Nind Observations Collected during the Southern California ...

118
CONTRACT ND. AB32-133 · FINAL REPORT JUNE 1991 Diagnostic Analysis· of \Nind Observations Collected during the Southern California. Air Guality Study

Transcript of Nind Observations Collected during the Southern California ...

Page 1: Nind Observations Collected during the Southern California ...

CONTRACT ND AB32-133 middot

FINAL REPORT JUNE 1991

Diagnostic Analysismiddot of Nind Observations Collected

during the Southern California Air Guality Study

DIAGNOSTIC ANALYSIS OF WIND OBSERVATIONS COLLECTED DURING THE

SOUTHERN CALIFORNIA AIR QUALITY STUDY

FINAL REPORT CONTRACT NO A832-133

Prepared for

Research Division California Air Resources Board

1102 Q Street PO Box 2815

Sacramento CA 95812

Submitted by

Systems Applications International 101 Lucas Valley Road

San Rafael California 94903

Prepared by

Sharon G Douglas Robert C Kessler

Christopher A Emery Janice L Burtt

JUNE 1991

Abstract

One objective of the Southern California Air Quality Study (SCAQS) was to acquire an improved understanding of pollutant transport within the South Coast Air Basin (SOCAB) The complex meteorology of the SOCAB governs the transport of pollutants within the basin and through its boundaries Thus a thorough understanding of the mesoscale airflow patterns in the SOCAB is critical to understanding pollutant transport in the basin

Wind data collected during eight intensive monitoring periods in the 1987 SCAQS were used to analyze the mesoscale airflow patterns in the SOCAB The SCAQS data base contains the most comprehensive set of surface and upper-air wind data ever assembled for the SOCAB The data set represents good spatial and temporal resolution of some mesoscale airflow features

The wind data were analyzed using the SAI Diagnostic Wind Model (DWM) In this model observational wind data are incorporated into a first-guess field that consists of a domain-mean wind that has been adjusted for terrain effects The analysis consisted of (1) generation of hourly gridded wind fields for the 17 SCAQS intensive study days using the DWM (2) analysis of the mesoscale airflow patterns and (3) calculation of forward and backward particle trajectories to examine pollutant transport in the SOCAB

F4500 9106lrl

l

Disclaimer

The statements and conclusions in this report are those of the Contractor and not necessarily those of the California Air Resources Board The mention of commercial products their source or their use in connection with material reported herein is not to be construed as actual or implied endorsement of such products

F4500 9106lrl

ii

Contents

1 middot INTRODUCTION 1

2 GENERATION OF WIND FIELDS AND ANALYSIS OF AIRFLOWPATIERNS 8

Diagnostic Wind Model 8 General Procedures 9 Summer Intensive Monitoring Periods 10 Autumn Intensive Monitoring Periods 15

3 PARTICLE PATH ANALYSIS 18

Calculation of Particle Paths 18 Summer Particle Paths 31 Autumn Particle Paths 32 Comparison with Tracer Data 33 Uncertainty Analysis 34

References middot 43

Appendix A SCAQS Wind Monitoring Sites Appendix B SCAQS Diagnostic Wind Analyses Appendix C Particle Paths

F4500 91061rl

iii

II

(

1 INTRODUCTION

One objective of the 1987 Southern California Air Quality Study (SCAQS) was to acquire an improved understanding of pollutant transport within the South Coast Air Basin (SOCAB) The complex meteorology of the SOCAB governs the transport of pollutants within the basin and through its boundaries Thus a thorough understanding of the mesoscale airflow patterns in the SOCAB is critical to understanding pollutant transport in the basin

Wind data collected during eight intensive monitoring periods in the SCAQS were used to analyze the mesoscale airflow patterns in the SOCAB The SCAQS data base contains the most comprehensive set of surface and upper-air wind data ever assembled for the SOCAB High spatial and temporal resolution wind measurements are available for 17 intensive study days representing both summer and autumn air-quality episodes

19 June 24-25 June 13-15 July 27-29 August 2-3 September 11-13 December 3 December and 10-11 December

The data set represents data good spatial and temporal resolution of some mesoscale airflow features The SCAQS surface wind monitoring sites are listed in Table 1-1 the upper-air wind monitoring sites are listed in Table 1-2 Data availability varied from episode to episode Plots of the surface and upper-air wind monitoring site locations for each episode are given in Appendix A

The wind data were analyzed using the Systems Applications International (SAi) Diagnostic Wind Model (DWM) (Douglas et al 1990) Using this model observational wind data are incorporated into a first-guess field that consists of a domain-mean wind that has been adjusted for terrain effects Figure 1-1 illustrates the complex topography of the SCAQS wind analysis domain This domain is identical to the Urban Airshed Model modeling domain used by the South Coast Air Quality Management District for modeling performed in support of their 1991 Air Quality Management Plan

9106102 l

TABLE 1-1 SCAQS surface wind monitoring sites

UTM- UTM-Site Easting Northing

Identifier Location (km) (km)

ALHA Alhambra 3945 37727

ANAH Anaheim 4150 37425

AZUS Azusa 4149 37774

BANN Banning-Allesandro 5117 37540

BARS Barstow 4979 38611

BU23 Buoy 46023-Point Conception 1594 38014

BU25 Buoy 46025-Catalina Ridge 3054 37307

BURK Burbank 3795 37830

CASI BLM-CasitasLos Padres NF 2824 38089

CELA Los Angeles-North Main 3869 37701

CHIL BLM-ChilaoAngeles NF 4046 37990

CHIN Chino 4365 37634

CI Santa Catalina Island 3683 36963

ONS Cajon Summit 4617 37990

CLAR Claremont College 4351 37735

CM36 CIMIS-Blythe 7262 37256

CM44 CIMIS-U C Riverside 4690 37581

CM50 CIMIS-Thermal 5703 37230

CM55 CIMIS-Palm Desert 5572 37323

CM60 CIMIS-Barstow 4895 38621

CM62 CIMIS-Temecula 4794 37055

COMP Compton Airport 3855 37503

COST Costa Mesa-Placentia 4138 37242

CRES Lake Gregory-Crestline 4748 37890

ELRO El Rio-Rio Mesa School 3026 37922

ELSN Elsinore 4677 37260

FONT Fontana-Arrow Highway 4534 37731

Continued

2

9106109

n iil itb( r r tt A-TABLE 1-1 Continued

UTM- UTM-Site Easting Northing

Identifier Location (km) (km)

GLEN Glendora-Laurel 4215 37782

HAWT Hawthorne 3734 37543

HESP Hesperia-17288 Olives 4738 38084

HF Henninger Flats 4006 37847

KH Kellogg Hill 4242 37711

LA Los Alamitos-SCE Power Plant 3980 37370

LAHB La Habra 4121 37542

LANC Lancaster 3957 38415

LBCC Long Beach City College 3947 37437

LCAN La Canada 3882 37861

LGBH North Long Beach 3900 37430

LSAL Los Alamitos-Orangewood 4045 37398

LYNN Lynwood 3882 37548

MALI Malibu 3440 37669

MISS Mission Hills 3651 37932

NEWL Newhall-County Fire Station 3590 38060

NORC Norco-Norconian 4472 37533

NTD Pt Mugu Naval Weapons Test Center 3048 37769

OJAI Ojai-1768 Maricopa Highway 2914 38138

PASA Pasadena-Wilson 3961 37773

PERI Perris 4784 37380

PICO Pico Rivera 4023 37641

PIRU Piru-2SW 3324 38076

PLSP Palm Springs-Fire Station 5425 37457

POMA Pomona 4307 37696

PV Palos Verdes-San Pedro Hill 3762 37346

Continued

3 91061 09

TABLE 1-1 Concluded

UTM- UTM-Site Easting Northing

Identifier Location (km) (km)

RDLD Redlands-Dearborn 4853 37686

REDO Redondo Beach 3720 37459

RESE Reseda 3587 37851

RIAL Rialto 4625 37760

RIVR Riverside-Rubidoux 4615 37620

SIMI Simi Valley-5400 Cochran 3449 37940

SNBO San Bernardino 4748 37739

SNI middotsan Nicolas Island 2684 36823

TANB BLM-TanbarkAngeles NF 4301 37849

TEME BLM-TemescalLos Padres NF 3531 38167

TORO El Toro 4320 37252

TRON Trona-Market Street 4361 39573

UPLA Upland ARB 4420 37736

VCTC Victorville-Civic Drive 4707 38185

VENI Venice Beach 3642 37612

VERN Vernon 3874 37625

WALN Walnut 4223 37677

WHIT Whittier 4053 37540

WSLA West Los Angeles-VA Hospital 3657 37686

WSPR BLM-W arm Springs Angeles NF 3552 38291

ZUMA Zuma Beach 3313 37659

9106109 4

TABLE 1-2 SCAQS upper-air wind monitoring sites

UTM- UTM-Site Easting Northing

Identifier Location (km) (km)

BUR BurbankGlendalePasadena Airport 3748 37850

DAGG Daggett SCENES Site 5198 38581

EMUA El Monte-9528 Telstar 4021 37700

GLUA Glendora-near SCAQMD site 7000591 4216 37783

LBCC Long Beach City College 3947 37437

LBCR Long Beach City College 3947 37437

LMUA Loyola Marymount U niversity-Engng Bldg 3694 37604

NEED Needles SCENES Site 7181 38496

NSI San Nicolas Island 2717 36796

NTD Pt Mugu Naval Weapons Test Center 3048 37769

ONT Ontario International Airport 4443 37684

PSP Palm Springs 5460 37429

RAL Rialto 4589 37567

SFUA Santa Fe Springs 4020 middot 37557

TRM Thermal Airport 5776 37209

VBG Vandenberg AFB 1733 38472

YLUA Yorba Linda County Park 4287 37549

591061 10

5~

NORTH 275 325 375 425 475 525 575

~-~

bull ( I (o(r--L__- __ c_ __ ) -9) I _)I --~ ---~ __------__

bull (Q ~ ~ l-- middot r l__ _ _ 1 2 oo--_ - _ ~ shy

-

----- ----

------ ---

~middotmiddot- lt~]~---~ ~ 1 L

~~ 0

- o 7 -

----

~ middot -_ -_ I ( C~ ) ~ middot---) lt____ ) 9 bull ~- J t------------ ~ middotbull _ __ 10o -- - - - - - - 0 __ - J J--aoo ltJ

3620---_--__ _ - 0) ------- ___ -- - - ---- -- - --~- 7--

- middotmiddot -middot-- 0 _ - - I 1---------- ---- ~ ---~-----_ -~- ------- -_ ------~lt()~ --nmiddotor ~o-gtpcbull-middot ccc_--gt ____ middot_middot Ji tdegoo CmiddotI bull -bull - - I ---

middot-middot ___ - 1 c___ ~ i-- l bull - --- bullsoclt---_ middot middot-~soc_ ~- le r---- ltD

_ - -- ____ -c bull -~------1 5

= __ __ ) --~ --_ ---- ____ - _____-~~~-~ ~ _ ---~-frac142--~~ so9~ _ Q___~ - -- _ bull bull 1 middot -~ - -- - bull bull c- rAo 0o(Y--

-_ -------=--=_6CO-------- - ~)_O~ _ ~_ lt--middot_~~--~ (_ )-~- - _- ~ 0

~) ( ___ ------ -~- C jjh --- - ~ I 3770

t- 300- middotoo___ -~- l _2 ---sii middot middot 50~ ( C tshyV10w w ~ C ~_( middot bull i

l_ --t

~

__ _~) igtgt

- 1

- middot

7)_ -o-

- _middot-- -- ~ ---30~lt_~-L_ 9oo_~gn~~-__~~

U)

3770

- - o ~~~~d l -- o~ Jl _

si (_ - (----_ ( 1400t 37203720

- 1 ) reg_~S ~ ~~

7 9 b -- -- 0 ~

i --shyf I I I ~Ibull-bull

367~s I I I I I I I 13251 I I I I I I I 1351 I I I I I I I 14251 I I I I I I 14~51 I I I I I I I ss 7 I I I I I I I5s I I I I 3670

SOUTH

I I I I I I 0 10 20 30 40 50

(KM) i

FIGURE 1-1 The SCAQS 1987 analysis domain (axes labeled in zone 11 UTM coordinates topography contoured in meters)

-- ii gti kd

Our analysis consisted of (1) generation of hourly gridded wind fields for the 17 SCAQS intensive study days using the DWM (2) analysis of the mesoscale airflow patterns and (3) calculation of forward and backward particle trajectories to examine pollutant transport in the SOCAB

The results of the diagnostic analysis of SCAQS wind observations are presented in this report The generation of wind fields and the resulting airflow patterns are described in Section 2 The trajectory analysis is presented in Section 3 Plots of the wind fields are given in Appendix B The trajectory plots are included in Appendix C

9106102 7

2 GENERATION OF WIND FIELDS AND ANALYSIS OF AIRFLOW PATTERNS

DIAGNOSTIC WIND MODEL

Hourly gridded wind fields were generated for the 17 SCAQS intensive monitoring days using the Diagnostic Wind Model (DWM) (Douglas et al 1990) This model incorporates observations where they are available and provides some information on terrain-induced airflows in regions where local observations are absent The model is formulated in terrain-parallel coordinates Wind fields are generated using a two-step procedure

In step 1 a domain-scale mean wind is adjusted for terrain effects These include the kinematic effects of terrain (lifting and acceleration of the airflow over terrain obstacles) thermodynamically generated slope flows and blocking effects Step 1 produces a spatially varying gridded field of u and v for each vertical layer within the model domain

In step 2 observational information is added to the middot(uv) field calculated in step 1 using an objective analysis procedure observations are used within a user-specified radius of influence while the step 1 (uv) field is used in subregions where observations are unavailable The following modified inverse-distance-squared weighting scheme (Ross and Smith 1986) is used for the interpolation of data

where (u0

v0 )k denotes an observed wind at station k rk is the distance from station k to a

given grid point (u v)1 is the step 1 wind field at the grid point and (u v)i is the updated wind vector The parameter R controls the relative influence of the observations and the step 1 wind field

Following the interpolation a five point smoother of the form

9106102

Amiddot 1J

8

is applied to the horizontal wind field to reduce discontinuities that may result from the interpolation The vertical velocity is calculated by integrating the incompressible conservation of mass equation Zero-gradient lateral boundary conditions are used

GENERAL PROCEDURES

Generation of the SCAQS wind fields involved (1) preprocessing of the wind data for input into the DWM (2) plotting and quality control checking of the data (3) specification of the model input parameters (4) exercise of the DWM and (5) graphical display of the gridded wind fields Winds were analyzed at six vertical levels 10 100 300 600 1000 and 1500 meters (m) above ground level (agl)

In the preprocessing step the upper-air data were vertically interpolated to the model levels and temporally interpolated to enhance the temporal consistency of the wind fields and to provide hourly input for the DWM

Following the preprocessing step the data were plotted and examined for horizontal vertical and temporal consistency Data that failed the quality control checks were eliminated from the model input data set

The controlling parameters for the DWM include the maximum radius of influence (RMAX) at which a monitoring station can influence the interpolation at a grid point the weighting parameter for terrain effects (R) the number of stations to be used in the interpolation (NINTRP) and the number of smoothing passes (NSMTH) Note that the maximum radius of influence is specified independently for the surface level ( over land) upper levels (over land) and over-water portions of the domain The weighting parameter for terrain effects and the number of interpolating stations are specified separately for the surface level and upper levels In the diagnostic analysis of the SCAQS wind observations these parameters were specified as follows

RMAX (surface) 20km RMAX (aloft) 100 km RMAX (over water) 150 km R (surface) 10km R (aloft) 50 km NINTRP (surface) 4 NINTRP (aloft) 3 NSMTH 4

Tests were performed to examine the sensitivity of the DWM to the various contr ling parameters and to select the optimum values of these parameters for the SCAQS v nd analysis

9106102 9

The DWM also requires as input a domain-mean wind and stability information For this analysis the domain-mean wind was specified separately for each analysis level and was based upon the average of the level 6 (1500 m agl) wind observations To account for friction the speed of the domain-mean wind was reduced for the lower levels by multiplying the average wind speed for level 6 by the following scaling factors

Level Scaling Factor 1 048 2 072 3 083 4 090 5 096 6 100

The domain-scale lapse rate was the calculated average of four inland sites These varied according to data availability

Six-hourly plots of the level I (surface) level 3 (300 m agl) and level 5 (1000 m agl) wind fields for each episode are given in Appendix B

SUMMER INTENSIVE MONITORING PERIODS (

Mesoscale airflow in the SOCAB during the SCAQS summer intensive monitoring periods appears to have two components

A basic diurnal cycle driven by land-water temperature differences and complex terrain and

A perturbation associated with the overlying synoptic flow

19 June 1987

The surface and upper-air wind monitoring site locations for this intensive monitoring period are indicated on pages A-1 and A-2 respectively Plots of the diagnostic wind analyses for 19 June are given on pages B-1 through B-12

The surface early morning airflow pattern on this day is characterized by weak winds over much of the coastal and inland areas with moderate NW winds over the Coachella Valley and offshore At 300 m agl winds are S over the western half of the domain and W to NW over the eastern half of the domain The overlying flow at 1000 mis W

9106102 10

n1er

The sea breeze is somewhat slow to appear in the western basin on this day but has begun to develop by 1000 PST At this time winds at 300 m agl remain S over the western part of the domain and W to NW over the eastern part of the domain Some S flow is also apparent at 1000 m

During the afternoon hours three distinct features are apparent in the surface airflow pattern

A sea breeze (W flow) develops along the coast between Santa Monica and Palos Verdes and penetrates inland A branch of the sea breeze penetrates into the San Fernando Valley resulting in weak SE flow at Burbank and Reseda

An area of weak (SW) winds forms in the Whittier-La Habra-Pico Rivera area persists throughout the afternoon and fonns a convergence zone in the central basin with the penetrating westerly flow The S component of this flow is due to sea breeze development along the coast near Long Beach

Upslope flow develops along the foothills of the San Gabriel and San Bernardino Mountains (eg at Glendora and San Bernardino) Along the eastern foothills the upslope flow is supplanted during the afternoon by the penetrating W flow

By 1600 PST on 19 June the depth of the upslope flow near Glendora exceeds 600 m Strong outflow is apparent through the Cajon and Banning passes Aloft winds are generally SW with some SE flow near Burbank and NW flow over the Coachella Valley

Significant onshore flow (3 ms) persists along the Santa Monica-Palos Verdes coastline through 2200 PST Feature-s of the afternoon airflow persist aloft through this time

24-25 June 1987

Surface and upper-air wind monitoring site locations for this intensive monitoring period are indicated on pages A-3 and A-4 respectively Plots of the diagnostic wind analyses for 24-25 June are given on pages B-13 through B-36

The airflow patterns on these two days are similar to one another and to the ttern on 19 June The overlying flow is generally weak below 1000 m agl with moderak t5 ms) SE flow at 1500 m agl

On 24 June the early morning surface airflow patterns are characterized by ver middoteak winds At 300 m agl winds in the Coachella Valley are SE By 1000 PST a we1 organized zone of weak S flow extends from Long Beach to Pasadena this S flm

9106102 11

(

reaches a depth of 300 m agl Southeastern flow in the Coachella Valley and E flow through Banning Pass are apparent both at the surface and 300 m agl S to SE flow dominates at 1000 m agl The II three-zone II surface airflow pattern is apparent during the afternoon The wind shifts to Wat Banning Pass by 1500 PST At 300 m agl winds are SW over much of the basin with SE flow at Burbank and in the Coachella Valley At 1000 m winds are generally SW At 2200 PST the airflow pattern is characterized by weak unorganized flow at the surface and 300 m agl Winds at 1000 m are NW over much of the domain but SE over the Coachella Valley

The airflow on 25 June is similar to that on 24 June During the early morning hours winds at the surface are very light Weak SE flow is apParent at 300 m agl At 1000 m agl winds continue to veer toward N The sea breeze develops more quickly than on the previous day and winds at Banning Pass become westerly by 1300 PST Calm winds are observed at Pico Rivera throughout the afternoon As on 24 June the afternoon airflow at 300 m agl is characterized by SW flow over the basin and SE flow at Burbank and over the Coachella Valley Upward propagation of W flow is generally slower than on 24 June Winds at 1000 m agl are S to SE During the evening hours the surface winds become light while at 300 m agl winds over the Coachella Valley become NW Organized W flow is apparent over the W basin through a depth of at least 300 m agl through 2200 PST

13-15 July 1987

Surface and upper-air wind monitoring sites for this intensive monitoring period are shown on pages A-5 and A-6 respectively Plots of the diagnostic wind analyses for 13-15 July are given in Figures B-37 through B-72

Airflow patterns on 13 and 14 July are generally consistent with the basic diurnal cycle described earlier However an unusual airflow pattern develops in the Coachella Valley on both days On 15 July strong SE forcing is associated with a delay in sea breeze development

The 13 July early morning surface airflow pattern is characterized by light winds and a weak cyclonic eddy over the Santa Monica Bay Winds aloft are light to moderate and primarily W The sea breeze develops rapidly on this day and by 1200 PST W flow overwhelms the S sea-breeze flow in the Long Beach Area W flow appears at Banning Pass by 0800 PST The surface afternoon airflow is characterized by the three-zone airflow pattern described earlier with strong upslope flow along the foothills ( gt 5 mls) and significant outflow through Cajon Pass Observations at Palm Spring (NW winds) and Thermal (SE winds) indicate a convergence zone in the Coachella Valley with a depth of at least 600 m W flow dominates at middot1000 m with S to SE flow over the Coachella Valley During the evening hours a cyclonic eddy redevelops over the Santa

9106102 12

rtMt1

Monica Bay winds are weak throughout the basin but airflow into the Coachella Valley is especially strong

Airflow patterns on 14 July are similar to 13 July with a few exceptions During the early morning hours the surface airflow is characterized by weak disorganized flow There is no eddy apparent over the Santa Monica Bay The overlying flow is weak and primarily S to SE at 300 m agl but W to NW at 1000 m agl Sea breeze development is approximately two hours slower on this day than on 13 July By 1000 PST weak S flow has developed over the Whittier-La Habra-Pico Rivera area and SE flow is apparent at Burbank AS component to the flow appears at 1000 m The afternoon surface airflow pattern is similar to that on 13 July but the S upslope flow at Glendora is weaker S flow develops at Elsinore and several coastal Orange County sites The Coachella Valley convergence zone reappears at the surface at 1600 PST two hours later than on the previous day At 300 and 1000 m agl W to SW flow dominates over the western twoshythirds of the domain SE flow is apparent over the Coachella Valley During the evening hours the surface airflow over the central basin is S to SW W flow components persist along the eastern foothills through 2200 PST

On the morning of 15 July surface winds are weak but maintain a S component Moderate SE flow is apparent offshore The overlying flow is generally E to SE By 1000 PST the surface airflow pattern is characterized by S flow over the central basin and along the foothills SE flow in the Coachella Valley and E flow through Banning Pass The depth of the S to SE flow is greater than 1000 m agl During the afternoon a weak sea breeze penetrates inland and winds along the foothills become W Winds shift from E to NW at Banning Pass at 1600 PST A weak S flow component persists in the Whittier-La Habra-Pico Rivera area throughout the afternoon A weak slopevalley circulation develops in the Coachella Valley resulting in SE flow there At 300 m agl winds are SW to W over the central basin and SE over the Burbank and the Coachella Valley At 1000 m S to SE flow dominates W winds persist along the foothills through 2200 PST and weak S to SE flow redevelops at the surface Remnants of the afternoon airflow pattern persist aloft

27-29 August 1987

The surface and upper-air wind monitoring site locations for this intensiv middot1onitoring period are indicated on pages A-7 and A-8 respectively Plots of the dia stic wind analyses for 27-29 August are given on pages B-73 through B-108

On the morning of 27 August surface winds are weak over most land areas a 1djacent coastal waters with moderate (5 ms) NW winds well offshore Winds aloft a Jrimarily N with weak NE flow at 100-300 m agl over the central basin By 1000 PST threeshy

IIzone airflow pattern has developed at the surface and is somewhat apparent ( hin the limits of the upper-air network) at 300 m agl SE flow has developed at 100( agl

9106102 13

This pattern is maintained throughout the afternoon Within the Coachella Valley a classic daytime slopevalley flow pattern develops with SE flow extending to a depth of 1000 m E flow develops at Banning Pass and persists through 1700 PST W flow over the basin develops upward throughout the afternoon By 1600 PST wind at 300 m agl are W to SW over the central basin and SE over Burbank and the Coachella Valley During the evening hours the features of the mesoscale airflow pattern over land weaken both at the surface and aloft There is no clearly developed offshore-directed land breeze

On the morning of 28 August the surface winds are weak and the overlying flow is primarily E Retardation of the sea breeze by the overlying E flow is apparent by 0900 PST S flow develops in the Long Beach area E flow at Banning Pass is substantially stronger than on 27 August During the afternoon of 28 August S flow persists at Long Beach and develops in the Whittier-La Habra-Pico Rivers area SE flow is observed along the Orange County coast E flow through Banning Pass persists throughout the day W wind components along the Santa Monica-Palos Verdes coastline are weaker than on the previous day and NW flow fails to develop at San Nicolas Island W flow over the central basin disrupts the SE flow aloft During the evening hours the airflow features weaken W flow along the foothills does not persist as long as on the previous day

The early morning airflow pattern on 29 August is characterized by SE flow both at the surface and aloft Sea breeze development on this day is slower than on either of the previous two days S flow again develops in the Long Beach area and appears to be stronger than on the previous day Although the sea breeze is weaker winds at Banning Pass shift from E to SW by 1300 PST This shift occurs at 1800 on 27 and 28 August SE flow persists aloft with limited upward development of the W sea breeze flow W flow persists in the western basin area through 2200 PST and SE flow persists aloft

2-3 September 1987

The surface and upper-air monitoring site locations for this intensive monitoring period are indicated on pages A-9 and A-10 respectively Plots of the diagnostic wind analyses for 2-3 September are given on pages B-109 through B-132

The first day of this period is probably the most anomalous of the summer SCAQS intensive measurement days Overlying easterly forcing during the morning hours prevents development of W flow along the foothills and inhibits upward development of the sea breeze over the western and central portions of the basin The easterly forcing appears to reverse rather abruptly on the afternoon of 2 September Unusual winds are also observed at Burbank on 2 September During the late morning and afternoon Burbank experiences an unusual wind shift from SE to W through a depth of 1000 m On 3 September the overlying airflow is W and the airflow patterns are more typical

9106102 14

rrn

On the morning of 2 September strong downslope flow results in N to NE winds at several sites along the foothills of the San Gabriel Mountains At 300 m strong NE winds are apparent over the central basin The overlying flow is E By 1000 PST the sea breeze appears as W flow along the Santa Monica-Palos Verdes coast and S flow in the Long Beach area The surface analysis indicates a band of S flow from Costa Mesa to Azusa W flow has not developed along the eastern foothills Winds are SE in the Coachella Valley and E through Banning Pass E flow aloft continues and intensifies During the early afternoon hours a relatively strong sea breeze penetrates inland to Azusa while winds in the Whittier-La Habra-Pico Rivera area remain weak The sea breeze weakens considerably after mid-afternoon Between 1200 and 1500 PST the wind at Burbank shifts from SE to W through a depth of 600-1000 m By 1600 PST the overlying flow has shifted from SE to W Onshore flow continues at the surface through 2200 PST while the winds weaken considerably Although the overlying W flow persists in general 300 m agl winds at Burbank become SE

The early morning airflow on 3 September is characterized by weak winds at the surface SE flow at 300 m agl and primarily W flow at 1000 m agl Although the major surface airflow features appear to develop as on previous days upward development of the pattern is limited Strong S flow is apparent by 1200 PST between 100 and 300 m agl over the central and western basin By 1600 PST the sea breeze has penetrated well inland Imbedded in the sea breeze is a persistent calm area in the vicinity of Lynwood S flow persists at 100-300 m agl over the central and western basin while flow at this level off shore remains NW At 1000 m agl W flow continues This general pattern persists through 2200 PST but weakens considerably especially at the surface

AUTUMN INTENSIVE MONITORING PERIODS

The mesoscale airflow patterns in the SOCAB during the SCAQS autumn intensive monitoring periods exhibit a weaker diurnal cycle than the summer airflow patterns Synoptic forcing also appears to be stronger

11-13 November 1987

The surface and upper-air wind monitoring site locations for this intensive monitoring period are plotted on pages A-11 and A-12 respectively Plots of the diagnostic wind analyses for 11-13 November are given on pages B-133 through B-168

During the early morning hours of 11 November NE surface winds are apparent over most of the region Surface wind speeds are very light over the basin and somewhat stronger along the foothills and the coast At 300 m agl winds are light and generally E At 1000 m agl winds are W to SW over the western half of the domain and SE over the eastern half of the domain Weak E to NE surface flow persists throughout most of the

9106102

15

morning in the first 300 m An apparent anticyclonic eddy (SE flow at Long Beach weak S flow at Burbank W flow at El Monte) develops between 600 and 1000 m agl on this morning A weak sea breeze forms around 1200 PST penetrating only to the central basin There is no apparent turning of the sea breeze into the San Fernando Valley W to NW flow develops offshore and is deflected around the Palos Verdes Hills This W flow is also apparent at 300 m agl Downslope flow components along the foothills are apparent by 1600 PST At this time the 1000 m agl winds are weak and N The sea breeze rapidly dissipates and NE flow develops at several coastal sites indicating a land breeze NW flow is maintained off shore The nighttime airflow pattern aloft is characterized by weak N winds at 300 m agl and weak W winds at 1000 m agl

The surface airflow pattern on the morning of 12 November is generally similar to that on 11 November E flow over land is apparent through a depth of 300 m while NW flow persists offshore The overlying flow is W The afternoon surface airflow pattern is more similar to a typical summer afternoon pattern than the previous day Turning of the sea breeze into the San Fernando Valley is apparent and W flow develops along the foothills of the San Gabriel and San Bernardino Mountains by 1400 PST Airflow at 300-600 m agl appears to veer continuously from E to W at most inland sites during the afternoon NW flow through a depth of 1000 mis apparent over the Coachella Valley Surface winds become light and disorganized during the evening hours Unlike the previous day NE flow does not develop at the coastal sites and NW flow weakens offshore W winds persist aloft

On 13 November surface winds are very light through the early morning hours with E flow components apparent immediately offshore The overlying flow is WNW but becomes S over the central basin by 1000 PST As on the previous two days a sea breeze becomes apparent at the surface by noon W flow components over the basin and foothill areas are stronger than on the previous two days both at the surface and aloft Significant W flow also develops in Banning Pass Moderate to strong W winds are apparent aloft During the afternoon and evening hours SE winds are apparent at Burbank between 300 and 600 m agl Intense W flow develops off shore and propagates inland during the evening hours W flow continues aloft with some S to SE flow between 100 and 600 m agl at Burbank and El Monte

3 December 1987

The surface and upper-air wind monitoring site locations for this intensive monitoring period are plotted on pages A-13 and A-14 respectively Plots of the diagnostic wind analyses for 3 December are given on pages B-169 through B-180

The early morning surface airflow pattern on 3 December is characterized by weak NE winds over the inland areas and a weak cyclonic eddy off shore The overlying flow is S to SE Surface winds remain light and variable through most of the morning Moderate

9106102 16

txi Iii ttii

E flow is apparent over the western and central basin between 300 and 600 m agl A sea breeze develops around 1200 PST reaching a depth of 300 m and penetrating only approximately 30 km inland S to SE flow persists above 300 m agl The sea breeze weakens during the evening hours and N flow through a depth of 300 m develops at Long Beach E flow components intensify at 600 m agl and above

10-11 December 1987

The surface and upper-air wind monitoring site locations for this intensive monitoring period are plotted on pages A-15 and A-16 respectively Plots o~ the diagnostic wind analyses for 10-11 December are given on pages B-181 through B-204

On 10 December the early morning surface airflow pattern is weak and disorganized Weak NE flow is apparent over much of the basin between 100 and 600 m agl The overlying flow at 1000 m is N The surface airflow over the basin is weak throughout the morning hours while NW flow develops offshore Winds aloft remain N A weak sea breeze is apparent by 1200 PST the sea breeze penetrates only about 30 km inland and is limited to a depth of approximately 300 m There is no apparent turning of the sea breeze into the San Fernando Valley Elsewhere in the basin the surface airflow remains weak By 1600 PST the sea breeze has weakened At this time winds aloft are predominantly W to NW at 300 m agl and N at 1000 m agl During the evening hours surface airflow over the basin becomes weak and disorganized while E flow develops at Palos Verdes Strong N winds appear aloft (300-600 m agl) at Burbank LMU and Long Beach however winds at this level further to the east remain light

On 11 December the early morning surface airflow pattern is similar to that on 10 December Relatively strong ( gt 10 ms) NNW winds persist at 600-1000 m agl at Burbank and LMU E wind in the 100-300 m agl appear at LMU and Long Beach Throughout the morning the surface winds remain light and N winds 9ver Bu~ank weaken considerably A sea breeze is apparent by 1200 PST but is weaker than on the previous day and reaches a depth of only 100 m or less Significant N winds (3-6 ms) develop between San Bernardino and Elsinore and in the western San Fernando Valley NE flow is observed in Ventura County Winds aloft continue to be primarily N however E flow is apparent over the Long Beach area at 1000 m agl Surface airflow over the central and western basin becomes very weak during the evening hours Strong N to NE flow develops at the coast west of Santa Monica while N flow persists in the western San Fernando Valley and in the San BernardinoRiverside area The overlying flow is N to NE

91061 02 17

3 PARTICLE PAm ANALYSIS

A series of forward and backward particle paths (trajectories) were calculated using the SCAQS DWM wind fields The particle paths will be used by other SCAQS investigators in their examination of pollutant transport within the SOCAB The forward particle paths can be used to estimate the transport of pollutants from known source locations The backward particle paths can be used to estimate potential source areas The particle paths can also be used to estimate the residence time of certain pollutants in the SOCAB as a whole or in subregions

CALCULATION OF PARTICLE PAIBS

Two-dimensional particle paths were computed using the DWM wind fields as follows

Starting ( ending) points for a given number of forward (backward) particle paths were specified

Using a time interval of 15 minutes the hourly gridded DWM wind fields were linearly interpolated in time and then interpolated in space to each particle position using an inverse-distance-squared weighting scheme

The particles were then advected horizontally for the specified time interval

The distance traveled by each particle during each time interval was integrated The new position of the particle was reported at hourly intervals

Forward and backward particle paths were calculated for the SCAQS intensive monitoring periods for several vertical levels and a variety of origination and destination points The origination (destination) locations and times for the summer and autumn particle paths are listed in Tables 3-1 and 3-2 respectively Most of the particle paths originated (ended) at one of the SCAQS wind monitoring sites listed in Tables 1-1 and 1-2 Additional sites are identified in Table 3-3 Note that for some sites in Tables 3-1 and 3-2 a new particle path was initiated at the particles 1000 PST location but at a higher level

Additional forward particle paths were calculated for comparison with the SCAQS tracer data (England et al 1989 Horrell et al 1989) The initiation times and locations correspond to the tracer releases and are given in Tables 3-4 and 3-5

9106lrl02

~~ll1~(I titW I~l~~~t~~

TABLE 3-la Summer particle paths forward particle paths

Start Time Origination Start Date (PST) Site Level(s)

624 0500 LBCC 13 CELA 13

624 0700 LBCC 13 CELA 13

624 1000 LBCC 13 CELA 13

624 1500 LBCC 13 CELA 13

624 2100 LBCC 13 CELA 13

625 0500 HHRA 5 PADA 45 FULA 5

625 0700 FULA 5

713 0500 LBCC 13 CELA 13

713 0700 LBCC 13 CELA 13

713 1000 LBCC 13 CELA 13 EMTA 24

713 1500 LBCC 13 CELA 13

713 2100 LBCC 13 CELA 13

714 0500 LBCC 13 CELA 13

714 0700 LBCC 13 CELA 13

714 1000 LBCC 13 CELA 13

714 1500 LBCC 13 CELA 13

714 2100 LBCC 13 CELA 13

Continued

19

91061 07

TABLE 3-la Concluded

Start Time Origination Start Date (PST) Site Level(s)

827 0500 LBCC 13 CELA 13

827 0700 LBCC 13 CELA 13

827 1000 LBCC 13 CELA 13

827 1500 LBCC 13 CELA 13

827 2100 LBCC 13 CELA 13

828 0500 LBCC 13 CELA 13

828 0700 LBCC 13 CELA 13

828 1000 LBCC 13 CELA 13

828 1500 LBCC 13 CELA 13

828 2100 LBCC 13 I CELA 13

92 0500 LBCC 13 CELA 13 HHRA 12

92 0700 LBCC 13 CELA 13 FULA 12

92 1000 LBCC 13 CELA 13

HHRA 45 FULA 45

92 1500 LBCC 13 CELA 13

92 2100 LBCC 13 CELA 13

93 0700 RIVA 12

93 1000 RIVA 45

A new particle path was initiated at the particles 1000 PST location but at a higher level

20

~(Ibull bull 11

41

~1~_11Lmiddot11~1~~tV t rt~~14_ II~~~h1 1r t

TABLE 3-lb Backward particle paths

End Time Destination End Date (PST) Site Level(s)

624 1500 CABA 23 EMTA 45 BURA 1234 HHRA 4 FULA 45

624 1800 RIVA 3

625 0500 CLAR 13 RIVR 13 HHRA 5 PADA 45 FULA 5

625 0700 CLAR 13 RIVR 13 FULA 5

625 1000 CLAR 13 RIVR 13

625 1500 CLAR 13 RIVR 13 CABA 23 EMTA 4 BURA 4 RIVA 45

625 1600 RIVA 45

625 2100 CLAR 13 RIVR 13

713 - 1000 EMTA 24

713 1500 CABA 23 EMTA 45 RIVA 24

713 1600 RIVA 24

714 0500 CLAR 13 RIVR 13

714 0700 CLAR 13 RIVR 13

714 1000 CLAR 13 RIVR 13 BUR 123

714 1500 CLAR 13 RIVR 13 CABA 23 EMTA 4 BURA 234 RIVA 2

714 1600 RIVA 2

Continued

21 nn1 Y1

TABLE 3-lb Continued

End Time Destination I End Date (PST) Site Level(s)

714 2100 CLAR 13 RIVR 13

715 0500 CLAR 13 RIVR 13

715 0700 CLAR 13 RIVR 13

715 1000 CLAR 13 RIVR 13

715 1500 CLAR 13 RIVR 13

715 2100 CLAR 13 RIVR 13

827 1000 CABA 2 EMTA 23 BURA 123

827 1500 CABA 2

828 0500 CLAR 13 RIVR 13

828 0700 CLAR 13( RIVR 13

828 1000 CLAR 13 RIVR 13

828 1500 CLAR 13 RIVR 13

828 2100 CLAR 13 RIVR 13

829 0500 CLAR 13 RIVR 13

829 0700 CLAR 13 RIVR 13

829 1000 CLAR 13 RIVR 13

829 1500 CLAR 13 RIVR 13

829 2100 CLAR 13 RIVR 13

92 1000 PADA 3

92 1100 PADA 3

92 1500 EMTA 2 RIVA 2

Continued

22

91061 07

I

1bullLI bullI I bull ~ii 1 1

1 cl1

[1i1bull~j~1 Iiii~ j t-~dI ~1 1ltl1111111 II r I l~bull~II~middot t1~i~n_11~~ ~middot -

TABLE 3-lb Concluded

End Time Destination End Date (PST) Site Level(s)

92 1600 RIVA 2

93 0500 CLAR 13 RIVR 13

93 0700 CLAR 13 RIVR 13

93 1000 CLAR 13 RIVR 13 CABA 2 BURA 1234

93 1500 CLAR 13 RIVR 13

93 2100 CLAR 13 RIVR 13

23 9106107

TABLE 3-2a Autumn particle paths forward particle paths

Start Time Origination Start Date (PST) Site Level(s)

1111 0300 LBCC 13 CELA 13

1111 0700 LBCC 13 CELA 13

1111 0900 FULA 12

1111 1200 LBCC 13 CELA 13

1111 1500 LBCC 13 CELA 13

1111 2100 LBCC 13 CELA 13

1112 0300 LBCC 13 CELA 13

1112 0700 LBCC 13 CELA 13 FULA 12

1112 1000 FULA 45

1112 1200 LBCC 13 CELA 13(

1112 1500 LBCC 13 CELA 13

1112 2100 LBCC 13 CELA 13

1113 0500 ONTA 123

1113 1000 ONTA 45

123 0300 LBCC 13 CELA 13

123 0700 LBCC 13 CELA 13 FULA 12

123 1000 FULA 45

123 1200 LBCC 13 CELA 13

123 1500 LBCC 13 CELA 13

123 2100 LBCC 13 CELA 13

1210 0300 LBCC 13 CELA 13

1210 0700 LBCC 13 CELA 13

Continued

24 9106108

TABLE 3-2a Concluded

Start Time Origination Start Date (PST) Site Level(s)

1210 1200 LBCC 13 CELA 13 FULA 123

1210 1500 LBCC 13 CELA 13

1210 2100 LBCC 13 CELA 13

1211 0500 ONTA 12

1211 0700 FULA 12

1211 1000 ONTA 45 FULA 45

A new particle path was initiated at the particles 1000 PST location but at a higher level

25 9106108

TABLE 3-2b Backward particle paths

End Time Destination End Date (PST) Site Level(s)

1111 1500 HHRA 34

1112 0300 LBCC 13 CELA 13 RIVR 13

1112 0700 LBCC 13 CELA 13 RIVR 13

1112 1200 LBCC 13 CELA 13 RIVR 13

1112 1500 LBCC 13 CELA 13 RIVR 13 HHRA 34 PADA 3 FULA 34

1112 2100 LBCC 13 CELA 13 RIVR 13

1113 0300 LBCC 13( CELA 13

RIVR 13

1113 0700 LBCC 13 CELA 13 RIVR 13

1113 ~ 1200 LBCC 13 CELA 13 RIVR 13 ONTA 34 EMTA 45

1113 1500 LBCC 13 CELA 13 RIVR 13

1113 2100 LBCC 13 CELA 13 RIVR 13

123 0300 LBCC 13 CELA 13 RIVR 13

123 0700 LBCC 13 CELA 13 RIVR 13

Continued

26 9106108

TABLE 3-2b Concluded

End Time Destination End Date (PSn Site Level(s)

123 1200 LBCC 13 CELA 13 RIVR 13

123 1500 LBCC 13 CELA 13 RIVR 13 PADA 3

123 2100 LBCC 13 CELA 13 RIVR 13

1211 0300 LBCC 13 CELA 13 RIVR 13

1211 0700 LBCC 13 CELA 13 RIVR 13

1211 1200 LBCC 13 CELA 13 RIVR 13

1211 1500 LBCC 13 CELA 13 RIVR 13 PADA 1234 BURA 123

11 13 2100 LBCC 13 CELA 13 RIVR 13

27 9106108

TABLE 3-3 Additional particle path initiation (destination) points

Site Identifier Location UTM Easting (km) UTM Northing (km)

BURA Burbank Airport 3749 37859

CABA Cable Airport 4370 37751

EMTA El Monte Airport 4047 37717

FULA Fullerton Airport 4091 37485

HHRA Hawthorne Airport 3768 37547

ONTA Ontario Airport 4435 37686

PADA PADDR Intersection 3810 37175

RIVA Riverside Airport 4584 37485

28

TABLE 3-4 Forward particle paths calculated for comparison with the SCAQS tracer data

Start Start Origination Date Time Site Levels

0300 LAGS 13 0600 13 0900 II 13 1200 II 13 1500 II 13

625

715 0500 VRNN 1

0800 VRNN 1

828 0600 LAGS 13 1000 II 13 1300 13 1500 13

93 0500 VRNN 1

0800 VRNN 1

1111 1600 LAGS 3 ESGS 3 VRNN 1

1900 LAGS 3 ESGS 3 VRNN 1

1112 0600 ESGS 3 VRNN 1

0900 ESGS 3 VRNN 1

1210 0600 LAGS 3 ESGS 3 VRNN 1

0900 LAGS 3 ESGS 3 VRNN 1

1600 VRNN 1

29

9106lrl09

TABLE 3-5 SCAQS tracer release sites

I_______________________

Site Identifier Location UTM Easting (km) UTM Northing (km)

ESGS El Segundo 3690 37536 LAGS Los Alamitos 3980 37370 VRNN VRNN 3874 37625

(

91061rl09

30

The particle paths were calculated for up to a three-day period In general forward particle paths were calculated through the end of the monitoring period or until the particle was advected out of the domain Backward particle paths were calculated through the beginning of the intensive monitoring period or until the particle left the domain

Selected plots of the forward and backward particle paths are given in Appendix C

SUMMER PARTICLE PATHS

Forward particle paths (levels 1 and 3) originating from Central Los Angeles (CELA) and Long Beach City College (LBCC) at 0700 PST on 24 June 13 and 14 July 27 and 28 August and 2 September are shown on pages C-1 through C-12

The surface-level particle paths originating at CELA indicate northward advection from this site on all days The particle path initiated on 27 August indicates that the initial northward advection is followed by westward advection on the following day the particle path initiated on 2 September indicates that the initial northward advection is followed by eastward advection on the following day In all cases the residence time in the central Los Angeles basin is less than 12 hours

The surface-level particle paths originating at LBCC are carried northward and eastward usually exiting the Los Angeles basin through Cajon Pass On 24 June and 14 July however the particles are carried across the San Gabriel Mountains (with the upslope flow) Considerable eastward transport is indicated by the particle paths initiated on 2 September after 1800 PST -Residence time in the Los Angeles basin varies from day to day and is especially long for the particle path initiated on 27 August (approximately 30 hours) Particle paths initiated on 13 July and 28 August also indicate some recirculation and a significant residence time within the Los Angeles basin

The level 3 particle paths also indicate northward transport from CELA on most days Advection into the San Fernando Valley which may be partly due to the SE flow produced by the turning of the sea breeze into the valley is more pronounced on certain days (14 July 28 August and 2 September) Level 3 particle paths originating at LBCC show mostly northwestward transport Recirculation over the Los Angeles basin is indicated for the 2 September particle path

Backward particle paths (levels 1 and 3) culminating at Claremont College (CLAR) and Riverside-Rubideaux (RIVR) at 1500 PST on 25 June 14 and 15 July 28 and 29 August and 2 September are shown on pages C-13 through C-24 -

_

9106lrl 02

31

The surface-level backward particle paths originate over water on all days the particles are carried eastward and northward into the Los Angeles basin On 14 July and 28 August the particle paths indicate primarily eastward transport There is some indication that particles arriving at the destination sites on 28 August may have originated in the South Central Coast Air Basin (SCCAB) On 25 June 15 July and 3 September the particle paths indicate primarily northeastward transport On 29 August northward transport is indicated

The level 3 backward particle paths also indicate transport from the W SW or SE on the intensive monitoring days The over-water segments of the particle paths indicate eastward advection on 14 and 15 July and 27 and 28 August and northward advection on 25 June and 3 September Again there is some indication that particles arriving at the destination sites on 28 August may have originated in the SCCAB Almost all of the particle paths indicate that the particles are carried onshore between Long Beach and Laguna Beach and advected northeastward to CLAR and RIVR An exception to this occurs on 28 August On this day the particles are carried onshore near Redondo Beach and are recirculated over the Los Angeles basin for approximately 24 hours before arriving at the destination sites

AUTUMN PARTICLE PATIIS

Forward particle paths (levels 1 and 3) originating at CELA and LBCC at 0700 PST on 11 and 12 November 3 and 10 December are presented on pages C-25 through C-32

The autumn particle paths exhibit more day-to-day variability than the summer particle paths indicating more variability in the autumn airflow patterns Because both the CELA and LBCC locations are affected by the land-breezesea breeze circulations all of the surface-level particle paths show some recirculation in the western basin Particle paths initiated on 11 and 12 November eventually indicate eastward transport

The level 3 particle paths also differ among episodes but are all affected by the seashybreeze circulation Particle paths initiated on 11 November show eastward transport from CELA and southward transport from LBCC Northeastward transport at this level is indicated by the 12 November particle paths The particle paths initiated on 3 December illustrate local recirculation by the sea breeze On 10 December southward advection is indicated

Backward particle paths culminating at CELA LBCC and RIVR at 1500 PST on 12 and 13 November 3 and 11 December are presented on pages C-33 through C-40

The surface-level particle paths indicate that particles arriving at CELA at 1500 PST on all four days follow a southward then eastward course Particles arriving at LBCC are affected by some combination of onshore advection and local recirculation The particle

9106Irl02

32

paths culminating at Riverside indicate a variety of possible transport patterns eastward transport on 12 and 13 November northwestward transport on 3 December and southeastward transport on 11 December

The level 3 backward particle paths for 12 November illustrate recirculation aloft by the evolving airflow patterns while the particle paths for 13 November indicate primarily eastward advection The particle paths for 3 December are clearly affected by the SE that occurs on this day the resulting particle paths indicate northwestward transport The particle paths for 11 December indicate southward advection and recirculation by the sea breeze

COMPARISON WITH TRACER DATA

Forward particle paths originating from El Segundo (ESGS) Los Alamitos (LAGS) and Vernon (VRNN) at times corresponding to the SCAQS tracer release times are shown on

middot pages C-41 through C-76 For ground-level tracer releases the particle paths were calculated using level 1 (10 m agl winds) for stack releases the particle paths were calculated using level 3 (300 m agl) winds A qualitative comparison with the observed tracer data is provided here

Surface-level particle paths originating at LAGS on 25 June indicate northward transport during the morning and afternoon hours The level-3 particle paths indicate that material is transported out of the basin through Cajon and Banning Passes by the upper-level winds Both of these indicated transport patterns are supported by observed tracer data

Surface-level particle paths originating at VRNN on 15 July indicate northward transport and exhibit good qualitative agreement with the tracer data

Both the surface-level and level-3 particle paths originating at LAGS on 28 August indicate primarily northeastward transport Most of the particles are eventually advected through Cajon Pass This is consistent with observed tracer at Redlands San Bernardino and Crestline

Surface-level particle paths originating at VRNN on the morning of 3 September do not agree with the tracer data While the particle paths indicate northeastward transport the tracer data indicate northwestward transport

Surface-level particle paths originating at VRNN on the afternoon of 11 November indicate westward transport and a long residence time in the central basin The level-3 particle paths originating at LAGS and ESGS show southeastward transport and recirculationmiddot by the sea breeze Surface-level particle paths originating at VRNN on the following morning again show net westward transport and a long residence time in the

( central basin but the level-3 particle paths indicate northward transport with recirculation

91061rl 02

33

by the sea breeze The smface-level particle paths are consistent with the tracer data Tracer was observed over the north-central basin and along the foothills on the morning of 13 November

The surface-level particle paths originating at VRNN on the morning of 10 December indicate relatively stagnant conditions with a weak sea breeze circulation Some net transport toward the south is indicated Particle paths originating at VRNN on the afternoon of IO December show little movement throughout the following day The long residence time in the basin is in qualitative agreement with the tracer data Tracer was observed in the basin on the following day The dispersion indicated by the widespread tracer concentrations however cannot be represented by a single particle path The level 3 particle paths originating at LAGS and ESGS on the morning of 10 December show southward transport and recirculation by the sea breeze

UNCERTAINTY ANALYSIS

A simple analysis was perlormed in an attempt to quantify the degree of uncertainty inherent in the particle paths The uncertainty analysis was similar to an analysis described by Moore et al (1989)

Three major forms of error in the particle path calculations can be identified The first two result from errors in the wind fields The most fundamental of these is measurement error as measurements can only be regarded as approximations of the true winds Regardless of the accuracy of interpolation techniques measurement error will always affect the final wind field The second type of error results from the interpolation of these measurements and the parameterizations and approximations in the diagnostic wind model This error will be greatest in data-sparse areas The third type of error results from the use of two-dimensional wind fields The two-dimensional particle paths do not incorporate the effects of vertical motion which may be a significant source of error considering the mesoscale regimes present in the study area

The particle path uncertainty in this analysis is the result of all sources of error and is therefore very difficult to estimate A lower bound 11 on the uncertainty was assumed to result from measurement error alone Here we use a lower bound uncertainty estimate to illustrate the effects of measurement error on the particle path calculations Several assumptions were made in order to estimate this uncertainty First average bias for all instruments was assumed to be very small Second instrument precision was assumed to be constant over the region Third measurement error (speed and directional error) was assumed to be normally distributed around zero The standard deviation about the mean was based on observational data

For this uncertainty analysis 20 particle paths were initiated from a single site at a single time For each 15-minute particle path segment u and v were calculated as described in

9106lrl 02

34

(

the previous section Small random wind components (representing the measurement error) were then added to the interpolated wind The smaller components were determined by randomly selecting wind speed and direction error from two separate normal probability density functions (PDF) To do this a uniform random number generator was used to find two error probabilities Ps and Pd between 0 and 1 An inverse normal PDF routine was then used to find the speed or direction error that results in error probability Ps or Pd respectively Commercial statistical software from Th1SL was used to generate uniform random and inverse normal PDF values 1

The PDFs possess means of zero and standard deviations equal to the root mean square error (RMSE) of the measurements For simplicity RMSE values for speed and direction were taken from those specified by Moore et al (1989) namely 02 mis and 10 degrees respectively Random error components were determined for each 15-minute segment of every particle path The resulting divergence in the particle paths represents a lower limit to the uncertainty inherent in the particle-path calculations

Plots illustrating the effect of the lower-bound uncertainty on the particle path calculations are given for one summer and one winter episode in figures 3-1 and 3-2 respectively The summer particle-path bundles (Figure 3-1) were initiated at CELA and LBCC at 0700 PST on 14 July The winter particle paths (Figure 3-2) were initiated at CELA and LBCC at 0700 PST on 12 November The bundles were calculated for levels 1 and 3 In general the bundles indicate that the airflow patterns do not vary abruptly in space or time The winter particle paths are less divergent that the summer particle paths

While plots of the particle path bundles qualitatively indicate the degree of lower-limit uncertainty a quantitative summary of the uncertainty can be obtained via hourly estimates of RMSE of all particle positions relative to that with zero error The RMSE can be obtained from

1 1 M 2 2

RMSE = - ~ dj[ lM ]=l

where

1

dj = [(xj - X1)2 + (yj -y1)2]2

and where Mis the number of particles and ()1 represents the position of the actual particle as calculated in the previous section (ie the zero error particle path) The RMSE is used to determine the growth over time of the confidence interval about the

1 IMSL is the registered trademark of the Scientific Problem-Solving Software System developed by IMSL Inc Houston Texas

91061rl02

35

NORTH

425 31570

SOUTH (a) CELA Level 1I

20

(KM)

NORTH

425 31570

SOUTH (b) LBCC Level 1I

20

(KM)

le-path bundles initiated at 0700 PST 14 July 1987FIGURE 3- composedd par tic le paths1 Forwar of 20 particBundles are

35

NORTH

425 3570

SOUTH

(c) CELA Level 3

NORTH

425 3870

SOUTH

(d) LBCC Level 3

FIGURE 3-l Concluded

37 9106]

70

IlFil

NORTH

CEIA Level 1(a)

3(170

1-Ul j

NORTH

425 3(170

SOUTH

(b) LBCC Level 1

Forward le-path bundles initiated at 0700 12 November 1987FIGURE 3-2 composed par tic le pathsbullBundles are of 20 partic

3391061

425 3870

SOUTH

(c) CELA Level 3

J8

3870425

SOUTH

(d) LBCC Level 3 10 2

(KM)

FIGURE 3-2 Concluded

91061 39

1 1c

i I

trajectory calculated using the DWM winds Hourly RMSE values are given for the particle paths bundles shown in Figures 3-1 and 3-2 in Tables 3-6 and 3-7 respectively For level 1 the average RMSE after 12 hours is 567 km for 14 July and 167 km for 12 November For level 3 the average RMSE after 12 hours is 416 for 14 July and 260 for 12 November

9106lrl 02

40

TABLE 3-6 Hourly RMSEs for particle-path bundles initiated at 0700 PST 14 July 1987

Time LBCC RMSE CELA RMSE (PST) (km) (km)

Surface Level

0700 000 000

0800 042 042

0900 057 069

1000 063 100

1100 093 128

1200 091 143

1300 111 168

1400 136 217

1500 229 227

1600 265 219

1700 394 219

1800 620 265

1900 796 338

Level 3

0700 000 000

0800 018 049

0900 064 090

1000 068 140

1100 087 172

1200 089 162

1300 123 180

1400 231 224

1500 337 258

1600 419 278

1700 427 306

1800 449 347

1900 462 370(

9106104 41

TABLE 3-7 Hourly RMS Es for particle-path bundles initiated at 0700 PST 12 November 1987

Time LBCC RMSE CELA RMSE (PST) (km) (km)

Surface Level

0700 000 000

0800 047 049

0900 078 065

1000 077 066

1100 089 086

1200 109 094

1300 089 092

1400 118 125

1500 100 138

1600 129 150

1700 147 160

1800 161 164

1900 156 176

Level 3

0700 000 000

0800 045 076

0900 061 120

1000 069 139

1100 092 171

1200 098 163

1300 096 156

1400 125 182

1500 150 175

1600 231 171

1700 261 152

1800 308 156

1900 345 175

91061 04 42

References

Douglas S G R C Kessler and E L Carr 1989 Users Guide to the UAM Wind Preprocessor System Systems Applications International San Rafael California (SYSAPP-89079)

England W G and L H Teuscher 1989 Perfluorocarbon Tracer Experiments During the Southern California Air Quality Study Air amp Waste Management Association For presentation at the 82nd Annual Meeting amp Exhibition Anaheim California (June 25-30 1989)

Horrell R S M Deem P Wyckoff F Shair and N Crawford 1989 Ground Release SF6 Tracer Experiments Used to Characterize Transport and Dispersion of Atmospheric Pollutants During the Southern California Air Quality Study of 1987 For presentation

( at the 82nd Annual Meeting amp Exhibition Anaheim California (June 25-30 1989)

Moore G E G Z Whitten J P Killus and R D Stevens 1989 Analysis of 1985 Air Quality and Air Chemistry Data Collected Under the South Central Coast Cooperative Aerometric Monitoring Program Systems Applications International San Rafael California (SYSAPP-89058)

Ross D G and I Smith 1986 Diagnostic Wind Field Modelling for Complex Terrain-Testing and Evaluation Centre for Applied Mathematical Modelling (CAMM Report No 586)

9106105

43

rr T rr

Appendix A

SCAQS WIND MONITORING SITES

(

9106103

-

((--_ 770

-

NORTH CM~RS 42 575

5 I I j I I 1---L 525 middot 1J75 I I I I I I I I I r I I _--- I C2~middot----_J ~ ~-- 1 ( ~ ~J25 I I I I I I I I I I I I l__ ) -475 () I Li 1~)51 (

--~ltJ820f-_ ~------ ---

~- -cli( ol --9-Sl-l

lt ( ~)

CQ p llE RiDO ~ llE ANAH

I middot LAS-L

bull~ LANC ( _ Q - _J ) ) - _ ~ - ---- - ~ _ ____ middot clt G~ _----~____-=-- -___ ~PR __ - ---- --- VCTC ltgt

-- ------ f---- __ - ---_ -middot ------ --___ --~-----TEME --- _ f

-)(j _ _ middot --middot -------- - HESP f ----=----==~~~ l ----~~ -- middot l - --- __ -middotlt- CJ _ --- middot PIRs[- lt NfVL_ ---~ - C~lt --lt _ ~ ~- __ (~~

__ --- bull _ i - f c-_ _ I - )~__) - ---~poundS---_-

3770 t-()

LA llE PICO )Ct444 -w 3 ~~~ZUMA MALI VE VEN llE llE middot Jl~C - ( p

NN WOOHS ~- ~ m - middot - o - I () )IE 55I

1-- (lt - - PERI ) ~ S__~llE

BU25 bull y _ L ~~5o 13720

I ----~- - 515 3670 525

(KM)

~---

SNI

20

SCAQS SURFACE WIND MONITORING SITES

19 JUNE 1987

0

qj n

If) N ~

I

1S13

Ishy)

0 Vl

(f) w I-V)

l)

z a 0 1---

z 0 2

0 z 3 a ~ I r---

0 CX)Wm Q_ shyQ_ ) w

z (f) )

0 7 lt( um Vl ---

0

A-2

-

r~

NORTH CM~RS

I -middot_( lt - middotmiddot -~ ---lt - - - middotbulll- ) middotmiddot-middot - - -c ) 0 0 l__SG- ___ J1 bull_ -- VCTlt I

_ --middot ---middot llSeR - - __ - --middot----- J~__-- middot - - - -middot bull bullbull- HESP ~-_-middot- bull- ~- _~ - -___---middot - ~ -_ ) ME --- -middot - bullmiddot bull -_

38201-_ ~~_ _ TE _ C-bull_- - CJ - ~Jj __ -_

1

1 bull I bull __ (]

SI bull bull=-middot _ -~ ~~ ~_-__ middot _J lt(- j SIMI -M~S -~_-~It_ - - 1Ir- I w _ I B~~ AZ~~~1 AL SNBOC ~ (ELRO l~ Hf~~ ideg_=- --

