7,7,9-(Ph3P)3-isonido-7- IrB9H101, (11B),3027 [M(BgHgC2Me)2]2-, (M = Ge, Sn; I l B , 13C, 119Sn),3028 [ B l o H l o C H -

Me2Si-2'-Me-closo-l',2'-C2B~oH~o)~-closo-l,10-C2B8H8], (11B),3o32 [anti- 1 1 -Bu'-arachno-

5,10,11 -C2NBfl123, ( l B) ,3033 [arachno-6-(NCCH2)-5,6,7 -C3B7H 121, t1 B),3°34 [ (MeCN)6Y b(p-

H)2B 1oH 121, ( 1 1 B) ,3035 [ 1 -(OC)3Mn-2- Me-2,3,4- C3B 7Hg], ( 1 1 B , 13C) ,3036 [ cornrno -Fe- ( 1 -Fe- 2- Me-2- 13C-2,3,5-C3B7H9)2], (l lB, 13C),3037 [ (Ph3P)2HRhCSB8Hio], ( 1B),3038 [closo-(0C)- 1 3 -

(Ph3P)2-1,2-RhSBgHg], (11B),3039 [(q5-CsMe5)21r2C13][CBgH10], (11B),3040 [1,1-{ ( M e 0 ) 3 P ) 2 -

[MeNBi 1Bi iR]-, (11B)?044 [ (p2-(4, ex0-9)-1 -Me3Si-3-H-N3 )-arachno-6-SBgH10], ( 1B),3045 and [endo-9- ((Bu*)MeC=NH)-arachno-6-SBgH11], ("B, 13C).3046

l H NMR spectroscopy has been used to show that there is a B-H-Ru agostic bond in [RuCl{ 7,8- ~ - S ( C H ~ C H ~ S - C ~ B ~ H I ~ ) (PPh3)2]. The 1 l B NMR spectrum was rep0rted.304~ 1H and 13C NMR

spectroscopy has been used to demonstrate an agostic C-H-Rh interaction in [closo-3,3,3-(q-

Ci0H13)1,2-R2-3,1,2-RhC2B9Hg].~~~~ J(13C1H) values have been measured for 0-, rn-, andp- carboranes. The values cluster around 190 H z . ~ " ~ 1 l B and 3 I P chemical shifts have been used to

imply that closo-carbaborane ligands function as electron donating groups in [ 1 -Rl-2-R23PAu-1,2-

C(CH2)nNH3]+, ("B, 13C),3029 [ B ~ O H I ~ R I - , ("B),3030 [ c ~ o s o - ~ - B ~ o H ~ C O ] - , (' 1B),3031 [ l , lO-(l ' -

1 ,2 ,3-PtC2BgH 101, (11B),3041 [ B l o H 10Hg]4, (199Hg),3042 [ n i d o - N B g H 11( Ng)], (' 1B),3043

3025

3026

3027 3028

3029 3030 303 1 3032

3033 3034 3035 3036 3037 3038 3039

3040

304 1

3042 3043

3044 3045 3046 3047

3048

3049

E.J. Ditzel, X.L.R. Fontaine, N.N. Greenwood, J.D. Kennedy, and M. Thomton-Pett, Z. Anorg. Allg. Chem., 1992, 616. 79. S.A. Macgregor, A.J. Welch, and L.J. Yellowlees, Acta Crystallogr., Secr. C, 1992, 48. 629 (Chem. Abstr., 1992, 117,37 252). J. Bould, J.D. Kennedy, and M. Thomton-Peu, J. Chem. SOC., Dalton Trans., 1992,563. P. Jutzi, D. Wegener, H.-G. Stammler, A. Karaulov, and M.B. Hursthouse, Inorg. Chim. Acra, 1992, 198-200, 369. J. Malmquist and S. Sjtlberg, Inorg. Chem., 1992,31, 2534. G. Geisberger, G. Linti, and H. Ntlth. Chem. Ber . , 1992, 125, 2691. K. Shelly, C.B. Knobler, and M.F. Hawthome, Inorg. Chem., 1992,31, 2889. T.D. Getman, P.M. Garrett, C.B. Knobler, M.F. Hawthorne, K. Thome, and J.D. MacKenzie, Organometallics, 1992, 11, 2723. Z. JanoGek, J. Fusek, and B . h r . J. Chem. SOC., Dalton Trans., 1992, 2649. K. Su, B. Bamum, P.J. Carroll, and L.G. Sneddon, J. Am. Chem. SOC., 1992, 114, 2731. J.P. White, tert. and S.G. Shore, Inorg. Chem., 1992,31, 2756. C.A. Plumb, P.J. Carroli, and L.G. Sneddon, Organomerallics, 1992, 11, 1665. C.A. Plumb and L.G. Sneddon. Organometallics, 1992.11, 1681. K. Nestor, J.D. Kennedy, M. Thomton-Pett, J. Holub, and B.Stibr. Inorg. Chem., 1992,31, 3339. S. Coughlan, T.R. Spalding, G. Ferguson, J.F. Gallagher, A.J. Lough, X.L.R. Fontaine, J.D. Kennedy, and B. Stibr, J. Chem; Soc., Dalton Trans., 1992, 2865. K. Nestor. B. Stibr, J.D. Kennedy, M. Thornton-Pett, and T. Jelinek, Coll. Czech. Chem. Commun., 1992, 57, 1262. J.D. Kennedy, K. Nestor, B. Stibr, M. Thornton-Pett, and G.S.A. Zammit, J. Organomet. Chem., 1992, 437, c1. X. Yang, S.E. Johnson, S.I. Khan, and M.F. Hawthorne, Angew. Chem., Int. Ed. Engl., 1992.31, 893. J. Miiller, P. Paetzold, U. Englert, and J. Runsink, Chem. Ber., 1992, 125, 97; F. Meyer. P. Paetzold, and U. Englen, Chem. Ber., 1992, 125.2025. F. Meyer, J. Miiller, P. Paetzold, and R. Boese, Angew. Chem.. Int. Ed. Engf., 1992, 31, 1227. S. Kiipper, P.J. Carroll, and L.G. Sneddon, J . Am. Chem. Soc., 1992, 114,4914. S. Kiipper, P J . Carroll, and L.G. Sneddon, Inorg. Chem., 1992,31,4931. F. Teixidor, J.A. Ayllbn, C. Vinas, R. Kiveus, R. SillanpM, and J. CasaM, J. Chem. Soc., Chem. Commun., 1992, 1281. I.T. Chizhevskii, T.V. Zinevich, P.V. Petrovskii, V.A. Antonovich, and L.I. Zakharkin, Metalloorg. Khim., 1991, 4, 1416 (Chem. Abstr., 1992, 116, 83 910). S.M. Colella. J. Li, and M. Jones, jun., Organometallics, 1992, 11, 4346.

Page 167: Nmr

Nuclear Magnetic Resonance Spectroscopy 167

cZoso-C2B1~10].3050 NMR data have also been reported for [7-Me3N-4-HS-nido-7-CB10Hiil, (llB)?051 [(octaethylporphyrin)Zr(ll5-1,2-C2B9H1 I)], (l lB, 13C).3052 [(q5-C5H4Me)(C2B9Hi 1 ) -

TaC121, ("B, 13C),3053 [MOW ( p-q3:q2-CButCC(CHC6H4-Me-4))(C0)4(q5-7,8-C2B9Hi I)($-

CsHg)], (l3C)93OU [exo-nido-9,10- ( (q5-CsHs)W (C0)2) -9,lO-(p-H)2-7,8-C~BgH8-7 ,8-Me2I9 ( lB, 13C),3055 [Mo(eCCa4Me-4)(CO)(dppe) [ Ph2P(CH2)2PPh20JI[C2B9HioMe2l, ( l lB, 13C),3056

[MO(=CC&QM~-~)(CO)~(~~-C~B~H~M~~)]-. (l 'B, 13C),3057 [ &{CH(C&~IM~-~)PP~~CH~~P~~)- (CO)2(?15-C2BgH9Me2)], ( B, 13C),3058 m2(p-CMe)(C0)3(q5-CgHs)(q5-7,8-C2BgH8- 10-Et-7,8-

Me2)], ( l l B , 13C),3059 [W(CO);![q5-C2B9H8(CH2R)Me2]], ( l l B , 13C),3060 [W(CO)(q2-

Ph-CPh) (q 5-C2B9H8( CH2R)Me2 ) 1, ( lB, 13C) ?061 [W2Au2( p-CC6H4Me-4)2(p-dppe)(C0)4(r15- CzBgHgMe2)2], ( 'B, 13C)?06* [cfoso- 1,2-Me2-8,9-(CH2C&CH2-2)-3,3-(0C)2-3,3-L2-3,1,2-

3C) ?064 [w2( p-CC=CB u? ( C O k ( q 5-C2B9Hg (Et) Me2 ) (q s-C5H5)], ( B , C) .3°65 W 2 ( p- CC&- Me-4)(CO)2(~5-7,8-Me2-7,8-C2BsHs)I'r16e2-7,8-C2B9H8-lO-(CH2C6H4Me-4))]-, ( l 'B, 13C),3066 [7,7'-p-1,4-QH8-(7,8-C2B9Hlo)2M]n-, (M = Co, Fe, Ni; I lB , 13C),3067 [p-C3N2H3-

(7,9-C2BgH10)2M], (M = Fe, Ni. Cu; 11B),3068 [ ( C ~ B ~ H I ~ ) ~ C O { (q5-C5H5)2ZrMe)]. ("B,

13C)?069 [ l-Ph-3-(qS-C9H7)-3,1,2-cfoso-CoC2BgH10], ( l 1B),3070 [ 1,2-Ph2-3-(q5-C5Mes)-3,1,2- pseudoc loso -RhC~BgHg] , (llB),3071 [3-(C2B9H 1 1)-8- ( (C9Hg)Rh(CgH7)) -3,1,2-cfoso-Rh-

W C ~ B ~ H T ] , ("B, 13C),3063 [Cfoso- l,8-Me2- 11 -(RCH2)-2-X-2,2,2-(OC)3-2,1,8-WC2B9H8]-, ("B,

C ~ B ~ H ~ O ] , (' 1B),307* [RhPt(p-H)(p-CO)(PEt3)2(PPh3)(~l~-7,9-C2B9H 1 I)], (' 'B, 13C),3073

[RhAu(CO)(PPh3)2(qS-7,9-C2B9H11)], (13C),3074 [A~(~,~-F-(SCH~CH~S)-~,~-C~B~H~O) 2]-,

(11B),3075 Cs2[ 10,10-(7-R-7,8-C2B9H10)2Hg], (11B),3076 [ P ~ ~ M C ~ B ~ H I I ] - , ( M = Ge, Sn;

3050 B.D. Reid and A.J. Welch, J. Organomet. Chem., 1992,438, 371. 3051 S.-A. Khan, J.H. Moms, M. Harman, and M.B. Hursthouse, J. Chem. SOC., Dalton Trans., 1992, 119. 3052 J. Arnold, S.E. Johnson, C.B. Knobler, and M.F. Hawthorne, J . Am. Chem. SOC., 1992, 114, 3996. 3053 R. Uhrhammer, D.J. Crowther, J.D. Olson, D.C. Swenson, and R.F. Jordan, Organometallics, 1992, 11, 3098. 3054 G.C. Bruce, D.F. Mullica, E.L. Sappenfield, and F.G.A. Stone, J. Chem. Soc., Dalton Trans., 1992, 2685. 3055 S.A. Brew, J.C. Jeffery, M.D. Mortimer. and F.G.A. Stone, J. Chem. Soc., Dalton Trans., 1992, 1365. 3056 P. Dahlke, J.C. Jeffery, M.D. Mortimer, and F.G.A. Stone, Polyhedron, 1992,11, 1587. 3057 J.C. Jeffery. M.D. Mortimer, and F.G.A. Stone, Inorg. Chim. Acta, 1992. 198-200, 593. 3058 S.A. Brew, P.D. Jenkins, J.C. Jeffery, and F.G.A. Stone, J. Chem. SOC., Dalton Trans., 1992,401. 3059 S.A. Brew and F.G.A. Stone. J. Chem. SOC., Dalton Trans., 1992,867. 3060 J.C. Jeffery, S. Li, D.W.I. Sams, and F.G.A. Stone, J. Chem. Soc., Dalton Trans., 1992,877. 3061 S.A. Brew, D.D. Devore, P.D. Jenkins, M.U. Pilotti, and F.G.A. Stone, J . Chem. SOC., Dalton Trans., 1992,

3062 J.E. Goldberg, D.F. Mullica, E.L. Sappenfield, and F.G.A. Stone, J. Chem. SOC., Dalton Trans., 1992, 2495. 3063 J.C. Jeffery, S. Li, and F.G.A. Stone. Organometallics, 1992.11, 1902. 3064 S.A. Brew, N. Cam, J.C. Jeffery, M.U. Pilotti, and F.G.A. Stone, J . Am. Chem. SOC., 1992, 114,2203. 3065 G.C. Bruce and F.G.A. Stone, Polyhedron, 1992, 11, 1607. 3066 N. Cam, D.F. Mullica, E.L. Sappenfield, and F.G.A. Stone, Organometallics, 1992. 11, 3697. 3067 F.A. Gomez, S.E. Johnson, C.B. Knobler, and M.F. Hawthorne, Inorg. Chem., 1992,31,3558. 3068 A. Varadarajan, S.E. Johnson, F.A. Gomez, S. Chakrabarti, C.B. Knobler, and M.F. Hawthorne, J. Am. Chem.

3069 G.G. Hlatky, R.R. Eckman. and H.W. Turner, Organometallics, 1992.11, 1413. 3070 Z.G. Lewis, D. Reed, and A.J. Welch, J. Chem. Soc.. Dalton Trans., 1992, 731. 3071 Z.G. Lewis and AJ. Welch, J. Organomet. Chem., 1992,430, C45. 3072 Z.G. Lewis and A J . Welch, J. Organomet. Chem., 1992,438,353. 3073 J.E. Goldberg, D.F. Mullica. E.L. Sappenfield, and F.G.A. Stone, J. Chem. SOC., Dalton Trans.. 1992, 2693. 3074 J.E. Goldberg and F.G.A. Stone, Polyhedron, 1992,11,2841. 3075 F. Teixidor, J.A. Ayll6n. C. Viaas. J. Rius, C. Miravitiles. and J. Casab6, J. Chem. SOC.. Chern. Commun..

3076 L.I. Zakharkin and V.A. Ol'shevskaya, Zh. Obshch. Khim., 1992.62, 138 (Chem. Absrr., 1992, 117,212 628).

393.

SOC., 1992, 114, 9003.

1992, 1279.

Page 168: Nmr

168 Spectroscopic Properties of Inorganic and Organometallic Compounds

11B),3077 [ZMe-p-carborane], ("B, 13C),3078 [ 1-(3-phthalimidopropy1)-1,2-C2B loH111, (13C),3079

[closo- l-R-2-ButMe2Si- 1,2-C2B 10H121, ( l 'B, 13C),3O80 [closo- 1 -R1-2-R2- 1,2-C2B 10H121, (1 lB,

13C),3081 [C2B 10H11]22-, ( l 1B),3082 [ I , ~ - S ( P ~ ) C ~ B ~ O H ~ O ] - , ( l lB),3083 [ 12-mercuracarborand-

4.12Li21, (11B, 13C, 199Hg),3°84 [n-hexyl-QB loHloC2B loH10-n-hexyl], (11B),3085 [XC~BIOH~O- C ~ B ~ O H ~ O Y ] , (11B),3086 and [B~oH18]~- , (11B).3087

Other Compounds of Boron.-The inverse H-29Si correlated spectrum of [Ph(Me)-

$iC(Me)=C(Et)BE&] has been used to derive coupling constants.3088 The Lewis base bonding

strength in a series of aliphatic and benzylic bifunctional boronate esters has been investigated by 'H, I l B , and 13C NMR spectroscopy.3089 NMR data have also been reported for [(3,5-

(F3C)2C&3)4B]-, (l3C),3w0 [Me2hC(SiMe3)=C(BEt2)C(Et)=kSiMe3], (M = Sn, Pb; I lB , 13C,

29Si, 19Sn),3091 [MeCH=CHCH=CHCH=CHBPr2], ( l 1B),3092 [ [ (PhCH2)3B )0.92( (PhCH2)3-

Ga)o.o8NCMe], (l 'B, 13C),3093 a polymer of dicyano compounds with [B(CH2CH=CH2)3],

(11B),3094 [RBCH=CHCH=CHCH=CH], ( l 'B, 13C),3"5 [(Me3Si)2CCH(BBut)B(But)N(SiMe3)2], ("B, 13C),3096 (183), ("B, 13C),3097 (184), ( I lB, 13C),3098 [Ph2BC(Ph)=CC6H4X-4], (11B),3O99

(185), ("B, 13C),3100 [B(CgHqF)3], ("B, 13C),3101 [(3,5-(F3C)2CsH3)4B]-, ("B, 13C),3102

[ KOBEtzC(Me)=C(Et)BE t 21, ( 1 B , 3C, 1 7 0 ) ,3 103 [ (C8H 1 4) B ( C = C S i Me 3 ) (th f)] , ( 1 1 B , 1 3C , 29Si),3104 (186), (R = Pri2N; 'B, 13C),3105 [(2,4,6-Me3CsH2)2BB(C6H2Me3-2,4,6)Phl2-,

n

n - 3077 J. Kim, S. Kim, and Y. Do, J. Chem. Soc.. Chem. Commun., 1992. 938. 3078 K. Yuan and M. Jones, jun., Tetrahedron Lett., 1992,33,7481. 3079 J.G. Wilson. A.K.M. Anisuzzaman, F. Alam, and A.H. Soloway, Inorg. Chem., 1992, 31, 1955. 3080 F.A. Gomez and M.F. Hawthorne, J. Org. Chem., 1992,57, 1384. 3081 K.F. Shaw and A J . Welch, Polyhedron. 1992, 11, 157. 3082 T.D. Geunan, C.B. Knobler, and M.F. Hawthorne, Inorg. Chem., 1992.31, 101. 3083 R. Coult. M.A. Fox, W.R. Gill, K. Wade, and W. Clegg, Polyhedron, 1992.11,2717. 3084 X . Yang, C.B. Knobler, and M.F. Hawthorne, J. Am. Chem. SOC., 1992, 114,380. 3085 X. Yang, W. Jiang, C.B. Knobler, and M.F. Hawthorne, J. Am. Chem. Soc., 1992, 114. 9719. 3086 J. Miiller. K. BGe, T.F. Magnera, and J. Michl, J. Am. Chem. SOC., 1992,114. 9721. 3087 L.L. Ng. B.K. Ng, C.B. Knobler, and M.F. Hawthorne, Inorg. Chem., 1992, 31, 3669 (Chem. Abstr., 1992,

3088 8. K u g e and B. Wrackmeyer, J. Magn. Reson., 1992,100,401. 3089 M. Biednycki. W.H. Scouten, and 2. Biednycka, J. Organomet. Chem., 1992,431,255. 3090 M. Brookhart, B. Grant, and A.F. Volpe. jun., Organometallics, 1992, 11, 3920. 3091 B. Wrackmeyer, G. Kehr, and R. Boese, Chem. Ber., 1992,125,643. 3092 M.E. Gurskii, I.D. Gndnev, Y.V. Il'ichev, A.V. Ignatenko, and Y.N. Bubnov, Angew. Chem.. Int. Ed. Engl.,

3093 B. Neumiiller and F. Gahlmann, Z . Anorg. Allg. Chem., 1992,612. 123. 3094 Y. Chujo, I. Tomita. and T. Saegusa, Macromolecules, 1992.25,3005 (Chem. Abstr., 1992, 116,236 248). 3095 A.J. Ashe. tert., J.W. Kampf, Y. Nakadaira, and J.M. Pace, Angew. Chem., Int. Ed. Engl., 1992.31, 1255. 3096 P. Willerhausen, G. Schmidt-Lukasch, C. Kybart. J. Allwohn, W. Massa, M.L. McKee, P.v.R. Schleyer. and A.

3097 M. Enders, H. Pritzkow, and W. Siebert, Angew. Chem.. Int. Ed. Engl., 1992,31,606. 3098 H. Michel, D. Steiner, S. Wocadlo, J. Allwohn, N. Stamatis, W. Massa, and A. Berndt, Angew. Chem., Int. Ed.

3099 K.M. Park and G.B. Schuster, J. Org. Chem., 1992.57,2502. 3100 M. Kranz, F. Hampel, and T. Clark, J . Chem. SOC., Chem. Commun., 1992, 1247. 3101 D. Naumann. H. Butler, and R. Gnann, Z. Anorg. Allg. Chem., 1992, 618, 74. 3102 S.R. Bahr and P. Boudjouk, J. Org. Chem., 1992.57.5545. 3103 R. KOster and G. Seidel. Chem. Ber., 1992, 125,627. 3104 J.C. Evans, C.T. Goralslri, and D.L. Hasha, J. Org. Chem., 1992.57, 2941. 3105 W. Maringgele, U. Seebold. A. Meller. S. Dielkus, E. Pohl, R. Herbst-Irmer, and G.M. Sheldnck, Chem. Ber.,

117. 101 458).

1992, 31, 781.

Bemdt, Angew. Chem.. Int. Ed. Engl., 1992. 31. 1384.

Engl., 1992, 31, 607.

Page 169: Nmr

Nuclear Magnetic Resonance Spectroscopy 169

(llB),3106 [CH2( B(Me)N(SiMe3))2P][AlCl4], ( l 'B, l3C, 14N, 27Al, 29Si),3107 (187), ("B,

13C),3108 [R2B (NHC(CH3))2CCN], (13C),3lo9 [CH2=C( CH2B(NEt2))2CH2], ( I lB , 13C),3l10

[CH2(B(NR2)CH=C=CMe2)2I1 ( I lB , 13C),3111 [(menthyl)2B(8-quinolinato)], (13C),3112 Me?SiC=CC( B(NR2) J3CSiMeg1, (l 'B, 13C, 19F, 29Si),3113 [Ph2B(2-pyridylalkoxyoxy-O,N)], (13C),3114 [MePhB(OFVi)], ( I lB , 13C),3115 [NaOBEt2], ( I lB , l3C, 170),3116 [PriOBEt2], ( l l B ,

13C),3117 [bB@t)C@t)2C(Et)(SnMe3)hEt], ("B, 13C, 170. 119Sn),311* C-borylmethyleneboranes, (llB),3l19 (188), ("B, 13c),3120 [(CbH 11)BOR], (l3C),3121 [RCS2BCgH 141, ( I lB , 13C),3122

[Ph (Me2N) B B ( N Me2)Ph], ( B, 3C),3 23 [ButB=N(Bu[)Si(Me)2SiM e 21. ( B, 3 C ) . 3 24

[(Me3Si)2NB(But)=N(Bu[)SnN(SiMe3)2], ( l 'B, 13C),3125 [ButB=N(R)N(H)(R)B(Cl)But], ("B, (1 1 B, 13C),3127

[Pr3B3N3H2(R12B3N3R23)], ("B, 13C),3128 (189), ( I l B , l3C),3129 (190), (11B),3130

[bC(Me)2C~e)20~CHR1CHR2(CH2)nCHR3~ 21, ( B, 3C) , 3 (19 1). ( B ) , 3 32 ( 192), (11B),3133 (193), ("B, 13C),3134 [RB(OH)2], (13C),3135 [RCH=CHCH2B02(CH2)3], (11B),3136

- - 3C),3126 homo- and copolymerized p-vinylphenylcyclotriborazines,

1992, 125, 1559. 31°6 A. Moezzi, M.M. Olmstead, and P.P. Power, J. Am. Chem. SOC., 1992, 114,2715. 3107 B. Ederer, H. Ederle, and H. Nbth. Chem. Ber., 1992,125.2213. 3108 K. Niedenzu. H. Deng. D. Knoeppel, J. Krause, and S.G. Shore, Inorg. Chem., 1992.31,3162. 3109 M. Yalpani, R. KUster. and R. Boese, Chem. Ber., 1992, 125, 15. 31 lo G.E. Herberich. U. Englen, C. Ganter, and L. Wesemann. Chem. Ber., 1992,125,23. 3 1 l 1 M. Enders, H. Pritzkow, and W. Siebert, Chem. Ber.. 1992, 125, 1981. 3112 H.C. Brown, U.S. Racherla, Y. Liao, and V.V. Khanna, J. Org. Chem., 1992,57,6608. 3113 W. Maringgele, H. Knop, D. Bromm, A. Meller, S. Dielkus, R. Herbst-Inner. and G.M. Sheldrick, Chem. Ber.,

3114 N. Farfh. D. Castillo, P. Joseph-Nathan, R. Contreras, and L.V. Szentpiily, J . Chem. Soc.. Perkin Trans. 2,

31 l5 Z. Wang, C. Narayana, P.P. Wadgaonkar, and G.W. Kabalka, J. Organomet. Chem., 1992,440,243. 31 l 6 R. KUster, G. Seidel, and B. Wrackmeyer, Chem. Ber., 1992,125.617. 31 l 7 T E . Cole and B.D. Haly. Organometallics, 1992. 11, 652. 31 l8 R. KOster and G. Seidel, Chem. Ber., 1992, 125. 1351. 31 l9 P. Willershausen, A. Hoefner, J. Allwohn, M. Pilz, W. Massa. and A. Berndt. Z. Natutforsch., B , 1992,47,983

3120 M. Yalpani and R. Kbster, J. Organomet. Chem., 1992,434, 133. 3121 H.C. Brown, R.K. Dhar, K. Ganesan, and B. Singaram, J. Org. Chem., 1992,57,499. 3122 R. KUster, R. Kucznierz, G. Seidel, and P. Betz, Chem. Ber.. 1992, 125, 1023. 3123 A. Moezzi, M.M. Olmstead, and P.P. Power, J. Chem. SOC., Dalton Trans., 1992,2429. 3124 P. Paetzold. D. Hahnfeld, U. Englert, W. Wojnowski, B. Dreczewski, Z. Pawelec, and L. Walz, Chem. Ber.,

3125 P. Paemld. D. Hahnfeld, and U. Englert, Chem. Ber., 1992. 125, 1079. 3126 B. Thiele. P. Paetzold, and U. Englert, Chem. Ber., 1992, 125, 2681. 3127 L.A. Jackson and C.W. Allen, Report, 1991, TR-17; Order. No. AD-A237881, 15 pp. Avail. NTIS. From Gov.

