njit-etd1973-003

download njit-etd1973-003

of 79

Transcript of njit-etd1973-003

  • 8/10/2019 njit-etd1973-003

    1/79

    Copyright Warning & Restrictions

    The copyright law of the United States (Title 17, UnitedStates Code) governs the making of photocopies or other

    reproductions of copyrighted material.

    Under certain conditions specified in the law, libraries andarchives are authorized to furnish a photocopy or other

    reproduction. One of these specified conditions is that thephotocopy or reproduction is not to be used for anypurpose other than private study, scholarship, or research.If a, user makes a request for, or later uses, a photocopy orreproduction for purposes in excess of fair use that user

    may be liable for copyright infringement,

  • 8/10/2019 njit-etd1973-003

    2/79

    The Van Houten library has removed some of thepersonal information and all signatures from theapproval page and biographical sketches of thesesand dissertations in order to protect the identity ofNJIT graduates and faculty.

  • 8/10/2019 njit-etd1973-003

    3/79

    ABSTRACT

    A

    review of

    the

    American Petroleum

    I n s t i t u t e

    Standard 650

    and Appendixes poin ts ou t the

    advantages

    of

    using high s t rength s t e e l and

    the var i ab le po in t design

    method (Appendix K)

    to

    obta in

    reasonably

    uniform

    s he l l

    s t re s ses .

    Design l imi t a t ions imposed by

    notch

    toughness

    and

    re s idua l s t r esses

    are

    poin ted

    out .

    Design cons idera t ions

    for

    the

    i n s t a l l a t i o n of

    an

    in te rna l

    f loa t ing roof in a s tandard cone roof t ank

    are

    discussed . Methods

    of ca lcu la t ing evapora t ion

    losses

    and an economic

    j u s t i f i c a t i on

    for a

    f l oa t i ng

    roof

    are

    included. Budget es t imate

    f igures

    have been

    compiled

    as

    a

    funct ion

    of

    tank

    capac i ty for tanks

    s i t e

    prepara t ion

    and

    tank

    r ingwal l o r pi l ed mat foundat ions.

  • 8/10/2019 njit-etd1973-003

    4/79

    BOVEGROUND FUEL OIL STOR GE

    T NKS

    BY

    L WRENCE GEORGE P LMER

    THESIS

    PRESENTED IN P RTI L FULFILLMENT

    OF

    THE REQUIREMENTS FOR THE DEGREE

    OF

    M STER OF SCIENCE

    IN

    CIVIL

    ENGINEERING

    T

    NEW RK COLLEGE OF ENGINEERING

  • 8/10/2019 njit-etd1973-003

    5/79

    APPROVAL

    OF

    THESIS

    ABOVEGROUND

    FUEL

    OIL STORAGE TANKS

    BY

    LAWRENCE

    GEORGE

    PALMER

    FOR

    DEPARTMENT

    OF

    CIVIL

    ENGINEERING

    NEWARK

    COLLEGE

    OF

    ENGINEERING

    BY

    FACULTY COMMITTEE

    APPROVED

  • 8/10/2019 njit-etd1973-003

    6/79

    TABLE

    O

    CONTENTS

    bs t rac t

    Table o f Contents

    L i s t o f

    Figures

    Li s t

    o f

    Tables

    I n t r oduc t i on

    American Pet ro leum I n s t i t u t e

    Tank She l l

    High S t r eng t h S te e l s

    Tank

    Bottom

    Tank Roof

    Floa t i ng

    Roof

    Appendix H API-650

    Roof Sink ings

    Evapora t ion

    Losses

    Tank

    Costs

    Storage

    Tank

    i

    i v

    4

    4

    11

    16

    19

    21

    22

    24

    25

    29

    29

  • 8/10/2019 njit-etd1973-003

    7/79

    LIST

    O

    FIGUR S

    1. Cone Roof Tank Showing In t e rna l Floa t ing Roof.

    2. Elas t i c

    Movement

    of Shel l Courses a t Gir th Jo i n t

    3.

    Actual

    Stresses y Analysis

    in

    220 Foot Diameter Tanks.

    4. Photograph

    of

    Cone Roof Supports .

    5 .

    Floa t ing Roof

    Supports .

    6. Ten Inch Diameter Automatic

    Bleeder

    Vent.

    7. Photograph

    of

    80 000

    Barre l

    Tank.

    8.

    Photograph

    of

    Fuel

    Oil

    In l e t

    Diffuser Inp lace

    Between Floa t ing Roof and Tank Bottom.

    9. Nomograph

    for

    Calcula t ing Breathing Losses

    From

    a

    Fixed

    Roof

    Tank.

    10.

    Nomograph for

    Calcu la t ing

    Working Losses

    From

    a

    Fixed

    Roof

    Tank.

    11. Nomograph

    for

    Conversion of Reid Vapor

    Pressure

    to

    Absolute

    Vapor Pressure

  • 8/10/2019 njit-etd1973-003

    8/79

    LIST

    OF

    T BLES

    1

    Minimum Distance

    In Fee t From Proper ty Line Or

    Nearest Important Bui ld ing

    2

    Prope r t i e s Of Fuel

    Oils

    nd Their Hazard

    Ide n t i f i c a t i on

    iv

  • 8/10/2019 njit-etd1973-003

    9/79

    INTRODU TION

    The

    explosion

    of the Liqu i f i ed Natural Gas LNG)

    Tank

    in Sta ten

    Is land

    has

    increased

    publ ic

    concern over

    the cons t ruc t ion

    of

    a l l

    new

    s torage f a c i l i t i e s for

    hazardous

    mater i a l s .

    The

    LNG

    tank

    f a i l u r e

    poin t s

    out

    the need fo r

    grea te r understanding

    of the

    parameters

    and hazards

    involved

    in

    the i n s t a l l a t i o n

    and

    opera t ion

    of s to rage tanks .

    Aboveground atmospheric

    fue l

    o i l

    s torage

    tanks

    are

    very

    d i f f e r e n t from LNG tanks . The clamor

    over

    i n s t a l l a t i o n of new tanks

    ignores

    the

    overa l l

    sa fe

    performance of

    t he pas t and a lso

    ignores the s tandards

    developed

    by

    indus t ry

    and government

    to

    improve

    performance

    in the

    fu ture . The publ ic

    outcry i s due

    to

  • 8/10/2019 njit-etd1973-003

    10/79

    The

    purpose of t h i s r epo r t is to

    presen t informat ion

    on

    var ious aspec ts o f

    tank

    cons t ruc t ion

    t o a id the

    engineer

    respons ib le

    for the i n s t a l l a t i o n o f above-

    ground fue l o i l

    s torage tanks .

    The repor t

    discusses

    the fol lowing:

    1 Standards

    recommended

    by

    the

    American

    Petroleum I n s t i t u t e .

    2 Design

    cons idera t ions

    fo r i n t e rna l

    f loa t ing roofs and

    j u s t i f i c a t i o n

    fo r t h e i r use

    3

    Cost

    ana lys i s

    on a f l oa t i ng

    roof

    and

    budget es t imate data

    for

    tank

    i n s t a l l a t i o n .

    4 Government

    regu la t ion o f s to rage

    t ank

    cons t ruc t ion .

    Publ ic concern

    over

    cons t ruc t ion

    of

    aboveground

  • 8/10/2019 njit-etd1973-003

    11/79

    s torage

    o f

    flammable and

    combust ible l i qu id s The

    conference

    inves t iga ted the

    records

    o f

    Oil

    Tank

    Fires

    from 1915 1925 and developed

    many

    recommendat ions which

    promulgated the codes

    and spec i f i ca t ions

    fo r the

    cons t ruc t ion and opera t ion of fue l o i l s to rage tanks

    used

    t oday l

  • 8/10/2019 njit-etd1973-003

    12/79

    MERIC N PETROLEUM

    INSTITUTE

    ST ND RD

    650

    The most

    prominent

    spec i f i ca t ion for fue l o i l

    s to rage

    tanks has

    been developed by the American

    Petroleum I n s t i t u t e (API). The

    American

    Petroleum

    I n s t i t u t e Standard 650, Welded Stee l Tanks for Oil

    Storage ,

    and

    seve ra l appendixes , cover the mater i a l ,

    design , f abr i ca t ion , e rec t ion and in spec t ion r equ i r e

    ments

    for

    aboveground s to rage tanks with opera t ing

    i n t e rna l pressures approximat ing

    atmospher ic pre s su re .

    Large o i l s to rage tanks t ake the form o f a v e r t i c a l

    cy l indr ica l

    she l l

    with e i t h e r a

    f ixed roof or

    a

    f loa t ing

    roof or both . Floa t ing roofs are i n s t a l l ed to l imi t

    fue l

    evapora t ion

    assoc ia ted

    with

    cone

    roof

    tanks

    and

    wi l l be discussed l a t e r .

  • 8/10/2019 njit-etd1973-003

    13/79

    The

    design ,

    by

    t h i n

    wal l theory ,

    o f

    a

    cy l i nd r i ca l

    s he l l under hydros t a t i c l oad ing would produce a uniform

    c i rcumfe ren t i a l s t r e s s i

    t he

    th ickness

    o f

    t he

    s h e l l

    5

    were t ape red uniformly

    from

    top to bot tom

    and

    i the

    s he l l

    were

    f r ee

    to

    expand

    e l a s t i c a l l y

    wi t hou t

    r e s t r a i n t .