)1__ CE~ wftcentrHIN RIVRM44 --- ~--- ---~ LA PICO __pound bull P

T ~NN WI-V C) D 2J~55I Wco - middot PERI Lv

R~O ~L ~AN~ TO~~~~ ~ ~ ~-MO

62

~ ~j~l)~gto ay 3670( 525

SCAQS SURFACE WIND MONITORING SITES 24-25 JUNE 1987

~ (

NORTH 275 325 375 425 475 OA~5 575

f_~ CJ ~ -middot--

_middot

middot1 Imiddot

)i

gt--o~0 (~_)r-) _ (~~3s20

--~- middot qlt ( ____ - ---- - lt__ ~ ~ -i~ J ) _ - - -

-~ -__ J V 38201-~--o- lt-

-----~~middot ---- __ - ~---- -_--- ~====- -=_---~ ~ _

~ -- middotbull ~gt ----_ _______ ) ~~~ l -- - - i - --- l

( _ (_-~ _-lt~~ - )

2middot1=~ (~gt lt_) -~~~~~(_~tJt-~~~~t~~~~-~) ~

uR--- -----Qi~ ~ 3770_ 3770 -middotmiddot--rmiddot- -7 ~ 1-

(J) llE ONT _ -middot __ w

Y-_ EMU c __- ~ Ul lt(1 w~

- -- - LMIIEUA sFtA ~

1

----_

~

_

t_~~ -bull _ middotgtI __

~- 0 ~~QgtJn~-~ ~II~

~ f-- -) -) ) ~ ~-

j (_1_j ~~TRM 3720 ( (__ -CcS l l 3720

~- ) -~ --7( ) __~---L_ ~~1-----~D~

1 ~) a --- ~middot 7 rt 0- NSI (

3670 I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I 1 I I I I I f I I I 1 I I I I I I I I I I I I I 36 70 275 325 375 425 475 525 575

SOUTH

I I I I I I 0 10 20 30 4-0 50

(KM)

SCAQS UPPER-AIR WIND MONITORING SITES

24-25 JUNE 1987

--=-

NORTH 25 575

CM6QRS C__j 475 -____

3 ---- 375 425I - L ---) - ~-

SNI

-_-~)---_ lt-____ ___3azor_~c~~ sl

VENt ELRO

BU25

275 ~ c--) ~LANC ~~-_ lt ~ 0 9-~

llE

3670

----~ - J Q ____ ~- lt) ~ 3820____ -- middot--- 0~__~- __ J S --- ---~- ---- -- -- v~ ~ ~ ===-~ - - - - ---- - - ---- - -- -middotv ------------ -~ l f----- _ -- -middot _ - --- __ HESP ~-----=- c~i - - _- --- - - gt - -bull TEME -- -middot - bull ----- -- - _ middot ( lt~ clt=~ ~i cJ~ c _

~I -~~le lt~NJWl--------~- -iHitgt~-=__~~ _I -~ J~~~ ~ 3770 r-1 - - -- -- - ltJ c__ ---middot ~ ( - ------ -c_ - - -~~~ ~ ()-~ ~ - -middotMiss ---~---=-~----r~-__ -middot _frac12 __ i5

j S ~R~~HE -7t$ llE llE ftALSNBO llE ~~ t __ -R~ B~~SA AZ~jl~r RD ~~_ ~ 1( )l___ llE CE~HAllE ~~ - RIVRM44 - llE ------___llE W~HIN -Jti )Ii ----------- __

~--- LA llE PICO l llE C -- r p

ZU VE NN Wt-laquoJHB 0 1~55WT IN - ---- ) llE CO P llE llE ( gt (____ PERI ~

IJl

~ 71t~P325 425

SOUTH

I I I I I I 0 1 0 20 30 40 50

(KM)

SCAQS SURFACE WIND MONITORING SITES 13-15 JULY 1987

clt(middotO -i ~Ill ~

()VL~t

~~) o2~ r

275

-- _~middot middotc-- ( ~ I - ___ ) --____ ~~~

---- ---bull-~ ( lt ) lt I ~ (J () - _ ~ ~ J ) bull middot ( - ~ ~- - --- middot - ~ - middot middot G--~_J lt)

cce- middot- __ V ___ -- l - _- bull middotbull - - _~---~ 3820r----=-~_~Jrlt - - - middot f ~l-~--~--~] I c___ -~c ~ -- ( _ 1middot--- 1___ _~

-I -- = lt -bull lt middotmiddotltmiddot~- middot - middot -L-

- ~-- middotbull ---_- --- J middot J ) ) -- bull- ~-bull _ --middotbullbull- middot middot _ j -- -)) 3770 -ii __gtc _ -- - - middot bull ltmiddot ~- I - _ltbull - -_j-- tn

BURbull-- - middot - - - ) ~~middotj- (~~ ) (middotIi lt(

GL U I ~ - - - w ---~ - -1 __ - ---------= ------___________--- ONT middot middot __ - --_ -

poundMUI - - ~ ____ middot----~~i -__ ~ I

--

--- ~ c) )_

deg ~

_- - (

_l

_ ~ )

C-

~ _middot

( T( f 1-

525

t j 30 50

(KM)

SCAQS UPPER-AIR WIND MONITORING SITES 13-15 JULY 1987

_==--

J ANORTH CM6sectARS

3s201-

~- ~ ~ ~ ~0A - --__ - -----~ ---~- --1(j - A ) __gt ---------_

-~~J TEMEa l_C ~r1

0

820

_--C~ = ~~~ltCH~~ J ~ S~I ----i4~58 ( J

tigt-1

-J 3 BU25

frac14~) 8 F1(5

- HA

APICO RN A A ~ N WVHB

AANAH

~IHIN J _CM44 ~-

A

CY PERI N ~ iJN

D A

HEM

770 ~ V1 lt( w

~ 3670

SCAQS SURFACE WIND MONITORING SITES 27-29 AUGUST 1987

) w l-1

C)

z-a 0 1-

z 0 ~

0 z - r---3 co a Ci)

- -ltI lshy

a )w ) Cl 0 Cl ) ) lt(

V) Ci)

0N ltI u r--- () N

A-8

NORTH CM~RS bull r (_J~

1

325 - - l L=~-) ( bull

1275 _ ( ~ --- -middotbull LANC 1 _ bull I( f LJ- ~ () ~-- 3820 bull- - J bull

- --__ _ -- )- bull bull - middotbull-~- _ I v----_J -- J middot-- - middot- - -middot I I J_______ ---==-------------- WSfgtR - -- VC _____- ltgt

-~--~-- fJ- -middot - - - --- --- _ - ----- --- ----- ) r bull---_ --- - - -- bull p -- --__-----_ - -----

38201-_ -------~- TEME --- --- - - bull -- middot- bull --- _----~ -~ II middot ) - ---- -- -- _ -- HES f I-----=-- ~ ------- ~ l _ -- - I

- bull middotbull-bullbull~ ll( middot bull - middotbullbull - 1 I ~----- middot-bull

9 -- ___ __ _ -------- _=- r _ -- )J -~~ ~~~ 3770 t--SJMImiddot MISS~~~--bull ~--~-- ll( -_ ~-VENt Cllfl58 bull I middot- - middot- - --JOE ~--bull bull ~ V)

ELRo __J 4Esc euRK ~Ej1 fAL sNeo I ~ _ J middotmiddot -~~ 1 i5 l - ~SA ___ I ROLD ~ ~ C~ ( _____~- -~ llE CE~ llE W~(HIN RIVRlK -- - 1 llE __~

3770 middot- ~LA VEN Pl llE _ _- JJ~C _CM44 - ~ p ---__-_

0 ANAC cubull~ - - v~wr LyenNN WHJHB --- -- Q~~W)( ___

- llE HA ~ -lE _ -- _ - -_

I 0

SAi middot-middot J) t450

3720 LA r TO~omiddotlt~lt~~ -~ ~ (~~

~ ~ r-~~~1~ o ~~l~

SNI 1 (l_ amp-~ 575 3670367g75 325 375 425 475 525

SOUTH

I I I I 0 10 20 50

(KM)

SCAOS SURFACE WIND MONITORING SITES 02-03 SEPTEMBER 1987

------J ------------------ ) I-- 38201--__--~~- i) ___

_-- ~--gt--

-__

_

NORTH 275 325 375 425 475 525 575

YI ~middotCJ~bull_bullrmiddot--- lt I __ (_______~ ~ - - I -- J ( - - - - - - - J i O l__ ______________ -~

~j ( lt- bull- ~ 0 C) ~ -- (-- _)) ) ----_--__ -- middot-- _ - --J ) J ---- - ------- ----- middot----- -( ~---_j

3820----==--=-- ( - -middot bull __ - ---~----= --- ---- -- -- ------------ _______ ltJ~~ A I --- - ---- - -_ - _ --_--~-- -_ - --~co___--_--___-__----- f middot l - --- - --- - __- ---_-- -- ~ middot -middot __ J L--~ cmiddot

---- -- middot--~-- -- -- - _ _-- - - ~

--- - middot- - -C-_--- - -~ rmiddot middot) _- ~middot~ I--- ----~deg- -- -- C _-_--_- __ __ _ ___ _--_--~ __---- ~---lt lt ltgt _~-__gt_ ~~-- i~ - UR ---- -------- - ----~ --lt I middot- B ~----- Qll __ ~----- _ CI____ ~ __ --- ---middotir ~ - 3770

1-I- 3770 () U)( - -- -- 0~ - j _j ______- ==--=--_ --___ - ---w lt(

w~

~gt middot1 r-

0

3720 3720

middotmiddotmiddot J ~ ) ~l - ~ ~

~ tmiddot~----_7~~ p__ D2)t~~

NSI I(--_ Imiddot- 3670 3670

275 325 375 425 475 525 575

SOUTH

I I I I I I O 1 0 20 JO 40 50

(KM)

SCAQS UPPER-AIR WIND MONITORING SITES

02-03 SEPTEMBER 1987

~ I

t

NORTH CM61yenRS

----- I uic middot I Ibull 0 z_ ~ p

-_- - - - _ - middot-~-_ ------- VCRV

820 --- -- -- I W-gtER --- _ ---- --- ~ ) - -_ - I _ _ - _ --- _ _ _ -_ bull _____ _ _ - -- -- -- _ --_ ----~ HESP 3 -- ME -- -middot bull - --- _ -- _ TE - -- __ _-- - c----~middot - r

PIRlb -_1 N bull--~ _ --lt~_- - _ _ ---------- - -MISS_ _--- ___ bull---=-- _llE ~ ~ j lt) hlt---- F-~~--_ ----1A-_c=_--middot llE ----_ ()

-middot SIM ~ICAN llE RIALSNBO llE ~J -------~~ tllE ------TmiddotllE~I ~ES BURR~ AZ~ ~-~r- RD ____-- -- ~ bull FIIISA l- bull -~~

( )l__ -middot middot c(~HA w~~N ~tfJ1 -- -- ~ ~ 1

_

375

~) middot middot ---lt -__ lt_ ___ ___ -i____) C-middotdeg - - -

- -- J_ _) lllt

_ =- ) - -

L- ~~- Iii - ~ _________

-~ 0 I -- (

SI lllt

E

NT CM58V

( j gtT__~_____)___ -- ~l- ) (

middotmiddot-- -_ bull _ ~- () ~

I --J vlt__ ltgt

--- --------- ~---------- C -

_

~(__ f - -- ~---middot)1 ~

t ~ I

I- I- ~

3720

ANAC Wo~ middot -~- lt_)

44

PERI ) ~ tlo

25 R~ ~~ANAH _i~~MN ~~-w--- ~ _ 00 )

T middot I BUllE I -eM62 7 llE

-- - ~

~ 425

SOUTH

20

(KM)

SCAQS SURFACE WIND MONITORING SITES 11 -13 NOVEMBER 1987

(_ (___JCcS ~~)

bull ------------~ - - ( ~ r-------------- Dbull ---

J

575 3670

1SV3 0 0 0 0 N r-- N r-- a) r-- r-- co I I) I) I)

I bull bull I I

I I f1 1 ~~ I- I I-)

0 l)

l)

w I-l)

L)

z Ct 0 I-

z 0 2

0 r-- z OJ

m3 Ct a lt( w0

l() mI Ct 2

~ ww Q_ gt

0 - Q_ 0 I) 2 ) z ~ ___0

N (I) n a

0 lt(- u ()

0

n 0 z I)

N +

lf) r-- I)

- I I I

i I

I 0

~ -L

w

i

~ LL

I)

C-1

+

l() r-- I)

1S3M

A-12

-~

igt I _

l)

CM~RS 275 325 375

NORTH 425 475 525 575

_J- I bullbullbullbullbullbull ~ I bullbullbullbullbullbullbull bull I middot bull -gt-----middot bullbullbull 3 )--- ____j lt c----- -_ -- gt _ ___ ----- t__ l___

-- ------- LANC l ~ ---------- __ ) -- __ ~ I ) ~ - -=~__ I -~middotmiddot- - bull middot bull bull bull lt lt Cl --- ------ ____ -~ -

38201-- ------_- ) ) -- _ ---- -- -- -- - () - --------- I --- -~-lt~~ (middot__ TEME ) --gt ~_ ----- - middot--- --- vamp c~ (~ 0~ ___- --- gtIpound - - - - ---- -- - - -- _ - - ~ ---- - - - ------------- 5SI -middot PIRltgt ----~ ( -middot _ - -- --- - --- ) HESP --------~ ltgt

___ __bull_rbull ~--------~-___ -- ___ ----gt--=- bull~ ~~ I - ---__-=---- ----

VENt CM58 _ sti --~~ ~ lt_ -~-- middot_~-~~ r-~- --middot) ~~) _J MISS-~~-- ___-_ __)~ -- ---( C

- --RESpound BUR~--==-=~----r~---_-__- ~- - ~ _- ~ -1 -

3770 I- ANAC

J I )l( ~- ~-- - i middot ----middot -X--Ret-----_~ -~

___ ( - -middot ~SA AZ~ ~ o j -------=--------~--gt~-- dampHA ~~~f __ SNBO ~~ -~

ZUMA MALI LA w~M -jmiddot I R~J ~-s ~__ )() w ~

3720

8U25

VE VERN PICO _ middotyHIN RIVRyen ( ~----- -~ CM44 -~ ~- ----- ~ C WT ~NN Wt-0HB -NQRC - middot- ~NN-a-~~ _ ~ co~ __ -- ( ~ ~

RVIJO ~ilff AN~ gt cmiddotbull yen 0 (~~ p LASAl I bull- - PERI ~ ) ~

rJ]~~_Y)~N ) (_ --

_T -cJ62~-~

~ 5j(bull 1) ~Jso

l -~

- 1 J) -~ ~7~~t~~

3820

3770 1-() lt( w

3720

I I I I I I I I I I I I I I I I I I I I I I367r I 367075

I 325 375 425 475 525 575

SOUTH

I 0

I 10

I 20

I 30

I 40

I 50

(KM)

SCAQS SURFACE WIND MONITORING SITES

03 DECEMBER 1987

NORTH 275 325 375 425 475 525 575

I I ) gt ~ _YC) ~ ~ I ( o c_ _------- (

___ middot i I 97 ~___ _ --1 cbull-- - - C -___J -- lt ( ) - - - - middotmiddot ~ l _ ----_J

I ---middot ___ __ middotmiddot-_ 1 -~ __J ) bull- middotbull_ -

3820 ------~- I -~middot --- _ middot--- -------~

C - ~ (___ _ 1 ) -- _ - - - gt _ bull f-_- --- r ------~__ -----I --- ) I ~ -~ gt ----- - --- -- ~-_]) c_middotI 38201-_~~_ l _ --- - (-- ~ f ~ I~_ - middot - middot -middotgt- -- -_ -- middot_ _- 1 L- l _- -

~----- l -- middot middot ~- middot-_ _- - middot middotmiddot--gt---~--t~~)-1 bull lt_ _ _ bull middot bull - middot- ~ ~0---~ (c ~ I ~

_ I - bull -~~~--gt~~~-~~ bullS- _~_ l ~~1t~~_~(~ t 3770 I -- -- middot __ - I S____ ( 3770

I- 1-() ()

gt w - I __~sect~- ---ONT lt(

w

tgt

f-- I

~

middot - middotI

-

L~i--

37203720 c_J - (_cS) l -~~

NSI

367~~51 3~5 13~51 14~5 I I I 14~51 is~s s~s 3670

SOUTH

I I I I I I 0 10 20 30 40 50

(KM)

fJ~

SCAOS UPPER-AIR WIND MONITORING SITES I 03 DECEMBER 1987 r~J

NORTH CM~RS 275 325 375 425 475 525 575

middot middot ___ I middot 1 I )l ___ QO --middot - v_ (-- - LANC middot ~ C) lt --bull_ I -- -- bull _ ~ - ~-- ) -------_ -- - _~-- V --I 1 J --- - bull I -J- ---middot - _ bull__ - vc i --- ltl

3820~-----=cc~ I middot -middot - middot - _ ___ -- - 1t ~~------- middot - ___) - - middot -

J-cgzot-- ~--- j 0 TEME _middot ---- --- -

-____ -- ---- _- j (

- -_ I -- --~ _JI( ---- bull bull-- llf -middotmiddot l - -- bull _middot_ middot I --- -- middot CM58

_- 1 -- middot - middot~-~ - -~__ ___ ---~-~_--__~----------D J-~J~bull A HESP

middot OJ11 r P1R1tc lt--~i_-_~-~- ~c~_r--~-~_--_~r-=-~~~~--~ _ --~ --lt__~~~~- CSI ~ -~ --- ---- middotmiddot - ---- - _ ~ r ) J

)gt SIMI -MIS5-X ~Cgt~---- middot-cemiddot middot ____~ ~ middot~ l~fu__ suRlfiI_middot- -tk~- flAf SNBO __ middot ~-~ l 3770 _ 377ob -- ~ PJIISA AZ ~JIily~ _- RDL ___ bull ( C t-shy-- -~ I ----- ~HA 71lt V)tn ANAC ~---- CE~ WALflHIN RIVR ----- ~ w

w ~ LA PICO - CM44 - T -~ ~ ZUMA MALI VEN middotbull _ -bulltRc __ ~ ~lt~~7-

N WuHB _~-- -middot bull ) _J~N ~ -- ~ 0 - ) ~ I ltgt -_middot PERI bull I- ( _

V 8U25~ 3720 3720

WJlt~ ( ~ ~ ) 1 i

~ I I I I I I I I I I I I I I I I I I I I I367r I bull I I 3670

75 325 375 425 475 525 575 SOUTH

I I I I I I 0 10 20 30 40 50

(KM)

-~ ~

SCAQS SURFACE WIND MONITORING SITES 10-11 DECEMBER 1987

NORTH 325 375 425 475 525 575275

-- ----_ lt_~- c--- - ~ ~ _ I I - ---~~c------ ) _ -middot - gt~-

3a2or ------__ lt- ) 1 middot--- -- __ - ~bull =-------------- - r---_ ___ - bull- ---- I I ~ ~-- jc- I bull - - (bull I --- middot middotmiddot - ~ -middot - -- ~ - 3820 -~- bull - middot - - ~-_ ~- _ middot- n

(

- 0 lt_( ~_lt- ~-~~- middotmiddot) ---- ()_ (---- --

--

____ middot

-middot

I

f----- (-J 1r---J~ --~ - middotlt ltbullI I ~__---__ ~-

l B~--- _c_ gt-- lt gt- (- - - j 1--_~--~--l~ -- -- --- )l

-- - --~---- middotc middot=-~-~- (~ L ----- -- --middot - -- - - -bull --- - - c-) ~ J _ -- - ---- - ) ) ltl

37703770 EMLgt middotorrmiddotbull __ ) ~~~~ofmiddot - -- __s=__I- - - ~__- ( ~ __ )---__ Ishy

V) ~ ~- lt(w ~ ---- --~ - w if)

-~2_~middot) ~~at~s t I

I-

deg

FUUA

i () ~--J)llC~lt I

3720 3720

~ltl__ (_)i~

~ NSI

367~~51 I I I I I I I 13~51 I I I I I I I 13~51 I I I I I I I 14~51 I I I I I I 14~51 I I I I I I r--- I5~51 1 I T I I I I I 5~51 I I I I 36 70

SOUTH

I I I I I I 0 1 0 20 30 40 50

(KM)

SCAQS UPPER-AIR WIND MONITORING SITES

10-11 DECEMBER 1987

Appendix B

SCAQS DIAGNOSTIC WIND ANALYSES (Six-hourly plots Levels 1 3 and S)

Summer Intensive Monitoring Periods

19 June 1987 24-25 June 1987 13-15 July 1987 27-29 August 1987 2-3 September 1987

Autumn Intensive Monitoring Periods

11-13 November 1987 3 December 1987 10-11 December 1987

Page

B-1 B-13 B-37 B-73 B-109

B-133 B-169 B-181

9106103

Summer Intensive Monitoring Periods

9106103

19 June 1987

9106103

1bullbull-lil

1SV3

I I lshy Ishyo )

0 0 z ()

IO N IO

I()

N -st-

1S3M

-- l1

l~ i --

0 z 3

---

2 0

_J w cjr----_J CD

0 l() z

I- =)lt( 7

f) 0)

0 -- i n 2 Ishy7

0 ~ ()N ____ gt a 0 20

3o 0 ~

0

B-1

1Sv3

( I l-et 0 z

(

lf) N st-

l() N ~

l()

N 0 t--

n

0 N_ n

U)

ON r-shy(0

n

1S3M

B-2

_

2 0 0 tlt)-__

tlt)

_j w 2jr-_j CX)

0 lf) I- z

lt( ~ IJ1 0)

0 _ 0 n 2 z 1-0 ~ N - 3 ~ 0 20

3o 0 Ov

-----

lSVJ

l)

----

l~3 O 0 w

w ll) (1

l)

0 0 z 3

I lshyet 0 z

--

2 0 0 0

-

LO

w ~

GJ r----~

u 0 z

OJ

I- gt lt( J

mif)

00 ---shyI) 2 z I-0 i l) N -- 3 (1

0 2 0 3 0 0 ~ 0

lSJM

B-3

1SV3

- V1 --

~5 O 0

E - w

w Ul_ 0

V1 0 0

z ~

I I lshy I-et =gt0 0Z V1

-

2 0

J wr--CJ OJ J z0

Ul I- =gt lt( ~ V1 -

0 - n 2 0 z 1-() 0 ~ N __ 3 0

0 2038 0

0

U)

l

lO N v

0 N agt n

0

r--n

0 N

0 N r-shyn

U)

U)

U) N U)

Ul

q--

Ill N q--

1S3M

B-4

td I

J1

~ ~~~~~ ~ -~~~~~ J - -~--Qf~J ~lf~ ~---~ ttt~~~~H~f~ ~ ~~lt~~~0 ~ - ltl-_t I~~~~~~-~~~~~ ~~ I _~1c j_~ L ~ (__1-T11__1 ~_-~_ ---~~~~~~ 11 - ~ +f--1~- ~-+--41-- 1-~- ~ ~ -rtt1-~--~~~~~~~ ~ ~ ~ ~ l t I J JI JI~- t _I i~~I~~~~~~

377itttttttt ~- - t I Jf --------_-- _ 70 ~ ttttttttttttti- fllJ~JI-~~_- ~~ _ =- ~~~- tn w - t t I I I_~- -V _ ~ -laquo___ _ - ltC 3 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ t t t t t I I I I JI~ JI JI ~~ I--~- ~ ~~~~~ w

H~HHHH~in+~l~Hnf5-I ~ ~~~~~~~~ ~ ~ ~ lliii it t I~t~ltt~rrrr~~~~ jl++it~~~t~

20-~~~~~~~~~J tttttttf ~~~~~~~~~~---~-~~~~~~~~~~~~~-amp~ ~ t t t t t t f f f I I I I ~ 1 J(-- _ --P ---~~~~~~~~ ~ ~ ~ ~ ~ ~ ~ ~ t t t t t t t t f f I I I I I ~ ~- j~J _ ~ ~ z~ ~ ~ ~ z l I+ nm~t ~ ~ ~ I I~Jt~-~- -~-__~~~ tr ti ~ ~ t t I t f f I I I I I I I - ~-r __ - ~~~~~~~ ~~~~ ~z11 ttt ffflllllIIII -~~---~~~~~~~~~~~ ~~~~ ~~ ttttft ttflltllllllll A~--~~~~~~~~ ~ ~ ~ ~ ~ ~ ~ t t t t t t t t t t t f I I I I I I I I I I I I I ---P~- ttttttttttttlllllllllllI -~--L~-~~~~~~~~~middot

367 70 ~75 325 375 425 475 525 575

SOUTH

1111111111111111I I I I I I 0 10 20 30 40 50 0 5 10 15

(KM) WIND SPEED (MS) i

NORTH 425 575

_ 414111fl-~bull __~) ff I -lt~i ~ + lJ Jmiddot-bull A fl t1 it bull- _I~--~---~----_---~_~~~~~~~11 t1

~~t 11 f + + diamsJ diams 1 )--t-_+ J~ I-(_ 1 1 ~t1 __

__ Lt l l t fL f_l - - +~~----~~---~___-+_~~~ J-t-t t---t-lt t t-t) LJ lt fl ~ -- t---f t tT~-- ~~ 1__t -t ti t_1 + l - -~-~-~-II~-- - ~~~-----~----t----~~~~~~_Efftt -- r1 ~J t l Lt t

fl

~ _ t_ - 11 _ _

Fi ru bulll=ti~ ~ ~ ~ ~1H1~~_~-~-~----~~~~~~~~~~

DWM WINOS AT LEVEL 3 (300M) 1000 PST 19JUN87

1Sv3

I I-shyCt 0 z

1S3M

B-6

0 II)

0 I)

-_2

0 ~ N -

0

0

-_

2 0 0 0 -

LO

_J

w r---CJ O) _J z I- gt ~~ if)

0 1--shyz V) ~ Q_

20 3 g0

NORTH 525 575

~~~__A -~___~~-

F- ~_--P~

~ ff~~-- - _ middot- ~~

_ bull bull bull bull bull

_ p

~L~k~tt ~ 1 t A middot1-t

~ r~ 1 11 1 __ bull bull --l t frac12Q2_

~ ~--r-J-+7L~

1--Ui

3770 _yen~AA- ---~ ~__~_ ~ K---r

eno tshylf)

w ~ ~ ~ lt( 3 I I_

- w

td I

-J

~~~~- ~ ~ ~~~ shy ~ ~ - shy

3720

~ ~~~ -~1~-nu~~~~-

~ -~ - ~_____A~~1~ ~ _~ ~~= ~~~_______2--- ~

720

~~~-~~~~~_ 9~tbullmiddot~qor~frac12

Y~poundpoundpoundpoundpoundpoundL1~~~~r~ ~ middot

375 425 475 525 575

SOUTH

I I I I I I 11 1111 1111 1 0 10 20 30 4-0 50 0 5 10 15

(KM) WIND SPEED (MS)

DWM WINDS AT LEVEL 1 ( 1 OM) 1600 PST 19JUN87

~

NORTH

Arlt~~~ ~L _ -rJ ll

_ I I I t

_t-z~~J ~i~ bull

i- ~~~ Ii ~~( trn

3770 I - bull bull bull bull bull bull bull iigtlaquo

--- bull bull bull _-

~fJ~ t-l-lltf[llJ- jf1 rr]I ~ ~~~ ~ss~810Ja2ot-~~1i lmiddot - 1 17- - -

-ltL

~ ~ 70 y ____~ tshy

l) ) _-y ____~w

w ~

~ -~--- - -- ~ 1 ~~~~ __ _ bull---bull laquo-___~ Y~~

___p~~__---A~_A 1 ~~td I ~----______A 14 1 ~

00 _-________________ ~ __~----~1~ -A________________--r__~~~ ~ ~ ~~~--~-~~~~-~---e--~ ____________~_________-~ h

3 7 20 t-_--~____- ~ _ _ ~~-_- _ _ _ _ ~___~~~r--~~___-K ~~ ~ -~-------~~~----~ ~ ~~__________~~~~~~~______-r_-A~-1--~~~ ~__________________----r~__~__~-Y~~-------__---A----r~ 1 ~ ~__~___________~ ~

367 tcrr~__~y--rrYlt-trltltltltltlaquo-ltltltltltlaquoltlt~~~ ---

9imiddot~75 325 375 -- -

1111 1111 11111 1 1 1

0 10 20 30 40 50 0 5 10 15 I I I I I I

(KM) WIND SPEED (MS)

DWM WINDS AT LEVEL 3 (300M)

1600 PST 19JUN87

NORTH

bl I

0

~________________A-4_gt~~~_____~~__________~A

A~altP_ ~~~_________--~_A 38 20 I--=-~~_~~___~~-_-~~_ -lt~ - ~_-~_A--1~ _

~~------ ~ gt-~ ti ~----~ ~ _~~~~ 0 ~ ~-i---~~411___ I~-~~ I~A-~~----~7A7~-

A A~---~~- ---~ ~ ~ -middot~~ 1-27 ~shyA_~ ~~~ Jl--__r-t~ ~ (K~_ - fl_

A ~I J111 I _ A - ~ _ T-~ v I 1 1 1 1 1 1 ~ 1 1 _ Ji J I~ f --_i__middot1(- ~ ~)( ~JJXZ - _ r ~ - _ )( _ II I 1 ~ 1 I - _~ _)~ ~~

= 1 II II 1 (~ ~--=-~ -7fJ~~~~tm~i I- 3770 Jir - I 11 I 71 (I) ~ ~111 ~

w ~--middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotbullbull bullbull ~~~11Zll~~11~ ~ ~~_~~~llllN~~ -~~ bull 11jh fi 1 1 II 1 1 1 1 1 1 1 1 1 1 1 1 1 I I 1 0i~~~ 1gtcJ~l~p~ ~~~ ~~~ ~rr1111

70 Ishy() lt( w

111111~~ 3720 i- 1 1 ~ ~

~1~I A-A~)I 1111AA _~l11~ 1

lllllll11IIIAII- ~II ~1~~__~~Ill~~~~~ l1_ 1~~~~~~lll~~~~1 llllflfAll-)lllllllll1~~~~~

A I I I I I 1 I I I I 3670

275 325 375 425 575

SOUTH

I I I I I I 1111111111111111 0 1 0 20 30 40 50 0 5 10 15

(KM) WIND SPEED (MS)

DWM WINDS AT LEVEL 5 ( 1 OOOM) 1600 PST 19JUN87

~

A A A

1Sv3

(

1S3M

B-10

()

l ~

---u) 2 __ O 0 ~ w

w It) Q_

()

0 0 z 3

0 It)

~

0 ---I) 2 ~0N _

0

0

---2 0 __

_J

w r--- GJ OJ _J z __ )

~~ () r-

0 __ z ()3 Q_

~o 3~ ON

NORTH

middot-~~) K~xJ~ middot_1~ ~ 71( I IJ ~JI

~A I 1 ~~

liii[i~~ Hf~-~~~=~T-- ----- --=~~g~g~bull11ft _ ~~~ -1-x~~~ ~~~~-~~~--~-~---~ --~ t ~t~ -~1~~ -- ----

-lt J 1middot~~ __---~__

3 770 ~ ~~ --_tn ---------~~ 1 ~____~ _ ___~ -w bull Y ___~~~ (Al _~ _ ~

-- bull _ _ _ bull bull bull bull~___1 1I J~ _~

~- YI J _L ~~ ~~ YJll~E~

td _____-___ ____ __ 1 ~xgtx2-I ____________~__-A (~~~~ _______~~2-1 y~~- ___~__________~ ~

3 7 20 I-___~~__~~ Y --~ ~__ I _ - - _

~_---A~ ~---__~~~~~--_____~ ~ ~_____A~ y ~ ~___-__________~~ ~ -

~__-_______-yen_2 ~ ~ ~~_______~ ~

1 367~ 75 325 375 425

SOUTH

1111 1111 1111I I I I I I 1 1 1 0 10 20 30 40 50 0 5 10 15

(KM) WIND SPEED (MS)

DWM WINDS AT LEVEL 3 (300M)

2200 PST 19JUN87

~-

~ - - ---

NORTH 275

___ -~-___

- ~ I o_ ltAbull~-P- bull bull -P diams bull~--~~~~--- --- ~ ~ ti ~ ~sbull3820 ~=-J~_~~middotmiddotmiddot~~~--_~_=- =~_~c s~ ~3~

~~- bullbull~~bull~~~~~~ - bull -~~bull ~ v i-_ --- __-_ ~----~

~- st-~~1 17-~__4 ~ _~ ~-~-raquo~~~ -f _ _ bull bull bull bull~ bull bull-__-v 4 t ~ ~v ~- Jl_~ ~--z~~=~s~~~~Mil

-- _ ~ frac12--~~- -=~~ ~~l~1~l~tzi9~J t~ 1 1 1 1 1 1 ~-bull ~~___- v q (If V pp p I l_77rtfl _

3770 ~ ~ ---- I h1yenzi 1V-r-() bull bull ~ ~~~~~ w ~ bull ~ _ I JI J(_ )-II101-1 3 ~~A~~~XI IIJ~~~

~ f A I~ I I I I~--L -

tl ~1111111 ~K11~~llll~i~~~~I ~rr ~~ ~xgt~~~t---

N ~I I II)(01~ ~ ~ ~~~ 1~Y~lt~~~~~~~~ ~~~~

3720 iYY11Alllll1lIA~~~~ ~~---Y~---_ _ _ - ~ bullbull - - _

~rrll1IIIIIIIAAAA__

___________~~~AAAA~_~ ______________~~~~KAKAA1~~ lllllllllll~AAA1f~~

_~~

3670 t1i11 i i 1 i i 11111 i i i i -i i [ 111111-111 ~ ~ 11 ~ i I t 1 bull rm r~ij e =~~ raquo-il3t ~ 275 325 375 425

SOUTH

1111 111111 11111 1I I I I I I 0 1 0 20 30 40 50 0 5 10 15

(KM) WIND SPEED (MS)

DWM WINDS AT LEVEL 5 ( 1 OOOM) 2200 PST 19JUN87

24-25 June 1987

9106103

1SV3

1S3M

0 w w Q_ (J1

0 z 3

I f-shy=J 0 (J1

-_

2 0

--

_J w CJ f- _J OC)

0 U) z

f-shy )lt

J q-

(J1 N0 -_ 0

rlt) z rshyl)

N0 _ 3 Q_

0 20 3o 0 q-

0

B-13

lf)_ lf)

If) N If)

lf) r-shy~

I I-o 0 z lf)

~

lO

~

lf) N If)

(

pound bull d ~ bull 4 4 c_ q

1 4 r9middot-

0 N IX)

middot- t--bull ~Igt~

O ~f 4 fT amp)o(oj

4 ltI I~ ~ ~

0

o

middot a

~- v t rgt ( tgtj (~V~-1 f4

3 44 ~-~a4 V VM q -~~-q_4 ~4

_ ~ )

p- ~~t1~1 middot V II J ~ ~ )I 1 11 f ir -~~1I ~

II P P P Igt 4 ~(Iigt ~~ 1) IA

deg deg 4 4 ~ A -1 r 1 1-Y]~t J rz ~

fl r ~ Igt I~y ~ -- -- - 4 ~r___amp V P11 iP Igt P Igt p ~ -0

~bull 7~tpmiddot~P Pf P Ptl middot~ ~ q p Igt 1gt p ~ t b (r 4 P - 4---f ~ ~ bV ltI

ltI ~ ~ I p 6(~ d-_j b d p (4- 4 ~ 1 p Igt 1gt Igt - b ti

)4- a 4_) q V Igt p Igt o

lt(___~ ~- V fgt ~ 111 t Igt -4

~ ~ Igt r p Igt

~ ~ 1 h1

V (I Ilt v middot

t y-

t

t

p

P t P t P ~

0 0N - IX) n

1SV3 0 0 0r-shy N r-shy co

lf) lf)

If) N If)

~ - t bull~--~11n ~ -~bullmiddot t~ lt middot___

o_ ~ ~ ~

0 bull t bull 4_4 4 4IIgt

c 0----~ u c Igt( o ~ c ~A ~ 0 - A 4 4 ~ 1 q

o bull o- -~ 1gt 1gt ~ y4 -~J middot)bullmiddot ~ ~ ~ p 0- 1---f t-~ 1 ~ 4 4 o co u gt)O- eyti ~ ~l 9 -Y P- - I a c 1 oM_il_q A p- p

4 ~ ~-M f p

I 4

~ rv ~--~middot

tJmiddot bull P II f t )I~ bull V ct_~ V V V t P- ~ Igt t middot f lft V VJi P- P- fgt IIgt ~ _ J1 bull bull bull

1 v II p _bull ( ( ir ti- f Igt bull

j ~ r f -~-1t __

_I ltC_t--q_) v -~-ampgt

Q middot--- ~ - t ~ b

II

bull ~

bull bull

diams

1 bull ~ ~~ ~ ~ b b b lgt bull

-- b bull bull bull~4q~ lgtPlgt-4-~_tbblgt

Jraquo P P ~ q 11- 11- b b b b b

P Igt P q bull b b b b b b b b bull

bull bull Igt 4 4 fl ~ b b b b b b b b b bull bull Igt Igt ~ 4 q ~ b _ b b b b b b bull

P bull Igt Igt -4 ltI 9 b b b b b b b b

p bull - Igt Igt 4 lt1 _ b b b b b bull t bull bull Igt ~ 4 b bull b b b b b b bull p Igt Igt Igt bull 9 b b b b b b b b bull P p ~ ~ A 4 q - _ b b b

1S3M

figt j)

~ ~ bull

bull bull bull bull bull bull bull bull bull bull

bull bull bull bull middot bull middot

bull bull ~ ~ 9 9bull bull bull bull bull bull bull bull bull

bull ~ bull bull _ bull bull _ bull bull

~

If) N t

lf) r--11

~

If)

~

0 ONN - co n ~

I fshy=i 0 V)

- 2 0 0 n -

n _j w cjf-

0 l()

0 ~

0N

0

0

---shy2 ~ _

_j OC)

I- z lt( =i

J Vgtv 0N z f-

3 ~ 20 3o 0-t

B-14

---

1S13 0 0 0 N N r--shyltIO r--shy co I) n I)

I() l1 r--shy -U

E~i0 z

U N I() 3

I fshy)

0 U) l1 N -t

--_

2 0 0 0

-

LO

_J w CJf----_J OJ

0 U) z

f- )lt( l1-r ON z f-

3 ~ 0 20

50 U) 0 -sr

0 ON r--shy r--shy

r--shy (0

n I)

1S3M

B-15

lSV3 0 0 0_ N - _ - ~ I)

_ ()

(~i

0 z

If) If)N NIf) 3It)

I Il- I-a =gt0 0z If) If)()

N Nst- st-

_

2 0

--

- w I--- OC)Cj z0 -

I) )I- Jlt( --t-

N() 0 I-z ()

3 o_

0 0 2 0

~ 0 00( 0 0 0-N N _111) r-- 1)

1S3M

B-16

lSVJ 0 0 0 0 N r-shy N r-shy_ _agt lO n n n n

() r-shyU)

u) l() N N u) l()

I I lshy Ishyo )

0 0 z U1 l) N

l() r--_ 2 0 0 n -

n _j

w I GJ OC)

0 _j z

lt) I- ) lt( ~ lf) N 0 1-z l)

3 Q_

0 Lo38 0

0 0 0 0 _N N _ _(() n n n

lSJM

B-17

1SV3 0 0 0 0- -N N- -crJ co I) I) I)

lO II)- - U) It)

U) II) N N lO lO

lO- st

I l-o 0 z U)

N

~

I I-=gt 0 l)

st st

--_ It) - ~ I) 0

0 0 ___

lf)

J w I-

It) N I)

0 II)

~ OC) J z I- =gt lt - lf) N 0 1-z l)

~ 0

0

0

~ 0

38 0

N IIJ I)

- - I)

1S3M

B-18

middot~ bullmiddot I

1Si3 0 0 0 0 N r-shy N r-shya) r-shy r-- co I) I) 1) I)

--_

E~i l)

0 z 3

I r-0 0 z

0 I(

0 --_ n 2 0 ~ N --

0

0

1S3M

B-19

---

_J

w r----2i OC) _J z I- lt( ~ V1 N 0 1-z V)

3n 20 3 iE 0

---- --_

NORTH

-_ t t t f t A +1 t lt-1--JJ-middot+J

r ft_f_frac14 fffftl middotmiddotbull f_ n- ~ tn

ttt1I1~ ~ ~ ~ ~f --H 1--- ~ -

rJj ----~ ~ ~--- ~ l j bull bull - bull bull Ir - ---_- --- --~~~~~I-~~~ ~ bull ~ ~ rt

- - ~rnlit ~~~~ ~~~~ ~~ ~~~~~~~ - _~-~~ ~~~~~-=~~~~~~~-gt

3820

bl I

N 0

tshy() w 3 fftfftlll

ffltlIJ11111~11- I I I J ~-- - ~~~~11J~ -~

3720 - I I JI J ~~~~~~~--------~~ diams bull + I J J _~ 4 bull I I I J ___ ~~~~-s---~~IJ-bullbullbullbullbullbull ~__middot~middotmiddotmiddotmiddotmiddot~~~~~E-e~~

4flA~~middot~middotmiddotmiddotmiddotmiddot~~~~~ ~--_---~- ~~ 1

367~7i51bull1bull11bull1 111 13251777JT7777~7777 I I I 14251

--~--~- ~~_-~-----~ ~~~J

--~-_--~- 1- I 1 I

~ 1lJ

I I I I I I 14751 I I I I I I I s~sl1 I I I 1575 I I

3770 tshy() lt( w

3720

13670

SOUTH

I 0

I 10

I I 20 30

(KM)

I 40

I 50

lllI 0 5 10 15

WIND SPEED (MS)

DWM WINDS AT LEVEL 3 1600 PST 24JUN87

(300M)

lSgt3 0 0 r--shy N r--shy r--shyt)

It r---1)

lO ---- N bull ~~ r lO ~ oe--- I

~~~~ t z~_-----~8 ~ ~~~2~-~----=---~~ t ~~----~~ -frac14~~~--

~v -~ 1 ~ - ~ ~~ ~~~-~~N~~~~~~~~~~~

tf~ ~ ~ -~~~~~imiddot~~~~~ ~~ ~~

_gt~~ middot1 ~ r2 l~ --~- I _Ct _ V I - ftV

0 ~ ~~- X

z~ HF bullIh IJ i It ti ~ 1 IJtl ~ ~ j t ~1

~ ~ 1~1

1 r ~

)

r r~P t t _r )r f

~ 1+ t t t f t ti ~ 1 lt ~ diams t f J t H ff 1 1I I I It diams diams Vf- 1 f f ~ f I 11

(____ t i(_ bullbull ~ bull ~ I r fr1)L_lt--~~vi 1t1J U1 -~- middot~ 1 t) ~ bull ~ bull ~ bull 1 1 f f f I t ~ - ( ~ ~(~ (_ ~ b ~ - ~ bull f 1 f f ~ bull

j ~r~--~ ~ _ ~ ~ ~ l 6 bull bull 4 t ft It _ - __ _ - J ~ ~ ~ t bullbullbullbull t - _ ~--~_____

__ I deg j ~ ~ b ~ _ Igt ~ _ _ ___ bull bull bull bull

~ ~ I ~ ~ ~ _ ~ _ _ _ __ - bull bull bullf

~ bull ~ ~ 4

I -- I bullbullbullbullbull

~~~ ~

1 bull ~

-- V)

LO lshy -----_ lf)

l- w w

=~ It) 0 l)

It)

2= )

0

~

l() 9 __~----- lf)r--- --------J______--L--J-~J-J-______~______~~~___________________________ r---N O O O ON

0 0 z 3

--

2 0 0 0 ----

LO

_j

w I--GJ Cl)

0 _j z lf) )I-

lt( ~ ~

lf) N 0 -- 0 I-n 2 Zlf) ~0 3 0

N ---

0 20 3 g0 -

0

N r- N I-~ I- I- ~ n n n n

1S3M

B-21

1Sv3

U) N U)

lJ) N n

0 N (0 I)

0 r-shyr-shyI)

0 N

I)

It) N It)

U1 r--1)

1S3M

B-22

0 w w (L Vgt

0 z ~

---2 0 __

_j

w _ ~ OC)

0 _j z U1 I- )

lt~ NVgt

0 --shy 0 1-t) 2 z () 0 ~ ~ (LN -middot -

0 20 ~~

0 ON

bull bull bull bull bull

1Sf3 0 0 0 0 N N CX) ID I) I) li li

~ n

~ n

tf) ~

A i -02middot a_ ~ r ____ Igt middotjmiddot i -1 ~ i r middot-~-----------------gt IJ IJ bull 1 j I ------~-----------------

_ IA_Jyen ~ ~ J ~ yen ----~---------------------

~ II --~_a IIgt 11gt Igt middot~ I bull ~ ~ ~ ~

1(1gt i i _JI J Iibull I - IJ Ji H j

bull bull I( --- j J t ~o ~- -- -J I I i J diams bull1bull bull bull i ~ _I I I I J 1 ~~- ~ 11 J l J diams -~ J) bull ~ I- t t ~ ( l f middott J bull 1_~1 ~ IJ II- I ( II ~ j t t bull)

bull t )bull ~) i ~bull bull __ __ I 1gt J I I I middot----- - ~ _ ~ Ji (Ji_ If ~ --~ bull i f l-Ji ~ p VIMyen I ~ middot1 bull I Ibull lt_~ ~ p1 )

I

__________________

~ 4 V ltI - - - -

~) i t --- -- yen 4 yen -- Iii 1yen yen JY yen II

I ~1 Ja a Igt- yen yen yen yen yen yen yenyenIiyen II II

a Igt bull ~ 111) (I J I JY yen tY yen yen II( ltf ~ I~) JY yen liY yen yen yen yen yen yen yen II II II ~ ~(II ~ yen yen yen r yen 1r yen yen yen It Ill

p cl

p 4 ampgt P JI r Igt bull

bull JJ Igt II

- ~ 11- bull

- -

+ _ _ _ __ __ +- ____

- - ----4

bull bull Igt Igt Igt

11 bull bull bull bull

bull bull It

IJ Igt bull t P

Igt bull t

- II Igt fl t middot~~-~~~t_yenyen yenyenyenyenyenyenyenyen

I ~J )Igt) 1 bull yen yen ~yen yen yen yen yen r - yen If II II Igt - I 1 J bull bullI _ _ 1 ~ ~ 1K )

bull -

bull bull II ~ Igt- J 6 bull I 11

fl) 1gt 11 Ill

bull t t fl

~

U1 r- n

~ n

_________o__JJ=---=-------oti~~e-~e11JEJEolELE-ILILLEJLlLu~uJ

l~

0 tf)

~ 0 n

0 N

0

0

- Vl ~ 2 ---

0 w w CL V1

0 z 3

-

2 y --

-

2 0 0 tlt) --

n _J w f-~ OC)

_J z gt

I- Jlt( q-

NVl bull) I-z Vl -~ CL

02 0 3 N 0 NIf)

ONN I N ro r- (0

n n n I)

1S3M

B-23

17z-g

WEST u u u ~ ~ ~ N ~ N

NO N~ 0~0

7J ~ () z -I 0 N (I)

~ )gt c_ -I C zr co ~ -J rT7

r (Jl

-- __ 0 0 0 s _

--_ 7 ~ --

~ z

~-0 0

--s (I) ___

0

0

N o (A 0

t ()1 0

oj(JI

-0

-()1

0 0 0 N -J

A I q bull if ~ ii ii ii I ii if 1 i J (JI

Ab4llltli ~~144

bull~~bull~1111111 11~1middot)1i~~~1 ~4gt~1111111~ II~ - bullbull~Agt~lll11 IIIAII tbull ~4-4~~~III IIll~ I ~14 4 - ~ bull i ~bull-ttt1 111111 I I 1-~ bullbullbullbullbull gt q bullbullbullbull I t I I I I I 4 I I I I I I I 1_ J~ I

4~ A - middot~~lll111I IIll 1 I 4 -1~~ l~ gt1llllllI 1l111 -~~ I N

tn()16 -1 Igt Igt I I l1I v I 7----(Yi ti mbull1-t

~Plgtlt111 VIII ii l middot~1111~~0~ I l~lll~310bullbull I i~W~ffi 1~~~~6~~~ I J~ 1~~~rw 11~~~1~ ~l~~t ~ i 11~~~~~~~ ~~f)~t~~I I~tl -1

~ --J ()1 l 111~1JV1 ~~~1~ I Ill tniz~i~~~~~~ ~~~~ 7 ~K -~~iii~~~~~~~~ il~~~~~~~ 1~~1~~~

middot1 middot1 middot1 middot1 middot1 middot1 middot1 middot1 middot middot1 middot1 middot1 I I I I vr )Igt(_ I II I I~~~~t~ 21~~~r~~~~~v111l I ~ II I -- I~ J(( I I II J l l l Cl ~ I ~ ~ ~ J J I I I yen - - bullbullJ_~ f yen ~ I IJ t I ti

diams J J J I I - ~ - ~ l1 yen -1) I I( t I ~ N J J J J 1- ur~ ~ - Jf1( -I) I I I ti I I j~

() UI diams Mi r)r yen fir_~~ bulll1t) JI 1 I middot i - (JI0 ~ nmiddotmiddotJ jmiddot-1 I I I f ~j--1J ~ __ middot gt C ~ J I f I 1 ltH I fl 1 ti I middotr- I I-I ~ f bull t t l )1j - _ I

t J4J-fbullt t ~ ii middotlfli ii~) - ~bullmiddotttM i f bull bull1 rI-Ku bull bull bull _ middot-~-J_J middot t +imiddot i t t ~ t ( ~ middot(~ I J bull Vf I r1- ~ j~fmiddot + r bull(~t t bullbull_t- J J ~) J ~ Igt

+ __ middot + V+ bull bull ti+ bull + -fi J i bull bull ~ f --- ~ ~ t Li bull bull t ++ diams + t bull +++ + bull ~ __Vbull ~ it 4 ~ i ()1 ~ 1 bullbull diams diams diams diams ++ ++ bull t 1 fA middot_ -----Y 4 ~ tn

~ ~bull t bull + diams + bull diams +++t + bull A VJ ~ bull bull ~ -o middot ~- bull t bull diams diams diams + ~i4_ ~ ~ ~

11 -~ 1 1 1 1 ~t t diams t t ft(middot-- f g a PA

--middott 4 -4 y 1 1 1 )f7~ V g n t A ~ ~bull a~ 4 1 1 ( V P q 1 bull A ~ V Y ~-- 4 I Cl oCl 4 A A ~tW --~- ~middot -)bull ~iliJ bull1bull

bull It t-- ti __ __ ~ (~w ~ ()1UI I bullbull bullrmiddot -~)fl l~~~ ) I A IIbull N~L~ r ~~~-ff~ --bull--1) 4 4 bull ()1

~ 14 ~ bull f 4 AA 4~ bull

44( )A - ~

- ti~ f 4 ~ 4 4 4 A bull ~ i

ti ti fl 1 4 tn llflfl44 4 -()1

~ ()1 ti ti fl 4 4 _ 4 bull fl _ 4 ~ ~

~ bull t~ - - I - 1 T T fJifrac12 1f 1~ fl t [ 1 4 bull bull ~ ltt ~4 ~~~11 l~~Nfl---~ ~~ bull ~t144

1 -middot I I f I ~ fl ti ti- Imiddot tJ 1-0 I 14

z o 0 -I

I

Y

)

u u u u 0) ~ ~ ~ ~ N ~ N 0 0 0 0

EAST

1S13

0 z 3

r r I-shy Ishyer gt 0 0 z ()

--_

2 0

--

___J

w CJ r----1 (lJ

0 l() z

Ishy gtlt J LO() N0

z Ishy()

3 0

0 20 3o 0 tj--

0

1S3M

0 w w 0 ()

B-25

------

~ --- _

NORTH 275 325 375 425 475 525 575

dJ 41 l ll~I tgtI I lo fA Itgt IA IA lo 1 IA IQ 1q lq If lq I ~I 4

~ ~ IIJ ~A ltI P Igt Igt Igt P V V V Q q l_-~- q ~ ~ ~ x- ~ ~ Y t~ --___q)11 4 ltI v v v v v v v 1raquo 4 -q q -~ q ~ 1 a

~ 4 ~~_gt~) ) ~~-4_~ A ltI fl v v v v p A V yjq ~ _ _ ~bullbull --shy~~~ ~ I Cl11 ~ 4 v v v v P- deg 4 ~ -V t V ( ~ a bull-

~ 1 ~~~ v ~sa- fl V P -iLpound_~A--4 q Igt P ~ 4 a~ 4 38203820

- _1 fa bull bull ~ II 11 4 4 ltf V P deg q 9 p Igt Igt Igt Igt P~~ _ _ _ bull -

- ~_R middot ~ gt- P-~-j---s--middotp-~~--- Igt p ~(

-~~ _ amp- 4 --v--J ~--~ -__~---- ~~ t f ---~middot bullbull ~ ~ ~ ~ ~~bull--- bull~bull~~ 4 ~-deg ~--~ ~_v -~ _~raquo Wh~

bull bull bull bull ___ol bull bull --___~ ~ _ A~~-~- f_~-~ bull 1 ~bull -~ Igt bull

a l -4 bull bull~ bull ~ ~ bull frac12~ P- __ _middotmiddot11-~~j)6-_ U bull _ JIgt~ bull I- bull ft ~ 4_~~~~ 9 P lgt--1gt~~~_-~_----~~~ ~ bull ~ ~ ~ ~ --~-~- ~~-_middot ~~~A~ ~ 1111 ~- ----~~ -~- IIgt _)-

1111 1111 -( _-middot 4 ~ Po Igt q lgtmiddotv11t_ Igt Igt II

3770 ~ P 0 ~ - bull k ~ 1- 1-

() pound 4 4 ~ q -44 - bull bull Igt ~- t Igt 1 Igt () w Igt 7 lt

3 - bull It It It bull bull ~--~ p ~ Igt ~ w ~~ It It It bull ~ -_t _ ~ bull bull bull bull --~ Igt

deg

td bull ft bull v ~lt~ Igt Ci~ 4gt I ~ It bull bull ~ 6 -It Igt ~

N bull bull It It ~ ~ _ ~_) ~ ~ lr It ft ft ft ft ft ft Igt -II-~ j ~ fil- _ _ _ _ bull 11r 1o 1o It 111- bull ft ft ft ft ft i i f - ~ 3720 bull It bull ft ft ft ltt q -e- ~ ~ ~j1

4

middot bull bull bull It It ft It bull ~ ~ ~ bullmiddot ft ft ft ft ltt ft ltt ltI 1 ~ - It bull It ft ft It bull -0 ~ JIgt ]~

middotmiddotmiddotmiddotbullbull1rt1rtft11- p-bull- ~1frac121 1tftftlttltltPt1t fgtbullbull ~~- bullbull ~

It bullbullbullbull It ltt It It ltt It lrt lrt tgt - ~

~~~ItIt ItItIt 1t11tft lttlttftlttltlt ltt lt11t ~ lgtbullJgtIbullbull bull~bull bull~bull ~ 1 bull bull 3670 367~75 325 375 425 475 525 575

SOUTH

1111111111111111I I I t--l 0 10 20 30 40 50 0 5 10 15

(KM) WIND SPEED (MS)

DWM WINDS AT LEVEL 3 (300M) 400 PST 25JUN87

0 0 0 0 N r-shy N r-shya) r-shy r-- (0 I) I) 1) I)

-

LO r--1) -

l~ i ()

0 z 3

I ~ n 0 z I)

N st-

0 If)

0 - I) 2 0 ~ N -

0

0

1S3M

B-27

---_

2 0 0 0

-

If)

_J

w Cj l-_J OC)

z_ ) lt( J () L()

ON z~ 3~ 20 3oo+

0 0 0 N N C0 (0 I) ~ I)

U)

U)

U) U) N N It) U)

I I-=gt 0

U) V1 N st-

lO N I)

0 lO

0 __ I) 2 0 ~ N _

0

0

__ 2 0

--

_J

w l--Gj OC) _J z I- =gt lt( ~ V1 N 0 1-z V) 3 CL

20 3 g0

1S3M

B-28

I fshyCt 0 z

0 r-shyr-shyI)

0 N r-shyn

0 r-shyl) I)

lO r-shylO

lO N It)

lO N ltt-

--

tlt)

_j

w r---fu o) _J z f- ) lt( ~ f) N 0 1-Z Vgt3 (L

2 03g0

I fshy)

0 l)

0 lO

0 -- n 2 0 ~ N ---

0

0

1S3M

B-29

1S13

-l)~ O 0 w

deg CL w

l)l ~

0 0 z 3

I lshya 0 z

--_

2 0 0 0

--

LO

_j

w__cj IJ)

0 _j z lf I- )

lt ~ ~ V) N

I) 20 - 0 Z(f)

I-

0 ~ 3 CLN -

2 00 3 gOr-

0

1S3M

B-30

Ht 11Sittl

lS13 0 0 0 0 N N II) (0 n I) n n

-- ()

LO t-shy ~ lO

(~i0 z

lO N LO

3

I Ishygt 0

lO () N +

--

2 0

--

_j

wr-----CJ OJ

0 _j z lt) I- )

lt ~ V) N

0 -- 0 1-shyI) 2 z () 0 i 3 ClN --- --

0 28 3 ltD

lf 0~_____________________________~_______________________--- t-- 0 0 0 0 ClCI N N t-shyII) t-shy io n n n n

1S3M

B-31

==- ~-_

NORTH

I bull bull - -f I I bull ~bull - ~__~~~~ ~~~

flt~11 $~~~t=- ~~ ~ 4Aligt~ ~~~ ~~

3820 1~~~- 4 t 11 ~ ~- --~_____-- ~ ~ ~~ 3820 ~~~

~~-~~~~

3770 3770

l1 ()w l-

lllizz tshy

~ ZlZZl ~ ~~~~~~

to I -IllIll

w -I IIIll~N llllll2~~

-II I I J I-~1~ r~~~~ 3720r ~ J J UL 1~A~~ 3720

~IIJJJJJ2~ ~~~ 1 ~ fl I JI JI2~~ 1~~~V fl fl ~ JI J J ~ y ~- 1-f4~) ~ fl fl fl I JI J _A2 1~ V~

~flflflflJIJIJl~2 ~~JIw~ ~ ~jlfljlflJIJIJI~ ~JIJIJflfl~~~ ~ ~~fljlfljlJI~~~~ -

J67 t-V1111111----(((((1i I~laquo rlt~1 I I I I I I I IM m I I I I I I I ~ MJ670 g75 325 375 425 475 525 575

SOUTH

11111 11111 11111 1I I I I I I 0 10 20 30 40 50 middot 0 5 10 15

(KM) WIND SPEED (MS)

DWM WINDS AT LEVEL 3 (300M) 1600 PST 25JUN87

1

NORTH

bj I

w w

i~ -tt--t ~ + ~frac14 diams diams diams diams diams f f f J-~~~l -ff~_x~ diams t diams ---t diams + diams ff f J1ff~t t

-=tl-U +---- ~ ~ t-t- diams diams __ diams~ diams diams ~ J I I 1 1 f ~ -y- ~I -~~-1t-~ diams +__+ diams + ++--J_f 1 ~JJ-11 I --

38201- ~~-- ~ ~--t_-( 1 ~ r 1t + middot~-t_ bull ~-~ bull bull bullmiddot bull r-r 1 ~IiI 1 I ~Ji~l _-=pound-~If~_ It It It bull bull bull bull bull ~ diams f f---bullmiddot+ --I __- _ I I~ 1 f1

( - ~~~~ II lit It It 1tt Iii Iii~ -r-middot -- ___- l_f--1-l -L ~~1 1 ~ ~_( _ -~~ ~------~ 1t(~ bull (t ft- ~ middotv -11-fI 1 - t~~1 1 41

~ - ~-~- lit 1t lk_i -- -~--- -_ -j rf-- l1 r111 1 I It It~ It 1t 11i bull-~ ~- ~ t_bullbull_~ (middot ~--middottY~i_(4Xtl~4j_ middot It It ~ -- ---~----~----_I~)-~-~ -

~-It It ltt middot~- ~ -~-middot ~-pound1[_~ -~- - middot - deg - - It It l diams diams 4 middotbull--bull ~ ~ ~ diams 7 1---~~ -L_- - ~ t( I diams -( bull diams ~ ~ bull ~ -- JI JI Jf JI JI j(_ ~II deg It_ -~ ~- I I I J JI JI JI JI 1

~ J- ~llj ~- diamsdiams +II IllJI_ h~ ~ ~ ~ bull bull ~ JI J J J ~ 1 x111 X7 -~ ~ diamsdiams 4111 JJJIJJ~~~~~~~~1t diamsdiamsdiams ~111 JJIJJIJllllb~ h~~~hh middot ~ - diams diams bull I I J J I I I I JI JI I l1-14~frac12-~~~ji_ ~ + f 1 J I 1 I I I 1 ~ x~ f1 11 middot -

bull JI I I I11~bullY1iz 1 41 ~ f I J J J JI J J J J J I I I lmiddot ~ t JI JI JI 1 JI 1 1 JI J I I I It~ if~_~

It_ ~ 1 JI JI JI JI J J I I l-~ 4 t J J J J J J J JI JI I I l l deg ~~ _ ~ 1111JJIJIJIJIJIJIJIJI t JIJIJIJI~I JIJJIJIJI_

~- I t I I JJJIJIJIJIJII~~~~ t JIJJIJIJIJIIII ~~ JJ JIJIJlllll ~ t IJJIJIJl1 1 1 ~ ~~I 1 t 1 A 11111111 II I I I

325 375 425 475

SOUTH

I I I I I I 0 10 20 30 40 50

(KM)

525 575

1111 111 1111 10 5 10 15

WIND SPEED (MS)

3820

3770 1-() lt( w

3720

3670

DWM WINDS AT LEVEL 1600 PST 25JUN87

5 (1000M)

0 w w CL ()

0

1S13 0 0 0 N r-shy N agt r-shy r--t) I) 1)

I() It)- r-shyU) U)

z U) N It) 3

( I I lshy Ishyo ) 0 0z It)

~lgtIgt~() st- b tgt ~ q st

lgtbbtgtb

b b t t 0 b

N

Igt b t b b b A 6 ~ b b t b C A 4 d 4

ttCt4lt1-it e Igt b tgt tgt V q ltl ltl ltI ltl

ti- deg 1 41 9 q I I ltl q q

i V q ltl q q q q I l() r-shy AlgtV ~ tlt) ~t) -~~~q

~ bull amp ~

0 ~ ~

-qa ~ ~ 1gt1 111111

b-a~-V ltillilI

bull lt bull bull a ~ Igt ~ V V V q 4 __J

It It lgt a -a~ Igt C tgt V w r---(J OC)

bull ~ Igt t 4 bull bull bull bull U) 0 __J z middot 1gt44lt14

U) ) t) rshy J - -N

lt( l() ~ ~~ CI() ~ ~

~

0 Ishy bull bull bull diams 1 z ()~ bull ~ bull diams diams 1 CL3bull ~ ~

i b y ~bullbullTT r I I 0

~ bull bulldiams ~ ~ b b b b ~ bullbull diams T r r I U)______-11____________________________ _ 0

0 O O ON N r- N r--agt r-- _ ~ I) I) I) I)

1S3M

B-34

I

_ _ 3820r- ttr- t f T Jf-Lt If t t 1l-- -~ 1~ t t

NORTH

~bull 1414

~~-_ ~ ~ r-- - --~ ~ - - _ r-- fT W - - r V-V ff f

- t t t t f I~ _AAjAA~-r bull(- -J It ~---1 t ~~~-1-- 1 ( ~~ - J ~ t t i f 1 ~ A_A-yen~_~_ ~ ~ 1 ~ t t ~ t t middotmiddotkt f ~-~-~~-----~~-- ~ ~ ~ ___ll_ bull ~

t -r- _______~~----- r ~bullbull _ ~ ~ tt-~J--~c-~~ ~ 1~--______ bull

~ -t lJ-- f t-J-- r---~~---middot _-- ~~-- ~ bull bull ll~iti~~sect~~~ ~ bullbull~bullbull bull~~n~ bull bull bull n~ bull bull

A)~lfifrac12~~ ~III I --1

3770 l l L l L - - ~ -- ~ - 1 ~ - 770 tshy~ ~~~~~~~~~11 1 ~~=1~~- Ul

W 1lllll~I ~~~~1111~~ lt( w ~1~~1~1~~j~~~m ~~~~ ~ - ~

11 1111 1111~I I 11111111 --- middotE~

tj IIIIIIIII_ ~tI l) llllll_~_p ~1l1 1~A~~~A~~rrr-v

3720t- I I I J J J A__ r r 0 11J)~~~----~_~ppmiddot-~~f Jl~~~~~---~--~~r~-~~q~q ~1

I ~JI I~ A A-_

~JIJl~~~~~A-----A rrbullbull~f~df~ ~~JIJl~~~~A~~--~- fffdfdff

~~JIJI~~~~~~---- bullfbulldbullfdf~

~IJIJl~~~AA~ --middotmiddotmiddotmiddotmiddot~middotmiddot~~~ ~l~JIJIJl~~~Al~pp~~~~bullbullffffffdff X ~~~~JI~- A(- f bullbull P ~ ~~bull1f1q1f1f1f1f1f1d1bull

3670275 325 375

1111 1111 11111 1 1 1

0 10 20 30 4-0 50 0 5 10 15 I I I I I I i(KM) WIND SPEED (MS)

iDWM w1tms AT LEVEL 3 (300M) ir 2200 PST 25JUN87

0 If)

0 __ I) 2 0 ~ (j __

0

0

__ 2 0 0 0

__

LO

_J

w f- GJ ll) _J z I- ) lt( ~ () N 0 1-z () ~ Cl

20 ~~ ON

1S3M

B-36

Page 2: Nind Observations Collected during the Southern California ...