Rep. Announce. Index (U.S.). 1991, 91, Abstr. No. 158,324 (Chem. Abstr., 1992, 117, 251 812); L.A. Jackson and C.W. Allen, J. Polym. Sci.. Part A: Polym. Chem., 1992, 30, 577 (Chem. Abstr., 1992, 116, 152 526).

1992, 125, 1807.

1992,527.

(Chem. Abstr., 1992, 117, 171 519).

1992. 125. 1073.

31Z8 J. Bai, K. Niedenzu, J. Serwatowska, and J. Serwatowski.Inorg. Chem., 1992,31,228. 3129 EJ. Corey and J.O. Link, Tetrahedron Lett., 1992.33.4141. 313O M.M. Midland and A. Kazubski. J. Org. Chem., 1992,57,2953. 3131 J.M. Jego, B. Carboni, and M. Vaultier, J. Organomet. Chem., 1992,435, 1. 3132 W. Kliegel, G. Lubkowitz, S.J. Rettig, and J. Trotter, Can. J. Chem., 1992.70.2022. 3133 W. Kliegel, G. Lubkowitz. S.J. Rettig, and J. Trotter, Can. J. Chem., 1992,70. 2015. 3134 1. Atchekzai, F. Guilhon, H. Mongeot, and B. Frange, Inorg. Chim. Acta, 1992,202,49. 3135 J.M. Jego, B. Carboni. and M. Vaultier, Bull. SOC. Chim. Fr.. 1992, 129, 554. 31% H.C. Brown, M.V. Rangaishenvi, and S. Jayaraman, Organometallics, 1992.11, 1948.

Page 170: Nmr

170 Spectroscopic Properties of Znorganic and Organometallic Compounds

[(norbornyl)B(OCH2Ph)21, ( l 1B),3137 [RB(02C&)]. (l 'B, 13C),3138 [RB(O2CzMe4)], ( l 'B,

13C),3139 [PrCH=CMeB(02C6H4)], ( l 1B),3140 [O{B[C(SiMe3)310)2CH21, ( l 'B, 13C),3141

organoboron complexes of thio Schiff bases, ( l 1B),3142 [0( Si(Me)(Ph)O)2BPh], ( l 'B, 13C,

29Si),3143 (194), (l 1B),3144 (lR)-( 1-acetamido-2-phenylethy1)boronic acid-l-l3C, (13C),3145 [3,5- (3,5-Ph2C6H3)2B(OH)2], (13C),3146 (195). (11B),3147 [(Me0)(2,4,6-Me3C6H2)BB(Cd.IZMe3- 2,4,6)(OMe)l, (11B),3148 [SnBu$(OH)2(But2SnO)2B(CtjH2Me3-2,4,6)], ("B, 13C),3149

But ' SiMe3

But '

Et

3137 N.N. Joshi, C. Pyun, V.K. Mahindroo, B. Singaram, and H.C. Brown, J. Org. Chem., 1992,57, 504. 3138 S.A. Westcott, H.P. Blom. T.B. Marder, and R.T. Baker, J. Am. Chem. Soc., 1992, 114, 8863. 3139 C.E. Tucker, J. Davidson, and P. Knockel. J. Org. Chem., 1992, 57.3482. 3140 T.E. Cole and R. Quintanilla, J. Org. Chem., 1992,57,7366. 3141 P. Paetzold, L. Gkret-Baumgarten, and R. Boese. Angew. Chem., Int. Ed. Engl., 1992.31, 1040. 3142 V.P. Singh. R.V. Singh, and J.P. Tandon, Main Group Met. Chem., 1990, 13, 135 (Chem. Abstr., 1992. 116.

3143 D.A. Foucher, A.J. Lough. and I. Manners, Inorg. Chem.. 1992.31, 3034. 3144 W. Kliegel. G. Lubkowitz, S.J. Rettig, and J. Trotter, Can. J. Chem., 1992.70.2809. 3145 D.S. Matteson and T.J. Michnick, J. Labelled Compd. Radiopharm., 1992.31. 567 (Chem. Abstr., 1992, 117.

3146 T.M. Miller, T.X. Neenan, R. Zayas. and H.E. Bair, J . Am. Chem. SOC., 1992, 114, 1018. 3147 M.T. Reetz. C.M. Niemeyer, M. Hermes, and R. Goddard, Angew. Chem., Inf . Ed. Engl., 1992.31, 1017. 3148 A. Moezzi. M.M. Olmstead, R.A. Bartleu. and P.P. Power, Organometallics, 1992, 11, 2383. 3149 P. Brown, M.F. Mahon, and K.C. Molloy. J. Chem. SOC., Dalton Trans., 1992, 3503. 3150 H.C. Brown. K. Ganesan, and R.K. Dhar,J. Org. Chem., 1992.57, 3767. 3151 T.E. Cole, R. Quintaniua. B.M. Smith, and D. Hurst. Tetruhedron Lett., 1992.33, 2761.

255 670.

171 516).

Page 171: Nmr

Nuclear Magnetic Resonance Spectroscopy 171

Ph

Cl (193)

Me I

cp P h HZC - B,- P h

0. ,o ? Ph

(194)

(O e 0 wo' (195)

The inverse detection of broad 15N signals has been shown t o be very advantageous compared with

direct observation, and has been applied to compounds such as [B(NHMe)3]?152 Pairwise additivity

has been found in the 1 l B NMR data of [BXnY4+J, X = NCS, NCO, F, C1, Br.3153 NMR data have also been reported for [R1(Me3Si)NB=NC6H2But3-2,4,6], ( 'B, 13C, 15N, 29Si),3154 [CH2(CH2-

CMe2)2NB {P[B(NBui2)2])2N(CMe2CH2)2CH2]. ("B, 13C)13155 [(Pri2N)2BP(SiMe3)2], ( l l B ,

13C)?156 (196), ("B, 13C),3157 BX3 complexes of bidentate pyridines, (l1B),3lS8 (197), (11B),3159

[ k{OCH(CH2OH)CH(CH2OH)b} 21, (1 lB, 13C),3160 borate esters of 1,2-propandiol, (1 1B),316

3152 B. Wrackmeyer, E. Kuse , R. K(lster, and G. Seidel, Magn. Reson. Chem., 1992,30, 393. 3153 J. Atchekzai', B. Bonnetot, H. Mongeot, S. Boufi, and B. Frange, Can. J. Chem., 1992,70,2520. 3154 W. Luthin, G. Elter, A. Heine, D. Stalke, G.M. Sheldrick, and A. Meller, 2. Anorg. Allg. Chem., 1992, 608,

3155 D. Dou, E.N. Duesler, R.T. Paine, and H. Noh, J. Am. Chem. Soc., 1992, 114, 9691. 3156 D. Dou, G.L. Wood, E.N. Duesler, R.T. Paine, and H. NOth,Inorg. Chem., 1992.31, 1695. 3157 S.K. Singh, Y. Singh, A.K. Rai, and R.C. Mehroua, Main Group Met. Chem.. 1990, 13, 119. 3158 R.M.K. Deng and K.B. Dillon, Polyhedron, 1992, 11, 397. 3159 W. Keller. L.G. Sneddon, W. Einholz, and A. Gemmler, Chem. Ber., 1992, 125, 2343. 3160 A. Munoz and L. Lamande, Curbohydr. Res., 1992,225, 113 (Chem. Abstr., 1992, 116, 236 025). 3161 T. Oi, T. Takeda, and H. Kakihana, Bull. Chem. Soc. Jpn., 1992,65, 1903. 3162 M. Kim, T. Hino, and H. Sakurai, J. Am. Chem. Soc.. 1992, 114, 6697. 3 1 6 3 A.P. Davis and M. Jaspars, Angew. Chem., Int. Ed. Engl., 1992,31,470. 3164 D.W. Van Seggen. P.K. Hurlburt, M.D. Noirot. O.P. Anderson, and S.H. Suauss, Inorg. Chem., 1992, 31,

3165 W. Preetz and M.G. Hake, Z. Nururforsch.. B, 1992,47, 1119 (Chem. Abstr., 1992, 117,244 594). 3166 P. Jutzi and A. Mix, Chem. Ber., 1992, 125,951. 3167 L. Ahrned, J. Castillo, and J.A. Morrison, Inorg. Chem.. 1992, 31, 1858.

147.

1423.

Page 172: Nmr

172 Spectroscopic Properties of Inorganic and Organometallic Compounds

Complexes of Other Group 13 Elements.-27Al NMR spec t roscopy h a s been used t o s tudy

[ A l H , C 1 4 - n ] - in E t 2 O and T H F . 3 1 6 8 NMR d a t a have also been r e p o r t e d for

[H3Al{ M e N ( C H 2 N M e ) 2 C H 2 ) 2 ] , ( l3C, 27A1),3169 [H3AlbN(C&2Me3-2,4,6)CH=CHkC@2Me3- 2,4,6], (13C, 15N, and 27A1),3170 [H~AIP(C~H~I)~CH~CH~P(A~H~)(C~H~~)~], (13C),3171

[H3GaP( C H ~ ) ~ C H ~ C H Z P ( C H 3 ) 2 G a H 3 ] , ( 13Q3 172 [ M e 2 N A l H 2 ] 3 , ( 3C),3 173 [Bu'AlH [ CH- ( S i M e 3 ) 2 ] 21-, (13C),3174 [AlH(OAr)2(0Et2) ] , ( 13C, 27A1),3175 [ H ( In(CH2But)3 ] 23-. ( 13C),3176

[(PriCH2)4Al]-, (13C),3177 [Me3AlN(H)QHgS], (13C),3178 [Me3AlN(C2H&NAlMe3], (13C),3179

[ A l ( ( H N C H 2 C H z N H ) A l M e 3 ) 31, (13C, 27Al),3180 [Al(C6H4-2-CH2PPh2)3], (13C),3181 (197), (13C),3182 [(Me$iCH2)3MAs(SiMe3)3], ( M = Ga, In; 13C),3183 [Ga(C&)3], (13C, 71Ga),3184

[InBun3], ( 13C),3185 [ ( M e 2 N ( C H 2 ) 3 ) 2InR], ( 13Q31g6 [AlMe { OCH2[SiMe(OSiMe3)2]C=CH- C H 2 0 ) 2(AlMe2)2], ( 13C),3 87 [Me2AlN(H)SiPh3], ( 'C) ,3 88 [ M e 2 A l N H C 6 H 4 P h I 2, (27A1),31*9

aluminoxanes, (27A1),3190 [Bu~Al(trneda)][Bu~AlBr2], ( [Et2AlAs(SiMe3)2]2, (27A1),3192

[ ( C 6 H 4 ( C H 2 0 ) 2 ) 2 A 13 Me 51, ( 3C), [Pri2GaEPri2]2, (E = P, As; 13C),3195 [BuyMe3SiC=C)GaPR212, (13C),3196 [(Me3Si)2As(But$3a)2-

A s ( S i M e j ) z ] , (13C),3197 [ B u t 2 G a ( p - O 2 B u t ) ] 2 , (13C),3198 [ B u t 2 G a ( p - S 2 B u t ) ] 2 , (13C),3199

[ (B u t C H 212 daAs(SiMe3)*Ga(CH2But)2dl], ( 3 C ) ,3 1

3168 V.A. Mazin, Elektrokhimiya, 1992,28,428 (Chem. Abstr., 1992.117.99 629). 3169 J.L. Atwood. F.R. Bennett, C. Jones, G.A. Koutsantonis, C.L. Raston, and K.D. Robinson, J. Chem. SOC.,

3170 A.J. Arduengo, tert., H.V.R. Dias, J.C. Calabrese, and F. Davidson, J. Am. Chem. Soc., 1992, 114. 9724. 3 1 7 1 F.R. Bennett, F.M. Elms, M.G. Gardiner, G.A. Koutsantonis, C.L. Raston, and N.K. Roberts, Organometallics,

3 1 7 2 J.L. Atwood. K.D. Robinson, F.R. Bennett, F.M. Elms, G.A. Koutsantonis, C.L. Raston, and D.J. Young,

3173 A.J. Downs, D. Duckworth, J.C. Machell. and C.R. Pulham, Polyhedron, 1992, 11, 1295. 3174 W. Uhl. E. Schnepf, and J. Wagner, Z. Anorg. Allg. Chem., 1992, 613,67. 3175 M.D. Healy and A.R. Barron, Angew. Chem., fni. Ed. En& 1992.31.921. 3176 O.T. Beachley, jun., S.H.L. Chao, M.R. Churchill, and R.F. See, Organomeiallics, 1992, 11, 1486. 3177 W. Uhl and J. Wagner, J. Organomet. Chem.. 1992,427, 151. 3 1 7 8 M. Taghiof, D.G. Hendershot, M. Barber. and J.P. Oliver,J. Organomet. Chem., 1992,431,271. 3179 A.M. Bradford, D.C. Bradley, M.B. Hursthouse, and M. Motevalli. Organometallics, 1992, 11,111, 3180 Z. Jiang, L.V. Interrante, D. Kwon, F.S. Tham, and R. Kullnig, Inorg. Chem., 1992,31,4815. 3 1 8 1 G. Miiller, J. Lachmann, and A. Rufifiska, Organometallics, 1992, 11, 2970. 3182 D.V. Khasnis. H. Zhang. and M. Lattman. Organomeiallics, 1992.11, 3748. 3183 R.L. Wells, A.T. McPhail, L.J. Jones, tert., M.F. Self, and R.J. Butcher, Organometallics, 1992, 11, 2694. 3184 K. Ludovici. W. Tyna, and D. Naumann. J. Organomei. Chem.. 1992,441,363. 3185 R. Nomura, S . 4 . Miyazaki, and H. Matsuda, Organometallics. 1992,11,2. 3186 H. Schumann, F.H. Gorlitz. T.D. Seuss, and W. Wassermann, Chem. Eer., 1992, 125,3. 3187 S. Pasynkiewicz and W. Ziemkowska, J. Organomet. Chem., 1992,437,99. 3188 D.M. Choquette, M.J. Timm, J.L. Hobbs, M.M. Rahim, KJ . Ahmed, and R.P. Planalp, Organomeiallics, 1992,

3189 J.J. Byers, B. Lee, W.T. Pennington. and G.H. Robinson, Polyhedron. 1992,11,967. 3190 T. Fujita, T. Sugano, and H. Uchino, Eur. Pat. Appl. EP 498,675 (CI.C08F4/602), 12 Aug 1992, JP Appl.

91/16.583,07 Feb 1991; 23 pp. (Chem. Abstr., 1992,117,234 707). 3191 W. Uhl, J. Wagner, D. Fenske, and G. Baum, Z. Anorg. Allg. Chem., 1992,612, 25. 3192 R.L. Wells, A.T. McPhail, and T.M. Speer, Organometallics, 1992, 11,960. 3193 S. Pasynkiewicz and W. Ziemkowska, J. Organomet. Chem., 1992,423, 1. 3194 R.L. Wells, A.T. McPhail, J.W. Pasterczyk, and A. Alvanipour, Organometallics, 1992,II , 226. 3195 G.G. Hoffrnann. R. Fischer, U. Schubert. and B. Hirle, J. Organomet. Chem.. 1992,441,7. 3196 K.E. Lee, K.T. Higa, R.A. Nissan, and RJ. Butcher, Organomeraflics, 1992, 11,2816. 3197 R.L. Wells, A.T. McPhail. and A. Alvanipour, Polyhedron, 1992, 11, 839. 3198 M.B. Power, W.M. Cleaver, A.W. Apblett, A.R. Barron. and J.W. Ziller, Polyhedron, 1992, 11,477. 3199 M.B. Power, J.W. Ziller, A.N. Tyler, and A.R. Barron, Organomeraflics, 1992.11, 1055.

Chem. Commun., 1992, 541.

1992, 11, 1457.

Inorg. Chem., 1992, 31, 2673.

11, 529.

Page 173: Nmr

Nuclear Magnetic Resonance Spectroscopy 173 - - [Ph2GaP(SiMe3)2GaPh2Cl], (13C),3200 [Ph2GaAs(SiMe3)2GaPh2Cl], ( 13C),3201 [K( 15-crown-5)2]-

[PrbInC12], (13C),3202 [(Bu'CH2)2InSePh]2. (13C),3203 [(Me3SiCH&In (P(SiMe3)2] 2In(CH2-

SiMeg)~] , (13C),3204 (198), (13C),32O5 [TlMe2(S2PPh2)], ('3C, 205Tl),3206 [TlMe2(S2CPR2)], ('3C,

205Tl)?207 (199), (13C),3208 [AlClMe(OC6H2-2,6-Bu~-4-Me)(OEt2)], (13C),3209 (200), ( 13C),3210

[ { MeGa(pz)3)2In]+, (71Ga),3211 [Ga(C5H5)], ('3C, 7lGa),3212 (201), (13C),3213 [Bu'GaAsCgHg-

(CH2NMe2)2], ( 13C),3214 and [BuQa0]4, (13C, 170).3215

GaMe, SO2CF3

(197) ( 199) But C( Si Me,),

I Ga / \

( Me,Si),C - GaA Ga- C(SiMe,), Fa C( Si Me&

But y_;t,c'3 rp But

(200) (20 1) 1:l adducts of In13 with PR3 have been studied by IH, 31P, and 115In NMR spectroscopy.3216 The

forms of aluminium in tea leaves have been identified using 27Al NMR spectroscopy.3217 NMR data

have also been reported for [A12X6Mg(NEt2)2], (13C, 27A1),3218 [T1{ HN(CH2CH2SCH2CH2-

3200 R.L. Wells, S.R. Aubuchon, M.F. Self, J.P. Jasinski, R.C. Woudenberg, and R J . Butcher, Organomelallics,

3201 R.L. Wells, W.K. Holley, S. Shafieezad, A.T. McPhail. and C.G. Pill. Phosphorus Sulfur and Silicon, 1989,

3202 B. Neumuller, F. Gahlmann, M. Schtifer, and S. Magull, J. Organomel. Chem.. 1992,440,263. 3203 O.T. Beachley. jun., J.C. Lee, jun., H.J. Gysling, S.H.L. Chao, M.R. Churchill, and C.H. Lake,

3204 R.L. Wells, A.T. McPhail, and M.F. Self. Organomerallics. 1992, 11, 221. 3205 J.S. Casas. A. Macias, N. Playa, A. Sanchez, J. Sordo, and J.M. Varela, Polyhedron. 1992, 11.223 I . 3206 J.S. Casas, A. Sanchez, J. Sordo, E.M. Vazquez-Lopez. E.E. Castellano. and J. Zukerman-Schpector. Polyhedron.

3207 E.M. VBquez-L6pez. A. Sanchez, J.S. Casas. J. Sordo, and E.E. Castellano, J. Organomer. Chem., 1992,438,

3208 EJ. Corey and S. Sarshar, J. Am. Chem. SOC., 1992, 114, 7938. 3209 M.D. Healy, J.W. Ziller, and A.R. B m n , Organomelallics, 1992, 11,3041. 3210 B. Breit, U. Bergsmser. G. Maas. and M. Regitz, Angew. Chem.. In[ . Ed. Engl., 1992.31, 1055. 321 3212 D. Loos, H. Schnkkel, J. Gauss, and U. Schneider. Angew. Chem.. Int. Ed. Engl., 1992,31, 1362. 3213 W. Uhl, W. Hiller, M. Layh, and W. Schwan. Angew. Chem.. In[ . Ed. Engl., 1992,31, 1364. 3214 D.A. Atwood, A.H. Cowley, R.A. Jones, and M.A. Mardones, J. Organomer. Chem.. 1992,439, C33. 3215 M.P. Power, J.W. Ziller. and A.R. Barron, Organomerallics, 1992, 11,2783. 3216 N.W. Alcock, I.A. Degnan. O.W. Howarth, and M.G.H. Wallbridge, J. Chem. SOC.. Dalron 7rans.. 1992,2775. 3217 T. Nagala. M. Hayatsu, and N. Kosuge. Phylochernistry, 1992,31, 1215 (Chem. Absfr., 1992, 117,2302). 3218 C.C. Chang. S.C. Lin, C.N. Tsai. and L.K. Liu, J. Chin. Chem. Soc. (Taipei), 1992, 39. 55 (Chem. Abslr.,

1992, 11, 3370.

41,lS.

Organomerallics, 1992, 11, 3144.

1992, 11. 2889.

29.

A. Frazer, B. Piggott, M. Harman. M. Mazid, and M.B. Hursthouse, Polyhedron, 1992, 11,3013.

1992, 116, 226 954).

Page 174: Nmr

174 Spectroscopic Properties of Inorganic and Organometallic Compounds

SCH2)2NH]]+, (13C),3219 [InC12(PhN3Ph)(PEt3)2], ( 13C),3220 [(2,6-Bu$-4-MeC&)Al(OCHPh2)- (OCPhdl, (13C),3221 [Al(OSiPh3)3(THF)], (13C, l7O, z7Al, 29Si),3222 A1111 complexes of tartaric

acid, (13C, 1 7 0 , 27A1),3223 [A104A112(OH)24(H20)i217+, (27Al)?224 [Ga3(p3-O)(p-OBz)6( 4- MeC5H4N)3] [GaC141.4-MeC~H4N, (13C),3225 [(RCS2)3Gal, (13C),3226 and [Se2NCl2] [GaCld],

(77Se).3227

7 Group 14 Elements

Three reviews have appeared- “Synthesis and characterization of products from the hydrosilylation

reaction’, which contains 13C and 29Si NMR data,3228 ‘Multinuclear and multipulse NMR of organosilicon compounds’, which contains 14N, l7O, and *9Si NMR data,3229 and ‘Spectroscopic properties o f silicon-sulfur compounds with at least one Si-S bond - a review’, which contains 2%

N M R data.3230

The spin-spin coupling in H 2 0 and S i a has been calculated.3231 119Sn chemical shifts have been

calculated for [Meq-nSnH,] and [Me4+SnCln] using ab inirio MO calculations.3232 Ab initio calculations have been performed for 170, 29Si, and 3 l P in [H3SiOSiH3], [H3POPH3I2+, [Si309]6-,

and [P309]3-.3233 A correlation between 1J(29Si1H) and the electronegativity of the substituent on [HSiMe3-,Xn] has been found.3234 The magnitudes and signs of 2J(29Si13C) have been measured for

[Ph3SiH] and related compounds using yf-BIRD-HSQC and y-BIRD-HMQC pseudo-triple

resonance.3235 N M R data have also been reported for [(Cf,H11)3SiH], (13C),3236 [(CH2F)SiH3],

(13C, 29Si)?237 [(CF3)nSnH4+], (13C, 19Sn),3238 [G(SiH3)6] , (13C, 29Si),3239 [X(SiH2)4X], (X

= C1, Br, Ph, F, H; 29Si),3240 poly(silaethylene), (13C, 29Si),3241 [Prn2SiH2], (l3C),3242 [2-

3219 A.J. Blake, G. Reid, and M. SchrCMer, J. Chem. SOC., Dalton Trans., 1992,2987. 3220 J.T. Lernan, H.A. Roman, and A.R. Barron, J. Chem. Soc.. Dalton Trans., 1992, 2183. 3221 M.B. Power, J.R. Nash, M.D. Healy. and A.R. Barron, Organometullics, 1992.11, 1830. 3222 A.W. Apblett, A.C. Warren, and A.R. Barron. Can. J. Chem., 1992, 70,771. 3223 F.R. Venema, J.A. Peters, and H. Van Bekkum, Inorg. Chim. Acta, 1992, 191, 261. 3224 D.R. Parker and P.M. Bertsch, Environ. Sci. Technol., 1992, 26,908 (Chem. Abstr.. 1992, 116, 206 879);

D.R. Parker and P.M. Bertsch, Environ. Sci. Technol., 1992, 26, 914 (Chem. Abstr., 1992, 116, 206 581); G.V. Rao and K.S.J. Rao, FEBS Lett.. 1992, 311,49 (Chem. Absfr., 1992, 117, 246 738); S. Lin, W. He, and Z . Li. Shuichuli Jishu, 1991, 17, 162 (Chem. Abstr., 1992, 116.91 030).

3225 M.T. Andras, S.A. Duraj, A.F. Hepp. P.E. Fanwick, and M.M. Bodnar. J. Am. Chem. SOC., 1992, 114,786. 3226 S.K. Singh, Y. Singh, A.K. Rai, and R.C. Mehrotra. Phosphorus Sulfur Silicon, 1992.68, 211. 3227 R. Wollert, A. Hoellwarth, G. Frenking, D. Fenske, H. Goesrnann, and K. Dehnicke, Angew. Chem., Int. Ed.