    In a

    s torage

    t ank , however two f ac to r s a f f e c t t he

    p a t t e r n

    o f the c i rcumfe ren t i a l

    s t r e s s e s ,

    t he cons t ruc t i on

    of the s h e l l

    using a

    d i f f e r e n t

    th ickness

    in each s h e l l

    course , and t he

    r e s t r a i n t o f t he t ank bot tom

    aga ins t

    the

    e l a s t i c

    expansion o f the

    lower

    s he l l .

    At each c i rcumferen t i a l g i r t h a d i f f e r e n c e in

    p l a t e th ickness r e s u l t s

    because

    the t h i ckness

    i s

    governed

    by

    t he p r e s s u re near the bot tom o f

    t he

    course .

    The

    g r e a t e r

    th ickness of the lower course reduces the

  • 8/10/2019 njit-etd1973-003

    14/79

    The bas ic

    equat ion

    used by the

    API-650

    for the

    t t

    f

    h

    11 h

    k 3

    ompu a lon a s t

    C

    ness ~ S

    Where:

    2.6D (H-I)G C

    t = +

    S

    t =

    ca lcu la ted minimum

    th icknes s

    i n .

    H

    = height from bottom of course

    under

    cons ide ra t ion

    to top

    of roof curb angle

    f t .

    G

    = design

    s pe c i f i c

    grav i ty of

    l i qu i d

    D

    =

    tank

    diameter

    f t .

    E

    =

    long i tud ina l

    j o i n t

    e f f i c i ency

    fac tor

    bas ic tank E=O.85 fo r

    Appendixes

    D

    and

    G E=l.O

    S

    = design s t r e s s Ib s / i n .

    C =

    cor ros ion

    al lowance

    6

    (I)

    Appendixes

    D

    and

    G

    she l l

    design.

    Appendixes

    D

    and

    G are two a l t e rna t ive s

    to

    the bas ic API-650 procedure

  • 8/10/2019 njit-etd1973-003

    15/79

    s he l l p l a t e

    mate r i a l and

    the

    des ign

    s t r e s s e s

    used to

    determine p la t e t h i ckness a re summarized below:

    5

    Specification

    Min Tensile

    Strength

    n

    psi

    Min

    Yield

    Strength n

    psi

    Design

    Stress

    in psi

    17 850

    23 000

    API-650

    API-D

    API-G

    55 000

    58 000

    70 000

    30 000

    32 000

    50 000

    28 000

    1s t

    course

    30 000

    upper

    course

    Appendix K

    s he l l design.

    The in t roduc t ion of

    higher

    des ign

    s t r e s s e s and s t ronge r mate r ia l s

    and t h e i r

    app l ica t ion

    to

    very

    l a rge s torage

    t anks

    l ed

    to

    renewed

    i n v e s t i g a t i o n

    of ac tua l

    s t r e s s e s

    in the

    t ank

    s he l l s .

    The fol lowing

    d i scuss ion on

    s he l l

    th ickness

    has been

    abs t rac ted from papers by L. P. Zick and R. V. McGrath

    and

    the

    API S p e c i f i c a t i o n

    Appendix

    K.

    t

    was found

    t ha t loca t ing the des ign po in t

    one foo t above t he

  • 8/10/2019 njit-etd1973-003

    16/79

    Zick

    and

    McGrath proposed an a l te rna t ive adopted

    by the

    API

    as

    Appendix

    K which used

    the var iab le design

    point for each

    she l l

    course to ca lcu la te she l l thickness.

    This resu l t s in actual c i rcumferent ia l she l l s t resses

    closer

    to

    the

    design s t ress and

    may

    be

    appl ied

    to the

    basic API-6S0 and Appendixes D and

    G.

    7

    Applying

    Appendix

    K for

    the

    calcu la t ion of she l l

    thicknesses requi res tha t each

    course

    be calcu la ted

    indiv idual ly . The

    equat ion for determining

    the

    bottom

    course

    thickness ,

    using symbols of Equation 1 isS

    [

    0 O.463D) ~ ] 2.6HDG)

    tl = 1.06 -

    H SE S

    To

    determine

    the thickness of the

    second

    course

    evaluate the following

    ra t io

    for

    the

    bottom course:

    2)

  • 8/10/2019 njit-etd1973-003

    17/79

    Or:

    t2 =

    t

    2

    a ,

    if

    the r a t i o value i s 2.625;

    Or;

    the r a t io

    value

    i s

    1.375

    but

    2.625,

    [ 2 .1 -

    h i

    l

    2

    =

    t

    2

    a

    t

    1

    t

    2

    a)

    1.25

    r t

    l

    _

    Where:

    t2

    = minimum th ickness of second she l l

    course , in

    inches

    t a =

    th ickness of second

    course , in

    2 inches ,

    as

    ca lcu la ted

    for

    an

    upper s he l l course

    9

    4

    The

    t he o re t i c a l

    th ickness

    of an upper

    she l l course

    i s

    a

    func t ion

    of

    the two th icknesses a t the

    g i r t h j o i n t

    a t the lower edge of the she l l

    course .

    The

    e l a s t i c

    expans ion and

    ro t a t i on

    a t the g i r th j o in t must r e su l t

    in

    common values

    s ince the two

    pla te

    edges are connected

    . . t 9

  • 8/10/2019 njit-etd1973-003

    18/79

    Where:

    Xl

    X

    2

    X

    t

    u

    =

    0.61

    Crt 2

    0.32 (Ch

    u

    u

    =

    Ch

    u

    =

    1.22

    Crt

    2

    u

    =

    t h i ckness

    o f

    upper course a t

    j o i n t

    in

    inches

    =

    th ickness

    o f lower course

    a t

    j o i n t in

    inches

    K) K- I )

    C

    =

    k:

    I K K) 2

    tL

    K

    =

    tu

    =

    Height

    from bot tom o f course

    under c ons ide r a t i on

    to

    the

    top angle or

    to

    t he bottom

    o f

    the ove r f low on f l oa t i ng

    roof t a nks

    in

    inches

    10

    Figure

    2

    i l l u s t r a t e s

    t he

    l o c a t i o n

    o f the

    Xl

    X

    2

    and

    X

    d i s t a nc e s from the

    g i r t h

    seam.

  • 8/10/2019 njit-etd1973-003

    19/79

    The minimum

    th ickness

    fo r

    the

    upper s h e l l

    course

    sha l l be computed

    with

    equat ion

    6.

    x

    =

    X

    2.6D

    H

    -

    - -

    G

    12

    SE

    6)

    Use

    the

    f i r s t ca lcu la ted

    value of t

    to

    r e pe a t the

    s teps

    x

    u n t i l

    t he r e

    i s

    littl d i f f e r ence between ca lcu la ted

    values

    of

    x

    . . 12

    ~

    succeSS10n.

    Figure

    3 shows the c i rcumferen t ia l s t r e s s e s in a

    220- foo t

    diameter

    tank wi th

    56-foo t s h e l l

    he igh t

    designed

    to

    the bas ic

    API-6S0

    Appendix

    D

    and

    Appendix

    G

    us ing Appendix K var iab le des ign poin t .

    Standard

    API

    des ign s t r e s s e s are shown in

    dashed

    l i n e s fo r comparison.

    Note

    the

    bas i c

    des ign wi th a

    s ing l e des ign s t r e s s r esu l t s

    in

    high ly

    s t r essed

    lower

    s h e l l

    courses .

    The

    API

    Appendix G

    design

    method

    us ing

    a

    lower

    s t r e s s for the

  • 8/10/2019 njit-etd1973-003

    20/79

    12

    of t ank capac i t i e s

    beyond

    t he 268 000 b a r r e l

    t anks

    13

    provided

    fo r

    by

    t he

    API-650

    s tandard

    des ign .

    The

    des ign

    uses low

    and

    in te rmedia te

    t e n s i l e s t r e n g t h

    carbon

    s t e e l

    throughout

    and prov ides

    fo r r e qu i r e d

    s t r e n g t h l e ve l s to

    meet

    inc reased pressures

    by vary ing t he

    th i c kne s s of

    t he

    s t e e l

    from

    top

    to

    bot tom.

    Al l

    t anks

    a re l im i t e d to a

    maximum

    s t e e l p la t e

    t h i ckness

    o f

    ~ inches

    because

    a l though des ign c r i t e r i a

    i s based p r in c ip a l l y

    on y i e l d and

    t e n s i l e s t r eng t h

    o ther

    f ac t o r s

    e f f e c t

    t he

    s e rv i c e a b i l i t y

    of the

    s t e e l .

    Tens i le

    s t r e ng th

    i s

    no t the

    break ing

    s t r e n g t h

    o f

    a

    s h e l l

    p l a t e in

    s e rv i c e ; it i s

    the breaking s t r eng t h

    o f

    a l ab

    sample.

    St ruc tu r e s have f a i l e d a t

    50 o f

    y ie ld s t r eng th and

    25

    of

    t e n s i l e

    s t r eng t h

    because

    o f

    poor

    no tch

    toughness

    s t r e s s

    in t e n s i f i c a t i o n poor homogenity and

    improper

    welding

  • 8/10/2019 njit-etd1973-003

    21/79

    toughness fo r

    t he

    th ickness

    and t empera tu re ranges

    spec i f i ed .

    IS Appendix

    D

    does

    no t

    r equ i re add i t i ona l

    t e s t s to

    demons tra te

    s u i t a b i l i t y .