DIAGNOSTIC ANALYSIS OF WIND OBSERVATIONS COLLECTED DURING THE

SOUTHERN CALIFORNIA AIR QUALITY STUDY

FINAL REPORT CONTRACT NO A832-133

Prepared for

Research Division California Air Resources Board

1102 Q Street PO Box 2815

Sacramento CA 95812

Submitted by

Systems Applications International 101 Lucas Valley Road

San Rafael California 94903

Prepared by

Sharon G Douglas Robert C Kessler

Christopher A Emery Janice L Burtt

JUNE 1991

Abstract

One objective of the Southern California Air Quality Study (SCAQS) was to acquire an improved understanding of pollutant transport within the South Coast Air Basin (SOCAB) The complex meteorology of the SOCAB governs the transport of pollutants within the basin and through its boundaries Thus a thorough understanding of the mesoscale airflow patterns in the SOCAB is critical to understanding pollutant transport in the basin

Wind data collected during eight intensive monitoring periods in the 1987 SCAQS were used to analyze the mesoscale airflow patterns in the SOCAB The SCAQS data base contains the most comprehensive set of surface and upper-air wind data ever assembled for the SOCAB The data set represents good spatial and temporal resolution of some mesoscale airflow features

The wind data were analyzed using the SAI Diagnostic Wind Model (DWM) In this model observational wind data are incorporated into a first-guess field that consists of a domain-mean wind that has been adjusted for terrain effects The analysis consisted of (1) generation of hourly gridded wind fields for the 17 SCAQS intensive study days using the DWM (2) analysis of the mesoscale airflow patterns and (3) calculation of forward and backward particle trajectories to examine pollutant transport in the SOCAB

F4500 9106lrl

l

Disclaimer

The statements and conclusions in this report are those of the Contractor and not necessarily those of the California Air Resources Board The mention of commercial products their source or their use in connection with material reported herein is not to be construed as actual or implied endorsement of such products

F4500 9106lrl

ii

Contents

1 middot INTRODUCTION 1

2 GENERATION OF WIND FIELDS AND ANALYSIS OF AIRFLOWPATIERNS 8

Diagnostic Wind Model 8 General Procedures 9 Summer Intensive Monitoring Periods 10 Autumn Intensive Monitoring Periods 15

3 PARTICLE PATH ANALYSIS 18

Calculation of Particle Paths 18 Summer Particle Paths 31 Autumn Particle Paths 32 Comparison with Tracer Data 33 Uncertainty Analysis 34

References middot 43

Appendix A SCAQS Wind Monitoring Sites Appendix B SCAQS Diagnostic Wind Analyses Appendix C Particle Paths

F4500 91061rl

iii

II

(

1 INTRODUCTION

One objective of the 1987 Southern California Air Quality Study (SCAQS) was to acquire an improved understanding of pollutant transport within the South Coast Air Basin (SOCAB) The complex meteorology of the SOCAB governs the transport of pollutants within the basin and through its boundaries Thus a thorough understanding of the mesoscale airflow patterns in the SOCAB is critical to understanding pollutant transport in the basin

Wind data collected during eight intensive monitoring periods in the SCAQS were used to analyze the mesoscale airflow patterns in the SOCAB The SCAQS data base contains the most comprehensive set of surface and upper-air wind data ever assembled for the SOCAB High spatial and temporal resolution wind measurements are available for 17 intensive study days representing both summer and autumn air-quality episodes

19 June 24-25 June 13-15 July 27-29 August 2-3 September 11-13 December 3 December and 10-11 December

The data set represents data good spatial and temporal resolution of some mesoscale airflow features The SCAQS surface wind monitoring sites are listed in Table 1-1 the upper-air wind monitoring sites are listed in Table 1-2 Data availability varied from episode to episode Plots of the surface and upper-air wind monitoring site locations for each episode are given in Appendix A

The wind data were analyzed using the Systems Applications International (SAi) Diagnostic Wind Model (DWM) (Douglas et al 1990) Using this model observational wind data are incorporated into a first-guess field that consists of a domain-mean wind that has been adjusted for terrain effects Figure 1-1 illustrates the complex topography of the SCAQS wind analysis domain This domain is identical to the Urban Airshed Model modeling domain used by the South Coast Air Quality Management District for modeling performed in support of their 1991 Air Quality Management Plan

9106102 l

TABLE 1-1 SCAQS surface wind monitoring sites

UTM- UTM-Site Easting Northing

Identifier Location (km) (km)

ALHA Alhambra 3945 37727

ANAH Anaheim 4150 37425

AZUS Azusa 4149 37774

BANN Banning-Allesandro 5117 37540

BARS Barstow 4979 38611

BU23 Buoy 46023-Point Conception 1594 38014

BU25 Buoy 46025-Catalina Ridge 3054 37307

BURK Burbank 3795 37830

CASI BLM-CasitasLos Padres NF 2824 38089

CELA Los Angeles-North Main 3869 37701

CHIL BLM-ChilaoAngeles NF 4046 37990

CHIN Chino 4365 37634

CI Santa Catalina Island 3683 36963

ONS Cajon Summit 4617 37990

CLAR Claremont College 4351 37735

CM36 CIMIS-Blythe 7262 37256

CM44 CIMIS-U C Riverside 4690 37581

CM50 CIMIS-Thermal 5703 37230

CM55 CIMIS-Palm Desert 5572 37323

CM60 CIMIS-Barstow 4895 38621

CM62 CIMIS-Temecula 4794 37055

COMP Compton Airport 3855 37503

COST Costa Mesa-Placentia 4138 37242

CRES Lake Gregory-Crestline 4748 37890

ELRO El Rio-Rio Mesa School 3026 37922

ELSN Elsinore 4677 37260

FONT Fontana-Arrow Highway 4534 37731

Continued

2

9106109

n iil itb( r r tt A-TABLE 1-1 Continued

UTM- UTM-Site Easting Northing

Identifier Location (km) (km)

GLEN Glendora-Laurel 4215 37782

HAWT Hawthorne 3734 37543

HESP Hesperia-17288 Olives 4738 38084

HF Henninger Flats 4006 37847

KH Kellogg Hill 4242 37711

LA Los Alamitos-SCE Power Plant 3980 37370

LAHB La Habra 4121 37542

LANC Lancaster 3957 38415

LBCC Long Beach City College 3947 37437

LCAN La Canada 3882 37861

LGBH North Long Beach 3900 37430

LSAL Los Alamitos-Orangewood 4045 37398

LYNN Lynwood 3882 37548

MALI Malibu 3440 37669

MISS Mission Hills 3651 37932

NEWL Newhall-County Fire Station 3590 38060

NORC Norco-Norconian 4472 37533

NTD Pt Mugu Naval Weapons Test Center 3048 37769

OJAI Ojai-1768 Maricopa Highway 2914 38138

PASA Pasadena-Wilson 3961 37773

PERI Perris 4784 37380

PICO Pico Rivera 4023 37641

PIRU Piru-2SW 3324 38076

PLSP Palm Springs-Fire Station 5425 37457

POMA Pomona 4307 37696

PV Palos Verdes-San Pedro Hill 3762 37346

Continued

3 91061 09

TABLE 1-1 Concluded

UTM- UTM-Site Easting Northing

Identifier Location (km) (km)

RDLD Redlands-Dearborn 4853 37686

REDO Redondo Beach 3720 37459

RESE Reseda 3587 37851

RIAL Rialto 4625 37760

RIVR Riverside-Rubidoux 4615 37620

SIMI Simi Valley-5400 Cochran 3449 37940

SNBO San Bernardino 4748 37739

SNI middotsan Nicolas Island 2684 36823

TANB BLM-TanbarkAngeles NF 4301 37849

TEME BLM-TemescalLos Padres NF 3531 38167

TORO El Toro 4320 37252

TRON Trona-Market Street 4361 39573

UPLA Upland ARB 4420 37736

VCTC Victorville-Civic Drive 4707 38185

VENI Venice Beach 3642 37612

VERN Vernon 3874 37625

WALN Walnut 4223 37677

WHIT Whittier 4053 37540

WSLA West Los Angeles-VA Hospital 3657 37686

WSPR BLM-W arm Springs Angeles NF 3552 38291

ZUMA Zuma Beach 3313 37659

9106109 4

TABLE 1-2 SCAQS upper-air wind monitoring sites

UTM- UTM-Site Easting Northing

Identifier Location (km) (km)

BUR BurbankGlendalePasadena Airport 3748 37850

DAGG Daggett SCENES Site 5198 38581

EMUA El Monte-9528 Telstar 4021 37700

GLUA Glendora-near SCAQMD site 7000591 4216 37783

LBCC Long Beach City College 3947 37437

LBCR Long Beach City College 3947 37437

LMUA Loyola Marymount U niversity-Engng Bldg 3694 37604

NEED Needles SCENES Site 7181 38496

NSI San Nicolas Island 2717 36796

NTD Pt Mugu Naval Weapons Test Center 3048 37769

ONT Ontario International Airport 4443 37684

PSP Palm Springs 5460 37429

RAL Rialto 4589 37567

SFUA Santa Fe Springs 4020 middot 37557

TRM Thermal Airport 5776 37209

VBG Vandenberg AFB 1733 38472

YLUA Yorba Linda County Park 4287 37549

591061 10

5~

NORTH 275 325 375 425 475 525 575

~-~

bull ( I (o(r--L__- __ c_ __ ) -9) I _)I --~ ---~ __------__

bull (Q ~ ~ l-- middot r l__ _ _ 1 2 oo--_ - _ ~ shy

-

----- ----

------ ---

~middotmiddot- lt~]~---~ ~ 1 L

~~ 0

- o 7 -

----

~ middot -_ -_ I ( C~ ) ~ middot---) lt____ ) 9 bull ~- J t------------ ~ middotbull _ __ 10o -- - - - - - - 0 __ - J J--aoo ltJ

3620---_--__ _ - 0) ------- ___ -- - - ---- -- - --~- 7--

- middotmiddot -middot-- 0 _ - - I 1---------- ---- ~ ---~-----_ -~- ------- -_ ------~lt()~ --nmiddotor ~o-gtpcbull-middot ccc_--gt ____ middot_middot Ji tdegoo CmiddotI bull -bull - - I ---

middot-middot ___ - 1 c___ ~ i-- l bull - --- bullsoclt---_ middot middot-~soc_ ~- le r---- ltD

_ - -- ____ -c bull -~------1 5

= __ __ ) --~ --_ ---- ____ - _____-~~~-~ ~ _ ---~-frac142--~~ so9~ _ Q___~ - -- _ bull bull 1 middot -~ - -- - bull bull c- rAo 0o(Y--

-_ -------=--=_6CO-------- - ~)_O~ _ ~_ lt--middot_~~--~ (_ )-~- - _- ~ 0

~) ( ___ ------ -~- C jjh --- - ~ I 3770

t- 300- middotoo___ -~- l _2 ---sii middot middot 50~ ( C tshyV10w w ~ C ~_( middot bull i

l_ --t

~

__ _~) igtgt

- 1

- middot

7)_ -o-

- _middot-- -- ~ ---30~lt_~-L_ 9oo_~gn~~-__~~

U)

3770

- - o ~~~~d l -- o~ Jl _

si (_ - (----_ ( 1400t 37203720

- 1 ) reg_~S ~ ~~

7 9 b -- -- 0 ~

i --shyf I I I ~Ibull-bull

367~s I I I I I I I 13251 I I I I I I I 1351 I I I I I I I 14251 I I I I I I 14~51 I I I I I I I ss 7 I I I I I I I5s I I I I 3670

SOUTH

I I I I I I 0 10 20 30 40 50

(KM) i

FIGURE 1-1 The SCAQS 1987 analysis domain (axes labeled in zone 11 UTM coordinates topography contoured in meters)

-- ii gti kd

Our analysis consisted of (1) generation of hourly gridded wind fields for the 17 SCAQS intensive study days using the DWM (2) analysis of the mesoscale airflow patterns and (3) calculation of forward and backward particle trajectories to examine pollutant transport in the SOCAB

The results of the diagnostic analysis of SCAQS wind observations are presented in this report The generation of wind fields and the resulting airflow patterns are described in Section 2 The trajectory analysis is presented in Section 3 Plots of the wind fields are given in Appendix B The trajectory plots are included in Appendix C

9106102 7

2 GENERATION OF WIND FIELDS AND ANALYSIS OF AIRFLOW PATTERNS

DIAGNOSTIC WIND MODEL

Hourly gridded wind fields were generated for the 17 SCAQS intensive monitoring days using the Diagnostic Wind Model (DWM) (Douglas et al 1990) This model incorporates observations where they are available and provides some information on terrain-induced airflows in regions where local observations are absent The model is formulated in terrain-parallel coordinates Wind fields are generated using a two-step procedure

In step 1 a domain-scale mean wind is adjusted for terrain effects These include the kinematic effects of terrain (lifting and acceleration of the airflow over terrain obstacles) thermodynamically generated slope flows and blocking effects Step 1 produces a spatially varying gridded field of u and v for each vertical layer within the model domain

In step 2 observational information is added to the middot(uv) field calculated in step 1 using an objective analysis procedure observations are used within a user-specified radius of influence while the step 1 (uv) field is used in subregions where observations are unavailable The following modified inverse-distance-squared weighting scheme (Ross and Smith 1986) is used for the interpolation of data

where (u0

v0 )k denotes an observed wind at station k rk is the distance from station k to a

given grid point (u v)1 is the step 1 wind field at the grid point and (u v)i is the updated wind vector The parameter R controls the relative influence of the observations and the step 1 wind field

Following the interpolation a five point smoother of the form

9106102

Amiddot 1J

8

is applied to the horizontal wind field to reduce discontinuities that may result from the interpolation The vertical velocity is calculated by integrating the incompressible conservation of mass equation Zero-gradient lateral boundary conditions are used

GENERAL PROCEDURES

Generation of the SCAQS wind fields involved (1) preprocessing of the wind data for input into the DWM (2) plotting and quality control checking of the data (3) specification of the model input parameters (4) exercise of the DWM and (5) graphical display of the gridded wind fields Winds were analyzed at six vertical levels 10 100 300 600 1000 and 1500 meters (m) above ground level (agl)

In the preprocessing step the upper-air data were vertically interpolated to the model levels and temporally interpolated to enhance the temporal consistency of the wind fields and to provide hourly input for the DWM

Following the preprocessing step the data were plotted and examined for horizontal vertical and temporal consistency Data that failed the quality control checks were eliminated from the model input data set

The controlling parameters for the DWM include the maximum radius of influence (RMAX) at which a monitoring station can influence the interpolation at a grid point the weighting parameter for terrain effects (R) the number of stations to be used in the interpolation (NINTRP) and the number of smoothing passes (NSMTH) Note that the maximum radius of influence is specified independently for the surface level ( over land) upper levels (over land) and over-water portions of the domain The weighting parameter for terrain effects and the number of interpolating stations are specified separately for the surface level and upper levels In the diagnostic analysis of the SCAQS wind observations these parameters were specified as follows

RMAX (surface) 20km RMAX (aloft) 100 km RMAX (over water) 150 km R (surface) 10km R (aloft) 50 km NINTRP (surface) 4 NINTRP (aloft) 3 NSMTH 4

Tests were performed to examine the sensitivity of the DWM to the various contr ling parameters and to select the optimum values of these parameters for the SCAQS v nd analysis

9106102 9

The DWM also requires as input a domain-mean wind and stability information For this analysis the domain-mean wind was specified separately for each analysis level and was based upon the average of the level 6 (1500 m agl) wind observations To account for friction the speed of the domain-mean wind was reduced for the lower levels by multiplying the average wind speed for level 6 by the following scaling factors

Level Scaling Factor 1 048 2 072 3 083 4 090 5 096 6 100

The domain-scale lapse rate was the calculated average of four inland sites These varied according to data availability

Six-hourly plots of the level I (surface) level 3 (300 m agl) and level 5 (1000 m agl) wind fields for each episode are given in Appendix B

SUMMER INTENSIVE MONITORING PERIODS (

Mesoscale airflow in the SOCAB during the SCAQS summer intensive monitoring periods appears to have two components

A basic diurnal cycle driven by land-water temperature differences and complex terrain and

A perturbation associated with the overlying synoptic flow

19 June 1987

The surface and upper-air wind monitoring site locations for this intensive monitoring period are indicated on pages A-1 and A-2 respectively Plots of the diagnostic wind analyses for 19 June are given on pages B-1 through B-12

The surface early morning airflow pattern on this day is characterized by weak winds over much of the coastal and inland areas with moderate NW winds over the Coachella Valley and offshore At 300 m agl winds are S over the western half of the domain and W to NW over the eastern half of the domain The overlying flow at 1000 mis W

9106102 10

n1er

The sea breeze is somewhat slow to appear in the western basin on this day but has begun to develop by 1000 PST At this time winds at 300 m agl remain S over the western part of the domain and W to NW over the eastern part of the domain Some S flow is also apparent at 1000 m

During the afternoon hours three distinct features are apparent in the surface airflow pattern

A sea breeze (W flow) develops along the coast between Santa Monica and Palos Verdes and penetrates inland A branch of the sea breeze penetrates into the San Fernando Valley resulting in weak SE flow at Burbank and Reseda

An area of weak (SW) winds forms in the Whittier-La Habra-Pico Rivera area persists throughout the afternoon and fonns a convergence zone in the central basin with the penetrating westerly flow The S component of this flow is due to sea breeze development along the coast near Long Beach

Upslope flow develops along the foothills of the San Gabriel and San Bernardino Mountains (eg at Glendora and San Bernardino) Along the eastern foothills the upslope flow is supplanted during the afternoon by the penetrating W flow

By 1600 PST on 19 June the depth of the upslope flow near Glendora exceeds 600 m Strong outflow is apparent through the Cajon and Banning passes Aloft winds are generally SW with some SE flow near Burbank and NW flow over the Coachella Valley

Significant onshore flow (3 ms) persists along the Santa Monica-Palos Verdes coastline through 2200 PST Feature-s of the afternoon airflow persist aloft through this time

24-25 June 1987

Surface and upper-air wind monitoring site locations for this intensive monitoring period are indicated on pages A-3 and A-4 respectively Plots of the diagnostic wind analyses for 24-25 June are given on pages B-13 through B-36

The airflow patterns on these two days are similar to one another and to the ttern on 19 June The overlying flow is generally weak below 1000 m agl with moderak t5 ms) SE flow at 1500 m agl

On 24 June the early morning surface airflow patterns are characterized by ver middoteak winds At 300 m agl winds in the Coachella Valley are SE By 1000 PST a we1 organized zone of weak S flow extends from Long Beach to Pasadena this S flm

9106102 11

(

reaches a depth of 300 m agl Southeastern flow in the Coachella Valley and E flow through Banning Pass are apparent both at the surface and 300 m agl S to SE flow dominates at 1000 m agl The II three-zone II surface airflow pattern is apparent during the afternoon The wind shifts to Wat Banning Pass by 1500 PST At 300 m agl winds are SW over much of the basin with SE flow at Burbank and in the Coachella Valley At 1000 m winds are generally SW At 2200 PST the airflow pattern is characterized by weak unorganized flow at the surface and 300 m agl Winds at 1000 m are NW over much of the domain but SE over the Coachella Valley

The airflow on 25 June is similar to that on 24 June During the early morning hours winds at the surface are very light Weak SE flow is apParent at 300 m agl At 1000 m agl winds continue to veer toward N The sea breeze develops more quickly than on the previous day and winds at Banning Pass become westerly by 1300 PST Calm winds are observed at Pico Rivera throughout the afternoon As on 24 June the afternoon airflow at 300 m agl is characterized by SW flow over the basin and SE flow at Burbank and over the Coachella Valley Upward propagation of W flow is generally slower than on 24 June Winds at 1000 m agl are S to SE During the evening hours the surface winds become light while at 300 m agl winds over the Coachella Valley become NW Organized W flow is apparent over the W basin through a depth of at least 300 m agl through 2200 PST

13-15 July 1987

Surface and upper-air wind monitoring sites for this intensive monitoring period are shown on pages A-5 and A-6 respectively Plots of the diagnostic wind analyses for 13-15 July are given in Figures B-37 through B-72

Airflow patterns on 13 and 14 July are generally consistent with the basic diurnal cycle described earlier However an unusual airflow pattern develops in the Coachella Valley on both days On 15 July strong SE forcing is associated with a delay in sea breeze development

The 13 July early morning surface airflow pattern is characterized by light winds and a weak cyclonic eddy over the Santa Monica Bay Winds aloft are light to moderate and primarily W The sea breeze develops rapidly on this day and by 1200 PST W flow overwhelms the S sea-breeze flow in the Long Beach Area W flow appears at Banning Pass by 0800 PST The surface afternoon airflow is characterized by the three-zone airflow pattern described earlier with strong upslope flow along the foothills ( gt 5 mls) and significant outflow through Cajon Pass Observations at Palm Spring (NW winds) and Thermal (SE winds) indicate a convergence zone in the Coachella Valley with a depth of at least 600 m W flow dominates at middot1000 m with S to SE flow over the Coachella Valley During the evening hours a cyclonic eddy redevelops over the Santa

9106102 12

rtMt1

Monica Bay winds are weak throughout the basin but airflow into the Coachella Valley is especially strong

Airflow patterns on 14 July are similar to 13 July with a few exceptions During the early morning hours the surface airflow is characterized by weak disorganized flow There is no eddy apparent over the Santa Monica Bay The overlying flow is weak and primarily S to SE at 300 m agl but W to NW at 1000 m agl Sea breeze development is approximately two hours slower on this day than on 13 July By 1000 PST weak S flow has developed over the Whittier-La Habra-Pico Rivera area and SE flow is apparent at Burbank AS component to the flow appears at 1000 m The afternoon surface airflow pattern is similar to that on 13 July but the S upslope flow at Glendora is weaker S flow develops at Elsinore and several coastal Orange County sites The Coachella Valley convergence zone reappears at the surface at 1600 PST two hours later than on the previous day At 300 and 1000 m agl W to SW flow dominates over the western twoshythirds of the domain SE flow is apparent over the Coachella Valley During the evening hours the surface airflow over the central basin is S to SW W flow components persist along the eastern foothills through 2200 PST

On the morning of 15 July surface winds are weak but maintain a S component Moderate SE flow is apparent offshore The overlying flow is generally E to SE By 1000 PST the surface airflow pattern is characterized by S flow over the central basin and along the foothills SE flow in the Coachella Valley and E flow through Banning Pass The depth of the S to SE flow is greater than 1000 m agl During the afternoon a weak sea breeze penetrates inland and winds along the foothills become W Winds shift from E to NW at Banning Pass at 1600 PST A weak S flow component persists in the Whittier-La Habra-Pico Rivera area throughout the afternoon A weak slopevalley circulation develops in the Coachella Valley resulting in SE flow there At 300 m agl winds are SW to W over the central basin and SE over the Burbank and the Coachella Valley At 1000 m S to SE flow dominates W winds persist along the foothills through 2200 PST and weak S to SE flow redevelops at the surface Remnants of the afternoon airflow pattern persist aloft

27-29 August 1987

The surface and upper-air wind monitoring site locations for this intensiv middot1onitoring period are indicated on pages A-7 and A-8 respectively Plots of the dia stic wind analyses for 27-29 August are given on pages B-73 through B-108

On the morning of 27 August surface winds are weak over most land areas a 1djacent coastal waters with moderate (5 ms) NW winds well offshore Winds aloft a Jrimarily N with weak NE flow at 100-300 m agl over the central basin By 1000 PST threeshy

IIzone airflow pattern has developed at the surface and is somewhat apparent ( hin the limits of the upper-air network) at 300 m agl SE flow has developed at 100( agl

9106102 13

This pattern is maintained throughout the afternoon Within the Coachella Valley a classic daytime slopevalley flow pattern develops with SE flow extending to a depth of 1000 m E flow develops at Banning Pass and persists through 1700 PST W flow over the basin develops upward throughout the afternoon By 1600 PST wind at 300 m agl are W to SW over the central basin and SE over Burbank and the Coachella Valley During the evening hours the features of the mesoscale airflow pattern over land weaken both at the surface and aloft There is no clearly developed offshore-directed land breeze

On the morning of 28 August the surface winds are weak and the overlying flow is primarily E Retardation of the sea breeze by the overlying E flow is apparent by 0900 PST S flow develops in the Long Beach area E flow at Banning Pass is substantially stronger than on 27 August During the afternoon of 28 August S flow persists at Long Beach and develops in the Whittier-La Habra-Pico Rivers area SE flow is observed along the Orange County coast E flow through Banning Pass persists throughout the day W wind components along the Santa Monica-Palos Verdes coastline are weaker than on the previous day and NW flow fails to develop at San Nicolas Island W flow over the central basin disrupts the SE flow aloft During the evening hours the airflow features weaken W flow along the foothills does not persist as long as on the previous day

The early morning airflow pattern on 29 August is characterized by SE flow both at the surface and aloft Sea breeze development on this day is slower than on either of the previous two days S flow again develops in the Long Beach area and appears to be stronger than on the previous day Although the sea breeze is weaker winds at Banning Pass shift from E to SW by 1300 PST This shift occurs at 1800 on 27 and 28 August SE flow persists aloft with limited upward development of the W sea breeze flow W flow persists in the western basin area through 2200 PST and SE flow persists aloft

2-3 September 1987

The surface and upper-air monitoring site locations for this intensive monitoring period are indicated on pages A-9 and A-10 respectively Plots of the diagnostic wind analyses for 2-3 September are given on pages B-109 through B-132

The first day of this period is probably the most anomalous of the summer SCAQS intensive measurement days Overlying easterly forcing during the morning hours prevents development of W flow along the foothills and inhibits upward development of the sea breeze over the western and central portions of the basin The easterly forcing appears to reverse rather abruptly on the afternoon of 2 September Unusual winds are also observed at Burbank on 2 September During the late morning and afternoon Burbank experiences an unusual wind shift from SE to W through a depth of 1000 m On 3 September the overlying airflow is W and the airflow patterns are more typical

9106102 14

rrn

On the morning of 2 September strong downslope flow results in N to NE winds at several sites along the foothills of the San Gabriel Mountains At 300 m strong NE winds are apparent over the central basin The overlying flow is E By 1000 PST the sea breeze appears as W flow along the Santa Monica-Palos Verdes coast and S flow in the Long Beach area The surface analysis indicates a band of S flow from Costa Mesa to Azusa W flow has not developed along the eastern foothills Winds are SE in the Coachella Valley and E through Banning Pass E flow aloft continues and intensifies During the early afternoon hours a relatively strong sea breeze penetrates inland to Azusa while winds in the Whittier-La Habra-Pico Rivera area remain weak The sea breeze weakens considerably after mid-afternoon Between 1200 and 1500 PST the wind at Burbank shifts from SE to W through a depth of 600-1000 m By 1600 PST the overlying flow has shifted from SE to W Onshore flow continues at the surface through 2200 PST while the winds weaken considerably Although the overlying W flow persists in general 300 m agl winds at Burbank become SE

The early morning airflow on 3 September is characterized by weak winds at the surface SE flow at 300 m agl and primarily W flow at 1000 m agl Although the major surface airflow features appear to develop as on previous days upward development of the pattern is limited Strong S flow is apparent by 1200 PST between 100 and 300 m agl over the central and western basin By 1600 PST the sea breeze has penetrated well inland Imbedded in the sea breeze is a persistent calm area in the vicinity of Lynwood S flow persists at 100-300 m agl over the central and western basin while flow at this level off shore remains NW At 1000 m agl W flow continues This general pattern persists through 2200 PST but weakens considerably especially at the surface

AUTUMN INTENSIVE MONITORING PERIODS

The mesoscale airflow patterns in the SOCAB during the SCAQS autumn intensive monitoring periods exhibit a weaker diurnal cycle than the summer airflow patterns Synoptic forcing also appears to be stronger

11-13 November 1987

The surface and upper-air wind monitoring site locations for this intensive monitoring period are plotted on pages A-11 and A-12 respectively Plots of the diagnostic wind analyses for 11-13 November are given on pages B-133 through B-168

During the early morning hours of 11 November NE surface winds are apparent over most of the region Surface wind speeds are very light over the basin and somewhat stronger along the foothills and the coast At 300 m agl winds are light and generally E At 1000 m agl winds are W to SW over the western half of the domain and SE over the eastern half of the domain Weak E to NE surface flow persists throughout most of the

9106102

15

morning in the first 300 m An apparent anticyclonic eddy (SE flow at Long Beach weak S flow at Burbank W flow at El Monte) develops between 600 and 1000 m agl on this morning A weak sea breeze forms around 1200 PST penetrating only to the central basin There is no apparent turning of the sea breeze into the San Fernando Valley W to NW flow develops offshore and is deflected around the Palos Verdes Hills This W flow is also apparent at 300 m agl Downslope flow components along the foothills are apparent by 1600 PST At this time the 1000 m agl winds are weak and N The sea breeze rapidly dissipates and NE flow develops at several coastal sites indicating a land breeze NW flow is maintained off shore The nighttime airflow pattern aloft is characterized by weak N winds at 300 m agl and weak W winds at 1000 m agl

The surface airflow pattern on the morning of 12 November is generally similar to that on 11 November E flow over land is apparent through a depth of 300 m while NW flow persists offshore The overlying flow is W The afternoon surface airflow pattern is more similar to a typical summer afternoon pattern than the previous day Turning of the sea breeze into the San Fernando Valley is apparent and W flow develops along the foothills of the San Gabriel and San Bernardino Mountains by 1400 PST Airflow at 300-600 m agl appears to veer continuously from E to W at most inland sites during the afternoon NW flow through a depth of 1000 mis apparent over the Coachella Valley Surface winds become light and disorganized during the evening hours Unlike the previous day NE flow does not develop at the coastal sites and NW flow weakens offshore W winds persist aloft

On 13 November surface winds are very light through the early morning hours with E flow components apparent immediately offshore The overlying flow is WNW but becomes S over the central basin by 1000 PST As on the previous two days a sea breeze becomes apparent at the surface by noon W flow components over the basin and foothill areas are stronger than on the previous two days both at the surface and aloft Significant W flow also develops in Banning Pass Moderate to strong W winds are apparent aloft During the afternoon and evening hours SE winds are apparent at Burbank between 300 and 600 m agl Intense W flow develops off shore and propagates inland during the evening hours W flow continues aloft with some S to SE flow between 100 and 600 m agl at Burbank and El Monte

3 December 1987

The surface and upper-air wind monitoring site locations for this intensive monitoring period are plotted on pages A-13 and A-14 respectively Plots of the diagnostic wind analyses for 3 December are given on pages B-169 through B-180

The early morning surface airflow pattern on 3 December is characterized by weak NE winds over the inland areas and a weak cyclonic eddy off shore The overlying flow is S to SE Surface winds remain light and variable through most of the morning Moderate

9106102 16

txi Iii ttii

E flow is apparent over the western and central basin between 300 and 600 m agl A sea breeze develops around 1200 PST reaching a depth of 300 m and penetrating only approximately 30 km inland S to SE flow persists above 300 m agl The sea breeze weakens during the evening hours and N flow through a depth of 300 m develops at Long Beach E flow components intensify at 600 m agl and above

10-11 December 1987

The surface and upper-air wind monitoring site locations for this intensive monitoring period are plotted on pages A-15 and A-16 respectively Plots o~ the diagnostic wind analyses for 10-11 December are given on pages B-181 through B-204

On 10 December the early morning surface airflow pattern is weak and disorganized Weak NE flow is apparent over much of the basin between 100 and 600 m agl The overlying flow at 1000 m is N The surface airflow over the basin is weak throughout the morning hours while NW flow develops offshore Winds aloft remain N A weak sea breeze is apparent by 1200 PST the sea breeze penetrates only about 30 km inland and is limited to a depth of approximately 300 m There is no apparent turning of the sea breeze into the San Fernando Valley Elsewhere in the basin the surface airflow remains weak By 1600 PST the sea breeze has weakened At this time winds aloft are predominantly W to NW at 300 m agl and N at 1000 m agl During the evening hours surface airflow over the basin becomes weak and disorganized while E flow develops at Palos Verdes Strong N winds appear aloft (300-600 m agl) at Burbank LMU and Long Beach however winds at this level further to the east remain light

On 11 December the early morning surface airflow pattern is similar to that on 10 December Relatively strong ( gt 10 ms) NNW winds persist at 600-1000 m agl at Burbank and LMU E wind in the 100-300 m agl appear at LMU and Long Beach Throughout the morning the surface winds remain light and N winds 9ver Bu~ank weaken considerably A sea breeze is apparent by 1200 PST but is weaker than on the previous day and reaches a depth of only 100 m or less Significant N winds (3-6 ms) develop between San Bernardino and Elsinore and in the western San Fernando Valley NE flow is observed in Ventura County Winds aloft continue to be primarily N however E flow is apparent over the Long Beach area at 1000 m agl Surface airflow over the central and western basin becomes very weak during the evening hours Strong N to NE flow develops at the coast west of Santa Monica while N flow persists in the western San Fernando Valley and in the San BernardinoRiverside area The overlying flow is N to NE

91061 02 17

3 PARTICLE PAm ANALYSIS

A series of forward and backward particle paths (trajectories) were calculated using the SCAQS DWM wind fields The particle paths will be used by other SCAQS investigators in their examination of pollutant transport within the SOCAB The forward particle paths can be used to estimate the transport of pollutants from known source locations The backward particle paths can be used to estimate potential source areas The particle paths can also be used to estimate the residence time of certain pollutants in the SOCAB as a whole or in subregions

CALCULATION OF PARTICLE PAIBS

Two-dimensional particle paths were computed using the DWM wind fields as follows

Starting ( ending) points for a given number of forward (backward) particle paths were specified

Using a time interval of 15 minutes the hourly gridded DWM wind fields were linearly interpolated in time and then interpolated in space to each particle position using an inverse-distance-squared weighting scheme

The particles were then advected horizontally for the specified time interval

The distance traveled by each particle during each time interval was integrated The new position of the particle was reported at hourly intervals

Forward and backward particle paths were calculated for the SCAQS intensive monitoring periods for several vertical levels and a variety of origination and destination points The origination (destination) locations and times for the summer and autumn particle paths are listed in Tables 3-1 and 3-2 respectively Most of the particle paths originated (ended) at one of the SCAQS wind monitoring sites listed in Tables 1-1 and 1-2 Additional sites are identified in Table 3-3 Note that for some sites in Tables 3-1 and 3-2 a new particle path was initiated at the particles 1000 PST location but at a higher level

Additional forward particle paths were calculated for comparison with the SCAQS tracer data (England et al 1989 Horrell et al 1989) The initiation times and locations correspond to the tracer releases and are given in Tables 3-4 and 3-5

9106lrl02

~~ll1~(I titW I~l~~~t~~

TABLE 3-la Summer particle paths forward particle paths

Start Time Origination Start Date (PST) Site Level(s)

624 0500 LBCC 13 CELA 13

624 0700 LBCC 13 CELA 13

624 1000 LBCC 13 CELA 13

624 1500 LBCC 13 CELA 13

624 2100 LBCC 13 CELA 13

625 0500 HHRA 5 PADA 45 FULA 5

625 0700 FULA 5

713 0500 LBCC 13 CELA 13

713 0700 LBCC 13 CELA 13

713 1000 LBCC 13 CELA 13 EMTA 24

713 1500 LBCC 13 CELA 13

713 2100 LBCC 13 CELA 13

714 0500 LBCC 13 CELA 13

714 0700 LBCC 13 CELA 13

714 1000 LBCC 13 CELA 13

714 1500 LBCC 13 CELA 13

714 2100 LBCC 13 CELA 13

Continued

19

91061 07

TABLE 3-la Concluded

Start Time Origination Start Date (PST) Site Level(s)

827 0500 LBCC 13 CELA 13

827 0700 LBCC 13 CELA 13

827 1000 LBCC 13 CELA 13

827 1500 LBCC 13 CELA 13

827 2100 LBCC 13 CELA 13

828 0500 LBCC 13 CELA 13

828 0700 LBCC 13 CELA 13

828 1000 LBCC 13 CELA 13

828 1500 LBCC 13 CELA 13

828 2100 LBCC 13 I CELA 13

92 0500 LBCC 13 CELA 13 HHRA 12

92 0700 LBCC 13 CELA 13 FULA 12

92 1000 LBCC 13 CELA 13

HHRA 45 FULA 45

92 1500 LBCC 13 CELA 13

92 2100 LBCC 13 CELA 13

93 0700 RIVA 12

93 1000 RIVA 45

A new particle path was initiated at the particles 1000 PST location but at a higher level

20

~(Ibull bull 11

41

~1~_11Lmiddot11~1~~tV t rt~~14_ II~~~h1 1r t

TABLE 3-lb Backward particle paths

End Time Destination End Date (PST) Site Level(s)

624 1500 CABA 23 EMTA 45 BURA 1234 HHRA 4 FULA 45

624 1800 RIVA 3

625 0500 CLAR 13 RIVR 13 HHRA 5 PADA 45 FULA 5

625 0700 CLAR 13 RIVR 13 FULA 5

625 1000 CLAR 13 RIVR 13

625 1500 CLAR 13 RIVR 13 CABA 23 EMTA 4 BURA 4 RIVA 45

625 1600 RIVA 45

625 2100 CLAR 13 RIVR 13

713 - 1000 EMTA 24

713 1500 CABA 23 EMTA 45 RIVA 24

713 1600 RIVA 24

714 0500 CLAR 13 RIVR 13

714 0700 CLAR 13 RIVR 13

714 1000 CLAR 13 RIVR 13 BUR 123

714 1500 CLAR 13 RIVR 13 CABA 23 EMTA 4 BURA 234 RIVA 2

714 1600 RIVA 2

Continued

21 nn1 Y1

TABLE 3-lb Continued

End Time Destination I End Date (PST) Site Level(s)

714 2100 CLAR 13 RIVR 13

715 0500 CLAR 13 RIVR 13

715 0700 CLAR 13 RIVR 13

715 1000 CLAR 13 RIVR 13

715 1500 CLAR 13 RIVR 13

715 2100 CLAR 13 RIVR 13

827 1000 CABA 2 EMTA 23 BURA 123

827 1500 CABA 2

828 0500 CLAR 13 RIVR 13

828 0700 CLAR 13( RIVR 13

828 1000 CLAR 13 RIVR 13

828 1500 CLAR 13 RIVR 13

828 2100 CLAR 13 RIVR 13

829 0500 CLAR 13 RIVR 13

829 0700 CLAR 13 RIVR 13

829 1000 CLAR 13 RIVR 13

829 1500 CLAR 13 RIVR 13

829 2100 CLAR 13 RIVR 13

92 1000 PADA 3

92 1100 PADA 3

92 1500 EMTA 2 RIVA 2

Continued

22

91061 07

I

1bullLI bullI I bull ~ii 1 1

1 cl1

[1i1bull~j~1 Iiii~ j t-~dI ~1 1ltl1111111 II r I l~bull~II~middot t1~i~n_11~~ ~middot -

TABLE 3-lb Concluded

End Time Destination End Date (PST) Site Level(s)

92 1600 RIVA 2

93 0500 CLAR 13 RIVR 13

93 0700 CLAR 13 RIVR 13

93 1000 CLAR 13 RIVR 13 CABA 2 BURA 1234

93 1500 CLAR 13 RIVR 13

93 2100 CLAR 13 RIVR 13

23 9106107

TABLE 3-2a Autumn particle paths forward particle paths

Start Time Origination Start Date (PST) Site Level(s)

1111 0300 LBCC 13 CELA 13

1111 0700 LBCC 13 CELA 13

1111 0900 FULA 12

1111 1200 LBCC 13 CELA 13

1111 1500 LBCC 13 CELA 13

1111 2100 LBCC 13 CELA 13

1112 0300 LBCC 13 CELA 13

1112 0700 LBCC 13 CELA 13 FULA 12

1112 1000 FULA 45

1112 1200 LBCC 13 CELA 13(

1112 1500 LBCC 13 CELA 13

1112 2100 LBCC 13 CELA 13

1113 0500 ONTA 123

1113 1000 ONTA 45

123 0300 LBCC 13 CELA 13

123 0700 LBCC 13 CELA 13 FULA 12

123 1000 FULA 45

123 1200 LBCC 13 CELA 13

123 1500 LBCC 13 CELA 13

123 2100 LBCC 13 CELA 13

1210 0300 LBCC 13 CELA 13

1210 0700 LBCC 13 CELA 13

Continued

24 9106108

TABLE 3-2a Concluded

Start Time Origination Start Date (PST) Site Level(s)

1210 1200 LBCC 13 CELA 13 FULA 123

1210 1500 LBCC 13 CELA 13

1210 2100 LBCC 13 CELA 13

1211 0500 ONTA 12

1211 0700 FULA 12

1211 1000 ONTA 45 FULA 45

A new particle path was initiated at the particles 1000 PST location but at a higher level

25 9106108

TABLE 3-2b Backward particle paths

End Time Destination End Date (PST) Site Level(s)

1111 1500 HHRA 34

1112 0300 LBCC 13 CELA 13 RIVR 13

1112 0700 LBCC 13 CELA 13 RIVR 13

1112 1200 LBCC 13 CELA 13 RIVR 13

1112 1500 LBCC 13 CELA 13 RIVR 13 HHRA 34 PADA 3 FULA 34

1112 2100 LBCC 13 CELA 13 RIVR 13

1113 0300 LBCC 13( CELA 13

RIVR 13

1113 0700 LBCC 13 CELA 13 RIVR 13

1113 ~ 1200 LBCC 13 CELA 13 RIVR 13 ONTA 34 EMTA 45

1113 1500 LBCC 13 CELA 13 RIVR 13

1113 2100 LBCC 13 CELA 13 RIVR 13

123 0300 LBCC 13 CELA 13 RIVR 13

123 0700 LBCC 13 CELA 13 RIVR 13

Continued

26 9106108

TABLE 3-2b Concluded

End Time Destination End Date (PSn Site Level(s)

123 1200 LBCC 13 CELA 13 RIVR 13

123 1500 LBCC 13 CELA 13 RIVR 13 PADA 3

123 2100 LBCC 13 CELA 13 RIVR 13

1211 0300 LBCC 13 CELA 13 RIVR 13

1211 0700 LBCC 13 CELA 13 RIVR 13

1211 1200 LBCC 13 CELA 13 RIVR 13

1211 1500 LBCC 13 CELA 13 RIVR 13 PADA 1234 BURA 123

11 13 2100 LBCC 13 CELA 13 RIVR 13

27 9106108

TABLE 3-3 Additional particle path initiation (destination) points

Site Identifier Location UTM Easting (km) UTM Northing (km)

BURA Burbank Airport 3749 37859

CABA Cable Airport 4370 37751

EMTA El Monte Airport 4047 37717

FULA Fullerton Airport 4091 37485

HHRA Hawthorne Airport 3768 37547

ONTA Ontario Airport 4435 37686

PADA PADDR Intersection 3810 37175

RIVA Riverside Airport 4584 37485

28

TABLE 3-4 Forward particle paths calculated for comparison with the SCAQS tracer data

Start Start Origination Date Time Site Levels

0300 LAGS 13 0600 13 0900 II 13 1200 II 13 1500 II 13

625

715 0500 VRNN 1

0800 VRNN 1

828 0600 LAGS 13 1000 II 13 1300 13 1500 13

93 0500 VRNN 1

0800 VRNN 1

1111 1600 LAGS 3 ESGS 3 VRNN 1

1900 LAGS 3 ESGS 3 VRNN 1

1112 0600 ESGS 3 VRNN 1

0900 ESGS 3 VRNN 1

1210 0600 LAGS 3 ESGS 3 VRNN 1

0900 LAGS 3 ESGS 3 VRNN 1

1600 VRNN 1

29

9106lrl09

TABLE 3-5 SCAQS tracer release sites

I_______________________

Site Identifier Location UTM Easting (km) UTM Northing (km)

ESGS El Segundo 3690 37536 LAGS Los Alamitos 3980 37370 VRNN VRNN 3874 37625

(

91061rl09

30

The particle paths were calculated for up to a three-day period In general forward particle paths were calculated through the end of the monitoring period or until the particle was advected out of the domain Backward particle paths were calculated through the beginning of the intensive monitoring period or until the particle left the domain

Selected plots of the forward and backward particle paths are given in Appendix C

SUMMER PARTICLE PATHS

Forward particle paths (levels 1 and 3) originating from Central Los Angeles (CELA) and Long Beach City College (LBCC) at 0700 PST on 24 June 13 and 14 July 27 and 28 August and 2 September are shown on pages C-1 through C-12

The surface-level particle paths originating at CELA indicate northward advection from this site on all days The particle path initiated on 27 August indicates that the initial northward advection is followed by westward advection on the following day the particle path initiated on 2 September indicates that the initial northward advection is followed by eastward advection on the following day In all cases the residence time in the central Los Angeles basin is less than 12 hours

The surface-level particle paths originating at LBCC are carried northward and eastward usually exiting the Los Angeles basin through Cajon Pass On 24 June and 14 July however the particles are carried across the San Gabriel Mountains (with the upslope flow) Considerable eastward transport is indicated by the particle paths initiated on 2 September after 1800 PST -Residence time in the Los Angeles basin varies from day to day and is especially long for the particle path initiated on 27 August (approximately 30 hours) Particle paths initiated on 13 July and 28 August also indicate some recirculation and a significant residence time within the Los Angeles basin

The level 3 particle paths also indicate northward transport from CELA on most days Advection into the San Fernando Valley which may be partly due to the SE flow produced by the turning of the sea breeze into the valley is more pronounced on certain days (14 July 28 August and 2 September) Level 3 particle paths originating at LBCC show mostly northwestward transport Recirculation over the Los Angeles basin is indicated for the 2 September particle path

Backward particle paths (levels 1 and 3) culminating at Claremont College (CLAR) and Riverside-Rubideaux (RIVR) at 1500 PST on 25 June 14 and 15 July 28 and 29 August and 2 September are shown on pages C-13 through C-24 -

_

9106lrl 02

31

The surface-level backward particle paths originate over water on all days the particles are carried eastward and northward into the Los Angeles basin On 14 July and 28 August the particle paths indicate primarily eastward transport There is some indication that particles arriving at the destination sites on 28 August may have originated in the South Central Coast Air Basin (SCCAB) On 25 June 15 July and 3 September the particle paths indicate primarily northeastward transport On 29 August northward transport is indicated

The level 3 backward particle paths also indicate transport from the W SW or SE on the intensive monitoring days The over-water segments of the particle paths indicate eastward advection on 14 and 15 July and 27 and 28 August and northward advection on 25 June and 3 September Again there is some indication that particles arriving at the destination sites on 28 August may have originated in the SCCAB Almost all of the particle paths indicate that the particles are carried onshore between Long Beach and Laguna Beach and advected northeastward to CLAR and RIVR An exception to this occurs on 28 August On this day the particles are carried onshore near Redondo Beach and are recirculated over the Los Angeles basin for approximately 24 hours before arriving at the destination sites

AUTUMN PARTICLE PATIIS

Forward particle paths (levels 1 and 3) originating at CELA and LBCC at 0700 PST on 11 and 12 November 3 and 10 December are presented on pages C-25 through C-32

The autumn particle paths exhibit more day-to-day variability than the summer particle paths indicating more variability in the autumn airflow patterns Because both the CELA and LBCC locations are affected by the land-breezesea breeze circulations all of the surface-level particle paths show some recirculation in the western basin Particle paths initiated on 11 and 12 November eventually indicate eastward transport

The level 3 particle paths also differ among episodes but are all affected by the seashybreeze circulation Particle paths initiated on 11 November show eastward transport from CELA and southward transport from LBCC Northeastward transport at this level is indicated by the 12 November particle paths The particle paths initiated on 3 December illustrate local recirculation by the sea breeze On 10 December southward advection is indicated

Backward particle paths culminating at CELA LBCC and RIVR at 1500 PST on 12 and 13 November 3 and 11 December are presented on pages C-33 through C-40

The surface-level particle paths indicate that particles arriving at CELA at 1500 PST on all four days follow a southward then eastward course Particles arriving at LBCC are affected by some combination of onshore advection and local recirculation The particle

9106Irl02

32

paths culminating at Riverside indicate a variety of possible transport patterns eastward transport on 12 and 13 November northwestward transport on 3 December and southeastward transport on 11 December

The level 3 backward particle paths for 12 November illustrate recirculation aloft by the evolving airflow patterns while the particle paths for 13 November indicate primarily eastward advection The particle paths for 3 December are clearly affected by the SE that occurs on this day the resulting particle paths indicate northwestward transport The particle paths for 11 December indicate southward advection and recirculation by the sea breeze

COMPARISON WITH TRACER DATA

Forward particle paths originating from El Segundo (ESGS) Los Alamitos (LAGS) and Vernon (VRNN) at times corresponding to the SCAQS tracer release times are shown on

middot pages C-41 through C-76 For ground-level tracer releases the particle paths were calculated using level 1 (10 m agl winds) for stack releases the particle paths were calculated using level 3 (300 m agl) winds A qualitative comparison with the observed tracer data is provided here

Surface-level particle paths originating at LAGS on 25 June indicate northward transport during the morning and afternoon hours The level-3 particle paths indicate that material is transported out of the basin through Cajon and Banning Passes by the upper-level winds Both of these indicated transport patterns are supported by observed tracer data

Surface-level particle paths originating at VRNN on 15 July indicate northward transport and exhibit good qualitative agreement with the tracer data

Both the surface-level and level-3 particle paths originating at LAGS on 28 August indicate primarily northeastward transport Most of the particles are eventually advected through Cajon Pass This is consistent with observed tracer at Redlands San Bernardino and Crestline

Surface-level particle paths originating at VRNN on the morning of 3 September do not agree with the tracer data While the particle paths indicate northeastward transport the tracer data indicate northwestward transport

Surface-level particle paths originating at VRNN on the afternoon of 11 November indicate westward transport and a long residence time in the central basin The level-3 particle paths originating at LAGS and ESGS show southeastward transport and recirculationmiddot by the sea breeze Surface-level particle paths originating at VRNN on the following morning again show net westward transport and a long residence time in the

( central basin but the level-3 particle paths indicate northward transport with recirculation

91061rl 02

33

by the sea breeze The smface-level particle paths are consistent with the tracer data Tracer was observed over the north-central basin and along the foothills on the morning of 13 November

The surface-level particle paths originating at VRNN on the morning of 10 December indicate relatively stagnant conditions with a weak sea breeze circulation Some net transport toward the south is indicated Particle paths originating at VRNN on the afternoon of IO December show little movement throughout the following day The long residence time in the basin is in qualitative agreement with the tracer data Tracer was observed in the basin on the following day The dispersion indicated by the widespread tracer concentrations however cannot be represented by a single particle path The level 3 particle paths originating at LAGS and ESGS on the morning of 10 December show southward transport and recirculation by the sea breeze

UNCERTAINTY ANALYSIS

A simple analysis was perlormed in an attempt to quantify the degree of uncertainty inherent in the particle paths The uncertainty analysis was similar to an analysis described by Moore et al (1989)

Three major forms of error in the particle path calculations can be identified The first two result from errors in the wind fields The most fundamental of these is measurement error as measurements can only be regarded as approximations of the true winds Regardless of the accuracy of interpolation techniques measurement error will always affect the final wind field The second type of error results from the interpolation of these measurements and the parameterizations and approximations in the diagnostic wind model This error will be greatest in data-sparse areas The third type of error results from the use of two-dimensional wind fields The two-dimensional particle paths do not incorporate the effects of vertical motion which may be a significant source of error considering the mesoscale regimes present in the study area

The particle path uncertainty in this analysis is the result of all sources of error and is therefore very difficult to estimate A lower bound 11 on the uncertainty was assumed to result from measurement error alone Here we use a lower bound uncertainty estimate to illustrate the effects of measurement error on the particle path calculations Several assumptions were made in order to estimate this uncertainty First average bias for all instruments was assumed to be very small Second instrument precision was assumed to be constant over the region Third measurement error (speed and directional error) was assumed to be normally distributed around zero The standard deviation about the mean was based on observational data

For this uncertainty analysis 20 particle paths were initiated from a single site at a single time For each 15-minute particle path segment u and v were calculated as described in

9106lrl 02

34

(

the previous section Small random wind components (representing the measurement error) were then added to the interpolated wind The smaller components were determined by randomly selecting wind speed and direction error from two separate normal probability density functions (PDF) To do this a uniform random number generator was used to find two error probabilities Ps and Pd between 0 and 1 An inverse normal PDF routine was then used to find the speed or direction error that results in error probability Ps or Pd respectively Commercial statistical software from Th1SL was used to generate uniform random and inverse normal PDF values 1

The PDFs possess means of zero and standard deviations equal to the root mean square error (RMSE) of the measurements For simplicity RMSE values for speed and direction were taken from those specified by Moore et al (1989) namely 02 mis and 10 degrees respectively Random error components were determined for each 15-minute segment of every particle path The resulting divergence in the particle paths represents a lower limit to the uncertainty inherent in the particle-path calculations

Plots illustrating the effect of the lower-bound uncertainty on the particle path calculations are given for one summer and one winter episode in figures 3-1 and 3-2 respectively The summer particle-path bundles (Figure 3-1) were initiated at CELA and LBCC at 0700 PST on 14 July The winter particle paths (Figure 3-2) were initiated at CELA and LBCC at 0700 PST on 12 November The bundles were calculated for levels 1 and 3 In general the bundles indicate that the airflow patterns do not vary abruptly in space or time The winter particle paths are less divergent that the summer particle paths

While plots of the particle path bundles qualitatively indicate the degree of lower-limit uncertainty a quantitative summary of the uncertainty can be obtained via hourly estimates of RMSE of all particle positions relative to that with zero error The RMSE can be obtained from

1 1 M 2 2

RMSE = - ~ dj[ lM ]=l

where

1

dj = [(xj - X1)2 + (yj -y1)2]2

and where Mis the number of particles and ()1 represents the position of the actual particle as calculated in the previous section (ie the zero error particle path) The RMSE is used to determine the growth over time of the confidence interval about the

1 IMSL is the registered trademark of the Scientific Problem-Solving Software System developed by IMSL Inc Houston Texas

91061rl02

35

NORTH

425 31570

SOUTH (a) CELA Level 1I

20

(KM)

NORTH

425 31570

SOUTH (b) LBCC Level 1I

20

(KM)

le-path bundles initiated at 0700 PST 14 July 1987FIGURE 3- composedd par tic le paths1 Forwar of 20 particBundles are

35

NORTH

425 3570

SOUTH

(c) CELA Level 3

NORTH

425 3870

SOUTH

(d) LBCC Level 3

FIGURE 3-l Concluded

37 9106]

70

IlFil

NORTH

CEIA Level 1(a)

3(170

1-Ul j

NORTH

425 3(170

SOUTH

(b) LBCC Level 1

Forward le-path bundles initiated at 0700 12 November 1987FIGURE 3-2 composed par tic le pathsbullBundles are of 20 partic

3391061

425 3870

SOUTH

(c) CELA Level 3

J8

3870425

SOUTH

(d) LBCC Level 3 10 2

(KM)

FIGURE 3-2 Concluded

91061 39

1 1c

i I

trajectory calculated using the DWM winds Hourly RMSE values are given for the particle paths bundles shown in Figures 3-1 and 3-2 in Tables 3-6 and 3-7 respectively For level 1 the average RMSE after 12 hours is 567 km for 14 July and 167 km for 12 November For level 3 the average RMSE after 12 hours is 416 for 14 July and 260 for 12 November

9106lrl 02

40

TABLE 3-6 Hourly RMSEs for particle-path bundles initiated at 0700 PST 14 July 1987

Time LBCC RMSE CELA RMSE (PST) (km) (km)

Surface Level

0700 000 000

0800 042 042

0900 057 069

1000 063 100

1100 093 128

1200 091 143

1300 111 168

1400 136 217

1500 229 227

1600 265 219

1700 394 219

1800 620 265

1900 796 338

Level 3

0700 000 000

0800 018 049

0900 064 090

1000 068 140

1100 087 172

1200 089 162

1300 123 180

1400 231 224

1500 337 258

1600 419 278

1700 427 306

1800 449 347

1900 462 370(

9106104 41

TABLE 3-7 Hourly RMS Es for particle-path bundles initiated at 0700 PST 12 November 1987

Time LBCC RMSE CELA RMSE (PST) (km) (km)