3228 Y. Israeli, J. Lacoste, J. Cavezzan, and G. Dauphin, Analusis, 1992.20.245. 3229 E. Kupte and E. Lukevics, Isot. Phys. Biomet. Sci., 1991, 2, 213 (Chem. Abstr., 1992, 116, 206 144). 3230 H.G. Horn, J. Prakt. Chem./Chem.-Zlg., 1992, 334,201 (Chem. Absfr., 1992, 117, 11 1 661). 3231 H. Fukui, K. Miura, H. Matsuda, and T. Baba, J. Phys. Chem.. 1992,97, 2299. 3232 H. Nakatsuji, T. Inoue. and T. Nakao, J. Phys. Chem.. 1992, 96, 7953. 3233 C.G. Lindsay and J.A. Tossell, Phys. Chem. Miner., 1991, 18, 191 (Chem. Abstr., 1992, 116, 14 592). 3234 R. Wolff. H. Jancke, R. Radeglia, E. Popowski, and P. Kosse, J. Prakr. Chern., 1992,334,248. 3235 8. Kupte and B. Wrackrneyer, Magn. Reson. Chem., 1992,30,950. 3236 Q. Shen, S. Rhodes, and J.C. Cochran, Organometallics, 1992, 11,485. 3237 H. Biirger and P. Moritz. J. Organomet. Chem., 1992, 427,293. 3238 R. Eujen, N. Jahn, and U. Thurmann, J. Organomel. Chem.. 1992,434, 159. 3239 C. Riidinger, H. Beruda, and H. Schrnidbaur, Chem. Ber., 1992, 125, 1401. 3240 H. Stiiger. J . Organomet. Chem.. 1992,433, 11. 3241 H.J. Wu and L.V. Interrante, Macromolecules, 1992.25, 1840 (Chem. Abstr., 1992, 116, 129 790). 3242 T.C. Bedard and J.Y. Corey, J. Organomet. Chem., 1992,428, 315.

Engl., 1992, 31, 1251.

Page 175: Nmr

Nuclear Magnetic Resonance Spectroscopy 175

Ph2PCH2CgHqSiMeH21, (29Si),3243 [ kH2CH=CMeCMe=CHdiH2], (13C, 29Si),3244 [H2MeSi-

(03SCF3)], (29Si),3245 [PhSiH2PhSiHCH2CH2Ph], (13C),3246 [Ph2SiH2], (29Si),3247 [H2MeSi-

SiHMeSiHMeSiH2Mel. (l3C. 29Si),3248 [C6( SiH2Ph)6], (l3C. 29Si),3249 [(PhH2Si)2SeII ( l3C,

29Si),3250 [Me2SiHC(SiMe20Me)3], (13C),3251 [ M ~ ~ H S ~ N ( C ~ H ~ ) ( C ~ H I I)], (I3C, 29Si),3252 [ 1- (MesSi)-2-( (Prn)(Me)(H)Si) CtjH41, (13C),3253 [ 1-( (Et)2(H)Si) -2-((3-MeC6H4)(Et)2Si)CgH41, ( 13C, 29Si),3254 11-{ (Et)z(H)Si) -2- ( (CH2=CH)(E t ) (MeO)S i ) C6H41, ( 13C, 29Si),3255 [ 1- { (Et)2(H)Si ) -2- { (MeOCH2)(Et)(BuQ)Si 1 C6H41. (l3C. 29Si),3256 [But2SiH(OH)I, ( l 3C),3257

[H{ (MeSiH),(PhSiH)y)nH], (29Si),3258 poly(1-silabutane), ( 13C, 29Si),3259 [(qS-CsMe5)2SiH]+,

(l 3C, 29Si),3260 [PhMeSiHR], ( 13C),3261 [PhHSiCH2CMe=CMeCH2], (l3C),3262 [ { (Me3Si)2N ) 3-

SiHl, (29Si),3263 [(2,4,6-Me3CgH2)2DGeSiH(C6H2Me3-2,4,6)2], ('3C, 29Si),3264 [(R2N)3SiH],

( 29Si) ,3265 [ (2,4,6-Me3C6Hz)HGe( S iE t3) { S i (C6H2Me 3-2,4,6)3 )], (1 3C, 29Si) ,3266 [ (2,4,6- Me3CtjH2)HGe(SiEt3)(Ge(CgH2Me3-2,4,6)3)], ('3C, 29Si)?267 [RHSnSnR2SnR2SnR2]. (R = 2,6-

Et2C&; 19Sn)?268 and [(8-Me2N-naphthyl)Sn(menthyI)(H)But], (13C. 1 % 1 ) . 3 2 ~ 9

Standard pulse sequences frequently employed in NMR studies, such as INEPT, DEPT, HETCOR. phase-sensitive HETCOR, and HETCOR with non-geminal proton decoupling in the f1 dimension,

have been extended by Hahn spin echoes, and applied to 15N to determine J(X15N). X = 13C, 29Si,

31P, l19Sn. and 207Pb. Isotope shifts were also dete1mined.32~0 13C/12C isotope shifts in 119Sn

NMR spectra of organotin compounds have been determined.3271 The double bond stereochemismes

of vinyl tin derivatives have been determined from J(119Sn13C) and 8(13C).3272 Comparison of ab

m

- -

3243 H.G. Ang, B. Chang, and W.L. Kwik, J. Chem. Soc., Dalton Trans., 1992, 2161. 3244 J.-P. BBteille, A. Laporterie. and J. Dubac, J. Organomet. Chem., 1992, 426, CI. 3245 W. Uhlig, Chem. Ber., 1992. 125.47. 3246 M.R. Kesti and R.M. Waymouth, Organometallics, 1992,11, 1095. 3247 D. Zeng and M.J. Hampden-Smith, Polyhedron, 1992, 11,2585. 3248 E. Hengge and M. Weinberger, J. Organomet. Chem., 1992,433,21. 3249 C. Riidinger, P. Bissinger, H. Beruda, and H. Schmidbaur, Organometallics, 1992,11,2867. 3250 N.W. Mitzel, A. Schier, H. Beruda, and H. Schmidbaur, Chem. Ber., 1992,125, 1053. 3251 F.I. Aigbirhio, N.H. Buttrus, C. Eaborn, S.H. Gupta, P.B. Hitchcock, J.D. Smith, and A.C. Sullivan, J. Chem.

3252 J.-M. Denis, P. Guenot. M. Letulle, B. Pellerin, and J.-L. Ripoll, Chern. Ber.. 1992, 125, 1397. 3253 M. Tanaka, Y. Uchimaru, and H.-J. Lautenschlager, J. Organomet. Chem., 1992,428. 1. 3254 M. Ishikawa, S. Okazaki, A. Naka, and H. Sakamoto, Organometallics. 1992, 11.4135. 3255 H. Sakamoto and M. Ishikawa, Organometallics, 1992, 11,2580. 3256 H. Sakamoto and M. Ishikawa, J . Organomet. Chem., 1992,427, C26. 3257 A.G. Davies and A.G. Neville, J. Organomet. Chem., 1992,436,255. 3258 E . Hengge and M. Weinberger. J. Organomet. Chem., 1992,441, 397. 3259 C.X. Liao and W.P. Weber, Polym. Bull. (Berlin), 1992,28,281 (Chem. Abstr., 1992, 111.70 447). 3260 P. Jutzi and E.-A. Bunte. Angew. Chem.. Int. Ed. Engl., 1992.31, 1605. 3261 J.Y. Corey and X.-H. Zhu. Organomeiallics, 1992.11.672. 3262 Y.-W. Kwak, I.-H. Jeong, J.-Y. KO, and B.H. Boo, J. Organomet. Chem., 1992,439, 107. 3263 P. Kosse and E. Popowski, Z. Anorg. Allg. Chem.. 1992.613, 137. 3264 K.M. Baines, R.J. Groh, B. Joseph, and U.R. Parshotam, Organometallics, 1992, 11.2176. 3265 K.N. Radhamani. A.J. Elias, and D.K. Padma, Phosphorus Sulfur Silicon, 1992,66,297. 3266 K.M. Baines and J.A. Cooke, Organometallics, 1992,11,3487. 3267 K.M. Baines, J.A. Cooke, and J.J. Vittal, J. Chem. SOC., Chem. Commun., 1992, 1484. 3268 L.R. Sita and I. Kinoshita. J. Am. Chem. Soc., 1992, 114, 7024. 3269 H. Schumann, B.C. Wassermann, and F.E. Hahn, Organometallics. 1992, 11, 2803. 3270 E. Kupte and B. Wrackmeyer, J. Magn. Reson., 1992.97.568. 3271 E. Liepiq3, I. Birgele, and E. Lukevics, Metalloorg. Khim.. 1992, 5.75 (Chem. Abstr.. 1992. 116, 235 773). 3272 J. Ardisson, J.P. FBr6zou. Y. Li, L.W. Liu. and A. Pancrazi. Bull. SOC. Chim. Fr., 1992, 129, 401.

Soc., Dalton Trans., 1992, 1015.

Page 176: Nmr

176 Spectroscopic Properties of Inorganic and Organometallic Compounds

initio/IGLO calculated lH, 13C, and 29Si NMR chemical shifts with experimental data has led to the

conclusion that [Me3SiOC103] does not give a substantial concentration of [SiMe3]+ in solution.3273

The 13C chemical shifts and 1J(119Sn13C) of [Me3MCH2C6H4X-4], M = C, Si, Ge, Sn, have been used to provide evidence for h y p e r c ~ n j u g a t i o n . ~ ~ ~ ~ Intramolecular interactions in [XP=C(SiMe3)2]

have been studied using 3lP, l3C, and 2% NMR spectroscopy.3275 The effects of silyl versus alkyl substituents in ketones on 1 7 0 chemical shifts have been e ~ a m i n e d . 3 2 ~ ~ 13C and 29% T i

measurements have been used to study the molecular dynamics of [MegSiC=CC=CSiMe3].3277 l3C

and 29Si NMR data have been used to study substituent effects in [Me3SiCrCwX-4] .3278 NMR data have also been reported for [(Me3SiCH2)2Si(OMe)2], (13C3),3279 [Me3SiCH2CMe=CHSnMe3],

(13C),3280 [Me3SiCH2Si(F)(But)C(O)Me], (13C, 29Si),3281 (202), (13C, 29Si),3282 (203), (13C,

29Si)?283 [Me3SiC(OSiMePhz)=CH2], (29Si),3284 [Me3SiCH=CRC02Et], (13C),3285 [ {2,4,6-

[(Me3Si)2CH13C&) (2,4,6-P&C&2)SnSeCPh2SeSe], ( 3C) ,3 28 [(Bun 3 S n ) ( M e 3 S i ) CHP h 1, (13C),3287, [(Bun3Sn)(Me3Si)CHC02Et], (13C),3288, [ {Sn[1,2- (CH(SiMe3)]2C6H41)41, (Sn-Sn),

(13C),3289 [(C5Meg)PCH(SiMe3)PC6H2But3-2,4,6], ( 13C),3290 [PhSeCHRSiMeg], (13C),3291

(204). (13C, 29Si),3292 [(Me3Si)3CSiMe2(OCN)], (l3C. 29Si),3293 [(Me3Si)3CSi(p-E)2(p-

E2)SiC(SiMe3)3], (E = S. Se; l3C, 29Si),3294 (E = Se; l3C, 29Si, 77Se),3295 [CH2(CHzCMe2)N-

P=C(SiMe3)MR2NMe2], [ M = Ge, Sn; R = N(SiMe3)2, NHC6H2Me3-2,4,6; l 3 C ) ,3296

[ ( (Me3Si)2C=) 2PR], ( 3C),3297 [ ~,~,~-BLI%C~H~P=CC(S~M~~)=C( S iMe3)C=PC6HzB u’3-2,4,6 J ,

(13C)?298 [(CgMeg)SiRnC13-n], (R= Me, Et, Ph; l3C. 29Si),3299 (205). (13C),33O0 (206), (M = Sb,

- -

3273 G.A. Olah, G. Rasul, L. Heiliger, J. Bausch, and G.K.S. Frakash, J. Am. Chem. SOC., 1992, 114, 7737. 3274 J.B. Lambert and R.A. Singer, J. Am. Chem. Soc., 1992, 114, 10 246. 3275 YuP. Egorov and M.I. Povolotskii, Teor. Eksp. Khim., 1991, 27.703 (Chem. Abstr., 1992, 117, 8022). 3276 S. Chimichi and C. Mealli, J. Mol. Struci., 1992, 271, 133. 3277 A. Ejchart. A. Gryff-Keller, and P. Szczecinski, J. Magn. Reson., 1992,97,313. 3278 J. Szewcyk, A. Gryff-Kellex, and K. Starowieyski, J. Chem. Res., Synop., 1992.26. 3279 J.-H. Hong. J.S. Han, G.-H. Lee. and I.N. Jung, J. Organomet. Chem., 1992,437,265. 32g0 C.M. Rayner. P.C. Astles, and L A . Paquette, J. Am. Chem. Soc., 1992, 114, 3926. 3281 R. Tacke, H. Hengelsberg. E. Klinger. and H. Henke, Chem. Ber., 1992. 125,607. 3282 M. Ishikawa. A. Naka, and J. Ohshita, Organometallics. 1992, 11, 3004. 3283 M. Ishikawa, T. Hono, Y. Yuzuriha, A. Kunai, T. Tsukihara, and H. Naitou, Organometallics, 1992.11.597. 3284 J.-B. Verlhac. H.A. Kwon, and M. Pereyre, J. Organomet. Chem., 1992,437, C13. 3285 R. Takeuchi, M. Sugiura, N. Ishii, and N. Sato, J. Chem. Soc., Chem. Commun., 1992, 1358. 3286 N. Tokitoh, Y. Matsuhashi. and R. Okazaki, Tetrahedron Lett., 1992,33,5551. 3287 R.W. Hoffmann, T. Riihl, and J. Harbach. Liebigs Ann. Chem.. 1992. 725. 3288 S. Akai. Y. Tsuzuki, S. Matsuda, S. Kitagaki, and Y. Kita, J. Chem. Soc., Perkin Trans. I, 1992,2813. 3289 M.F. Lappert, W.-P. Leung, C.L. Raston, B.W. Skelton, and A.H. White. J. Chem. Soc., Dalton Trans., 1992.

3290 P. Jutzi and S. Opiela, Z. Anorg. Allg. Chem., 1992, 610. 75. 3291 S. Yamazaki. S. Katoh, and S. Yamabe, J . Org. Chem., 1992.57.4. 3292 W. Ziche, N. Auner. and J. Behm, Organometallics, 1992,11,2494. 3293 C. &born, Y.Y. El-Kaddar, and P.D. Lickiss, Inorg. Chim. Acta, 1992.198-200.337. 3294 H. Yoshida and W. Ando, Phosphorus Su&w Silicon, 1992,67,45. 3295 H. Yoshida, Y. Takahara, T. Erata, and W. Ando, J. Am. Chem. Soc., 1992, 114. 1098. 3296 V.D. Romanenko. A.O. Gudima. A.N. Chernega. and G. Bertrand, Inorg. Chem., 1992,31.3493. 3297 P. Becker, H. Brombach, G. David, M. Leuer, H.4. Metternich, and E. Niecke, Chem. Ber., 1992,125,771. 3298 K. Toyota. K. Tashiro. M. Yoshifuji, I. Miyahara. A. Hayashi. and K. Hirotsu. J. Organomei. Chem.. 1992,

3299 B. Shi and P. Jutzi. Gaodeng Xuexiao Huaxue X u e b a o . 1991.12.1338 (Chem. Absir., 1992,117,212 575). 3300 A. Kunai. T. Kawakami. Y. Matsuo. and M. Ishikawa. Organometallics, 1992,11, 1593.

775.

431, C35.

Page 177: Nmr

Nuclear Magnetic Resonance Spectroscopy 177

Bi; 13C),3301 [l-(Ph2MeSn)-2-(Me2NCH2)-3-(Me3Si)C6H3], ( 19Sn),3302 [ l-Me-2-(R3M)-5-

(CHO)pyrrolel, (M = Si, Ge, Sn; I3C, 29Si, 119Sn),3303 [RC(O)MMe3], (M = Si, Sn; I3C. 29Si,

19Sn),3304 [Me3SiC=CC=CMR3], (M = Ge, Sn; 13C, 29Si),3305 poly( l-Me3Si-propyne), (13C,

29Si),3306 [MegSiC=CCH=PC&BuS-2,4,6], (13C),3307 [Me3SiC=CCH2TeBui2]+, (13C),330* and

2,4,6-Me3C,H2

Ph2MeSiSiMe2 SiMe3 51me3 (202) (203) (204)

d S i M e 3 P i SiMe3 Me Me3Si SiMe3 Me

(205) [Me 3 SiR] , (1 3C) .33O9

3301 3302 3303 3304 3305

3306

3307 3308 3309

R.E.v.H. Spence, D.P. Hsu, and S.L. Buchwald, Organometallics, 1992, 11, 3492. J.M. Brown, M. Pearson. J.T.B.H. Jastrzebski, and G. van Koten. J. Chem. SOC.. Chem. Commun., 1992, 1440. F. Denat, H. Gaspard-Iloughmane, and J. Dubac, J. Organomet. Chem., 1992,423, 173. T.N. Mitchell and K. Kwetkat, J. Organomet. Chem., 1992,439, 127. J.L. Brkfort, R.J.P. Comu, Ph. Gerbier, C. Gukrin, B.J.L. Henner, A. Jean, Th. Kuhlmann, F. Gamier, and A. Y a m . Organometallics, 1992,11,2500. H. Izumikawa, T. Masuda, and T. Higashimura, Polym. Bull. (Berlin), 1991, 27, 193 (Chem. Abstr., 1992, 117, 213 310). G. W k l , S. Pflaum, and A. Maack, Tetrahedron Left., 1992,33. 1981. Z.-L. Zhou, Y.-Z. Huang, and L.-L. Shi, J. Chem. SOC., Chem. Commun., 1992. 986. R.C. Cambie, M.R. Metzler, P.S. Rutledge, and P.D. Woodgate, J. Organomel. Chem.. 1992, 429, 41; M. Bordeau. C. Biran. P. Pons, M.-P. Lkger-Lamben. and J. DunoguBs, J. Org. Chem., 1992,57,4705; J.D. White and M. Kawasaki, J.Org. Chem., 1992, 57, 5292; AS. Guram and R.F. Jordan, J. Org. Chem., 1992, 57, 5994; Z.-L. Zhou, Y.-Z. Huang, L.-L. Shi, and J. Hu, J. Org. Chem., 1992, 57, 6598; L. Labaudinitre, J. Hanaizi. and J.F. Normant. J. Org. Chem.. 1992, 57,6903; M. Persson and U. Hacksell, J. Chem. Soc., Perkin Trans. 1, 1992, 131; D.O. M r e , N. Jux, P.F. Aramendia, R.M. Negri, J. Lex, S.E. Braslavsky, K. Schaffner, and E. Vogel. J. Am. Chem. SOC.. 1992, 114,9969; K.-T. Kang, J.C. Lee, and J.S. U, Tetrahedron Leu., 1992, 33,4953; R.F. Cunico and C.-p. Zhang, Tetrahedron Lett., 1992, 33, 6751; V. Fiandanese and L. Mazzone, Tetrahedron Leu., 1992,33, 7067; B.M. Trost and T.A. Grese, J. Org. Chem., 1992, 57, 686 H. Mayr, E. Btiumi, G. Cibura, and R. Koschinsky, J. Org. Chem., 1992, 57, 768; S.W. Goldstein, L.E. Overman, and M.H. Rabinowilz, J. Org. Chem., 1992, 57, 1179; U.C. Yoon, Y.C. Kim, J.J. Choi, D.U. Kim, P.S. Mariano. 1.4. Cho, and Y.T. Jeon, J. Org. Chem.. 1992.57, 1422; V. Ce&, C. Paolucci, S. Pollicino, E. Sandri, and A. Fava, J. Org. Chem.. 1992, 57, 1457; Y. Kataoka, J. Miyai, K. Oshima, K. Takai, and K. Utirnoto. J. Org. Chem.. 1992, 57, 1973; C. Mukai, M. Miyakawa, A. Mihira, and M. Hanaoka, J. Urg. Chem., 1992, 57, 2034; J.D. White. J.C. Arnedio, jun., S. Gut, S . Ohira, and L.R. Jayasinghe, J . Org. Chem., 1992, 57. 2270; W.-W. Weng and T.-Y. Luh, J. Org. Chem., 1992,57,2760; M.P. Gore, S.J. Could, and D.D. Weller, J . Org. Chem., 1992, 57, 2774; R.K. Dhar, D.K. Clawson, F.R. Fronczek, and P.W. Rabideau, J. Org. Chem., 1992. 57, 2917; D.-C. Zhao and T.T. Tidwell. J. Am. Chem. SOC., 1992, 114, 10 980; S. Ebeling, D. Matthies. and D. McCarthy, J. Prakt. Chem., 1992, 334, 361; A.M. Boldi, J. Anthony, C.B. Knobler, and F. Diederich, Angew. Chem., Inl. Ed. Engl., 1992, 31, 1240; S.W. Scheuplein, K. Harms, R. Bruckner. and J. Suffert, Chem. Ber., 1992. 125, 271; W. Adam and M. Richter, Chem. Ber., 1992, 125, 243; P. Wipf, J.H. Smitrovich. and C.-W. Moon, J. Org. Chem., 1992, 57, 3178; D. Mesnard and L. Miginiac, J . Orgonomet. Chem., 1992, 440, 277; S.-L. Lee, T.W. Hepburn. W.H. Swartz, H.L. Amrnon, P.S. Mariano, and D. Dunaway-Mariano, J . Am. Chem. SOC., 1992. 114, 7346; T. Kusumoto, K. Ando, and T. Hiyama. Bull. Chem. SOC. Jpn., 1992. 65, i280; M. Hoshi. Y. Masuda, and A. Arase. Bull. Chem. SOC. Jpn., 1992, 65, 685; R. Klein, P. Sedmera, J. Cejka, and K. Mach, 1. Organomel. Chem., 1992, 436, 143; G.K.S. Prakash, V.P. Reddy, G. Rasul, J . Casanova, and G.A. Olah. J . Am. Chem. Soc.. 1992, 114, 3076; W.-N. Chou, J.B. White, and W.B. Smith, J.

Page 178: Nmr

178 Spectroscopic Properties of Inorganic and Organometallic Compounds

13C NMR spectroscopy has been used t o determine the magnitude of the p-silyl stabilization effect in 1 -mesitylvinyl cations.33 lo [(PhMe2SiCH2)3S n 0 2 C C H 2 0 A r I 33 1 and [(PhMe2SiCH2)3SnSP( S)- (OPh)2]3312 and related compounds have been characterized by 13C and 119Sn N M R spectroscopy. A good linear relationship has been found between the 119Sn chemical shifts and the para-substituted

Hammett constant. N M R data have also been reported for [Me2RlSiCH2CR2=CHCH2SiR3Me2],

( 13C),3313 [MeOCH2CH(CH2)3NCH2SiMe2CHPhCH2CH2OH], (13C),3314 [ C H Z M ~ ~ S ~ C H ~ C H -

(C02Me) ln , (13C),3315 [Me2SiCH2CMe=CHCH2C(CH2But)SiC12(OBu9], (13C),3316 [HOSiMe2-

CH2SiMe2CH=CHPh] , 29Si),3317 (207), (13C, 29Si),3318 (208), (13C, 29Si),3319 (209), (13C),3320 (210), (13C),3321 [ButSiMe2R], (13C),3322 poly(l , l-Me2- l-sila-cis-pent-3-ene), (13C,

29Si) ,3323 [Ph$ iCH=CH C=CMeSiMe2CPh=CPhSi Me21, ( 3C),33u poly(tetramethyldisily1ene-co- styrene), ('3C, 29Si),3325 [ ( M~~S~(CECS~M~~CPC)~)~M], (M = Si, Ge; 13C, 29Si),3326 [ (R102C-

C(=N2))2SiR22], (R2 = Me, Pri, But; 13C),3327 [ l-(PriCH2SiMe2)-2-(PhMe2Si)-4-(PhSiMe2- SiMe2)C6H3], ( 13C),3328 [ (PhMe2SiCH2)3S n02CR], ( 3C, 19Sn),3329 [ PhMe2SiR1, (1 3C),333O

[Me2M(dibenzotetramethyltetraaza[ 14]annulene], (M = Si, Sn; 13C),3331 poly(Me2Si-co-phenyl-

methylidenes), (13C, 29Si),3332 (211), ( X = SiMe2, CMeOH, S, NMe, 0, CH2. NEt, PPh, P(0)Ph;

2 = PPh, P(O)Ph, MezSi, Ph2Si; l3C, 29Si) ,3333 poly(MePh-silylene), (29Si),3334 poly( l-Me-1-

- - -

Am. Chem. SOC., 1992, 114,4658; M. SjBgren, S. Hansson, P.-0. Norrby, and B. Akermark, M.E. Cucciolito, and A. Vitagliano, Organometallics, 1992, 11, 3954.