    Appendix G, on the

    13

    o the r hand r e qu i r e s

    add i t i ona l

    t e s t i n g i

    s t e e l s

    a re used

    below t h e i r

    s t a t e d t empera tu res .

    l6

    The

    t e s t us ua l ly performed

    to de te rmine

    notch

    toughness i s

    t he

    Charpy

    V Notch

    Tes t . This i s

    a dynamic

    impac t

    t e s t

    in which a machined notched specimen i s s t ruck

    and

    broken

    by a s i ng l e

    blow.

    The energy expres sed

    in

    foot pounds r e qu i r e d t o break t he specimen i s a measure

    of

    toughness a t a p a r t i c u l a r t e s t specimen temperature .

    The

    t e s t

    has s e ve ra l

    l i m i t a t i o n s

    because it i s

    unable to t ake the fo l lowing i n to

    accoun t :

    th ickness

    e f f e c t s

    o f welding

    i nc lud ing

    embr i t t l emen t

    and

    r e s i dua l

  • 8/10/2019 njit-etd1973-003

    22/79

    The WW t e s t i s prenotched s low s t r a i n e d wide

    pla te t e n s i l e t e s t . The advantages o f t h i s t e s t

    a re

    tha t va r ia t ions in the s t r eng th of weld and t he e f f e c t

    14

    of l a rge specimen 4 - f t x 4 - f t permit t he f u l l

    e f f e c t s

    of r e s idua l

    s t r esses

    to develop.

    The

    OD

    t e s t i s fu l ly ins t rumented notch bend

    t e s t which i s being used

    extens ive ly in Europe

    to

    supple

    ment WW t e s t data and

    to

    inves t iga te weld meta l .

    Poor

    notch

    toughness

    alone

    wi l l

    not

    cause

    b r i t t l e

    fa i lu re . Usual ly

    combinat ion of poor toughness

    and

    s t re s s i n t e n s i f i e r s r e s u l t s in the i n i t i a t i o n of

    crack. St re s s i n t e ns i f i e r s a re loca l areas o f high

    s t re s s

    concent ra t ion re su l t ing from des ign d i s c on t inu i t i e s

    misal ignment nozzles and

    weld

    de fec t s .

  • 8/10/2019 njit-etd1973-003

    23/79

    15

    necessary

    fo r

    s h e l l g i r t h seams i au tomat ic welding

    h

    d

    19

    mac

    ~ n s

    a r e

    use

    . Pos the a t ing

    us ua l ly used

    to

    normal ize

    s t e e l

    p l a t e i nvo lves

    he a t ing

    the weldment to

    over l IOOoF.

    ho ld ing t h i s t empera tu re

    fo r

    se v e ra l

    hours

    and

    then a l lowing t he weldment

    to cool . The

    r a t e of

    hea t ing

    should not

    exceed

    400F.

    per

    hour

    per inch of

    p l a t e

    t h i c kne s s .

    20

    Use of h igh

    s t r eng t h

    s t e e l

    for

    l a rge

    t anks has inc reased the requirements for s t r e s s r e l i e v ing

    to i n s u re

    aga i ns t b r i t t l e f a i l u r e s .

    The h igh

    c i rcumfe ren t i a l

    s t r e s s e s caused

    by

    se rv ice

    loading were

    i l l u s t r a t e d in

    Figure

    3. High r e s idua l

    s t r e s s

    can have

    a d i sas t e rous

    e f f e c t when

    added

    to

    these h igh c i r c um fe re n t i a l s t r e s s e s .

    Appendix D and G

    r e qu i r e s t e e l

    p l a t e s

    for low

    t empera tu re

    s e rv i c e t o be

  • 8/10/2019 njit-etd1973-003

    24/79

    16

    p la te s ,

    or

    re inforcement ,

    on l a rge

    tanks

    i n t e r f e r e s with

    the

    e l a s t i c behavior of

    the s he l l and i n t roduces

    severe

    bending

    s t r esses

    a t the

    toe

    o f the fill t welded

    connec t ions

    between

    the

    compensating

    p l a t e and s he l l .

    Appendix D

    ou t l ines

    a l t e rn a t i v e designs

    fo r

    connect ions

    to

    l i m i t

    bending

    s t r e s s e s .

    Openings

    near

    the

    bottom of

    the

    tank

    s he l l

    tend

    to ro t a t e with v e r t i c a l

    bending

    of

    the

    she l l under serv ice loads .

    23

    Specia l

    p recau t i ons

    in

    the

    des ign

    of pipework should

    be

    taken to al low fo r the

    loads

    imposed by

    the

    r e s t r a i n t

    of

    the a t t ached pip ing to

    the

    she l l ro t a t ion .

    Tank Bottom

    The tank bottom i s

    made

    up by l ap

    welding

    1/4- inch ,

    minimum

    th ickness , rec tangular

    p la te s

    and ske t ch pla tes

  • 8/10/2019 njit-etd1973-003

    25/79

    qua l i t y connect ion

    i s

    t he re fo re

    necessary i

    a

    reasonable

    tank

    l i f e

    i s

    to

    be

    achieved.

    25

    The

    tank

    17

    bottom i s of t en contaminated with

    bottom

    s ludge and water

    which

    may have dele te r ious e f f e c t upon fa t igue l i f e .

    Bottom s ludge and

    water . BSW found in fue l o i l s

    var i e s grea t ly in amount

    and

    composi t ion. The

    grea t e s t

    amount

    of

    BSW

    i s found

    suspended

    in re s idua l fue l s

    No.6)

    because of the

    dens i ty

    and high

    v i s cos i t y of

    the

    fuel .

    The composit ion

    of BSW found

    a t

    t he bottom of

    a

    tank

    i nc ludes

    r es ins ,

    f ree

    carbon

    water ,

    hydrogen

    su l f ide ,

    tank sca le and

    rus t . This

    environment not

    only

    cont r ibu tes to fa t igue

    but a l so

    may

    i n t roduce

    s t r e s s

    cor ros ion c racking

    i t he

    re s idua l s t r e s s e s in the

    bo t t om- t o - she l l

    connect ions

    are

    high .

    26

    Sumps

    should

    be

    provided

    to al low for water

    drawoff and

    the

    shel l -bot tom

  • 8/10/2019 njit-etd1973-003

    26/79

    8

    wi l l occur causing considerable

    movement and

    readjustment

    of the

    shape.

    The s t resses created by the readjustment

    have caused

    tank

    fa i lures .

    Ringwalls

    or pi l ed

    mat

    foundations should be

    provided

    when so i l condit ions indicate

    subs tan t i a l

    set t lement

    or di f f e ren t i a l

    set t lement

    might

    occur. Appendix

    B

    of the

    API

    covers recommended

    Pract ice for

    Construction

    of

    a Ringwall Foundation.

    The fol lowing recommended cr i t e r i a

    for to lerable

    set t lement of storage tanks was presented

    by

    M.I. Esrig

    a t

    the

    A.S.C.E.

    Seminar Sett lement

    of Structures ,

    ay

    1, 1973.

    Type

    of

    Movement

    ax

    se t t l ement

    of

    she l l

    ax di f f e ren t i a l set t lement

    Tolerable Distort ion

    12

    inches

    Less than 2-in . in 30-f t .

  • 8/10/2019 njit-etd1973-003

    27/79

    19

    circumference

    of

    the tank

    t ha t

    only

    rep re sen t p lana r

    t i l t i n g a re p lo t t ed along a l i ne whose l eng th

    rep re sen t s

    the

    c i rcumference

    of

    the tank.

    Tank Roof

    The

    roof

    des ign can be e i t h e r a suppor ted cone

    with i t s

    pr inc ipa l suppor t

    provided y r a f t e r s and

    columns

    as shown in Figure 4

    o r

    a se l f - suppor ted

    cone

    or

    dome

    roof

    suppor ted only a t i t s per iphery . The roof

    and suppor t ing s t ruc tu re s s ha l l be designed to suppor t

    dead

    l oad p lus

    a uniform l i v e load o f not

    l e s s

    than

    3 lb s . per sq.

    f t . of

    pro jec ted area to meet S t a t e o f

    ew

    Je r sey

    Code Requirements.

    27

    API des ign

    provides

    for

    a l i ve load

    o f

    only 25 lb s .

    per

    sq. f t .

    Supported cone roofs

    are l ap

    welded from t he top

  • 8/10/2019 njit-etd1973-003

    28/79

    20

    was f i l l e d beyond capac i ty causing

    excess ive

    in te rna l

    pressures

    t h a t

    buldged

    the roof

    p la t e s . The

    roof- to- top

    angle weld broke

    a t

    th ree

    po in t s a lmost

    equa l di s t an t

    around the roof pe r iphe ry . Although some

    No.

    fue l o i l

    shot

    out

    o f

    the

    f r ac tu re s and sprayed the a rea , no

    jo in ts

    in the

    s he l l

    were

    ruptured

    and

    a

    major

    ca tas t rophy

    was

    d d 29

    a V 2

    Vents .

    Fixed roof tanks accommodate a very low

    i n t e rn a l

    pressu re o r vacuum. Therefore ,

    adequate vents

    must be

    furn i shed to accommodate

    v a r i a t i o n s

    in pressure

    caused

    y

    the

    da i ly

    cyc l ica l

    thermal

    expansion

    and

    cont rac t ion o f the vapor space (brea th ing losses )

    and

    the input

    and

    withdrawal o f l i q u id

    working

    lo s se s ) .