Surface Level

0700 000 000

0800 047 049

0900 078 065

1000 077 066

1100 089 086

1200 109 094

1300 089 092

1400 118 125

1500 100 138

1600 129 150

1700 147 160

1800 161 164

1900 156 176

Level 3

0700 000 000

0800 045 076

0900 061 120

1000 069 139

1100 092 171

1200 098 163

1300 096 156

1400 125 182

1500 150 175

1600 231 171

1700 261 152

1800 308 156

1900 345 175

91061 04 42

References

Douglas S G R C Kessler and E L Carr 1989 Users Guide to the UAM Wind Preprocessor System Systems Applications International San Rafael California (SYSAPP-89079)

England W G and L H Teuscher 1989 Perfluorocarbon Tracer Experiments During the Southern California Air Quality Study Air amp Waste Management Association For presentation at the 82nd Annual Meeting amp Exhibition Anaheim California (June 25-30 1989)

Horrell R S M Deem P Wyckoff F Shair and N Crawford 1989 Ground Release SF6 Tracer Experiments Used to Characterize Transport and Dispersion of Atmospheric Pollutants During the Southern California Air Quality Study of 1987 For presentation

( at the 82nd Annual Meeting amp Exhibition Anaheim California (June 25-30 1989)

Moore G E G Z Whitten J P Killus and R D Stevens 1989 Analysis of 1985 Air Quality and Air Chemistry Data Collected Under the South Central Coast Cooperative Aerometric Monitoring Program Systems Applications International San Rafael California (SYSAPP-89058)

Ross D G and I Smith 1986 Diagnostic Wind Field Modelling for Complex Terrain-Testing and Evaluation Centre for Applied Mathematical Modelling (CAMM Report No 586)

9106105

43

rr T rr

Appendix A

SCAQS WIND MONITORING SITES

(

9106103

-

((--_ 770

-

NORTH CM~RS 42 575

5 I I j I I 1---L 525 middot 1J75 I I I I I I I I I r I I _--- I C2~middot----_J ~ ~-- 1 ( ~ ~J25 I I I I I I I I I I I I l__ ) -475 () I Li 1~)51 (

--~ltJ820f-_ ~------ ---

~- -cli( ol --9-Sl-l

lt ( ~)

CQ p llE RiDO ~ llE ANAH

I middot LAS-L

bull~ LANC ( _ Q - _J ) ) - _ ~ - ---- - ~ _ ____ middot clt G~ _----~____-=-- -___ ~PR __ - ---- --- VCTC ltgt

-- ------ f---- __ - ---_ -middot ------ --___ --~-----TEME --- _ f

-)(j _ _ middot --middot -------- - HESP f ----=----==~~~ l ----~~ -- middot l - --- __ -middotlt- CJ _ --- middot PIRs[- lt NfVL_ ---~ - C~lt --lt _ ~ ~- __ (~~

__ --- bull _ i - f c-_ _ I - )~__) - ---~poundS---_-

3770 t-()

LA llE PICO )Ct444 -w 3 ~~~ZUMA MALI VE VEN llE llE middot Jl~C - ( p

NN WOOHS ~- ~ m - middot - o - I () )IE 55I

1-- (lt - - PERI ) ~ S__~llE

BU25 bull y _ L ~~5o 13720

I ----~- - 515 3670 525

(KM)

~---

SNI

20

SCAQS SURFACE WIND MONITORING SITES

19 JUNE 1987

0

qj n

If) N ~

I

1S13

Ishy)

0 Vl

(f) w I-V)

l)

z a 0 1---

z 0 2

0 z 3 a ~ I r---

0 CX)Wm Q_ shyQ_ ) w

z (f) )

0 7 lt( um Vl ---

0

A-2

-

r~

NORTH CM~RS

I -middot_( lt - middotmiddot -~ ---lt - - - middotbulll- ) middotmiddot-middot - - -c ) 0 0 l__SG- ___ J1 bull_ -- VCTlt I

_ --middot ---middot llSeR - - __ - --middot----- J~__-- middot - - - -middot bull bullbull- HESP ~-_-middot- bull- ~- _~ - -___---middot - ~ -_ ) ME --- -middot - bullmiddot bull -_

38201-_ ~~_ _ TE _ C-bull_- - CJ - ~Jj __ -_

1

1 bull I bull __ (]

SI bull bull=-middot _ -~ ~~ ~_-__ middot _J lt(- j SIMI -M~S -~_-~It_ - - 1Ir- I w _ I B~~ AZ~~~1 AL SNBOC ~ (ELRO l~ Hf~~ ideg_=- --

)1__ CE~ wftcentrHIN RIVRM44 --- ~--- ---~ LA PICO __pound bull P

T ~NN WI-V C) D 2J~55I Wco - middot PERI Lv

R~O ~L ~AN~ TO~~~~ ~ ~ ~-MO

62

~ ~j~l)~gto ay 3670( 525

SCAQS SURFACE WIND MONITORING SITES 24-25 JUNE 1987

~ (

NORTH 275 325 375 425 475 OA~5 575

f_~ CJ ~ -middot--

_middot

middot1 Imiddot

)i

gt--o~0 (~_)r-) _ (~~3s20

--~- middot qlt ( ____ - ---- - lt__ ~ ~ -i~ J ) _ - - -

-~ -__ J V 38201-~--o- lt-

-----~~middot ---- __ - ~---- -_--- ~====- -=_---~ ~ _

~ -- middotbull ~gt ----_ _______ ) ~~~ l -- - - i - --- l

( _ (_-~ _-lt~~ - )

2middot1=~ (~gt lt_) -~~~~~(_~tJt-~~~~t~~~~-~) ~

uR--- -----Qi~ ~ 3770_ 3770 -middotmiddot--rmiddot- -7 ~ 1-

(J) llE ONT _ -middot __ w

Y-_ EMU c __- ~ Ul lt(1 w~

- -- - LMIIEUA sFtA ~

1

----_

~

_

t_~~ -bull _ middotgtI __

~- 0 ~~QgtJn~-~ ~II~

~ f-- -) -) ) ~ ~-

j (_1_j ~~TRM 3720 ( (__ -CcS l l 3720

~- ) -~ --7( ) __~---L_ ~~1-----~D~

1 ~) a --- ~middot 7 rt 0- NSI (

3670 I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I 1 I I I I I f I I I 1 I I I I I I I I I I I I I 36 70 275 325 375 425 475 525 575

SOUTH

I I I I I I 0 10 20 30 4-0 50

(KM)

SCAQS UPPER-AIR WIND MONITORING SITES

24-25 JUNE 1987

--=-

NORTH 25 575

CM6QRS C__j 475 -____

3 ---- 375 425I - L ---) - ~-

SNI

-_-~)---_ lt-____ ___3azor_~c~~ sl

VENt ELRO

BU25

275 ~ c--) ~LANC ~~-_ lt ~ 0 9-~

llE

3670

----~ - J Q ____ ~- lt) ~ 3820____ -- middot--- 0~__~- __ J S --- ---~- ---- -- -- v~ ~ ~ ===-~ - - - - ---- - - ---- - -- -middotv ------------ -~ l f----- _ -- -middot _ - --- __ HESP ~-----=- c~i - - _- --- - - gt - -bull TEME -- -middot - bull ----- -- - _ middot ( lt~ clt=~ ~i cJ~ c _

~I -~~le lt~NJWl--------~- -iHitgt~-=__~~ _I -~ J~~~ ~ 3770 r-1 - - -- -- - ltJ c__ ---middot ~ ( - ------ -c_ - - -~~~ ~ ()-~ ~ - -middotMiss ---~---=-~----r~-__ -middot _frac12 __ i5

j S ~R~~HE -7t$ llE llE ftALSNBO llE ~~ t __ -R~ B~~SA AZ~jl~r RD ~~_ ~ 1( )l___ llE CE~HAllE ~~ - RIVRM44 - llE ------___llE W~HIN -Jti )Ii ----------- __

~--- LA llE PICO l llE C -- r p

ZU VE NN Wt-laquoJHB 0 1~55WT IN - ---- ) llE CO P llE llE ( gt (____ PERI ~

IJl

~ 71t~P325 425

SOUTH

I I I I I I 0 1 0 20 30 40 50

(KM)

SCAQS SURFACE WIND MONITORING SITES 13-15 JULY 1987

clt(middotO -i ~Ill ~

()VL~t

~~) o2~ r

275

-- _~middot middotc-- ( ~ I - ___ ) --____ ~~~

---- ---bull-~ ( lt ) lt I ~ (J () - _ ~ ~ J ) bull middot ( - ~ ~- - --- middot - ~ - middot middot G--~_J lt)

cce- middot- __ V ___ -- l - _- bull middotbull - - _~---~ 3820r----=-~_~Jrlt - - - middot f ~l-~--~--~] I c___ -~c ~ -- ( _ 1middot--- 1___ _~

-I -- = lt -bull lt middotmiddotltmiddot~- middot - middot -L-

- ~-- middotbull ---_- --- J middot J ) ) -- bull- ~-bull _ --middotbullbull- middot middot _ j -- -)) 3770 -ii __gtc _ -- - - middot bull ltmiddot ~- I - _ltbull - -_j-- tn

BURbull-- - middot - - - ) ~~middotj- (~~ ) (middotIi lt(

GL U I ~ - - - w ---~ - -1 __ - ---------= ------___________--- ONT middot middot __ - --_ -

poundMUI - - ~ ____ middot----~~i -__ ~ I

--

--- ~ c) )_

deg ~

_- - (

_l

_ ~ )

C-

~ _middot

( T( f 1-

525

t j 30 50

(KM)

SCAQS UPPER-AIR WIND MONITORING SITES 13-15 JULY 1987

_==--

J ANORTH CM6sectARS

3s201-

~- ~ ~ ~ ~0A - --__ - -----~ ---~- --1(j - A ) __gt ---------_

-~~J TEMEa l_C ~r1

0

820

_--C~ = ~~~ltCH~~ J ~ S~I ----i4~58 ( J

tigt-1

-J 3 BU25

frac14~) 8 F1(5

- HA

APICO RN A A ~ N WVHB

AANAH

~IHIN J _CM44 ~-

A

CY PERI N ~ iJN

D A

HEM

770 ~ V1 lt( w

~ 3670

SCAQS SURFACE WIND MONITORING SITES 27-29 AUGUST 1987

) w l-1

C)

z-a 0 1-

z 0 ~

0 z - r---3 co a Ci)

- -ltI lshy

a )w ) Cl 0 Cl ) ) lt(

V) Ci)

0N ltI u r--- () N

A-8

NORTH CM~RS bull r (_J~

1

325 - - l L=~-) ( bull

1275 _ ( ~ --- -middotbull LANC 1 _ bull I( f LJ- ~ () ~-- 3820 bull- - J bull

- --__ _ -- )- bull bull - middotbull-~- _ I v----_J -- J middot-- - middot- - -middot I I J_______ ---==-------------- WSfgtR - -- VC _____- ltgt

-~--~-- fJ- -middot - - - --- --- _ - ----- --- ----- ) r bull---_ --- - - -- bull p -- --__-----_ - -----

38201-_ -------~- TEME --- --- - - bull -- middot- bull --- _----~ -~ II middot ) - ---- -- -- _ -- HES f I-----=-- ~ ------- ~ l _ -- - I

- bull middotbull-bullbull~ ll( middot bull - middotbullbull - 1 I ~----- middot-bull

9 -- ___ __ _ -------- _=- r _ -- )J -~~ ~~~ 3770 t--SJMImiddot MISS~~~--bull ~--~-- ll( -_ ~-VENt Cllfl58 bull I middot- - middot- - --JOE ~--bull bull ~ V)

ELRo __J 4Esc euRK ~Ej1 fAL sNeo I ~ _ J middotmiddot -~~ 1 i5 l - ~SA ___ I ROLD ~ ~ C~ ( _____~- -~ llE CE~ llE W~(HIN RIVRlK -- - 1 llE __~

3770 middot- ~LA VEN Pl llE _ _- JJ~C _CM44 - ~ p ---__-_

0 ANAC cubull~ - - v~wr LyenNN WHJHB --- -- Q~~W)( ___

- llE HA ~ -lE _ -- _ - -_

I 0

SAi middot-middot J) t450

3720 LA r TO~omiddotlt~lt~~ -~ ~ (~~

~ ~ r-~~~1~ o ~~l~

SNI 1 (l_ amp-~ 575 3670367g75 325 375 425 475 525

SOUTH

I I I I 0 10 20 50

(KM)

SCAOS SURFACE WIND MONITORING SITES 02-03 SEPTEMBER 1987

------J ------------------ ) I-- 38201--__--~~- i) ___

_-- ~--gt--

-__

_

NORTH 275 325 375 425 475 525 575

YI ~middotCJ~bull_bullrmiddot--- lt I __ (_______~ ~ - - I -- J ( - - - - - - - J i O l__ ______________ -~

~j ( lt- bull- ~ 0 C) ~ -- (-- _)) ) ----_--__ -- middot-- _ - --J ) J ---- - ------- ----- middot----- -( ~---_j

3820----==--=-- ( - -middot bull __ - ---~----= --- ---- -- -- ------------ _______ ltJ~~ A I --- - ---- - -_ - _ --_--~-- -_ - --~co___--_--___-__----- f middot l - --- - --- - __- ---_-- -- ~ middot -middot __ J L--~ cmiddot

---- -- middot--~-- -- -- - _ _-- - - ~

--- - middot- - -C-_--- - -~ rmiddot middot) _- ~middot~ I--- ----~deg- -- -- C _-_--_- __ __ _ ___ _--_--~ __---- ~---lt lt ltgt _~-__gt_ ~~-- i~ - UR ---- -------- - ----~ --lt I middot- B ~----- Qll __ ~----- _ CI____ ~ __ --- ---middotir ~ - 3770

1-I- 3770 () U)( - -- -- 0~ - j _j ______- ==--=--_ --___ - ---w lt(

w~

~gt middot1 r-

0

3720 3720

middotmiddotmiddot J ~ ) ~l - ~ ~

~ tmiddot~----_7~~ p__ D2)t~~

NSI I(--_ Imiddot- 3670 3670

275 325 375 425 475 525 575

SOUTH

I I I I I I O 1 0 20 JO 40 50

(KM)

SCAQS UPPER-AIR WIND MONITORING SITES

02-03 SEPTEMBER 1987

~ I

t

NORTH CM61yenRS

----- I uic middot I Ibull 0 z_ ~ p

-_- - - - _ - middot-~-_ ------- VCRV

820 --- -- -- I W-gtER --- _ ---- --- ~ ) - -_ - I _ _ - _ --- _ _ _ -_ bull _____ _ _ - -- -- -- _ --_ ----~ HESP 3 -- ME -- -middot bull - --- _ -- _ TE - -- __ _-- - c----~middot - r

PIRlb -_1 N bull--~ _ --lt~_- - _ _ ---------- - -MISS_ _--- ___ bull---=-- _llE ~ ~ j lt) hlt---- F-~~--_ ----1A-_c=_--middot llE ----_ ()

-middot SIM ~ICAN llE RIALSNBO llE ~J -------~~ tllE ------TmiddotllE~I ~ES BURR~ AZ~ ~-~r- RD ____-- -- ~ bull FIIISA l- bull -~~

( )l__ -middot middot c(~HA w~~N ~tfJ1 -- -- ~ ~ 1

_

375

~) middot middot ---lt -__ lt_ ___ ___ -i____) C-middotdeg - - -

- -- J_ _) lllt

_ =- ) - -

L- ~~- Iii - ~ _________

-~ 0 I -- (

SI lllt

E

NT CM58V

( j gtT__~_____)___ -- ~l- ) (

middotmiddot-- -_ bull _ ~- () ~

I --J vlt__ ltgt

--- --------- ~---------- C -

_

~(__ f - -- ~---middot)1 ~

t ~ I

I- I- ~

3720

ANAC Wo~ middot -~- lt_)

44

PERI ) ~ tlo

25 R~ ~~ANAH _i~~MN ~~-w--- ~ _ 00 )

T middot I BUllE I -eM62 7 llE

-- - ~

~ 425

SOUTH

20

(KM)

SCAQS SURFACE WIND MONITORING SITES 11 -13 NOVEMBER 1987

(_ (___JCcS ~~)

bull ------------~ - - ( ~ r-------------- Dbull ---

J

575 3670

1SV3 0 0 0 0 N r-- N r-- a) r-- r-- co I I) I) I)

I bull bull I I

I I f1 1 ~~ I- I I-)

0 l)

l)

w I-l)

L)

z Ct 0 I-

z 0 2

0 r-- z OJ

m3 Ct a lt( w0

l() mI Ct 2

~ ww Q_ gt

0 - Q_ 0 I) 2 ) z ~ ___0

N (I) n a

0 lt(- u ()

0

n 0 z I)

N +

lf) r-- I)

- I I I

i I

I 0

~ -L

w

i

~ LL

I)

C-1

+

l() r-- I)

1S3M

A-12

-~

igt I _

l)

CM~RS 275 325 375

NORTH 425 475 525 575

_J- I bullbullbullbullbullbull ~ I bullbullbullbullbullbullbull bull I middot bull -gt-----middot bullbullbull 3 )--- ____j lt c----- -_ -- gt _ ___ ----- t__ l___

-- ------- LANC l ~ ---------- __ ) -- __ ~ I ) ~ - -=~__ I -~middotmiddot- - bull middot bull bull bull lt lt Cl --- ------ ____ -~ -

38201-- ------_- ) ) -- _ ---- -- -- -- - () - --------- I --- -~-lt~~ (middot__ TEME ) --gt ~_ ----- - middot--- --- vamp c~ (~ 0~ ___- --- gtIpound - - - - ---- -- - - -- _ - - ~ ---- - - - ------------- 5SI -middot PIRltgt ----~ ( -middot _ - -- --- - --- ) HESP --------~ ltgt

___ __bull_rbull ~--------~-___ -- ___ ----gt--=- bull~ ~~ I - ---__-=---- ----

VENt CM58 _ sti --~~ ~ lt_ -~-- middot_~-~~ r-~- --middot) ~~) _J MISS-~~-- ___-_ __)~ -- ---( C

- --RESpound BUR~--==-=~----r~---_-__- ~- - ~ _- ~ -1 -

3770 I- ANAC

J I )l( ~- ~-- - i middot ----middot -X--Ret-----_~ -~

___ ( - -middot ~SA AZ~ ~ o j -------=--------~--gt~-- dampHA ~~~f __ SNBO ~~ -~

ZUMA MALI LA w~M -jmiddot I R~J ~-s ~__ )() w ~

3720

8U25

VE VERN PICO _ middotyHIN RIVRyen ( ~----- -~ CM44 -~ ~- ----- ~ C WT ~NN Wt-0HB -NQRC - middot- ~NN-a-~~ _ ~ co~ __ -- ( ~ ~

RVIJO ~ilff AN~ gt cmiddotbull yen 0 (~~ p LASAl I bull- - PERI ~ ) ~

rJ]~~_Y)~N ) (_ --

_T -cJ62~-~

~ 5j(bull 1) ~Jso

l -~

- 1 J) -~ ~7~~t~~

3820

3770 1-() lt( w

3720

I I I I I I I I I I I I I I I I I I I I I I367r I 367075

I 325 375 425 475 525 575

SOUTH

I 0

I 10

I 20

I 30

I 40

I 50

(KM)

SCAQS SURFACE WIND MONITORING SITES

03 DECEMBER 1987

NORTH 275 325 375 425 475 525 575

I I ) gt ~ _YC) ~ ~ I ( o c_ _------- (

___ middot i I 97 ~___ _ --1 cbull-- - - C -___J -- lt ( ) - - - - middotmiddot ~ l _ ----_J

I ---middot ___ __ middotmiddot-_ 1 -~ __J ) bull- middotbull_ -

3820 ------~- I -~middot --- _ middot--- -------~

C - ~ (___ _ 1 ) -- _ - - - gt _ bull f-_- --- r ------~__ -----I --- ) I ~ -~ gt ----- - --- -- ~-_]) c_middotI 38201-_~~_ l _ --- - (-- ~ f ~ I~_ - middot - middot -middotgt- -- -_ -- middot_ _- 1 L- l _- -

~----- l -- middot middot ~- middot-_ _- - middot middotmiddot--gt---~--t~~)-1 bull lt_ _ _ bull middot bull - middot- ~ ~0---~ (c ~ I ~

_ I - bull -~~~--gt~~~-~~ bullS- _~_ l ~~1t~~_~(~ t 3770 I -- -- middot __ - I S____ ( 3770

I- 1-() ()

gt w - I __~sect~- ---ONT lt(

w

tgt

f-- I

~

middot - middotI

-

L~i--

37203720 c_J - (_cS) l -~~

NSI

367~~51 3~5 13~51 14~5 I I I 14~51 is~s s~s 3670

SOUTH

I I I I I I 0 10 20 30 40 50

(KM)

fJ~

SCAOS UPPER-AIR WIND MONITORING SITES I 03 DECEMBER 1987 r~J

NORTH CM~RS 275 325 375 425 475 525 575

middot middot ___ I middot 1 I )l ___ QO --middot - v_ (-- - LANC middot ~ C) lt --bull_ I -- -- bull _ ~ - ~-- ) -------_ -- - _~-- V --I 1 J --- - bull I -J- ---middot - _ bull__ - vc i --- ltl

3820~-----=cc~ I middot -middot - middot - _ ___ -- - 1t ~~------- middot - ___) - - middot -

J-cgzot-- ~--- j 0 TEME _middot ---- --- -

-____ -- ---- _- j (

- -_ I -- --~ _JI( ---- bull bull-- llf -middotmiddot l - -- bull _middot_ middot I --- -- middot CM58

_- 1 -- middot - middot~-~ - -~__ ___ ---~-~_--__~----------D J-~J~bull A HESP

middot OJ11 r P1R1tc lt--~i_-_~-~- ~c~_r--~-~_--_~r-=-~~~~--~ _ --~ --lt__~~~~- CSI ~ -~ --- ---- middotmiddot - ---- - _ ~ r ) J

)gt SIMI -MIS5-X ~Cgt~---- middot-cemiddot middot ____~ ~ middot~ l~fu__ suRlfiI_middot- -tk~- flAf SNBO __ middot ~-~ l 3770 _ 377ob -- ~ PJIISA AZ ~JIily~ _- RDL ___ bull ( C t-shy-- -~ I ----- ~HA 71lt V)tn ANAC ~---- CE~ WALflHIN RIVR ----- ~ w

w ~ LA PICO - CM44 - T -~ ~ ZUMA MALI VEN middotbull _ -bulltRc __ ~ ~lt~~7-

N WuHB _~-- -middot bull ) _J~N ~ -- ~ 0 - ) ~ I ltgt -_middot PERI bull I- ( _

V 8U25~ 3720 3720

WJlt~ ( ~ ~ ) 1 i

~ I I I I I I I I I I I I I I I I I I I I I367r I bull I I 3670

75 325 375 425 475 525 575 SOUTH

I I I I I I 0 10 20 30 40 50

(KM)

-~ ~

SCAQS SURFACE WIND MONITORING SITES 10-11 DECEMBER 1987

NORTH 325 375 425 475 525 575275

-- ----_ lt_~- c--- - ~ ~ _ I I - ---~~c------ ) _ -middot - gt~-

3a2or ------__ lt- ) 1 middot--- -- __ - ~bull =-------------- - r---_ ___ - bull- ---- I I ~ ~-- jc- I bull - - (bull I --- middot middotmiddot - ~ -middot - -- ~ - 3820 -~- bull - middot - - ~-_ ~- _ middot- n

(

- 0 lt_( ~_lt- ~-~~- middotmiddot) ---- ()_ (---- --

--

____ middot

-middot

I

f----- (-J 1r---J~ --~ - middotlt ltbullI I ~__---__ ~-

l B~--- _c_ gt-- lt gt- (- - - j 1--_~--~--l~ -- -- --- )l

-- - --~---- middotc middot=-~-~- (~ L ----- -- --middot - -- - - -bull --- - - c-) ~ J _ -- - ---- - ) ) ltl

37703770 EMLgt middotorrmiddotbull __ ) ~~~~ofmiddot - -- __s=__I- - - ~__- ( ~ __ )---__ Ishy

V) ~ ~- lt(w ~ ---- --~ - w if)

-~2_~middot) ~~at~s t I

I-

deg

FUUA

i () ~--J)llC~lt I

3720 3720

~ltl__ (_)i~

~ NSI

367~~51 I I I I I I I 13~51 I I I I I I I 13~51 I I I I I I I 14~51 I I I I I I 14~51 I I I I I I r--- I5~51 1 I T I I I I I 5~51 I I I I 36 70

SOUTH

I I I I I I 0 1 0 20 30 40 50

(KM)

SCAQS UPPER-AIR WIND MONITORING SITES

10-11 DECEMBER 1987

Appendix B

SCAQS DIAGNOSTIC WIND ANALYSES (Six-hourly plots Levels 1 3 and S)

Summer Intensive Monitoring Periods

19 June 1987 24-25 June 1987 13-15 July 1987 27-29 August 1987 2-3 September 1987

Autumn Intensive Monitoring Periods

11-13 November 1987 3 December 1987 10-11 December 1987

Page

B-1 B-13 B-37 B-73 B-109

B-133 B-169 B-181

9106103

Summer Intensive Monitoring Periods

9106103

19 June 1987

9106103

1bullbull-lil

1SV3

I I lshy Ishyo )

0 0 z ()

IO N IO

I()

N -st-

1S3M

-- l1

l~ i --

0 z 3

---

2 0

_J w cjr----_J CD

0 l() z

I- =)lt( 7

f) 0)

0 -- i n 2 Ishy7

0 ~ ()N ____ gt a 0 20

3o 0 ~

0

B-1

1Sv3

( I l-et 0 z

(

lf) N st-

l() N ~

l()

N 0 t--

n

0 N_ n

U)

ON r-shy(0

n

1S3M

B-2

_

2 0 0 tlt)-__

tlt)

_j w 2jr-_j CX)

0 lf) I- z

lt( ~ IJ1 0)

0 _ 0 n 2 z 1-0 ~ N - 3 ~ 0 20

3o 0 Ov

-----

lSVJ

l)

----

l~3 O 0 w

w ll) (1

l)

0 0 z 3

I lshyet 0 z

--

2 0 0 0

-

LO

w ~

GJ r----~

u 0 z

OJ

I- gt lt( J

mif)

00 ---shyI) 2 z I-0 i l) N -- 3 (1

0 2 0 3 0 0 ~ 0

lSJM

B-3

1SV3

- V1 --

~5 O 0

E - w

w Ul_ 0

V1 0 0

z ~

I I lshy I-et =gt0 0Z V1

-

2 0

J wr--CJ OJ J z0

Ul I- =gt lt( ~ V1 -

0 - n 2 0 z 1-() 0 ~ N __ 3 0

0 2038 0

0

U)

l

lO N v

0 N agt n

0

r--n

0 N

0 N r-shyn

U)

U)

U) N U)

Ul

q--

Ill N q--

1S3M

B-4

td I

J1

~ ~~~~~ ~ -~~~~~ J - -~--Qf~J ~lf~ ~---~ ttt~~~~H~f~ ~ ~~lt~~~0 ~ - ltl-_t I~~~~~~-~~~~~ ~~ I _~1c j_~ L ~ (__1-T11__1 ~_-~_ ---~~~~~~ 11 - ~ +f--1~- ~-+--41-- 1-~- ~ ~ -rtt1-~--~~~~~~~ ~ ~ ~ ~ l t I J JI JI~- t _I i~~I~~~~~~

377itttttttt ~- - t I Jf --------_-- _ 70 ~ ttttttttttttti- fllJ~JI-~~_- ~~ _ =- ~~~- tn w - t t I I I_~- -V _ ~ -laquo___ _ - ltC 3 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ t t t t t I I I I JI~ JI JI ~~ I--~- ~ ~~~~~ w

H~HHHH~in+~l~Hnf5-I ~ ~~~~~~~~ ~ ~ ~ lliii it t I~t~ltt~rrrr~~~~ jl++it~~~t~

20-~~~~~~~~~J tttttttf ~~~~~~~~~~---~-~~~~~~~~~~~~~-amp~ ~ t t t t t t f f f I I I I ~ 1 J(-- _ --P ---~~~~~~~~ ~ ~ ~ ~ ~ ~ ~ ~ t t t t t t t t f f I I I I I ~ ~- j~J _ ~ ~ z~ ~ ~ ~ z l I+ nm~t ~ ~ ~ I I~Jt~-~- -~-__~~~ tr ti ~ ~ t t I t f f I I I I I I I - ~-r __ - ~~~~~~~ ~~~~ ~z11 ttt ffflllllIIII -~~---~~~~~~~~~~~ ~~~~ ~~ ttttft ttflltllllllll A~--~~~~~~~~ ~ ~ ~ ~ ~ ~ ~ t t t t t t t t t t t f I I I I I I I I I I I I I ---P~- ttttttttttttlllllllllllI -~--L~-~~~~~~~~~middot

367 70 ~75 325 375 425 475 525 575

SOUTH

1111111111111111I I I I I I 0 10 20 30 40 50 0 5 10 15

(KM) WIND SPEED (MS) i

NORTH 425 575

_ 414111fl-~bull __~) ff I -lt~i ~ + lJ Jmiddot-bull A fl t1 it bull- _I~--~---~----_---~_~~~~~~~11 t1

~~t 11 f + + diamsJ diams 1 )--t-_+ J~ I-(_ 1 1 ~t1 __

__ Lt l l t fL f_l - - +~~----~~---~___-+_~~~ J-t-t t---t-lt t t-t) LJ lt fl ~ -- t---f t tT~-- ~~ 1__t -t ti t_1 + l - -~-~-~-II~-- - ~~~-----~----t----~~~~~~_Efftt -- r1 ~J t l Lt t

fl

~ _ t_ - 11 _ _

Fi ru bulll=ti~ ~ ~ ~ ~1H1~~_~-~-~----~~~~~~~~~~

DWM WINOS AT LEVEL 3 (300M) 1000 PST 19JUN87

1Sv3

I I-shyCt 0 z

1S3M

B-6

0 II)

0 I)

-_2

0 ~ N -

0

0

-_

2 0 0 0 -

LO

_J

w r---CJ O) _J z I- gt ~~ if)

0 1--shyz V) ~ Q_

20 3 g0

NORTH 525 575

~~~__A -~___~~-

F- ~_--P~

~ ff~~-- - _ middot- ~~

_ bull bull bull bull bull

_ p

~L~k~tt ~ 1 t A middot1-t

~ r~ 1 11 1 __ bull bull --l t frac12Q2_

~ ~--r-J-+7L~

1--Ui

3770 _yen~AA- ---~ ~__~_ ~ K---r

eno tshylf)

w ~ ~ ~ lt( 3 I I_

- w

td I

-J

~~~~- ~ ~ ~~~ shy ~ ~ - shy

3720

~ ~~~ -~1~-nu~~~~-

~ -~ - ~_____A~~1~ ~ _~ ~~= ~~~_______2--- ~

720

~~~-~~~~~_ 9~tbullmiddot~qor~frac12

Y~poundpoundpoundpoundpoundpoundL1~~~~r~ ~ middot

375 425 475 525 575

SOUTH

I I I I I I 11 1111 1111 1 0 10 20 30 4-0 50 0 5 10 15

(KM) WIND SPEED (MS)

DWM WINDS AT LEVEL 1 ( 1 OM) 1600 PST 19JUN87

~

NORTH

Arlt~~~ ~L _ -rJ ll

_ I I I t

_t-z~~J ~i~ bull

i- ~~~ Ii ~~( trn

3770 I - bull bull bull bull bull bull bull iigtlaquo

--- bull bull bull _-

~fJ~ t-l-lltf[llJ- jf1 rr]I ~ ~~~ ~ss~810Ja2ot-~~1i lmiddot - 1 17- - -

-ltL

~ ~ 70 y ____~ tshy

l) ) _-y ____~w

w ~

~ -~--- - -- ~ 1 ~~~~ __ _ bull---bull laquo-___~ Y~~

___p~~__---A~_A 1 ~~td I ~----______A 14 1 ~

00 _-________________ ~ __~----~1~ -A________________--r__~~~ ~ ~ ~~~--~-~~~~-~---e--~ ____________~_________-~ h

3 7 20 t-_--~____- ~ _ _ ~~-_- _ _ _ _ ~___~~~r--~~___-K ~~ ~ -~-------~~~----~ ~ ~~__________~~~~~~~______-r_-A~-1--~~~ ~__________________----r~__~__~-Y~~-------__---A----r~ 1 ~ ~__~___________~ ~

367 tcrr~__~y--rrYlt-trltltltltltlaquo-ltltltltltlaquoltlt~~~ ---

9imiddot~75 325 375 -- -

1111 1111 11111 1 1 1

0 10 20 30 40 50 0 5 10 15 I I I I I I

(KM) WIND SPEED (MS)

DWM WINDS AT LEVEL 3 (300M)

1600 PST 19JUN87

NORTH

bl I

0

~________________A-4_gt~~~_____~~__________~A

A~altP_ ~~~_________--~_A 38 20 I--=-~~_~~___~~-_-~~_ -lt~ - ~_-~_A--1~ _

~~------ ~ gt-~ ti ~----~ ~ _~~~~ 0 ~ ~-i---~~411___ I~-~~ I~A-~~----~7A7~-

A A~---~~- ---~ ~ ~ -middot~~ 1-27 ~shyA_~ ~~~ Jl--__r-t~ ~ (K~_ - fl_

A ~I J111 I _ A - ~ _ T-~ v I 1 1 1 1 1 1 ~ 1 1 _ Ji J I~ f --_i__middot1(- ~ ~)( ~JJXZ - _ r ~ - _ )( _ II I 1 ~ 1 I - _~ _)~ ~~

= 1 II II 1 (~ ~--=-~ -7fJ~~~~tm~i I- 3770 Jir - I 11 I 71 (I) ~ ~111 ~

w ~--middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotbullbull bullbull ~~~11Zll~~11~ ~ ~~_~~~llllN~~ -~~ bull 11jh fi 1 1 II 1 1 1 1 1 1 1 1 1 1 1 1 1 I I 1 0i~~~ 1gtcJ~l~p~ ~~~ ~~~ ~rr1111

70 Ishy() lt( w

111111~~ 3720 i- 1 1 ~ ~

~1~I A-A~)I 1111AA _~l11~ 1

lllllll11IIIAII- ~II ~1~~__~~Ill~~~~~ l1_ 1~~~~~~lll~~~~1 llllflfAll-)lllllllll1~~~~~

A I I I I I 1 I I I I 3670

275 325 375 425 575

SOUTH

I I I I I I 1111111111111111 0 1 0 20 30 40 50 0 5 10 15

(KM) WIND SPEED (MS)

DWM WINDS AT LEVEL 5 ( 1 OOOM) 1600 PST 19JUN87

~

A A A

1Sv3

(

1S3M

B-10

()

l ~

---u) 2 __ O 0 ~ w

w It) Q_

()

0 0 z 3

0 It)

~

0 ---I) 2 ~0N _

0

0

---2 0 __

_J

w r--- GJ OJ _J z __ )

~~ () r-

0 __ z ()3 Q_

~o 3~ ON

NORTH

middot-~~) K~xJ~ middot_1~ ~ 71( I IJ ~JI

~A I 1 ~~

liii[i~~ Hf~-~~~=~T-- ----- --=~~g~g~bull11ft _ ~~~ -1-x~~~ ~~~~-~~~--~-~---~ --~ t ~t~ -~1~~ -- ----

-lt J 1middot~~ __---~__

3 770 ~ ~~ --_tn ---------~~ 1 ~____~ _ ___~ -w bull Y ___~~~ (Al _~ _ ~

-- bull _ _ _ bull bull bull bull~___1 1I J~ _~

~- YI J _L ~~ ~~ YJll~E~

td _____-___ ____ __ 1 ~xgtx2-I ____________~__-A (~~~~ _______~~2-1 y~~- ___~__________~ ~

3 7 20 I-___~~__~~ Y --~ ~__ I _ - - _

~_---A~ ~---__~~~~~--_____~ ~ ~_____A~ y ~ ~___-__________~~ ~ -

~__-_______-yen_2 ~ ~ ~~_______~ ~

1 367~ 75 325 375 425

SOUTH

1111 1111 1111I I I I I I 1 1 1 0 10 20 30 40 50 0 5 10 15

(KM) WIND SPEED (MS)

DWM WINDS AT LEVEL 3 (300M)

2200 PST 19JUN87

~-

~ - - ---

NORTH 275

___ -~-___

- ~ I o_ ltAbull~-P- bull bull -P diams bull~--~~~~--- --- ~ ~ ti ~ ~sbull3820 ~=-J~_~~middotmiddotmiddot~~~--_~_=- =~_~c s~ ~3~

~~- bullbull~~bull~~~~~~ - bull -~~bull ~ v i-_ --- __-_ ~----~

~- st-~~1 17-~__4 ~ _~ ~-~-raquo~~~ -f _ _ bull bull bull bull~ bull bull-__-v 4 t ~ ~v ~- Jl_~ ~--z~~=~s~~~~Mil

-- _ ~ frac12--~~- -=~~ ~~l~1~l~tzi9~J t~ 1 1 1 1 1 1 ~-bull ~~___- v q (If V pp p I l_77rtfl _

3770 ~ ~ ---- I h1yenzi 1V-r-() bull bull ~ ~~~~~ w ~ bull ~ _ I JI J(_ )-II101-1 3 ~~A~~~XI IIJ~~~

~ f A I~ I I I I~--L -

tl ~1111111 ~K11~~llll~i~~~~I ~rr ~~ ~xgt~~~t---

N ~I I II)(01~ ~ ~ ~~~ 1~Y~lt~~~~~~~~ ~~~~

3720 iYY11Alllll1lIA~~~~ ~~---Y~---_ _ _ - ~ bullbull - - _

~rrll1IIIIIIIAAAA__

___________~~~AAAA~_~ ______________~~~~KAKAA1~~ lllllllllll~AAA1f~~

_~~

3670 t1i11 i i 1 i i 11111 i i i i -i i [ 111111-111 ~ ~ 11 ~ i I t 1 bull rm r~ij e =~~ raquo-il3t ~ 275 325 375 425

SOUTH

1111 111111 11111 1I I I I I I 0 1 0 20 30 40 50 0 5 10 15

(KM) WIND SPEED (MS)

DWM WINDS AT LEVEL 5 ( 1 OOOM) 2200 PST 19JUN87

24-25 June 1987

9106103

1SV3

1S3M

0 w w Q_ (J1

0 z 3

I f-shy=J 0 (J1

-_

2 0

--

_J w CJ f- _J OC)

0 U) z

f-shy )lt

J q-

(J1 N0 -_ 0

rlt) z rshyl)

N0 _ 3 Q_

0 20 3o 0 q-

0

B-13

lf)_ lf)

If) N If)

lf) r-shy~

I I-o 0 z lf)

~

lO

~

lf) N If)

(

pound bull d ~ bull 4 4 c_ q

1 4 r9middot-

0 N IX)

middot- t--bull ~Igt~

O ~f 4 fT amp)o(oj

4 ltI I~ ~ ~

0

o

middot a

~- v t rgt ( tgtj (~V~-1 f4

3 44 ~-~a4 V VM q -~~-q_4 ~4

_ ~ )

p- ~~t1~1 middot V II J ~ ~ )I 1 11 f ir -~~1I ~

II P P P Igt 4 ~(Iigt ~~ 1) IA

deg deg 4 4 ~ A -1 r 1 1-Y]~t J rz ~

fl r ~ Igt I~y ~ -- -- - 4 ~r___amp V P11 iP Igt P Igt p ~ -0

~bull 7~tpmiddot~P Pf P Ptl middot~ ~ q p Igt 1gt p ~ t b (r 4 P - 4---f ~ ~ bV ltI

ltI ~ ~ I p 6(~ d-_j b d p (4- 4 ~ 1 p Igt 1gt Igt - b ti

)4- a 4_) q V Igt p Igt o

lt(___~ ~- V fgt ~ 111 t Igt -4

~ ~ Igt r p Igt

~ ~ 1 h1

V (I Ilt v middot

t y-

t

t

p

P t P t P ~

0 0N - IX) n

1SV3 0 0 0r-shy N r-shy co

lf) lf)

If) N If)

~ - t bull~--~11n ~ -~bullmiddot t~ lt middot___

o_ ~ ~ ~

0 bull t bull 4_4 4 4IIgt

c 0----~ u c Igt( o ~ c ~A ~ 0 - A 4 4 ~ 1 q

o bull o- -~ 1gt 1gt ~ y4 -~J middot)bullmiddot ~ ~ ~ p 0- 1---f t-~ 1 ~ 4 4 o co u gt)O- eyti ~ ~l 9 -Y P- - I a c 1 oM_il_q A p- p

4 ~ ~-M f p

I 4

~ rv ~--~middot

tJmiddot bull P II f t )I~ bull V ct_~ V V V t P- ~ Igt t middot f lft V VJi P- P- fgt IIgt ~ _ J1 bull bull bull

1 v II p _bull ( ( ir ti- f Igt bull

j ~ r f -~-1t __

_I ltC_t--q_) v -~-ampgt

Q middot--- ~ - t ~ b

II

bull ~

bull bull

diams

1 bull ~ ~~ ~ ~ b b b lgt bull

-- b bull bull bull~4q~ lgtPlgt-4-~_tbblgt

Jraquo P P ~ q 11- 11- b b b b b

P Igt P q bull b b b b b b b b bull

bull bull Igt 4 4 fl ~ b b b b b b b b b bull bull Igt Igt ~ 4 q ~ b _ b b b b b b bull

P bull Igt Igt -4 ltI 9 b b b b b b b b

p bull - Igt Igt 4 lt1 _ b b b b b bull t bull bull Igt ~ 4 b bull b b b b b b bull p Igt Igt Igt bull 9 b b b b b b b b bull P p ~ ~ A 4 q - _ b b b

1S3M

figt j)

~ ~ bull

bull bull bull bull bull bull bull bull bull bull

bull bull bull bull middot bull middot

bull bull ~ ~ 9 9bull bull bull bull bull bull bull bull bull

bull ~ bull bull _ bull bull _ bull bull

~

If) N t

lf) r--11

~

If)

~

0 ONN - co n ~

I fshy=i 0 V)

- 2 0 0 n -

n _j w cjf-

0 l()

0 ~

0N

0

0

---shy2 ~ _

_j OC)

I- z lt( =i

J Vgtv 0N z f-

3 ~ 20 3o 0-t

B-14

---

1S13 0 0 0 N N r--shyltIO r--shy co I) n I)

I() l1 r--shy -U

E~i0 z

U N I() 3

I fshy)

0 U) l1 N -t

--_

2 0 0 0

-

LO

_J w CJf----_J OJ

0 U) z

f- )lt( l1-r ON z f-

3 ~ 0 20

50 U) 0 -sr

0 ON r--shy r--shy

r--shy (0

n I)

1S3M

B-15

lSV3 0 0 0_ N - _ - ~ I)

_ ()

(~i

0 z

If) If)N NIf) 3It)

I Il- I-a =gt0 0z If) If)()

N Nst- st-

_

2 0

--

- w I--- OC)Cj z0 -

I) )I- Jlt( --t-

N() 0 I-z ()

3 o_

0 0 2 0

~ 0 00( 0 0 0-N N _111) r-- 1)

1S3M

B-16

lSVJ 0 0 0 0 N r-shy N r-shy_ _agt lO n n n n

() r-shyU)

u) l() N N u) l()

I I lshy Ishyo )

0 0 z U1 l) N

l() r--_ 2 0 0 n -

n _j

w I GJ OC)

0 _j z

lt) I- ) lt( ~ lf) N 0 1-z l)

3 Q_

0 Lo38 0

0 0 0 0 _N N _ _(() n n n

lSJM

B-17

1SV3 0 0 0 0- -N N- -crJ co I) I) I)

lO II)- - U) It)

U) II) N N lO lO

lO- st

I l-o 0 z U)

N

~

I I-=gt 0 l)

st st

--_ It) - ~ I) 0

0 0 ___

lf)

J w I-

It) N I)

0 II)

~ OC) J z I- =gt lt - lf) N 0 1-z l)

~ 0

0

0

~ 0

38 0

N IIJ I)

- - I)

1S3M

B-18

middot~ bullmiddot I

1Si3 0 0 0 0 N r-shy N r-shya) r-shy r-- co I) I) 1) I)

--_

E~i l)

0 z 3

I r-0 0 z

0 I(

0 --_ n 2 0 ~ N --

0

0

1S3M

B-19

---

_J

w r----2i OC) _J z I- lt( ~ V1 N 0 1-z V)

3n 20 3 iE 0

---- --_

NORTH

-_ t t t f t A +1 t lt-1--JJ-middot+J

r ft_f_frac14 fffftl middotmiddotbull f_ n- ~ tn

ttt1I1~ ~ ~ ~ ~f --H 1--- ~ -

rJj ----~ ~ ~--- ~ l j bull bull - bull bull Ir - ---_- --- --~~~~~I-~~~ ~ bull ~ ~ rt

- - ~rnlit ~~~~ ~~~~ ~~ ~~~~~~~ - _~-~~ ~~~~~-=~~~~~~~-gt

3820

bl I

N 0

tshy() w 3 fftfftlll

ffltlIJ11111~11- I I I J ~-- - ~~~~11J~ -~

3720 - I I JI J ~~~~~~~--------~~ diams bull + I J J _~ 4 bull I I I J ___ ~~~~-s---~~IJ-bullbullbullbullbullbull ~__middot~middotmiddotmiddotmiddotmiddot~~~~~E-e~~

4flA~~middot~middotmiddotmiddotmiddotmiddot~~~~~ ~--_---~- ~~ 1

367~7i51bull1bull11bull1 111 13251777JT7777~7777 I I I 14251

--~--~- ~~_-~-----~ ~~~J

--~-_--~- 1- I 1 I

~ 1lJ

I I I I I I 14751 I I I I I I I s~sl1 I I I 1575 I I

3770 tshy() lt( w

3720

13670

SOUTH

I 0

I 10

I I 20 30

(KM)

I 40

I 50

lllI 0 5 10 15

WIND SPEED (MS)

DWM WINDS AT LEVEL 3 1600 PST 24JUN87

(300M)

lSgt3 0 0 r--shy N r--shy r--shyt)

It r---1)

lO ---- N bull ~~ r lO ~ oe--- I

~~~~ t z~_-----~8 ~ ~~~2~-~----=---~~ t ~~----~~ -frac14~~~--

~v -~ 1 ~ - ~ ~~ ~~~-~~N~~~~~~~~~~~

tf~ ~ ~ -~~~~~imiddot~~~~~ ~~ ~~

_gt~~ middot1 ~ r2 l~ --~- I _Ct _ V I - ftV

0 ~ ~~- X

z~ HF bullIh IJ i It ti ~ 1 IJtl ~ ~ j t ~1

~ ~ 1~1

1 r ~

)

r r~P t t _r )r f

~ 1+ t t t f t ti ~ 1 lt ~ diams t f J t H ff 1 1I I I It diams diams Vf- 1 f f ~ f I 11

(____ t i(_ bullbull ~ bull ~ I r fr1)L_lt--~~vi 1t1J U1 -~- middot~ 1 t) ~ bull ~ bull ~ bull 1 1 f f f I t ~ - ( ~ ~(~ (_ ~ b ~ - ~ bull f 1 f f ~ bull

j ~r~--~ ~ _ ~ ~ ~ l 6 bull bull 4 t ft It _ - __ _ - J ~ ~ ~ t bullbullbullbull t - _ ~--~_____

__ I deg j ~ ~ b ~ _ Igt ~ _ _ ___ bull bull bull bull

~ ~ I ~ ~ ~ _ ~ _ _ _ __ - bull bull bullf

~ bull ~ ~ 4

I -- I bullbullbullbullbull

~~~ ~

1 bull ~

-- V)

LO lshy -----_ lf)

l- w w

=~ It) 0 l)

It)

2= )

0

~

l() 9 __~----- lf)r--- --------J______--L--J-~J-J-______~______~~~___________________________ r---N O O O ON

0 0 z 3

--

2 0 0 0 ----

LO

_j

w I--GJ Cl)

0 _j z lf) )I-

lt( ~ ~

lf) N 0 -- 0 I-n 2 Zlf) ~0 3 0

N ---

0 20 3 g0 -

0

N r- N I-~ I- I- ~ n n n n

1S3M

B-21

1Sv3

U) N U)

lJ) N n

0 N (0 I)

0 r-shyr-shyI)

0 N

I)

It) N It)

U1 r--1)

1S3M

B-22

0 w w (L Vgt

0 z ~

---2 0 __

_j

w _ ~ OC)

0 _j z U1 I- )

lt~ NVgt

0 --shy 0 1-t) 2 z () 0 ~ ~ (LN -middot -

0 20 ~~

0 ON

bull bull bull bull bull

1Sf3 0 0 0 0 N N CX) ID I) I) li li

~ n

~ n

tf) ~

A i -02middot a_ ~ r ____ Igt middotjmiddot i -1 ~ i r middot-~-----------------gt IJ IJ bull 1 j I ------~-----------------

_ IA_Jyen ~ ~ J ~ yen ----~---------------------

~ II --~_a IIgt 11gt Igt middot~ I bull ~ ~ ~ ~

1(1gt i i _JI J Iibull I - IJ Ji H j

bull bull I( --- j J t ~o ~- -- -J I I i J diams bull1bull bull bull i ~ _I I I I J 1 ~~- ~ 11 J l J diams -~ J) bull ~ I- t t ~ ( l f middott J bull 1_~1 ~ IJ II- I ( II ~ j t t bull)

bull t )bull ~) i ~bull bull __ __ I 1gt J I I I middot----- - ~ _ ~ Ji (Ji_ If ~ --~ bull i f l-Ji ~ p VIMyen I ~ middot1 bull I Ibull lt_~ ~ p1 )

I

__________________

~ 4 V ltI - - - -

~) i t --- -- yen 4 yen -- Iii 1yen yen JY yen II

I ~1 Ja a Igt- yen yen yen yen yen yen yenyenIiyen II II

a Igt bull ~ 111) (I J I JY yen tY yen yen II( ltf ~ I~) JY yen liY yen yen yen yen yen yen yen II II II ~ ~(II ~ yen yen yen r yen 1r yen yen yen It Ill

p cl

p 4 ampgt P JI r Igt bull

bull JJ Igt II

- ~ 11- bull

- -

+ _ _ _ __ __ +- ____

- - ----4

bull bull Igt Igt Igt

11 bull bull bull bull

bull bull It

IJ Igt bull t P

Igt bull t

- II Igt fl t middot~~-~~~t_yenyen yenyenyenyenyenyenyenyen

I ~J )Igt) 1 bull yen yen ~yen yen yen yen yen r - yen If II II Igt - I 1 J bull bullI _ _ 1 ~ ~ 1K )

bull -

bull bull II ~ Igt- J 6 bull I 11

fl) 1gt 11 Ill

bull t t fl

~

U1 r- n

~ n

_________o__JJ=---=-------oti~~e-~e11JEJEolELE-ILILLEJLlLu~uJ

l~

0 tf)

~ 0 n

0 N

0

0

- Vl ~ 2 ---

0 w w CL V1

0 z 3

-

2 y --

-

2 0 0 tlt) --

n _J w f-~ OC)

_J z gt

I- Jlt( q-

NVl bull) I-z Vl -~ CL

02 0 3 N 0 NIf)

ONN I N ro r- (0

n n n I)

1S3M

B-23

17z-g

WEST u u u ~ ~ ~ N ~ N

NO N~ 0~0

7J ~ () z -I 0 N (I)

~ )gt c_ -I C zr co ~ -J rT7

r (Jl

-- __ 0 0 0 s _

--_ 7 ~ --

~ z

~-0 0

--s (I) ___

0

0

N o (A 0

t ()1 0

oj(JI

-0

-()1

0 0 0 N -J

A I q bull if ~ ii ii ii I ii if 1 i J (JI

Ab4llltli ~~144

bull~~bull~1111111 11~1middot)1i~~~1 ~4gt~1111111~ II~ - bullbull~Agt~lll11 IIIAII tbull ~4-4~~~III IIll~ I ~14 4 - ~ bull i ~bull-ttt1 111111 I I 1-~ bullbullbullbullbull gt q bullbullbullbull I t I I I I I 4 I I I I I I I 1_ J~ I

4~ A - middot~~lll111I IIll 1 I 4 -1~~ l~ gt1llllllI 1l111 -~~ I N

tn()16 -1 Igt Igt I I l1I v I 7----(Yi ti mbull1-t

~Plgtlt111 VIII ii l middot~1111~~0~ I l~lll~310bullbull I i~W~ffi 1~~~~6~~~ I J~ 1~~~rw 11~~~1~ ~l~~t ~ i 11~~~~~~~ ~~f)~t~~I I~tl -1

~ --J ()1 l 111~1JV1 ~~~1~ I Ill tniz~i~~~~~~ ~~~~ 7 ~K -~~iii~~~~~~~~ il~~~~~~~ 1~~1~~~

middot1 middot1 middot1 middot1 middot1 middot1 middot1 middot1 middot middot1 middot1 middot1 I I I I vr )Igt(_ I II I I~~~~t~ 21~~~r~~~~~v111l I ~ II I -- I~ J(( I I II J l l l Cl ~ I ~ ~ ~ J J I I I yen - - bullbullJ_~ f yen ~ I IJ t I ti

diams J J J I I - ~ - ~ l1 yen -1) I I( t I ~ N J J J J 1- ur~ ~ - Jf1( -I) I I I ti I I j~

() UI diams Mi r)r yen fir_~~ bulll1t) JI 1 I middot i - (JI0 ~ nmiddotmiddotJ jmiddot-1 I I I f ~j--1J ~ __ middot gt C ~ J I f I 1 ltH I fl 1 ti I middotr- I I-I ~ f bull t t l )1j - _ I

t J4J-fbullt t ~ ii middotlfli ii~) - ~bullmiddotttM i f bull bull1 rI-Ku bull bull bull _ middot-~-J_J middot t +imiddot i t t ~ t ( ~ middot(~ I J bull Vf I r1- ~ j~fmiddot + r bull(~t t bullbull_t- J J ~) J ~ Igt

+ __ middot + V+ bull bull ti+ bull + -fi J i bull bull ~ f --- ~ ~ t Li bull bull t ++ diams + t bull +++ + bull ~ __Vbull ~ it 4 ~ i ()1 ~ 1 bullbull diams diams diams diams ++ ++ bull t 1 fA middot_ -----Y 4 ~ tn

~ ~bull t bull + diams + bull diams +++t + bull A VJ ~ bull bull ~ -o middot ~- bull t bull diams diams diams + ~i4_ ~ ~ ~

11 -~ 1 1 1 1 ~t t diams t t ft(middot-- f g a PA

--middott 4 -4 y 1 1 1 )f7~ V g n t A ~ ~bull a~ 4 1 1 ( V P q 1 bull A ~ V Y ~-- 4 I Cl oCl 4 A A ~tW --~- ~middot -)bull ~iliJ bull1bull

bull It t-- ti __ __ ~ (~w ~ ()1UI I bullbull bullrmiddot -~)fl l~~~ ) I A IIbull N~L~ r ~~~-ff~ --bull--1) 4 4 bull ()1

~ 14 ~ bull f 4 AA 4~ bull

44( )A - ~

- ti~ f 4 ~ 4 4 4 A bull ~ i

ti ti fl 1 4 tn llflfl44 4 -()1

~ ()1 ti ti fl 4 4 _ 4 bull fl _ 4 ~ ~

~ bull t~ - - I - 1 T T fJifrac12 1f 1~ fl t [ 1 4 bull bull ~ ltt ~4 ~~~11 l~~Nfl---~ ~~ bull ~t144

1 -middot I I f I ~ fl ti ti- Imiddot tJ 1-0 I 14

z o 0 -I

I

Y

)

u u u u 0) ~ ~ ~ ~ N ~ N 0 0 0 0

EAST

1S13

0 z 3

r r I-shy Ishyer gt 0 0 z ()

--_

2 0

--

___J

w CJ r----1 (lJ

0 l() z

Ishy gtlt J LO() N0

z Ishy()

3 0

0 20 3o 0 tj--

0

1S3M

0 w w 0 ()

B-25

------

~ --- _

NORTH 275 325 375 425 475 525 575

dJ 41 l ll~I tgtI I lo fA Itgt IA IA lo 1 IA IQ 1q lq If lq I ~I 4

~ ~ IIJ ~A ltI P Igt Igt Igt P V V V Q q l_-~- q ~ ~ ~ x- ~ ~ Y t~ --___q)11 4 ltI v v v v v v v 1raquo 4 -q q -~ q ~ 1 a

~ 4 ~~_gt~) ) ~~-4_~ A ltI fl v v v v p A V yjq ~ _ _ ~bullbull --shy~~~ ~ I Cl11 ~ 4 v v v v P- deg 4 ~ -V t V ( ~ a bull-

~ 1 ~~~ v ~sa- fl V P -iLpound_~A--4 q Igt P ~ 4 a~ 4 38203820

- _1 fa bull bull ~ II 11 4 4 ltf V P deg q 9 p Igt Igt Igt Igt P~~ _ _ _ bull -

- ~_R middot ~ gt- P-~-j---s--middotp-~~--- Igt p ~(

-~~ _ amp- 4 --v--J ~--~ -__~---- ~~ t f ---~middot bullbull ~ ~ ~ ~ ~~bull--- bull~bull~~ 4 ~-deg ~--~ ~_v -~ _~raquo Wh~

bull bull bull bull ___ol bull bull --___~ ~ _ A~~-~- f_~-~ bull 1 ~bull -~ Igt bull

a l -4 bull bull~ bull ~ ~ bull frac12~ P- __ _middotmiddot11-~~j)6-_ U bull _ JIgt~ bull I- bull ft ~ 4_~~~~ 9 P lgt--1gt~~~_-~_----~~~ ~ bull ~ ~ ~ ~ --~-~- ~~-_middot ~~~A~ ~ 1111 ~- ----~~ -~- IIgt _)-

1111 1111 -( _-middot 4 ~ Po Igt q lgtmiddotv11t_ Igt Igt II

3770 ~ P 0 ~ - bull k ~ 1- 1-

() pound 4 4 ~ q -44 - bull bull Igt ~- t Igt 1 Igt () w Igt 7 lt

3 - bull It It It bull bull ~--~ p ~ Igt ~ w ~~ It It It bull ~ -_t _ ~ bull bull bull bull --~ Igt

deg

td bull ft bull v ~lt~ Igt Ci~ 4gt I ~ It bull bull ~ 6 -It Igt ~

N bull bull It It ~ ~ _ ~_) ~ ~ lr It ft ft ft ft ft ft Igt -II-~ j ~ fil- _ _ _ _ bull 11r 1o 1o It 111- bull ft ft ft ft ft i i f - ~ 3720 bull It bull ft ft ft ltt q -e- ~ ~ ~j1

4

middot bull bull bull It It ft It bull ~ ~ ~ bullmiddot ft ft ft ft ltt ft ltt ltI 1 ~ - It bull It ft ft It bull -0 ~ JIgt ]~

middotmiddotmiddotmiddotbullbull1rt1rtft11- p-bull- ~1frac121 1tftftlttltltPt1t fgtbullbull ~~- bullbull ~

It bullbullbullbull It ltt It It ltt It lrt lrt tgt - ~

~~~ItIt ItItIt 1t11tft lttlttftlttltlt ltt lt11t ~ lgtbullJgtIbullbull bull~bull bull~bull ~ 1 bull bull 3670 367~75 325 375 425 475 525 575

SOUTH

1111111111111111I I I t--l 0 10 20 30 40 50 0 5 10 15

(KM) WIND SPEED (MS)

DWM WINDS AT LEVEL 3 (300M) 400 PST 25JUN87

0 0 0 0 N r-shy N r-shya) r-shy r-- (0 I) I) 1) I)

-

LO r--1) -

l~ i ()

0 z 3

I ~ n 0 z I)

N st-

0 If)

0 - I) 2 0 ~ N -

0

0

1S3M

B-27

---_

2 0 0 0

-

If)

_J

w Cj l-_J OC)

z_ ) lt( J () L()

ON z~ 3~ 20 3oo+

0 0 0 N N C0 (0 I) ~ I)

U)

U)

U) U) N N It) U)

I I-=gt 0

U) V1 N st-

lO N I)

0 lO

0 __ I) 2 0 ~ N _

0

0

__ 2 0

--

_J

w l--Gj OC) _J z I- =gt lt( ~ V1 N 0 1-z V) 3 CL

20 3 g0

1S3M

B-28

I fshyCt 0 z

0 r-shyr-shyI)

0 N r-shyn

0 r-shyl) I)

lO r-shylO

lO N It)

lO N ltt-

--

tlt)

_j

w r---fu o) _J z f- ) lt( ~ f) N 0 1-Z Vgt3 (L

2 03g0

I fshy)

0 l)

0 lO

0 -- n 2 0 ~ N ---

0

0

1S3M

B-29

1S13

-l)~ O 0 w

deg CL w

l)l ~

0 0 z 3

I lshya 0 z

--_

2 0 0 0

--

LO

_j

w__cj IJ)

0 _j z lf I- )

lt ~ ~ V) N

I) 20 - 0 Z(f)

I-

0 ~ 3 CLN -

2 00 3 gOr-

0

1S3M

B-30

Ht 11Sittl

lS13 0 0 0 0 N N II) (0 n I) n n

-- ()

LO t-shy ~ lO

(~i0 z

lO N LO

3

I Ishygt 0

lO () N +

--

2 0

--

_j

wr-----CJ OJ

0 _j z lt) I- )

lt ~ V) N

0 -- 0 1-shyI) 2 z () 0 i 3 ClN --- --

0 28 3 ltD

lf 0~_____________________________~_______________________--- t-- 0 0 0 0 ClCI N N t-shyII) t-shy io n n n n

1S3M

B-31

==- ~-_

NORTH

I bull bull - -f I I bull ~bull - ~__~~~~ ~~~

flt~11 $~~~t=- ~~ ~ 4Aligt~ ~~~ ~~

3820 1~~~- 4 t 11 ~ ~- --~_____-- ~ ~ ~~ 3820 ~~~

~~-~~~~

3770 3770

l1 ()w l-

lllizz tshy

~ ZlZZl ~ ~~~~~~

to I -IllIll

w -I IIIll~N llllll2~~

-II I I J I-~1~ r~~~~ 3720r ~ J J UL 1~A~~ 3720

~IIJJJJJ2~ ~~~ 1 ~ fl I JI JI2~~ 1~~~V fl fl ~ JI J J ~ y ~- 1-f4~) ~ fl fl fl I JI J _A2 1~ V~

~flflflflJIJIJl~2 ~~JIw~ ~ ~jlfljlflJIJIJI~ ~JIJIJflfl~~~ ~ ~~fljlfljlJI~~~~ -

J67 t-V1111111----(((((1i I~laquo rlt~1 I I I I I I I IM m I I I I I I I ~ MJ670 g75 325 375 425 475 525 575

SOUTH

11111 11111 11111 1I I I I I I 0 10 20 30 40 50 middot 0 5 10 15

(KM) WIND SPEED (MS)

DWM WINDS AT LEVEL 3 (300M) 1600 PST 25JUN87

1

NORTH

bj I

w w

i~ -tt--t ~ + ~frac14 diams diams diams diams diams f f f J-~~~l -ff~_x~ diams t diams ---t diams + diams ff f J1ff~t t

-=tl-U +---- ~ ~ t-t- diams diams __ diams~ diams diams ~ J I I 1 1 f ~ -y- ~I -~~-1t-~ diams +__+ diams + ++--J_f 1 ~JJ-11 I --

38201- ~~-- ~ ~--t_-( 1 ~ r 1t + middot~-t_ bull ~-~ bull bull bullmiddot bull r-r 1 ~IiI 1 I ~Ji~l _-=pound-~If~_ It It It bull bull bull bull bull ~ diams f f---bullmiddot+ --I __- _ I I~ 1 f1

( - ~~~~ II lit It It 1tt Iii Iii~ -r-middot -- ___- l_f--1-l -L ~~1 1 ~ ~_( _ -~~ ~------~ 1t(~ bull (t ft- ~ middotv -11-fI 1 - t~~1 1 41

~ - ~-~- lit 1t lk_i -- -~--- -_ -j rf-- l1 r111 1 I It It~ It 1t 11i bull-~ ~- ~ t_bullbull_~ (middot ~--middottY~i_(4Xtl~4j_ middot It It ~ -- ---~----~----_I~)-~-~ -

~-It It ltt middot~- ~ -~-middot ~-pound1[_~ -~- - middot - deg - - It It l diams diams 4 middotbull--bull ~ ~ ~ diams 7 1---~~ -L_- - ~ t( I diams -( bull diams ~ ~ bull ~ -- JI JI Jf JI JI j(_ ~II deg It_ -~ ~- I I I J JI JI JI JI 1

~ J- ~llj ~- diamsdiams +II IllJI_ h~ ~ ~ ~ bull bull ~ JI J J J ~ 1 x111 X7 -~ ~ diamsdiams 4111 JJJIJJ~~~~~~~~1t diamsdiamsdiams ~111 JJIJJIJllllb~ h~~~hh middot ~ - diams diams bull I I J J I I I I JI JI I l1-14~frac12-~~~ji_ ~ + f 1 J I 1 I I I 1 ~ x~ f1 11 middot -

bull JI I I I11~bullY1iz 1 41 ~ f I J J J JI J J J J J I I I lmiddot ~ t JI JI JI 1 JI 1 1 JI J I I I It~ if~_~

It_ ~ 1 JI JI JI JI J J I I l-~ 4 t J J J J J J J JI JI I I l l deg ~~ _ ~ 1111JJIJIJIJIJIJIJIJI t JIJIJIJI~I JIJJIJIJI_

~- I t I I JJJIJIJIJIJII~~~~ t JIJJIJIJIJIIII ~~ JJ JIJIJlllll ~ t IJJIJIJl1 1 1 ~ ~~I 1 t 1 A 11111111 II I I I

325 375 425 475

SOUTH

I I I I I I 0 10 20 30 40 50

(KM)

525 575

1111 111 1111 10 5 10 15

WIND SPEED (MS)

3820

3770 1-() lt( w

3720

3670

DWM WINDS AT LEVEL 1600 PST 25JUN87

5 (1000M)

0 w w CL ()

0

1S13 0 0 0 N r-shy N agt r-shy r--t) I) 1)

I() It)- r-shyU) U)

z U) N It) 3

( I I lshy Ishyo ) 0 0z It)

~lgtIgt~() st- b tgt ~ q st

lgtbbtgtb

b b t t 0 b

N

Igt b t b b b A 6 ~ b b t b C A 4 d 4

ttCt4lt1-it e Igt b tgt tgt V q ltl ltl ltI ltl

ti- deg 1 41 9 q I I ltl q q

i V q ltl q q q q I l() r-shy AlgtV ~ tlt) ~t) -~~~q

~ bull amp ~

0 ~ ~

-qa ~ ~ 1gt1 111111

b-a~-V ltillilI

bull lt bull bull a ~ Igt ~ V V V q 4 __J

It It lgt a -a~ Igt C tgt V w r---(J OC)

bull ~ Igt t 4 bull bull bull bull U) 0 __J z middot 1gt44lt14

U) ) t) rshy J - -N

lt( l() ~ ~~ CI() ~ ~

~

0 Ishy bull bull bull diams 1 z ()~ bull ~ bull diams diams 1 CL3bull ~ ~

i b y ~bullbullTT r I I 0

~ bull bulldiams ~ ~ b b b b ~ bullbull diams T r r I U)______-11____________________________ _ 0

0 O O ON N r- N r--agt r-- _ ~ I) I) I) I)

1S3M

B-34

I

_ _ 3820r- ttr- t f T Jf-Lt If t t 1l-- -~ 1~ t t

NORTH

~bull 1414

~~-_ ~ ~ r-- - --~ ~ - - _ r-- fT W - - r V-V ff f

- t t t t f I~ _AAjAA~-r bull(- -J It ~---1 t ~~~-1-- 1 ( ~~ - J ~ t t i f 1 ~ A_A-yen~_~_ ~ ~ 1 ~ t t ~ t t middotmiddotkt f ~-~-~~-----~~-- ~ ~ ~ ___ll_ bull ~

t -r- _______~~----- r ~bullbull _ ~ ~ tt-~J--~c-~~ ~ 1~--______ bull

~ -t lJ-- f t-J-- r---~~---middot _-- ~~-- ~ bull bull ll~iti~~sect~~~ ~ bullbull~bullbull bull~~n~ bull bull bull n~ bull bull

A)~lfifrac12~~ ~III I --1

3770 l l L l L - - ~ -- ~ - 1 ~ - 770 tshy~ ~~~~~~~~~11 1 ~~=1~~- Ul

W 1lllll~I ~~~~1111~~ lt( w ~1~~1~1~~j~~~m ~~~~ ~ - ~

11 1111 1111~I I 11111111 --- middotE~

tj IIIIIIIII_ ~tI l) llllll_~_p ~1l1 1~A~~~A~~rrr-v

3720t- I I I J J J A__ r r 0 11J)~~~----~_~ppmiddot-~~f Jl~~~~~---~--~~r~-~~q~q ~1

I ~JI I~ A A-_

~JIJl~~~~~A-----A rrbullbull~f~df~ ~~JIJl~~~~A~~--~- fffdfdff

~~JIJI~~~~~~---- bullfbulldbullfdf~

~IJIJl~~~AA~ --middotmiddotmiddotmiddotmiddot~middotmiddot~~~ ~l~JIJIJl~~~Al~pp~~~~bullbullffffffdff X ~~~~JI~- A(- f bullbull P ~ ~~bull1f1q1f1f1f1f1f1d1bull

3670275 325 375

1111 1111 11111 1 1 1

0 10 20 30 4-0 50 0 5 10 15 I I I I I I i(KM) WIND SPEED (MS)

iDWM w1tms AT LEVEL 3 (300M) ir 2200 PST 25JUN87

0 If)

0 __ I) 2 0 ~ (j __

0

0

__ 2 0 0 0

__

LO

_J

w f- GJ ll) _J z I- ) lt( ~ () N 0 1-z () ~ Cl

20 ~~ ON

1S3M

B-36

Page 3: Nind Observations Collected during the Southern California ...