3310 H.U. Siehl and F.P. Kaufrnann, J. Am. Chem. SOC., 1992, 114, 4937. 3311 Q. Xie, J. Li, Z. Yang, D. Zhang. and J. Wang, Chin. J. Chem., 1991, 9,327 (Chem. Abstr., 1992, 117,48

3312 Q. Xie, N. Luo, J. Li, and X. Jing, Huaxue Xuebao. 1992, 50,294 (Chem. Abstr., 1992, 117,48 699). 3313 Y. Tsuji, R.M. Lago, S. Tomohiro, and H. Tsuneishi, Organometallics, 1992, 11, 2353. 3314 T.H. Chan and K.T. Nwe, J . Org. Chem., 1992.57, 6107. 33

3316 W. Ziche, N. Auner, and J. Behm, Organometallics, 1992. 11, 3805. 33

3318 W. Ziche. N. Auner, and P. Kiprof, J. Am. Chem. SOC., 1992, 114, 4910. 3319 N. Auner, C. Seidenschwan, and N. Sewald, Organometallics, 1992. 11, 1137. 3320 Y. Nakadaiia, Y. Ohkura, S. Kyushin, M. Ohashi, H. Sakurai. K. Ueno, and S . Kanouchi, Tetrahedron Leu. ,

3321 Y. Uchimaru, H.-J. Lautenschlager, AJ . Wynd, M. Tanaka. and M. Goto, Organometallics, 1992, 11,2639. 3322 R.B. Silverman, X. Lu, and G.M. Banik, J. Org. Chem., 1992, 57, 6617; F. Gilloir and M. Malacria,

3323 H.S.J. Lee and W.P. Weber. Polymer, 1992,33, 1748 (Chem. Abstr., 1992, 117,27 360). 3324 J. Ohshita, A. Naka. and M. Ishikawa, Organometallics, 1992,11,602. 3325 M.R. Rao, S. Packirisrny, P.V. Ravindran, and P.K. Narendranath, Macromolecules, 1992, 25. 5165 (Chem.

3326 M. Voronkov, 0. Yarosh. and L. Zhilitskaya. Phosphorus Sulfur Silicon, 1992,65, 33. 3327 A. Fronda, F. Krebs, B. Daucher, T. Werle, and G. Maas, J. Organomet. Chem., 1992,424,253. 3328 M. Ishikawa, K. Watanabe, H. Sakamoto, and A. Kunai, J . Organomet. Chem., 1992,435,249. 3329 X. Qinglan, J. Li, Z. Yang. D. Zhang, and J. Wang, Chem. Technol. Silicon Tin, Proc. Asian Network Anal.

Inorg. Chem. hat. Chem. Conf. Silicon Tin, 1st. 1992, 521. Ed. by V.G. Kumar Das, S.W. Ng, and M. Gielen (Chem. Abstr., 1992, 117. 191 942).

3330 I. Fleming and N.J. Lawrence, J. Chem. Suc., Perkin Trans. 1. 1992, 3309; I. Fleming, D. Higgins, N.J. Lawrence, and A.P. Thomas, J . Chem. Soc., Perkin Trans. I , 1992, 3331; J.S. Panek and T.D. Clark, J. Org. Chem., 1992, 57, 4323; S. Kim, G. Emeric. and P.L. Fuchs, J . Org. Chem., 1992, 57, 7363; I. Matsuda, J. Sakakibara, H. Inoue, and H. Nagashima, Tetrahedron Lett.. 1992, 33, 5799; A.G.M. Barrett, J.M. Hill, and E.M. Wallace, J. Org. Chem., 1992, 57, 386: C. Palomo, J.M. Aizpurua, R. Urchegui, and M. Iturburu. J. Org. Chem., 1992.57, 1571.

719).

J. Pola, D. ~ukanov& M. M i n M , A. LyEka, and J. Tlkkal. J. Organomet. Chem., 1992,426,23.

D. Seyferth and J.L. Robison, Organometallics, 1992.11,34M4.

1992, 33,4013.

Tetrahedron Lett., 1992,33,3859.

Abstr., 1992, 117, 151 527).

3331 G.R. Willey and M.D. Rudd, Polyhedron, 1992, 11, 2804. 3332 W. Habel, P. Judenau, and P. Sartori, J . Prakt. Chem., 1992,334, 391. 3333 N.K. Skvortsov, S.V. Toldov, N.L. Kostenko, E. KupEe, and E. Lukevics, Zh. Obshch. Khim., 1991.61, 2194

Page 179: Nmr

Nuclear Magnetic Resonance Spectroscopy 179

CH2=CH-l-silabutane), ( 13C, 29S3),3335 poly(diallylmethylphenylsilane), (l3C, 29Si),3336 poly(2,3- benzo-1-silabutene), (13C, 29Si),3337 [(Ph2Si)n(CH2)n-o.5Me]x, (13C),3338 (212), (29Si),3339 [Pri3Si-

C(=N2)SnMe3], (13C, 14N, 29Si, 19Sn),3340 [PrigSiR], (13C),3341 [ N ( C H ~ C H R ) ~ S I C H C H ~ ~ ] ,

( 13c),3342 [ (C&=CH)PhS i ( C H ( CH2But) ) 2SiPh( CH=CH;?)], (13C),3343 (213), (1 3C, 29Si),3344

(214), (R = 2,4 ,6-h i3C6H2; 29Si),3345 [Ph3MCH(SAr)CH2Cl] , (M = Si, Ge, Sn; 13C),3346

[R1R2R3SiCC12Ph], (13C, 29Si),3347 poly( 1 , 1 -divinyl- l-silacyclopent-3-ene), (13C, 29Si),3348

p o l y ( 3 , 4 - b e n z o - l - P h - l - s i lapentene) , (13C, 29Si),3349 [RN=C(SiBut2)2C=NR], (13C),3350

n

BU‘

(207) (208) (209)

agi no) Si,

Si Me2 Ph a)(D R’ ~5 R3 (210) (21 1) (2 12)

[ButPh2SiR], (13C),3351 [Ph3SiC(0)C6H3But2-3,5], (29Si),3352 [PhgSiR], (13C),3353 (29Si),3354

[M(C6H4Me-4)4], ( M = Si, Ge, Sn, Pb; I3C, 29Si),3355 and poly ( (silanylene)thiophenes), (13C,

(Chem. Abstr., 1992, 116, 194 424); N.K. Skvortsov, S.V. Toldov, and N.L. Kostenko, Metalloorg. Khim., 1992, 5 , 425 (Chem. Abstr., 1992, 117, 234 116).

3334 M. Fujiki, Chem. Phys. Letr., 1992, 198, 177 (Chem. Absrr., 1992, 117, 213 306). 3335 C.X. Liao and W.P. Weber, Macromolecules, 1992, 25, 1639 (Chem. Abstr., 1992, 116, 129 788). 3336 R.G. Jones, R.H. Gragg, and A.C. Swain, Eur. Polym. J., 1992, 28,651 (Chem. Abstr., 1992. 117,49 546). 3337 M. Theurig, SJ. Sargeant, G. Manuel, and W.P. Weber, Macromolecules, 1992, 25, 3864 (Chem. Abstr.. 1992,

3338 W. Habel, C. Nover, and P. Sartori, J. Prakt. Chem., 1992,334,477. 3339 0. BOge, E. Nietzschmann, and J. Heinicke, Phosphorus Sulfur Silicon, 1992.71.25. 3340 R. R h u , G. Veneziani, and G. Bertrand, J. Am. Chem. SOC., 1992, 114, 6059. 3341 R. Boese, J.R. Green, J. Mittendorf, D.L. Mohler, and K.P.C. Vollhxdt, Angew. Chem., I n [ . Ed. Engf., 1992,

31, 1643; H.-U. Siehl, F.-P. Kaufmann, and K. Hori, J. Am. Chem. Soc., 1992, 114, 9343; J.A. Soderquist and E.I. Miranda, J . Am. Chem. SOC., 1992, 114, 10078.

3342 M. Nasim, V.S. Petrosyan, and G.S. Zaitseva, J. Lorberth, S. Wocadlo, and W. Massa, J. Organornet. Chem.. 1992, 441, 27.

3343 B.R. Yoo, M.E. Lee, and I.N. Jung, Organometallics, 1992,11, 1626. 3344 N. Auner, W. Ziche, and E. Herdtweck, J. Organornet. Chem.. 1992,426, 1. 3345 M. Driess and H. Pritzkow, Angew. Chem., Int. Ed. Engl., 1992.31, 750. 3346 R.A. Howie, G.M. Spencer, J.L. Wardell, and J.N. Low, J. Organornet. Chem., 1992,437, 111. 3347 G.L. Larson, F.K. Canledge, R. Nunez. R.J. Unwalla, R. Klesse, and L.D. Valle, Organometallics, 1992, 11,

3348 S.J. Sargeant, S.Q. Zhou, G. Manuel, and W.P. Weber, Macromolecules, 1992.25.2832 (Chem. Absrr., 1992.

3349 Y.H. KO and W.P. Weber, Polym. Bull. (Berlin), 1991,26.487 (Chem. Abstr., 1992, 116,21 607). 3350 M. Weidenbruch, J. Hamann, H. Piel, D. Lentz, K. Peters, and H.G. von Schnering, J. Organomet. Chem., 1992,

3351 G. Maas. M. Gimmy, and M. Alt, Organometallics, 1992, 11, 3813. 3352 A. Alberti and M. Benaglia, J. Organornet. Chem., 1992,434, 151. 3353 P. Jankowski and J. Wicha, J. Chem. SOC.. Chem. Commun., 1992, 802; J.E. Celebuski and C. Chan, J. Org.

3354 F. Jin, Y. Xu, and Y. Ma, Tetrahedron Lett., 1992.33, 6161. 3355 M. Charisse, S. Roller, and M. Draeger, J. Organornet. Chem., 1992,427,23.

117, 49 376).

859.

116, 236 294).

426, 35.

Chem., 1992, 57, 5535.

Page 180: Nmr

Spectroscopic Properties of Inorganic and Organometallic Compounds

Ph SiPr13

C j $ H

CH~BU'

Ph2 R R

(214)

k!? (213)

Two-dimensional 13C-119Sn correlation has been examined and applied to a variety of compounds

such as [Me3SnCH2CH=CHCH2SnMe3].3357 The influence of But substituents at the tin atom on 1H, 13C, and 119Sn NMR parameters in acetylenylstannanes has been e ~ a m i n e d . ~ ~ ~ 8 Two-

dimensional 1H-l3C relayed coherence transfer and NOESY have been used to assign IH and l3C

NMR spectra of (2)- 17-[2-(Ph3Sn)viny1]-4-esten-l7~-01.3359 The absolute signs of J(207Pb1H),

J(207Pb13C), and J(m7Pb19F) have been determined for [(CF3)nPbb-n]. A linear correlation between

1J(207Pb-l3CF3) and 25(207Pb-l9F) or 25(207Pb-19F) and 2J( l9Sn- 19F) for homologous CF3

stannanes has been found. 'H, 13C, 19F, and 119Sn NMR spectra were reported.3360 NMR data

have also been reported for Me3M, M = Ge, Sn, Pb, derivatives of thiophene, (13C),336* [Me2-

GeCH2CH2CH21, ( l 3 C ) , 3 3 6 * [ M e 2 G e { ( C H 2 ) n ) 2 G e M e 2 ] , ( '3C. 7 3 G e ) , 3 3 6 3

[R2M(CH=CH)2CH=CH], (R2M = Me2Ge. Bun2Sn; 13C),3364 poly([3,4-c]-furano- 1-germa-1,l-

dimethylcyclopentane], ( 13C),3365 [(4-FCsH4)2GeMeCH2(ma~le)l, (13C),3366 [(2,4,6-Me&H2)3-

Ge=CHCH2But], (13C),3367 [ButMe2SiOCH2CH2CH2C(SnMe3)=CHC02Me], (13C),3368

- - [Me&nC(SnMe3)=CHSnMe2bH2], (13C, 1 19Sn),3369 [Me3SnCHzCR=CHCH2SnMe3], (13C),3370

[Me3SnCH2CH=CHCH2CH2CH=CHCH2SnMe3], (13C),3371 (215), (13C),3372 [(Et0)2P(O)CH2-

SiMe2CH2S nMeg], (13C, 1 19Sn),3373 [ 1 -(Me3Sn)-2- { Et02CCH( NHCHO)CH2) -4,5- (BulOC02)2-

C6H2], (13C, 19Sn),3374 [Me3SnCH=CHCH=CHCl], (13C),3375 [Me3SnR], (13C, 119Sn),3376

3356 J. Wildeman, J.K. Herrema, G. Hadziioannou, and E. Schomaker, J. Inorg. Organomet. Polym.. 1991. 1, 567

3357 S. Berger and T.N. Mitchell, Organomefallics. 1992,11,3481. 3358 E. LiepipS, I. Birgele, E. Lukevics, E.T. Bogoradovskii, Kh.V. Girbasova, and V.S. Zavgorodnii. Main Group

3359 F. Kayser, M. Biesemans, H. Pan, M. Gielen. and R. Willem, Magn. Reson. Chem., 1992,30, 877. 3360 R. Eujen and A. Patorra, J. Organomet. Chem.. 1992.438, 57. 3361 S.K. Ritter and R.E. Noftle, Chem. Mafer., 1992.4.872 (Chem. Abstr., 1992, 117.49 293). 3362 M. Namavari and R.T. Conlin, Organomefallics, 1992. 11.3307. 3363 S. Aoyagi, K. Tanaka, I. Zicmane, and Y. Takeuchi, J. Chem. SOC., Perkin Trans. 2 , 1992,2717. 3364 Y. Nakadaira, R. Sato, and H. Sakurai, J. Organomet. Chem., 1992,441.41 1. 3365 X. Liao, W.P. Weber, P. Mazerolles. C. Laurent, and A. Faucher, Polym. Bull. (Berlin), 1991,26,499 (Chem.

3366 R. Tacke, B. Baker, D. Berg, W. Brandes, S. Dutzmann, and K. Schaller, J. Organomel. Chem., 1992.438.45. 3367 C. Couret, J. EscudiC, G. Delpon-haze. and J. SatgC. Organomefallics, 1992, 11, 3176. 3368 E. Piers, T. Wong, and K.A. Ellis, Can. J. Chem.. 1992.70, 2058. 3369 T.N. Mitchell and B. Kowall, J. Organomet. Chem., 1992.437, 127. 3370 T.N. Mitchell, B. Kowall, H. Killing, and C. Nettelbeck, J. Organomet. Chem.. 1992.439, 101. 3371 Y. Tsuji andT. Kakehi,J. Chem. SOC., Chem. Commun., 1992. 1OOO. 3372 M.J. Dickens, T J . Mowlem, D.A. Widdowson, A.M.Z. Slawin. and D.J. Williams, J. Chem. SOC., Perkin

3373 U. Kolb, M. Dritger, E. Fischer, and K. Jurkschat. J. Organomet. Chem., 1992,423,339. 33l4 M. Namavari, A. Bishop, N. Satyamurthy, G. Bida. and J.R. Barrio, Appl. Radial. Isot., 1992,43,989 (Chem.

3375 A. Kiehl, A. Eberhardt, M. Adam, V. Enkelmann. and K. Miillen, Angew. Chem.. Inf. Ed. Engf., 1992, 31,

(Chem. Abstr., 1992. 117, 8602).

Met. Chem., 1990. 13,65 (Chem. Abstr., 1992, 116, 255 732).

Absfr.. 1992, 116, 21 608).

Trans. 1. 1992,323.

Abm. , 1992, 117, 212 771).

Page 181: Nmr

Nuclear Magnetic Resonance Spectroscopy 181

[R1R22SnCH2C=CSnR1R22], [(R1R22Sn)2C=C=CH2], (13C),3377 [Bun3SnCHROSiButMe2],

(13C),3378 [Bun3SnCHMeCH=CHOSiMe2But], (13C),3379 [BunjSnCrC( 1,4-C6H4)nC~CSnBun3],

(13C),3380 (216), (13C),3381 [BungSnR], (13C),3382 [B~"3-nClnSnR], (l3C),3383 distannacyclo-

alkanes, (13C, 119Sn),3384 (217), (13C),3385 [(CF3),SnBr4_,], (13C, 119Sn),3386 (218), ("B, 13C,

l9Sn , inc luding CP/MAS),3387 [Ph3-nInS n ( C H 2 C H 2 C H 2 0 H ) I , ( 13C),3388 [Ph4-,S n -

(S2bCH2CMe2CH2t))n], (119Sn),3389 [Ph3SnCH2R], ('3C, 119Sn),3390 [Ph3SnCHClCH2SC6H3-

N02-2-Me-41, (13C, %t1),~391 [PhgSnR], (13C),3392 and [(CF3)4Pb], (l3C, 207Pb).3393

SnMe3 0

SiMe3 SnBun3

1588. 3376 J.C. Podesd, A.B. Chopa, L.C. Koll, and S.D. Mandolesi. J . Organomer. Chem., 1992,434,269. 3377 E.T. Bogoradovskii, V.S. Zavgorodnii, E. LiepipS, I. Birjjele, and A.A. Petrov, Zh. Obshch. Khim., 1991, 61,

3378 0. Antonsen, T. Benneche. L.-L. Gundersen, and K. Undheim. Acta Chem. Scand.. 1992.46, 172. 3379 J.A. Marshall and G.S. Welmaker, J. Org. Chem., 1992,57,7158. 3380 P.J. Stang, R. Tykwinski, and V.V. Zhdankin, J. Org. Chem., 1992.57, 1861. 3381 S. Kusuda, Y. Watanabe, Y. Ueno, and T. Toru, J. Org. Chem., 1992.57.3145. 3382 R. Hoffmann and R. Briickner, Chem. Ber., 1992, 125, 2731; Y. Yang and H.N.C. Wong, J. Chem. SOC.,

Chem. Commun., 1992, 1723; L.A. Paqueite, A.M. Doherty, and C.M. Rayner, J. Am. Chem. SOC., 1992, 114, 3910; W.H. Pearson, D.P. Szura, and M.J. Postich, J. Am. Chem. SOC., 1992, 114, 1329; M. Lautens, C.H. Zhang, and C.M. Crudden, Angew. Chem.. Int. Ed. Engl. , 1992. 31, 232; R.W. Hoffmann, T. Riihl, F. Chernla, and T. Zahneisen, Liebigs Ann. Chem., 1992, 719; Q. Han and D.F. Wiemer, J . Am. Chem. SOC.. 1992, 114, 7692; R. Hoffmann and R. Briickner, Angew. Chem., Int. Ed. Engl., 1992,31,647; J. Ardisson. J.P. F6r6zou. M. Julia, Y. Li, L.W. Liu, and A. Pancrazi, Bull. SOC. Chim. Fr., 1992, 129, 387; J.A. Cabral. T. Cohen, W.W. Doubleday, E.F. Duchelle, G. Fraenkel, B.S. Guo, and S.H. Yii, J. Org. Chem., 1992, 57, 3680; J.M. Chong and E.K. Mar, J. Org. Chem.. 1992,57,46; M.L. Falck-Pedersen, T. Benneche, and K. Undheim. Acta Chem. Scand., 1992,46, 1215; A. Barbero. P. Cuadrado, 1. Fleming, A.M. Gonzhlez, and F.J. Pulido, J. Chem. Soc.. Perkin Trans. I, 1992, 327; B. Jousseaume, N. Noiret, M. Pereyre, J.-M. Franc&, and M. Pktraud, Organometallics, 1992. 11.3910.

3383 H. Nakahira, I. Ryu. M. Ikebe, Y. Oku, A. Ogawa, N. Kambe. N. Sonoda, and S. Murai. J. Org. Chem., 1992, 57, 17.

3384 D. Farah. K. Swami, and H.G. Kuivila, J. Organomet. Chem., 1992.429.31 1. 3385 Y. Sugihara, T. Yagi, I. Murata, and A. Imamura, J. Am. Chem. Soc., 1992,114, 1479. 3386 R. Eujen and U. Thurmann, J. Organomet. Chem., 1992.433,63. 3387 B. Wrackmeyer, G. Kehr, A. Sebald, and J. Kiimmerlen, Chem. Ber., 1992,125,1597. 3388 A.R. Forrester, S.J. Garden, R.A. Howie. and J.L. Wardell. J. Chem. SOC., Dalton Trans., 1992,2615. 3389 A.A.S. Elkhaldy, R.K. Mehrotra, and G. Srivastava, Synth. React. Inorg. Metal-Org. Chem., 1992,22,997. 339O K.C. Molloy and P.C. Waterfield, J. Organomet. Chem.. 1992,424,281. 3391 R.A. Howie, J.L. Wardell. E. Zanetti, P.J. Cox, and S.M.S. Doidge-Harrison, J. Organomer. Chem., 1992,431,

33g2 H.-S. Dang and A.G. Davies, J. Chem. SOC.. Perkin Trans. 2. 1992. 1095. 3393 R. Eujen and A. Patorra, J. Organomel. Chem., 1992,438. C1.

1418 (Chem. Abstr., 1992, 116,21 174).

27.

Page 182: Nmr

182 Spectroscopic Properties of Inorganic and Organometallic Compounds

J(29Si29Si) values correlate with electronegativity for cycfo-[ (SiMe2),,X], X = 0, S, Se, NMe, PMe.3394 N M R data have also been reported for [(Me3Si)gSiR], ( 13C),3395 [R3GeSi(SiMe3)3], (I3C,

29Si),3396 [CH2=CHCH2SSi(SiMej)3] , (13C),3397 [(Me3Si)3SiTe]-, (13C, 29Si, 125Te),33g8

[Me3SiTeSi(SiMe3)3], (125Te)?399 [(Me3Si)2SiC(=CH2)CH2CH2C=CH2], ('3C, 29Si),3400 (219),

( l 3 C , 29Si),3401 [ M e 3 S i ( S i M e 2 ) 3 N H P r i ] , (29Si),3402 [ M e ( S i M e 2 ) 6 C H 2 C 0 2 H ] , (13C),3403

[Me3SiSiPh2COadamantyl], (13C)?404 [(2,4,6-Pri3CsH2)(Me3Si)Si=Si(SiMe3)(C6H2Pri3-2,4,6)], (29Si),3405 [(2,4,6-Me3C&I2)(Me3Si)Si=C(adamantyl)(OSiMe3)], ( 13C, 29Si),3406 [ (MegSi)(MeO)- - 7 SiCH2CH=CHCH2], (13C),3407 (220), ( 13C, 29Si),3408 [FMezS iS1MeSiMe2SiMe2SiMe2SiMe21, (29Si),3409 pyrazoly te of polydimethyls i lane , ( '3C, 29Si),3410 [ S i g M e 141, (13C) ,341

[ W(SiMez) ,S iMe2] , ('3C, 29Si),3412 [SigMe1 I]-, ('3C, 29Si),3413 [MenSi(OMe)2.n],, (29Si),3414

(22 1 1, ( 3C, 29Si)?415 [R1R2SiR1 R 2 S i C K I n , ( 13C),3416 [RN= CSiBu?SiBu$Si B u b ] , ( 13C),34I7

(222), (R = C M e 2 P r i ; 1 3 C , 2 9 S i ) , 3 4 1 8 [ B u t P h 2 S i S i P h 2 B u t ] , (13C) ,3419 [ P h 3 S n - - - SiPhSiPh2SiPh2SiPh2Si Ph21 , ( 3C, 29Si, S n) ,3420 [ O(S ~ M ~ P ~ O S I P ~ S I P ~ ~ S I P ~ ~ S I P ~ ~ S ~ P ~ ~ ) ~ ] , (l3C, 29Si),3421 [Ar2SiSiAr2SiAr2], (Ar = 2,6-(Me2NCH2)2C6H3; 29Si),3422 [(2,4,6-Pri3C6H2)2-

Si=Si(C6H2Pri3-2,4,6)2], (29Si),3423 [(Me3Ge)qSi], (13C, 29Si),3424 [Rlc=CR2GeMe~GeMe2Ge-

- - - I -

3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405

3406 3407 3408 3409 3410

341 1 3412

3413 3414 3415 3416

3417

3418 3419 3420 3421 3422 3423 3424

H. Stiiger, M. Eibl, and I. Kovacs, Phosphorus Sulfur Silicon, 1992.65, 29. B. Kopping, C. Chatgilialoglu, M. Zehnder, and B. Giese, J. Org. Chem., 1992, 57, 3994. S.P. Mallela, M.A. Ghuman, and R.A. Geanangel, Inorg. Chim. Acta, 1992,202,211. D.P. Curran and B. Yoo, Tetrahedron Lea., 1992,33,6931. G . Becker, K.W. Klinkhammer, S. Lartiges, P. Bottcher, and W. Poll, Z. Anorg. Allg. Chem., 1992,613, 7. P.J. Bonasia, D.E. Gindelberger, B.O. Dabbousi. and J. Arnold. J. Am. Chem. SOC., 1992, 114, 5209. M. Kira. T. Maruyama. and H. Sakurai, Tetrahedron Let[., 1992,33,243. D. Bravo-Zhivotovskii, V. Braude, A. Stanger, M. Kapon, and Y. Apeloig, Organomeraffics, 1992,11,2326. G. Fritz and H. Amann, Z. Anorg. Allg. Chem., 1992,616, 39. S . Sagisaka, T. Iyoda, and T. Shimidzu, J. Chem. SOC., Chem. Commun., 1992, 1697. A.G. Brook, A. Baumegger, and A.J. Lough, Organomerallics, 1992, 11, 310. R.S. Archibald, Y. van den Winkel, A.J. Millevolte. J.M. Desper, and R. West, Organometallics, 1992, 11, 3276. A.G. Brook. A. Baumegger. and A.J. Lough, Organomerallics, 1992, 11.3088. D. Lei, Y.-S. Chen, B.H. Boo, J. Frueh, D.L. Svoboda. and P.P. Gaspar, Organometallics, 1992, 11, 559. Y. Igarashi, Y. Kabe, T. Hagiwara, and W. Ando, Tetrahedron, 1992,48.89. P.K. Jenkner and E. Hengge, J . Organomer. Chem., 1992,430,259. N.A. Popova, B.D. Lavrukhin, D.V. Zagorevskii, G.N. Turkeltaub, A.M. Tsyrlin, A.M. Bershitskii, and O.B. Afanasova, Metalloorg. Khim., 1991, 4,984 (Chem. Abstr., 1992, 116,42 379). Y.-P. Sun and J. Michl, J. Am. Chem. SOC., 1992, 114, 8186. W. Ando, F. Hojo, S. Sekigawa, N. Nakayama, and T. Shimizu, Organometallics, 1992, 11, 1009; Y. Pang, A. Schneider, T.J. Barton, M.S. Gordon, and M.T. Carroll, J. Am. Chem. SOC., 1992, 114, 4920. A.L. Allred, R.T. Smart, and D.A. Van Beek, jun., Organometallics, 1992.11.4225. W. Kalchauer, B. Pachaly, G. Geisberger, and L. Rbsch, 2. Anorg. Allg. Chem., 1992,618, 148. M. Ishikawa, H. Sakamoto, S. Okazaki, and A. Naka, J . Organomer. Chem., 1992,439, 19. M. Ishikawa. T. Hatano, Y. Hasegawa, T. Horio, A. Kunai, A. Miyai, T. Ishida, T. Tsukihara, T. Yamanaka, T. Koike, and J. Shioya, Organomerallics, 1992. 11, 1604. M. Weidenbruch, J. Hamann, S. Pohl, and W. Saak, Chem. Ber., 1992, 125, 1043; M. Weidenbruch, J. Hamann, K. Peters, H.G. von Schnering, and H. Marsmann, J . Organomet. Chem., 1992,441,185. H. Matsumoto, K. Higuchi, S. Kyushin. and M. Goto, Angew. Chem., fnr. Ed. Engl., 1992, 31. 1354. G.W. Sluggett and W.J. Leigh, Organometallics, 1992, 11, 3731. W. Uhlig and C. Tretner, J. Organomet. Chem.. 1992, 436, C1. W. Uhlig, 2. Anorg. Allg. Chem., 1992, 618, 144. J. Belzner, J. Organomet. Chem., 1992,430, C51. A.J. Millevolte, D.R. Powell, S.G. Johnson, and R. West, Organometallics, 1992. 11, 1091. K.M. Baines, K.A. Mueller. and T.K. Sham, Can. J. Chem.. 1992,70, 2884.