    As the tank vents excess pres su re , evaporated

  • 8/10/2019 njit-etd1973-003

    29/79

    21

    FLO TING

    ROO

    f loa t ing

    roof , in

    d i r e c t

    con t ac t

    with

    t h e

    surface of the l i qu i d , e l imina tes the hazardous vapor

    space found

    in

    a s tandard cone roof t ank . Tes t s

    have

    demonst ra ted tha t ,

    No

    measurable explos ive vapor

    mixture

    i s presen t between

    t he f loa t ing pan and t he

    f i xed

    roof of

    a tank s to r i n g v o l i t i l e l i qu i d . 30

    However, on

    a

    s tandard

    cone roof

    t ank the

    danger o f

    an

    explos ive mixture

    i s

    always p r e s e n t

    as

    po in ted

    out

    by Hubbert

    O'Br ien

    in

    Petroleum

    Tankage and Transmiss ion

    who

    s t a t e s ,

    A

    condi t ion

    of

    vapor

    s t r a t i f i c a t i o n

    always e x i s t s in the

    vapor space

    var ing

    from

    ne a r ly pure

    a i r

    a t t he vent to

    near ly

    a

    pure

    vapor

    a t the l i q u id su r face . 31

    Standard cone roof tanks a re be ing

    equ ipped wi th

    s impl i f i ed i n t e r na l f l oa t e r s , furn i shed

    to

    API-650,

  • 8/10/2019 njit-etd1973-003

    30/79

    22

    roof

    t ank

    equipped

    with

    a

    f loa t ing

    roof

    combines the

    low

    cos t

    maintenance

    o f

    a f ixed roof

    tank whi le of f e r i ng the

    advantages o f

    a f loa t ing roof

    t ank

    b u i l t to Appendix

    spec i f i ca t ions .

    Appendix H

    The

    Appendix H

    f loa t ing roof cons i s t s o f

    a

    s t e e l

    pla te

    deck

    and r im with pe r iphe ra l and pene t ra t ion

    sea l s .

    The space

    between

    the

    outer per iphery

    of the deck and the

    tank

    s he l l i s sea led by a f l ex ib le device which provides

    a c lose fit to

    the

    she l l

    sur faces .

    32

    No

    pontoons

    are

    requi red fo r i n t e r na l f loa t ing roofs .

    The

    weathermas ter

    sea l y

    Chicago

    Bridge and I ron , fo r example,

    i s a

    tough envelope of Polyure thane coated Nylon which

    pro tec t s

    a

    r e s i l i e n t

    foam

    sea l .33 Pene t ra t ion

    s ea l s

  • 8/10/2019 njit-etd1973-003

    31/79

    23

    The upper suppor t pos i t ion

    al lows

    the

    f l o a t i n g

    roo f

    to

    r e s t

    a t the

    minimum

    opera t ing l eve l usual ly th ree

    to

    four

    fee t above the tank

    bottom. The lower

    suppor t

    pos i t ion al lows the

    roof to

    r e s t a t

    the

    maintenance leve l

    to provide s u f f i c i e n t height

    fo r

    c leaning

    crews

    to work

    under the f loa t ing roof .

    Vents . The API-650 r equ i re s

    an

    automat ic bleeder

    vent

    Figure

    6

    on the f loa t ing

    roof

    to evacuate a i r and gases

    from underneath

    the

    deck

    when the f loa t ing roo f i s

    re s t ing

    on i t s

    suppor t s . t

    a l so

    requi res t ha t t h i s

    vent re l i eve any vacuum genera ted underneath t he deck a f t e r

    .

    l

    d hd 1 . 34

    1 t s e t t es on 1 t s suppor t s ur1ng W1t

    rawa

    opera t1ons .

    The

    API-650

    r equ i r e s

    vents

    loca ted

    in

    the

    s he l l

    above

    the

    h ighes t

    l eve l of the sea l o f the

    f l o a t i n g

    roof

  • 8/10/2019 njit-etd1973-003

    32/79

    24

    h

    36

    t

    ~

    vent .

    Sta in le s s

    s t e e l

    coarse

    mesh

    f o r the

    s he l l

    and roof

    vent s

    should be spec i f i ed to prevent

    ing re s s

    of

    bi rds

    and animals . Also

    r a i n

    sh ie lds on t he roo f

    vent

    and on each

    s he l l

    vent should be inc luded .

    Overflow

    vent .

    For

    fue l

    o i l

    tanks

    loca ted

    in

    remote

    locat ions

    the API 650 requirement for an

    overf low

    ind ica tor

    may

    not

    be

    adequate to insure aga i ns t acc iden ta l

    over f i l l i ng of the tank.

    Overflow

    vents

    s ized

    to

    dump

    fue l a t the maximum poss ib le f i l l i n g r a t e

    should be

    spec i f ied . The

    overf low

    vents should begin

    to

    dump

    fue l as t he

    sea l

    r i s e s

    pas t

    the vent s , thus

    s topp ing

    the

    ver t i ca l

    assen t

    o f

    the

    f loa t ing roof .

    The

    e leva t ion

    of

    the

    overf low

    vents

    i s

    a

    func t ion

    of

    the

    l eng th of roo f supports ex tending above the

  • 8/10/2019 njit-etd1973-003

    33/79

    5

    e a lso

    found

    t ha t nine roofs

    were

    r epor t ed sunk

    in

    opera t ion

    because the l i qu id

    s t o red

    was

    sp lashed

    on

    top of the f loa t ing

    roof

    by gas bubbles .

    38

    The s inking

    of

    a

    f loa t ing roof

    in Pennsylvania

    was

    a

    d i r e c t r e s u l t

    of

    l1forwarding l a rge quan t i t i e s o f a i r

    to

    t he t a nk by

    a

    la rge

    p o s i t i v e

    disp lacement barge

    unloading

    pumps

    which

    were

    used for s t r ipp ing of

    a

    crude o i l

    barge . 39 n

    i n l e t

    pipe

    d i f f u s e r on the tank i n l e t

    Figure 8)

    w i l l

    d i s s ipa t e l a rge

    surges of fue l

    o r a i r

    which could cause

    sp lashing

    of

    the produc t

    on

    the

    deck.

    The

    d i f f u s e r i s

    expected

    to l i m i t discharge when forwarding o i l from the

    l a rges t barge

    an t i c ipa t ed

    and

    to

    d i s t r i bu t e t he incoming

    fuel

    so

    t h a t l a rge f lu id s treams a re not

    c rea t ed .

    Although

    seve ra l f l oa t ing

    roofs

    have

    sunk

    in

    t h i s

    country r e s u l t i ng

    in

    as

    much as s ix months l o s s

    in

    the

  • 8/10/2019 njit-etd1973-003

    34/79

    roof i s 75

    of

    the

    t o t a l

    evaporat ion

    loss

    calcula ted

    for

    the f ixed

    roof

    40

    The API corre la ted the measured breathing losses

    from

    data col lec ted on 256

    tanks

    and es tabl ished tha t

    breathing

    losses

    were a funct ion of the

    t rue

    vapor

    pressure ,

    the tank

    diameter ,

    the average height of the

    26

    vapor space, the average dai ly

    ambient temperature and

    the

    color

    of

    the tank pa in t

    4l

    Breathing

    losses

    Equation

    7

    was

    developed

    to

    calculate

    breathing losses of gasol ine and f in i shed

    petroleum

    products from

    a

    model

    equation derived from

    tank

    data

    42

    Ly

    =

    l ~ ~ O

    1 4 ~

    7-P O.

    68

    D)

    1.

    73

    x

    (H)

    0.51

    x

    T)

    0.5

    x

    Fp)]

    7)

  • 8/10/2019 njit-etd1973-003

    35/79

    27

    Working l o s se s .

    Working l o s ses

    may be d e f i n e d as

    vapor

    expe l led

    from

    a

    t ank

    as a

    r e s u l t

    o f

    l i q u i d

    pumped

    i n to

    o r

    ou t of the t ank . The va lues

    s u s c e p t i b l e

    to

    co r re l a t ion from

    da t a

    co l l ec t ed on 123 t anks by t h e API

    were measured l o s s , t r ue vapor

    pressu re

    and

    r a t e o f

    product

    movement.

    Equat ion

    8

    was

    der ived

    f rom

    t st

    da ta

    for e va lua t ing

    the working l o s ses for

    g a s o l i n e and

    4

    f in i shed

    pet ro leum

    produc t s .

    Where:

    F 3 PV

    k t

    10,000

    F

    working losses, n

    barrels

    p t rue

    vapor

    pressure a t

    bulk

    l iquid temperature

    V voll llTe of l iquid p1 1Itped

    in to

    tank, n barrels

    k t

    turnover

    factor

    8)

  • 8/10/2019 njit-etd1973-003

    36/79

    and 10. Figure 11 a nomograph to conver t Reid

    vapor

    pressure

    t o t r u e

    vapor

    pressu re

    i s

    a lso inc luded .

    Prevent ion of

    evapora t ion

    l o s s from pet ro leum

    products

    i s becoming

    ext remely

    impor tan t . In

    add i t ion

    28

    to conserving

    a

    va luable

    na tu ra l resource reduct ion of

    evaporat ion

    l o s s

    provides a subs tan t i a l economic savings .

  • 8/10/2019 njit-etd1973-003

    37/79

    9

    T NK

    COSTS

    The cos t of i n s t a l l i n g fue l o i l tanks

    i s

    esca l a t i ng

    a t

    a

    very

    f a s t r a t e .