Abstract

One objective of the Southern California Air Quality Study (SCAQS) was to acquire an improved understanding of pollutant transport within the South Coast Air Basin (SOCAB) The complex meteorology of the SOCAB governs the transport of pollutants within the basin and through its boundaries Thus a thorough understanding of the mesoscale airflow patterns in the SOCAB is critical to understanding pollutant transport in the basin

Wind data collected during eight intensive monitoring periods in the 1987 SCAQS were used to analyze the mesoscale airflow patterns in the SOCAB The SCAQS data base contains the most comprehensive set of surface and upper-air wind data ever assembled for the SOCAB The data set represents good spatial and temporal resolution of some mesoscale airflow features

The wind data were analyzed using the SAI Diagnostic Wind Model (DWM) In this model observational wind data are incorporated into a first-guess field that consists of a domain-mean wind that has been adjusted for terrain effects The analysis consisted of (1) generation of hourly gridded wind fields for the 17 SCAQS intensive study days using the DWM (2) analysis of the mesoscale airflow patterns and (3) calculation of forward and backward particle trajectories to examine pollutant transport in the SOCAB

F4500 9106lrl

l

Disclaimer

The statements and conclusions in this report are those of the Contractor and not necessarily those of the California Air Resources Board The mention of commercial products their source or their use in connection with material reported herein is not to be construed as actual or implied endorsement of such products

F4500 9106lrl

ii

Contents

1 middot INTRODUCTION 1

2 GENERATION OF WIND FIELDS AND ANALYSIS OF AIRFLOWPATIERNS 8

Diagnostic Wind Model 8 General Procedures 9 Summer Intensive Monitoring Periods 10 Autumn Intensive Monitoring Periods 15

3 PARTICLE PATH ANALYSIS 18

Calculation of Particle Paths 18 Summer Particle Paths 31 Autumn Particle Paths 32 Comparison with Tracer Data 33 Uncertainty Analysis 34

References middot 43

Appendix A SCAQS Wind Monitoring Sites Appendix B SCAQS Diagnostic Wind Analyses Appendix C Particle Paths

F4500 91061rl

iii

II

(

1 INTRODUCTION

One objective of the 1987 Southern California Air Quality Study (SCAQS) was to acquire an improved understanding of pollutant transport within the South Coast Air Basin (SOCAB) The complex meteorology of the SOCAB governs the transport of pollutants within the basin and through its boundaries Thus a thorough understanding of the mesoscale airflow patterns in the SOCAB is critical to understanding pollutant transport in the basin

Wind data collected during eight intensive monitoring periods in the SCAQS were used to analyze the mesoscale airflow patterns in the SOCAB The SCAQS data base contains the most comprehensive set of surface and upper-air wind data ever assembled for the SOCAB High spatial and temporal resolution wind measurements are available for 17 intensive study days representing both summer and autumn air-quality episodes

19 June 24-25 June 13-15 July 27-29 August 2-3 September 11-13 December 3 December and 10-11 December

The data set represents data good spatial and temporal resolution of some mesoscale airflow features The SCAQS surface wind monitoring sites are listed in Table 1-1 the upper-air wind monitoring sites are listed in Table 1-2 Data availability varied from episode to episode Plots of the surface and upper-air wind monitoring site locations for each episode are given in Appendix A

The wind data were analyzed using the Systems Applications International (SAi) Diagnostic Wind Model (DWM) (Douglas et al 1990) Using this model observational wind data are incorporated into a first-guess field that consists of a domain-mean wind that has been adjusted for terrain effects Figure 1-1 illustrates the complex topography of the SCAQS wind analysis domain This domain is identical to the Urban Airshed Model modeling domain used by the South Coast Air Quality Management District for modeling performed in support of their 1991 Air Quality Management Plan

9106102 l

TABLE 1-1 SCAQS surface wind monitoring sites

UTM- UTM-Site Easting Northing

Identifier Location (km) (km)

ALHA Alhambra 3945 37727

ANAH Anaheim 4150 37425

AZUS Azusa 4149 37774

BANN Banning-Allesandro 5117 37540

BARS Barstow 4979 38611

BU23 Buoy 46023-Point Conception 1594 38014

BU25 Buoy 46025-Catalina Ridge 3054 37307

BURK Burbank 3795 37830

CASI BLM-CasitasLos Padres NF 2824 38089

CELA Los Angeles-North Main 3869 37701

CHIL BLM-ChilaoAngeles NF 4046 37990

CHIN Chino 4365 37634

CI Santa Catalina Island 3683 36963

ONS Cajon Summit 4617 37990

CLAR Claremont College 4351 37735

CM36 CIMIS-Blythe 7262 37256

CM44 CIMIS-U C Riverside 4690 37581

CM50 CIMIS-Thermal 5703 37230

CM55 CIMIS-Palm Desert 5572 37323

CM60 CIMIS-Barstow 4895 38621

CM62 CIMIS-Temecula 4794 37055

COMP Compton Airport 3855 37503

COST Costa Mesa-Placentia 4138 37242

CRES Lake Gregory-Crestline 4748 37890

ELRO El Rio-Rio Mesa School 3026 37922

ELSN Elsinore 4677 37260

FONT Fontana-Arrow Highway 4534 37731

Continued

2

9106109

n iil itb( r r tt A-TABLE 1-1 Continued

UTM- UTM-Site Easting Northing

Identifier Location (km) (km)

GLEN Glendora-Laurel 4215 37782

HAWT Hawthorne 3734 37543

HESP Hesperia-17288 Olives 4738 38084

HF Henninger Flats 4006 37847

KH Kellogg Hill 4242 37711

LA Los Alamitos-SCE Power Plant 3980 37370

LAHB La Habra 4121 37542

LANC Lancaster 3957 38415

LBCC Long Beach City College 3947 37437

LCAN La Canada 3882 37861

LGBH North Long Beach 3900 37430

LSAL Los Alamitos-Orangewood 4045 37398

LYNN Lynwood 3882 37548

MALI Malibu 3440 37669

MISS Mission Hills 3651 37932

NEWL Newhall-County Fire Station 3590 38060

NORC Norco-Norconian 4472 37533

NTD Pt Mugu Naval Weapons Test Center 3048 37769

OJAI Ojai-1768 Maricopa Highway 2914 38138

PASA Pasadena-Wilson 3961 37773

PERI Perris 4784 37380

PICO Pico Rivera 4023 37641

PIRU Piru-2SW 3324 38076

PLSP Palm Springs-Fire Station 5425 37457

POMA Pomona 4307 37696

PV Palos Verdes-San Pedro Hill 3762 37346

Continued

3 91061 09

TABLE 1-1 Concluded

UTM- UTM-Site Easting Northing

Identifier Location (km) (km)

RDLD Redlands-Dearborn 4853 37686

REDO Redondo Beach 3720 37459

RESE Reseda 3587 37851

RIAL Rialto 4625 37760

RIVR Riverside-Rubidoux 4615 37620

SIMI Simi Valley-5400 Cochran 3449 37940

SNBO San Bernardino 4748 37739

SNI middotsan Nicolas Island 2684 36823

TANB BLM-TanbarkAngeles NF 4301 37849

TEME BLM-TemescalLos Padres NF 3531 38167

TORO El Toro 4320 37252

TRON Trona-Market Street 4361 39573

UPLA Upland ARB 4420 37736

VCTC Victorville-Civic Drive 4707 38185

VENI Venice Beach 3642 37612

VERN Vernon 3874 37625

WALN Walnut 4223 37677

WHIT Whittier 4053 37540

WSLA West Los Angeles-VA Hospital 3657 37686

WSPR BLM-W arm Springs Angeles NF 3552 38291

ZUMA Zuma Beach 3313 37659

9106109 4

TABLE 1-2 SCAQS upper-air wind monitoring sites

UTM- UTM-Site Easting Northing

Identifier Location (km) (km)

BUR BurbankGlendalePasadena Airport 3748 37850

DAGG Daggett SCENES Site 5198 38581

EMUA El Monte-9528 Telstar 4021 37700

GLUA Glendora-near SCAQMD site 7000591 4216 37783

LBCC Long Beach City College 3947 37437

LBCR Long Beach City College 3947 37437

LMUA Loyola Marymount U niversity-Engng Bldg 3694 37604

NEED Needles SCENES Site 7181 38496

NSI San Nicolas Island 2717 36796

NTD Pt Mugu Naval Weapons Test Center 3048 37769

ONT Ontario International Airport 4443 37684

PSP Palm Springs 5460 37429

RAL Rialto 4589 37567

SFUA Santa Fe Springs 4020 middot 37557

TRM Thermal Airport 5776 37209

VBG Vandenberg AFB 1733 38472

YLUA Yorba Linda County Park 4287 37549

591061 10

5~

NORTH 275 325 375 425 475 525 575

~-~

bull ( I (o(r--L__- __ c_ __ ) -9) I _)I --~ ---~ __------__

bull (Q ~ ~ l-- middot r l__ _ _ 1 2 oo--_ - _ ~ shy

-

----- ----

------ ---

~middotmiddot- lt~]~---~ ~ 1 L

~~ 0

- o 7 -

----

~ middot -_ -_ I ( C~ ) ~ middot---) lt____ ) 9 bull ~- J t------------ ~ middotbull _ __ 10o -- - - - - - - 0 __ - J J--aoo ltJ

3620---_--__ _ - 0) ------- ___ -- - - ---- -- - --~- 7--

- middotmiddot -middot-- 0 _ - - I 1---------- ---- ~ ---~-----_ -~- ------- -_ ------~lt()~ --nmiddotor ~o-gtpcbull-middot ccc_--gt ____ middot_middot Ji tdegoo CmiddotI bull -bull - - I ---

middot-middot ___ - 1 c___ ~ i-- l bull - --- bullsoclt---_ middot middot-~soc_ ~- le r---- ltD

_ - -- ____ -c bull -~------1 5

= __ __ ) --~ --_ ---- ____ - _____-~~~-~ ~ _ ---~-frac142--~~ so9~ _ Q___~ - -- _ bull bull 1 middot -~ - -- - bull bull c- rAo 0o(Y--

-_ -------=--=_6CO-------- - ~)_O~ _ ~_ lt--middot_~~--~ (_ )-~- - _- ~ 0

~) ( ___ ------ -~- C jjh --- - ~ I 3770

t- 300- middotoo___ -~- l _2 ---sii middot middot 50~ ( C tshyV10w w ~ C ~_( middot bull i

l_ --t

~

__ _~) igtgt

- 1

- middot

7)_ -o-

- _middot-- -- ~ ---30~lt_~-L_ 9oo_~gn~~-__~~

U)

3770

- - o ~~~~d l -- o~ Jl _

si (_ - (----_ ( 1400t 37203720

- 1 ) reg_~S ~ ~~

7 9 b -- -- 0 ~

i --shyf I I I ~Ibull-bull

367~s I I I I I I I 13251 I I I I I I I 1351 I I I I I I I 14251 I I I I I I 14~51 I I I I I I I ss 7 I I I I I I I5s I I I I 3670

SOUTH

I I I I I I 0 10 20 30 40 50

(KM) i

FIGURE 1-1 The SCAQS 1987 analysis domain (axes labeled in zone 11 UTM coordinates topography contoured in meters)

-- ii gti kd

Our analysis consisted of (1) generation of hourly gridded wind fields for the 17 SCAQS intensive study days using the DWM (2) analysis of the mesoscale airflow patterns and (3) calculation of forward and backward particle trajectories to examine pollutant transport in the SOCAB

The results of the diagnostic analysis of SCAQS wind observations are presented in this report The generation of wind fields and the resulting airflow patterns are described in Section 2 The trajectory analysis is presented in Section 3 Plots of the wind fields are given in Appendix B The trajectory plots are included in Appendix C

9106102 7

2 GENERATION OF WIND FIELDS AND ANALYSIS OF AIRFLOW PATTERNS

DIAGNOSTIC WIND MODEL

Hourly gridded wind fields were generated for the 17 SCAQS intensive monitoring days using the Diagnostic Wind Model (DWM) (Douglas et al 1990) This model incorporates observations where they are available and provides some information on terrain-induced airflows in regions where local observations are absent The model is formulated in terrain-parallel coordinates Wind fields are generated using a two-step procedure

In step 1 a domain-scale mean wind is adjusted for terrain effects These include the kinematic effects of terrain (lifting and acceleration of the airflow over terrain obstacles) thermodynamically generated slope flows and blocking effects Step 1 produces a spatially varying gridded field of u and v for each vertical layer within the model domain

In step 2 observational information is added to the middot(uv) field calculated in step 1 using an objective analysis procedure observations are used within a user-specified radius of influence while the step 1 (uv) field is used in subregions where observations are unavailable The following modified inverse-distance-squared weighting scheme (Ross and Smith 1986) is used for the interpolation of data

where (u0

v0 )k denotes an observed wind at station k rk is the distance from station k to a

given grid point (u v)1 is the step 1 wind field at the grid point and (u v)i is the updated wind vector The parameter R controls the relative influence of the observations and the step 1 wind field

Following the interpolation a five point smoother of the form

9106102

Amiddot 1J

8

is applied to the horizontal wind field to reduce discontinuities that may result from the interpolation The vertical velocity is calculated by integrating the incompressible conservation of mass equation Zero-gradient lateral boundary conditions are used

GENERAL PROCEDURES

Generation of the SCAQS wind fields involved (1) preprocessing of the wind data for input into the DWM (2) plotting and quality control checking of the data (3) specification of the model input parameters (4) exercise of the DWM and (5) graphical display of the gridded wind fields Winds were analyzed at six vertical levels 10 100 300 600 1000 and 1500 meters (m) above ground level (agl)

In the preprocessing step the upper-air data were vertically interpolated to the model levels and temporally interpolated to enhance the temporal consistency of the wind fields and to provide hourly input for the DWM

Following the preprocessing step the data were plotted and examined for horizontal vertical and temporal consistency Data that failed the quality control checks were eliminated from the model input data set

The controlling parameters for the DWM include the maximum radius of influence (RMAX) at which a monitoring station can influence the interpolation at a grid point the weighting parameter for terrain effects (R) the number of stations to be used in the interpolation (NINTRP) and the number of smoothing passes (NSMTH) Note that the maximum radius of influence is specified independently for the surface level ( over land) upper levels (over land) and over-water portions of the domain The weighting parameter for terrain effects and the number of interpolating stations are specified separately for the surface level and upper levels In the diagnostic analysis of the SCAQS wind observations these parameters were specified as follows

RMAX (surface) 20km RMAX (aloft) 100 km RMAX (over water) 150 km R (surface) 10km R (aloft) 50 km NINTRP (surface) 4 NINTRP (aloft) 3 NSMTH 4

Tests were performed to examine the sensitivity of the DWM to the various contr ling parameters and to select the optimum values of these parameters for the SCAQS v nd analysis

9106102 9

The DWM also requires as input a domain-mean wind and stability information For this analysis the domain-mean wind was specified separately for each analysis level and was based upon the average of the level 6 (1500 m agl) wind observations To account for friction the speed of the domain-mean wind was reduced for the lower levels by multiplying the average wind speed for level 6 by the following scaling factors

Level Scaling Factor 1 048 2 072 3 083 4 090 5 096 6 100

The domain-scale lapse rate was the calculated average of four inland sites These varied according to data availability

Six-hourly plots of the level I (surface) level 3 (300 m agl) and level 5 (1000 m agl) wind fields for each episode are given in Appendix B

SUMMER INTENSIVE MONITORING PERIODS (

Mesoscale airflow in the SOCAB during the SCAQS summer intensive monitoring periods appears to have two components

A basic diurnal cycle driven by land-water temperature differences and complex terrain and

A perturbation associated with the overlying synoptic flow

19 June 1987

The surface and upper-air wind monitoring site locations for this intensive monitoring period are indicated on pages A-1 and A-2 respectively Plots of the diagnostic wind analyses for 19 June are given on pages B-1 through B-12

The surface early morning airflow pattern on this day is characterized by weak winds over much of the coastal and inland areas with moderate NW winds over the Coachella Valley and offshore At 300 m agl winds are S over the western half of the domain and W to NW over the eastern half of the domain The overlying flow at 1000 mis W

9106102 10

n1er

The sea breeze is somewhat slow to appear in the western basin on this day but has begun to develop by 1000 PST At this time winds at 300 m agl remain S over the western part of the domain and W to NW over the eastern part of the domain Some S flow is also apparent at 1000 m

During the afternoon hours three distinct features are apparent in the surface airflow pattern

A sea breeze (W flow) develops along the coast between Santa Monica and Palos Verdes and penetrates inland A branch of the sea breeze penetrates into the San Fernando Valley resulting in weak SE flow at Burbank and Reseda

An area of weak (SW) winds forms in the Whittier-La Habra-Pico Rivera area persists throughout the afternoon and fonns a convergence zone in the central basin with the penetrating westerly flow The S component of this flow is due to sea breeze development along the coast near Long Beach

Upslope flow develops along the foothills of the San Gabriel and San Bernardino Mountains (eg at Glendora and San Bernardino) Along the eastern foothills the upslope flow is supplanted during the afternoon by the penetrating W flow

By 1600 PST on 19 June the depth of the upslope flow near Glendora exceeds 600 m Strong outflow is apparent through the Cajon and Banning passes Aloft winds are generally SW with some SE flow near Burbank and NW flow over the Coachella Valley

Significant onshore flow (3 ms) persists along the Santa Monica-Palos Verdes coastline through 2200 PST Feature-s of the afternoon airflow persist aloft through this time

24-25 June 1987

Surface and upper-air wind monitoring site locations for this intensive monitoring period are indicated on pages A-3 and A-4 respectively Plots of the diagnostic wind analyses for 24-25 June are given on pages B-13 through B-36

The airflow patterns on these two days are similar to one another and to the ttern on 19 June The overlying flow is generally weak below 1000 m agl with moderak t5 ms) SE flow at 1500 m agl

On 24 June the early morning surface airflow patterns are characterized by ver middoteak winds At 300 m agl winds in the Coachella Valley are SE By 1000 PST a we1 organized zone of weak S flow extends from Long Beach to Pasadena this S flm

9106102 11

(

reaches a depth of 300 m agl Southeastern flow in the Coachella Valley and E flow through Banning Pass are apparent both at the surface and 300 m agl S to SE flow dominates at 1000 m agl The II three-zone II surface airflow pattern is apparent during the afternoon The wind shifts to Wat Banning Pass by 1500 PST At 300 m agl winds are SW over much of the basin with SE flow at Burbank and in the Coachella Valley At 1000 m winds are generally SW At 2200 PST the airflow pattern is characterized by weak unorganized flow at the surface and 300 m agl Winds at 1000 m are NW over much of the domain but SE over the Coachella Valley

The airflow on 25 June is similar to that on 24 June During the early morning hours winds at the surface are very light Weak SE flow is apParent at 300 m agl At 1000 m agl winds continue to veer toward N The sea breeze develops more quickly than on the previous day and winds at Banning Pass become westerly by 1300 PST Calm winds are observed at Pico Rivera throughout the afternoon As on 24 June the afternoon airflow at 300 m agl is characterized by SW flow over the basin and SE flow at Burbank and over the Coachella Valley Upward propagation of W flow is generally slower than on 24 June Winds at 1000 m agl are S to SE During the evening hours the surface winds become light while at 300 m agl winds over the Coachella Valley become NW Organized W flow is apparent over the W basin through a depth of at least 300 m agl through 2200 PST

13-15 July 1987

Surface and upper-air wind monitoring sites for this intensive monitoring period are shown on pages A-5 and A-6 respectively Plots of the diagnostic wind analyses for 13-15 July are given in Figures B-37 through B-72

Airflow patterns on 13 and 14 July are generally consistent with the basic diurnal cycle described earlier However an unusual airflow pattern develops in the Coachella Valley on both days On 15 July strong SE forcing is associated with a delay in sea breeze development

The 13 July early morning surface airflow pattern is characterized by light winds and a weak cyclonic eddy over the Santa Monica Bay Winds aloft are light to moderate and primarily W The sea breeze develops rapidly on this day and by 1200 PST W flow overwhelms the S sea-breeze flow in the Long Beach Area W flow appears at Banning Pass by 0800 PST The surface afternoon airflow is characterized by the three-zone airflow pattern described earlier with strong upslope flow along the foothills ( gt 5 mls) and significant outflow through Cajon Pass Observations at Palm Spring (NW winds) and Thermal (SE winds) indicate a convergence zone in the Coachella Valley with a depth of at least 600 m W flow dominates at middot1000 m with S to SE flow over the Coachella Valley During the evening hours a cyclonic eddy redevelops over the Santa

9106102 12

rtMt1

Monica Bay winds are weak throughout the basin but airflow into the Coachella Valley is especially strong

Airflow patterns on 14 July are similar to 13 July with a few exceptions During the early morning hours the surface airflow is characterized by weak disorganized flow There is no eddy apparent over the Santa Monica Bay The overlying flow is weak and primarily S to SE at 300 m agl but W to NW at 1000 m agl Sea breeze development is approximately two hours slower on this day than on 13 July By 1000 PST weak S flow has developed over the Whittier-La Habra-Pico Rivera area and SE flow is apparent at Burbank AS component to the flow appears at 1000 m The afternoon surface airflow pattern is similar to that on 13 July but the S upslope flow at Glendora is weaker S flow develops at Elsinore and several coastal Orange County sites The Coachella Valley convergence zone reappears at the surface at 1600 PST two hours later than on the previous day At 300 and 1000 m agl W to SW flow dominates over the western twoshythirds of the domain SE flow is apparent over the Coachella Valley During the evening hours the surface airflow over the central basin is S to SW W flow components persist along the eastern foothills through 2200 PST

On the morning of 15 July surface winds are weak but maintain a S component Moderate SE flow is apparent offshore The overlying flow is generally E to SE By 1000 PST the surface airflow pattern is characterized by S flow over the central basin and along the foothills SE flow in the Coachella Valley and E flow through Banning Pass The depth of the S to SE flow is greater than 1000 m agl During the afternoon a weak sea breeze penetrates inland and winds along the foothills become W Winds shift from E to NW at Banning Pass at 1600 PST A weak S flow component persists in the Whittier-La Habra-Pico Rivera area throughout the afternoon A weak slopevalley circulation develops in the Coachella Valley resulting in SE flow there At 300 m agl winds are SW to W over the central basin and SE over the Burbank and the Coachella Valley At 1000 m S to SE flow dominates W winds persist along the foothills through 2200 PST and weak S to SE flow redevelops at the surface Remnants of the afternoon airflow pattern persist aloft

27-29 August 1987

The surface and upper-air wind monitoring site locations for this intensiv middot1onitoring period are indicated on pages A-7 and A-8 respectively Plots of the dia stic wind analyses for 27-29 August are given on pages B-73 through B-108

On the morning of 27 August surface winds are weak over most land areas a 1djacent coastal waters with moderate (5 ms) NW winds well offshore Winds aloft a Jrimarily N with weak NE flow at 100-300 m agl over the central basin By 1000 PST threeshy

IIzone airflow pattern has developed at the surface and is somewhat apparent ( hin the limits of the upper-air network) at 300 m agl SE flow has developed at 100( agl

9106102 13

This pattern is maintained throughout the afternoon Within the Coachella Valley a classic daytime slopevalley flow pattern develops with SE flow extending to a depth of 1000 m E flow develops at Banning Pass and persists through 1700 PST W flow over the basin develops upward throughout the afternoon By 1600 PST wind at 300 m agl are W to SW over the central basin and SE over Burbank and the Coachella Valley During the evening hours the features of the mesoscale airflow pattern over land weaken both at the surface and aloft There is no clearly developed offshore-directed land breeze

On the morning of 28 August the surface winds are weak and the overlying flow is primarily E Retardation of the sea breeze by the overlying E flow is apparent by 0900 PST S flow develops in the Long Beach area E flow at Banning Pass is substantially stronger than on 27 August During the afternoon of 28 August S flow persists at Long Beach and develops in the Whittier-La Habra-Pico Rivers area SE flow is observed along the Orange County coast E flow through Banning Pass persists throughout the day W wind components along the Santa Monica-Palos Verdes coastline are weaker than on the previous day and NW flow fails to develop at San Nicolas Island W flow over the central basin disrupts the SE flow aloft During the evening hours the airflow features weaken W flow along the foothills does not persist as long as on the previous day

The early morning airflow pattern on 29 August is characterized by SE flow both at the surface and aloft Sea breeze development on this day is slower than on either of the previous two days S flow again develops in the Long Beach area and appears to be stronger than on the previous day Although the sea breeze is weaker winds at Banning Pass shift from E to SW by 1300 PST This shift occurs at 1800 on 27 and 28 August SE flow persists aloft with limited upward development of the W sea breeze flow W flow persists in the western basin area through 2200 PST and SE flow persists aloft

2-3 September 1987

The surface and upper-air monitoring site locations for this intensive monitoring period are indicated on pages A-9 and A-10 respectively Plots of the diagnostic wind analyses for 2-3 September are given on pages B-109 through B-132

The first day of this period is probably the most anomalous of the summer SCAQS intensive measurement days Overlying easterly forcing during the morning hours prevents development of W flow along the foothills and inhibits upward development of the sea breeze over the western and central portions of the basin The easterly forcing appears to reverse rather abruptly on the afternoon of 2 September Unusual winds are also observed at Burbank on 2 September During the late morning and afternoon Burbank experiences an unusual wind shift from SE to W through a depth of 1000 m On 3 September the overlying airflow is W and the airflow patterns are more typical

9106102 14

rrn

On the morning of 2 September strong downslope flow results in N to NE winds at several sites along the foothills of the San Gabriel Mountains At 300 m strong NE winds are apparent over the central basin The overlying flow is E By 1000 PST the sea breeze appears as W flow along the Santa Monica-Palos Verdes coast and S flow in the Long Beach area The surface analysis indicates a band of S flow from Costa Mesa to Azusa W flow has not developed along the eastern foothills Winds are SE in the Coachella Valley and E through Banning Pass E flow aloft continues and intensifies During the early afternoon hours a relatively strong sea breeze penetrates inland to Azusa while winds in the Whittier-La Habra-Pico Rivera area remain weak The sea breeze weakens considerably after mid-afternoon Between 1200 and 1500 PST the wind at Burbank shifts from SE to W through a depth of 600-1000 m By 1600 PST the overlying flow has shifted from SE to W Onshore flow continues at the surface through 2200 PST while the winds weaken considerably Although the overlying W flow persists in general 300 m agl winds at Burbank become SE

The early morning airflow on 3 September is characterized by weak winds at the surface SE flow at 300 m agl and primarily W flow at 1000 m agl Although the major surface airflow features appear to develop as on previous days upward development of the pattern is limited Strong S flow is apparent by 1200 PST between 100 and 300 m agl over the central and western basin By 1600 PST the sea breeze has penetrated well inland Imbedded in the sea breeze is a persistent calm area in the vicinity of Lynwood S flow persists at 100-300 m agl over the central and western basin while flow at this level off shore remains NW At 1000 m agl W flow continues This general pattern persists through 2200 PST but weakens considerably especially at the surface

AUTUMN INTENSIVE MONITORING PERIODS

The mesoscale airflow patterns in the SOCAB during the SCAQS autumn intensive monitoring periods exhibit a weaker diurnal cycle than the summer airflow patterns Synoptic forcing also appears to be stronger

11-13 November 1987

The surface and upper-air wind monitoring site locations for this intensive monitoring period are plotted on pages A-11 and A-12 respectively Plots of the diagnostic wind analyses for 11-13 November are given on pages B-133 through B-168

During the early morning hours of 11 November NE surface winds are apparent over most of the region Surface wind speeds are very light over the basin and somewhat stronger along the foothills and the coast At 300 m agl winds are light and generally E At 1000 m agl winds are W to SW over the western half of the domain and SE over the eastern half of the domain Weak E to NE surface flow persists throughout most of the

9106102

15

morning in the first 300 m An apparent anticyclonic eddy (SE flow at Long Beach weak S flow at Burbank W flow at El Monte) develops between 600 and 1000 m agl on this morning A weak sea breeze forms around 1200 PST penetrating only to the central basin There is no apparent turning of the sea breeze into the San Fernando Valley W to NW flow develops offshore and is deflected around the Palos Verdes Hills This W flow is also apparent at 300 m agl Downslope flow components along the foothills are apparent by 1600 PST At this time the 1000 m agl winds are weak and N The sea breeze rapidly dissipates and NE flow develops at several coastal sites indicating a land breeze NW flow is maintained off shore The nighttime airflow pattern aloft is characterized by weak N winds at 300 m agl and weak W winds at 1000 m agl

The surface airflow pattern on the morning of 12 November is generally similar to that on 11 November E flow over land is apparent through a depth of 300 m while NW flow persists offshore The overlying flow is W The afternoon surface airflow pattern is more similar to a typical summer afternoon pattern than the previous day Turning of the sea breeze into the San Fernando Valley is apparent and W flow develops along the foothills of the San Gabriel and San Bernardino Mountains by 1400 PST Airflow at 300-600 m agl appears to veer continuously from E to W at most inland sites during the afternoon NW flow through a depth of 1000 mis apparent over the Coachella Valley Surface winds become light and disorganized during the evening hours Unlike the previous day NE flow does not develop at the coastal sites and NW flow weakens offshore W winds persist aloft

On 13 November surface winds are very light through the early morning hours with E flow components apparent immediately offshore The overlying flow is WNW but becomes S over the central basin by 1000 PST As on the previous two days a sea breeze becomes apparent at the surface by noon W flow components over the basin and foothill areas are stronger than on the previous two days both at the surface and aloft Significant W flow also develops in Banning Pass Moderate to strong W winds are apparent aloft During the afternoon and evening hours SE winds are apparent at Burbank between 300 and 600 m agl Intense W flow develops off shore and propagates inland during the evening hours W flow continues aloft with some S to SE flow between 100 and 600 m agl at Burbank and El Monte

3 December 1987

The surface and upper-air wind monitoring site locations for this intensive monitoring period are plotted on pages A-13 and A-14 respectively Plots of the diagnostic wind analyses for 3 December are given on pages B-169 through B-180

The early morning surface airflow pattern on 3 December is characterized by weak NE winds over the inland areas and a weak cyclonic eddy off shore The overlying flow is S to SE Surface winds remain light and variable through most of the morning Moderate

9106102 16

txi Iii ttii

E flow is apparent over the western and central basin between 300 and 600 m agl A sea breeze develops around 1200 PST reaching a depth of 300 m and penetrating only approximately 30 km inland S to SE flow persists above 300 m agl The sea breeze weakens during the evening hours and N flow through a depth of 300 m develops at Long Beach E flow components intensify at 600 m agl and above

10-11 December 1987

The surface and upper-air wind monitoring site locations for this intensive monitoring period are plotted on pages A-15 and A-16 respectively Plots o~ the diagnostic wind analyses for 10-11 December are given on pages B-181 through B-204

On 10 December the early morning surface airflow pattern is weak and disorganized Weak NE flow is apparent over much of the basin between 100 and 600 m agl The overlying flow at 1000 m is N The surface airflow over the basin is weak throughout the morning hours while NW flow develops offshore Winds aloft remain N A weak sea breeze is apparent by 1200 PST the sea breeze penetrates only about 30 km inland and is limited to a depth of approximately 300 m There is no apparent turning of the sea breeze into the San Fernando Valley Elsewhere in the basin the surface airflow remains weak By 1600 PST the sea breeze has weakened At this time winds aloft are predominantly W to NW at 300 m agl and N at 1000 m agl During the evening hours surface airflow over the basin becomes weak and disorganized while E flow develops at Palos Verdes Strong N winds appear aloft (300-600 m agl) at Burbank LMU and Long Beach however winds at this level further to the east remain light

On 11 December the early morning surface airflow pattern is similar to that on 10 December Relatively strong ( gt 10 ms) NNW winds persist at 600-1000 m agl at Burbank and LMU E wind in the 100-300 m agl appear at LMU and Long Beach Throughout the morning the surface winds remain light and N winds 9ver Bu~ank weaken considerably A sea breeze is apparent by 1200 PST but is weaker than on the previous day and reaches a depth of only 100 m or less Significant N winds (3-6 ms) develop between San Bernardino and Elsinore and in the western San Fernando Valley NE flow is observed in Ventura County Winds aloft continue to be primarily N however E flow is apparent over the Long Beach area at 1000 m agl Surface airflow over the central and western basin becomes very weak during the evening hours Strong N to NE flow develops at the coast west of Santa Monica while N flow persists in the western San Fernando Valley and in the San BernardinoRiverside area The overlying flow is N to NE

91061 02 17

3 PARTICLE PAm ANALYSIS

A series of forward and backward particle paths (trajectories) were calculated using the SCAQS DWM wind fields The particle paths will be used by other SCAQS investigators in their examination of pollutant transport within the SOCAB The forward particle paths can be used to estimate the transport of pollutants from known source locations The backward particle paths can be used to estimate potential source areas The particle paths can also be used to estimate the residence time of certain pollutants in the SOCAB as a whole or in subregions

CALCULATION OF PARTICLE PAIBS

Two-dimensional particle paths were computed using the DWM wind fields as follows

Starting ( ending) points for a given number of forward (backward) particle paths were specified

Using a time interval of 15 minutes the hourly gridded DWM wind fields were linearly interpolated in time and then interpolated in space to each particle position using an inverse-distance-squared weighting scheme

The particles were then advected horizontally for the specified time interval

The distance traveled by each particle during each time interval was integrated The new position of the particle was reported at hourly intervals

Forward and backward particle paths were calculated for the SCAQS intensive monitoring periods for several vertical levels and a variety of origination and destination points The origination (destination) locations and times for the summer and autumn particle paths are listed in Tables 3-1 and 3-2 respectively Most of the particle paths originated (ended) at one of the SCAQS wind monitoring sites listed in Tables 1-1 and 1-2 Additional sites are identified in Table 3-3 Note that for some sites in Tables 3-1 and 3-2 a new particle path was initiated at the particles 1000 PST location but at a higher level

Additional forward particle paths were calculated for comparison with the SCAQS tracer data (England et al 1989 Horrell et al 1989) The initiation times and locations correspond to the tracer releases and are given in Tables 3-4 and 3-5

9106lrl02

~~ll1~(I titW I~l~~~t~~

TABLE 3-la Summer particle paths forward particle paths

Start Time Origination Start Date (PST) Site Level(s)

624 0500 LBCC 13 CELA 13

624 0700 LBCC 13 CELA 13

624 1000 LBCC 13 CELA 13

624 1500 LBCC 13 CELA 13

624 2100 LBCC 13 CELA 13

625 0500 HHRA 5 PADA 45 FULA 5

625 0700 FULA 5

713 0500 LBCC 13 CELA 13

713 0700 LBCC 13 CELA 13

713 1000 LBCC 13 CELA 13 EMTA 24

713 1500 LBCC 13 CELA 13

713 2100 LBCC 13 CELA 13

714 0500 LBCC 13 CELA 13

714 0700 LBCC 13 CELA 13

714 1000 LBCC 13 CELA 13

714 1500 LBCC 13 CELA 13

714 2100 LBCC 13 CELA 13

Continued

19

91061 07

TABLE 3-la Concluded

Start Time Origination Start Date (PST) Site Level(s)

827 0500 LBCC 13 CELA 13

827 0700 LBCC 13 CELA 13

827 1000 LBCC 13 CELA 13

827 1500 LBCC 13 CELA 13

827 2100 LBCC 13 CELA 13

828 0500 LBCC 13 CELA 13

828 0700 LBCC 13 CELA 13

828 1000 LBCC 13 CELA 13

828 1500 LBCC 13 CELA 13

828 2100 LBCC 13 I CELA 13

92 0500 LBCC 13 CELA 13 HHRA 12

92 0700 LBCC 13 CELA 13 FULA 12

92 1000 LBCC 13 CELA 13

HHRA 45 FULA 45

92 1500 LBCC 13 CELA 13

92 2100 LBCC 13 CELA 13

93 0700 RIVA 12

93 1000 RIVA 45

A new particle path was initiated at the particles 1000 PST location but at a higher level

20

~(Ibull bull 11

41

~1~_11Lmiddot11~1~~tV t rt~~14_ II~~~h1 1r t

TABLE 3-lb Backward particle paths

End Time Destination End Date (PST) Site Level(s)

624 1500 CABA 23 EMTA 45 BURA 1234 HHRA 4 FULA 45

624 1800 RIVA 3

625 0500 CLAR 13 RIVR 13 HHRA 5 PADA 45 FULA 5

625 0700 CLAR 13 RIVR 13 FULA 5

625 1000 CLAR 13 RIVR 13

625 1500 CLAR 13 RIVR 13 CABA 23 EMTA 4 BURA 4 RIVA 45

625 1600 RIVA 45

625 2100 CLAR 13 RIVR 13

713 - 1000 EMTA 24

713 1500 CABA 23 EMTA 45 RIVA 24

713 1600 RIVA 24

714 0500 CLAR 13 RIVR 13

714 0700 CLAR 13 RIVR 13

714 1000 CLAR 13 RIVR 13 BUR 123

714 1500 CLAR 13 RIVR 13 CABA 23 EMTA 4 BURA 234 RIVA 2

714 1600 RIVA 2

Continued

21 nn1 Y1

TABLE 3-lb Continued

End Time Destination I End Date (PST) Site Level(s)

714 2100 CLAR 13 RIVR 13

715 0500 CLAR 13 RIVR 13

715 0700 CLAR 13 RIVR 13

715 1000 CLAR 13 RIVR 13

715 1500 CLAR 13 RIVR 13

715 2100 CLAR 13 RIVR 13

827 1000 CABA 2 EMTA 23 BURA 123

827 1500 CABA 2

828 0500 CLAR 13 RIVR 13

828 0700 CLAR 13( RIVR 13

828 1000 CLAR 13 RIVR 13

828 1500 CLAR 13 RIVR 13

828 2100 CLAR 13 RIVR 13

829 0500 CLAR 13 RIVR 13

829 0700 CLAR 13 RIVR 13

829 1000 CLAR 13 RIVR 13

829 1500 CLAR 13 RIVR 13

829 2100 CLAR 13 RIVR 13

92 1000 PADA 3

92 1100 PADA 3

92 1500 EMTA 2 RIVA 2

Continued

22

91061 07

I

1bullLI bullI I bull ~ii 1 1

1 cl1

[1i1bull~j~1 Iiii~ j t-~dI ~1 1ltl1111111 II r I l~bull~II~middot t1~i~n_11~~ ~middot -

TABLE 3-lb Concluded

End Time Destination End Date (PST) Site Level(s)

92 1600 RIVA 2

93 0500 CLAR 13 RIVR 13

93 0700 CLAR 13 RIVR 13

93 1000 CLAR 13 RIVR 13 CABA 2 BURA 1234

93 1500 CLAR 13 RIVR 13

93 2100 CLAR 13 RIVR 13

23 9106107

TABLE 3-2a Autumn particle paths forward particle paths

Start Time Origination Start Date (PST) Site Level(s)

1111 0300 LBCC 13 CELA 13

1111 0700 LBCC 13 CELA 13

1111 0900 FULA 12

1111 1200 LBCC 13 CELA 13

1111 1500 LBCC 13 CELA 13

1111 2100 LBCC 13 CELA 13

1112 0300 LBCC 13 CELA 13

1112 0700 LBCC 13 CELA 13 FULA 12

1112 1000 FULA 45

1112 1200 LBCC 13 CELA 13(

1112 1500 LBCC 13 CELA 13

1112 2100 LBCC 13 CELA 13

1113 0500 ONTA 123

1113 1000 ONTA 45

123 0300 LBCC 13 CELA 13

123 0700 LBCC 13 CELA 13 FULA 12

123 1000 FULA 45

123 1200 LBCC 13 CELA 13

123 1500 LBCC 13 CELA 13

123 2100 LBCC 13 CELA 13

1210 0300 LBCC 13 CELA 13

1210 0700 LBCC 13 CELA 13

Continued

24 9106108

TABLE 3-2a Concluded

Start Time Origination Start Date (PST) Site Level(s)

1210 1200 LBCC 13 CELA 13 FULA 123

1210 1500 LBCC 13 CELA 13

1210 2100 LBCC 13 CELA 13

1211 0500 ONTA 12

1211 0700 FULA 12

1211 1000 ONTA 45 FULA 45

A new particle path was initiated at the particles 1000 PST location but at a higher level

25 9106108

TABLE 3-2b Backward particle paths

End Time Destination End Date (PST) Site Level(s)

1111 1500 HHRA 34

1112 0300 LBCC 13 CELA 13 RIVR 13

1112 0700 LBCC 13 CELA 13 RIVR 13

1112 1200 LBCC 13 CELA 13 RIVR 13

1112 1500 LBCC 13 CELA 13 RIVR 13 HHRA 34 PADA 3 FULA 34

1112 2100 LBCC 13 CELA 13 RIVR 13

1113 0300 LBCC 13( CELA 13

RIVR 13

1113 0700 LBCC 13 CELA 13 RIVR 13

1113 ~ 1200 LBCC 13 CELA 13 RIVR 13 ONTA 34 EMTA 45

1113 1500 LBCC 13 CELA 13 RIVR 13

1113 2100 LBCC 13 CELA 13 RIVR 13

123 0300 LBCC 13 CELA 13 RIVR 13

123 0700 LBCC 13 CELA 13 RIVR 13

Continued

26 9106108

TABLE 3-2b Concluded

End Time Destination End Date (PSn Site Level(s)

123 1200 LBCC 13 CELA 13 RIVR 13

123 1500 LBCC 13 CELA 13 RIVR 13 PADA 3

123 2100 LBCC 13 CELA 13 RIVR 13

1211 0300 LBCC 13 CELA 13 RIVR 13

1211 0700 LBCC 13 CELA 13 RIVR 13

1211 1200 LBCC 13 CELA 13 RIVR 13

1211 1500 LBCC 13 CELA 13 RIVR 13 PADA 1234 BURA 123

11 13 2100 LBCC 13 CELA 13 RIVR 13

27 9106108

TABLE 3-3 Additional particle path initiation (destination) points

Site Identifier Location UTM Easting (km) UTM Northing (km)

BURA Burbank Airport 3749 37859

CABA Cable Airport 4370 37751

EMTA El Monte Airport 4047 37717

FULA Fullerton Airport 4091 37485

HHRA Hawthorne Airport 3768 37547

ONTA Ontario Airport 4435 37686

PADA PADDR Intersection 3810 37175

RIVA Riverside Airport 4584 37485

28

TABLE 3-4 Forward particle paths calculated for comparison with the SCAQS tracer data

Start Start Origination Date Time Site Levels

0300 LAGS 13 0600 13 0900 II 13 1200 II 13 1500 II 13

625

715 0500 VRNN 1

0800 VRNN 1

828 0600 LAGS 13 1000 II 13 1300 13 1500 13

93 0500 VRNN 1

0800 VRNN 1

1111 1600 LAGS 3 ESGS 3 VRNN 1

1900 LAGS 3 ESGS 3 VRNN 1

1112 0600 ESGS 3 VRNN 1

0900 ESGS 3 VRNN 1

1210 0600 LAGS 3 ESGS 3 VRNN 1

0900 LAGS 3 ESGS 3 VRNN 1

1600 VRNN 1

29

9106lrl09

TABLE 3-5 SCAQS tracer release sites

I_______________________

Site Identifier Location UTM Easting (km) UTM Northing (km)

ESGS El Segundo 3690 37536 LAGS Los Alamitos 3980 37370 VRNN VRNN 3874 37625

(

91061rl09

30

The particle paths were calculated for up to a three-day period In general forward particle paths were calculated through the end of the monitoring period or until the particle was advected out of the domain Backward particle paths were calculated through the beginning of the intensive monitoring period or until the particle left the domain

Selected plots of the forward and backward particle paths are given in Appendix C

SUMMER PARTICLE PATHS

Forward particle paths (levels 1 and 3) originating from Central Los Angeles (CELA) and Long Beach City College (LBCC) at 0700 PST on 24 June 13 and 14 July 27 and 28 August and 2 September are shown on pages C-1 through C-12

The surface-level particle paths originating at CELA indicate northward advection from this site on all days The particle path initiated on 27 August indicates that the initial northward advection is followed by westward advection on the following day the particle path initiated on 2 September indicates that the initial northward advection is followed by eastward advection on the following day In all cases the residence time in the central Los Angeles basin is less than 12 hours

The surface-level particle paths originating at LBCC are carried northward and eastward usually exiting the Los Angeles basin through Cajon Pass On 24 June and 14 July however the particles are carried across the San Gabriel Mountains (with the upslope flow) Considerable eastward transport is indicated by the particle paths initiated on 2 September after 1800 PST -Residence time in the Los Angeles basin varies from day to day and is especially long for the particle path initiated on 27 August (approximately 30 hours) Particle paths initiated on 13 July and 28 August also indicate some recirculation and a significant residence time within the Los Angeles basin

The level 3 particle paths also indicate northward transport from CELA on most days Advection into the San Fernando Valley which may be partly due to the SE flow produced by the turning of the sea breeze into the valley is more pronounced on certain days (14 July 28 August and 2 September) Level 3 particle paths originating at LBCC show mostly northwestward transport Recirculation over the Los Angeles basin is indicated for the 2 September particle path

Backward particle paths (levels 1 and 3) culminating at Claremont College (CLAR) and Riverside-Rubideaux (RIVR) at 1500 PST on 25 June 14 and 15 July 28 and 29 August and 2 September are shown on pages C-13 through C-24 -

_

9106lrl 02

31

The surface-level backward particle paths originate over water on all days the particles are carried eastward and northward into the Los Angeles basin On 14 July and 28 August the particle paths indicate primarily eastward transport There is some indication that particles arriving at the destination sites on 28 August may have originated in the South Central Coast Air Basin (SCCAB) On 25 June 15 July and 3 September the particle paths indicate primarily northeastward transport On 29 August northward transport is indicated

The level 3 backward particle paths also indicate transport from the W SW or SE on the intensive monitoring days The over-water segments of the particle paths indicate eastward advection on 14 and 15 July and 27 and 28 August and northward advection on 25 June and 3 September Again there is some indication that particles arriving at the destination sites on 28 August may have originated in the SCCAB Almost all of the particle paths indicate that the particles are carried onshore between Long Beach and Laguna Beach and advected northeastward to CLAR and RIVR An exception to this occurs on 28 August On this day the particles are carried onshore near Redondo Beach and are recirculated over the Los Angeles basin for approximately 24 hours before arriving at the destination sites

AUTUMN PARTICLE PATIIS

Forward particle paths (levels 1 and 3) originating at CELA and LBCC at 0700 PST on 11 and 12 November 3 and 10 December are presented on pages C-25 through C-32

The autumn particle paths exhibit more day-to-day variability than the summer particle paths indicating more variability in the autumn airflow patterns Because both the CELA and LBCC locations are affected by the land-breezesea breeze circulations all of the surface-level particle paths show some recirculation in the western basin Particle paths initiated on 11 and 12 November eventually indicate eastward transport

The level 3 particle paths also differ among episodes but are all affected by the seashybreeze circulation Particle paths initiated on 11 November show eastward transport from CELA and southward transport from LBCC Northeastward transport at this level is indicated by the 12 November particle paths The particle paths initiated on 3 December illustrate local recirculation by the sea breeze On 10 December southward advection is indicated

Backward particle paths culminating at CELA LBCC and RIVR at 1500 PST on 12 and 13 November 3 and 11 December are presented on pages C-33 through C-40

The surface-level particle paths indicate that particles arriving at CELA at 1500 PST on all four days follow a southward then eastward course Particles arriving at LBCC are affected by some combination of onshore advection and local recirculation The particle

9106Irl02

32

paths culminating at Riverside indicate a variety of possible transport patterns eastward transport on 12 and 13 November northwestward transport on 3 December and southeastward transport on 11 December

The level 3 backward particle paths for 12 November illustrate recirculation aloft by the evolving airflow patterns while the particle paths for 13 November indicate primarily eastward advection The particle paths for 3 December are clearly affected by the SE that occurs on this day the resulting particle paths indicate northwestward transport The particle paths for 11 December indicate southward advection and recirculation by the sea breeze

COMPARISON WITH TRACER DATA

Forward particle paths originating from El Segundo (ESGS) Los Alamitos (LAGS) and Vernon (VRNN) at times corresponding to the SCAQS tracer release times are shown on

middot pages C-41 through C-76 For ground-level tracer releases the particle paths were calculated using level 1 (10 m agl winds) for stack releases the particle paths were calculated using level 3 (300 m agl) winds A qualitative comparison with the observed tracer data is provided here

Surface-level particle paths originating at LAGS on 25 June indicate northward transport during the morning and afternoon hours The level-3 particle paths indicate that material is transported out of the basin through Cajon and Banning Passes by the upper-level winds Both of these indicated transport patterns are supported by observed tracer data

Surface-level particle paths originating at VRNN on 15 July indicate northward transport and exhibit good qualitative agreement with the tracer data

Both the surface-level and level-3 particle paths originating at LAGS on 28 August indicate primarily northeastward transport Most of the particles are eventually advected through Cajon Pass This is consistent with observed tracer at Redlands San Bernardino and Crestline

Surface-level particle paths originating at VRNN on the morning of 3 September do not agree with the tracer data While the particle paths indicate northeastward transport the tracer data indicate northwestward transport

Surface-level particle paths originating at VRNN on the afternoon of 11 November indicate westward transport and a long residence time in the central basin The level-3 particle paths originating at LAGS and ESGS show southeastward transport and recirculationmiddot by the sea breeze Surface-level particle paths originating at VRNN on the following morning again show net westward transport and a long residence time in the

( central basin but the level-3 particle paths indicate northward transport with recirculation

91061rl 02

33

by the sea breeze The smface-level particle paths are consistent with the tracer data Tracer was observed over the north-central basin and along the foothills on the morning of 13 November

The surface-level particle paths originating at VRNN on the morning of 10 December indicate relatively stagnant conditions with a weak sea breeze circulation Some net transport toward the south is indicated Particle paths originating at VRNN on the afternoon of IO December show little movement throughout the following day The long residence time in the basin is in qualitative agreement with the tracer data Tracer was observed in the basin on the following day The dispersion indicated by the widespread tracer concentrations however cannot be represented by a single particle path The level 3 particle paths originating at LAGS and ESGS on the morning of 10 December show southward transport and recirculation by the sea breeze

UNCERTAINTY ANALYSIS

A simple analysis was perlormed in an attempt to quantify the degree of uncertainty inherent in the particle paths The uncertainty analysis was similar to an analysis described by Moore et al (1989)

Three major forms of error in the particle path calculations can be identified The first two result from errors in the wind fields The most fundamental of these is measurement error as measurements can only be regarded as approximations of the true winds Regardless of the accuracy of interpolation techniques measurement error will always affect the final wind field The second type of error results from the interpolation of these measurements and the parameterizations and approximations in the diagnostic wind model This error will be greatest in data-sparse areas The third type of error results from the use of two-dimensional wind fields The two-dimensional particle paths do not incorporate the effects of vertical motion which may be a significant source of error considering the mesoscale regimes present in the study area

The particle path uncertainty in this analysis is the result of all sources of error and is therefore very difficult to estimate A lower bound 11 on the uncertainty was assumed to result from measurement error alone Here we use a lower bound uncertainty estimate to illustrate the effects of measurement error on the particle path calculations Several assumptions were made in order to estimate this uncertainty First average bias for all instruments was assumed to be very small Second instrument precision was assumed to be constant over the region Third measurement error (speed and directional error) was assumed to be normally distributed around zero The standard deviation about the mean was based on observational data

For this uncertainty analysis 20 particle paths were initiated from a single site at a single time For each 15-minute particle path segment u and v were calculated as described in

9106lrl 02

34

(

the previous section Small random wind components (representing the measurement error) were then added to the interpolated wind The smaller components were determined by randomly selecting wind speed and direction error from two separate normal probability density functions (PDF) To do this a uniform random number generator was used to find two error probabilities Ps and Pd between 0 and 1 An inverse normal PDF routine was then used to find the speed or direction error that results in error probability Ps or Pd respectively Commercial statistical software from Th1SL was used to generate uniform random and inverse normal PDF values 1