Page 183: Nmr

Nuclear Magnetic Resonance Spectroscopy 183

Me21, (13C),3425 [TeGeMe*Me2GeMe2], (13C),3426 [EGeBu$GeBu$GeBu%], (E = S, Se, NPh; 13C),3427 (223), (R = CEt2Me; l3C),342* [PhjGeSnMegl, (13C),3429 and [ R ~ S ~ S I I R ~ S ~ R ~ ] , (R =

- - n

Me3Si\ ?Me3 Me,% si- siH SiMe3 m (219)

The 13C chemical shifts in [(Me3Si)2NH] in various non-aromatic solvents have been rec0rded.34~~

The signs of coupling constants have been determined for N-MegSiN-phosphorus compounds using

'H, l3C, l5N, 29Si, and 31P NMR spectroscopy.3432 The 13C NMR spectrum of [(Me3Sn)3N] has been recorded, using z-filtered heteronuclear polarization t r a n ~ f e r . 3 4 ~ ~ 6(119Sn) and J(119Sn13C)

depend on the coordination number of tin in BungSn complexes of amino acids.3434 13C and 119Sn

NMR data show Phg Sn complexes with 2-arylazopyridines contain a monodentate ligand.3435 NMR

data have also been reported for [Me3SiNRlR2], (13C),3436 [Me3SiN=C=NSiBut2N(SiMe3)2], (13C),3437 [Me$iN=C=NPF2], (13C, l5N, 29Si),3438 [ ( (Me3Si)2N)2GeCHCH=CHCH(CH2)0ln, ( 3C),3439 [ ( (Me3S i )NR ) 2 deN=P(OPh)@e (NR(SiMe3)) 2N=P(OPh)2&], ( 1 3 C, * [Sn(NCS)( N(SiMe3)2)], (119Sn),3441 [ ((MejSi)2N}2SnC12], (*3C, 29Si, 119Sn),3442 (224), (13C,

- 9 S i ) , 3

3425 G. Billeb. H. Brauer, W.P. Neumann, and M. Weisbeck. Organometallics, 1992, 11,2069. 34% M. Weidenbruch. A. Ritschl, K. Peters, and H.G. von Schnering, J. Organomel. Chem., 1992,437, C25. 3427 M. Weidenbruch, A. Ritschl, K. Peters, and H.G. von Schnering, J. Organomet. Chem., 1992,438,39. 3428 A. Sekiguchi, T. Yatabe, H. Kamatani, C. Kabuto, and H. Sakurai, J . Am. Chem. SOC., 1992, 114.6260. 3429 K.H. Pannell, L. WMnyi, H. Shanna, and F. Cervantes-Lee, fnorg. Chem., 1992,31,522. 3430 A. Schlifer and M. Weidenbruch, Phosphorus Sulfur Silicon, 1992.65, 13. 3431 M.A.R. Abid and A.W.K. Khanzada, J. Chem. SOC. Pak., 1991, 13, 181 (Chem. Abstr., 1992. 116, 151 858). 3432 B. Wrackmeyer, E. KupEe, G. Kehr, and J. Schiller, Magn. Reson. Chem.. 1992,30, 304.

3433 E. KupEe and B. Wrackmeyer, J. Magn. Reson., 1992,99,338. 3434 J. Klein. F. Thunecke, and R. Borsdorf, Monatsh. Chem., 1992. 123,801. 3435 T.S.B. Baul and A. Lycke, Polyhedron, 1992,11,2423. 3436 W. Adam, M. Ahrweiler, K. Paulini. H.-U. ReiBig, and V. Voerckel, Chem. Ber.. 1992, 125, 2719; R.F.

Cunico and C.P. Kaun. J. Org. Chem., 1992.57.6999. 3437 M. Weidenbruch, A. Lesch, K. Peters, and H.G. von Schnering, J. Organomel. Chem., 1992,423, 329. 343* M. Gruber, L. Heuer, R. Schmutzler, H. Naarmann, and H.M. Schiebel, Polyhedron, 1992,11, 1099. 3439 S. Kobayashi, S. Iwata, K. Yajima, K. Yagi. and S.4. Shoda, J. Am. Chem. SOC., 1992, 114,4929. 3440 A. Meller, G. Ossig, W. Maringgele, M. Noltemeyer, D. Stake, R. Herbst-her, S. Freitag, and G.M. Sheldrick,

3441 R.W. Chorley, P.B. Hitchcock. and M.F. Lappert, J. Chem. Sac.. Dalton Trans., 1992, 1451. 3442 B. Wrackmeyer. G. Kehr, H. Zhou, and S . Ali, Inorg. Chim. Acta, 1992.197, 129.

Z. Natwforsch.. B , 1992, 47, 162 (Chem. Absn., 1992, 116, 174 256).

Page 184: Nmr

184 Spectroscopic Properties of Inorganic and Organometallic Compounds

15N, 29Si, 207Pb),3443 [ArSN=S=NSiMeg], (29Si),3444 [(Pri2N)2P(S)N=C=NSiMe3], (13C),3445

[ H ~ N P P ~ ~ N P P ~ z N S ~ M ~ ~ ] , (29Si),3&6 [Ph(But)P(OSiMe3)(=NSiMe3)], (13C),3447 [R1R22M-

N=S=NMRlR22], (M = Si, Ge, Sn, Pb; 13C, 15N, 29Si, 119Sn),344* [(Pr$N)zP( N(SiMe3))2P-

(NSiMe3)2], (13C, 29Si),3449 (225), ('3C, 29Si),3450 [Ph2P( N(SiMe3)]2TeArC12], (125Te),3451