    Figure

    12 shows

    the

    t ank cos t

    index

    as

    repor ted

    in

    the

    Eighth Annual Study

    of

    Pipe l ine

    I n s t a l l a t i on

    and Equipment

    cos t s .

    45

    Figure

    12 was

    used

    to

    update

    t ank

    c o s t data co l l ec t ed fo r

    the

    presen t a t i on

    of

    budget cos t

    da ta .

    s torage Tank

    Figure 13

    Cost of erec ted fue l

    o i l

    s t o rage tank

    with

    i n t e rn a l

    f l o a t i n g

    roof

    has been compiled

    from the

    curves presented by Jackson Clerk in Storage Tanks,46

    from budget es t i ma t e

    pr i ce s

    furnished ve rba l ly

    by

    Chicago

    Bridge and I ron and

    from

    Publ ic

    Service

    E l ec t r i c and Gas

    Company f i l e s on t he cons t ruc t i on

    of

    nine s torage tanks.

  • 8/10/2019 njit-etd1973-003

    38/79

    30

    Si te

    Prepara t ion

    Figure

    14

    neas t

    of

    s i t e

    prepa ra t i on

    U

    graphs

    tank

    capaci ty versus

    do l la r s for severa l

    es t imated

    depths of

    f i l l .

    This cos t inc ludes

    a

    s toned ea r then d ike

    s ix

    fee t

    high and

    a

    twenty

    foo t

    f i r e l ane . Cons t ruc t ion

    of tanks

    in

    areas

    such

    as

    the

    Hackensack

    Meadowlands

    may

    requi re

    la rge amounts of ill to

    br ing the

    top of dike

    to

    u.s. Coast Geodet ic e leva t ion t en fee t

    as

    requi red y

    the

    Hackensack

    Meadowlands Development comrnission.

    47

    Therefore

    a d e p t h a f f i l l

    curve

    for

    twelve

    f ee t

    has

    been

    included

    to

    cover

    ill in areas where

    swampy

    s o i l

    condi t ions

    o r meadow mat

    may

    cause

    excess ive consol ida

    t ian .

    Foundat ions

    Figure

    15 Cost of concre te

    r ingwal l

    foundat ion

  • 8/10/2019 njit-etd1973-003

    39/79

    31

    more cos t ly

    than

    s t e e l

    p i l e s in tank mat

    foundat ions .

    Bids were

    l e t

    for

    a

    l l O - f t

    diameter tank foundat ion

    using

    e i the r 35-foo t

    c reoso ted

    wood p i l e s or IO inch diameter

    hollow s t e e l

    pipe p i l e s

    to be f i l l e d with

    concre te

    a f t e r

    pi les were dr iven . P r ices ind ica ted

    t h a t even

    with the

    cost of ca thodic pro tec t ion inc luded for

    the

    s t e e l p i l e s

    the s t e e l p i l e d foundat ion was 37 cheaper .

    48

    I tems not

    inc luded in the

    program inc lude hydro-

    s t a t i c

    t e s t i n g

    pa i n t i ng fue l

    o i l l i n e s

    f i l t e r s

    and

    valves.

    Float ing Roof

    The c o s t of a

    f l oa t i ng

    roof i s a func t ion o f tank

    diameter . Figure 17 i l l u s t r a t e s the

    cos t

    of an Appendix H-

    type f l oa t ing roof i n s t a l l e d dur ing tank e rec t ion .

  • 8/10/2019 njit-etd1973-003

    40/79

    32

    calculated.

    Then an

    average loss

    reduct ion of 75 percent

    can

    be

    appl ied

    to the calcula ted

    evaporat ion

    loss for

    the

    f ixed-roof tank,

    to determine the potent ia l

    savings

    to

    be

    derived

    by use

    of a

    f loa te r

    To

    i l l u s t r a t e the

    savings

    t ha t

    may

    be

    rea l i zed by

    the

    use

    of a f loa t ing roof

    the

    following hypothet ica l

    case

    i s presented.

    A gas turbine uni t requires a

    nominal

    80,000 bbl

    fuel o i l tank to s to re

    3

    lbs Reid

    vapor pressure

    RVP)

    l igh t

    naptha.

    Given:

    Tank diameter = 110 f t

    Height

    = 8 f t

    TOtal

    outage

    = 30

    f t

    Color of paint = hite

    Average

    daily

    tempera-

    ture change = 16

    degrees

    Annual

    throughput =

    1,000,000 bbls

  • 8/10/2019 njit-etd1973-003

    41/79

    33

    Figure

    11. Turnovers per

    year

    are equal to the annual

    throughput

    divided

    y

    tank

    capaci ty .

    COST

    ANALYSIS

    OF

    A FLOATING

    ROOF

    Armual

    Losses

    Cone Roof

    Internal

    Floating

    Roof

    Breathing

    loss, bbl.

    Working

    loss, bbl.

    Total Annual

    loss, bbl.

    5

    47

    97

    Net

    savings,

    bbl. =

    8 5

    bbls/year

    Cost to Install :

    From

    Figure 10

    =

    33,500

    Return on

    Investrrent:

    125

    125

    (Figure 9)

    (Figure

    10)

    Approximate

    net savings 735 bbls.

    @ 4.89

    =

    4,100

    Years

    to

    Payout:

    33,500/ 4,100 = 8

    years

    The

    savings per year of approximately

    4,100

  • 8/10/2019 njit-etd1973-003

    42/79

    4

    tank

    the years

    to p a y o u t i s reduced to 2 7

    The economic

    savings r ea l i zed y

    the

    i n s t a l l a t i o n

    of

    a

    f loa t ing roof dur ing the

    2

    to

    3

    se rv i ce years o f

    tank j u s t i f i e s

    i t s

    i n s t a l l a t i on

    on an economic

    bas i s

    However the envi ronmenta l and sa fe ty bene f i t s a re

    gaining

    grea t

    importance

    in

    the

    des ign

    of s torage t anks A

    cone

    roof

    tank with a

    f l o a t i n g

    roof has a be t t e r chance fo r

    acceptance y

    Sta t e

    Agencies and

    Local

    O f f i c i a l s

  • 8/10/2019 njit-etd1973-003

    43/79

    35

    GOVERNMENT

    REGULATION

    The

    committee formed by the twenty-eighth annual

    meeting of the

    National Fire Protect ion

    Associat ion NFPA)

    developed the

    f i r s t

    recommendation

    for

    the ins ta l la t ion

    of tanks

    with

    respect

    to

    the i r

    distance

    from

    property

    l ines ,

    the s iz ing of dikes

    and

    the

    minimum

    spacing

    between tanks.

    49

    These recommendations have been

    expanded

    y the NFPA Standard Flammable and

    Combustible

    Liquids

    Code (No. 30)

    and

    adopted

    by

    government

    agencies

    responsible

    for

    se t t ing

    the

    standards

    for the s torage

    handling or use of Flammable and Combustible Liquids.

    Department of Labor and

    Industry

    The

    New

    Jersey

    Administrative

    Code (NJAC),

    Ti t l e

    f

  • 8/10/2019 njit-etd1973-003

    44/79

    36

    Flash p o in t , as def ined by the

    NFPA

    i s l i the

    minimum

    temperature

    a t

    which

    a

    l iqu id

    gives o f f

    s u f f i c i e n t

    vapor

    to form

    an

    i g n i t a b l e mixture with the a i r near t he

    surface of

    the l i qu i d .

    Ign i t ab le mixture i s one w i th in

    the

    exp los ive range t h a t

    i s capable of the

    sp read

    o f

    flame from

    the

    source

    o f l i qu id

    through

    t he

    f lammable

    mixture .50

    For each f lammable mixture

    o f vapor

    and

    a i r ,

    the re i s

    a

    minimum and maximum concent ra t ion

    of

    vapor

    below

    or

    above

    which propagat ion of

    f lame

    does no t

    occur

    on contac t wi th source o f ign i t ion . These concen-

    t r a t ions

    s e t the l i m i t s of the

    flammable

    range

    fo r a

    vapor and a re usua l ly

    expressed in

    terms

    of pe rcentage

    by

    volume

    o f

    gas

    in

    a i r .

    The d e f i n i t i o n of combust ib le and f lammable

    l i q u i d s

  • 8/10/2019 njit-etd1973-003

    45/79

    37

    Flammable l i q u i d s a re subdivided i n to

    the

    fo l lowing

    c lasses

    by t he

    NJAC:

    52

    Class IA s h a l l

    inc lude

    those having

    f l a sh po i n t s below 73F

    and having

    a

    b o i l i n g p o i n t

    below

    100

    F.

    Class

    IB s h a l l

    inc lude

    those

    having

    f l a sh po i n t s

    below

    73F

    and

    a

    bo i l ing

    po i n t

    a t

    o r

    above IOOoF.

    Class IC s h a l l inc lude those hav ing

    f l a sh po i n t s a t or

    above

    73F bu t

    l e s s

    than

    100F.

    Class

    l i qu i ds s ha l l inc lude those

    having f l a sh po in t s

    a t

    o r

    above

    1000F bu t l e s s than

    140oF.

    The

    NJAC a l so

    cons ide rs

    the bo i l -ove r cha r ac t e r i s t i c s

    of

    a

    fue l

    when

    c l a s s i fy in g

    hazardous

    mate r i a l s . B o i l -

  • 8/10/2019 njit-etd1973-003

    46/79

    38

    Locat ion o f

    s torage

    t anks . Al l aboveground

    t anks

    for

    flammable

    and

    combust ible

    l iqu ids sha l l be

    l oca t ed a

    minimum

    dis tance from the proper ty l i ne o r nea re s t

    important bu i ld ing in accordance with Table

    1 .