The PDFs possess means of zero and standard deviations equal to the root mean square error (RMSE) of the measurements For simplicity RMSE values for speed and direction were taken from those specified by Moore et al (1989) namely 02 mis and 10 degrees respectively Random error components were determined for each 15-minute segment of every particle path The resulting divergence in the particle paths represents a lower limit to the uncertainty inherent in the particle-path calculations

Plots illustrating the effect of the lower-bound uncertainty on the particle path calculations are given for one summer and one winter episode in figures 3-1 and 3-2 respectively The summer particle-path bundles (Figure 3-1) were initiated at CELA and LBCC at 0700 PST on 14 July The winter particle paths (Figure 3-2) were initiated at CELA and LBCC at 0700 PST on 12 November The bundles were calculated for levels 1 and 3 In general the bundles indicate that the airflow patterns do not vary abruptly in space or time The winter particle paths are less divergent that the summer particle paths

While plots of the particle path bundles qualitatively indicate the degree of lower-limit uncertainty a quantitative summary of the uncertainty can be obtained via hourly estimates of RMSE of all particle positions relative to that with zero error The RMSE can be obtained from

1 1 M 2 2

RMSE = - ~ dj[ lM ]=l

where

1

dj = [(xj - X1)2 + (yj -y1)2]2

and where Mis the number of particles and ()1 represents the position of the actual particle as calculated in the previous section (ie the zero error particle path) The RMSE is used to determine the growth over time of the confidence interval about the

1 IMSL is the registered trademark of the Scientific Problem-Solving Software System developed by IMSL Inc Houston Texas

91061rl02

35

NORTH

425 31570

SOUTH (a) CELA Level 1I

20

(KM)

NORTH

425 31570

SOUTH (b) LBCC Level 1I

20

(KM)

le-path bundles initiated at 0700 PST 14 July 1987FIGURE 3- composedd par tic le paths1 Forwar of 20 particBundles are

35

NORTH

425 3570

SOUTH

(c) CELA Level 3

NORTH

425 3870

SOUTH

(d) LBCC Level 3

FIGURE 3-l Concluded

37 9106]

70

IlFil

NORTH

CEIA Level 1(a)

3(170

1-Ul j

NORTH

425 3(170

SOUTH

(b) LBCC Level 1

Forward le-path bundles initiated at 0700 12 November 1987FIGURE 3-2 composed par tic le pathsbullBundles are of 20 partic

3391061

425 3870

SOUTH

(c) CELA Level 3

J8

3870425

SOUTH

(d) LBCC Level 3 10 2

(KM)

FIGURE 3-2 Concluded

91061 39

1 1c

i I

trajectory calculated using the DWM winds Hourly RMSE values are given for the particle paths bundles shown in Figures 3-1 and 3-2 in Tables 3-6 and 3-7 respectively For level 1 the average RMSE after 12 hours is 567 km for 14 July and 167 km for 12 November For level 3 the average RMSE after 12 hours is 416 for 14 July and 260 for 12 November

9106lrl 02

40

TABLE 3-6 Hourly RMSEs for particle-path bundles initiated at 0700 PST 14 July 1987

Time LBCC RMSE CELA RMSE (PST) (km) (km)

Surface Level

0700 000 000

0800 042 042

0900 057 069

1000 063 100

1100 093 128

1200 091 143

1300 111 168

1400 136 217

1500 229 227

1600 265 219

1700 394 219

1800 620 265

1900 796 338

Level 3

0700 000 000

0800 018 049

0900 064 090

1000 068 140

1100 087 172

1200 089 162

1300 123 180

1400 231 224

1500 337 258

1600 419 278

1700 427 306

1800 449 347

1900 462 370(

9106104 41

TABLE 3-7 Hourly RMS Es for particle-path bundles initiated at 0700 PST 12 November 1987

Time LBCC RMSE CELA RMSE (PST) (km) (km)

Surface Level

0700 000 000

0800 047 049

0900 078 065

1000 077 066

1100 089 086

1200 109 094

1300 089 092

1400 118 125

1500 100 138

1600 129 150

1700 147 160

1800 161 164

1900 156 176

Level 3

0700 000 000

0800 045 076

0900 061 120

1000 069 139

1100 092 171

1200 098 163

1300 096 156

1400 125 182

1500 150 175

1600 231 171

1700 261 152

1800 308 156

1900 345 175

91061 04 42

References

Douglas S G R C Kessler and E L Carr 1989 Users Guide to the UAM Wind Preprocessor System Systems Applications International San Rafael California (SYSAPP-89079)

England W G and L H Teuscher 1989 Perfluorocarbon Tracer Experiments During the Southern California Air Quality Study Air amp Waste Management Association For presentation at the 82nd Annual Meeting amp Exhibition Anaheim California (June 25-30 1989)

Horrell R S M Deem P Wyckoff F Shair and N Crawford 1989 Ground Release SF6 Tracer Experiments Used to Characterize Transport and Dispersion of Atmospheric Pollutants During the Southern California Air Quality Study of 1987 For presentation

( at the 82nd Annual Meeting amp Exhibition Anaheim California (June 25-30 1989)

Moore G E G Z Whitten J P Killus and R D Stevens 1989 Analysis of 1985 Air Quality and Air Chemistry Data Collected Under the South Central Coast Cooperative Aerometric Monitoring Program Systems Applications International San Rafael California (SYSAPP-89058)

Ross D G and I Smith 1986 Diagnostic Wind Field Modelling for Complex Terrain-Testing and Evaluation Centre for Applied Mathematical Modelling (CAMM Report No 586)

9106105

43

rr T rr

Appendix A

SCAQS WIND MONITORING SITES

(

9106103

-

((--_ 770

-

NORTH CM~RS 42 575

5 I I j I I 1---L 525 middot 1J75 I I I I I I I I I r I I _--- I C2~middot----_J ~ ~-- 1 ( ~ ~J25 I I I I I I I I I I I I l__ ) -475 () I Li 1~)51 (

--~ltJ820f-_ ~------ ---

~- -cli( ol --9-Sl-l

lt ( ~)

CQ p llE RiDO ~ llE ANAH

I middot LAS-L

bull~ LANC ( _ Q - _J ) ) - _ ~ - ---- - ~ _ ____ middot clt G~ _----~____-=-- -___ ~PR __ - ---- --- VCTC ltgt

-- ------ f---- __ - ---_ -middot ------ --___ --~-----TEME --- _ f

-)(j _ _ middot --middot -------- - HESP f ----=----==~~~ l ----~~ -- middot l - --- __ -middotlt- CJ _ --- middot PIRs[- lt NfVL_ ---~ - C~lt --lt _ ~ ~- __ (~~

__ --- bull _ i - f c-_ _ I - )~__) - ---~poundS---_-

3770 t-()

LA llE PICO )Ct444 -w 3 ~~~ZUMA MALI VE VEN llE llE middot Jl~C - ( p

NN WOOHS ~- ~ m - middot - o - I () )IE 55I

1-- (lt - - PERI ) ~ S__~llE

BU25 bull y _ L ~~5o 13720

I ----~- - 515 3670 525

(KM)

~---

SNI

20

SCAQS SURFACE WIND MONITORING SITES

19 JUNE 1987

0

qj n

If) N ~

I

1S13

Ishy)

0 Vl

(f) w I-V)

l)

z a 0 1---

z 0 2

0 z 3 a ~ I r---

0 CX)Wm Q_ shyQ_ ) w

z (f) )

0 7 lt( um Vl ---

0

A-2

-

r~

NORTH CM~RS

I -middot_( lt - middotmiddot -~ ---lt - - - middotbulll- ) middotmiddot-middot - - -c ) 0 0 l__SG- ___ J1 bull_ -- VCTlt I

_ --middot ---middot llSeR - - __ - --middot----- J~__-- middot - - - -middot bull bullbull- HESP ~-_-middot- bull- ~- _~ - -___---middot - ~ -_ ) ME --- -middot - bullmiddot bull -_

38201-_ ~~_ _ TE _ C-bull_- - CJ - ~Jj __ -_

1

1 bull I bull __ (]

SI bull bull=-middot _ -~ ~~ ~_-__ middot _J lt(- j SIMI -M~S -~_-~It_ - - 1Ir- I w _ I B~~ AZ~~~1 AL SNBOC ~ (ELRO l~ Hf~~ ideg_=- --

)1__ CE~ wftcentrHIN RIVRM44 --- ~--- ---~ LA PICO __pound bull P

T ~NN WI-V C) D 2J~55I Wco - middot PERI Lv

R~O ~L ~AN~ TO~~~~ ~ ~ ~-MO

62

~ ~j~l)~gto ay 3670( 525

SCAQS SURFACE WIND MONITORING SITES 24-25 JUNE 1987

~ (

NORTH 275 325 375 425 475 OA~5 575

f_~ CJ ~ -middot--

_middot

middot1 Imiddot

)i

gt--o~0 (~_)r-) _ (~~3s20

--~- middot qlt ( ____ - ---- - lt__ ~ ~ -i~ J ) _ - - -

-~ -__ J V 38201-~--o- lt-

-----~~middot ---- __ - ~---- -_--- ~====- -=_---~ ~ _

~ -- middotbull ~gt ----_ _______ ) ~~~ l -- - - i - --- l

( _ (_-~ _-lt~~ - )

2middot1=~ (~gt lt_) -~~~~~(_~tJt-~~~~t~~~~-~) ~

uR--- -----Qi~ ~ 3770_ 3770 -middotmiddot--rmiddot- -7 ~ 1-

(J) llE ONT _ -middot __ w

Y-_ EMU c __- ~ Ul lt(1 w~

- -- - LMIIEUA sFtA ~

1

----_

~

_

t_~~ -bull _ middotgtI __

~- 0 ~~QgtJn~-~ ~II~

~ f-- -) -) ) ~ ~-

j (_1_j ~~TRM 3720 ( (__ -CcS l l 3720

~- ) -~ --7( ) __~---L_ ~~1-----~D~

1 ~) a --- ~middot 7 rt 0- NSI (

3670 I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I 1 I I I I I f I I I 1 I I I I I I I I I I I I I 36 70 275 325 375 425 475 525 575

SOUTH

I I I I I I 0 10 20 30 4-0 50

(KM)

SCAQS UPPER-AIR WIND MONITORING SITES

24-25 JUNE 1987

--=-

NORTH 25 575

CM6QRS C__j 475 -____

3 ---- 375 425I - L ---) - ~-

SNI

-_-~)---_ lt-____ ___3azor_~c~~ sl

VENt ELRO

BU25

275 ~ c--) ~LANC ~~-_ lt ~ 0 9-~

llE

3670

----~ - J Q ____ ~- lt) ~ 3820____ -- middot--- 0~__~- __ J S --- ---~- ---- -- -- v~ ~ ~ ===-~ - - - - ---- - - ---- - -- -middotv ------------ -~ l f----- _ -- -middot _ - --- __ HESP ~-----=- c~i - - _- --- - - gt - -bull TEME -- -middot - bull ----- -- - _ middot ( lt~ clt=~ ~i cJ~ c _

~I -~~le lt~NJWl--------~- -iHitgt~-=__~~ _I -~ J~~~ ~ 3770 r-1 - - -- -- - ltJ c__ ---middot ~ ( - ------ -c_ - - -~~~ ~ ()-~ ~ - -middotMiss ---~---=-~----r~-__ -middot _frac12 __ i5

j S ~R~~HE -7t$ llE llE ftALSNBO llE ~~ t __ -R~ B~~SA AZ~jl~r RD ~~_ ~ 1( )l___ llE CE~HAllE ~~ - RIVRM44 - llE ------___llE W~HIN -Jti )Ii ----------- __

~--- LA llE PICO l llE C -- r p

ZU VE NN Wt-laquoJHB 0 1~55WT IN - ---- ) llE CO P llE llE ( gt (____ PERI ~

IJl

~ 71t~P325 425

SOUTH

I I I I I I 0 1 0 20 30 40 50

(KM)

SCAQS SURFACE WIND MONITORING SITES 13-15 JULY 1987

clt(middotO -i ~Ill ~

()VL~t

~~) o2~ r

275

-- _~middot middotc-- ( ~ I - ___ ) --____ ~~~

---- ---bull-~ ( lt ) lt I ~ (J () - _ ~ ~ J ) bull middot ( - ~ ~- - --- middot - ~ - middot middot G--~_J lt)

cce- middot- __ V ___ -- l - _- bull middotbull - - _~---~ 3820r----=-~_~Jrlt - - - middot f ~l-~--~--~] I c___ -~c ~ -- ( _ 1middot--- 1___ _~

-I -- = lt -bull lt middotmiddotltmiddot~- middot - middot -L-

- ~-- middotbull ---_- --- J middot J ) ) -- bull- ~-bull _ --middotbullbull- middot middot _ j -- -)) 3770 -ii __gtc _ -- - - middot bull ltmiddot ~- I - _ltbull - -_j-- tn

BURbull-- - middot - - - ) ~~middotj- (~~ ) (middotIi lt(

GL U I ~ - - - w ---~ - -1 __ - ---------= ------___________--- ONT middot middot __ - --_ -

poundMUI - - ~ ____ middot----~~i -__ ~ I

--

--- ~ c) )_

deg ~

_- - (

_l

_ ~ )

C-

~ _middot

( T( f 1-

525

t j 30 50

(KM)

SCAQS UPPER-AIR WIND MONITORING SITES 13-15 JULY 1987

_==--

J ANORTH CM6sectARS

3s201-

~- ~ ~ ~ ~0A - --__ - -----~ ---~- --1(j - A ) __gt ---------_

-~~J TEMEa l_C ~r1

0

820

_--C~ = ~~~ltCH~~ J ~ S~I ----i4~58 ( J

tigt-1

-J 3 BU25

frac14~) 8 F1(5

- HA

APICO RN A A ~ N WVHB

AANAH

~IHIN J _CM44 ~-

A

CY PERI N ~ iJN

D A

HEM

770 ~ V1 lt( w

~ 3670

SCAQS SURFACE WIND MONITORING SITES 27-29 AUGUST 1987

) w l-1

C)

z-a 0 1-

z 0 ~

0 z - r---3 co a Ci)

- -ltI lshy

a )w ) Cl 0 Cl ) ) lt(

V) Ci)

0N ltI u r--- () N

A-8

NORTH CM~RS bull r (_J~

1

325 - - l L=~-) ( bull

1275 _ ( ~ --- -middotbull LANC 1 _ bull I( f LJ- ~ () ~-- 3820 bull- - J bull

- --__ _ -- )- bull bull - middotbull-~- _ I v----_J -- J middot-- - middot- - -middot I I J_______ ---==-------------- WSfgtR - -- VC _____- ltgt

-~--~-- fJ- -middot - - - --- --- _ - ----- --- ----- ) r bull---_ --- - - -- bull p -- --__-----_ - -----

38201-_ -------~- TEME --- --- - - bull -- middot- bull --- _----~ -~ II middot ) - ---- -- -- _ -- HES f I-----=-- ~ ------- ~ l _ -- - I

- bull middotbull-bullbull~ ll( middot bull - middotbullbull - 1 I ~----- middot-bull

9 -- ___ __ _ -------- _=- r _ -- )J -~~ ~~~ 3770 t--SJMImiddot MISS~~~--bull ~--~-- ll( -_ ~-VENt Cllfl58 bull I middot- - middot- - --JOE ~--bull bull ~ V)

ELRo __J 4Esc euRK ~Ej1 fAL sNeo I ~ _ J middotmiddot -~~ 1 i5 l - ~SA ___ I ROLD ~ ~ C~ ( _____~- -~ llE CE~ llE W~(HIN RIVRlK -- - 1 llE __~

3770 middot- ~LA VEN Pl llE _ _- JJ~C _CM44 - ~ p ---__-_

0 ANAC cubull~ - - v~wr LyenNN WHJHB --- -- Q~~W)( ___

- llE HA ~ -lE _ -- _ - -_

I 0

SAi middot-middot J) t450

3720 LA r TO~omiddotlt~lt~~ -~ ~ (~~

~ ~ r-~~~1~ o ~~l~

SNI 1 (l_ amp-~ 575 3670367g75 325 375 425 475 525

SOUTH

I I I I 0 10 20 50

(KM)

SCAOS SURFACE WIND MONITORING SITES 02-03 SEPTEMBER 1987

------J ------------------ ) I-- 38201--__--~~- i) ___

_-- ~--gt--

-__

_

NORTH 275 325 375 425 475 525 575

YI ~middotCJ~bull_bullrmiddot--- lt I __ (_______~ ~ - - I -- J ( - - - - - - - J i O l__ ______________ -~

~j ( lt- bull- ~ 0 C) ~ -- (-- _)) ) ----_--__ -- middot-- _ - --J ) J ---- - ------- ----- middot----- -( ~---_j

3820----==--=-- ( - -middot bull __ - ---~----= --- ---- -- -- ------------ _______ ltJ~~ A I --- - ---- - -_ - _ --_--~-- -_ - --~co___--_--___-__----- f middot l - --- - --- - __- ---_-- -- ~ middot -middot __ J L--~ cmiddot

---- -- middot--~-- -- -- - _ _-- - - ~

--- - middot- - -C-_--- - -~ rmiddot middot) _- ~middot~ I--- ----~deg- -- -- C _-_--_- __ __ _ ___ _--_--~ __---- ~---lt lt ltgt _~-__gt_ ~~-- i~ - UR ---- -------- - ----~ --lt I middot- B ~----- Qll __ ~----- _ CI____ ~ __ --- ---middotir ~ - 3770

1-I- 3770 () U)( - -- -- 0~ - j _j ______- ==--=--_ --___ - ---w lt(

w~

~gt middot1 r-

0

3720 3720

middotmiddotmiddot J ~ ) ~l - ~ ~

~ tmiddot~----_7~~ p__ D2)t~~

NSI I(--_ Imiddot- 3670 3670

275 325 375 425 475 525 575

SOUTH

I I I I I I O 1 0 20 JO 40 50

(KM)

SCAQS UPPER-AIR WIND MONITORING SITES

02-03 SEPTEMBER 1987

~ I

t

NORTH CM61yenRS

----- I uic middot I Ibull 0 z_ ~ p

-_- - - - _ - middot-~-_ ------- VCRV

820 --- -- -- I W-gtER --- _ ---- --- ~ ) - -_ - I _ _ - _ --- _ _ _ -_ bull _____ _ _ - -- -- -- _ --_ ----~ HESP 3 -- ME -- -middot bull - --- _ -- _ TE - -- __ _-- - c----~middot - r

PIRlb -_1 N bull--~ _ --lt~_- - _ _ ---------- - -MISS_ _--- ___ bull---=-- _llE ~ ~ j lt) hlt---- F-~~--_ ----1A-_c=_--middot llE ----_ ()

-middot SIM ~ICAN llE RIALSNBO llE ~J -------~~ tllE ------TmiddotllE~I ~ES BURR~ AZ~ ~-~r- RD ____-- -- ~ bull FIIISA l- bull -~~

( )l__ -middot middot c(~HA w~~N ~tfJ1 -- -- ~ ~ 1

_

375

~) middot middot ---lt -__ lt_ ___ ___ -i____) C-middotdeg - - -

- -- J_ _) lllt

_ =- ) - -

L- ~~- Iii - ~ _________

-~ 0 I -- (

SI lllt

E

NT CM58V

( j gtT__~_____)___ -- ~l- ) (

middotmiddot-- -_ bull _ ~- () ~

I --J vlt__ ltgt

--- --------- ~---------- C -

_

~(__ f - -- ~---middot)1 ~

t ~ I

I- I- ~

3720

ANAC Wo~ middot -~- lt_)

44

PERI ) ~ tlo

25 R~ ~~ANAH _i~~MN ~~-w--- ~ _ 00 )

T middot I BUllE I -eM62 7 llE

-- - ~

~ 425

SOUTH

20

(KM)

SCAQS SURFACE WIND MONITORING SITES 11 -13 NOVEMBER 1987

(_ (___JCcS ~~)

bull ------------~ - - ( ~ r-------------- Dbull ---

J

575 3670

1SV3 0 0 0 0 N r-- N r-- a) r-- r-- co I I) I) I)

I bull bull I I

I I f1 1 ~~ I- I I-)

0 l)

l)

w I-l)

L)

z Ct 0 I-

z 0 2

0 r-- z OJ

m3 Ct a lt( w0

l() mI Ct 2

~ ww Q_ gt

0 - Q_ 0 I) 2 ) z ~ ___0

N (I) n a

0 lt(- u ()

0

n 0 z I)

N +

lf) r-- I)

- I I I

i I

I 0

~ -L

w

i

~ LL

I)

C-1

+

l() r-- I)

1S3M

A-12

-~

igt I _

l)

CM~RS 275 325 375

NORTH 425 475 525 575

_J- I bullbullbullbullbullbull ~ I bullbullbullbullbullbullbull bull I middot bull -gt-----middot bullbullbull 3 )--- ____j lt c----- -_ -- gt _ ___ ----- t__ l___

-- ------- LANC l ~ ---------- __ ) -- __ ~ I ) ~ - -=~__ I -~middotmiddot- - bull middot bull bull bull lt lt Cl --- ------ ____ -~ -

38201-- ------_- ) ) -- _ ---- -- -- -- - () - --------- I --- -~-lt~~ (middot__ TEME ) --gt ~_ ----- - middot--- --- vamp c~ (~ 0~ ___- --- gtIpound - - - - ---- -- - - -- _ - - ~ ---- - - - ------------- 5SI -middot PIRltgt ----~ ( -middot _ - -- --- - --- ) HESP --------~ ltgt

___ __bull_rbull ~--------~-___ -- ___ ----gt--=- bull~ ~~ I - ---__-=---- ----

VENt CM58 _ sti --~~ ~ lt_ -~-- middot_~-~~ r-~- --middot) ~~) _J MISS-~~-- ___-_ __)~ -- ---( C

- --RESpound BUR~--==-=~----r~---_-__- ~- - ~ _- ~ -1 -

3770 I- ANAC

J I )l( ~- ~-- - i middot ----middot -X--Ret-----_~ -~

___ ( - -middot ~SA AZ~ ~ o j -------=--------~--gt~-- dampHA ~~~f __ SNBO ~~ -~

ZUMA MALI LA w~M -jmiddot I R~J ~-s ~__ )() w ~

3720

8U25

VE VERN PICO _ middotyHIN RIVRyen ( ~----- -~ CM44 -~ ~- ----- ~ C WT ~NN Wt-0HB -NQRC - middot- ~NN-a-~~ _ ~ co~ __ -- ( ~ ~

RVIJO ~ilff AN~ gt cmiddotbull yen 0 (~~ p LASAl I bull- - PERI ~ ) ~

rJ]~~_Y)~N ) (_ --

_T -cJ62~-~

~ 5j(bull 1) ~Jso

l -~

- 1 J) -~ ~7~~t~~

3820

3770 1-() lt( w

3720

I I I I I I I I I I I I I I I I I I I I I I367r I 367075

I 325 375 425 475 525 575

SOUTH

I 0

I 10

I 20

I 30

I 40

I 50

(KM)

SCAQS SURFACE WIND MONITORING SITES

03 DECEMBER 1987

NORTH 275 325 375 425 475 525 575

I I ) gt ~ _YC) ~ ~ I ( o c_ _------- (

___ middot i I 97 ~___ _ --1 cbull-- - - C -___J -- lt ( ) - - - - middotmiddot ~ l _ ----_J

I ---middot ___ __ middotmiddot-_ 1 -~ __J ) bull- middotbull_ -

3820 ------~- I -~middot --- _ middot--- -------~

C - ~ (___ _ 1 ) -- _ - - - gt _ bull f-_- --- r ------~__ -----I --- ) I ~ -~ gt ----- - --- -- ~-_]) c_middotI 38201-_~~_ l _ --- - (-- ~ f ~ I~_ - middot - middot -middotgt- -- -_ -- middot_ _- 1 L- l _- -

~----- l -- middot middot ~- middot-_ _- - middot middotmiddot--gt---~--t~~)-1 bull lt_ _ _ bull middot bull - middot- ~ ~0---~ (c ~ I ~

_ I - bull -~~~--gt~~~-~~ bullS- _~_ l ~~1t~~_~(~ t 3770 I -- -- middot __ - I S____ ( 3770

I- 1-() ()

gt w - I __~sect~- ---ONT lt(

w

tgt

f-- I

~

middot - middotI

-

L~i--

37203720 c_J - (_cS) l -~~

NSI

367~~51 3~5 13~51 14~5 I I I 14~51 is~s s~s 3670

SOUTH

I I I I I I 0 10 20 30 40 50

(KM)

fJ~

SCAOS UPPER-AIR WIND MONITORING SITES I 03 DECEMBER 1987 r~J

NORTH CM~RS 275 325 375 425 475 525 575

middot middot ___ I middot 1 I )l ___ QO --middot - v_ (-- - LANC middot ~ C) lt --bull_ I -- -- bull _ ~ - ~-- ) -------_ -- - _~-- V --I 1 J --- - bull I -J- ---middot - _ bull__ - vc i --- ltl

3820~-----=cc~ I middot -middot - middot - _ ___ -- - 1t ~~------- middot - ___) - - middot -

J-cgzot-- ~--- j 0 TEME _middot ---- --- -

-____ -- ---- _- j (

- -_ I -- --~ _JI( ---- bull bull-- llf -middotmiddot l - -- bull _middot_ middot I --- -- middot CM58

_- 1 -- middot - middot~-~ - -~__ ___ ---~-~_--__~----------D J-~J~bull A HESP

middot OJ11 r P1R1tc lt--~i_-_~-~- ~c~_r--~-~_--_~r-=-~~~~--~ _ --~ --lt__~~~~- CSI ~ -~ --- ---- middotmiddot - ---- - _ ~ r ) J

)gt SIMI -MIS5-X ~Cgt~---- middot-cemiddot middot ____~ ~ middot~ l~fu__ suRlfiI_middot- -tk~- flAf SNBO __ middot ~-~ l 3770 _ 377ob -- ~ PJIISA AZ ~JIily~ _- RDL ___ bull ( C t-shy-- -~ I ----- ~HA 71lt V)tn ANAC ~---- CE~ WALflHIN RIVR ----- ~ w

w ~ LA PICO - CM44 - T -~ ~ ZUMA MALI VEN middotbull _ -bulltRc __ ~ ~lt~~7-

N WuHB _~-- -middot bull ) _J~N ~ -- ~ 0 - ) ~ I ltgt -_middot PERI bull I- ( _

V 8U25~ 3720 3720

WJlt~ ( ~ ~ ) 1 i

~ I I I I I I I I I I I I I I I I I I I I I367r I bull I I 3670

75 325 375 425 475 525 575 SOUTH

I I I I I I 0 10 20 30 40 50

(KM)

-~ ~

SCAQS SURFACE WIND MONITORING SITES 10-11 DECEMBER 1987

NORTH 325 375 425 475 525 575275

-- ----_ lt_~- c--- - ~ ~ _ I I - ---~~c------ ) _ -middot - gt~-

3a2or ------__ lt- ) 1 middot--- -- __ - ~bull =-------------- - r---_ ___ - bull- ---- I I ~ ~-- jc- I bull - - (bull I --- middot middotmiddot - ~ -middot - -- ~ - 3820 -~- bull - middot - - ~-_ ~- _ middot- n

(

- 0 lt_( ~_lt- ~-~~- middotmiddot) ---- ()_ (---- --

--

____ middot

-middot

I

f----- (-J 1r---J~ --~ - middotlt ltbullI I ~__---__ ~-

l B~--- _c_ gt-- lt gt- (- - - j 1--_~--~--l~ -- -- --- )l

-- - --~---- middotc middot=-~-~- (~ L ----- -- --middot - -- - - -bull --- - - c-) ~ J _ -- - ---- - ) ) ltl

37703770 EMLgt middotorrmiddotbull __ ) ~~~~ofmiddot - -- __s=__I- - - ~__- ( ~ __ )---__ Ishy

V) ~ ~- lt(w ~ ---- --~ - w if)

-~2_~middot) ~~at~s t I

I-

deg

FUUA

i () ~--J)llC~lt I

3720 3720

~ltl__ (_)i~

~ NSI

367~~51 I I I I I I I 13~51 I I I I I I I 13~51 I I I I I I I 14~51 I I I I I I 14~51 I I I I I I r--- I5~51 1 I T I I I I I 5~51 I I I I 36 70

SOUTH

I I I I I I 0 1 0 20 30 40 50

(KM)

SCAQS UPPER-AIR WIND MONITORING SITES

10-11 DECEMBER 1987

Appendix B

SCAQS DIAGNOSTIC WIND ANALYSES (Six-hourly plots Levels 1 3 and S)

Summer Intensive Monitoring Periods

19 June 1987 24-25 June 1987 13-15 July 1987 27-29 August 1987 2-3 September 1987

Autumn Intensive Monitoring Periods

11-13 November 1987 3 December 1987 10-11 December 1987

Page

B-1 B-13 B-37 B-73 B-109

B-133 B-169 B-181

9106103

Summer Intensive Monitoring Periods

9106103

19 June 1987

9106103

1bullbull-lil

1SV3

I I lshy Ishyo )

0 0 z ()

IO N IO

I()

N -st-

1S3M

-- l1

l~ i --

0 z 3

---

2 0

_J w cjr----_J CD

0 l() z

I- =)lt( 7

f) 0)

0 -- i n 2 Ishy7

0 ~ ()N ____ gt a 0 20

3o 0 ~

0

B-1

1Sv3

( I l-et 0 z

(

lf) N st-

l() N ~

l()

N 0 t--

n

0 N_ n

U)

ON r-shy(0

n

1S3M

B-2

_

2 0 0 tlt)-__

tlt)

_j w 2jr-_j CX)

0 lf) I- z

lt( ~ IJ1 0)

0 _ 0 n 2 z 1-0 ~ N - 3 ~ 0 20

3o 0 Ov

-----

lSVJ

l)

----

l~3 O 0 w

w ll) (1

l)

0 0 z 3

I lshyet 0 z

--

2 0 0 0

-

LO

w ~

GJ r----~

u 0 z

OJ

I- gt lt( J

mif)

00 ---shyI) 2 z I-0 i l) N -- 3 (1

0 2 0 3 0 0 ~ 0

lSJM

B-3

1SV3

- V1 --

~5 O 0

E - w

w Ul_ 0

V1 0 0

z ~

I I lshy I-et =gt0 0Z V1

-

2 0

J wr--CJ OJ J z0

Ul I- =gt lt( ~ V1 -

0 - n 2 0 z 1-() 0 ~ N __ 3 0

0 2038 0

0

U)

l

lO N v

0 N agt n

0

r--n

0 N

0 N r-shyn

U)

U)

U) N U)

Ul

q--

Ill N q--

1S3M

B-4

td I

J1

~ ~~~~~ ~ -~~~~~ J - -~--Qf~J ~lf~ ~---~ ttt~~~~H~f~ ~ ~~lt~~~0 ~ - ltl-_t I~~~~~~-~~~~~ ~~ I _~1c j_~ L ~ (__1-T11__1 ~_-~_ ---~~~~~~ 11 - ~ +f--1~- ~-+--41-- 1-~- ~ ~ -rtt1-~--~~~~~~~ ~ ~ ~ ~ l t I J JI JI~- t _I i~~I~~~~~~

377itttttttt ~- - t I Jf --------_-- _ 70 ~ ttttttttttttti- fllJ~JI-~~_- ~~ _ =- ~~~- tn w - t t I I I_~- -V _ ~ -laquo___ _ - ltC 3 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ t t t t t I I I I JI~ JI JI ~~ I--~- ~ ~~~~~ w

H~HHHH~in+~l~Hnf5-I ~ ~~~~~~~~ ~ ~ ~ lliii it t I~t~ltt~rrrr~~~~ jl++it~~~t~

20-~~~~~~~~~J tttttttf ~~~~~~~~~~---~-~~~~~~~~~~~~~-amp~ ~ t t t t t t f f f I I I I ~ 1 J(-- _ --P ---~~~~~~~~ ~ ~ ~ ~ ~ ~ ~ ~ t t t t t t t t f f I I I I I ~ ~- j~J _ ~ ~ z~ ~ ~ ~ z l I+ nm~t ~ ~ ~ I I~Jt~-~- -~-__~~~ tr ti ~ ~ t t I t f f I I I I I I I - ~-r __ - ~~~~~~~ ~~~~ ~z11 ttt ffflllllIIII -~~---~~~~~~~~~~~ ~~~~ ~~ ttttft ttflltllllllll A~--~~~~~~~~ ~ ~ ~ ~ ~ ~ ~ t t t t t t t t t t t f I I I I I I I I I I I I I ---P~- ttttttttttttlllllllllllI -~--L~-~~~~~~~~~middot

367 70 ~75 325 375 425 475 525 575

SOUTH

1111111111111111I I I I I I 0 10 20 30 40 50 0 5 10 15

(KM) WIND SPEED (MS) i

NORTH 425 575

_ 414111fl-~bull __~) ff I -lt~i ~ + lJ Jmiddot-bull A fl t1 it bull- _I~--~---~----_---~_~~~~~~~11 t1

~~t 11 f + + diamsJ diams 1 )--t-_+ J~ I-(_ 1 1 ~t1 __

__ Lt l l t fL f_l - - +~~----~~---~___-+_~~~ J-t-t t---t-lt t t-t) LJ lt fl ~ -- t---f t tT~-- ~~ 1__t -t ti t_1 + l - -~-~-~-II~-- - ~~~-----~----t----~~~~~~_Efftt -- r1 ~J t l Lt t

fl

~ _ t_ - 11 _ _

Fi ru bulll=ti~ ~ ~ ~ ~1H1~~_~-~-~----~~~~~~~~~~

DWM WINOS AT LEVEL 3 (300M) 1000 PST 19JUN87

1Sv3

I I-shyCt 0 z

1S3M

B-6

0 II)

0 I)

-_2

0 ~ N -

0

0

-_

2 0 0 0 -

LO

_J

w r---CJ O) _J z I- gt ~~ if)

0 1--shyz V) ~ Q_

20 3 g0

NORTH 525 575

~~~__A -~___~~-

F- ~_--P~

~ ff~~-- - _ middot- ~~

_ bull bull bull bull bull

_ p

~L~k~tt ~ 1 t A middot1-t

~ r~ 1 11 1 __ bull bull --l t frac12Q2_

~ ~--r-J-+7L~

1--Ui

3770 _yen~AA- ---~ ~__~_ ~ K---r

eno tshylf)

w ~ ~ ~ lt( 3 I I_

- w

td I

-J

~~~~- ~ ~ ~~~ shy ~ ~ - shy

3720

~ ~~~ -~1~-nu~~~~-

~ -~ - ~_____A~~1~ ~ _~ ~~= ~~~_______2--- ~

720

~~~-~~~~~_ 9~tbullmiddot~qor~frac12

Y~poundpoundpoundpoundpoundpoundL1~~~~r~ ~ middot

375 425 475 525 575

SOUTH

I I I I I I 11 1111 1111 1 0 10 20 30 4-0 50 0 5 10 15

(KM) WIND SPEED (MS)

DWM WINDS AT LEVEL 1 ( 1 OM) 1600 PST 19JUN87

~

NORTH

Arlt~~~ ~L _ -rJ ll

_ I I I t

_t-z~~J ~i~ bull

i- ~~~ Ii ~~( trn

3770 I - bull bull bull bull bull bull bull iigtlaquo

--- bull bull bull _-

~fJ~ t-l-lltf[llJ- jf1 rr]I ~ ~~~ ~ss~810Ja2ot-~~1i lmiddot - 1 17- - -

-ltL

~ ~ 70 y ____~ tshy

l) ) _-y ____~w

w ~

~ -~--- - -- ~ 1 ~~~~ __ _ bull---bull laquo-___~ Y~~

___p~~__---A~_A 1 ~~td I ~----______A 14 1 ~

00 _-________________ ~ __~----~1~ -A________________--r__~~~ ~ ~ ~~~--~-~~~~-~---e--~ ____________~_________-~ h

3 7 20 t-_--~____- ~ _ _ ~~-_- _ _ _ _ ~___~~~r--~~___-K ~~ ~ -~-------~~~----~ ~ ~~__________~~~~~~~______-r_-A~-1--~~~ ~__________________----r~__~__~-Y~~-------__---A----r~ 1 ~ ~__~___________~ ~

367 tcrr~__~y--rrYlt-trltltltltltlaquo-ltltltltltlaquoltlt~~~ ---

9imiddot~75 325 375 -- -

1111 1111 11111 1 1 1

0 10 20 30 40 50 0 5 10 15 I I I I I I

(KM) WIND SPEED (MS)

DWM WINDS AT LEVEL 3 (300M)

1600 PST 19JUN87

NORTH

bl I

0

~________________A-4_gt~~~_____~~__________~A

A~altP_ ~~~_________--~_A 38 20 I--=-~~_~~___~~-_-~~_ -lt~ - ~_-~_A--1~ _

~~------ ~ gt-~ ti ~----~ ~ _~~~~ 0 ~ ~-i---~~411___ I~-~~ I~A-~~----~7A7~-

A A~---~~- ---~ ~ ~ -middot~~ 1-27 ~shyA_~ ~~~ Jl--__r-t~ ~ (K~_ - fl_

A ~I J111 I _ A - ~ _ T-~ v I 1 1 1 1 1 1 ~ 1 1 _ Ji J I~ f --_i__middot1(- ~ ~)( ~JJXZ - _ r ~ - _ )( _ II I 1 ~ 1 I - _~ _)~ ~~

= 1 II II 1 (~ ~--=-~ -7fJ~~~~tm~i I- 3770 Jir - I 11 I 71 (I) ~ ~111 ~

w ~--middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotbullbull bullbull ~~~11Zll~~11~ ~ ~~_~~~llllN~~ -~~ bull 11jh fi 1 1 II 1 1 1 1 1 1 1 1 1 1 1 1 1 I I 1 0i~~~ 1gtcJ~l~p~ ~~~ ~~~ ~rr1111

70 Ishy() lt( w

111111~~ 3720 i- 1 1 ~ ~

~1~I A-A~)I 1111AA _~l11~ 1

lllllll11IIIAII- ~II ~1~~__~~Ill~~~~~ l1_ 1~~~~~~lll~~~~1 llllflfAll-)lllllllll1~~~~~

A I I I I I 1 I I I I 3670

275 325 375 425 575

SOUTH

I I I I I I 1111111111111111 0 1 0 20 30 40 50 0 5 10 15

(KM) WIND SPEED (MS)

DWM WINDS AT LEVEL 5 ( 1 OOOM) 1600 PST 19JUN87

~

A A A

1Sv3

(

1S3M

B-10

()

l ~

---u) 2 __ O 0 ~ w

w It) Q_

()

0 0 z 3

0 It)

~

0 ---I) 2 ~0N _

0

0

---2 0 __

_J

w r--- GJ OJ _J z __ )

~~ () r-

0 __ z ()3 Q_

~o 3~ ON

NORTH

middot-~~) K~xJ~ middot_1~ ~ 71( I IJ ~JI

~A I 1 ~~

liii[i~~ Hf~-~~~=~T-- ----- --=~~g~g~bull11ft _ ~~~ -1-x~~~ ~~~~-~~~--~-~---~ --~ t ~t~ -~1~~ -- ----

-lt J 1middot~~ __---~__

3 770 ~ ~~ --_tn ---------~~ 1 ~____~ _ ___~ -w bull Y ___~~~ (Al _~ _ ~

-- bull _ _ _ bull bull bull bull~___1 1I J~ _~

~- YI J _L ~~ ~~ YJll~E~

td _____-___ ____ __ 1 ~xgtx2-I ____________~__-A (~~~~ _______~~2-1 y~~- ___~__________~ ~

3 7 20 I-___~~__~~ Y --~ ~__ I _ - - _

~_---A~ ~---__~~~~~--_____~ ~ ~_____A~ y ~ ~___-__________~~ ~ -

~__-_______-yen_2 ~ ~ ~~_______~ ~

1 367~ 75 325 375 425

SOUTH

1111 1111 1111I I I I I I 1 1 1 0 10 20 30 40 50 0 5 10 15

(KM) WIND SPEED (MS)

DWM WINDS AT LEVEL 3 (300M)

2200 PST 19JUN87

~-

~ - - ---

NORTH 275

___ -~-___

- ~ I o_ ltAbull~-P- bull bull -P diams bull~--~~~~--- --- ~ ~ ti ~ ~sbull3820 ~=-J~_~~middotmiddotmiddot~~~--_~_=- =~_~c s~ ~3~

~~- bullbull~~bull~~~~~~ - bull -~~bull ~ v i-_ --- __-_ ~----~

~- st-~~1 17-~__4 ~ _~ ~-~-raquo~~~ -f _ _ bull bull bull bull~ bull bull-__-v 4 t ~ ~v ~- Jl_~ ~--z~~=~s~~~~Mil

-- _ ~ frac12--~~- -=~~ ~~l~1~l~tzi9~J t~ 1 1 1 1 1 1 ~-bull ~~___- v q (If V pp p I l_77rtfl _

3770 ~ ~ ---- I h1yenzi 1V-r-() bull bull ~ ~~~~~ w ~ bull ~ _ I JI J(_ )-II101-1 3 ~~A~~~XI IIJ~~~

~ f A I~ I I I I~--L -

tl ~1111111 ~K11~~llll~i~~~~I ~rr ~~ ~xgt~~~t---

N ~I I II)(01~ ~ ~ ~~~ 1~Y~lt~~~~~~~~ ~~~~

3720 iYY11Alllll1lIA~~~~ ~~---Y~---_ _ _ - ~ bullbull - - _

~rrll1IIIIIIIAAAA__

___________~~~AAAA~_~ ______________~~~~KAKAA1~~ lllllllllll~AAA1f~~

_~~

3670 t1i11 i i 1 i i 11111 i i i i -i i [ 111111-111 ~ ~ 11 ~ i I t 1 bull rm r~ij e =~~ raquo-il3t ~ 275 325 375 425

SOUTH

1111 111111 11111 1I I I I I I 0 1 0 20 30 40 50 0 5 10 15

(KM) WIND SPEED (MS)

DWM WINDS AT LEVEL 5 ( 1 OOOM) 2200 PST 19JUN87

24-25 June 1987

9106103

1SV3

1S3M

0 w w Q_ (J1

0 z 3

I f-shy=J 0 (J1

-_

2 0

--

_J w CJ f- _J OC)

0 U) z

f-shy )lt

J q-

(J1 N0 -_ 0

rlt) z rshyl)

N0 _ 3 Q_

0 20 3o 0 q-

0

B-13

lf)_ lf)

If) N If)

lf) r-shy~

I I-o 0 z lf)

~

lO

~

lf) N If)

(

pound bull d ~ bull 4 4 c_ q

1 4 r9middot-

0 N IX)

middot- t--bull ~Igt~

O ~f 4 fT amp)o(oj

4 ltI I~ ~ ~

0

o

middot a

~- v t rgt ( tgtj (~V~-1 f4

3 44 ~-~a4 V VM q -~~-q_4 ~4

_ ~ )

p- ~~t1~1 middot V II J ~ ~ )I 1 11 f ir -~~1I ~

II P P P Igt 4 ~(Iigt ~~ 1) IA

deg deg 4 4 ~ A -1 r 1 1-Y]~t J rz ~

fl r ~ Igt I~y ~ -- -- - 4 ~r___amp V P11 iP Igt P Igt p ~ -0

~bull 7~tpmiddot~P Pf P Ptl middot~ ~ q p Igt 1gt p ~ t b (r 4 P - 4---f ~ ~ bV ltI

ltI ~ ~ I p 6(~ d-_j b d p (4- 4 ~ 1 p Igt 1gt Igt - b ti

)4- a 4_) q V Igt p Igt o

lt(___~ ~- V fgt ~ 111 t Igt -4

~ ~ Igt r p Igt

~ ~ 1 h1

V (I Ilt v middot

t y-

t

t

p

P t P t P ~

0 0N - IX) n

1SV3 0 0 0r-shy N r-shy co

lf) lf)

If) N If)

~ - t bull~--~11n ~ -~bullmiddot t~ lt middot___

o_ ~ ~ ~

0 bull t bull 4_4 4 4IIgt

c 0----~ u c Igt( o ~ c ~A ~ 0 - A 4 4 ~ 1 q

o bull o- -~ 1gt 1gt ~ y4 -~J middot)bullmiddot ~ ~ ~ p 0- 1---f t-~ 1 ~ 4 4 o co u gt)O- eyti ~ ~l 9 -Y P- - I a c 1 oM_il_q A p- p

4 ~ ~-M f p

I 4

~ rv ~--~middot

tJmiddot bull P II f t )I~ bull V ct_~ V V V t P- ~ Igt t middot f lft V VJi P- P- fgt IIgt ~ _ J1 bull bull bull

1 v II p _bull ( ( ir ti- f Igt bull

j ~ r f -~-1t __

_I ltC_t--q_) v -~-ampgt

Q middot--- ~ - t ~ b

II

bull ~

bull bull

diams

1 bull ~ ~~ ~ ~ b b b lgt bull

-- b bull bull bull~4q~ lgtPlgt-4-~_tbblgt

Jraquo P P ~ q 11- 11- b b b b b

P Igt P q bull b b b b b b b b bull

bull bull Igt 4 4 fl ~ b b b b b b b b b bull bull Igt Igt ~ 4 q ~ b _ b b b b b b bull

P bull Igt Igt -4 ltI 9 b b b b b b b b

p bull - Igt Igt 4 lt1 _ b b b b b bull t bull bull Igt ~ 4 b bull b b b b b b bull p Igt Igt Igt bull 9 b b b b b b b b bull P p ~ ~ A 4 q - _ b b b

1S3M

figt j)

~ ~ bull

bull bull bull bull bull bull bull bull bull bull

bull bull bull bull middot bull middot

bull bull ~ ~ 9 9bull bull bull bull bull bull bull bull bull

bull ~ bull bull _ bull bull _ bull bull

~

If) N t

lf) r--11

~

If)

~

0 ONN - co n ~

I fshy=i 0 V)

- 2 0 0 n -

n _j w cjf-

0 l()

0 ~

0N

0

0

---shy2 ~ _

_j OC)

I- z lt( =i

J Vgtv 0N z f-

3 ~ 20 3o 0-t

B-14

---

1S13 0 0 0 N N r--shyltIO r--shy co I) n I)

I() l1 r--shy -U

E~i0 z

U N I() 3

I fshy)

0 U) l1 N -t

--_

2 0 0 0

-

LO

_J w CJf----_J OJ

0 U) z

f- )lt( l1-r ON z f-

3 ~ 0 20

50 U) 0 -sr

0 ON r--shy r--shy

r--shy (0

n I)

1S3M

B-15

lSV3 0 0 0_ N - _ - ~ I)

_ ()

(~i

0 z

If) If)N NIf) 3It)

I Il- I-a =gt0 0z If) If)()

N Nst- st-

_

2 0

--

- w I--- OC)Cj z0 -

I) )I- Jlt( --t-

N() 0 I-z ()

3 o_

0 0 2 0

~ 0 00( 0 0 0-N N _111) r-- 1)

1S3M

B-16

lSVJ 0 0 0 0 N r-shy N r-shy_ _agt lO n n n n

() r-shyU)

u) l() N N u) l()

I I lshy Ishyo )

0 0 z U1 l) N

l() r--_ 2 0 0 n -

n _j

w I GJ OC)

0 _j z

lt) I- ) lt( ~ lf) N 0 1-z l)

3 Q_

0 Lo38 0

0 0 0 0 _N N _ _(() n n n

lSJM

B-17

1SV3 0 0 0 0- -N N- -crJ co I) I) I)

lO II)- - U) It)

U) II) N N lO lO

lO- st

I l-o 0 z U)

N

~

I I-=gt 0 l)

st st

--_ It) - ~ I) 0

0 0 ___

lf)

J w I-

It) N I)

0 II)

~ OC) J z I- =gt lt - lf) N 0 1-z l)

~ 0

0

0

~ 0

38 0

N IIJ I)

- - I)

1S3M

B-18

middot~ bullmiddot I

1Si3 0 0 0 0 N r-shy N r-shya) r-shy r-- co I) I) 1) I)

--_

E~i l)

0 z 3

I r-0 0 z

0 I(

0 --_ n 2 0 ~ N --

0

0

1S3M

B-19

---

_J

w r----2i OC) _J z I- lt( ~ V1 N 0 1-z V)

3n 20 3 iE 0

---- --_

NORTH

-_ t t t f t A +1 t lt-1--JJ-middot+J

r ft_f_frac14 fffftl middotmiddotbull f_ n- ~ tn

ttt1I1~ ~ ~ ~ ~f --H 1--- ~ -

rJj ----~ ~ ~--- ~ l j bull bull - bull bull Ir - ---_- --- --~~~~~I-~~~ ~ bull ~ ~ rt

- - ~rnlit ~~~~ ~~~~ ~~ ~~~~~~~ - _~-~~ ~~~~~-=~~~~~~~-gt

3820

bl I

N 0

tshy() w 3 fftfftlll

ffltlIJ11111~11- I I I J ~-- - ~~~~11J~ -~

3720 - I I JI J ~~~~~~~--------~~ diams bull + I J J _~ 4 bull I I I J ___ ~~~~-s---~~IJ-bullbullbullbullbullbull ~__middot~middotmiddotmiddotmiddotmiddot~~~~~E-e~~

4flA~~middot~middotmiddotmiddotmiddotmiddot~~~~~ ~--_---~- ~~ 1

367~7i51bull1bull11bull1 111 13251777JT7777~7777 I I I 14251

--~--~- ~~_-~-----~ ~~~J

--~-_--~- 1- I 1 I

~ 1lJ

I I I I I I 14751 I I I I I I I s~sl1 I I I 1575 I I

3770 tshy() lt( w

3720

13670

SOUTH

I 0

I 10

I I 20 30

(KM)

I 40

I 50

lllI 0 5 10 15

WIND SPEED (MS)

DWM WINDS AT LEVEL 3 1600 PST 24JUN87

(300M)

lSgt3 0 0 r--shy N r--shy r--shyt)

It r---1)

lO ---- N bull ~~ r lO ~ oe--- I

~~~~ t z~_-----~8 ~ ~~~2~-~----=---~~ t ~~----~~ -frac14~~~--

~v -~ 1 ~ - ~ ~~ ~~~-~~N~~~~~~~~~~~

tf~ ~ ~ -~~~~~imiddot~~~~~ ~~ ~~

_gt~~ middot1 ~ r2 l~ --~- I _Ct _ V I - ftV

0 ~ ~~- X

z~ HF bullIh IJ i It ti ~ 1 IJtl ~ ~ j t ~1

~ ~ 1~1

1 r ~

)

r r~P t t _r )r f

~ 1+ t t t f t ti ~ 1 lt ~ diams t f J t H ff 1 1I I I It diams diams Vf- 1 f f ~ f I 11

(____ t i(_ bullbull ~ bull ~ I r fr1)L_lt--~~vi 1t1J U1 -~- middot~ 1 t) ~ bull ~ bull ~ bull 1 1 f f f I t ~ - ( ~ ~(~ (_ ~ b ~ - ~ bull f 1 f f ~ bull

j ~r~--~ ~ _ ~ ~ ~ l 6 bull bull 4 t ft It _ - __ _ - J ~ ~ ~ t bullbullbullbull t - _ ~--~_____

__ I deg j ~ ~ b ~ _ Igt ~ _ _ ___ bull bull bull bull

~ ~ I ~ ~ ~ _ ~ _ _ _ __ - bull bull bullf

~ bull ~ ~ 4

I -- I bullbullbullbullbull

~~~ ~

1 bull ~

-- V)

LO lshy -----_ lf)

l- w w

=~ It) 0 l)

It)

2= )

0

~

l() 9 __~----- lf)r--- --------J______--L--J-~J-J-______~______~~~___________________________ r---N O O O ON

0 0 z 3

--

2 0 0 0 ----

LO

_j

w I--GJ Cl)

0 _j z lf) )I-

lt( ~ ~

lf) N 0 -- 0 I-n 2 Zlf) ~0 3 0

N ---

0 20 3 g0 -

0

N r- N I-~ I- I- ~ n n n n

1S3M

B-21

1Sv3

U) N U)

lJ) N n

0 N (0 I)

0 r-shyr-shyI)

0 N

I)

It) N It)

U1 r--1)

1S3M

B-22

0 w w (L Vgt

0 z ~

---2 0 __

_j

w _ ~ OC)

0 _j z U1 I- )

lt~ NVgt

0 --shy 0 1-t) 2 z () 0 ~ ~ (LN -middot -

0 20 ~~

0 ON

bull bull bull bull bull

1Sf3 0 0 0 0 N N CX) ID I) I) li li

~ n

~ n

tf) ~

A i -02middot a_ ~ r ____ Igt middotjmiddot i -1 ~ i r middot-~-----------------gt IJ IJ bull 1 j I ------~-----------------

_ IA_Jyen ~ ~ J ~ yen ----~---------------------

~ II --~_a IIgt 11gt Igt middot~ I bull ~ ~ ~ ~

1(1gt i i _JI J Iibull I - IJ Ji H j

bull bull I( --- j J t ~o ~- -- -J I I i J diams bull1bull bull bull i ~ _I I I I J 1 ~~- ~ 11 J l J diams -~ J) bull ~ I- t t ~ ( l f middott J bull 1_~1 ~ IJ II- I ( II ~ j t t bull)

bull t )bull ~) i ~bull bull __ __ I 1gt J I I I middot----- - ~ _ ~ Ji (Ji_ If ~ --~ bull i f l-Ji ~ p VIMyen I ~ middot1 bull I Ibull lt_~ ~ p1 )

I

__________________

~ 4 V ltI - - - -

~) i t --- -- yen 4 yen -- Iii 1yen yen JY yen II

I ~1 Ja a Igt- yen yen yen yen yen yen yenyenIiyen II II

a Igt bull ~ 111) (I J I JY yen tY yen yen II( ltf ~ I~) JY yen liY yen yen yen yen yen yen yen II II II ~ ~(II ~ yen yen yen r yen 1r yen yen yen It Ill

p cl

p 4 ampgt P JI r Igt bull

bull JJ Igt II

- ~ 11- bull

- -

+ _ _ _ __ __ +- ____

- - ----4

bull bull Igt Igt Igt

11 bull bull bull bull

bull bull It

IJ Igt bull t P

Igt bull t

- II Igt fl t middot~~-~~~t_yenyen yenyenyenyenyenyenyenyen

I ~J )Igt) 1 bull yen yen ~yen yen yen yen yen r - yen If II II Igt - I 1 J bull bullI _ _ 1 ~ ~ 1K )

bull -

bull bull II ~ Igt- J 6 bull I 11

fl) 1gt 11 Ill

bull t t fl

~

U1 r- n

~ n

_________o__JJ=---=-------oti~~e-~e11JEJEolELE-ILILLEJLlLu~uJ

l~

0 tf)

~ 0 n

0 N

0

0

- Vl ~ 2 ---

0 w w CL V1

0 z 3

-

2 y --

-

2 0 0 tlt) --

n _J w f-~ OC)

_J z gt

I- Jlt( q-

NVl bull) I-z Vl -~ CL

02 0 3 N 0 NIf)

ONN I N ro r- (0

n n n I)

1S3M

B-23

17z-g

WEST u u u ~ ~ ~ N ~ N

NO N~ 0~0

7J ~ () z -I 0 N (I)

~ )gt c_ -I C zr co ~ -J rT7

r (Jl

-- __ 0 0 0 s _

--_ 7 ~ --

~ z

~-0 0

--s (I) ___

0

0

N o (A 0

t ()1 0

oj(JI

-0

-()1

0 0 0 N -J

A I q bull if ~ ii ii ii I ii if 1 i J (JI

Ab4llltli ~~144

bull~~bull~1111111 11~1middot)1i~~~1 ~4gt~1111111~ II~ - bullbull~Agt~lll11 IIIAII tbull ~4-4~~~III IIll~ I ~14 4 - ~ bull i ~bull-ttt1 111111 I I 1-~ bullbullbullbullbull gt q bullbullbullbull I t I I I I I 4 I I I I I I I 1_ J~ I

4~ A - middot~~lll111I IIll 1 I 4 -1~~ l~ gt1llllllI 1l111 -~~ I N

tn()16 -1 Igt Igt I I l1I v I 7----(Yi ti mbull1-t

~Plgtlt111 VIII ii l middot~1111~~0~ I l~lll~310bullbull I i~W~ffi 1~~~~6~~~ I J~ 1~~~rw 11~~~1~ ~l~~t ~ i 11~~~~~~~ ~~f)~t~~I I~tl -1

~ --J ()1 l 111~1JV1 ~~~1~ I Ill tniz~i~~~~~~ ~~~~ 7 ~K -~~iii~~~~~~~~ il~~~~~~~ 1~~1~~~

middot1 middot1 middot1 middot1 middot1 middot1 middot1 middot1 middot middot1 middot1 middot1 I I I I vr )Igt(_ I II I I~~~~t~ 21~~~r~~~~~v111l I ~ II I -- I~ J(( I I II J l l l Cl ~ I ~ ~ ~ J J I I I yen - - bullbullJ_~ f yen ~ I IJ t I ti

diams J J J I I - ~ - ~ l1 yen -1) I I( t I ~ N J J J J 1- ur~ ~ - Jf1( -I) I I I ti I I j~

() UI diams Mi r)r yen fir_~~ bulll1t) JI 1 I middot i - (JI0 ~ nmiddotmiddotJ jmiddot-1 I I I f ~j--1J ~ __ middot gt C ~ J I f I 1 ltH I fl 1 ti I middotr- I I-I ~ f bull t t l )1j - _ I

t J4J-fbullt t ~ ii middotlfli ii~) - ~bullmiddotttM i f bull bull1 rI-Ku bull bull bull _ middot-~-J_J middot t +imiddot i t t ~ t ( ~ middot(~ I J bull Vf I r1- ~ j~fmiddot + r bull(~t t bullbull_t- J J ~) J ~ Igt

+ __ middot + V+ bull bull ti+ bull + -fi J i bull bull ~ f --- ~ ~ t Li bull bull t ++ diams + t bull +++ + bull ~ __Vbull ~ it 4 ~ i ()1 ~ 1 bullbull diams diams diams diams ++ ++ bull t 1 fA middot_ -----Y 4 ~ tn

~ ~bull t bull + diams + bull diams +++t + bull A VJ ~ bull bull ~ -o middot ~- bull t bull diams diams diams + ~i4_ ~ ~ ~

11 -~ 1 1 1 1 ~t t diams t t ft(middot-- f g a PA

--middott 4 -4 y 1 1 1 )f7~ V g n t A ~ ~bull a~ 4 1 1 ( V P q 1 bull A ~ V Y ~-- 4 I Cl oCl 4 A A ~tW --~- ~middot -)bull ~iliJ bull1bull

bull It t-- ti __ __ ~ (~w ~ ()1UI I bullbull bullrmiddot -~)fl l~~~ ) I A IIbull N~L~ r ~~~-ff~ --bull--1) 4 4 bull ()1

~ 14 ~ bull f 4 AA 4~ bull

44( )A - ~

- ti~ f 4 ~ 4 4 4 A bull ~ i

ti ti fl 1 4 tn llflfl44 4 -()1

~ ()1 ti ti fl 4 4 _ 4 bull fl _ 4 ~ ~

~ bull t~ - - I - 1 T T fJifrac12 1f 1~ fl t [ 1 4 bull bull ~ ltt ~4 ~~~11 l~~Nfl---~ ~~ bull ~t144

1 -middot I I f I ~ fl ti ti- Imiddot tJ 1-0 I 14

z o 0 -I

I

Y

)

u u u u 0) ~ ~ ~ ~ N ~ N 0 0 0 0

EAST

1S13

0 z 3

r r I-shy Ishyer gt 0 0 z ()

--_

2 0

--

___J

w CJ r----1 (lJ

0 l() z

Ishy gtlt J LO() N0

z Ishy()

3 0

0 20 3o 0 tj--

0

1S3M

0 w w 0 ()

B-25

------

~ --- _

NORTH 275 325 375 425 475 525 575

dJ 41 l ll~I tgtI I lo fA Itgt IA IA lo 1 IA IQ 1q lq If lq I ~I 4

~ ~ IIJ ~A ltI P Igt Igt Igt P V V V Q q l_-~- q ~ ~ ~ x- ~ ~ Y t~ --___q)11 4 ltI v v v v v v v 1raquo 4 -q q -~ q ~ 1 a

~ 4 ~~_gt~) ) ~~-4_~ A ltI fl v v v v p A V yjq ~ _ _ ~bullbull --shy~~~ ~ I Cl11 ~ 4 v v v v P- deg 4 ~ -V t V ( ~ a bull-

~ 1 ~~~ v ~sa- fl V P -iLpound_~A--4 q Igt P ~ 4 a~ 4 38203820

- _1 fa bull bull ~ II 11 4 4 ltf V P deg q 9 p Igt Igt Igt Igt P~~ _ _ _ bull -

- ~_R middot ~ gt- P-~-j---s--middotp-~~--- Igt p ~(

-~~ _ amp- 4 --v--J ~--~ -__~---- ~~ t f ---~middot bullbull ~ ~ ~ ~ ~~bull--- bull~bull~~ 4 ~-deg ~--~ ~_v -~ _~raquo Wh~

bull bull bull bull ___ol bull bull --___~ ~ _ A~~-~- f_~-~ bull 1 ~bull -~ Igt bull

a l -4 bull bull~ bull ~ ~ bull frac12~ P- __ _middotmiddot11-~~j)6-_ U bull _ JIgt~ bull I- bull ft ~ 4_~~~~ 9 P lgt--1gt~~~_-~_----~~~ ~ bull ~ ~ ~ ~ --~-~- ~~-_middot ~~~A~ ~ 1111 ~- ----~~ -~- IIgt _)-

1111 1111 -( _-middot 4 ~ Po Igt q lgtmiddotv11t_ Igt Igt II

3770 ~ P 0 ~ - bull k ~ 1- 1-

() pound 4 4 ~ q -44 - bull bull Igt ~- t Igt 1 Igt () w Igt 7 lt

3 - bull It It It bull bull ~--~ p ~ Igt ~ w ~~ It It It bull ~ -_t _ ~ bull bull bull bull --~ Igt

deg

td bull ft bull v ~lt~ Igt Ci~ 4gt I ~ It bull bull ~ 6 -It Igt ~

N bull bull It It ~ ~ _ ~_) ~ ~ lr It ft ft ft ft ft ft Igt -II-~ j ~ fil- _ _ _ _ bull 11r 1o 1o It 111- bull ft ft ft ft ft i i f - ~ 3720 bull It bull ft ft ft ltt q -e- ~ ~ ~j1

4

middot bull bull bull It It ft It bull ~ ~ ~ bullmiddot ft ft ft ft ltt ft ltt ltI 1 ~ - It bull It ft ft It bull -0 ~ JIgt ]~

middotmiddotmiddotmiddotbullbull1rt1rtft11- p-bull- ~1frac121 1tftftlttltltPt1t fgtbullbull ~~- bullbull ~

It bullbullbullbull It ltt It It ltt It lrt lrt tgt - ~