[HNCsaNCH2SiMe2]+, (29Si),3452 (226). (13C, 29Si),3453 Et3SiC1 complexes with 1-vinyl and 1- e t h y l i m i d a z o l e s , ( l 3 C . 2 9 S i ) , 3 4 5 4 ( 2 2 7 ) , ( 1 3 C ) , 3 4 5 5

~~~~~~C(C@M~)=C(C@M~)N=C(C&II~)CM~=CP~~P~], (13C),3456 [(2,4,6-MegC6H2)3GeNHzl, ( 13C),3457 [Me3SnSC(NH2)=NN=CMe-2-thiophenyl], (13C, 119Sn),3458 [Ph2P(S)NCNSnMeg],

( 13C),3459 [HB( 3-Me-p~)3SnC13-~Rn], ( l3C, 119Sn),3460 [ SnX( 1 -CioH6NMe2-8)2RI. ( l 3C,

m

- Me2 Me2 9, .si

piMe3 si' Me2 ,si: Me3Si-NN, N-Si N, N-SiMe3

HN, ,NH Me2

Me2 Me2

PbMe2 Si, S i, Me,Si-NN( N-Si N' N-SiMe3

S( Me2 ' s ( a;: SiMe3

(224) (225) R2Sir,SiR2

As Me\ ,NPri2 Pri3Si- N e /As 1

si, . A s - ~ s

Si- Si R2 R2

a; /:irt2 M: NPr', Me

(226) (227) (228)

3443 B. Wrackrneyer and H. Zhou, Main Group Met. Chem., 1990,13,99 (Chem. Abstr., 1992,116,235 766). 3444 A.V. Zibarev, Y.V. Gatilov, I.Yu. Bagryanskaya, and S.N. Konchenko, Polyhedron, 1992,11,2787. 3445 M. Soleilhavoup, A. Baceiredo, F. Dahan, and G . Bemand, Inorg. Chem., 1992,31, 1500. 3446 R. Hasselbring. H.W. Roesky. M. Rietzel, M. Wiu, and M. Noltemeyer, Phosphorus Sulfur Silicon, 1992,72,

3447 M. Well and R. Schmutzler, Phosphorus Sulfur Silicon, 1992.72. 189. 3448 M. Herberhold, S. Gerstmann, and B. Wrackmeyer, Phosphorus Sulfur Silicon, 1992,66,273. 3449 J. Boske, E. Niecke, B. Krebs, M. L2ge, and G. Henkel. Chem. Ber., 1992, 125,2631. 3450 K. Dippel, U. Klingebiel, L. Marcus, and D. Schmidt-Bke, Z. Anorg. A&. Chem., 1992,612, 130. 3451 T. Chivers and M.N.S. Rao, Phosphorus Sulfur Silicon, 1992.69, 197. 3452 D. Kummer, S.H. Abdel Halirn. W. Kuhs, and G. Mattern, Z. Anorg. Allg . Chem., 1992,614, 73. 3453 F. Hupprnann, W. Maringgele, T. Kottke, and A. Meller, J. Organomet. Chem., 1992,434, 35. 3454 M.G. Voronkov, E.S. Dornnina, L.V. Baikalova, M.F. Larin, V.A. Pestunovich, and N.F. Chernov, Zh. Obsch.

3455 R. Munschauer and G. Maas. Chem. Bet. . 1992.125, 1227. 3456 J. Barluenga, M. Tornas. A. Ballesteros, J.-S. Kong, S.G. Grande, and P. Pertierra, Orgonometollics, 1992, 11,

3457 M. Riviere-Baudet. A. Morere, M. Onyszchuk. and J. Satgt, Phosphorus Sulfur Silicon, 1992, 70, 75; M.

3458 A. Kumari, R.V. Singh, and J.P. Tandon, Phosphorus Sulfur Silicon, 1992,66, 195. 3459 L. Jiiger, K. Polborn, and W. Beck, Z. Anorg. Allg. Chem., 1992, 618, 158. 3460 G.G. Lobbia, S. Calogero, B. Bovio, and P. Cecchi, J . Organomet. Chem.. 1992,440. 27.

209.

Khim., 1991,61.2242 (Chem. Abstr., 1992, 116, 174 233).

2348.

Riviere-Baudet, A. Morhe, J.F. Britten, and M. Onyszchuk. J. Organomet. Chem.. 1992, 423. C5.

Page 185: Nmr

Nuclear Magnetic Resonance Spectroscopy 185

19Sn),3461 [ButP(SiMe3)(SiC13)], (13C, 29Si),3462 [Me3SiP=6CBu'=6-1-adarnantyl], (13C),3463

(228), (R = 2,4,6-Me3Cd2; 29Si)?464 and [MeP(SnBu'zNBut)2SiMe2], ( l 19Sn).3465

The 29Si chemical shifts of [R3SiOM], R = Me, Et, Ph, M = H, Li, Na, K, have been recorded and

correlated with the Taft 6* constant of the substituent on silicon and the Gutman donor number of the

solvent.3466 NMR data have also been reported for [Me3SiOR], (13C),3467 [Phg-nMenSiOBut],

(13C),3468 [(MegSiO)2SiMeR], (13C),3469 [Me3-n(Me3SiO)nSi(CH2)~NR2], (13C, 15N, 170 ,

29Si),3470 cycfo- [ (Me3S i 0 ) 2 S iO] 3. (29Si),347 [Me3S i O C ( NH2)=NN=CMeR], ( 13C),3472

[Me3Si02CCR=PPh3], (29Si),3473 [(Me3Sio)gAs406], (13C, 29Si),3474 [Me3SiOC(Se)R], ('3C,

77Se),3475 [ M ~ ~ S ~ C H ~ C H ~ S I M ~ ~ O O ] , (l3C, 29Si),3476 [(BrCH2)Me2SiOR], (13C),3477 [MeOSiMe2-

CHMeCH=CH2], (l3C) ,3478 [ (C5Hg)S iMe2( OCH2CH2)nOMe], (13C, 2%) ,3479 [ RlSiMe20R21,

(13C),3480 [Sn(OSiButMe2)(p-OSiButMe2)]2, (13C, 119Sn),3481 [Me2ButSiOR], (13C),3482

- 3461 J.T.B.H. Jastnebski, P.A. Van der Schaaf, J. Boersma, G. Van Koten, D.J.A. De Ridder, and D. Heijdenrijk.

3462 R. Martens and W.-W. du Moni, Chem. Ber., 1992, 125,651. 3463 B. Breit, H. Mernmesheimer, R. Boese., and M. Regitz. Chem. Ber., 1992. 125. 729. 3464 R.P. Tan, N.M. Comerlato, D.R. Powell, and R. West, Angew. Chem., In!. Ed. Engl., 1992, 31, 1217. 3465 D. Haenssgen, E. Stahlhut, H. Aldenhoven, and A. Doerr, J. Organomet. Chem., 1992,425, 19. 3466 O.V. Kononov, G.B. Erusalimskii, S.Ya. Lazarev, and V.D. Lobkov, Zh. Obshch. Khim., 1991, 61, 2262

(Chem. Abstr., 1992, 116, 174 235). 3467 P. Duhamel, G. Dujardin, L. Hennequin, and J.-M. Poirier. J. Chem. Soc., Perkin Trans. 1 , 1992, 387; J.L.

Bloomer and M.E. Lankin, Tetrahedron Lett., 1992, 33, 2769; R.F. Cunico and C.P. Kuan, J. Org. Chem., 1992,57, 1202; D. Menberu, P.V. Nguyen, K.D. Onan, and P.W. Le Quesne, J. Org. Chem., 1992,57, 2100; S.D. Burke, G.J. Pacofsky, and A.D. Piscopio, J. Org. Chem., 1992, 57, 2228; I . Mathieu-Pelta and S.A. Evans, jun., J. Org. Chem., 1992. 57, 3409; J. lpaktschi and A. Heydari, Chem. Ber., 1992, 125, 1513; C. Bolm, M. Ewald, and M. Felder, Chem. Ber., 1992, 125, 1205; K. Praefcke, P. Psaras, and B. Bilgin, Chem. Ber., 1992, 125,285; S . Hunig and M. Koch, Chem. Ber., 1992, 125, 1635; M. Well, A. Fischer, P.G. Jones, and R. Schmutzler, Phosphorus Sulfur Silicon, 1992,71, 143; R.W. Hoffmann, W. Mikolaiski, K. Brumm, and U. Brune, Liebigs Ann. Chem., 1992, 1137; J. lpaktschi and A. Heydari, Angew. Chem.. Int. Ed. Engl., 1992, 31, 313; A.K. Ray and G. Magnusson, Acia Chem. S c a d . , 1992,46,487.

3468 E. Buncel, T.K. Venkatachalam, and U. Edlund, J. Organomet. Chem., 1992.437,85. 3469 R. Wagner, G. Sonnek, and W. Hiller, Main Group Met. Chem.. 1991, 14, 197 (Chem. Absir., 1992, 117, 131

3470 E. Lukevics, V. Luse, 1. Zicmane, E. E. LiepipS, M. Trusule, S. Germane, I. Augustane, V.N. Verovski, N.G.

3471 H.C. Marsmann. E. Bertling, and M. Seifert, Phosphorus Sulfur Silicon. 1992.64, 33. 3472 C. Savena and R.V. Singh, Synth. React. Inorg. Metal-Org., 1992, 22, 1061. 3473 H.J. Bestmann, R. Dostalek, and R. Zimmermann, Chem. Ber., 1992, 125, 2081. 3474 M. Bier , P. Bissinger, and H. Schmidbaur, Chem. Ber., 1992, 125, 373. 3475 S. Kato, H. Kageyama, Y. Kawahara, T. Murai, and H. Ishihara, Chem. Ber., 1992,125,417. 3476 W. Adam and R. Albert, Tetrahedron Len.. 1992,33,8015. 3477 M. Journet and M. Malacria, J. Org. Chem., 1992.57, 3085. 3478 M.G. Steinmetz and C. Yu. Organometallics, 1992, 11, 2686. 3479 U. Siemeling, J. Organomel. Chem., 1992,429, C14. 3480 M.G. Steinmetz and C. Yu, J. Org. Chem., 1992, 57. 3107. 3481 M.J. McGeary, R.H. Cayton, K. Folting, J.C. Huffman, and K.G. Caulton, Polyhedron, 1992, 11, 1369. 3482 R.J. Heffner, J. Jiang, and M.M. Joullit, J. Am. Chem. SOC., 1992, 114, 10 181; L.A. Paquette, M. Zhao, and

D. Friedrich, Tetrahedron Lett., 1992,33, 7311; J.A. Marshall, T.D. Crute, tert., and J.D. Hsi,J. Org. Chem., 1992, 57, 115; J.M. Hawkins and T.A. Lewis, J. Org. Chem., 1992,57,2114; B.B. Snider and T. Kwon, J. Org. Chem., 1992. 57. 2399; MA. Lai, E. Oh, Y. Shih, H.-w. Liu, J. Org. Chem., 1992, 57, 2471; M.V. Perkins. M.F. Jacobs, W. Kilching. P.J. Cassidy, J.A. Lewis, and R.A.I. Drew, J. Org. Chem., 1992, 57, 3365; L.A. Paquette, H.-J. Kang, and C.S. Ra, J. Am. Chem. Soc., 1992. 114, 7387; D.A. Evans, G.C. Fu. and A.H. Hoveyda, J. Am. Chem. Soc., 1992, 114, 6671; C.R. Johnson, A. Golebiowski, and D.H. Steensma, J. Am. Chem. Soc., 1992, 114, 9414; S.R. Angle and H.L. Maitson-Arnaiz, J. Am. Chem. SOC., 1992, 114, 9782; B.B. Snider and Z. Shi, J. Am. Chem. Soc., 1992, 114, 1790; P. Magnus, R. Lewis, and F. Bennett, J. Am. Chem. SOC., 1992, 114, 2560; C.H. Lee, M. Westling. T. Livinghouse, and A.C. Williams, J. Am. Chem. SOC.. 1992, 114, 4089,

Organometallics, 1992, 11, 1521.

258).

Prodanchuk, el al., Khim. Geterotsikl. Soedin., 1991. 1653 (Chem. Abstr., 1992, 117, 191 728).

Page 186: Nmr

186 Spectroscopic Properties of Inorganic and Organometallic Compounds

[Me2PhSiOR], (13C),3483 [ButzMeSiOR], (13C),3484 [EtsSiOR], (13C),3485 [Pri3SiOR], (13C)?486

(229), (29Si),3487 [ButPh2SiOR], (13C),3488 and (230), (2% including CP/MAS).3489

m'? CH,CMe3

RZ Me Me (229) (230)

The tacticity of poly(Et3Sn methacrylate) has been investigated using l3C NMR spectroscopy.3490 l19Sn NMR spectroscopy has been used t o study BungSn tagged coal liquefaction products and petroleum fractions.3491 l 3 C and 119Sn NMR spectroscopy has been used t o study adducts of

[PhgSnX] with biologically active acids. When there is Sn-S bonding, the tin is four coordinate,

while when there is S n - 0 bonding, the tin is five ~oordinate.3~92 N M R data have also been reported

for (23 1 ), ( l 3C),3493 [ (2,4,6-Me3CgH2)2deCH=CPhGe(G$32Me3-2,4,6)2&], (13C),3494 [Me+ (OC@3Ph2-2,6)], (13C),3495 (232), ('3C, 19Sn),3496 [ B u ~ ~ S ~ O ~ C C H ~ O M ~ ] , ('3C, 119Sn),3497

[Bun3Sn {02CCH2NHC(CH3)=CHC(O)R I I, (13C, 19Sn),3498 [Bun3Sn02CCH2CH2C02SnBun3], (13C),3499 [ B u n 3 S n 0 2 C C H = C M e C 0 2 H ] , ('3C, 119Sn),3500 poly(Bun3Sn a - c h l o r o a c r y l a t e ) ,

3483

3484 3485

3486 3481 3488

3489 3490

349 1

3492 3493 3494 3495 3496 3497

3498

3499 3500

J.M. Tour, J.A. John, and E.B. Stephens, J. Organomer. Chem., 1992,429,301; 2.-Z. Wu and H. Momson, J. Am. Chem. SOC., 1992, 114, 4119. J. Feixas, A. Capdevila, F. Camps, and A. Guerrero, J. Chem. SOC., Chem. Commun.. 1992, 1451. A.L. Smith, C.-K. Hwang, E. Pitsinos, G.R. Scarlato, and K.C. Nicolaou, J. Am. Chem. SOC.. 1992, 114, 3134; G. Courtemanche, A. Alexakis, J. Vaissermann, and J.-F. Normant, J. Organomel. Chem., 1992,423, 281; M. Frasch, W. Sundermeyer, and J. Waldi, Chem. Ber.. 1992, 125, 1763. R.W. Hoffmann, K. Brumm, M. Bewersdorf, W. Mikolaiski, and A. Kusche, Chem. Ber., 1992, 125,2741. T. Kawashima, N. Iwama, and R. Okazaki, J. Am. Chem. SOC., 1992,114,7598. M.L. Pedersen and D.B. Berkowitz, Tetrahedron Leu., 1992,33,7315; D. de Kermadec and M. Prudhomme, Tetrahedron Lett., 1992.33.7335; R.W. Armstrong and B.R. Teegarden, J. Org. Chem., 1992,57,915; R.A. Alonso, G.D. Vite, R.E. McDevitt, and B. Fraser-Reid, J. Org. Chem., 1992, 57, 573; F. Freeman, D.S.H.L. Kim. and E. Rodriguez, J. Org. Chem., 1992,57, 1722; D.L. Boger and T.T. Curran, J. Org. Chem., 1992,57, 2235; K. Hori, N. Hikage, A. Inagaki, S. Mori. K. Nomura, and E. Yoshii, J. Org. Chem., 1992, 57, 288; K.S. Bruzik and M.-D. Tsai, J. Am. Chem. SOC., 1992. 114, 6361; Y. St-Denis and T.-H. Chan, J. Org. Chem., 1992,57, 3078; J. Mulzer, H. Dehmlow, J. Buschmann, and P. Luger, J. Org. Chem., 1992,57, 3194; K.C. Nicolaou, P. Maligres, T. Suzuki, S.V. Wendebom, W.-M. Dai, and R.K. Chadha, J. Am. Chem. SOC., 1992. 114, 8890; K. Teng, V.E. Marquez, G.W.A. Milne, J.J. Barchi, jun., M.G. Kazanietz, N.E. Lewin. P.M. Blumberg, and E. Abushanab, J. Am. Chem. SOC., 1992, 114, 1059; B.M. Trost, J. Dumas, and M. Villa, J. Am. Chem. Sac., 1992. 114,9836; N. Ikemoto and S.L. Schreiber, J. Am. Chem. SOC., 1992, 114, 2524. K.L. McKillop, G.R. Gillette, D.R. Powell, and R. West, J. Am. Chem. Soc.. 1992, 114, 5203. B. Zhao, M. Tian, Q. Zhu, D. Chen, and Z. Han, Fushe Yanjiu Yu Fushe Gongyi Xuebao, 1992, 10,36 (Chem. Abstr., 1992, 117, 112 351). E. Rafi, J.C. Maire, M. Ngassoum, R. Faure, and L. Lena, Chem. Technol. Silicon Tin, Proc. Asian Nerwork Anal. Inorg. Chem. In[ . Chem. Conf. Silicon Tin, Isr, 1992, 38. Ed. by V.G. Kumar Das, S.W. Ng, and M. Gielen (Chem. Abstr., 1992, 117, 174 828). B.D. James, S. Gioskos, S. Chandra, R J . Magee, and J.D. Cashion, J. Organomet. Chem., 1992,436, 155. M. Lazraq, J. EscudiC, C. Couret, J. SatgC, and M. Soufiaoui, Organometallics, 1992, 11, 555. W. Ando, M. Kako, and T. Akasaka, J. Chem. SOC., Chem. Commun., 1992,458. G.D. Smith, V.M. Visciglio, P.E. Fanwick, and I.P. Rothwell, Organomefallics, 1992, 11, 1064. G. Anselme, H. Ranaivonjatovo, J. Escudi6, C. Couret, and J. SatgE, Organometallics, 1992, 11,2748. Q. Xie, J. Li, Z. Jia, Z. Zhang, and J. Hu, Gaodeng Xuexiao Huaxue Xuebao, 1991, 12, 1186 (Chem. Abstr., 1992, 116, 129 096). L.V. Shastry, S. Sharma, H.P.S. Chauhan, and R.J. Rao. Main Group Met. Chem., 1991, 14, 319 (Chem. Abstr., 1992, 117, 212 615). S.W. Ng, V.G.K. Das, B.W. Skelton, and A.H. White, J. Organomet. Chem., 1992,430, 139. A. Samuel-Lewis, PJ. Smith, J.H. Aupers, D. Hampson, and D.C. Povey, J. Organomel. Chem., 1992,437,

Page 187: Nmr

Nuclear Magnetic Resonance Spectroscopy 187

(13C)?501 [BungSnOgSAr], (119Sn)?502 [BU"~(C~HI 1)3-nSn02CR], (13C, 119Sn),3503 [Ph3Sn02C-

C&XYZ], ( 13C),35" PhjSn complexes of biologically active molecules, ( 19Sn),3505 quinoline N- adducts of [PhjSnCl], (13C),3506 [(PhgPb)2Se], ( 13C, 77Se, 207Pb),3507 [Bun2MeSiC1], (13C),3508

[ClMe(4-MeC&4)SiCH2CH2Si(C6H4Me-4)MeCl]. ('3C, 29Si),3509 [Pri2SiClCHR2], (7Li, l3C,

29Si)?510 [1,2-C6H4(SiPhF2)(SiPh2F)F]-, (13C, 29Si, including CP/MAS),3511 [Me3SnClX]-, ('3C,

and [ { 3-(2- pyridyl)C4H2S]SnR2X], (13C, 19Sn).3514

19Sn, including CP/MAS),3512 [ (CH2=CHCH2)SnBun2Cl] , ( l 3 C ,

(23 1) (232) Self-diffusion and spin-spin relaxation in cyclic and linear polydimethylsiloxane melts have been

investigated.3515 For [(SiMe2),E], E = 0, S, Se, J(29Si29Si) correlates with the heteroatom

electronegativitie~.~~~~ A complete assignment of the lH, 13C, and 19F NMR spectra of 1,1,4,4-F4-

2-propylidene-3-Me-6-But- 1,4-disila-5-cyclohexene has been rnade.35l7 NMR data have also been

reported for [MezSi(OR)2], (13C),3518 [(Me2Si0)3], (29Si),3519 [ { (Me0)2PO)2SiMe21, (13C),3520

a,a-diaminopropyl-terminated polydimethylsiloxane-polyurea, (13C),3521 poly(ethy1ene oxide)-b-

131.

Symp.] 1989, (Pub. 1990). 393. Ed. by J.E. Sheats (Chem. Abstr., 1992,116,42 130). 3501 J.R. Dharia, S.K. Gupta, and R.R. Joshi, Inorg. Met.-Conraining Polym. Muter., [Proc. Am. Chem. SOC. Int.

3502 F. Thunecke and R. Borsdorf, J. Prakt. Chem., 1991,333,489. 3503 Q. Xie, 2. Yang, Z. Zhang, and D. Zhang, Appl. Organomet. Chem., 1992,6, 193 (Chem. Abstr., 1992, 117,

26 698). 3504 M. Gielen, R. Willem, M. Biesemans, M. Boualam, A. El Khloufi, and D. De Vos, Appl. Organomet. Chem.,

1992, 6,287 (Chem. Abstr., 1992, 117, 171 582). 3505 S. Chandra, S. Gioskos, R.J. Magee, and B.D. James, Chem. Technol. Silicon Tin, Proc. Asian Network Anal.

Inorg. Chem. Int. Chem. Cot$. Silicon Tin, Is(, 1992, 548. Ed. by V.G. Kumar Das, S.W. Ng, and M. Gielen (Chem. Abstr., 1992, 117, 191 944).

3506 C. Bolos and A. Christofides, Chem. Chron., 1991, 20,51 (Chem. Abstr., 1992, 117, 111 708). 3507 S.R. Bahr and P. Boudjouk, Inorg. Chem., 1992,31,4015. 3508 A. Kunai, T. Kawakami, E. Toyoda, and M. Ishikawa, Organometallics. 1992.11.2708. 3509 A. Kunai. E. Toyoda, T. Kawakami, and M. Ishikawa, Organometallics. 1992,11,2899. 3510 C. Couret. J. EscudiC, G. Delpon-Lacaze, and J. SatgB. J. Organomel. Chem., 1992,440,233. 3511 K. Tamao, T. Hayashi, Y. Ito, and M. Shiro, Organometallics, 1992.11.2099. 3512 S.E. Johnson and C.B. Knobler, Organometallics, 1992,ll. 3684. 3513 H.S. Dang and A.G. Davies, J. Organomet. Chem., 1992,430,287. 3514 K.M. Lo. S.W. Ng, C. Wei, and C.G.K. Das, J. Organomet. Chem., 1992,430, 149. 3515 T. Cosgrove, P.C. Griffiths, J. Hollingshurst, R.D.C. Richards, and J.A. Semlyen, Macromolecules, 1992, 25.

3516 H. Stueger, M. Eibl, and E. Hengge, .I. Organomer. Chem., 1992,431, 1. 3517 C.Y. Lee, H.J. Chiang, and C.S. Liu, J. Chin. Chem. SOC. (Taipei), 1992, 39, 149 (Chem. Abstr., 1992, 116,

3518 M. Bols, J . Chem. Soc., Chem. Commun.. 1992. 913. 3519 I. Hasegawa and S . Motojima, J . Organomer. Chem., 1992,441,373. 3520 T.P. Kee and M.T. Patel. Polyhedron, 1992, 11, 135. 3521 X. Lu, Y. Wang, and X. Wu, Eopuxue Zarhi, 1991.8,353 (Chem. Absrr., 1992, 117,8783).

6761 (Chem. Abstr., 1992, 117,234 891).

255 696).

Page 188: Nmr

188 Spectroscopic Properties of Inorganic and Organometallic Compounds

poly(dimethylsiloxane), ( 13C, 29Si),3522 [PhMeSiNHIg, (29Si),3523 (3,3,3-trifluoropropyl)methyl- polysilane, (13C, 29Si),3524 [CH2=CHCH2SiMeC12], (13C),3525 [Et2Si (OCH=CH0)2SiEt2] ,

( *3C),3526 poly(ethylsiloxanes), (29Si).3527 [R10SiPr i20SiPr i20R2] . (13C),3528 silicone resins, (29Si)?529 poly(organosilazanes), (29Si),3530 [FBu5SiN(SiPri2)2NSiBu~F], (l3C, 29Si),3531 (233), (13C),3532 (234), (R = 2,4,6-Me3C6H2; 29Si),3533 [Ph2SiClL], (L = anion of azomethine 3- indolecarbaldehyde semicarbazone; l3C, 29Si),3534 [Ph2Si(OBPhO)SiPh2], ( l 'B, 29Si),3535 [Ph2Si-

{ SC(NHz)=NNCH-2-pyridyl)2], (13C),3536 and [(2,4,6-Pri3C6H2)2SiTeAsSiPri3], (13C, 29Si, n

125Te).3537 Me Me Me Me

- OH 0. 0

Si' But2 R R

(233) (234)

It has been found that 2J(119Sn1I7Sn) correlates with the Sn-N-Sn bond angle in [RN- (SnMe2X)2]. T h e l 3 C and 14N NMR data were also determined.3538 NMR data have also been

reported for [(GeCHPhCH2CONHPh),O1.5n], (13C),3539 [M( NCMe2(CH2)3CMe2)I1 M = Ge, Sn;

13C, 1 19Sn),3540 [(2,4,6-Me3CbH2)2GeF( NHC4H2SC02Me)], (13C) ?541 [ ( 2,4,6-Pri3C6H2)( 2,4,6- Me3c&)GeS&SeSe]. (77Se),3S42 [Me2Sn( 1 -Me-2[3H]-imidazolinethione)~I2+, ( l 19Sn),3543

R 2 S n der iva t ives o f d ipept ides , ( R = Me, P h ; l 3 C , 1 1 9 S n ) , 3 5 4 4 ( 1 1 9 S n ) , 3 5 4 5

3522 Z. Kiraly and B. Vincent, Polym. In[ . , 1992, 28, 139 (Chem. Absrr., 1992, 117,49 343). 3523 H.Q. Liu and J.F. Harrod. Organomefaffics. 1992.11.822. 3524 M. Fujino, T. Hisaki, M. Fujiki. and N. Matsumoto, Macromolecules, 1992, 25, 1079 (Chem. Absrr.. 1992,

3525 R.L. Marshall and DJ. Young, Tetrahedron Lerf., 1992.33, 1365. 3526 G. Wulff and P. Birnbrich. Chem. Ber., 1992, 125,473. 3527 N.N. Makarova, E.V. Matukhina, Yu.K. Godovskii, and B.D. Lavrukhin, Vysokomol. Soedin., Ser. B , 1992,34,

3528 K.S. Bruzik, J. Myers, and M.-D. Tsai, Tetrahedron Letf., 1992,33, 1009. 3529 H. Jancke, Fresenius' J. Anal. Chem., 1992, 342,846 (Chem. Absfr., 1992. 116, 256 412). 3530 H.N. Han, D.A. Lindquist, J.S. Haggerty. and D. Seyferth, Chem. Mafer.. 1992, 4, 705 (Chem. Abslr.. 1992,

3531 S. Walter, U. Klingebiel. and M. Nolterneyer, Chem. Ber . . 1992, 125, 783. 3532 I. Paterson and M.V. Perkins, Tetrahedron Left., 1992,33. 801. 3533 A.D. Fanta, R.P. Tan, N.M. Comerlato, M. Driess, D.R. Powell, and R. West, Inorg. Chim. Acfa, 1992, 198-

3534 D. Singh and R.V. Singh, Phosphorus Sulfur Silicon, 1992.72, 127. 3535 B.J. Brisdon, M.F. Mahon, K.C. Molloy, and P.J. Schofield, J, Organomef. Chem., 1992,436, 11. 3536 D. Singh and R.V. Singh, Main Group Met. Chem., 1990, 13, 19 (Chem. Abstr., 1992,116, 255 685). 3537 M. Driess and H. Pritzkow, Angew. Chem., Inr. Ed. Engl., 1992,31, 316. 3538 S. Diemer, H. Nt)th, K. Polborn, and W. Storch, Chem. Ber.. 1992, 125, 389. 3539 L. Sun, Y. Wu, and M. Bai, Gaodeng Xuexiao Huaxue Xuebao, 1991, 12, 780 (Chem. Absrr., 1992, 116, 106

3540 R.W. Chorley, P.B. Hitchcock. M.F. Lappert, W.-P. Leung, P.P. Power, and M.M. Olmstead, Inorg. Chim.

3541 M. Rivitre-Baudet. and A. Morkre, J. Organomer. Chem., 1992.431, 17. M4* N. Tokitoh, T. Matsumoto, and R. Okazaki, Tetrahedron Letf., 1992,33,2531. 3543 M.E. Garcia, G.A. Sanchez, J.S. Casas, J. Sordo, U. Casellato, and R. Graziani. Inorg. Chim. Acfa, 1992, 191,

3544 B. Mundus-Glowacki, F. Huber, H. Preut, G. Ruisi, and R. Barbieri, Appf. Organomel. Chem., 1992, 6. 83

3545 G.K. Sandhu and G. Kaur, Main Group Met. Chem., 1990, 13, 149 (Chem. Absrr., 1992, 116, 255 735).

- n

116. 84 289).

56 (Chem. Abstr., 1992. 117. 151 703).

116. 240 374).

200, 733; M. Driess, R. Janoschek, and H. Pritzkow, Angew. Chem., I n f . Ed. Engl., 1992, 31,460.

406).

Acfa, 1992, 198-200, 203.

75.

(Chem. Abstr.. 1992, 116,236 145).

Page 189: Nmr

Nuclear Magnetic Resonance Spectroscopy 189

[R12inOAKR2=hCHR2C&], (R1 = Me, Bun; 13C),3546 R2Sn derivatives of substituted salicylic

acids, (R = Me, Et, But; 13C, 119Sn),3547 [Me2Sn(S2CNC4H4)2], (13C, 19Sn),3548 [MeqSn2F5]-,

(13C),3549 Et2Sn derivatives of dipeptides, (13C, 19Sn),3550 [Et2Sn(L)C12], [L = 2,6-(4-

pyridylC(O)NHN=CMe)2pyridine; 19Sn],3551 (235), (13C, 119Sn),3552 R1R2Sn derivatives of

dipicolinates, ('3C, 19Sn),3553 (236), (13C, 19Sn),3554 [Et2Sn(@CC&S-2)F]-, (l3C, 19Sn),3555

[SnBun2X2(Hpz)2], ( 13C),3556 [Bun2Sn(2-aminobenzoate)2], (13C, 119Sn),3557 [Et2Sn(02CC&-3-

NH2-4-Me)2], (13C, 119Sn),3558 1,2:3,4-(CI-02NC6H4Co2)2-~,~'-1,3-(02NC6H4C02)2- 1,2,4:2,3,4-(p3-0)2-(SnBun2)4 compounds, (l3C, 119Sn),3559 [Bu2Sn(02CR)2II (13C, 119Sn),3560

[Bu2Sn(02CCH3)( S2P(OR)2)], (l3C, 19Sn),3561 (237), (13C, 119Sn),3562 [MeN(CH2CH2CH2)2-

SnS]2, (13C, 119Sn, including CPMAS), 3563 complexes of [(R@CCH2CH2)2SnC12] with S-benzyl-

dithiocarbazate Schiff bases, (l3C, 119Sn),35a4 [(R2Sn)2(EDTA)II (13C),35a5 [R2Sn(02CCEt2-

CO2)Ix, ( 3C, 9Sn),356a [ R1 2 s n ( R2COCHCOR2) { S 2P( OR3)2 ) 1, (1 19s n) ,3567 [ (C6H 1 1 )2S n - (SC5NH4)21, (13C, 119Sn),3568 [Bu$S~(O~CCH~)(~-OH)]~], (13C, 119Sn),3569 [PhzSn-