    Dikes Pr io r to

    the

    enactment of NJAC 12:133 the

    New

    Je r sey Bui ld ing Code requi red the volume o f dike area

    for

    s torage o f l i qu ids

    with boi l -over

    c ha ra c t e r i s t i c s to

    be ten percent gr ea t e r

    than

    the capac i ty of the tank to

    compensate fo r

    the

    poss ib le i nc rease

    in

    volume

    of the

    foaming

    o i l dur ing a t ank f i r e .

    54

    NJ C 12:133

    on

    the

    o t he r hand r equ i re s the d ike

    area for

    fue l s

    with bo i l -ove r charac te r i s t i c s to equal

    the

    t o t a l

    capac i ty

    o f the tank.

    A

    tank

    s to r ing a

    l iquid

    which

    does

    no t bo i l over may

    be

    enclosed by a dike

  • 8/10/2019 njit-etd1973-003

    47/79

    39

    The

    capac i ty of

    the

    dike area enc los ing

    more than

    one

    t ank

    s ha l l be

    ca lcu la t ed

    for the capac i t y

    o f

    the

    la rges t tank minus the

    volume

    of the smal le r t anks

    below

    the

    height of the d ike . The capac i ty

    of

    the d ike for

    boi l -over

    fue ls

    s ha l l

    be ca lcu la t ed

    y deduct ing

    the

    volume of a l l

    the

    tanks below

    the

    he ight of the d i ke .

    57

    Tanks wi th in a common dike enc losure

    s ha l l

    be separa ted

    by an in te rmedia te dike a t l e a s t

    18 inches

    h igh .

    58

    Spacing

    between

    s he l l s . NJAC 12:133 r equ i r e s a

    minimum d i s t ance between two

    adjacent

    t anks

    s h a l l

    not

    be le ss

    t han :

    59

    One

    s ix th the

    sum

    of t he i r diameters

    except

    when the

    diameter

    of

    one

    tank

    i s

    l e s s

    than

    one-ha l f

    the

    diameter

    of the

    adjacent

    t ank the d i s t ance

    between

    t he

    two

    t anks

    sha l l not be

  • 8/10/2019 njit-etd1973-003

    48/79

    40

    Drawings accompanying an Applicat ion

    for Approval

    for a fuel o i l storage

    tank

    should include the

    following:

    60

    1.

    Plo t

    plan.

    2. Dike plan including

    loca t ion

    of f i re

    hydrants, f i r e

    l anes dike stairway deta i l s explosion-

    proof l igh t ing

    and

    foam s torage

    fac i l i t i e s

    i f needed.

    3.

    St ruc tura l de ta i l s of the tank foundation.

    4. Tank drawing

    including

    schedule of

    shel l

    pla te

    thicknesses

    loca t ion

    and

    s ize of vents grounding

    deta i l s i n l e t and

    out l e t

    nozzles

    and valves.

    A general

    descr ip t ion

    of

    the fuel to be s tored including

    i t s degree

    of

    hazard

    should

    be

    included with

    the

    appl icat ion.

  • 8/10/2019 njit-etd1973-003

    49/79

    41

    Department

    o f Environmental Protec t ion

    The

    New

    Jersey

    Air

    Pol lu t ion

    Code,

    Chapter 9,

    en t i t l ed nPermits empowers

    the

    Department of Environ-

    mental Pro tec t ion

    DEP) to

    con t ro l

    the

    cons t ruc t ion and

    operat ion o f any device capable

    of

    causing the emission

    of

    an

    a i r

    contaminent

    in to

    the

    open a i r .

    Since

    fue l

    oi l s torage tanks emit fue l

    o i l

    vapors in the form

    o f

    breath ing losses and

    working

    lo s se s the EP i s

    empowered

    by Paragraph 2.SA of Chapter 9

    to

    r egu l a t e

    the

    cons t ruc t ion

    and

    opera t ion o f tanks having a

    capac i ty

    in excess of

    10,000 ga l lons .

    The EP r equ i r e s

    the

    Owner o f a fue l o i l s to rage

    tank to f i l e fo r a

    Permi t

    to

    Const ruc t

    and

    fo r

    a

    I ICer t i f ica te

    to

    Operate Cont rol Apparatus

    o r

    Equipment .

    This

    c e r t i f i c a t e

    i s

    va l id for a per iod of

    f ive years and

  • 8/10/2019 njit-etd1973-003

    50/79

    4

    recognized s

    an

    e f f e c t i v e con t r o l pp r tus in reduc ing

    l eve l s

    o f emission o f i r contaminents

  • 8/10/2019 njit-etd1973-003

    51/79

    4

    ON LUSION

    The API-650 Appendix K

    va r i ab le po i n t

    method o f

    design

    should be

    used

    for

    the

    c ons t ruc t ion o f l a rge t anks

    to ob ta in reasonab ly uniform

    s h e l l

    s t re s se s

    in

    each

    course

    o f t he s h e l l and grea t e r

    economy_

    Notch toughness

    and s t r e s s r e l i e v in g do no t

    r ep resen t

    a c o s t l y problem

    fo r f ab r i ca to r s who have worked

    with

    these l im i t a t i o n s for

    years

    in

    the

    cons t ruc t i on

    of pressure

    vesse l s

    and water

    towers.

    The

    c o s t o f

    Appendix

    K

    tanks

    w i l l

    be

    lower

    than

    s tandard

    t anks because t he var i ab l e

    po i n t

    method

    y i e l d s

    t h inner s h e l l p l a t e s

    The

    i n s t a l l a t i o n o f a f l oa t i ng roof in a cone roof

    tank makes good sense economica l ly and e c o l o g i c a l l y

    The

  • 8/10/2019 njit-etd1973-003

    52/79

    3 Very

    littl

    environmental po l lu t ion i s

    crea ted

    by

    the o pera t ion of the tank

    4 The maintenance assoc ia ted with

    dra ins

    44

    i ce and

    snow with

    regula r

    f loa t ing

    roofs

    i s not requi red .

  • 8/10/2019 njit-etd1973-003

    53/79

    REFERENCES

    1. Report on Records

    of

    Oil Tank Fi res in the u n i t e d

    Sta t e s 1915-1925, American Petroleum I n s t i t u t e

    (New York,

    1925), p.

    5.

    2. L. P.

    z ick

    and R. V.

    McGrath, Design

    of

    L a r g e

    Diameter

    Cyl indr ica l She l l s f

    American

    Pe t r o l e um

    I n s t i t u t e Divis ion Refinery , 1968, p.

    1115.

    3. Welded St e e l

    Tanks

    fo r Oi l S torage

    American

    Petro leum

    I n s t i t u t e

    4th

    Edi t ion

    Standard 650,

    (Washington,

    June,

    1970) ,

    p . 14.

    4.

    L.

    P.

    Zick

    and R.

    V.

    McGrath, p . 1112.

    45

    5.

    L.

    P.

    z ick

    and

    R. V.

    McGrath,

    New

    Design

    A p p r o a c h

    for Large Storage Tanks, Hydrocarbon P r o c e s s i n g

    Volume 47, N o . 5 May, 1968, p . 144.

    6.

    Ib id

    p . 143.

    7.

    Welded Stee l

    Tanks fo r Oi l

    Storage p .

    100.

    8.

    Ib id .

    9. L.

    P. z ick and R.

    V.

    McGrath, Design of L arge

  • 8/10/2019 njit-etd1973-003

    54/79

    46

    15.

    St ee l Tanks

    for

    Liquid

    Storage ,

    American I ron and

    Stee l

    I n s t i t u t e

    (New York) ,

    p.

    8.

    16. Welded

    S te e l Tanks for

    Oi l

    Storage , p .

    90.

    17.

    H.

    D Cot ton and

    J .

    B. Denham, European Prac t i ce on

    t he Design

    and

    Const ruct ion of Oi l S torage Tanks,

    American Petro leum I n s t i t u t e , Divis ion

    of

    Refining

    Procedures

    (Annual) , Volume 48, 1968, p . 108.

    18.

    Low Temperature

    and

    Cryogenic

    Stee l s , Mater ia l s

    Manual, United

    Sta t e s Stee l ,

    ADUSS

    01-1206 (P i t t sburgh ,

    Pennsylvania ,

    1964), p . 45.

    19. H. C. Cot ton and J .

    B. Denham,

    p .

    1087.

    20. Ear l R.

    Pa rke r ,

    St ress Rel ieving o f

    Weldments,

    Welding Research

    Counci l ,

    October , 1957, p .

    439.

    21.

    Welded S te e l Tanks for o i l

    Storage ,

    p . 73.

    22.

    H. C. Cot ton and J .

    B. Denham,

    p. 1082.

    23.

    Welded S t ee l Tanks

    for Oil S torage , p .

    92.

    24. L. P. Zick

    and R.

    V. McGrath, New

    Design

    Approach

    for Large Storage

    Tanks,

    p . 1118

    25. H C. Cot ton

    and

    J . B.

    Denham,

    p . 1093.

  • 8/10/2019 njit-etd1973-003

    55/79

    47

    32.

    Welded

    S t ee l

    Tanks for

    Oil

    Storage ,

    p.

    95.

    33. Horton

    Floa t ing

    Roofs,

    p . 22.