~~~ItIt ItItIt 1t11tft lttlttftlttltlt ltt lt11t ~ lgtbullJgtIbullbull bull~bull bull~bull ~ 1 bull bull 3670 367~75 325 375 425 475 525 575

SOUTH

1111111111111111I I I t--l 0 10 20 30 40 50 0 5 10 15

(KM) WIND SPEED (MS)

DWM WINDS AT LEVEL 3 (300M) 400 PST 25JUN87

0 0 0 0 N r-shy N r-shya) r-shy r-- (0 I) I) 1) I)

-

LO r--1) -

l~ i ()

0 z 3

I ~ n 0 z I)

N st-

0 If)

0 - I) 2 0 ~ N -

0

0

1S3M

B-27

---_

2 0 0 0

-

If)

_J

w Cj l-_J OC)

z_ ) lt( J () L()

ON z~ 3~ 20 3oo+

0 0 0 N N C0 (0 I) ~ I)

U)

U)

U) U) N N It) U)

I I-=gt 0

U) V1 N st-

lO N I)

0 lO

0 __ I) 2 0 ~ N _

0

0

__ 2 0

--

_J

w l--Gj OC) _J z I- =gt lt( ~ V1 N 0 1-z V) 3 CL

20 3 g0

1S3M

B-28

I fshyCt 0 z

0 r-shyr-shyI)

0 N r-shyn

0 r-shyl) I)

lO r-shylO

lO N It)

lO N ltt-

--

tlt)

_j

w r---fu o) _J z f- ) lt( ~ f) N 0 1-Z Vgt3 (L

2 03g0

I fshy)

0 l)

0 lO

0 -- n 2 0 ~ N ---

0

0

1S3M

B-29

1S13

-l)~ O 0 w

deg CL w

l)l ~

0 0 z 3

I lshya 0 z

--_

2 0 0 0

--

LO

_j

w__cj IJ)

0 _j z lf I- )

lt ~ ~ V) N

I) 20 - 0 Z(f)

I-

0 ~ 3 CLN -

2 00 3 gOr-

0

1S3M

B-30

Ht 11Sittl

lS13 0 0 0 0 N N II) (0 n I) n n

-- ()

LO t-shy ~ lO

(~i0 z

lO N LO

3

I Ishygt 0

lO () N +

--

2 0

--

_j

wr-----CJ OJ

0 _j z lt) I- )

lt ~ V) N

0 -- 0 1-shyI) 2 z () 0 i 3 ClN --- --

0 28 3 ltD

lf 0~_____________________________~_______________________--- t-- 0 0 0 0 ClCI N N t-shyII) t-shy io n n n n

1S3M

B-31

==- ~-_

NORTH

I bull bull - -f I I bull ~bull - ~__~~~~ ~~~

flt~11 $~~~t=- ~~ ~ 4Aligt~ ~~~ ~~

3820 1~~~- 4 t 11 ~ ~- --~_____-- ~ ~ ~~ 3820 ~~~

~~-~~~~

3770 3770

l1 ()w l-

lllizz tshy

~ ZlZZl ~ ~~~~~~

to I -IllIll

w -I IIIll~N llllll2~~

-II I I J I-~1~ r~~~~ 3720r ~ J J UL 1~A~~ 3720

~IIJJJJJ2~ ~~~ 1 ~ fl I JI JI2~~ 1~~~V fl fl ~ JI J J ~ y ~- 1-f4~) ~ fl fl fl I JI J _A2 1~ V~

~flflflflJIJIJl~2 ~~JIw~ ~ ~jlfljlflJIJIJI~ ~JIJIJflfl~~~ ~ ~~fljlfljlJI~~~~ -

J67 t-V1111111----(((((1i I~laquo rlt~1 I I I I I I I IM m I I I I I I I ~ MJ670 g75 325 375 425 475 525 575

SOUTH

11111 11111 11111 1I I I I I I 0 10 20 30 40 50 middot 0 5 10 15

(KM) WIND SPEED (MS)

DWM WINDS AT LEVEL 3 (300M) 1600 PST 25JUN87

1

NORTH

bj I

w w

i~ -tt--t ~ + ~frac14 diams diams diams diams diams f f f J-~~~l -ff~_x~ diams t diams ---t diams + diams ff f J1ff~t t

-=tl-U +---- ~ ~ t-t- diams diams __ diams~ diams diams ~ J I I 1 1 f ~ -y- ~I -~~-1t-~ diams +__+ diams + ++--J_f 1 ~JJ-11 I --

38201- ~~-- ~ ~--t_-( 1 ~ r 1t + middot~-t_ bull ~-~ bull bull bullmiddot bull r-r 1 ~IiI 1 I ~Ji~l _-=pound-~If~_ It It It bull bull bull bull bull ~ diams f f---bullmiddot+ --I __- _ I I~ 1 f1

( - ~~~~ II lit It It 1tt Iii Iii~ -r-middot -- ___- l_f--1-l -L ~~1 1 ~ ~_( _ -~~ ~------~ 1t(~ bull (t ft- ~ middotv -11-fI 1 - t~~1 1 41

~ - ~-~- lit 1t lk_i -- -~--- -_ -j rf-- l1 r111 1 I It It~ It 1t 11i bull-~ ~- ~ t_bullbull_~ (middot ~--middottY~i_(4Xtl~4j_ middot It It ~ -- ---~----~----_I~)-~-~ -

~-It It ltt middot~- ~ -~-middot ~-pound1[_~ -~- - middot - deg - - It It l diams diams 4 middotbull--bull ~ ~ ~ diams 7 1---~~ -L_- - ~ t( I diams -( bull diams ~ ~ bull ~ -- JI JI Jf JI JI j(_ ~II deg It_ -~ ~- I I I J JI JI JI JI 1

~ J- ~llj ~- diamsdiams +II IllJI_ h~ ~ ~ ~ bull bull ~ JI J J J ~ 1 x111 X7 -~ ~ diamsdiams 4111 JJJIJJ~~~~~~~~1t diamsdiamsdiams ~111 JJIJJIJllllb~ h~~~hh middot ~ - diams diams bull I I J J I I I I JI JI I l1-14~frac12-~~~ji_ ~ + f 1 J I 1 I I I 1 ~ x~ f1 11 middot -

bull JI I I I11~bullY1iz 1 41 ~ f I J J J JI J J J J J I I I lmiddot ~ t JI JI JI 1 JI 1 1 JI J I I I It~ if~_~

It_ ~ 1 JI JI JI JI J J I I l-~ 4 t J J J J J J J JI JI I I l l deg ~~ _ ~ 1111JJIJIJIJIJIJIJIJI t JIJIJIJI~I JIJJIJIJI_

~- I t I I JJJIJIJIJIJII~~~~ t JIJJIJIJIJIIII ~~ JJ JIJIJlllll ~ t IJJIJIJl1 1 1 ~ ~~I 1 t 1 A 11111111 II I I I

325 375 425 475

SOUTH

I I I I I I 0 10 20 30 40 50

(KM)

525 575

1111 111 1111 10 5 10 15

WIND SPEED (MS)

3820

3770 1-() lt( w

3720

3670

DWM WINDS AT LEVEL 1600 PST 25JUN87

5 (1000M)

0 w w CL ()

0

1S13 0 0 0 N r-shy N agt r-shy r--t) I) 1)

I() It)- r-shyU) U)

z U) N It) 3

( I I lshy Ishyo ) 0 0z It)

~lgtIgt~() st- b tgt ~ q st

lgtbbtgtb

b b t t 0 b

N

Igt b t b b b A 6 ~ b b t b C A 4 d 4

ttCt4lt1-it e Igt b tgt tgt V q ltl ltl ltI ltl

ti- deg 1 41 9 q I I ltl q q

i V q ltl q q q q I l() r-shy AlgtV ~ tlt) ~t) -~~~q

~ bull amp ~

0 ~ ~

-qa ~ ~ 1gt1 111111

b-a~-V ltillilI

bull lt bull bull a ~ Igt ~ V V V q 4 __J

It It lgt a -a~ Igt C tgt V w r---(J OC)

bull ~ Igt t 4 bull bull bull bull U) 0 __J z middot 1gt44lt14

U) ) t) rshy J - -N

lt( l() ~ ~~ CI() ~ ~

~

0 Ishy bull bull bull diams 1 z ()~ bull ~ bull diams diams 1 CL3bull ~ ~

i b y ~bullbullTT r I I 0

~ bull bulldiams ~ ~ b b b b ~ bullbull diams T r r I U)______-11____________________________ _ 0

0 O O ON N r- N r--agt r-- _ ~ I) I) I) I)

1S3M

B-34

I

_ _ 3820r- ttr- t f T Jf-Lt If t t 1l-- -~ 1~ t t

NORTH

~bull 1414

~~-_ ~ ~ r-- - --~ ~ - - _ r-- fT W - - r V-V ff f

- t t t t f I~ _AAjAA~-r bull(- -J It ~---1 t ~~~-1-- 1 ( ~~ - J ~ t t i f 1 ~ A_A-yen~_~_ ~ ~ 1 ~ t t ~ t t middotmiddotkt f ~-~-~~-----~~-- ~ ~ ~ ___ll_ bull ~

t -r- _______~~----- r ~bullbull _ ~ ~ tt-~J--~c-~~ ~ 1~--______ bull

~ -t lJ-- f t-J-- r---~~---middot _-- ~~-- ~ bull bull ll~iti~~sect~~~ ~ bullbull~bullbull bull~~n~ bull bull bull n~ bull bull

A)~lfifrac12~~ ~III I --1

3770 l l L l L - - ~ -- ~ - 1 ~ - 770 tshy~ ~~~~~~~~~11 1 ~~=1~~- Ul

W 1lllll~I ~~~~1111~~ lt( w ~1~~1~1~~j~~~m ~~~~ ~ - ~

11 1111 1111~I I 11111111 --- middotE~

tj IIIIIIIII_ ~tI l) llllll_~_p ~1l1 1~A~~~A~~rrr-v

3720t- I I I J J J A__ r r 0 11J)~~~----~_~ppmiddot-~~f Jl~~~~~---~--~~r~-~~q~q ~1

I ~JI I~ A A-_

~JIJl~~~~~A-----A rrbullbull~f~df~ ~~JIJl~~~~A~~--~- fffdfdff

~~JIJI~~~~~~---- bullfbulldbullfdf~

~IJIJl~~~AA~ --middotmiddotmiddotmiddotmiddot~middotmiddot~~~ ~l~JIJIJl~~~Al~pp~~~~bullbullffffffdff X ~~~~JI~- A(- f bullbull P ~ ~~bull1f1q1f1f1f1f1f1d1bull

3670275 325 375

1111 1111 11111 1 1 1

0 10 20 30 4-0 50 0 5 10 15 I I I I I I i(KM) WIND SPEED (MS)

iDWM w1tms AT LEVEL 3 (300M) ir 2200 PST 25JUN87

0 If)

0 __ I) 2 0 ~ (j __

0

0

__ 2 0 0 0

__

LO

_J

w f- GJ ll) _J z I- ) lt( ~ () N 0 1-z () ~ Cl

20 ~~ ON

1S3M

B-36

Page 4: Nind Observations Collected during the Southern California ...

Disclaimer

The statements and conclusions in this report are those of the Contractor and not necessarily those of the California Air Resources Board The mention of commercial products their source or their use in connection with material reported herein is not to be construed as actual or implied endorsement of such products

F4500 9106lrl

ii

Contents

1 middot INTRODUCTION 1

2 GENERATION OF WIND FIELDS AND ANALYSIS OF AIRFLOWPATIERNS 8

Diagnostic Wind Model 8 General Procedures 9 Summer Intensive Monitoring Periods 10 Autumn Intensive Monitoring Periods 15

3 PARTICLE PATH ANALYSIS 18

Calculation of Particle Paths 18 Summer Particle Paths 31 Autumn Particle Paths 32 Comparison with Tracer Data 33 Uncertainty Analysis 34

References middot 43

Appendix A SCAQS Wind Monitoring Sites Appendix B SCAQS Diagnostic Wind Analyses Appendix C Particle Paths

F4500 91061rl

iii

II

(

1 INTRODUCTION

One objective of the 1987 Southern California Air Quality Study (SCAQS) was to acquire an improved understanding of pollutant transport within the South Coast Air Basin (SOCAB) The complex meteorology of the SOCAB governs the transport of pollutants within the basin and through its boundaries Thus a thorough understanding of the mesoscale airflow patterns in the SOCAB is critical to understanding pollutant transport in the basin

Wind data collected during eight intensive monitoring periods in the SCAQS were used to analyze the mesoscale airflow patterns in the SOCAB The SCAQS data base contains the most comprehensive set of surface and upper-air wind data ever assembled for the SOCAB High spatial and temporal resolution wind measurements are available for 17 intensive study days representing both summer and autumn air-quality episodes

19 June 24-25 June 13-15 July 27-29 August 2-3 September 11-13 December 3 December and 10-11 December

The data set represents data good spatial and temporal resolution of some mesoscale airflow features The SCAQS surface wind monitoring sites are listed in Table 1-1 the upper-air wind monitoring sites are listed in Table 1-2 Data availability varied from episode to episode Plots of the surface and upper-air wind monitoring site locations for each episode are given in Appendix A

The wind data were analyzed using the Systems Applications International (SAi) Diagnostic Wind Model (DWM) (Douglas et al 1990) Using this model observational wind data are incorporated into a first-guess field that consists of a domain-mean wind that has been adjusted for terrain effects Figure 1-1 illustrates the complex topography of the SCAQS wind analysis domain This domain is identical to the Urban Airshed Model modeling domain used by the South Coast Air Quality Management District for modeling performed in support of their 1991 Air Quality Management Plan

9106102 l

TABLE 1-1 SCAQS surface wind monitoring sites

UTM- UTM-Site Easting Northing

Identifier Location (km) (km)

ALHA Alhambra 3945 37727

ANAH Anaheim 4150 37425

AZUS Azusa 4149 37774

BANN Banning-Allesandro 5117 37540

BARS Barstow 4979 38611

BU23 Buoy 46023-Point Conception 1594 38014

BU25 Buoy 46025-Catalina Ridge 3054 37307

BURK Burbank 3795 37830

CASI BLM-CasitasLos Padres NF 2824 38089

CELA Los Angeles-North Main 3869 37701

CHIL BLM-ChilaoAngeles NF 4046 37990

CHIN Chino 4365 37634

CI Santa Catalina Island 3683 36963

ONS Cajon Summit 4617 37990

CLAR Claremont College 4351 37735

CM36 CIMIS-Blythe 7262 37256

CM44 CIMIS-U C Riverside 4690 37581

CM50 CIMIS-Thermal 5703 37230

CM55 CIMIS-Palm Desert 5572 37323

CM60 CIMIS-Barstow 4895 38621

CM62 CIMIS-Temecula 4794 37055

COMP Compton Airport 3855 37503

COST Costa Mesa-Placentia 4138 37242

CRES Lake Gregory-Crestline 4748 37890

ELRO El Rio-Rio Mesa School 3026 37922

ELSN Elsinore 4677 37260

FONT Fontana-Arrow Highway 4534 37731

Continued

2

9106109

n iil itb( r r tt A-TABLE 1-1 Continued

UTM- UTM-Site Easting Northing

Identifier Location (km) (km)

GLEN Glendora-Laurel 4215 37782

HAWT Hawthorne 3734 37543

HESP Hesperia-17288 Olives 4738 38084

HF Henninger Flats 4006 37847

KH Kellogg Hill 4242 37711

LA Los Alamitos-SCE Power Plant 3980 37370

LAHB La Habra 4121 37542

LANC Lancaster 3957 38415

LBCC Long Beach City College 3947 37437

LCAN La Canada 3882 37861

LGBH North Long Beach 3900 37430

LSAL Los Alamitos-Orangewood 4045 37398

LYNN Lynwood 3882 37548

MALI Malibu 3440 37669

MISS Mission Hills 3651 37932

NEWL Newhall-County Fire Station 3590 38060

NORC Norco-Norconian 4472 37533

NTD Pt Mugu Naval Weapons Test Center 3048 37769

OJAI Ojai-1768 Maricopa Highway 2914 38138

PASA Pasadena-Wilson 3961 37773

PERI Perris 4784 37380

PICO Pico Rivera 4023 37641

PIRU Piru-2SW 3324 38076

PLSP Palm Springs-Fire Station 5425 37457

POMA Pomona 4307 37696

PV Palos Verdes-San Pedro Hill 3762 37346

Continued

3 91061 09

TABLE 1-1 Concluded

UTM- UTM-Site Easting Northing

Identifier Location (km) (km)

RDLD Redlands-Dearborn 4853 37686

REDO Redondo Beach 3720 37459

RESE Reseda 3587 37851

RIAL Rialto 4625 37760

RIVR Riverside-Rubidoux 4615 37620

SIMI Simi Valley-5400 Cochran 3449 37940

SNBO San Bernardino 4748 37739

SNI middotsan Nicolas Island 2684 36823

TANB BLM-TanbarkAngeles NF 4301 37849

TEME BLM-TemescalLos Padres NF 3531 38167

TORO El Toro 4320 37252

TRON Trona-Market Street 4361 39573

UPLA Upland ARB 4420 37736

VCTC Victorville-Civic Drive 4707 38185

VENI Venice Beach 3642 37612

VERN Vernon 3874 37625

WALN Walnut 4223 37677

WHIT Whittier 4053 37540

WSLA West Los Angeles-VA Hospital 3657 37686

WSPR BLM-W arm Springs Angeles NF 3552 38291

ZUMA Zuma Beach 3313 37659

9106109 4

TABLE 1-2 SCAQS upper-air wind monitoring sites

UTM- UTM-Site Easting Northing

Identifier Location (km) (km)

BUR BurbankGlendalePasadena Airport 3748 37850

DAGG Daggett SCENES Site 5198 38581

EMUA El Monte-9528 Telstar 4021 37700

GLUA Glendora-near SCAQMD site 7000591 4216 37783

LBCC Long Beach City College 3947 37437

LBCR Long Beach City College 3947 37437

LMUA Loyola Marymount U niversity-Engng Bldg 3694 37604

NEED Needles SCENES Site 7181 38496

NSI San Nicolas Island 2717 36796

NTD Pt Mugu Naval Weapons Test Center 3048 37769

ONT Ontario International Airport 4443 37684

PSP Palm Springs 5460 37429

RAL Rialto 4589 37567

SFUA Santa Fe Springs 4020 middot 37557

TRM Thermal Airport 5776 37209

VBG Vandenberg AFB 1733 38472

YLUA Yorba Linda County Park 4287 37549

591061 10

5~

NORTH 275 325 375 425 475 525 575

~-~

bull ( I (o(r--L__- __ c_ __ ) -9) I _)I --~ ---~ __------__

bull (Q ~ ~ l-- middot r l__ _ _ 1 2 oo--_ - _ ~ shy

-

----- ----

------ ---

~middotmiddot- lt~]~---~ ~ 1 L

~~ 0

- o 7 -

----

~ middot -_ -_ I ( C~ ) ~ middot---) lt____ ) 9 bull ~- J t------------ ~ middotbull _ __ 10o -- - - - - - - 0 __ - J J--aoo ltJ

3620---_--__ _ - 0) ------- ___ -- - - ---- -- - --~- 7--

- middotmiddot -middot-- 0 _ - - I 1---------- ---- ~ ---~-----_ -~- ------- -_ ------~lt()~ --nmiddotor ~o-gtpcbull-middot ccc_--gt ____ middot_middot Ji tdegoo CmiddotI bull -bull - - I ---

middot-middot ___ - 1 c___ ~ i-- l bull - --- bullsoclt---_ middot middot-~soc_ ~- le r---- ltD

_ - -- ____ -c bull -~------1 5

= __ __ ) --~ --_ ---- ____ - _____-~~~-~ ~ _ ---~-frac142--~~ so9~ _ Q___~ - -- _ bull bull 1 middot -~ - -- - bull bull c- rAo 0o(Y--

-_ -------=--=_6CO-------- - ~)_O~ _ ~_ lt--middot_~~--~ (_ )-~- - _- ~ 0

~) ( ___ ------ -~- C jjh --- - ~ I 3770

t- 300- middotoo___ -~- l _2 ---sii middot middot 50~ ( C tshyV10w w ~ C ~_( middot bull i

l_ --t

~

__ _~) igtgt

- 1

- middot

7)_ -o-

- _middot-- -- ~ ---30~lt_~-L_ 9oo_~gn~~-__~~

U)

3770

- - o ~~~~d l -- o~ Jl _

si (_ - (----_ ( 1400t 37203720

- 1 ) reg_~S ~ ~~

7 9 b -- -- 0 ~

i --shyf I I I ~Ibull-bull

367~s I I I I I I I 13251 I I I I I I I 1351 I I I I I I I 14251 I I I I I I 14~51 I I I I I I I ss 7 I I I I I I I5s I I I I 3670

SOUTH

I I I I I I 0 10 20 30 40 50

(KM) i

FIGURE 1-1 The SCAQS 1987 analysis domain (axes labeled in zone 11 UTM coordinates topography contoured in meters)

-- ii gti kd

Our analysis consisted of (1) generation of hourly gridded wind fields for the 17 SCAQS intensive study days using the DWM (2) analysis of the mesoscale airflow patterns and (3) calculation of forward and backward particle trajectories to examine pollutant transport in the SOCAB

The results of the diagnostic analysis of SCAQS wind observations are presented in this report The generation of wind fields and the resulting airflow patterns are described in Section 2 The trajectory analysis is presented in Section 3 Plots of the wind fields are given in Appendix B The trajectory plots are included in Appendix C

9106102 7

2 GENERATION OF WIND FIELDS AND ANALYSIS OF AIRFLOW PATTERNS

DIAGNOSTIC WIND MODEL

Hourly gridded wind fields were generated for the 17 SCAQS intensive monitoring days using the Diagnostic Wind Model (DWM) (Douglas et al 1990) This model incorporates observations where they are available and provides some information on terrain-induced airflows in regions where local observations are absent The model is formulated in terrain-parallel coordinates Wind fields are generated using a two-step procedure

In step 1 a domain-scale mean wind is adjusted for terrain effects These include the kinematic effects of terrain (lifting and acceleration of the airflow over terrain obstacles) thermodynamically generated slope flows and blocking effects Step 1 produces a spatially varying gridded field of u and v for each vertical layer within the model domain

In step 2 observational information is added to the middot(uv) field calculated in step 1 using an objective analysis procedure observations are used within a user-specified radius of influence while the step 1 (uv) field is used in subregions where observations are unavailable The following modified inverse-distance-squared weighting scheme (Ross and Smith 1986) is used for the interpolation of data

where (u0

v0 )k denotes an observed wind at station k rk is the distance from station k to a

given grid point (u v)1 is the step 1 wind field at the grid point and (u v)i is the updated wind vector The parameter R controls the relative influence of the observations and the step 1 wind field

Following the interpolation a five point smoother of the form

9106102

Amiddot 1J

8

is applied to the horizontal wind field to reduce discontinuities that may result from the interpolation The vertical velocity is calculated by integrating the incompressible conservation of mass equation Zero-gradient lateral boundary conditions are used

GENERAL PROCEDURES

Generation of the SCAQS wind fields involved (1) preprocessing of the wind data for input into the DWM (2) plotting and quality control checking of the data (3) specification of the model input parameters (4) exercise of the DWM and (5) graphical display of the gridded wind fields Winds were analyzed at six vertical levels 10 100 300 600 1000 and 1500 meters (m) above ground level (agl)

In the preprocessing step the upper-air data were vertically interpolated to the model levels and temporally interpolated to enhance the temporal consistency of the wind fields and to provide hourly input for the DWM

Following the preprocessing step the data were plotted and examined for horizontal vertical and temporal consistency Data that failed the quality control checks were eliminated from the model input data set

The controlling parameters for the DWM include the maximum radius of influence (RMAX) at which a monitoring station can influence the interpolation at a grid point the weighting parameter for terrain effects (R) the number of stations to be used in the interpolation (NINTRP) and the number of smoothing passes (NSMTH) Note that the maximum radius of influence is specified independently for the surface level ( over land) upper levels (over land) and over-water portions of the domain The weighting parameter for terrain effects and the number of interpolating stations are specified separately for the surface level and upper levels In the diagnostic analysis of the SCAQS wind observations these parameters were specified as follows

RMAX (surface) 20km RMAX (aloft) 100 km RMAX (over water) 150 km R (surface) 10km R (aloft) 50 km NINTRP (surface) 4 NINTRP (aloft) 3 NSMTH 4

Tests were performed to examine the sensitivity of the DWM to the various contr ling parameters and to select the optimum values of these parameters for the SCAQS v nd analysis

9106102 9

The DWM also requires as input a domain-mean wind and stability information For this analysis the domain-mean wind was specified separately for each analysis level and was based upon the average of the level 6 (1500 m agl) wind observations To account for friction the speed of the domain-mean wind was reduced for the lower levels by multiplying the average wind speed for level 6 by the following scaling factors

Level Scaling Factor 1 048 2 072 3 083 4 090 5 096 6 100

The domain-scale lapse rate was the calculated average of four inland sites These varied according to data availability

Six-hourly plots of the level I (surface) level 3 (300 m agl) and level 5 (1000 m agl) wind fields for each episode are given in Appendix B

SUMMER INTENSIVE MONITORING PERIODS (

Mesoscale airflow in the SOCAB during the SCAQS summer intensive monitoring periods appears to have two components

A basic diurnal cycle driven by land-water temperature differences and complex terrain and

A perturbation associated with the overlying synoptic flow

19 June 1987

The surface and upper-air wind monitoring site locations for this intensive monitoring period are indicated on pages A-1 and A-2 respectively Plots of the diagnostic wind analyses for 19 June are given on pages B-1 through B-12

The surface early morning airflow pattern on this day is characterized by weak winds over much of the coastal and inland areas with moderate NW winds over the Coachella Valley and offshore At 300 m agl winds are S over the western half of the domain and W to NW over the eastern half of the domain The overlying flow at 1000 mis W

9106102 10

n1er

The sea breeze is somewhat slow to appear in the western basin on this day but has begun to develop by 1000 PST At this time winds at 300 m agl remain S over the western part of the domain and W to NW over the eastern part of the domain Some S flow is also apparent at 1000 m

During the afternoon hours three distinct features are apparent in the surface airflow pattern

A sea breeze (W flow) develops along the coast between Santa Monica and Palos Verdes and penetrates inland A branch of the sea breeze penetrates into the San Fernando Valley resulting in weak SE flow at Burbank and Reseda

An area of weak (SW) winds forms in the Whittier-La Habra-Pico Rivera area persists throughout the afternoon and fonns a convergence zone in the central basin with the penetrating westerly flow The S component of this flow is due to sea breeze development along the coast near Long Beach

Upslope flow develops along the foothills of the San Gabriel and San Bernardino Mountains (eg at Glendora and San Bernardino) Along the eastern foothills the upslope flow is supplanted during the afternoon by the penetrating W flow

By 1600 PST on 19 June the depth of the upslope flow near Glendora exceeds 600 m Strong outflow is apparent through the Cajon and Banning passes Aloft winds are generally SW with some SE flow near Burbank and NW flow over the Coachella Valley

Significant onshore flow (3 ms) persists along the Santa Monica-Palos Verdes coastline through 2200 PST Feature-s of the afternoon airflow persist aloft through this time

24-25 June 1987

Surface and upper-air wind monitoring site locations for this intensive monitoring period are indicated on pages A-3 and A-4 respectively Plots of the diagnostic wind analyses for 24-25 June are given on pages B-13 through B-36

The airflow patterns on these two days are similar to one another and to the ttern on 19 June The overlying flow is generally weak below 1000 m agl with moderak t5 ms) SE flow at 1500 m agl

On 24 June the early morning surface airflow patterns are characterized by ver middoteak winds At 300 m agl winds in the Coachella Valley are SE By 1000 PST a we1 organized zone of weak S flow extends from Long Beach to Pasadena this S flm

9106102 11

(

reaches a depth of 300 m agl Southeastern flow in the Coachella Valley and E flow through Banning Pass are apparent both at the surface and 300 m agl S to SE flow dominates at 1000 m agl The II three-zone II surface airflow pattern is apparent during the afternoon The wind shifts to Wat Banning Pass by 1500 PST At 300 m agl winds are SW over much of the basin with SE flow at Burbank and in the Coachella Valley At 1000 m winds are generally SW At 2200 PST the airflow pattern is characterized by weak unorganized flow at the surface and 300 m agl Winds at 1000 m are NW over much of the domain but SE over the Coachella Valley

The airflow on 25 June is similar to that on 24 June During the early morning hours winds at the surface are very light Weak SE flow is apParent at 300 m agl At 1000 m agl winds continue to veer toward N The sea breeze develops more quickly than on the previous day and winds at Banning Pass become westerly by 1300 PST Calm winds are observed at Pico Rivera throughout the afternoon As on 24 June the afternoon airflow at 300 m agl is characterized by SW flow over the basin and SE flow at Burbank and over the Coachella Valley Upward propagation of W flow is generally slower than on 24 June Winds at 1000 m agl are S to SE During the evening hours the surface winds become light while at 300 m agl winds over the Coachella Valley become NW Organized W flow is apparent over the W basin through a depth of at least 300 m agl through 2200 PST

13-15 July 1987

Surface and upper-air wind monitoring sites for this intensive monitoring period are shown on pages A-5 and A-6 respectively Plots of the diagnostic wind analyses for 13-15 July are given in Figures B-37 through B-72

Airflow patterns on 13 and 14 July are generally consistent with the basic diurnal cycle described earlier However an unusual airflow pattern develops in the Coachella Valley on both days On 15 July strong SE forcing is associated with a delay in sea breeze development

The 13 July early morning surface airflow pattern is characterized by light winds and a weak cyclonic eddy over the Santa Monica Bay Winds aloft are light to moderate and primarily W The sea breeze develops rapidly on this day and by 1200 PST W flow overwhelms the S sea-breeze flow in the Long Beach Area W flow appears at Banning Pass by 0800 PST The surface afternoon airflow is characterized by the three-zone airflow pattern described earlier with strong upslope flow along the foothills ( gt 5 mls) and significant outflow through Cajon Pass Observations at Palm Spring (NW winds) and Thermal (SE winds) indicate a convergence zone in the Coachella Valley with a depth of at least 600 m W flow dominates at middot1000 m with S to SE flow over the Coachella Valley During the evening hours a cyclonic eddy redevelops over the Santa

9106102 12

rtMt1

Monica Bay winds are weak throughout the basin but airflow into the Coachella Valley is especially strong

Airflow patterns on 14 July are similar to 13 July with a few exceptions During the early morning hours the surface airflow is characterized by weak disorganized flow There is no eddy apparent over the Santa Monica Bay The overlying flow is weak and primarily S to SE at 300 m agl but W to NW at 1000 m agl Sea breeze development is approximately two hours slower on this day than on 13 July By 1000 PST weak S flow has developed over the Whittier-La Habra-Pico Rivera area and SE flow is apparent at Burbank AS component to the flow appears at 1000 m The afternoon surface airflow pattern is similar to that on 13 July but the S upslope flow at Glendora is weaker S flow develops at Elsinore and several coastal Orange County sites The Coachella Valley convergence zone reappears at the surface at 1600 PST two hours later than on the previous day At 300 and 1000 m agl W to SW flow dominates over the western twoshythirds of the domain SE flow is apparent over the Coachella Valley During the evening hours the surface airflow over the central basin is S to SW W flow components persist along the eastern foothills through 2200 PST

On the morning of 15 July surface winds are weak but maintain a S component Moderate SE flow is apparent offshore The overlying flow is generally E to SE By 1000 PST the surface airflow pattern is characterized by S flow over the central basin and along the foothills SE flow in the Coachella Valley and E flow through Banning Pass The depth of the S to SE flow is greater than 1000 m agl During the afternoon a weak sea breeze penetrates inland and winds along the foothills become W Winds shift from E to NW at Banning Pass at 1600 PST A weak S flow component persists in the Whittier-La Habra-Pico Rivera area throughout the afternoon A weak slopevalley circulation develops in the Coachella Valley resulting in SE flow there At 300 m agl winds are SW to W over the central basin and SE over the Burbank and the Coachella Valley At 1000 m S to SE flow dominates W winds persist along the foothills through 2200 PST and weak S to SE flow redevelops at the surface Remnants of the afternoon airflow pattern persist aloft

27-29 August 1987

The surface and upper-air wind monitoring site locations for this intensiv middot1onitoring period are indicated on pages A-7 and A-8 respectively Plots of the dia stic wind analyses for 27-29 August are given on pages B-73 through B-108

On the morning of 27 August surface winds are weak over most land areas a 1djacent coastal waters with moderate (5 ms) NW winds well offshore Winds aloft a Jrimarily N with weak NE flow at 100-300 m agl over the central basin By 1000 PST threeshy

IIzone airflow pattern has developed at the surface and is somewhat apparent ( hin the limits of the upper-air network) at 300 m agl SE flow has developed at 100( agl

9106102 13

This pattern is maintained throughout the afternoon Within the Coachella Valley a classic daytime slopevalley flow pattern develops with SE flow extending to a depth of 1000 m E flow develops at Banning Pass and persists through 1700 PST W flow over the basin develops upward throughout the afternoon By 1600 PST wind at 300 m agl are W to SW over the central basin and SE over Burbank and the Coachella Valley During the evening hours the features of the mesoscale airflow pattern over land weaken both at the surface and aloft There is no clearly developed offshore-directed land breeze

On the morning of 28 August the surface winds are weak and the overlying flow is primarily E Retardation of the sea breeze by the overlying E flow is apparent by 0900 PST S flow develops in the Long Beach area E flow at Banning Pass is substantially stronger than on 27 August During the afternoon of 28 August S flow persists at Long Beach and develops in the Whittier-La Habra-Pico Rivers area SE flow is observed along the Orange County coast E flow through Banning Pass persists throughout the day W wind components along the Santa Monica-Palos Verdes coastline are weaker than on the previous day and NW flow fails to develop at San Nicolas Island W flow over the central basin disrupts the SE flow aloft During the evening hours the airflow features weaken W flow along the foothills does not persist as long as on the previous day

The early morning airflow pattern on 29 August is characterized by SE flow both at the surface and aloft Sea breeze development on this day is slower than on either of the previous two days S flow again develops in the Long Beach area and appears to be stronger than on the previous day Although the sea breeze is weaker winds at Banning Pass shift from E to SW by 1300 PST This shift occurs at 1800 on 27 and 28 August SE flow persists aloft with limited upward development of the W sea breeze flow W flow persists in the western basin area through 2200 PST and SE flow persists aloft

2-3 September 1987

The surface and upper-air monitoring site locations for this intensive monitoring period are indicated on pages A-9 and A-10 respectively Plots of the diagnostic wind analyses for 2-3 September are given on pages B-109 through B-132

The first day of this period is probably the most anomalous of the summer SCAQS intensive measurement days Overlying easterly forcing during the morning hours prevents development of W flow along the foothills and inhibits upward development of the sea breeze over the western and central portions of the basin The easterly forcing appears to reverse rather abruptly on the afternoon of 2 September Unusual winds are also observed at Burbank on 2 September During the late morning and afternoon Burbank experiences an unusual wind shift from SE to W through a depth of 1000 m On 3 September the overlying airflow is W and the airflow patterns are more typical

9106102 14

rrn

On the morning of 2 September strong downslope flow results in N to NE winds at several sites along the foothills of the San Gabriel Mountains At 300 m strong NE winds are apparent over the central basin The overlying flow is E By 1000 PST the sea breeze appears as W flow along the Santa Monica-Palos Verdes coast and S flow in the Long Beach area The surface analysis indicates a band of S flow from Costa Mesa to Azusa W flow has not developed along the eastern foothills Winds are SE in the Coachella Valley and E through Banning Pass E flow aloft continues and intensifies During the early afternoon hours a relatively strong sea breeze penetrates inland to Azusa while winds in the Whittier-La Habra-Pico Rivera area remain weak The sea breeze weakens considerably after mid-afternoon Between 1200 and 1500 PST the wind at Burbank shifts from SE to W through a depth of 600-1000 m By 1600 PST the overlying flow has shifted from SE to W Onshore flow continues at the surface through 2200 PST while the winds weaken considerably Although the overlying W flow persists in general 300 m agl winds at Burbank become SE

The early morning airflow on 3 September is characterized by weak winds at the surface SE flow at 300 m agl and primarily W flow at 1000 m agl Although the major surface airflow features appear to develop as on previous days upward development of the pattern is limited Strong S flow is apparent by 1200 PST between 100 and 300 m agl over the central and western basin By 1600 PST the sea breeze has penetrated well inland Imbedded in the sea breeze is a persistent calm area in the vicinity of Lynwood S flow persists at 100-300 m agl over the central and western basin while flow at this level off shore remains NW At 1000 m agl W flow continues This general pattern persists through 2200 PST but weakens considerably especially at the surface

AUTUMN INTENSIVE MONITORING PERIODS

The mesoscale airflow patterns in the SOCAB during the SCAQS autumn intensive monitoring periods exhibit a weaker diurnal cycle than the summer airflow patterns Synoptic forcing also appears to be stronger

11-13 November 1987

The surface and upper-air wind monitoring site locations for this intensive monitoring period are plotted on pages A-11 and A-12 respectively Plots of the diagnostic wind analyses for 11-13 November are given on pages B-133 through B-168

During the early morning hours of 11 November NE surface winds are apparent over most of the region Surface wind speeds are very light over the basin and somewhat stronger along the foothills and the coast At 300 m agl winds are light and generally E At 1000 m agl winds are W to SW over the western half of the domain and SE over the eastern half of the domain Weak E to NE surface flow persists throughout most of the

9106102

15

morning in the first 300 m An apparent anticyclonic eddy (SE flow at Long Beach weak S flow at Burbank W flow at El Monte) develops between 600 and 1000 m agl on this morning A weak sea breeze forms around 1200 PST penetrating only to the central basin There is no apparent turning of the sea breeze into the San Fernando Valley W to NW flow develops offshore and is deflected around the Palos Verdes Hills This W flow is also apparent at 300 m agl Downslope flow components along the foothills are apparent by 1600 PST At this time the 1000 m agl winds are weak and N The sea breeze rapidly dissipates and NE flow develops at several coastal sites indicating a land breeze NW flow is maintained off shore The nighttime airflow pattern aloft is characterized by weak N winds at 300 m agl and weak W winds at 1000 m agl

The surface airflow pattern on the morning of 12 November is generally similar to that on 11 November E flow over land is apparent through a depth of 300 m while NW flow persists offshore The overlying flow is W The afternoon surface airflow pattern is more similar to a typical summer afternoon pattern than the previous day Turning of the sea breeze into the San Fernando Valley is apparent and W flow develops along the foothills of the San Gabriel and San Bernardino Mountains by 1400 PST Airflow at 300-600 m agl appears to veer continuously from E to W at most inland sites during the afternoon NW flow through a depth of 1000 mis apparent over the Coachella Valley Surface winds become light and disorganized during the evening hours Unlike the previous day NE flow does not develop at the coastal sites and NW flow weakens offshore W winds persist aloft

On 13 November surface winds are very light through the early morning hours with E flow components apparent immediately offshore The overlying flow is WNW but becomes S over the central basin by 1000 PST As on the previous two days a sea breeze becomes apparent at the surface by noon W flow components over the basin and foothill areas are stronger than on the previous two days both at the surface and aloft Significant W flow also develops in Banning Pass Moderate to strong W winds are apparent aloft During the afternoon and evening hours SE winds are apparent at Burbank between 300 and 600 m agl Intense W flow develops off shore and propagates inland during the evening hours W flow continues aloft with some S to SE flow between 100 and 600 m agl at Burbank and El Monte

3 December 1987

The surface and upper-air wind monitoring site locations for this intensive monitoring period are plotted on pages A-13 and A-14 respectively Plots of the diagnostic wind analyses for 3 December are given on pages B-169 through B-180

The early morning surface airflow pattern on 3 December is characterized by weak NE winds over the inland areas and a weak cyclonic eddy off shore The overlying flow is S to SE Surface winds remain light and variable through most of the morning Moderate

9106102 16

txi Iii ttii

E flow is apparent over the western and central basin between 300 and 600 m agl A sea breeze develops around 1200 PST reaching a depth of 300 m and penetrating only approximately 30 km inland S to SE flow persists above 300 m agl The sea breeze weakens during the evening hours and N flow through a depth of 300 m develops at Long Beach E flow components intensify at 600 m agl and above

10-11 December 1987

The surface and upper-air wind monitoring site locations for this intensive monitoring period are plotted on pages A-15 and A-16 respectively Plots o~ the diagnostic wind analyses for 10-11 December are given on pages B-181 through B-204

On 10 December the early morning surface airflow pattern is weak and disorganized Weak NE flow is apparent over much of the basin between 100 and 600 m agl The overlying flow at 1000 m is N The surface airflow over the basin is weak throughout the morning hours while NW flow develops offshore Winds aloft remain N A weak sea breeze is apparent by 1200 PST the sea breeze penetrates only about 30 km inland and is limited to a depth of approximately 300 m There is no apparent turning of the sea breeze into the San Fernando Valley Elsewhere in the basin the surface airflow remains weak By 1600 PST the sea breeze has weakened At this time winds aloft are predominantly W to NW at 300 m agl and N at 1000 m agl During the evening hours surface airflow over the basin becomes weak and disorganized while E flow develops at Palos Verdes Strong N winds appear aloft (300-600 m agl) at Burbank LMU and Long Beach however winds at this level further to the east remain light

On 11 December the early morning surface airflow pattern is similar to that on 10 December Relatively strong ( gt 10 ms) NNW winds persist at 600-1000 m agl at Burbank and LMU E wind in the 100-300 m agl appear at LMU and Long Beach Throughout the morning the surface winds remain light and N winds 9ver Bu~ank weaken considerably A sea breeze is apparent by 1200 PST but is weaker than on the previous day and reaches a depth of only 100 m or less Significant N winds (3-6 ms) develop between San Bernardino and Elsinore and in the western San Fernando Valley NE flow is observed in Ventura County Winds aloft continue to be primarily N however E flow is apparent over the Long Beach area at 1000 m agl Surface airflow over the central and western basin becomes very weak during the evening hours Strong N to NE flow develops at the coast west of Santa Monica while N flow persists in the western San Fernando Valley and in the San BernardinoRiverside area The overlying flow is N to NE

91061 02 17

3 PARTICLE PAm ANALYSIS

A series of forward and backward particle paths (trajectories) were calculated using the SCAQS DWM wind fields The particle paths will be used by other SCAQS investigators in their examination of pollutant transport within the SOCAB The forward particle paths can be used to estimate the transport of pollutants from known source locations The backward particle paths can be used to estimate potential source areas The particle paths can also be used to estimate the residence time of certain pollutants in the SOCAB as a whole or in subregions

CALCULATION OF PARTICLE PAIBS

Two-dimensional particle paths were computed using the DWM wind fields as follows

Starting ( ending) points for a given number of forward (backward) particle paths were specified

Using a time interval of 15 minutes the hourly gridded DWM wind fields were linearly interpolated in time and then interpolated in space to each particle position using an inverse-distance-squared weighting scheme

The particles were then advected horizontally for the specified time interval

The distance traveled by each particle during each time interval was integrated The new position of the particle was reported at hourly intervals

Forward and backward particle paths were calculated for the SCAQS intensive monitoring periods for several vertical levels and a variety of origination and destination points The origination (destination) locations and times for the summer and autumn particle paths are listed in Tables 3-1 and 3-2 respectively Most of the particle paths originated (ended) at one of the SCAQS wind monitoring sites listed in Tables 1-1 and 1-2 Additional sites are identified in Table 3-3 Note that for some sites in Tables 3-1 and 3-2 a new particle path was initiated at the particles 1000 PST location but at a higher level

Additional forward particle paths were calculated for comparison with the SCAQS tracer data (England et al 1989 Horrell et al 1989) The initiation times and locations correspond to the tracer releases and are given in Tables 3-4 and 3-5

9106lrl02

~~ll1~(I titW I~l~~~t~~

TABLE 3-la Summer particle paths forward particle paths

Start Time Origination Start Date (PST) Site Level(s)

624 0500 LBCC 13 CELA 13

624 0700 LBCC 13 CELA 13

624 1000 LBCC 13 CELA 13

624 1500 LBCC 13 CELA 13

624 2100 LBCC 13 CELA 13

625 0500 HHRA 5 PADA 45 FULA 5

625 0700 FULA 5

713 0500 LBCC 13 CELA 13

713 0700 LBCC 13 CELA 13

713 1000 LBCC 13 CELA 13 EMTA 24

713 1500 LBCC 13 CELA 13

713 2100 LBCC 13 CELA 13

714 0500 LBCC 13 CELA 13

714 0700 LBCC 13 CELA 13

714 1000 LBCC 13 CELA 13

714 1500 LBCC 13 CELA 13

714 2100 LBCC 13 CELA 13

Continued

19

91061 07

TABLE 3-la Concluded

Start Time Origination Start Date (PST) Site Level(s)

827 0500 LBCC 13 CELA 13

827 0700 LBCC 13 CELA 13

827 1000 LBCC 13 CELA 13

827 1500 LBCC 13 CELA 13

827 2100 LBCC 13 CELA 13

828 0500 LBCC 13 CELA 13

828 0700 LBCC 13 CELA 13

828 1000 LBCC 13 CELA 13

828 1500 LBCC 13 CELA 13

828 2100 LBCC 13 I CELA 13

92 0500 LBCC 13 CELA 13 HHRA 12

92 0700 LBCC 13 CELA 13 FULA 12

92 1000 LBCC 13 CELA 13

HHRA 45 FULA 45

92 1500 LBCC 13 CELA 13

92 2100 LBCC 13 CELA 13

93 0700 RIVA 12

93 1000 RIVA 45

A new particle path was initiated at the particles 1000 PST location but at a higher level

20

~(Ibull bull 11

41

~1~_11Lmiddot11~1~~tV t rt~~14_ II~~~h1 1r t

TABLE 3-lb Backward particle paths

End Time Destination End Date (PST) Site Level(s)

624 1500 CABA 23 EMTA 45 BURA 1234 HHRA 4 FULA 45

624 1800 RIVA 3

625 0500 CLAR 13 RIVR 13 HHRA 5 PADA 45 FULA 5

625 0700 CLAR 13 RIVR 13 FULA 5

625 1000 CLAR 13 RIVR 13

625 1500 CLAR 13 RIVR 13 CABA 23 EMTA 4 BURA 4 RIVA 45

625 1600 RIVA 45

625 2100 CLAR 13 RIVR 13

713 - 1000 EMTA 24

713 1500 CABA 23 EMTA 45 RIVA 24

713 1600 RIVA 24

714 0500 CLAR 13 RIVR 13

714 0700 CLAR 13 RIVR 13

714 1000 CLAR 13 RIVR 13 BUR 123

714 1500 CLAR 13 RIVR 13 CABA 23 EMTA 4 BURA 234 RIVA 2

714 1600 RIVA 2

Continued

21 nn1 Y1

TABLE 3-lb Continued

End Time Destination I End Date (PST) Site Level(s)

714 2100 CLAR 13 RIVR 13

715 0500 CLAR 13 RIVR 13

715 0700 CLAR 13 RIVR 13

715 1000 CLAR 13 RIVR 13

715 1500 CLAR 13 RIVR 13

715 2100 CLAR 13 RIVR 13

827 1000 CABA 2 EMTA 23 BURA 123

827 1500 CABA 2

828 0500 CLAR 13 RIVR 13

828 0700 CLAR 13( RIVR 13

828 1000 CLAR 13 RIVR 13

828 1500 CLAR 13 RIVR 13

828 2100 CLAR 13 RIVR 13

829 0500 CLAR 13 RIVR 13

829 0700 CLAR 13 RIVR 13

829 1000 CLAR 13 RIVR 13

829 1500 CLAR 13 RIVR 13

829 2100 CLAR 13 RIVR 13

92 1000 PADA 3

92 1100 PADA 3

92 1500 EMTA 2 RIVA 2

Continued

22

91061 07

I

1bullLI bullI I bull ~ii 1 1

1 cl1

[1i1bull~j~1 Iiii~ j t-~dI ~1 1ltl1111111 II r I l~bull~II~middot t1~i~n_11~~ ~middot -

TABLE 3-lb Concluded

End Time Destination End Date (PST) Site Level(s)

92 1600 RIVA 2

93 0500 CLAR 13 RIVR 13

93 0700 CLAR 13 RIVR 13

93 1000 CLAR 13 RIVR 13 CABA 2 BURA 1234

93 1500 CLAR 13 RIVR 13

93 2100 CLAR 13 RIVR 13

23 9106107

TABLE 3-2a Autumn particle paths forward particle paths

Start Time Origination Start Date (PST) Site Level(s)

1111 0300 LBCC 13 CELA 13

1111 0700 LBCC 13 CELA 13

1111 0900 FULA 12

1111 1200 LBCC 13 CELA 13

1111 1500 LBCC 13 CELA 13

1111 2100 LBCC 13 CELA 13

1112 0300 LBCC 13 CELA 13

1112 0700 LBCC 13 CELA 13 FULA 12

1112 1000 FULA 45

1112 1200 LBCC 13 CELA 13(

1112 1500 LBCC 13 CELA 13

1112 2100 LBCC 13 CELA 13

1113 0500 ONTA 123

1113 1000 ONTA 45

123 0300 LBCC 13 CELA 13

123 0700 LBCC 13 CELA 13 FULA 12

123 1000 FULA 45

123 1200 LBCC 13 CELA 13

123 1500 LBCC 13 CELA 13

123 2100 LBCC 13 CELA 13

1210 0300 LBCC 13 CELA 13

1210 0700 LBCC 13 CELA 13

Continued

24 9106108

TABLE 3-2a Concluded

Start Time Origination Start Date (PST) Site Level(s)

1210 1200 LBCC 13 CELA 13 FULA 123

1210 1500 LBCC 13 CELA 13

1210 2100 LBCC 13 CELA 13

1211 0500 ONTA 12

1211 0700 FULA 12

1211 1000 ONTA 45 FULA 45

A new particle path was initiated at the particles 1000 PST location but at a higher level

25 9106108

TABLE 3-2b Backward particle paths

End Time Destination End Date (PST) Site Level(s)

1111 1500 HHRA 34

1112 0300 LBCC 13 CELA 13 RIVR 13

1112 0700 LBCC 13 CELA 13 RIVR 13

1112 1200 LBCC 13 CELA 13 RIVR 13

1112 1500 LBCC 13 CELA 13 RIVR 13 HHRA 34 PADA 3 FULA 34

1112 2100 LBCC 13 CELA 13 RIVR 13

1113 0300 LBCC 13( CELA 13

RIVR 13

1113 0700 LBCC 13 CELA 13 RIVR 13

1113 ~ 1200 LBCC 13 CELA 13 RIVR 13 ONTA 34 EMTA 45

1113 1500 LBCC 13 CELA 13 RIVR 13

1113 2100 LBCC 13 CELA 13 RIVR 13

123 0300 LBCC 13 CELA 13 RIVR 13

123 0700 LBCC 13 CELA 13 RIVR 13

Continued

26 9106108

TABLE 3-2b Concluded

End Time Destination End Date (PSn Site Level(s)

123 1200 LBCC 13 CELA 13 RIVR 13

123 1500 LBCC 13 CELA 13 RIVR 13 PADA 3

123 2100 LBCC 13 CELA 13 RIVR 13

1211 0300 LBCC 13 CELA 13 RIVR 13

1211 0700 LBCC 13 CELA 13 RIVR 13

1211 1200 LBCC 13 CELA 13 RIVR 13

1211 1500 LBCC 13 CELA 13 RIVR 13 PADA 1234 BURA 123

11 13 2100 LBCC 13 CELA 13 RIVR 13

27 9106108

TABLE 3-3 Additional particle path initiation (destination) points

Site Identifier Location UTM Easting (km) UTM Northing (km)

BURA Burbank Airport 3749 37859

CABA Cable Airport 4370 37751

EMTA El Monte Airport 4047 37717

FULA Fullerton Airport 4091 37485

HHRA Hawthorne Airport 3768 37547

ONTA Ontario Airport 4435 37686

PADA PADDR Intersection 3810 37175

RIVA Riverside Airport 4584 37485

28

TABLE 3-4 Forward particle paths calculated for comparison with the SCAQS tracer data

Start Start Origination Date Time Site Levels

0300 LAGS 13 0600 13 0900 II 13 1200 II 13 1500 II 13

625

715 0500 VRNN 1

0800 VRNN 1

828 0600 LAGS 13 1000 II 13 1300 13 1500 13

93 0500 VRNN 1

0800 VRNN 1

1111 1600 LAGS 3 ESGS 3 VRNN 1

1900 LAGS 3 ESGS 3 VRNN 1

1112 0600 ESGS 3 VRNN 1

0900 ESGS 3 VRNN 1

1210 0600 LAGS 3 ESGS 3 VRNN 1

0900 LAGS 3 ESGS 3 VRNN 1

1600 VRNN 1

29

9106lrl09

TABLE 3-5 SCAQS tracer release sites

I_______________________

Site Identifier Location UTM Easting (km) UTM Northing (km)

ESGS El Segundo 3690 37536 LAGS Los Alamitos 3980 37370 VRNN VRNN 3874 37625

(

91061rl09

30

The particle paths were calculated for up to a three-day period In general forward particle paths were calculated through the end of the monitoring period or until the particle was advected out of the domain Backward particle paths were calculated through the beginning of the intensive monitoring period or until the particle left the domain

Selected plots of the forward and backward particle paths are given in Appendix C

SUMMER PARTICLE PATHS

Forward particle paths (levels 1 and 3) originating from Central Los Angeles (CELA) and Long Beach City College (LBCC) at 0700 PST on 24 June 13 and 14 July 27 and 28 August and 2 September are shown on pages C-1 through C-12

The surface-level particle paths originating at CELA indicate northward advection from this site on all days The particle path initiated on 27 August indicates that the initial northward advection is followed by westward advection on the following day the particle path initiated on 2 September indicates that the initial northward advection is followed by eastward advection on the following day In all cases the residence time in the central Los Angeles basin is less than 12 hours

The surface-level particle paths originating at LBCC are carried northward and eastward usually exiting the Los Angeles basin through Cajon Pass On 24 June and 14 July however the particles are carried across the San Gabriel Mountains (with the upslope flow) Considerable eastward transport is indicated by the particle paths initiated on 2 September after 1800 PST -Residence time in the Los Angeles basin varies from day to day and is especially long for the particle path initiated on 27 August (approximately 30 hours) Particle paths initiated on 13 July and 28 August also indicate some recirculation and a significant residence time within the Los Angeles basin

The level 3 particle paths also indicate northward transport from CELA on most days Advection into the San Fernando Valley which may be partly due to the SE flow produced by the turning of the sea breeze into the valley is more pronounced on certain days (14 July 28 August and 2 September) Level 3 particle paths originating at LBCC show mostly northwestward transport Recirculation over the Los Angeles basin is indicated for the 2 September particle path

Backward particle paths (levels 1 and 3) culminating at Claremont College (CLAR) and Riverside-Rubideaux (RIVR) at 1500 PST on 25 June 14 and 15 July 28 and 29 August and 2 September are shown on pages C-13 through C-24 -

_

9106lrl 02

31

The surface-level backward particle paths originate over water on all days the particles are carried eastward and northward into the Los Angeles basin On 14 July and 28 August the particle paths indicate primarily eastward transport There is some indication that particles arriving at the destination sites on 28 August may have originated in the South Central Coast Air Basin (SCCAB) On 25 June 15 July and 3 September the particle paths indicate primarily northeastward transport On 29 August northward transport is indicated

The level 3 backward particle paths also indicate transport from the W SW or SE on the intensive monitoring days The over-water segments of the particle paths indicate eastward advection on 14 and 15 July and 27 and 28 August and northward advection on 25 June and 3 September Again there is some indication that particles arriving at the destination sites on 28 August may have originated in the SCCAB Almost all of the particle paths indicate that the particles are carried onshore between Long Beach and Laguna Beach and advected northeastward to CLAR and RIVR An exception to this occurs on 28 August On this day the particles are carried onshore near Redondo Beach and are recirculated over the Los Angeles basin for approximately 24 hours before arriving at the destination sites

AUTUMN PARTICLE PATIIS

Forward particle paths (levels 1 and 3) originating at CELA and LBCC at 0700 PST on 11 and 12 November 3 and 10 December are presented on pages C-25 through C-32

The autumn particle paths exhibit more day-to-day variability than the summer particle paths indicating more variability in the autumn airflow patterns Because both the CELA and LBCC locations are affected by the land-breezesea breeze circulations all of the surface-level particle paths show some recirculation in the western basin Particle paths initiated on 11 and 12 November eventually indicate eastward transport

The level 3 particle paths also differ among episodes but are all affected by the seashybreeze circulation Particle paths initiated on 11 November show eastward transport from CELA and southward transport from LBCC Northeastward transport at this level is indicated by the 12 November particle paths The particle paths initiated on 3 December illustrate local recirculation by the sea breeze On 10 December southward advection is indicated

Backward particle paths culminating at CELA LBCC and RIVR at 1500 PST on 12 and 13 November 3 and 11 December are presented on pages C-33 through C-40

The surface-level particle paths indicate that particles arriving at CELA at 1500 PST on all four days follow a southward then eastward course Particles arriving at LBCC are affected by some combination of onshore advection and local recirculation The particle

9106Irl02

32

paths culminating at Riverside indicate a variety of possible transport patterns eastward transport on 12 and 13 November northwestward transport on 3 December and southeastward transport on 11 December

The level 3 backward particle paths for 12 November illustrate recirculation aloft by the evolving airflow patterns while the particle paths for 13 November indicate primarily eastward advection The particle paths for 3 December are clearly affected by the SE that occurs on this day the resulting particle paths indicate northwestward transport The particle paths for 11 December indicate southward advection and recirculation by the sea breeze

COMPARISON WITH TRACER DATA

Forward particle paths originating from El Segundo (ESGS) Los Alamitos (LAGS) and Vernon (VRNN) at times corresponding to the SCAQS tracer release times are shown on

middot pages C-41 through C-76 For ground-level tracer releases the particle paths were calculated using level 1 (10 m agl winds) for stack releases the particle paths were calculated using level 3 (300 m agl) winds A qualitative comparison with the observed tracer data is provided here

Surface-level particle paths originating at LAGS on 25 June indicate northward transport during the morning and afternoon hours The level-3 particle paths indicate that material is transported out of the basin through Cajon and Banning Passes by the upper-level winds Both of these indicated transport patterns are supported by observed tracer data

Surface-level particle paths originating at VRNN on 15 July indicate northward transport and exhibit good qualitative agreement with the tracer data

Both the surface-level and level-3 particle paths originating at LAGS on 28 August indicate primarily northeastward transport Most of the particles are eventually advected through Cajon Pass This is consistent with observed tracer at Redlands San Bernardino and Crestline

Surface-level particle paths originating at VRNN on the morning of 3 September do not agree with the tracer data While the particle paths indicate northeastward transport the tracer data indicate northwestward transport

Surface-level particle paths originating at VRNN on the afternoon of 11 November indicate westward transport and a long residence time in the central basin The level-3 particle paths originating at LAGS and ESGS show southeastward transport and recirculationmiddot by the sea breeze Surface-level particle paths originating at VRNN on the following morning again show net westward transport and a long residence time in the