( S C=NN=NNPh)2], ( 3C, S n ) ,3570 and [( 2,4,6-Pri3 C 6 H 2)2 S n = P ( C 6 H 2 B u '3 - 2 ,4 ,6 ) ] ,

-

- (1 19Sn).3571

3546 F.E. Smith, R.C. Hynes, T.T. Ang, L.E. Khoo, and G. Eng, Can. J. Chem., 1992,70, 1114. 3547 M. Boualam, R. Willem. M. Biesemans. and M. Gielen. Appl. Organomet. Chem., 1991,5,497 (Chem. Abstr.,

3548 N. Seth. V.D. Gupta, H. Nclth, and M. Thomann, Chem. Ber., 1992, 125, 1523. 3549 T.H. Lambeitsen, P.G. Jones, and R. Schmutzler. Polyhedron, 1992,11,331. 3550 M. Vomefeld, F. Huber, H. Preut, G. Ruisi, and R. Barbieri, Appl. Organomel. Chem., 1992. 6, 75 (Chem.

3551 P. Mazza, M. Orcesi, C. Pelizzi, G. Predieri, and F. h i . J. Inorg. Biochem., 1992.48.251. 3552 M. Gielen. M. Boualam. M. Biesemans. B. Mahieu, and R. Willem, Heterocycles, 1992,34,549 (Chem. Abstr.,

3553 M. Gielen, M. Boualam. M. Biesemans. B. Mahieu, and R. Willem, Main Group Met. Chem., 1991, 14, 271

3554 M. Gielen. A. el Khloufi, M. Biesemans. R. Willem, and J. Meunier-Piret, Polyhedron, 1992, 11, 1861. 3555 R. Willem, M. Biesemans, F. Kayser, M. BouNam, and M. Gielen, Inorg. Chim. Acta, 1992, 197, 25. 3556 A.S. Gondez . J.S. Casas, J. Sordo. and G. Valle, J. Organomel. Chem.. 1992,435,29. 3557 A. Meriem. R. Willem, J. Meunier-Piret, M. Biesemans, B. Mahieu, and M. Gielen, Main Group Met. Chem.,

3558 M. Gielen. A. el Khloufi. M. Biesemans, B. Mahieu. and R. Willern. Bull. SOC. Chim. Belg., 1992, 101, 243. 3559 S.P. Narula, S.K. Bharadwaj, Y. Sharda. D.C. Povey, and G.W. Smith. J. Organomet. Chem., 1992,430, 167. 3560 V.B. Mokal and V.K. Jain, J. Organomel. Chem.. 1992,441,215. 3561 A.A.S. El-Khaldy, Y.P. Singh. R. Bohra. R.K. Mehrotra, and G. Srivastava. Main Group Met. Chem., 1991.

3562 S. Gopinathan. M.P. Degaonkar. A.M. Hundekar, and C. Gopinathan, Synfh. React. Inorg. Metal-Org. Chem..

3563 K. Jurkschat, S. van Dreumel, G. Dyson. D. Dakternieks, T.J. Bastow, M.E. Smith, and M. Ddger. Polyhedron,

3564 S . Gopinathan. M.P. Degaonkar, and C. Gopinathan. Appl. Organomet. Chem.. 1992, 6.69 (Chem. Absrr..

3565 G.K. Sandhu and R. Hundal. J. Organomei. Chem., 1992.436.287. 3566 J.H. Wengrovius and MF. Garbauskas, Organometallics, 1992,11, 1334. 3567 A. Chaturvedi, P.N. Nagar, and G. Srivastava, Phosphorus Sulfur Silicon, 1992,70,303. 3568 M. Bouilam. J. Meunier-Piret. M. Biesemans, R. Willem, and M. Gielen, Inorg. Chim. Acta, 1992, 198-200,

3569 V.B. Mokal, V.K. Jain. and E.R.T. Tiekink, J. Organomel. Chem., 1992,431,283. 3570 R.J. De&, K.C. Molloy, M.F. Mahon, and S . Whittaker, J. Organomet. Chem., 1992,430.25. 3571 H. Ranaivonjatovo, J. Escudit, C. Comet, and J. SatgC, J . Chem. Soc., Chem. Commun.. 1992, 1047.

1992, 116. 174 289).

Abstr., 1992. 116. 236 144).

1992. 117,26 702).

(Chem. Abstr.. 1992, 117, 171 592).

1990. 13. 167 ( C k m . Abstr.. 1992, 116. 235 769).

14, 305 (Chem. Absrr., 1992, 117, 151 091).

1992, 22, 1591.

1992, 11, 2747.

1992, 116. 255 730).

249.

Page 190: Nmr

190 Spectroscopic Properties of Inorganic and Organometallic Compounds

Et R R SMe MeS OMe OMe

(235) (236) (237) The Taft CT* constant correlates with 6(15N) and J(29Si15N) for [N(CH2CH20)3SiR].3572 Correl-

ations of charge density parameters and 13C and 29Si chemical shifts of [ bCH=CHCH=CH$iC12]

have been ~ t u d i e d . ~ ~ ~ 3 NMR data have also been reported for [ ! I ' C R ~ = C R ~ X ~ ~ ( O M ~ ) M ~ ] , (X, Y =

0, NR3; 13C, 29Si),3574 (238), (13C, 29Si, 77Se),3575 [(MeS)3SiCH2CH20Bu], ( 13C),3576 [F4Si-

CH2 NHCH2CH2CH2CH2], (13C, 29Si),3577 [N(CHzCH20)3S i CHCH2CH21, (1 3C) ,35'8 (239), (R = C6H11; X = OH, OSbMe4; 13C),3579 (240), (13C),3580 [RSi(catecholate)2]-, (13C, 29Si),3581

n [ ( E t 0 ) 3 S i C M e = C H P h ] , ( 3C, 29Si) ,35 8 2 [ 8-Me2 NCioH7Si ( 0 2 C 6 H 4 )21-, ( l C ) ,35 8 3 [8-

M g N C 1fl7SiF 41 - , (29 S i ) ,358 [ (B utG e ) 4 S 61, ( 1 C ) ,3585 [ SC(CF3)2GeC12N- 1-adamantyl] , (13C)?586 [SnMeII N(SiMe3)2] { N(CMe2CH2)2CH2)], ('3C, 119Sn),3587 [MeSnC13( 1-Me-2-MeS-

imidazole)], (13C),358* BuSn complexes of 1,3-dihydro-1,3-dioxo-a-(substituted)-2H-isoindole-2- acetate, (13C, 119Sn),3589 [[BuSn(OH)02P(C6H11)2]30][{BuSnC1202P(C6H~1)2)20H], (119Sn),3590 [OSnBuS2P(OR)2]2, ( l3C, 19Sn),3591 [Me02CCH2CH(C02Me)CH2Sn(S2CNMe2)- C121, ( l [PhSn(S2C2S2CS)2]- , (13C, 119Sn),3593 [PhSnCl(S2CNC4H4)2] , (13C,

- n

n -

3572 K. Broka, V.T. Glezer, J. Stradins, and G. Zelcans, Zh. Obshch. Khim., 1991, 61, 1374 (Chem. Absrr.. 1992,

3573 N.V. Alekseev, M.G. Kuznetsova, A.V. Kisin, LA. Abronin, and T.L. Krasnova, Metalloorg. Khim., 1991, 4,

3574 J. Heinicke and B. Gehrhus, J. Organomet. Chem., 1992,423, 13. 3575 S.R. Bahr and P. Boudjouk, Inorg. Chem., 1992,31,712. 3576 C. Chatgilialoglu, M. Guerra, A. Guerrini, G. Seconi, K.B. Clark, D. Griller, J. Kanabus-Kaminska, and J.A.

Martinho-Simbes, J. Org. Chem., 1992, 57, 2427. 3577 R. Tacke, J. Becht, G. Mattern, and W.F. Kuhs, Chem. Ber., 1992, 125,2007. 3578 M. Nasim, V.S. Petrosyan, G.S. Zaitseva, and J. Lorberth, J. Organomer. Chem., 1992,430, 269. 3579 F.J. Feher. K.J. Weller, and J.W. Ziller, J. Am. Chem. SOC.. 1992, 114, 9686. 3580 F.J. Feher, T.A. Budzichowski, K. Rahimian, and J.W. Ziller, J. Am. Chem. SOC., 1992, 114, 3859. 3581 D.F. Evans, A.M.Z. Slawin, D.J. Williams, C.Y. Wong, and J.D. Woollins, J . Chem. Soc., Dalton Trans.,

3582 L.N. Lewis, K.G. Sy, and P.E. Donahue, J. Organomet. Chem.. 1992, 427, 165. 3583 F. C a d , G. Cerveau, C. Chuit, R.J.P. Corriu, and C. ReyC, New J. Chem., 1992, 16.63. 3584 C. Brelikre, F. Carre, R.J.P. Corriu, W.E. Douglas, M. Pokier, G. Royo, and M. Wong Chi Man,

3585 W. Ando, T. Kadowaki, Y. Kabe, and M. lshii, Angew. Chem., lnt. Ed. Engl., 1992.31, 59. 3586 A. May, H.W. Roesky, R. Herbst-Inner, S. Freitag, and G.M. Sheldrick. Organomefallics, 1992, 11, 15. 3587 H. Braunschweig, R.W. Chorley, P.B. Hitchcock, and M.F. Lappert, J. Chem. Soc., Chem. Commun.. 1992,

3588 G.F. De Sousa, C.A.L. Filgueiras, M.Y. Darensbourg, and J.H. Reibenspies, Inorg. Chem., 1992,31, 3044. 3589 A.K. Saxena, S. Saxena, and A.K. Rai, lndian J. Chem., Sect. A, 1992, 31,469 (Chem. Abstr., 1992, 117, 191

3590 K.C.K. Swamy, R.O. Day, and R.R. Holmes, Inorg. Chem., 1992,31,4184. 3591 A.A.S. El-Khaldy, R.K. Mehrotra. and G. Srivasmva, Phosphorus Sulfur Silicon, 1992.69, 137. 3592 0 . - S . Jung, J.H. Jeong, and Y.S. Sohn. J. Organomer. Chem., 1992.439, 23. 3593 S.M.S.V. Doidge-Harrison, R.A. Howie, J.T.S. Irvine, G.M. Spencer, and J.L. Wardell, J. Organomef. Chem.,

116, 21 103).

1083 (Chem. Abstr., 1992, 116,21 098).

1992,2383.

Organometaliics. 1992, 11, 1586.

1311.

937).

1992, 436, 23.

Page 191: Nmr

Nuclear Magnetic Resonance Spectroscopy 191

19Sn) ?594 [4-MeC6H4 N=N-4-Me-C&-2-Sn Clg 1, ( 3C) ,3 59s [ (2,4,6-Me3C6H2) S n C13 -nBrn], (13C, 19Sn)93s96 [3-MeOC6H3Pb(O2CCH3)3], (13C),3597 and [2-XC6H4Pb(02CCH3)3], (13C, 207pb).3598

Me I

Me

‘Yi ,0SbMe4 Si

The addition of [Sb( (+)-tartrate)@- to [Si(phen)3]+ results in resolving the A and A forms in the 1H

NMR spectrum.3599 The signs of 1J(15N13C), 2J(31PN13C), 2J(3lPN29Si), 3J(3lPNC13C),

3J(3lPNSi13C), 4J(3lPNCClH), and 4J(31PNSiC1H) in silylated bis(amino)phosphenium cations

have been determined using two-dimensional NMR spectroscopy. 13C, l5N, and 2% chemical shifts

were reported.3600 The dissolution of silica by l-Et-3-HO-2-Me4-pyridone in acid solution has

been studied using 29Si NMR s p e ~ t r o s c o p y . 3 ~ ~ 1 The 13C NMR spectrum of [(SCN)-

Ge(OCH2CH2)3N] shows J ( 14N I3C) = 21 .O Hz.3602 NMR data have also been reported for

[Ge(OH)2 ( (OCH2CH2)2NH)], ( 13C),3603 [(2,5-But2pyrryl)2Sn], ( 13C, 19Sn),3604 [Sn(tpp)C12] in polymeric membranes, (119Sn),3605 (241), (119Sn),3606 [Sn(p-F)(NR2)]2, (119Sn),3607 [(2,5-

But2pyrryl)2Pb], (13C, 207Pb),3608 [Pb( 1,4,7,10-tetraoxa- 13-azacyclopentadecane)(NO~)2], (13C),3609 [Sn(acac)(S2COR)Cl], (13C, 19Sn),3610 [X2Sn(S2C2S2CS)2I2- , (13C),361

[Pb(@CCMe20H)2], (13C, 207Pb),3612 [Pb(dpm)2], (13C),3613 and [Pb(fod)z], ( 13C).3614

3594 N. Seth, V.D. Gupta, H. NO& and M. Thomann, Chem. Ber., 1992, 125, 1523. 3595 J. Vicente, M.-T. Chicote, M.-6-C. Rarnirez-de-Arellano, and P.G. Jones, J. Chem. Soc.. Dalton Trans., 1992,

3596 P. Brown, M.F. Mahon, and K.C. Molloy. J. Organomet. Chem., 1992,435,265. 3597 D.H.R. Barton, D.M.X. Donnelly, J.-P. Finet, and P.J. Guiry,J. Chem. Soc.. Perkin Trans. I , 1992, 1365. 3598 F. Huber, H. Preut, D. Scholz, and M. Schiirmann, J. Organomel. Chem., 1992,441,227. 3s99 Y. Ohmori, M. Namba, Y. Kuroda, M. Kojima, and Y . Yoshikawa, Inorg. Chem., 1992.31, 2299. 3600 B. Wrackmeyer and J. Schiller, Z. Naturforsch., B , 1992, 47,662 (Chem. Abstr., 1992, 117,48 891). 3601 D.F. Evans, J. Pam. and C.Y. Wong, Polyhedron, 1992,11,567. 3602 S.P. Narula, S. Soni, R. S h a n k , and R.K. Chadha, J. Chem. SOC., Dalton Trans., 1992, 3055. 3603 H.C. Chiang, Su Mi Lin, and C.H. Ueng, Acta Crystallogr., Sect C , 1992, 48, 991 (Chem. Abstr., 1992, 117,

3604 N. Kuhn, G. Henkel, and S . Stubenrauch, J . Chem. SOC., Chem. Commun., 1992, 760. 3605 C.E. Kibbey, S.B. Park, G. DeAdwyler, and M.E. Meyerhoff, J. Electroanal. Chem., 1992, 335, 135 (Chem.

3606 E. Labisbal. A. De Blas, J.A. Garcia-Vazquez, J. Romero, M.L. Dudn, A. Sousa, N.A. Bailey, D.E. Fenton,

3607 R.W. Chorley, D. Ellis, P.B. Hitchcock, and M.F. Lappert, Bull. SOC. Chim. Fr., 1992, 129, 599. 3608 N. Kuhn, G. Henkel, and S . Stubenrauch, Angew. Chem.. Int. Ed. Engl., 1992.31, 778. 3609 K. Byriel, K.R. Dunster, L.R. Gahan, C.H.L. Kennard, J.L. Latten, I.L. Swann, and P.A. Duckworth,

3610 S. Sharma, R. Bohra, and R.C. Mehrotra, Synth. React. Inorg. Metal-Chem., 1992,22,43 (Chem. Abstr., 1992,

361

3612 C.D. Chandler, M.J. Hampden-Smilh, and E.N. Duesler, Inorg. Chem., 1992,31,4891. 3613 I. Kobayashi, Nippon Kagaku Kaishi, 1992, 881 (Chem. Abstr., 1992, 117, 142 320). 3614 L.A. Khan, M.A. Malik, M. Motevalli, and P. OBrien. J . Chem. Soc.. Chem, Commun., 1992, 1257.

-

1839.

183 640).

Abstr., 1992, 117, 263 930).

P.B. Leeson, and R.V. Parish, Polyhedron, 1992,11,225.

Polyhedron. 1992,ll. 1205.

116, 119 738). S.M.S.V. Doidge-Harrison, R.A. Howie, J.T.S. Irvine, and J.L. Wardell, Polyhedron, 1992, 11,2223.

Page 192: Nmr

192 Spectroscopic Properties of Inorganic and Organometallic Compounds

8 Group 15 Elements

N2 has been examined as a reference for l5N NMR spectroscopy.3615 The nature of 31P chemical

shifts in compounds of highly coordinated phosphorus has been mported.3616 Ab inirio calculations

of 31P chemical shifts have been reported.3617

The signs of the coupling constants, 15(31P13C), 25(31P13C), 35(31P13C), and 45(31P1H) in

[ B u G P ] have been determi11ed.3~~~ 3 l P COSY has been used to determine the structures of

[P18F'ri4],3619 and [P20pri6].3620 NMR data have also been reported for [PbE][(BrCl2Sb)2CH2], (E = P, As, Sb, Bi; 13C),3621 [Ph3P=CRP(=Se)2Iy (77Se),3622 [H2C=C(CH2PPh2CH2)2C=CH2I2+, ( 13C),3623 [2,4,6-ButgC&2P=CCH2CH2PC6H2But-2,4,6Iy (13C),3624 [Me2AsR], (13C, 29Si),3625

[(Ph2PCH2CH2)2AsPh], (13C),3626 acetylene derivatives of arsenic, (13C),3627 [2,6-But-4-Me- C6H2As=CHNMe2], (13C),3628 [ButMe2Sb], (13C),3629 [(Me3SbS2CNR2)20], (13C),363°

[Ph3Sb( Sb(C6H4Me-4)2)2]. (l3C),3631 [ 1,5-EtqP2N4S2], (13C),3632 (242), (13C),3633 (243), (13C),3634 [Et2Bi(OC6F5)], (13C),3635 [XYC{P(O)(OR)2)21, (13C),3636 [(2,6-(Me2NCH2)2C& 1-

- 3615 M. Witanowski, W. Sicinska, and G.A. Webb, Spectroscopy (Ottawa), 1991,9,55 (Chem. Abstr., 1992, 116,

3616 A.S. Tarasevich, Ukr. Khim. Zh. (Russ. Ed.), 1992, 58,226 (Chem. Abstr., 1992, 117, 224 960). 3617 D.B. Chesnut and B.E. Rusiloski, Chem. Phys., 1991, 157, 105 (Chem. Abstr., 1992. 116, 14 599). 3618 B. Wrackmeyer, Z. Natuflorsch., B, 1992,47,437 (Chem. Abstr., 1992, 116,235 736). 3619 M. Baudler, W. Oehlert, A. Kmieciak, and A. F~ONSS, Z. Anorg. Allg. Chem., 1992,611,43. 3620 M. Baudler, H. Jachow, W. Oehlert, A. Kmieciak, and A. Floruss, Z. Anorg. Allg. Chem., 1992,616, 19. 3621 S. Kraft and M. Wieber, Z. Anorg. Allg. Chem.. 1992,607, 157. 3622 A. Schmidpeter, G. Jochem, K. Karaghiosoff, and C. Robl, Angew. Chem., Int. Ed. Engl., 1992,31, 1350. 3623 H. Schmidbaur and S.F. Camper, Organometallics, 1992.11.986. 3624 C. Garot, G. Etemad-Moghadam, J.-P. Declercq, A. Dubourg, and M. Koenig, Angew. Chern.. Inf . Ed. Engl..

3625 C.J. Thomas, L.K. Krannich. and C.L. Watkins, Synrh. React. Inorg. Metal-Org. Chem., 1992,22,461. 3626 J.L. Bookham. W. McFarlane, and M. Thornton-Pett,J. Chem. Soc.. Dalton Trans., 1992,2353. 3627 T.V. Zykova, N.R. Ivanova, Z.U. Panfilovich, and K.I. Kuz'min, Khimiya i Tekhnol. Elementoorgan. Soed i

Polimerov. Kazan. Khim.-tekhnol. In-t, Kazan, 1990, 69. From Ref. Zh., Khim., 1991, Abstr. No. 14B1424 (Chem. Abstr., 1992, 116, 106 419).

3628 A.S. Ionkin. N.V. Nikolaeva, R.Z. Musin, Yu.Ya. Efremov, and B.A. Arbuzov, Phosphorus Sulfur Silicon, 1992. 66. 257.

3629 D.G. Hendershot, J.C. Pazik, C. George. and A.D. Berry, Organometallics, 1992, 11,2163. 3630 S. Kraft and M. Wieber, Z. Anorg. Allg. Chem., 1992,607, 153. 3631 N.K. Jha and P. Sharma.J. Chem. Soc., Chem. Commun., 1992, 1447. 3632 T. Chivers, M. Edwards, and M. Parvaz, Inorg. Chem., 1992,31, 1861. 3633 T. Chivers, M. Cowie, M. Edwards. and R.W. Hilts. Inorg. Chem., 1992.31, 3349. 3634 A.J. Ashe, tert., L. Goosen, J.W. Kampf. and H. Konishi, Angew. Chem., Inf . Ed. Engl., 1992.31, 1642. 3635 K.H. Whitmire. J.C. Hutchison, A.L. McKnight, and C.M. Jones, J. Chem. Soc., Chem. Commun., 1992,

3636 J. Vepsalainen. H. Nupponen. E. Pohjala, M. Ahlgren, and P. Vainiotalo, J. Chem. Soc., Perkin Trans. 2. 1992,

142 505).

1992, 31, 624.

1021.

Page 193: Nmr

Nuclear Magnetic Resonance Spectroscopy

EC121, (E = P, As, Sb, Bi; 13C),3637 [P13Pri5], (13C),3638 and [P18Pri6], (13C).3639

193

(242) (243)

14N, 15N, and 19F NMR measurements have been used to determine chemical shifts and coupling

constants in [N3T;1. 3J(15N19F) of 58.6 Hz is remarkably large?64o 31P,31P J-resolved spectroscopy of oligophosphates has been r e p 0 r t e d . 3 ~ ~ The two isomers of a-[P&SeI2] and a-[P4SSe212] have

been identified by 31P and nSe NMR spectroscopy. The spectra were fully analysed and the coupling

constants derived.3642 NMR data have also been reported for (244), (13C1.3643 poly ( 1 , l -

(Cl~P=N)~tetrachlorocyclomphosphazene) , (13C)?W [R2NAsC1]+, (13C),3645 [2-HNC&SAsCl],

(13C),3646 [AsnSe&-, (77Se),3647 [CH2(CNEF5)2], (E = As, Sb; 14N),3648 (245), (M = Sb, E = S ;

13C),3649 [ ( RNHC(O)CH2S]3Sb], (13C),3650 (245), (M = Bi, E = 0; 13C),3651 [RCNSNSI-

[AsF~] , (‘3C, 14N),3652 [S7NH], (l4N, 15N),36s3 (246), (13C),3654 [C12FPSMe]+, (13C),3655 and [ ( Sb(S2CNMe2)2)2CH2I1 (13C).3656

n

n

835. 3637 D.A. Atwood, A.H. Cowley, and J. Ruiz, lnorg. Chim. Acta, 1992. 198-200, 271. 3638 M. Baudler, H. Jachow, and K.-F. Tebbe. 2. Anorg. Allg. Chem.. 1992,614, 17. 3639 M. Baudler, H. Jackow, and J. Hasenbach, 2. Anorg. Allg. Chem.. 1992,608,28. 3640 G. Schatte, H. Willner, and M. Willen-Porada, Magn. Reson. Chem., 1992.30, 118. 3641 J.K. Gard and D.R. Gard, J. Magn. Reson.. 1992,97,651. 3642 R. Blachnik, P. Loennecke, and B.W. Tattershall. J. Chem. Soc.. Dalton Trans., 1992, 3105. 3643 H.R. Allcock. M.L. Turner, and K.B. Visscher,lnorg. Chem., 1992.31.4354. 3644 H.R. Allcock and D.C. Ngo, Macromolecules, 1992,25,2802 (Chem. Abstr., 1992, 116,236 287). 3645 C. Payrastre, Y. Madaule, and J.G. Wolf, Terrahedron Lea., 1992,33, 1273. 3646 N. Burford, T.M. Parks, B.W. Royan, J.F. Richardson, and P.S. White, Can. J. Chem., 1992,70,703. 3647 M.A. Ansari, J.A. Ibers, S.C. ON&. W.T. Pennington, and J.W. Kolis, Polyhedron, 1992, 11, 1877. 3648 I.C. Tomieporth-Oetting. T.M. Klapoeke, T.S. Cameron, J. Valkonen, P. Rademacher, and K. Kowski, J. Chem.

3649 K. Singh and J.P. Tandon. Monauh. Chem., 1992, 123, 315. 3650 A. Kaushik, Y.P. Singh, and A.K. Rai. lndian J . Chem.,Sect. A , 1992, 31, 281 (Chem. Abstr., 1992, 117, 39

3651 K. Singh and J.P. Tandon. Monutsch. Chem., 1992, 123, 983. 3652 J. Passmore, X. Sun, and S. Parsons, Can. J. Chem., 1992.70, 2912. 3653 T. Chivers. M. Edwards, D.D. McIntyre, KJ . Schmidt, and HJ. Vogel. Magn. Reson. Chem., 1992.30, 177. 3654 M. Herberhold, B. Dider, and K. Schamel. Phosphorus Sulfur and Silicon, 1992.73.249. 3655 R. Minkwitz, P. Garzarek, and G. Medger, Z. Anorg. Allg. Chem., 1992.612.40. 3656 S. Kraft and M. Wieber. Z. Anorg. Allg. Chem., 1992.607, 164.

SOC., Dalton Trans., 1992, 537.

014).

Page 194: Nmr

194 Spectroscopic Properties of Inorganic and Organometallic Compounds

9 Compounds of Groups 16, Neon and Xenon

Three relevant reviews have appeared: 'Analysis of water state by (170) NMR spectroscopy',3657

'Tasty and healthy water observed by ('70) NMR spectroscopy',3658 and 'New sterically congested

organoselenium and tellurium compounds', which contains 13C and 125Te NMR data.3659

l H , 13C, and 77Se N M R spectroscopy has been used to show that bromoalkanes, 2,2'- dibromodialkylselenium &bromides and the corresponding selenides and selenoxides are formed in the organic phase during solvent extraction of selenium by a-olefins from bromide solution.3660 NMR

data have also been reported for [PhCH2C(SeMe2)2SbCk], (77Se),3661 [Me2C{CH2C(O))2CHSeMe-

w-4-C@bHCH2CHMeCH2CH2bHPri], ( l3C) ,3662 [Te(Rf)4], (13C, 125Te),3663 [Bu2Te - CH2Ph]+, ( 125Te),3664 [Ph3Tel+, ( 13C, 125Te),3665 [(C&)2SFl+, ( 13C),3666 [ 1 ,2-(MeSe)2C#10II

(77Se),3667 [PhCH2SeR], (77Se),3668 (247), (E = Se, Te; 13C, 77Se, 125Te),3669 [3,5-

But2C6H3CMe2CH2SeCgH2But3-2,4,6], ( 13C),3670 [MeCHCH2CH2CH2SeX2], ( 13C),3671 (248),

(13C),367* [BuCH(CH~CH~)~CH(S~P~)OCH~CH=CH~], (l3C, 77Se),3673 [PhSeR], (13C),3674

[ArSeR], (13C),3675 [(CF3Se)2C=C=OI7 (13C, 77Se),3676 [O=C(CH=CH)2E], (E = Se, Te; 13C),3677 (249), (X = OH; l3C, 77Se), 3678 (X = C1; 13C, 77Se),3679 (250), (E = S, Se; 13C,

77Se),3680 1,4,5,7-tetrahydro-3H-2,6-benzodiselenine, (13C),3681 [ArMeTeX2], (13C),36*2

- 3657 K. Matsushita, Shokuhin Kogyo, 1992. 35. 18 (Chem. Abstr., 1992, 117, 13 932). 3658 K. Matsushita, Mizu Kankyo Gakkuishi, 1992, 15.98 (Chem. Abstr., 1992, 117, 13 930). 3659 W.W. Du Mont, D. Sewing, H.U. Meyer, R. Martens, M. Ostrowski, and A. Martens-Von Salzen, Phosphorus

3660 M.G. Demidova, V.G. Torgov, and S.V. Tkachev, Zh. Anal. Khim., 1991,46, 1929 (Chem. Abstr., 1992, 116,

3661 L. Hevesi, Phosphorus Sulfur Silicon, 1992,67, 155. 3662 N. Kamigata, Y. Nakamura, K. Kikuchi, I. Ikernoio, T. Shirnizu, and H. Matsuyama, J . Chem. SOC., Perkin

3663 D. Naumann, H. Butler, J. Fisher, J. Hanke, J. Mogias, and B. Wilkes, Z. Anorg. Allg. Chem., 1992, 608, 59. 3664 Q. Zhang, B. Yan, and G. Xu, Jiegou Huaxue, 1991, 10,292 (Chem. Absrr., 1992, 116. 194 480). 3665 K. Alam, J. Bangladesh Chem. SOC., 1991,4,51 (Chem. Abstr., 1992,116.20 736). 3666 R. Minkwitz, G. Nowicki, and H. Preut, Z. Anorg. Allg. Chem., 1992,611,23. 3667 B. Hermans, N. Colard, and L. Hevesi, Tetrahedron Lett., 1992,33,4629. 3668 C.H. Schiesser and K. Sutej, Tetrahedron Lett., 1992.33.5137. 3669 H. Fujihara and N. Furukawa, Phosphorus Sulfur Silicon, 1992,67. 131. 3670 N. Tokitoh, T. Irnakubo, and R. Okazaki, Tetrahedron Lett., 1992.33, 5819. 3671 A.Z. Al-Rubaie, J. Organomet. Chem., 1992,438. 77. 3672 Y. Vallk and M. Worrell, J. Chem. SOC., Chem. Commun., 1992, 1680. 3673 R. Hoffmann and R. Brilckner, Chem. Ber., 1992, 125, 1957. 3674 D. Batty and D. Crich, J. Chem. SOC., Perkin Trans. I , 1992, 3193; H. Kuniyasu, A. Ogawa, K. Higaki, and N.

Sonoda, Organometallics. 1992,11,3937; R.W. Hoffmann and M. Bewersdoft, Liebigs Ann. Chem., 1992,643; P. Magnus and P. Rigollier, Tetrahedron Lett., 1992, 33, 6111; A. Ogawa, H. Tanaka, H. Yokoyama, R. Obayashi, K. Yokoyama, and N. Sonoda, J . Org. Chem., 1992. 57, 111; H.B. Wood. H.-P. Buser, and B. Ganem, J . Org. Chem., 1992, 57, 178; D.L. Boger and RJ. Mathvink, J. Org. Chem., 1992, 57, 1429; D.S. Dodd and A.C. Oehlschlager, J. Org. Chem.. 1992,57,2794.

3675 F.A. Davis and R.T. Reddy, J. Org. Chem., 1992, 57, 2599; W. Nakanishi. K. Sakamoto, K. Isaka, and S. Hayashi, Phosphorus Sulfur Silicon, 1992,67,79.

3676 A. Haas and H.-W. Praas. Chem. Ber.. 1992, 125, 571. 3677 M.R. DeUy and H.R. Luss, Organometallics, 1992, 11,2157. 3678 H. Fujihara, Y. Ueno, J.-J. Chi, and N. Furukawa, J. Chem. SOC., Perkin Trans. 1 , 1992,2247. 3679 H. Fujihara, H. Mirna, and N. Furukawa, Phosphorus Sulfur Silicon, 1992.67, 141. 3680 H. Fujihara, H. Mima, T. Erata, and N. Furukawa,J. Am. Chem. SOC., 1992, 114, 3117. 3681 B. Rys, H. Duddeck, and M. Hiegemann, J. Heterocycl. Chem., 1992, 29,967 (Chem. Abstr., 1992, 117, 171