    34. Welded S t ee l Tanks for

    Oi l

    Storage , p. 96.

    35. Ib id , p .

    95.

    36. Ib id .

    37.

    R.

    W

    Bodley,

    When

    Covered Floa te rs

    Are Used,

    Hydrocarbon

    Processing,

    Volume

    50,

    September, 1971, p. 159.

    38.

    Ib id , p . 161.

    39.

    United

    Engineers and Constructors ,

    Inc . ,

    Business

    Let t e r ,

    November 17, 1972,

    p .

    2.

    40.

    Use

    of

    In t e rna l

    Floa t ing

    Covers

    for

    Fixed-Roof

    Tanks

    to Reduce Evaporat ion

    Loss,

    American

    Petroleum I n s t i t u t e ,

    Bul l e t in 2519,

    1962, p . 10.

    41. Evaporat ion Loss from Fixed-Roof Tanks, American

    Petroleum I n s t i t u t e , Bul le t in 2518,

    1962,

    p . 6.

    42. Ib id ,

    p .

    13.

    43. Ib id , p .

    19.

  • 8/10/2019 njit-etd1973-003

    56/79

    50. Fire

    Protec t ion Guide on Hazardous

    Mater ia ls , 3rd

    Edit ion,

    National

    Fire

    Protect ion

    Associat ion

    (Boston,

    1969),

    p. 325 M-3.

    51.

    Flammable

    and

    Combustible

    Liquids, Sta te of New

    Jersey

    Department o f Labor

    and Industry, N.J .A.C.

    12:133,

    Sect ion 3,

    p.

    16.

    52. Ibid, p .

    17.

    53. Ibid ,

    p .

    12 .

    54.

    Standard

    Building

    Code, s t a t e

    of

    New Jersey,

    Department

    of Conservation and Economic

    Development, Trenton, 1965,

    p . 85.

    55.

    Flammable

    and Combustible Liquids,

    p. 35.

    56.

    Ibid,

    p .

    36.

    57. Ibid , p .

    35.

    58. Ibid.

    59. Ibid, p. 29.

    60.

    Format

    used

    by

    author

    for

    80,000

    bbl .

    tank.

    8

    61.

    Federal

    Register , Volume

    36,

    No 105, ay 29, 1971,

  • 8/10/2019 njit-etd1973-003

    57/79

    49

    BIBLIOGRAPHY

    American I ron and Stee l In s t i t u t e Stee l Tanks fo r Liquid

    Storage New York.

    American

    Pet ro leum I n s t i t u t e Welded Stee l Tanks for

    Oil

    Storage 4 th Edi t ion

    Standard

    650 Washington

    June

    1970.

    American

    Pet ro leum

    In s t i t u t e

    Evaporat ion

    from

    Floa t ing -

    Roof Tanks Bul le t in 2517

    February

    1962.

    American

    Pet ro leum I n s t i t u t e Use of In te rna l Floa t ing

    Covers

    for

    Fixed-Roof Tanks

    to Reduce

    Evapora t ion

    Loss B u l l e t i n 2519 November 1962.

    American Pet ro leum

    I n s t i t u t e Evaporat ion

    Loss From Fixed-

    Roof

    Tanks

    B u l l e t i n No.

    2518

    Washington

    D.C.

    June

    1962.

    American

    Pet ro leum I n s t i t u t e

    Report on Records

    of Oil

    Tank Fi re s in the United Sta te s 1 9 l 5 ~ 1 9 2 5

    ew

    York

    1925.

    Ashley

    C. C . Evaporat ion Losses of

    Petroleum

    Oils From

    Stee l

    Tanks

    The

    Oil and Gas Journa l Volume 37

    No.

    26

    November

    10

    1938

    pp.

    170 172-173

    and

    177.

  • 8/10/2019 njit-etd1973-003

    58/79

    Clerk, Jackson, Storage

    Tanks,

    Chemical Engineering,

    Volume

    72,

    Number

    3, February

    1 ,

    1965,

    p.

    104.

    50

    Cotton, H. C. and Denham J .

    B .

    European Pract ice in

    the

    Design

    and

    Construction

    of i ~ Storage Tanks,

    American Petroleum Ins t i tu t e

    Division

    of Refining

    Prec.

    (Annual), Volume 48,

    1968, pp. 1075-1113

    Horton, Harry,

    Tanks,

    Petroleum Review,

    Volume 24,

    July ,

    1970, pp. 203-208.

    Hughes,

    John

    R.,

    The

    Storage and Handling of Petroleum

    Liquids:

    Prac t ice and

    Law

    London: Gri f f in

    Company

    Ltd . 1967.

    National Fire Protect ion

    Associat ion,

    Flammable Liquids ,

    Boilers - Furnaces, Ovens,

    National

    Fire Codes,

    Boston, Volume

    1,

    1971-1972,

    pp.

    30-1

    -

    30-38.

    National

    Fire

    Protect ion

    Associat ion,

    Fire Protect ion

    Guide on

    Hazardous

    Materials , 3rd Edi t ion,

    Boston, 1969, pp. 325M-l - 325M-16.

    Nelson,

    A.

    H.,

    Indust ry

    Experience

    Shows In te rna l

    Float ing Covers Score High, Oil

    and Gas

    Journal ,

    Volume

    69,

    September 13, 1971,

    pp.

    84-86.

    O'Brien, Hubbert L. Petroleum Tankage and Transmission,

    East Chicago, Indiana: Graver Tank

    and

  • 8/10/2019 njit-etd1973-003

    59/79

    51

    Rogers

    Walter

    F. , Method of

    Calcu la t ing

    Oil

    Evapora t ion

    Losses , Par t and I I , Pet roleum Engineer ,

    Volume 9

    Nos. 9

    and I I , June 1938

    pp.

    39-43

    Ju ly 1938 pp. 48-49 and 52.

    Schmidt Paul

    F . ,

    Fuel Oi l

    Manual

    New

    York: I n d u s t r i a l

    Press ,

    In c . ,

    1969.

    United

    Eng inee r s

    and Cons t ruc tor s , Inc . ,

    P r i v a t e

    Communication

    November 17

    1972.

    Uni ted

    S t a t e s St e e l ,

    Low

    Temperature

    and

    Cryogenic

    St e e l s , Mater ia l s

    Manual

    Pi t t sbu rgh ,

    Pennsylvania , DUSS 01-1206 1964 pp. 43-81

    83-105.

    Wi lson J .

    G.

    and P.

    D

    Thomas Using Carbon St e e l s in

    High-S t res s

    St ruc tu re s , The

    Oil

    and

    Gas Jou rna l ,

    Volume

    61

    March

    3

    1963

    pp. 103-107.

    Zick

    L. P. and

    R.

    V.

    McGrath

    Design o f Large

    Diameter Cyl ind r i ca l She l l s , American Pet roleum

    I n s t i t u t e ,

    Divis ion

    Refinery, 1968 pp. 1115-1140.

    Zick L.

    P. and R. V. McGrath

    New

    Design

    Approach

    fo r

    Large Storage Tanks

    Hydrocarbon

    Process ing ,

    Volume 47 N o . 5 , May 1968 pp. 143-146.

    Zimmerman o

    T. , Cost Indexes , 1945-1971 Cos t

  • 8/10/2019 njit-etd1973-003

    60/79

    Floating

    Roof

    Seal

    36 in.

    dia. manhole

    36 in.

    dia.

    Circulation

    Vents

    OVerflew

    Vents

    - - - - - - - . ~ . - , - , -

    L ___

    J

    110 FT. DI METER

    FIGURE

    DRAWING OF

    CONE RCDF SHELL SHCWING INTERNAL FIDATlliG ROJF

    o

  • 8/10/2019 njit-etd1973-003

    61/79

    h

    u

    X3

    J

    t

    u

    Variable

    Design P i n t ~ 0

    I J

    Xl

    0.32 Chul

    Init ial Location

    Maximum I / of Tank Shell

    ~ I r - - - - - - - ~ ~ . - - - - - - - - - - - - - - - - - ~

    / 1

    0.61

    h

    Deflection

    I

    /Gi r th

    oint

    ~ ~

    /

    Min

    Height of X

    2

    hen

    = I

    C=0=X

    2

    /

    /

    unrestrained

    Radial

    GrCMth

    t

    u

    FIGURE 2 ELASTIC MJVEMENT OF SHELL COURSES AT

    GIRrH JOINT

    62

  • 8/10/2019 njit-etd1973-003

    62/79

    I

    i

    H

    o Basic

    API-6S0

    ,Appendix

    D

    Appendix

    G 0

    Top

    Course

    8t=:;::-= /8

    6th

    16 t

    Course

    . /

    . /

    ;L 116

    5th

    Course

    24 I < / I _ .... 124

    4th

    32 I Course II// ;; : ; ; 1 32

    3rd

    40 I Course

    API-GSO

    Y 1

    7 c f

    140

    2nd

    48

    I Course API

    65O-K

    '(I

    .11 148

    Botton

    Course

    ___ rr6' '_

    56 56

    6

    18

    23 30

    Average

    Circumferent ia l Stress

    in Kips

    per Square Inch

    FIGURE 3

    ACI UAL

    STRESSES BY ANALYSIS :IN 220

    FCOT

    DIAMETER

    TANK

    63

    34

  • 8/10/2019 njit-etd1973-003

    63/79

  • 8/10/2019 njit-etd1973-003

    64/79

    o

    3 f t .

    loating Roof

    Pinned

    t

    Maintenance

    Level

    loating Roof at

    Minimum

    Operating

    Level

    6 f t .

    bolt

  • 8/10/2019 njit-etd1973-003

    65/79

    IO inCh i a m e t e r ~

    . / Pin to Alloo for

    Floating

    o Roof Maintenance

    Level

    Operation

    I

    I

    I

    I

    I

    . Minimum

    I inch.

    11-..1 :::==t1

    I

    I

    ~ F l o a t i n g

    Roof Deck

    l l- _ - - I l : : : :== =

    I

  • 8/10/2019 njit-etd1973-003

    66/79

    O

  • 8/10/2019 njit-etd1973-003

    67/79

    i

    I

    tl

  • 8/10/2019 njit-etd1973-003

    68/79

    Tank Color

    White

    Light Grey

    Medium

    Grey

    15

    20

    30

    40

    Paint Factor

    1.00

    1.33

    1 46

    80 1 15 2

    I

    I

    \ 5 ~

    t . f ~ ~ - . A

    .l ~ o 6

    i.O 0-t-

    ::::ture

    ~ ~ _

    Change

    n

    Dp

    ..

    10

    Fuel oi l

    , I ; I

    Cr:ude

    o i l 10 100 1000 oJOO

    T -

    ~ _ ~ _ ~

    0

    100 1000

    10000

    FIGURE 9 BREATHING LOSSES FROM A FIXED

    RCX F

    TANK

    64

    4 >

    152& 40

    .

    &

    /J

    /d

    .

    4-

    6

    8

    J.O

  • 8/10/2019 njit-etd1973-003

    69/79

    15

    20

    00

    15

    til

    rn

    S 1

    rn

    S

    M

    .r-

    10

    r I

    0

    .r-

    0

    1

    r I

    ,

    g

    Ul ' .

    5

    .... f ......

    Pivot

    l)

    4

    -5

    CQ

    .r-I

    2

    U)

    .......

    3

    4

    1 -1

    P.

    ,

    Ul

    ,

    0-36

    3

    ~

    -

    "

    \.

    -

    -

    2

    ,

    5 ~ e 2 _

    H

    U)

    -

    i

    ffi

    -

    60

    2

    H

    -

    ,

    .

    A I

    -

    80

    -

    H

    -

    "

    ' 6

    ..-

    100

    ~

    1

    6

    :}-

    ~

    ,02

    ,

    0.8

    8

    "

    200

    1

    .......

    10

    1

    ,

    400

    0

    6

    0.8

    ..........

    ,

    0.6

    .......

  • 8/10/2019 njit-etd1973-003

    70/79

    ro

    .r-

    til

    P I

    til

    Ul

    Pol

    H

    ~

    :>

    0.4

    0.6

    0.8

    1

    1

    2

    ~

    en

    rn

    2

    3

    4

    :>

    3

    6

    ro

    -..-{

    4

    8

    m

    1

    6

    12

    1

    80

    -

    Of.t..

    0

    ..iJ

    s

    i

    i

    40

  • 8/10/2019 njit-etd1973-003

    71/79

    300

    250

    8

  • 8/10/2019 njit-etd1973-003

    72/79

    1000

    100

    5

    ;

    /

    1 .

    I-

    /

    /

    7

    v

    1/

    /

    /

    /

    ~

    ~

    I

    i

    \

    I

    1

    \

  • 8/10/2019 njit-etd1973-003

    73/79

    N

    r I

    &

    r I

    r I

    .r-

    4-l

    4-l

    0

    S

    at

    ro

    II

    r

    0

    r I

    H

    q.

    I

    r I

    x

    r::4

    til

    r

    H

    r

    t

    8

    E-

    J l

    8

    il

    8

  • 8/10/2019 njit-etd1973-003

    74/79

    - - - - - - - - - - - - - - ~ - - - - - - - - - - - - ~ - - - - - - - - - - - - - - - - - - - - - - - ~ ~

    0

    (V )

    0

    N

    ~

    r I

    r-i

    fZ

    r-i

    8

    I

    1

    0

    [J

    t=:t

    8

    8

    I

  • 8/10/2019 njit-etd1973-003

    75/79

    U

    f

    H

    P I

    ;

    100

    D=llO

    D=150

    75 I

    D==200

    5

    I . Ji,< ;

    25 I

    .. jf

    : / I

    D

    =

    Diameter

    of

    Tank

    25

    500 750

    Cost

    n Thousnads

    of Dollars

    FIGURE 6 COST OF PILED MAT

    FOUNDATION

  • 8/10/2019 njit-etd1973-003

    76/79

    ~ ~ ~ ~ ~ o

    o ;Sf

    0

    M

    U)

    ~

    ~

    -I

    8

    4-1

    ]

    ~

    f:1

    E-

    8

    jJ

    [J

    8

    r-I

  • 8/10/2019 njit-etd1973-003

    77/79

    Type o f Tank

    Pro tec t ion

    Atmospheric

    Tanks

    Atmospheric Tanks Sto r ing

    Stor ing Flammable

    Hazardous

    Liquids

    With

    Boi1

    o r Combust ib le

    Over Charac t e r i s t i c s

    Liquids

    Diked

    1/2

    Times Diameter

    Diameter o f

    Tank

    bu t Need

    o r

    o f

    Tank

    but Need

    Not Exceed 175 Fee t

    F loa t ing

    Drained

    Not

    Exceed 90 Fee t

    Roof

    None

    Diameter

    o f Tank

    Times Diameter

    o f Tank bu t

    bu t Need Not Exceed

    Need Not

    Exceed

    350 Fee t

    175

    Fee t

    Approved

    1/2

    Times Diameter

    Diameter o f

    Tank

    bu t Need

    Foam

    o r

    o f

    Tank but Need

    Not Exceed

    175

    Fee t

    I ne r t ing

    Not Exceed 90 Feet

    System on

    and

    Sha l l

    Not Be

    The

    Tank

    Less

    Than 5 Feet

    Cone

    Diked

    Diameter

    o f Tank bu t

    Times Diameter o f Tank but

    Roof

    o r

    Need Not

    Exceed

    175

    Need Not Exceed

    350

    Fee t

    Tank

    Drained

    Fee t

    None

    Times

    Diameter o f

    4 Times i a m ~ t e r o f

    Tank

    Tank but Need

    Not

    bu t

    Need

    Not

    Exceed

    350

    Exceed

    350

    Feet

    Fee t

    T BLE

    MINIMUM

    DISTANCE IN FEET

    FROM

    PROPERTY LINE OR NEAREST IMPORTANT BUILDING

    67

  • 8/10/2019 njit-etd1973-003

    78/79

    Suggested

    Min.

    I gn i -

    Hazard

    Flash t i o n

    Boi l ing I d e n t i f i c a t i o n

    Poin t Temp.

    Poin t

    Flamma- Reac-

    Deg.

    F.

    Deg.

    F. Deg. F.

    Heal th

    a b i l i t y

    t i v i t y

    Fuel

    Oil

    No.

    1

    100

    410

    304-574

    0

    2

    0

    Kerosene)

    Range

    Oil)

    Coal

    Oil)

    Fuel Oil No. 2

    100 494

    0 2

    0

    Fuel Oil

    No.

    4 130

    505

    0

    2

    0

    Fuel Oil

    No. 5

    130

    0

    2

    0

    Fuel

    Oil-No.

    6

    150

    765

    0

    2 0

    Nap tha V

    P .

    85 450

    280-350

    T

    3

    0

    Naptha

    V. M

    P .

    28

    450

    212-320

    T

    3

    0

    The fol lowing

    discuss ions on

    degrees

    o f hazard

    a r e an i n t e r p r e t a t i o n of the

    i n format ion conta ined

    with in NFPA

    No.

    704M and

    a r e r e l a t e d s p e c i f i c a l l y

    to the

    f i r e

    f igh t ing aspec t s .

    Refer

    to NFPA

    No.

    704M fo r a

    de ta i l ed d i scu s s io n

    o f

    the

    i d e n t i f i c a t i o n sys tem.

    TABLE

    2

    Sheet 1 o f 2

  • 8/10/2019 njit-etd1973-003

    79/79

    HEALTH

    I Mater ia l s only s l i g h t l y hazardous to hea l th . t

    may be des i r ab le

    to

    wear se l f -conta ined brea th ing

    apparatus .

    Materials

    which

    on exposure

    under

    f i r e condi t ions

    would o f f e r

    no hazard

    beyond t h a t o f

    ord inary

    combust ible mater ia l .

    FLMJI ..MABILITY

    3

    Mater ia l s

    which can be i gn i t ed under almost

    a l l

    normal

    temperature

    condi t ions . Water may be

    ine f fec t ive because o f

    the

    low f l a sh po in t .

    Mater ia l s

    which

    must

    be

    moderate ly

    heated

    before

    ign i t ion

    w i l l

    occur .

    Water spray may be used to

    ex t ingu i sh the f i r e because the mater ia l

    can

    be

    cooled

    below

    its

    f lash point .

    REACTIVITY

    St ab i l i t y )

    o

    Materials

    which

    in themselves)

    are

    normal ly

    s tab le

    even under

    f i r e

    exposure

    condi t ions

    and which are

    not r eac t ive

    with

    water . Normal

    f i r e

    f ight ing

    procedures may be used.

    TABLE PROPERTIES OF FUEL

    OILS

    AND THEIR HAZARD

    IDENTIFICATION

    68

    Sheet of