3682 H.B. Singh, N. Sudha. and R.T. Butcher, Inorg. Chem.. 1992.31, 1431.

Sulfur and Silicon, 1992, 67, 11.

28 841).

Trans. 1 , 1992, 1721.

610).

Page 195: Nmr

Nuclear Magnetic Resonance Spectroscopy 195

[CF3TeCH2Ph], (13C, 125Te),3683 [BuTeCR=CHCzCR], (13C),3684 [R2TeX2], (l3C, 125Te),3685

(251), ( 13C, 125Te),3686 [(RC=C)zTe], (l3C, 125Te),3687 selenosubtilisin, (77Se),3688 selenium

containing glutathione peroxidase, (77Se)?689 selenomethionyl dihydrofolate reductase, (77Se),3690

[2- ( 1 -(2-RC(O)NH-CioH6)- l'-C10H6]2Se2], (l3C, 77Se),3691 [(2-C6H 11 NMeCH2C6H4)2Se2],

( l 3C , 77Se),3692 [Ar2Se2], (77Se),3@3 (252), (E = lone pair, 0; 13C, 77Se),3694 [2,4,6- But3C6H2CHSe], (13C, 77Se),3695 [S7SeCN]+, (13C, 77Se),3696 [RC(O)TeLi], (13C, 125Te),3697

[ArTe(S2CR)( SC(SNa)R)], (13C),3698 and [2,4,6-Pri3Ca2TeI2]-, (13C, 125Te).3699 ' I Me

(250) (25 1) (252) l9F NMR spectroscopy has been used to show that [TeFb] reacts with Me3SiX, X = "31- or

[NMe2]- to form [TeFnX6-n].3700 33s NMR spectra of some sulfates have been re~orded.3~01 NMR

data have also been reported for [Se(benzomazole)2], (77Se),3702 [SeNSNSeI2+, (14N, 77Se),3703 n

3683 D.C. Gordon, R.U. K i m , and D.W. Brown, Organomefallics, 1992,11,2947. 3684 M.J. Dabdoub, V.B. Dabdoub, and J.V. Comasseto, Tetrahedron Lett.. 1992.33, 2261. 3685 M. Feikus and P.H. bur, Phosphorus Sulfur Silicon, 1992,67, 73. 3686 H. Fujihara, Y. Takaguchi, J.J. Chiu, T. Erata, and N. Furukawa, Chem. Lett., 1992, 151 (Chem. Abstr., 1992,

3687 R.W. Gedridge, jun., L. Brandsma, R.A. Nissan, H.D. Verkruijsse, S. Harder, R.L.P. De Jong, and C.J.

3688 K.L. House, R.B. Dunlap. J.D. m o m , Z.P. Wu, and D. Hilvert, J. Am. Chem. Soc., 1992, 114, 8573 (Chem.

3689 P. Cotelle, P. Chan, N. Cotelle, J.L. Bernier, and J.P. Henichart, J . Chim. Phys. Phys.-Chim. Biol., 1992, 89,

3690 J.O. Boles, W.H. Tolleson, J.C. Schmidt, R.B. Dunlap, and J.D. Odom, J. B i d . Chem., 1992, 267, 22217

3691 S. Tomoda, K.4. Fujita, and M. Iwaoka, Phosphorus Sulfur and Silicon. 1992,67,247. 3692 M. Iwaoka and S. Tomoda, Phosphorus Sulfur Silicon, 1992.67, 125. 3693 A. Martens-von Salzen, H.-U. Meyer. and W.-W. du Mont, Phosphorus Sulfur Silicon, 1992,67,67. 3694 J. Mlochowski, L. Syper. L. Stefaniak, W. Domalewski, W. Schilf, and G.A. Webb, J. Mol. Struct., 1992. 268,

3695 R. Okazaki, N. Tokitoh, A. Ishii, N. Ishii, Y. Matsuhashi, T. Matsumoto, and H. Suzuki, Phosphorus Sulfur

3696 R. Minkwitz and J. Nowicki, Z. Anorg. Allg. Chem., 1992,607,96. 3697 S . Kato, H. Sasaki, and M. Yagihara, Phosphorus Sulfur Silicon, 1992,67,27. 3698 A.K. Singh and K.M.M.S. Prakash, Polyhedron, 1992.11, 1225. 3699 W.W. Du Mont, H.U. Meyer, S. Kubiniok, S. Pohl, and W . Saak, Chem. Ber., 1992, 125. 761. 3700 I.B. Gorrell, C.J. Ludman. and R.S. Mauhews, J . Chem. Soc., Dalfon Trans., 1992,2899. 3701 Y. Kosugi and H. Okazaki, Anal. Sci., 1991, 7,849 (Chern. Abstr., 1992, 116, 74 625). 3702 M.D. Ryan and D.N. Harpp. Tetrahedron Len., 1992,33.2129. 3703 E.G. Awere, J. Passmore, and P.S. White, J. Chem. SOC., Dalton Trans., 1992, 1267.

116, 151 903).

OConnor, Organometallics, 1992, 11.4 18.

Absfr., 1992, 117, 187 225).

191 (Chem. Abstr., 1992, 117, 166 519).

(Chem. Abstr., 1992, 117, 187 257).

311.

Silicon, 1992. 67, 49.

Page 196: Nmr

196 Spectroscopic Properties of Inorganic and Organometallic Compounds

(253), (77Se),3704 [(C12Se)2N]+, (77Se),3705 (254), (125Te),3706 [Cl?eTeNSh]+, (125Te),3707

[Te(@C&)2], (X = C1, Br, 13C, 125Te),3708 [MeOTeF6]-, (125Te),3709 [EnXz], (E = S, Se; X =

C1, Br; 77Se),3710 [ClSeS5SeCl], (77Se),3711 [SnSe7-,], (77Se),3712 [ 1,5-Se&], (77Se),3713 [SenS&n], [S4N4], (14N, 77Se),3714 and [Se312], (77Se).3715

(253) (254) The nuclear magnetic moments and ground states of 1241, 1261, and l30I have been r e p 0 r t e d . 3 ~ ~ ~

21Ne Ti measurements have been performed on neon dissolved in several solvents.3717 An enhanced 129Xe NMR signal has been observed from xenon gas with spin-exchange optical pumping.3718 129Xe Ti measurements have been made on xenon dissolved in organic solvents, and a dipolar

contribution to relaxation was found.3719 NMR data have also been reported for [(MeCN),BrF5],

(13C),3720 [ButC=CXe]+[BF4]-, ( l 'B, 13C, 129Xe),3721 [HC=NXeF]+[AsF6]-, (13C, 14N, 15N,

129Xe),3722 [FXeOR], (129Xe),3723 [(CF3)2SOXeF]+, ( 13C, 129Xe),3724 [Xe(OTeF5)4], (125Te,

129Xe),3725 and [FnXe(OTeF5)3-n]+, (129Xe).3726

3704 A. Haas, J. Kasprowski. and M. Pryka, Chem. Ber., 1992, 125,789. 3705 M. Broschag. T.M. Klaptke, I.C. Tornieponh-Oetting, and P.S. White, J. Chem. Soc.. Chem. Commun., 1992,

3706 J. Milnzenberg, H.W. Roesky, S. Bessler, R. Herbst-Inner, and G.M. Sheldrick. fnorg. Chem., 1992,31,2986. 3707 A. Haas. J. Kasprowski, and M. Pryka, J. Chem. Soc., Chem. Commun., 1992, 1144. 3708 T.A. Annan. A. Ozarowski, Z. Tian, and D.G. Tuck, J. Chem. Soc., Dalton Trans., 1992,2931. 3709 A.-R. Mahjoub, T. Drews, and K. Seppelt, Angew. Chem., In(. Ed. Engl. , 1992.31, 1036. 3710 J.B. Milne. Can. J. Chem., 1992.70.693. 371

3712 P. kkonen, R.S. Laitinen, and Y. Hiltunen. J. Chem. Soc.. Dalton Trans.. 1992, 2885. 3713 R. Steudel, M. Papavassiliou. and F. Baumgart, Z. Naturforsch., B. 1991.46, 1674 (Chem. Abstr., 1992, 116,

3714 J. Siivari. R.S. Laitinen, and Y. Hiltunen. Phosphorus Sulfur Silicon. 1992.65, 177. 3715 M. Gopal and J. Milne. Inorg. Chem., 1992.31.4530. 3716 S. Ohya. T. Yamazaki, T. Harasawa, M. Katsurayama. N. Mutsuro, S. Muto, and K. Heiguchi, Phys. Rev. C:

3717 R.K. Mazitov, H.G. Hertz. R. Hasselmeier. and M. Holz, J. Magn. Reson., 1992.96,398. 3718 Z. Liu, M. Zhao, C. Wu. L. Li, s. Li, X. Zeng, and W. Xiong, Chem. Phys. Letr., 1992, 194, 440 (Chem.

3719 A. Moschos and J. Reisse, J. Magn. Reson., 1992,95,603. 3720 W. Breuer and H J . Frohn. Z. Anorg. Allg. Chem., 1992,611.85. 3721 V.V. Zhdankin, PJ. Stang. and N.S. Zefirov. J. Chem. SOC., Chem. Commun., 1992, 518. 3722 A.A.A. Emara and GJ. Schrobilgen, Inorg. Chem., 1992.31, 1323. 3723 B. Cremer-Lober. H. Butler, D. Naumann, and W. Tyrra, Z. Anorg. Allg. Chem., 1992,607,34. 3724 R. Minkwitz and W. Molsbeck. Z. Anorg. Allg. Chem., 1992,612, 35. 3725 L. Turowsky and K. Seppelt. Z. Anorg. Allg. Chem., 1992.609, 153. 3726 R.G. Syvret. K.M. Mitchell, J.C.P. Sanders, and GJ. Schrobilgen. fnorg. Chem.. 1992,31, 3381.

1390.

M. PridOhl, R. Steudel, and F. Baumgart, Phosphorus Sulfur and Silicon. 1992,65, 169.

129 236).

Nucl. Phys., 1992,45. 162 (Chem. Abstr., 1992, 116, 92 811).

Abstr., 1992. 117, 102 762).

Page 197: Nmr

Nuclear Magnetic Resonance Spectroscopy 197

10 Appendix

This appendix contains a list of papers in which the use of nuclei other than ‘H, 19F, and 31P, has been described. The nuclei are ordered by increasing atomic number and mass.

413, 563, 620, 1049, 1344, 1638, 1649, 1653, 1659, 1660, 1669, 1701, 1704, 1706, 1728, 1759, 1858, 1861, 1977, 1979, 1987, 2009, 2037, 2093-2098, 2104, 2111, 2113, 2118, 2124-2126, 2128, 2148, 2154, 2171, 2250, 2252, 2255, 2260, 2263, 2303, 2347, 2383, 2497, 2528, 2855, 2871, 2873, 2882, 2883, 2921, 2923, 2927, 2932, 2937, 2939, 2940, 2943, and 2952. 2954. 26,-29, 31-37, 40, 43, 51, 55, 798, 1411, 1636, 1669-1671, 1680, 1687, 1887, and 2321 30, 39, 45, 50, 52-56, 464, 811, 937, 1635, 1636, 1667, 1673, 1674, 1677-1690, 1766, 1887, 2219, 2220, 2222, 2224, 2226-2228, 2230, 2231, 2247, 2269, 2277, 2318, 2321- 2324,2326, 2328,2330,2447, 2480, 2505,2508, 2509,2542,2649,2650, 2861, and 3510 2225 and 2321. 2509. 2509. 64,65, 1732-1734, and 2356. 2980. 1596 and 2616. 48, 49, 56, 109, 200, 238, 239, 412, 438, 549, 632, 634, 635. 650, 651, 653, 658, 660, 703,711,783, 832, 893, 899, 906,991, 1017, 1018, 1048, 1205, 1418, 1426, 1498, 1596- 1600, 1602, 1603, 1606, 1655, 1759, 1823, 1833-1836, 1839, 1944, 1945, 2036-2039, 2091, 2159, 2164, 2187, 2222, 2270, 2272, 2312, 2384, 2606, 2614, 2615, 2617, 2619- 2626,2719, 2728, 2828, 2979, 2981-2986, 2988-2991, 2993-3004, 3006-3041, 3043-3047, 3050-3053, 3055-3073, 3075-3078, 3080-3087,3089, 3091-3108, 3110,3111, 3113, 31 15- 3120, 3122-3134, 3136-3144, 3147-3150, 3153-3161, 3164-3167, 3387, 3535, and 3721. 9, 12, 15-23, 26, 27, 32-34, 37, 38, 40-44, 46, 47, 50, 54,-57, 59, 62-79, 81-87, 90-103, 105-112, 115-119, 121-168, 170-176, 178-199, 201-21 1, 213-227, 231-237, 240-242, 246, 249, 252, 253, 256, 259-262, 264-382, 385-405, 407-41 1, 413, 415-418, 422-434, 437- 446, 449-459, 461-473, 475, 477, 478, 480-484, 486-492, 496-503, 505-507, 509-5 17, 519, 520, 522-524, 526, 529, 530-532, 541, 543-594, 596-601, 604-607, 610-613, 616, 617, 620, 623-63 1, 633, 634, 637-649, 654-666. 668-684, 686-735, 737-754, 756-796, 798, 801-807, 809-817, 819-825, 828-881, 883-892, 894-898, 900-905, 907-913,917,918, 921-936, 938, 939, 941-954, 956-972, 974-990, 992, 994-998, 1000, 1002-1053, 1055, 1056, 1058-1060, 1062-1068, 1070-1072, 1074-1107, 1112, 1115, 1117, 1118, 1121, 1124-1152, 1154-1176, 1178, 1181-1188, 1190-1192, 1195-1211, 1214, 1215, 1217, 1219- 1228, 1230-1243, 1246, 1249, 1250, 1252, 1254-1256, 1258-1263, 1265-1268, 1270, 1271, 1273, 1277-1286, 1288-1290, 1292, 1293, 1296-1299, 1301, 1303, 1306-1314, 1317- 1324, 1326- 1328, 1330- 1339, 1344-1 346, 1348-1 361, 1363-1368, 1373- 1386, 1388- 1391, 1396-1398, 1400, 1402, 1403, 1409, 1411, 1412, 1414, 1415, 1421, 1424, 1428-

Page 198: Nmr

198 Spectroscopic Properties of Inorganic and Organornetallic Compounds

1430, 1434, 1435, 1437-1442, 1444-1455, 1461-1466, 1469, 1470, 1472, 1478, 1480, 1481, 1483, 1484, 1486-1489, 1491, 1491, 1492, 1496, 1500-1503, 1506-1523, 1525- 1534, 1536-1543, 1545-1556, 1558, 1559, 1561, 1564-1569, 1571, 1572, 1576, 1581, 1582, 1586, 1587, 1589, 1590, 1592, 1594, 1601-1605, 1607, 1608, 1610, 1612-1614,

1617-1619, 1622, 1624, 1630, 1636, 1642, 1650-1652, 1657, 1666, 1668, 1670, 1672, 1673, 1675, 1677, 1697, 1705, 1726, 1736, 1742, 1744, 1753, 1754, 1756, 1760, 1762, 1766, 1772, 1776, 1777, 1779, 1780, 1783, 1785, 1788-1790, 1794, 1796-1798, 1800,

1803, 1806, 1813, 1815-1824, 1830, 1847, 1848, 1850, 1860, 1863, 1869, 1870, 1878- 1880, 1882, 1887, 1891, 1894, 1897, 1899, 1901, 1905, 1908, 1912-1914, 1916, 1918, 1922, 1924, 1927, 1929, 1936, 1938, 1940, 1941, 1946, 1948, 1952, 1954, 1956, 1961, 1962, 1964, 1967, 1969-1971, 1974- 1976, 1983, 1989, 1991, 1992, 1994-1996, 1998- 2003, 2005-2007, 2009, 2010, 2013, 2016, 2018-2020, 2024, 2028, 2035, 2037, 2038, 204152048, 2056, 2062, 2067, 2072, 2074, 2075, 2079, 2085, 2091, 2104, 2110, 2138, 2141, 2143, 2152, 2158, 2161, 2166-2168, 2170, 2172, 2174, 2175, 2177-2179, 2202, 2209, 2235, 2254, 2256, 2257, 2259, 2263, 2282, 2289, 2290, 2295, 2306, 2307, 2313, 2320, 2325, 2333, 2346, 2363, 2364, 2457, 2459, 2477-2479, 2495, 2499, 2504, 2515, 2528, 2529, 2531, 2537, 2551-2553, 2555, 2572-2574, 2578, 2583, 2585, 2597, 2601, 2610, 2617, 2661, 2685, 2706, 2709, 2729, 2747, 2750, 2755, 2758, 2759, 2762, 2765- 2768, 2770-2772, 2774, 2775, 2781-2784, 2787, 2789, 2791, 2792, 2794, 2795, 2798, 2800, 2804, 2807, 2812, 2835, 2844-2846, 2849, 2852, 2859, 2881, 2887, 2888, 2892, 2895, 2901, 2904, 2908, 2910-2921, 2924, 2926, 2928-2930, 2932, 2934, 2935, 2942, 2947-2950, 2952, 2985-2989, 2992-2996, 3003, 3005, 3008-301 1, 3014, 3015, 3017, 3021, 3023, 3028, 3029, 3036, 3037, 3046, 3048, 3049, 3052-3067, 3069, 3073, 3074, 3078-3081, 3084, 3089-3091, 3093, 3095-3098, 3100-3105, 3107-31 18, 3120-3129, 3131, 3134, 3135, 3138, 3139, 3141, 3143, 3145, 3146, 3149, 3151, 3154-3157, 3160, 3162- 3164, 3169-3188, 3191, 3193-3210, 3212-3215, 3218-3223, 3225, 3226, 3228, 3235-3239, 3241, 3242, 3244, 3246, 3248-3257, 3259-3262, 3264, 3266, 3267, 3269-3275, 3277- 3283, 3285-3301,3303-3333, 3335-3338, 3340-3344, 3346-335 1, 3353, 3355-3388, 3390- 3393, 3395-3398, 3400, 3401, 3403, 3404, 3406-3408, 3410-3413, 3415-3421, 3424-3429, 3431-3440, 3442, 3443, 3445, 3447-3450, 3453-3463, 3467-3470, 3472, 3474-3486, 3488, 3490, 3492-3501, 3503, 3504, 3506-35 14, 3517, 35 18, 3520-3522, 3524-2526, 3528, 3531, 3532, 3534, 3536-3541, 3544, 3546-3550, 3552-3566, 3568-3570, 3573-3583, 3585- 3589, 3591, 3593-3598, 3600, 3602-3604, 3608-3614, 3618, 3621, 3623-3839, 3643-3646,

3694, 3695-3699, 3708, 3720-3722, and 3724. 435, 471, 505, 506, 593, 881, 1106, 1216, 1422, 1596, 1638, 1650, 1657, 1691, 1886, 2017, 2066, 2087, 2143, 2303, 2305, 2528, 2583, 2600, 2610, 2724, 2800, 2805, 3107, 2986, 3152, 3154, 3170, 3229, 3340, 3538, 3602, 3640, 3648, 3652, 3653, 3703, 3714, and 3722. 10, 34-36, 51, 201, 435, 451, 470, 504, 508, 518, 881, 896, 914, 923, 953, 1024, 1068, 1115, 1119, 1123, 1136, 1163, 1218, 1246, 1274, 1442, 1748, 1750, 1756, 1769, 1790, 1804, 1805, 1808, 1822, 1869, 1886, 1956, 1980, 2028, 2030, 2065, 2232, 2553, 2566,

3649-3652, 3654-3656, 3659, 3660, 3662, 3663, 3665, 3666, 3669-3687, 3691, 3692,

14N

15N

Page 199: Nmr

Nuclear Magnetic Resonance Spectroscopy 199

2577, 2578, 2630, 2800, 2801, 2844, 2946, 3270, 3432, 3438, 3443, 3448, 3470, 3572, 3600, 3615, 3640,3653, and 3722. 14, 73, 169, 253, 255, 257, 394, 437, 525, 527, 561, 570, 740, 881, 916, 1109, 1136, 1469, 1639, 1640, 1642, 1643, 1647, 1660, 1702, 1744, 1773, 1778, 1780, 1836, 1848,

2448, 2449, 2463, 2482, 2801, 2833, 2864, 3103, 3116, 3118, 3164, 3215, 3222, 3223, 3229, 3233, 3276,3470,3657, and 3658.

25, 58, 61, 1341, 1638, 1639, 1674, 1679, 1682, 1685, 1692, 1695, 1696, 1698-1704, 1706-1724, 1768, 1850, 1863, 1873, 1875, 1962, 2171, 2219, 2233, 2269, 2305, 2309,

170

1896, 1946, 2043, 2070, 2152, 2171, 2206, 2305, 2335, 2361, 2403-2405, 2418, 2442,

21Ne 3717. 23Na

23 1 1, 23 18, 2329, 2334-2336, 2338-2340, 2342-2344, 2460, 2493, 2646, 265 1, 2657, 2662, 2687, 2688, 2699, 2704, 2707, 2710, 2717, 2751, 2752, 2829, 2835, 2862, 2868, 2885,2886, and 2889.

14, 66, 210, 535, 1656, 1759, 1840, 1842-1845, 1848-1855, 1859, 1860, 1862, 1863, 25Mg 14, and 1737-1739. 27Al

1875, 1946, 2040-2043, 2202, 2206, 2209, 2269, 2305, 2311, 2324, 2331, 2341, 2357- 2360, 2384, 2396, 2413, 2465-2467, 2485, 2488, 2524, 2526, 2535, 2536, 2608, 2609, 2628-2636, 2638-2647, 2653-2658, 2660, 2662-2664, 2670-2673, 2676-2679, 268 1, 2684, 2686, 2690-2692, 2695, 2697, 2699, 2700, 2704, 2707, 2710, 2711, 2713, 2715, 2718, 2723, 2727, 2730, 2732, 2734-2739, 2741, 2742, 2744, 2745, 2747, 2749-2752, 2870, 2872,2896,2898,2952,3107, 3168-3170,3175, 3180,3189, 3190, 3192, 3217,3218, and

15, 50, 54, 55, 63, 74, 79, 80, 104, 112, 152, 153, 177, 249, 253, 259, 416, 421, 476, 3222-3224.

29Si 489, 584, 615, 637, 665-667, 671, 683, 685,717, 736, 801, 809, 818-820, 829, 830, 859, 881, 972,993, 1019, 1043, 1061, 1121, 1291, 1329, 1332, 1335, 1374, 1375, 1389, 1408, 1428, 1512-1514, 1607, 1610, 1611, 1615, 1621, 1694, 1866, 1871-1873, 1875, 1876, 1892, 1938, 1956, 1961, 2003, 2042, 2045-2047, 2049, 2050, 2053-2055, 2057, 2058, 2060, 2206, 2209, 2220, 2228, 2229, 2286, 2288, 2324, 2331, 2332, 2360, 2366-2372, 2374, 2385, 2457, 2466, 2484, 2486-2490, 2494, 2516, 2524, 2533, 2565, 2603, 2621, 2623, 2630, 2642, 2647-2649, 2651, 2659, 2660, 2662, 2663, 2665, 2666, 2670-2672, 2676, 2677, 2680, 2681, 2686, 2689-2691, 2693, 2697, 2699, 2702-2705, 2707-2710, 2713, 2714, 2720-2723, 2725-2727, 2734, 2739-2741, 2743, 2744, 2748, 2749, 2751, 2769-2772, 2775-2778, 2780-2787, 2789, 2790, 2792, 2794, 2795, 2797, 2800, 2803- 2805, 2807-2816, 2818-2822, 2824, 2826, 2827, 2829-2832, 2834, 2835, 2839-2841, 2843, 2875, 2884, 2893, 2896, 2897, 2918, 2920, 2926, 2941, 2952, 2953, 3088, 3091, 3104, 3107, 3113, 3143, 3154, 3162, 3222, 3228-3231, 3233-3235, 3237, 3239-3241, 3243-3245, 3247-3250, 3252,3254-3256, 3258-3260, 3263-3267, 3270, 3273, 3275, 3277, 3278, 3281-3284, 3292-3295, 3299, 3303-3306, 3317-3319, 3323, 3325, 3326, 3332-3337, 3339, 3340, 3344, 3345, 3347-3349, 3352-3356, 3394, 3396, 3398, 3400-3402, 3405, 3406, 3408-3410, 3412-3415, 3418, 3420-3424, 3432, 3438, 3440, 3442-3444, 3446, 3448-3450, 3452-3454, 3462, 3464, 3466, 3470, 3471, 3473, 3474, 3476, 3479, 3487, 3489, 3509-351 1, 3516,3519,3522-3524,3527, 3529-3531, 3533-3535, 3537,3572-3575,

Page 200: Nmr

200

33s 35c1

37Ci 39K 43ca 47Ti 4 9 ~ i SlV

53Cr 55Mn

57Fe 59c0

63cu

65cu 696, 71Ga 73Ge 75 As 77Se

79Br g7Rb 89Y

912,

93Nb 9 5 ~ 0

9 9 T C

103Rh lO7Ag l09Ag 13Cd

Spectroscopic Properties of Inorganic and Organometallic Compounds

3577, 3581, 3582, 3584, 3600, 3601, and 3625. 1304 and 3701. 1106, 1392, 1642, 1740, 1860, 1888, 1889, 2171, 2318, 2319, 2344, 2348, 2422, 2582, and 2886. 937, 1890,2319, and 2345. 60,61, 1406, 1639, 1695, 1716, 1725, 1962,2318,2348, and 2842. 1741. 1898, 2473, and 2483. 170, 1421, 1898,2473, and 2483. 212, 228-230, 242, 244-248, 250, 251, 253, 254, 257, 258, 493, 528, 1761-1765, 1771, 1901, 1971-1974, 2412, 2413, 2453, 2491, 2503, 2506, 2510-2512, 2514, 2517, 2518,

2521, 2522, 2538, and 2902. 2532 and 2541. 1911,2308, 2546, 2549, 2557, and 2558. 881, 896, 915, 2394, 2455, 2464, 2532, 2556, and 2559. 527, 652, 755, 815, 829, 940, 963, 1014, 1043, 1069, 1071, 1096, 1108, 1794, 1921,

2308,2553,2652,2563, 2566,2568, and 2696. 1328, 2194, 2318, 2398, 2399, 2401, 2404, 2406, 2407, 2411, 2415, 2419, 2423, 2424,

2427,2429,2434,2438, 2442-2444, 2450, 2451,2583,2588, 2592, and 2894. 1328,2194, 2318, 2424, 2427, 2429, 2583, and 2588.

2753. 1876, 1877, 2643, 2720, 2753-2755, 2898, 3184, 321 1, and 3212. 3363. 1884. 230, 485, 521, 826, 827, 1045, 1215, 1275, 1300, 1340, 1341, 1397, 1398, 1400, 1412, 1957, 1958, 2072, 2469, 2548, 2603, 3227, 3295, 3430, 3475, 3507, 3542, 3575, 3622, 3642, 3647, 3660, 3661, 3667-3669, 3673, 3676, 3678-3680, 3688-3696, 3702-3705, and

2306 and 2318. 2236,2265,2318,2348, 2352,2353, and 2612.

89, 104, 116, 1742, 1743, 1892, 2405, 2407, 2408, 2413, 2414, 2416, 2417, 2420. and 247 1. 2475 and 2476. 213, 233,238, 243, 1766, 1767, 2308, and 2525. 406,436,460,467,474,479,494, 505, 506, 527, 2530, 2536, and 2730. 542, 595, 602,603, 608, 609, 614, and 2547. 943, 1037, 1055, 1109, 1110, and 1555. 1295 and 1329. 1295, 1325, 1329, 2586, 2593 and 2594.

2602, and 2603.

37 10-37 15.

1369-1371, 1387, 1394-1396, 1399-1401, 1823, 1824, 1826-1829, 1831, 2513, 2598-2600,

l151n 2757 and 3216.

Page 201: Nmr

Nuclear Magnetic Resonance Spectroscopy 201

117Sn 3538. 119Sn 43, 146, 210, 233, 336, 613, 813, 881, 973, 999, 1043, 1096, 1177-1179, 1315, 1618-

1620, 1877-1881, 1950-1952, 2016, 2062-2064, 2290, 2468, 2500, 2545, 2553, 2843-

2848, 2850, 2981, 3011, 3012, 3017, 3028, 3091, 3118, 3232, 3238, 3268, 3269-3272, 3274, 3302-3304, 3311, 3312, 3329, 3340, 3357, 3358, 3360, 3369, 3373, 3374, 3376, 3384, 3386, 3387, 3389-3391, 3420, 3430, 3434, 3435, 3441, 3442, 3448, 3458, 3460, 3461, 3465, 3481, 3491, 3492, 3496-3498, 3500, 3502, 3503, 3505, 3512-3514, 3538, 3540, 3543-3545, 3547,3548, 3550-3555, 3557-3564, 3566-3571, 3587, 3589-3594, 3596, 3604-3607, and 3610.

121Sb 1885 and 2462. 123Sb 1885 and 2462. 125Te 88, 117, 204, 448, 904, 11 13, 1244, 1300, 1302, 1367, 1399, 1887, 1959, 2072, 2075,

3398, 3399, 3430, 3451, 3537, 3659, 3663-3665, 3669, 3683, 3685-3687, 3697, 3699,

3706-3709, and 3725. 1 x 1 3716. l%I 3716. 1271 2318 and 2350. 1301 3716. 129Xe 1661,2214, 2690, 2935, 2955-2961, 2963-2978, 3718, 3719, and 3721-3726. 133Cs 28, 63, 384, 1684, 1727-1731, 2233, 2318, 2322, 2351, 2354, 2547, 2569, 2580, 2613,

2753, and 2163. 13% 103, 1642, 1744, 1746, 1747,2393,2425, 2451, 2452, and 2701. 141Pr 2428, 2429, and 2432.

147Srn 2458. 149Srn 2458. 16qrn 243 1-2433.

l7lJ'b 112-1 14 and 117. '83W 493,495, 533, 534, 536, 1772-1774, 1910, 2103, 2527, 2530, and 2537.

195Pt 447, 808, 1057, 1113, 1114, 1116, 1118, 1119, 1121, 1122, 1153, 1154, 1157, 1163, 1170, 1173, 1177, 1189, 1193, 1194, 1212, 1213, 1215, 1216, 1220, 1229, 1244-1248,

1250, 1251, 1253, 1255, 1257-1259, 1261, 1264, 1266, 1269, 1272, 1274, 1276, 1280, 1287, 1289, 1290, 1294, 1295, 1302, 1579, 1586, 1801, 1802, 1805, 1927, 1931, 2022, 2023, 2025-2030, 2528, 2530, 2572, 2577, 2579, 2582, and 2933.

1401, 1511, 1593, 1594, 1941, 1942, 3042, and 3084. 199Hg 12, 263, 882, 1342, 1344-1347, 1355, 1356, 1359, 1362-1364, 1367, 1371, 1372, 1392,

20311 2349. 20511 636, 1356, 1357, 1432, 1869, 2349, 2436-2440, 2442, 2444, 2445, 2543-2545, 2760,

2761, 3206, and 3207.

1305, 1623, 1882, 1953, 2435, 2446, 2553, 3270, 3360, 3393, 3443, 3507, 3598, 3608, and 3612.

207Pb

2WBi 2523.