( central basin but the level-3 particle paths indicate northward transport with recirculation

91061rl 02

33

by the sea breeze The smface-level particle paths are consistent with the tracer data Tracer was observed over the north-central basin and along the foothills on the morning of 13 November

The surface-level particle paths originating at VRNN on the morning of 10 December indicate relatively stagnant conditions with a weak sea breeze circulation Some net transport toward the south is indicated Particle paths originating at VRNN on the afternoon of IO December show little movement throughout the following day The long residence time in the basin is in qualitative agreement with the tracer data Tracer was observed in the basin on the following day The dispersion indicated by the widespread tracer concentrations however cannot be represented by a single particle path The level 3 particle paths originating at LAGS and ESGS on the morning of 10 December show southward transport and recirculation by the sea breeze

UNCERTAINTY ANALYSIS

A simple analysis was perlormed in an attempt to quantify the degree of uncertainty inherent in the particle paths The uncertainty analysis was similar to an analysis described by Moore et al (1989)

Three major forms of error in the particle path calculations can be identified The first two result from errors in the wind fields The most fundamental of these is measurement error as measurements can only be regarded as approximations of the true winds Regardless of the accuracy of interpolation techniques measurement error will always affect the final wind field The second type of error results from the interpolation of these measurements and the parameterizations and approximations in the diagnostic wind model This error will be greatest in data-sparse areas The third type of error results from the use of two-dimensional wind fields The two-dimensional particle paths do not incorporate the effects of vertical motion which may be a significant source of error considering the mesoscale regimes present in the study area

The particle path uncertainty in this analysis is the result of all sources of error and is therefore very difficult to estimate A lower bound 11 on the uncertainty was assumed to result from measurement error alone Here we use a lower bound uncertainty estimate to illustrate the effects of measurement error on the particle path calculations Several assumptions were made in order to estimate this uncertainty First average bias for all instruments was assumed to be very small Second instrument precision was assumed to be constant over the region Third measurement error (speed and directional error) was assumed to be normally distributed around zero The standard deviation about the mean was based on observational data

For this uncertainty analysis 20 particle paths were initiated from a single site at a single time For each 15-minute particle path segment u and v were calculated as described in

9106lrl 02

34

(

the previous section Small random wind components (representing the measurement error) were then added to the interpolated wind The smaller components were determined by randomly selecting wind speed and direction error from two separate normal probability density functions (PDF) To do this a uniform random number generator was used to find two error probabilities Ps and Pd between 0 and 1 An inverse normal PDF routine was then used to find the speed or direction error that results in error probability Ps or Pd respectively Commercial statistical software from Th1SL was used to generate uniform random and inverse normal PDF values 1

The PDFs possess means of zero and standard deviations equal to the root mean square error (RMSE) of the measurements For simplicity RMSE values for speed and direction were taken from those specified by Moore et al (1989) namely 02 mis and 10 degrees respectively Random error components were determined for each 15-minute segment of every particle path The resulting divergence in the particle paths represents a lower limit to the uncertainty inherent in the particle-path calculations

Plots illustrating the effect of the lower-bound uncertainty on the particle path calculations are given for one summer and one winter episode in figures 3-1 and 3-2 respectively The summer particle-path bundles (Figure 3-1) were initiated at CELA and LBCC at 0700 PST on 14 July The winter particle paths (Figure 3-2) were initiated at CELA and LBCC at 0700 PST on 12 November The bundles were calculated for levels 1 and 3 In general the bundles indicate that the airflow patterns do not vary abruptly in space or time The winter particle paths are less divergent that the summer particle paths

While plots of the particle path bundles qualitatively indicate the degree of lower-limit uncertainty a quantitative summary of the uncertainty can be obtained via hourly estimates of RMSE of all particle positions relative to that with zero error The RMSE can be obtained from

1 1 M 2 2

RMSE = - ~ dj[ lM ]=l

where

1

dj = [(xj - X1)2 + (yj -y1)2]2

and where Mis the number of particles and ()1 represents the position of the actual particle as calculated in the previous section (ie the zero error particle path) The RMSE is used to determine the growth over time of the confidence interval about the

1 IMSL is the registered trademark of the Scientific Problem-Solving Software System developed by IMSL Inc Houston Texas

91061rl02

35

NORTH

425 31570

SOUTH (a) CELA Level 1I

20

(KM)

NORTH

425 31570

SOUTH (b) LBCC Level 1I

20

(KM)

le-path bundles initiated at 0700 PST 14 July 1987FIGURE 3- composedd par tic le paths1 Forwar of 20 particBundles are

35

NORTH

425 3570

SOUTH

(c) CELA Level 3

NORTH

425 3870

SOUTH

(d) LBCC Level 3

FIGURE 3-l Concluded

37 9106]

70

IlFil

NORTH

CEIA Level 1(a)

3(170

1-Ul j

NORTH

425 3(170

SOUTH

(b) LBCC Level 1

Forward le-path bundles initiated at 0700 12 November 1987FIGURE 3-2 composed par tic le pathsbullBundles are of 20 partic

3391061

425 3870

SOUTH

(c) CELA Level 3

J8

3870425

SOUTH

(d) LBCC Level 3 10 2

(KM)

FIGURE 3-2 Concluded

91061 39

1 1c

i I

trajectory calculated using the DWM winds Hourly RMSE values are given for the particle paths bundles shown in Figures 3-1 and 3-2 in Tables 3-6 and 3-7 respectively For level 1 the average RMSE after 12 hours is 567 km for 14 July and 167 km for 12 November For level 3 the average RMSE after 12 hours is 416 for 14 July and 260 for 12 November

9106lrl 02

40

TABLE 3-6 Hourly RMSEs for particle-path bundles initiated at 0700 PST 14 July 1987

Time LBCC RMSE CELA RMSE (PST) (km) (km)

Surface Level

0700 000 000

0800 042 042

0900 057 069

1000 063 100

1100 093 128

1200 091 143

1300 111 168

1400 136 217

1500 229 227

1600 265 219

1700 394 219

1800 620 265

1900 796 338

Level 3

0700 000 000

0800 018 049

0900 064 090

1000 068 140

1100 087 172

1200 089 162

1300 123 180

1400 231 224

1500 337 258

1600 419 278

1700 427 306

1800 449 347

1900 462 370(

9106104 41

TABLE 3-7 Hourly RMS Es for particle-path bundles initiated at 0700 PST 12 November 1987

Time LBCC RMSE CELA RMSE (PST) (km) (km)

Surface Level

0700 000 000

0800 047 049

0900 078 065

1000 077 066

1100 089 086

1200 109 094

1300 089 092

1400 118 125

1500 100 138

1600 129 150

1700 147 160

1800 161 164

1900 156 176

Level 3

0700 000 000

0800 045 076

0900 061 120

1000 069 139

1100 092 171

1200 098 163

1300 096 156

1400 125 182

1500 150 175

1600 231 171

1700 261 152

1800 308 156

1900 345 175

91061 04 42

References

Douglas S G R C Kessler and E L Carr 1989 Users Guide to the UAM Wind Preprocessor System Systems Applications International San Rafael California (SYSAPP-89079)

England W G and L H Teuscher 1989 Perfluorocarbon Tracer Experiments During the Southern California Air Quality Study Air amp Waste Management Association For presentation at the 82nd Annual Meeting amp Exhibition Anaheim California (June 25-30 1989)

Horrell R S M Deem P Wyckoff F Shair and N Crawford 1989 Ground Release SF6 Tracer Experiments Used to Characterize Transport and Dispersion of Atmospheric Pollutants During the Southern California Air Quality Study of 1987 For presentation

( at the 82nd Annual Meeting amp Exhibition Anaheim California (June 25-30 1989)

Moore G E G Z Whitten J P Killus and R D Stevens 1989 Analysis of 1985 Air Quality and Air Chemistry Data Collected Under the South Central Coast Cooperative Aerometric Monitoring Program Systems Applications International San Rafael California (SYSAPP-89058)

Ross D G and I Smith 1986 Diagnostic Wind Field Modelling for Complex Terrain-Testing and Evaluation Centre for Applied Mathematical Modelling (CAMM Report No 586)

9106105

43

rr T rr

Appendix A

SCAQS WIND MONITORING SITES

(

9106103

-

((--_ 770

-

NORTH CM~RS 42 575

5 I I j I I 1---L 525 middot 1J75 I I I I I I I I I r I I _--- I C2~middot----_J ~ ~-- 1 ( ~ ~J25 I I I I I I I I I I I I l__ ) -475 () I Li 1~)51 (

--~ltJ820f-_ ~------ ---

~- -cli( ol --9-Sl-l

lt ( ~)

CQ p llE RiDO ~ llE ANAH

I middot LAS-L

bull~ LANC ( _ Q - _J ) ) - _ ~ - ---- - ~ _ ____ middot clt G~ _----~____-=-- -___ ~PR __ - ---- --- VCTC ltgt

-- ------ f---- __ - ---_ -middot ------ --___ --~-----TEME --- _ f

-)(j _ _ middot --middot -------- - HESP f ----=----==~~~ l ----~~ -- middot l - --- __ -middotlt- CJ _ --- middot PIRs[- lt NfVL_ ---~ - C~lt --lt _ ~ ~- __ (~~

__ --- bull _ i - f c-_ _ I - )~__) - ---~poundS---_-

3770 t-()

LA llE PICO )Ct444 -w 3 ~~~ZUMA MALI VE VEN llE llE middot Jl~C - ( p

NN WOOHS ~- ~ m - middot - o - I () )IE 55I

1-- (lt - - PERI ) ~ S__~llE

BU25 bull y _ L ~~5o 13720

I ----~- - 515 3670 525

(KM)

~---

SNI

20

SCAQS SURFACE WIND MONITORING SITES

19 JUNE 1987

0

qj n

If) N ~

I

1S13

Ishy)

0 Vl

(f) w I-V)

l)

z a 0 1---

z 0 2

0 z 3 a ~ I r---

0 CX)Wm Q_ shyQ_ ) w

z (f) )

0 7 lt( um Vl ---

0

A-2

-

r~

NORTH CM~RS

I -middot_( lt - middotmiddot -~ ---lt - - - middotbulll- ) middotmiddot-middot - - -c ) 0 0 l__SG- ___ J1 bull_ -- VCTlt I

_ --middot ---middot llSeR - - __ - --middot----- J~__-- middot - - - -middot bull bullbull- HESP ~-_-middot- bull- ~- _~ - -___---middot - ~ -_ ) ME --- -middot - bullmiddot bull -_

38201-_ ~~_ _ TE _ C-bull_- - CJ - ~Jj __ -_

1

1 bull I bull __ (]

SI bull bull=-middot _ -~ ~~ ~_-__ middot _J lt(- j SIMI -M~S -~_-~It_ - - 1Ir- I w _ I B~~ AZ~~~1 AL SNBOC ~ (ELRO l~ Hf~~ ideg_=- --

)1__ CE~ wftcentrHIN RIVRM44 --- ~--- ---~ LA PICO __pound bull P

T ~NN WI-V C) D 2J~55I Wco - middot PERI Lv

R~O ~L ~AN~ TO~~~~ ~ ~ ~-MO

62

~ ~j~l)~gto ay 3670( 525

SCAQS SURFACE WIND MONITORING SITES 24-25 JUNE 1987

~ (

NORTH 275 325 375 425 475 OA~5 575

f_~ CJ ~ -middot--

_middot

middot1 Imiddot

)i

gt--o~0 (~_)r-) _ (~~3s20

--~- middot qlt ( ____ - ---- - lt__ ~ ~ -i~ J ) _ - - -

-~ -__ J V 38201-~--o- lt-

-----~~middot ---- __ - ~---- -_--- ~====- -=_---~ ~ _

~ -- middotbull ~gt ----_ _______ ) ~~~ l -- - - i - --- l

( _ (_-~ _-lt~~ - )

2middot1=~ (~gt lt_) -~~~~~(_~tJt-~~~~t~~~~-~) ~

uR--- -----Qi~ ~ 3770_ 3770 -middotmiddot--rmiddot- -7 ~ 1-

(J) llE ONT _ -middot __ w

Y-_ EMU c __- ~ Ul lt(1 w~

- -- - LMIIEUA sFtA ~

1

----_

~

_

t_~~ -bull _ middotgtI __

~- 0 ~~QgtJn~-~ ~II~

~ f-- -) -) ) ~ ~-

j (_1_j ~~TRM 3720 ( (__ -CcS l l 3720

~- ) -~ --7( ) __~---L_ ~~1-----~D~

1 ~) a --- ~middot 7 rt 0- NSI (

3670 I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I 1 I I I I I f I I I 1 I I I I I I I I I I I I I 36 70 275 325 375 425 475 525 575

SOUTH

I I I I I I 0 10 20 30 4-0 50

(KM)

SCAQS UPPER-AIR WIND MONITORING SITES

24-25 JUNE 1987

--=-

NORTH 25 575

CM6QRS C__j 475 -____

3 ---- 375 425I - L ---) - ~-

SNI

-_-~)---_ lt-____ ___3azor_~c~~ sl

VENt ELRO

BU25

275 ~ c--) ~LANC ~~-_ lt ~ 0 9-~

llE

3670

----~ - J Q ____ ~- lt) ~ 3820____ -- middot--- 0~__~- __ J S --- ---~- ---- -- -- v~ ~ ~ ===-~ - - - - ---- - - ---- - -- -middotv ------------ -~ l f----- _ -- -middot _ - --- __ HESP ~-----=- c~i - - _- --- - - gt - -bull TEME -- -middot - bull ----- -- - _ middot ( lt~ clt=~ ~i cJ~ c _

~I -~~le lt~NJWl--------~- -iHitgt~-=__~~ _I -~ J~~~ ~ 3770 r-1 - - -- -- - ltJ c__ ---middot ~ ( - ------ -c_ - - -~~~ ~ ()-~ ~ - -middotMiss ---~---=-~----r~-__ -middot _frac12 __ i5

j S ~R~~HE -7t$ llE llE ftALSNBO llE ~~ t __ -R~ B~~SA AZ~jl~r RD ~~_ ~ 1( )l___ llE CE~HAllE ~~ - RIVRM44 - llE ------___llE W~HIN -Jti )Ii ----------- __

~--- LA llE PICO l llE C -- r p

ZU VE NN Wt-laquoJHB 0 1~55WT IN - ---- ) llE CO P llE llE ( gt (____ PERI ~

IJl

~ 71t~P325 425

SOUTH

I I I I I I 0 1 0 20 30 40 50

(KM)

SCAQS SURFACE WIND MONITORING SITES 13-15 JULY 1987

clt(middotO -i ~Ill ~

()VL~t

~~) o2~ r

275

-- _~middot middotc-- ( ~ I - ___ ) --____ ~~~

---- ---bull-~ ( lt ) lt I ~ (J () - _ ~ ~ J ) bull middot ( - ~ ~- - --- middot - ~ - middot middot G--~_J lt)

cce- middot- __ V ___ -- l - _- bull middotbull - - _~---~ 3820r----=-~_~Jrlt - - - middot f ~l-~--~--~] I c___ -~c ~ -- ( _ 1middot--- 1___ _~

-I -- = lt -bull lt middotmiddotltmiddot~- middot - middot -L-

- ~-- middotbull ---_- --- J middot J ) ) -- bull- ~-bull _ --middotbullbull- middot middot _ j -- -)) 3770 -ii __gtc _ -- - - middot bull ltmiddot ~- I - _ltbull - -_j-- tn

BURbull-- - middot - - - ) ~~middotj- (~~ ) (middotIi lt(

GL U I ~ - - - w ---~ - -1 __ - ---------= ------___________--- ONT middot middot __ - --_ -

poundMUI - - ~ ____ middot----~~i -__ ~ I

--

--- ~ c) )_

deg ~

_- - (

_l

_ ~ )

C-

~ _middot

( T( f 1-

525

t j 30 50

(KM)

SCAQS UPPER-AIR WIND MONITORING SITES 13-15 JULY 1987

_==--

J ANORTH CM6sectARS

3s201-

~- ~ ~ ~ ~0A - --__ - -----~ ---~- --1(j - A ) __gt ---------_

-~~J TEMEa l_C ~r1

0

820

_--C~ = ~~~ltCH~~ J ~ S~I ----i4~58 ( J

tigt-1

-J 3 BU25

frac14~) 8 F1(5

- HA

APICO RN A A ~ N WVHB

AANAH

~IHIN J _CM44 ~-

A

CY PERI N ~ iJN

D A

HEM

770 ~ V1 lt( w

~ 3670

SCAQS SURFACE WIND MONITORING SITES 27-29 AUGUST 1987

) w l-1

C)

z-a 0 1-

z 0 ~

0 z - r---3 co a Ci)

- -ltI lshy

a )w ) Cl 0 Cl ) ) lt(

V) Ci)

0N ltI u r--- () N

A-8

NORTH CM~RS bull r (_J~

1

325 - - l L=~-) ( bull

1275 _ ( ~ --- -middotbull LANC 1 _ bull I( f LJ- ~ () ~-- 3820 bull- - J bull

- --__ _ -- )- bull bull - middotbull-~- _ I v----_J -- J middot-- - middot- - -middot I I J_______ ---==-------------- WSfgtR - -- VC _____- ltgt

-~--~-- fJ- -middot - - - --- --- _ - ----- --- ----- ) r bull---_ --- - - -- bull p -- --__-----_ - -----

38201-_ -------~- TEME --- --- - - bull -- middot- bull --- _----~ -~ II middot ) - ---- -- -- _ -- HES f I-----=-- ~ ------- ~ l _ -- - I

- bull middotbull-bullbull~ ll( middot bull - middotbullbull - 1 I ~----- middot-bull

9 -- ___ __ _ -------- _=- r _ -- )J -~~ ~~~ 3770 t--SJMImiddot MISS~~~--bull ~--~-- ll( -_ ~-VENt Cllfl58 bull I middot- - middot- - --JOE ~--bull bull ~ V)

ELRo __J 4Esc euRK ~Ej1 fAL sNeo I ~ _ J middotmiddot -~~ 1 i5 l - ~SA ___ I ROLD ~ ~ C~ ( _____~- -~ llE CE~ llE W~(HIN RIVRlK -- - 1 llE __~

3770 middot- ~LA VEN Pl llE _ _- JJ~C _CM44 - ~ p ---__-_

0 ANAC cubull~ - - v~wr LyenNN WHJHB --- -- Q~~W)( ___

- llE HA ~ -lE _ -- _ - -_

I 0

SAi middot-middot J) t450

3720 LA r TO~omiddotlt~lt~~ -~ ~ (~~

~ ~ r-~~~1~ o ~~l~

SNI 1 (l_ amp-~ 575 3670367g75 325 375 425 475 525

SOUTH

I I I I 0 10 20 50

(KM)

SCAOS SURFACE WIND MONITORING SITES 02-03 SEPTEMBER 1987

------J ------------------ ) I-- 38201--__--~~- i) ___

_-- ~--gt--

-__

_

NORTH 275 325 375 425 475 525 575

YI ~middotCJ~bull_bullrmiddot--- lt I __ (_______~ ~ - - I -- J ( - - - - - - - J i O l__ ______________ -~

~j ( lt- bull- ~ 0 C) ~ -- (-- _)) ) ----_--__ -- middot-- _ - --J ) J ---- - ------- ----- middot----- -( ~---_j

3820----==--=-- ( - -middot bull __ - ---~----= --- ---- -- -- ------------ _______ ltJ~~ A I --- - ---- - -_ - _ --_--~-- -_ - --~co___--_--___-__----- f middot l - --- - --- - __- ---_-- -- ~ middot -middot __ J L--~ cmiddot

---- -- middot--~-- -- -- - _ _-- - - ~

--- - middot- - -C-_--- - -~ rmiddot middot) _- ~middot~ I--- ----~deg- -- -- C _-_--_- __ __ _ ___ _--_--~ __---- ~---lt lt ltgt _~-__gt_ ~~-- i~ - UR ---- -------- - ----~ --lt I middot- B ~----- Qll __ ~----- _ CI____ ~ __ --- ---middotir ~ - 3770

1-I- 3770 () U)( - -- -- 0~ - j _j ______- ==--=--_ --___ - ---w lt(

w~

~gt middot1 r-

0

3720 3720

middotmiddotmiddot J ~ ) ~l - ~ ~

~ tmiddot~----_7~~ p__ D2)t~~

NSI I(--_ Imiddot- 3670 3670

275 325 375 425 475 525 575

SOUTH

I I I I I I O 1 0 20 JO 40 50

(KM)

SCAQS UPPER-AIR WIND MONITORING SITES

02-03 SEPTEMBER 1987

~ I

t

NORTH CM61yenRS

----- I uic middot I Ibull 0 z_ ~ p

-_- - - - _ - middot-~-_ ------- VCRV

820 --- -- -- I W-gtER --- _ ---- --- ~ ) - -_ - I _ _ - _ --- _ _ _ -_ bull _____ _ _ - -- -- -- _ --_ ----~ HESP 3 -- ME -- -middot bull - --- _ -- _ TE - -- __ _-- - c----~middot - r

PIRlb -_1 N bull--~ _ --lt~_- - _ _ ---------- - -MISS_ _--- ___ bull---=-- _llE ~ ~ j lt) hlt---- F-~~--_ ----1A-_c=_--middot llE ----_ ()

-middot SIM ~ICAN llE RIALSNBO llE ~J -------~~ tllE ------TmiddotllE~I ~ES BURR~ AZ~ ~-~r- RD ____-- -- ~ bull FIIISA l- bull -~~

( )l__ -middot middot c(~HA w~~N ~tfJ1 -- -- ~ ~ 1

_

375

~) middot middot ---lt -__ lt_ ___ ___ -i____) C-middotdeg - - -

- -- J_ _) lllt

_ =- ) - -

L- ~~- Iii - ~ _________

-~ 0 I -- (

SI lllt

E

NT CM58V

( j gtT__~_____)___ -- ~l- ) (

middotmiddot-- -_ bull _ ~- () ~

I --J vlt__ ltgt

--- --------- ~---------- C -

_

~(__ f - -- ~---middot)1 ~

t ~ I

I- I- ~

3720

ANAC Wo~ middot -~- lt_)

44

PERI ) ~ tlo

25 R~ ~~ANAH _i~~MN ~~-w--- ~ _ 00 )

T middot I BUllE I -eM62 7 llE

-- - ~

~ 425

SOUTH

20

(KM)

SCAQS SURFACE WIND MONITORING SITES 11 -13 NOVEMBER 1987

(_ (___JCcS ~~)

bull ------------~ - - ( ~ r-------------- Dbull ---

J

575 3670

1SV3 0 0 0 0 N r-- N r-- a) r-- r-- co I I) I) I)

I bull bull I I

I I f1 1 ~~ I- I I-)

0 l)

l)

w I-l)

L)

z Ct 0 I-

z 0 2

0 r-- z OJ

m3 Ct a lt( w0

l() mI Ct 2

~ ww Q_ gt

0 - Q_ 0 I) 2 ) z ~ ___0

N (I) n a

0 lt(- u ()

0

n 0 z I)

N +

lf) r-- I)

- I I I

i I

I 0

~ -L

w

i

~ LL

I)

C-1

+

l() r-- I)

1S3M

A-12

-~

igt I _

l)

CM~RS 275 325 375

NORTH 425 475 525 575

_J- I bullbullbullbullbullbull ~ I bullbullbullbullbullbullbull bull I middot bull -gt-----middot bullbullbull 3 )--- ____j lt c----- -_ -- gt _ ___ ----- t__ l___

-- ------- LANC l ~ ---------- __ ) -- __ ~ I ) ~ - -=~__ I -~middotmiddot- - bull middot bull bull bull lt lt Cl --- ------ ____ -~ -

38201-- ------_- ) ) -- _ ---- -- -- -- - () - --------- I --- -~-lt~~ (middot__ TEME ) --gt ~_ ----- - middot--- --- vamp c~ (~ 0~ ___- --- gtIpound - - - - ---- -- - - -- _ - - ~ ---- - - - ------------- 5SI -middot PIRltgt ----~ ( -middot _ - -- --- - --- ) HESP --------~ ltgt

___ __bull_rbull ~--------~-___ -- ___ ----gt--=- bull~ ~~ I - ---__-=---- ----

VENt CM58 _ sti --~~ ~ lt_ -~-- middot_~-~~ r-~- --middot) ~~) _J MISS-~~-- ___-_ __)~ -- ---( C

- --RESpound BUR~--==-=~----r~---_-__- ~- - ~ _- ~ -1 -

3770 I- ANAC

J I )l( ~- ~-- - i middot ----middot -X--Ret-----_~ -~

___ ( - -middot ~SA AZ~ ~ o j -------=--------~--gt~-- dampHA ~~~f __ SNBO ~~ -~

ZUMA MALI LA w~M -jmiddot I R~J ~-s ~__ )() w ~

3720

8U25

VE VERN PICO _ middotyHIN RIVRyen ( ~----- -~ CM44 -~ ~- ----- ~ C WT ~NN Wt-0HB -NQRC - middot- ~NN-a-~~ _ ~ co~ __ -- ( ~ ~

RVIJO ~ilff AN~ gt cmiddotbull yen 0 (~~ p LASAl I bull- - PERI ~ ) ~

rJ]~~_Y)~N ) (_ --

_T -cJ62~-~

~ 5j(bull 1) ~Jso

l -~

- 1 J) -~ ~7~~t~~

3820

3770 1-() lt( w

3720

I I I I I I I I I I I I I I I I I I I I I I367r I 367075

I 325 375 425 475 525 575

SOUTH

I 0

I 10

I 20

I 30

I 40

I 50

(KM)

SCAQS SURFACE WIND MONITORING SITES

03 DECEMBER 1987

NORTH 275 325 375 425 475 525 575

I I ) gt ~ _YC) ~ ~ I ( o c_ _------- (

___ middot i I 97 ~___ _ --1 cbull-- - - C -___J -- lt ( ) - - - - middotmiddot ~ l _ ----_J

I ---middot ___ __ middotmiddot-_ 1 -~ __J ) bull- middotbull_ -

3820 ------~- I -~middot --- _ middot--- -------~

C - ~ (___ _ 1 ) -- _ - - - gt _ bull f-_- --- r ------~__ -----I --- ) I ~ -~ gt ----- - --- -- ~-_]) c_middotI 38201-_~~_ l _ --- - (-- ~ f ~ I~_ - middot - middot -middotgt- -- -_ -- middot_ _- 1 L- l _- -

~----- l -- middot middot ~- middot-_ _- - middot middotmiddot--gt---~--t~~)-1 bull lt_ _ _ bull middot bull - middot- ~ ~0---~ (c ~ I ~

_ I - bull -~~~--gt~~~-~~ bullS- _~_ l ~~1t~~_~(~ t 3770 I -- -- middot __ - I S____ ( 3770

I- 1-() ()

gt w - I __~sect~- ---ONT lt(

w

tgt

f-- I

~

middot - middotI

-

L~i--

37203720 c_J - (_cS) l -~~

NSI

367~~51 3~5 13~51 14~5 I I I 14~51 is~s s~s 3670

SOUTH

I I I I I I 0 10 20 30 40 50

(KM)

fJ~

SCAOS UPPER-AIR WIND MONITORING SITES I 03 DECEMBER 1987 r~J

NORTH CM~RS 275 325 375 425 475 525 575

middot middot ___ I middot 1 I )l ___ QO --middot - v_ (-- - LANC middot ~ C) lt --bull_ I -- -- bull _ ~ - ~-- ) -------_ -- - _~-- V --I 1 J --- - bull I -J- ---middot - _ bull__ - vc i --- ltl

3820~-----=cc~ I middot -middot - middot - _ ___ -- - 1t ~~------- middot - ___) - - middot -

J-cgzot-- ~--- j 0 TEME _middot ---- --- -

-____ -- ---- _- j (

- -_ I -- --~ _JI( ---- bull bull-- llf -middotmiddot l - -- bull _middot_ middot I --- -- middot CM58

_- 1 -- middot - middot~-~ - -~__ ___ ---~-~_--__~----------D J-~J~bull A HESP

middot OJ11 r P1R1tc lt--~i_-_~-~- ~c~_r--~-~_--_~r-=-~~~~--~ _ --~ --lt__~~~~- CSI ~ -~ --- ---- middotmiddot - ---- - _ ~ r ) J

)gt SIMI -MIS5-X ~Cgt~---- middot-cemiddot middot ____~ ~ middot~ l~fu__ suRlfiI_middot- -tk~- flAf SNBO __ middot ~-~ l 3770 _ 377ob -- ~ PJIISA AZ ~JIily~ _- RDL ___ bull ( C t-shy-- -~ I ----- ~HA 71lt V)tn ANAC ~---- CE~ WALflHIN RIVR ----- ~ w

w ~ LA PICO - CM44 - T -~ ~ ZUMA MALI VEN middotbull _ -bulltRc __ ~ ~lt~~7-

N WuHB _~-- -middot bull ) _J~N ~ -- ~ 0 - ) ~ I ltgt -_middot PERI bull I- ( _

V 8U25~ 3720 3720

WJlt~ ( ~ ~ ) 1 i

~ I I I I I I I I I I I I I I I I I I I I I367r I bull I I 3670

75 325 375 425 475 525 575 SOUTH

I I I I I I 0 10 20 30 40 50

(KM)

-~ ~

SCAQS SURFACE WIND MONITORING SITES 10-11 DECEMBER 1987

NORTH 325 375 425 475 525 575275

-- ----_ lt_~- c--- - ~ ~ _ I I - ---~~c------ ) _ -middot - gt~-

3a2or ------__ lt- ) 1 middot--- -- __ - ~bull =-------------- - r---_ ___ - bull- ---- I I ~ ~-- jc- I bull - - (bull I --- middot middotmiddot - ~ -middot - -- ~ - 3820 -~- bull - middot - - ~-_ ~- _ middot- n

(

- 0 lt_( ~_lt- ~-~~- middotmiddot) ---- ()_ (---- --

--

____ middot

-middot

I

f----- (-J 1r---J~ --~ - middotlt ltbullI I ~__---__ ~-

l B~--- _c_ gt-- lt gt- (- - - j 1--_~--~--l~ -- -- --- )l

-- - --~---- middotc middot=-~-~- (~ L ----- -- --middot - -- - - -bull --- - - c-) ~ J _ -- - ---- - ) ) ltl

37703770 EMLgt middotorrmiddotbull __ ) ~~~~ofmiddot - -- __s=__I- - - ~__- ( ~ __ )---__ Ishy

V) ~ ~- lt(w ~ ---- --~ - w if)

-~2_~middot) ~~at~s t I

I-

deg

FUUA

i () ~--J)llC~lt I

3720 3720

~ltl__ (_)i~

~ NSI

367~~51 I I I I I I I 13~51 I I I I I I I 13~51 I I I I I I I 14~51 I I I I I I 14~51 I I I I I I r--- I5~51 1 I T I I I I I 5~51 I I I I 36 70

SOUTH

I I I I I I 0 1 0 20 30 40 50

(KM)

SCAQS UPPER-AIR WIND MONITORING SITES

10-11 DECEMBER 1987

Appendix B

SCAQS DIAGNOSTIC WIND ANALYSES (Six-hourly plots Levels 1 3 and S)

Summer Intensive Monitoring Periods

19 June 1987 24-25 June 1987 13-15 July 1987 27-29 August 1987 2-3 September 1987

Autumn Intensive Monitoring Periods

11-13 November 1987 3 December 1987 10-11 December 1987

Page

B-1 B-13 B-37 B-73 B-109

B-133 B-169 B-181

9106103

Summer Intensive Monitoring Periods

9106103

19 June 1987

9106103

1bullbull-lil

1SV3

I I lshy Ishyo )

0 0 z ()

IO N IO

I()

N -st-

1S3M

-- l1

l~ i --

0 z 3

---

2 0

_J w cjr----_J CD

0 l() z

I- =)lt( 7

f) 0)

0 -- i n 2 Ishy7

0 ~ ()N ____ gt a 0 20

3o 0 ~

0

B-1

1Sv3

( I l-et 0 z

(

lf) N st-

l() N ~

l()

N 0 t--

n

0 N_ n

U)

ON r-shy(0

n

1S3M

B-2

_

2 0 0 tlt)-__

tlt)

_j w 2jr-_j CX)

0 lf) I- z

lt( ~ IJ1 0)

0 _ 0 n 2 z 1-0 ~ N - 3 ~ 0 20

3o 0 Ov

-----

lSVJ

l)

----

l~3 O 0 w

w ll) (1

l)

0 0 z 3

I lshyet 0 z

--

2 0 0 0

-

LO

w ~

GJ r----~

u 0 z

OJ

I- gt lt( J

mif)

00 ---shyI) 2 z I-0 i l) N -- 3 (1

0 2 0 3 0 0 ~ 0

lSJM

B-3

1SV3

- V1 --

~5 O 0

E - w

w Ul_ 0

V1 0 0

z ~

I I lshy I-et =gt0 0Z V1

-

2 0

J wr--CJ OJ J z0

Ul I- =gt lt( ~ V1 -

0 - n 2 0 z 1-() 0 ~ N __ 3 0

0 2038 0

0

U)

l

lO N v

0 N agt n

0

r--n

0 N

0 N r-shyn

U)

U)

U) N U)

Ul

q--

Ill N q--

1S3M

B-4

td I

J1

~ ~~~~~ ~ -~~~~~ J - -~--Qf~J ~lf~ ~---~ ttt~~~~H~f~ ~ ~~lt~~~0 ~ - ltl-_t I~~~~~~-~~~~~ ~~ I _~1c j_~ L ~ (__1-T11__1 ~_-~_ ---~~~~~~ 11 - ~ +f--1~- ~-+--41-- 1-~- ~ ~ -rtt1-~--~~~~~~~ ~ ~ ~ ~ l t I J JI JI~- t _I i~~I~~~~~~

377itttttttt ~- - t I Jf --------_-- _ 70 ~ ttttttttttttti- fllJ~JI-~~_- ~~ _ =- ~~~- tn w - t t I I I_~- -V _ ~ -laquo___ _ - ltC 3 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ t t t t t I I I I JI~ JI JI ~~ I--~- ~ ~~~~~ w

H~HHHH~in+~l~Hnf5-I ~ ~~~~~~~~ ~ ~ ~ lliii it t I~t~ltt~rrrr~~~~ jl++it~~~t~

20-~~~~~~~~~J tttttttf ~~~~~~~~~~---~-~~~~~~~~~~~~~-amp~ ~ t t t t t t f f f I I I I ~ 1 J(-- _ --P ---~~~~~~~~ ~ ~ ~ ~ ~ ~ ~ ~ t t t t t t t t f f I I I I I ~ ~- j~J _ ~ ~ z~ ~ ~ ~ z l I+ nm~t ~ ~ ~ I I~Jt~-~- -~-__~~~ tr ti ~ ~ t t I t f f I I I I I I I - ~-r __ - ~~~~~~~ ~~~~ ~z11 ttt ffflllllIIII -~~---~~~~~~~~~~~ ~~~~ ~~ ttttft ttflltllllllll A~--~~~~~~~~ ~ ~ ~ ~ ~ ~ ~ t t t t t t t t t t t f I I I I I I I I I I I I I ---P~- ttttttttttttlllllllllllI -~--L~-~~~~~~~~~middot

367 70 ~75 325 375 425 475 525 575

SOUTH

1111111111111111I I I I I I 0 10 20 30 40 50 0 5 10 15

(KM) WIND SPEED (MS) i

NORTH 425 575

_ 414111fl-~bull __~) ff I -lt~i ~ + lJ Jmiddot-bull A fl t1 it bull- _I~--~---~----_---~_~~~~~~~11 t1

~~t 11 f + + diamsJ diams 1 )--t-_+ J~ I-(_ 1 1 ~t1 __

__ Lt l l t fL f_l - - +~~----~~---~___-+_~~~ J-t-t t---t-lt t t-t) LJ lt fl ~ -- t---f t tT~-- ~~ 1__t -t ti t_1 + l - -~-~-~-II~-- - ~~~-----~----t----~~~~~~_Efftt -- r1 ~J t l Lt t

fl

~ _ t_ - 11 _ _

Fi ru bulll=ti~ ~ ~ ~ ~1H1~~_~-~-~----~~~~~~~~~~

DWM WINOS AT LEVEL 3 (300M) 1000 PST 19JUN87

1Sv3

I I-shyCt 0 z

1S3M

B-6

0 II)

0 I)

-_2

0 ~ N -

0

0

-_

2 0 0 0 -

LO

_J

w r---CJ O) _J z I- gt ~~ if)

0 1--shyz V) ~ Q_

20 3 g0

NORTH 525 575

~~~__A -~___~~-

F- ~_--P~

~ ff~~-- - _ middot- ~~

_ bull bull bull bull bull

_ p

~L~k~tt ~ 1 t A middot1-t

~ r~ 1 11 1 __ bull bull --l t frac12Q2_

~ ~--r-J-+7L~

1--Ui

3770 _yen~AA- ---~ ~__~_ ~ K---r

eno tshylf)

w ~ ~ ~ lt( 3 I I_

- w

td I

-J

~~~~- ~ ~ ~~~ shy ~ ~ - shy

3720

~ ~~~ -~1~-nu~~~~-

~ -~ - ~_____A~~1~ ~ _~ ~~= ~~~_______2--- ~

720

~~~-~~~~~_ 9~tbullmiddot~qor~frac12

Y~poundpoundpoundpoundpoundpoundL1~~~~r~ ~ middot

375 425 475 525 575

SOUTH

I I I I I I 11 1111 1111 1 0 10 20 30 4-0 50 0 5 10 15

(KM) WIND SPEED (MS)

DWM WINDS AT LEVEL 1 ( 1 OM) 1600 PST 19JUN87

~

NORTH

Arlt~~~ ~L _ -rJ ll

_ I I I t

_t-z~~J ~i~ bull

i- ~~~ Ii ~~( trn

3770 I - bull bull bull bull bull bull bull iigtlaquo

--- bull bull bull _-

~fJ~ t-l-lltf[llJ- jf1 rr]I ~ ~~~ ~ss~810Ja2ot-~~1i lmiddot - 1 17- - -

-ltL

~ ~ 70 y ____~ tshy

l) ) _-y ____~w

w ~

~ -~--- - -- ~ 1 ~~~~ __ _ bull---bull laquo-___~ Y~~

___p~~__---A~_A 1 ~~td I ~----______A 14 1 ~

00 _-________________ ~ __~----~1~ -A________________--r__~~~ ~ ~ ~~~--~-~~~~-~---e--~ ____________~_________-~ h

3 7 20 t-_--~____- ~ _ _ ~~-_- _ _ _ _ ~___~~~r--~~___-K ~~ ~ -~-------~~~----~ ~ ~~__________~~~~~~~______-r_-A~-1--~~~ ~__________________----r~__~__~-Y~~-------__---A----r~ 1 ~ ~__~___________~ ~

367 tcrr~__~y--rrYlt-trltltltltltlaquo-ltltltltltlaquoltlt~~~ ---

9imiddot~75 325 375 -- -

1111 1111 11111 1 1 1

0 10 20 30 40 50 0 5 10 15 I I I I I I

(KM) WIND SPEED (MS)

DWM WINDS AT LEVEL 3 (300M)

1600 PST 19JUN87

NORTH

bl I

0

~________________A-4_gt~~~_____~~__________~A

A~altP_ ~~~_________--~_A 38 20 I--=-~~_~~___~~-_-~~_ -lt~ - ~_-~_A--1~ _

~~------ ~ gt-~ ti ~----~ ~ _~~~~ 0 ~ ~-i---~~411___ I~-~~ I~A-~~----~7A7~-

A A~---~~- ---~ ~ ~ -middot~~ 1-27 ~shyA_~ ~~~ Jl--__r-t~ ~ (K~_ - fl_

A ~I J111 I _ A - ~ _ T-~ v I 1 1 1 1 1 1 ~ 1 1 _ Ji J I~ f --_i__middot1(- ~ ~)( ~JJXZ - _ r ~ - _ )( _ II I 1 ~ 1 I - _~ _)~ ~~

= 1 II II 1 (~ ~--=-~ -7fJ~~~~tm~i I- 3770 Jir - I 11 I 71 (I) ~ ~111 ~

w ~--middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotbullbull bullbull ~~~11Zll~~11~ ~ ~~_~~~llllN~~ -~~ bull 11jh fi 1 1 II 1 1 1 1 1 1 1 1 1 1 1 1 1 I I 1 0i~~~ 1gtcJ~l~p~ ~~~ ~~~ ~rr1111

70 Ishy() lt( w

111111~~ 3720 i- 1 1 ~ ~

~1~I A-A~)I 1111AA _~l11~ 1

lllllll11IIIAII- ~II ~1~~__~~Ill~~~~~ l1_ 1~~~~~~lll~~~~1 llllflfAll-)lllllllll1~~~~~

A I I I I I 1 I I I I 3670

275 325 375 425 575

SOUTH

I I I I I I 1111111111111111 0 1 0 20 30 40 50 0 5 10 15

(KM) WIND SPEED (MS)

DWM WINDS AT LEVEL 5 ( 1 OOOM) 1600 PST 19JUN87

~

A A A

1Sv3

(

1S3M

B-10

()

l ~

---u) 2 __ O 0 ~ w

w It) Q_

()

0 0 z 3

0 It)

~

0 ---I) 2 ~0N _

0

0

---2 0 __

_J

w r--- GJ OJ _J z __ )

~~ () r-

0 __ z ()3 Q_

~o 3~ ON

NORTH

middot-~~) K~xJ~ middot_1~ ~ 71( I IJ ~JI

~A I 1 ~~

liii[i~~ Hf~-~~~=~T-- ----- --=~~g~g~bull11ft _ ~~~ -1-x~~~ ~~~~-~~~--~-~---~ --~ t ~t~ -~1~~ -- ----

-lt J 1middot~~ __---~__

3 770 ~ ~~ --_tn ---------~~ 1 ~____~ _ ___~ -w bull Y ___~~~ (Al _~ _ ~

-- bull _ _ _ bull bull bull bull~___1 1I J~ _~

~- YI J _L ~~ ~~ YJll~E~

td _____-___ ____ __ 1 ~xgtx2-I ____________~__-A (~~~~ _______~~2-1 y~~- ___~__________~ ~

3 7 20 I-___~~__~~ Y --~ ~__ I _ - - _

~_---A~ ~---__~~~~~--_____~ ~ ~_____A~ y ~ ~___-__________~~ ~ -

~__-_______-yen_2 ~ ~ ~~_______~ ~

1 367~ 75 325 375 425

SOUTH

1111 1111 1111I I I I I I 1 1 1 0 10 20 30 40 50 0 5 10 15

(KM) WIND SPEED (MS)

DWM WINDS AT LEVEL 3 (300M)

2200 PST 19JUN87

~-

~ - - ---

NORTH 275

___ -~-___

- ~ I o_ ltAbull~-P- bull bull -P diams bull~--~~~~--- --- ~ ~ ti ~ ~sbull3820 ~=-J~_~~middotmiddotmiddot~~~--_~_=- =~_~c s~ ~3~

~~- bullbull~~bull~~~~~~ - bull -~~bull ~ v i-_ --- __-_ ~----~

~- st-~~1 17-~__4 ~ _~ ~-~-raquo~~~ -f _ _ bull bull bull bull~ bull bull-__-v 4 t ~ ~v ~- Jl_~ ~--z~~=~s~~~~Mil

-- _ ~ frac12--~~- -=~~ ~~l~1~l~tzi9~J t~ 1 1 1 1 1 1 ~-bull ~~___- v q (If V pp p I l_77rtfl _

3770 ~ ~ ---- I h1yenzi 1V-r-() bull bull ~ ~~~~~ w ~ bull ~ _ I JI J(_ )-II101-1 3 ~~A~~~XI IIJ~~~

~ f A I~ I I I I~--L -

tl ~1111111 ~K11~~llll~i~~~~I ~rr ~~ ~xgt~~~t---

N ~I I II)(01~ ~ ~ ~~~ 1~Y~lt~~~~~~~~ ~~~~

3720 iYY11Alllll1lIA~~~~ ~~---Y~---_ _ _ - ~ bullbull - - _

~rrll1IIIIIIIAAAA__

___________~~~AAAA~_~ ______________~~~~KAKAA1~~ lllllllllll~AAA1f~~

_~~

3670 t1i11 i i 1 i i 11111 i i i i -i i [ 111111-111 ~ ~ 11 ~ i I t 1 bull rm r~ij e =~~ raquo-il3t ~ 275 325 375 425

SOUTH

1111 111111 11111 1I I I I I I 0 1 0 20 30 40 50 0 5 10 15

(KM) WIND SPEED (MS)

DWM WINDS AT LEVEL 5 ( 1 OOOM) 2200 PST 19JUN87

24-25 June 1987

9106103

1SV3

1S3M

0 w w Q_ (J1

0 z 3

I f-shy=J 0 (J1

-_

2 0

--

_J w CJ f- _J OC)

0 U) z

f-shy )lt

J q-

(J1 N0 -_ 0

rlt) z rshyl)

N0 _ 3 Q_

0 20 3o 0 q-

0

B-13

lf)_ lf)

If) N If)

lf) r-shy~

I I-o 0 z lf)

~

lO

~

lf) N If)

(

pound bull d ~ bull 4 4 c_ q

1 4 r9middot-

0 N IX)

middot- t--bull ~Igt~

O ~f 4 fT amp)o(oj

4 ltI I~ ~ ~

0

o

middot a

~- v t rgt ( tgtj (~V~-1 f4

3 44 ~-~a4 V VM q -~~-q_4 ~4

_ ~ )

p- ~~t1~1 middot V II J ~ ~ )I 1 11 f ir -~~1I ~

II P P P Igt 4 ~(Iigt ~~ 1) IA

deg deg 4 4 ~ A -1 r 1 1-Y]~t J rz ~

fl r ~ Igt I~y ~ -- -- - 4 ~r___amp V P11 iP Igt P Igt p ~ -0

~bull 7~tpmiddot~P Pf P Ptl middot~ ~ q p Igt 1gt p ~ t b (r 4 P - 4---f ~ ~ bV ltI

ltI ~ ~ I p 6(~ d-_j b d p (4- 4 ~ 1 p Igt 1gt Igt - b ti

)4- a 4_) q V Igt p Igt o

lt(___~ ~- V fgt ~ 111 t Igt -4

~ ~ Igt r p Igt

~ ~ 1 h1

V (I Ilt v middot

t y-

t

t

p

P t P t P ~

0 0N - IX) n

1SV3 0 0 0r-shy N r-shy co

lf) lf)

If) N If)

~ - t bull~--~11n ~ -~bullmiddot t~ lt middot___

o_ ~ ~ ~

0 bull t bull 4_4 4 4IIgt

c 0----~ u c Igt( o ~ c ~A ~ 0 - A 4 4 ~ 1 q

o bull o- -~ 1gt 1gt ~ y4 -~J middot)bullmiddot ~ ~ ~ p 0- 1---f t-~ 1 ~ 4 4 o co u gt)O- eyti ~ ~l 9 -Y P- - I a c 1 oM_il_q A p- p

4 ~ ~-M f p

I 4

~ rv ~--~middot

tJmiddot bull P II f t )I~ bull V ct_~ V V V t P- ~ Igt t middot f lft V VJi P- P- fgt IIgt ~ _ J1 bull bull bull

1 v II p _bull ( ( ir ti- f Igt bull

j ~ r f -~-1t __

_I ltC_t--q_) v -~-ampgt

Q middot--- ~ - t ~ b

II

bull ~

bull bull

diams

1 bull ~ ~~ ~ ~ b b b lgt bull

-- b bull bull bull~4q~ lgtPlgt-4-~_tbblgt

Jraquo P P ~ q 11- 11- b b b b b

P Igt P q bull b b b b b b b b bull

bull bull Igt 4 4 fl ~ b b b b b b b b b bull bull Igt Igt ~ 4 q ~ b _ b b b b b b bull

P bull Igt Igt -4 ltI 9 b b b b b b b b

p bull - Igt Igt 4 lt1 _ b b b b b bull t bull bull Igt ~ 4 b bull b b b b b b bull p Igt Igt Igt bull 9 b b b b b b b b bull P p ~ ~ A 4 q - _ b b b

1S3M

figt j)

~ ~ bull

bull bull bull bull bull bull bull bull bull bull

bull bull bull bull middot bull middot

bull bull ~ ~ 9 9bull bull bull bull bull bull bull bull bull

bull ~ bull bull _ bull bull _ bull bull

~

If) N t

lf) r--11

~

If)

~

0 ONN - co n ~

I fshy=i 0 V)

- 2 0 0 n -

n _j w cjf-

0 l()

0 ~

0N

0

0

---shy2 ~ _

_j OC)

I- z lt( =i

J Vgtv 0N z f-

3 ~ 20 3o 0-t

B-14

---

1S13 0 0 0 N N r--shyltIO r--shy co I) n I)

I() l1 r--shy -U

E~i0 z

U N I() 3

I fshy)

0 U) l1 N -t

--_

2 0 0 0

-

LO

_J w CJf----_J OJ

0 U) z

f- )lt( l1-r ON z f-

3 ~ 0 20

50 U) 0 -sr

0 ON r--shy r--shy

r--shy (0

n I)

1S3M

B-15

lSV3 0 0 0_ N - _ - ~ I)

_ ()

(~i

0 z

If) If)N NIf) 3It)

I Il- I-a =gt0 0z If) If)()

N Nst- st-

_

2 0

--

- w I--- OC)Cj z0 -

I) )I- Jlt( --t-

N() 0 I-z ()

3 o_

0 0 2 0

~ 0 00( 0 0 0-N N _111) r-- 1)

1S3M

B-16

lSVJ 0 0 0 0 N r-shy N r-shy_ _agt lO n n n n

() r-shyU)

u) l() N N u) l()

I I lshy Ishyo )

0 0 z U1 l) N

l() r--_ 2 0 0 n -

n _j

w I GJ OC)

0 _j z

lt) I- ) lt( ~ lf) N 0 1-z l)

3 Q_

0 Lo38 0

0 0 0 0 _N N _ _(() n n n

lSJM

B-17

1SV3 0 0 0 0- -N N- -crJ co I) I) I)

lO II)- - U) It)

U) II) N N lO lO

lO- st

I l-o 0 z U)

N

~

I I-=gt 0 l)

st st

--_ It) - ~ I) 0

0 0 ___

lf)

J w I-

It) N I)

0 II)

~ OC) J z I- =gt lt - lf) N 0 1-z l)

~ 0

0

0

~ 0

38 0

N IIJ I)

- - I)

1S3M

B-18

middot~ bullmiddot I

1Si3 0 0 0 0 N r-shy N r-shya) r-shy r-- co I) I) 1) I)

--_

E~i l)

0 z 3

I r-0 0 z

0 I(

0 --_ n 2 0 ~ N --

0

0

1S3M

B-19

---

_J

w r----2i OC) _J z I- lt( ~ V1 N 0 1-z V)

3n 20 3 iE 0

---- --_

NORTH

-_ t t t f t A +1 t lt-1--JJ-middot+J

r ft_f_frac14 fffftl middotmiddotbull f_ n- ~ tn

ttt1I1~ ~ ~ ~ ~f --H 1--- ~ -

rJj ----~ ~ ~--- ~ l j bull bull - bull bull Ir - ---_- --- --~~~~~I-~~~ ~ bull ~ ~ rt

- - ~rnlit ~~~~ ~~~~ ~~ ~~~~~~~ - _~-~~ ~~~~~-=~~~~~~~-gt

3820

bl I

N 0

tshy() w 3 fftfftlll

ffltlIJ11111~11- I I I J ~-- - ~~~~11J~ -~

3720 - I I JI J ~~~~~~~--------~~ diams bull + I J J _~ 4 bull I I I J ___ ~~~~-s---~~IJ-bullbullbullbullbullbull ~__middot~middotmiddotmiddotmiddotmiddot~~~~~E-e~~

4flA~~middot~middotmiddotmiddotmiddotmiddot~~~~~ ~--_---~- ~~ 1

367~7i51bull1bull11bull1 111 13251777JT7777~7777 I I I 14251

--~--~- ~~_-~-----~ ~~~J

--~-_--~- 1- I 1 I

~ 1lJ

I I I I I I 14751 I I I I I I I s~sl1 I I I 1575 I I

3770 tshy() lt( w

3720

13670

SOUTH

I 0

I 10

I I 20 30

(KM)

I 40

I 50

lllI 0 5 10 15

WIND SPEED (MS)

DWM WINDS AT LEVEL 3 1600 PST 24JUN87

(300M)

lSgt3 0 0 r--shy N r--shy r--shyt)

It r---1)

lO ---- N bull ~~ r lO ~ oe--- I

~~~~ t z~_-----~8 ~ ~~~2~-~----=---~~ t ~~----~~ -frac14~~~--

~v -~ 1 ~ - ~ ~~ ~~~-~~N~~~~~~~~~~~

tf~ ~ ~ -~~~~~imiddot~~~~~ ~~ ~~

_gt~~ middot1 ~ r2 l~ --~- I _Ct _ V I - ftV

0 ~ ~~- X

z~ HF bullIh IJ i It ti ~ 1 IJtl ~ ~ j t ~1

~ ~ 1~1

1 r ~

)

r r~P t t _r )r f

~ 1+ t t t f t ti ~ 1 lt ~ diams t f J t H ff 1 1I I I It diams diams Vf- 1 f f ~ f I 11

(____ t i(_ bullbull ~ bull ~ I r fr1)L_lt--~~vi 1t1J U1 -~- middot~ 1 t) ~ bull ~ bull ~ bull 1 1 f f f I t ~ - ( ~ ~(~ (_ ~ b ~ - ~ bull f 1 f f ~ bull

j ~r~--~ ~ _ ~ ~ ~ l 6 bull bull 4 t ft It _ - __ _ - J ~ ~ ~ t bullbullbullbull t - _ ~--~_____

__ I deg j ~ ~ b ~ _ Igt ~ _ _ ___ bull bull bull bull

~ ~ I ~ ~ ~ _ ~ _ _ _ __ - bull bull bullf

~ bull ~ ~ 4

I -- I bullbullbullbullbull

~~~ ~

1 bull ~

-- V)

LO lshy -----_ lf)

l- w w

=~ It) 0 l)

It)

2= )

0

~

l() 9 __~----- lf)r--- --------J______--L--J-~J-J-______~______~~~___________________________ r---N O O O ON

0 0 z 3

--

2 0 0 0 ----

LO

_j

w I--GJ Cl)

0 _j z lf) )I-

lt( ~ ~

lf) N 0 -- 0 I-n 2 Zlf) ~0 3 0

N ---

0 20 3 g0 -

0

N r- N I-~ I- I- ~ n n n n

1S3M

B-21

1Sv3

U) N U)

lJ) N n

0 N (0 I)

0 r-shyr-shyI)

0 N

I)

It) N It)

U1 r--1)

1S3M

B-22

0 w w (L Vgt

0 z ~

---2 0 __

_j

w _ ~ OC)

0 _j z U1 I- )

lt~ NVgt

0 --shy 0 1-t) 2 z () 0 ~ ~ (LN -middot -

0 20 ~~

0 ON

bull bull bull bull bull

1Sf3 0 0 0 0 N N CX) ID I) I) li li

~ n

~ n

tf) ~

A i -02middot a_ ~ r ____ Igt middotjmiddot i -1 ~ i r middot-~-----------------gt IJ IJ bull 1 j I ------~-----------------

_ IA_Jyen ~ ~ J ~ yen ----~---------------------

~ II --~_a IIgt 11gt Igt middot~ I bull ~ ~ ~ ~

1(1gt i i _JI J Iibull I - IJ Ji H j

bull bull I( --- j J t ~o ~- -- -J I I i J diams bull1bull bull bull i ~ _I I I I J 1 ~~- ~ 11 J l J diams -~ J) bull ~ I- t t ~ ( l f middott J bull 1_~1 ~ IJ II- I ( II ~ j t t bull)

bull t )bull ~) i ~bull bull __ __ I 1gt J I I I middot----- - ~ _ ~ Ji (Ji_ If ~ --~ bull i f l-Ji ~ p VIMyen I ~ middot1 bull I Ibull lt_~ ~ p1 )

I

__________________

~ 4 V ltI - - - -

~) i t --- -- yen 4 yen -- Iii 1yen yen JY yen II

I ~1 Ja a Igt- yen yen yen yen yen yen yenyenIiyen II II

a Igt bull ~ 111) (I J I JY yen tY yen yen II( ltf ~ I~) JY yen liY yen yen yen yen yen yen yen II II II ~ ~(II ~ yen yen yen r yen 1r yen yen yen It Ill

p cl

p 4 ampgt P JI r Igt bull

bull JJ Igt II

- ~ 11- bull

- -

+ _ _ _ __ __ +- ____

- - ----4

bull bull Igt Igt Igt

11 bull bull bull bull

bull bull It

IJ Igt bull t P

Igt bull t

- II Igt fl t middot~~-~~~t_yenyen yenyenyenyenyenyenyenyen

I ~J )Igt) 1 bull yen yen ~yen yen yen yen yen r - yen If II II Igt - I 1 J bull bullI _ _ 1 ~ ~ 1K )

bull -

bull bull II ~ Igt- J 6 bull I 11

fl) 1gt 11 Ill

bull t t fl

~

U1 r- n

~ n

_________o__JJ=---=-------oti~~e-~e11JEJEolELE-ILILLEJLlLu~uJ

l~

0 tf)

~ 0 n

0 N

0

0

- Vl ~ 2 ---

0 w w CL V1

0 z 3

-

2 y --

-

2 0 0 tlt) --

n _J w f-~ OC)

_J z gt

I- Jlt( q-

NVl bull) I-z Vl -~ CL

02 0 3 N 0 NIf)

ONN I N ro r- (0

n n n I)

1S3M

B-23

17z-g

WEST u u u ~ ~ ~ N ~ N

NO N~ 0~0

7J ~ () z -I 0 N (I)

~ )gt c_ -I C zr co ~ -J rT7

r (Jl

-- __ 0 0 0 s _

--_ 7 ~ --

~ z

~-0 0

--s (I) ___

0

0

N o (A 0

t ()1 0

oj(JI

-0

-()1

0 0 0 N -J

A I q bull if ~ ii ii ii I ii if 1 i J (JI

Ab4llltli ~~144

bull~~bull~1111111 11~1middot)1i~~~1 ~4gt~1111111~ II~ - bullbull~Agt~lll11 IIIAII tbull ~4-4~~~III IIll~ I ~14 4 - ~ bull i ~bull-ttt1 111111 I I 1-~ bullbullbullbullbull gt q bullbullbullbull I t I I I I I 4 I I I I I I I 1_ J~ I

4~ A - middot~~lll111I IIll 1 I 4 -1~~ l~ gt1llllllI 1l111 -~~ I N

tn()16 -1 Igt Igt I I l1I v I 7----(Yi ti mbull1-t

~Plgtlt111 VIII ii l middot~1111~~0~ I l~lll~310bullbull I i~W~ffi 1~~~~6~~~ I J~ 1~~~rw 11~~~1~ ~l~~t ~ i 11~~~~~~~ ~~f)~t~~I I~tl -1

~ --J ()1 l 111~1JV1 ~~~1~ I Ill tniz~i~~~~~~ ~~~~ 7 ~K -~~iii~~~~~~~~ il~~~~~~~ 1~~1~~~

middot1 middot1 middot1 middot1 middot1 middot1 middot1 middot1 middot middot1 middot1 middot1 I I I I vr )Igt(_ I II I I~~~~t~ 21~~~r~~~~~v111l I ~ II I -- I~ J(( I I II J l l l Cl ~ I ~ ~ ~ J J I I I yen - - bullbullJ_~ f yen ~ I IJ t I ti

diams J J J I I - ~ - ~ l1 yen -1) I I( t I ~ N J J J J 1- ur~ ~ - Jf1( -I) I I I ti I I j~

() UI diams Mi r)r yen fir_~~ bulll1t) JI 1 I middot i - (JI0 ~ nmiddotmiddotJ jmiddot-1 I I I f ~j--1J ~ __ middot gt C ~ J I f I 1 ltH I fl 1 ti I middotr- I I-I ~ f bull t t l )1j - _ I

t J4J-fbullt t ~ ii middotlfli ii~) - ~bullmiddotttM i f bull bull1 rI-Ku bull bull bull _ middot-~-J_J middot t +imiddot i t t ~ t ( ~ middot(~ I J bull Vf I r1- ~ j~fmiddot + r bull(~t t bullbull_t- J J ~) J ~ Igt

+ __ middot + V+ bull bull ti+ bull + -fi J i bull bull ~ f --- ~ ~ t Li bull bull t ++ diams + t bull +++ + bull ~ __Vbull ~ it 4 ~ i ()1 ~ 1 bullbull diams diams diams diams ++ ++ bull t 1 fA middot_ -----Y 4 ~ tn

~ ~bull t bull + diams + bull diams +++t + bull A VJ ~ bull bull ~ -o middot ~- bull t bull diams diams diams + ~i4_ ~ ~ ~

11 -~ 1 1 1 1 ~t t diams t t ft(middot-- f g a PA

--middott 4 -4 y 1 1 1 )f7~ V g n t A ~ ~bull a~ 4 1 1 ( V P q 1 bull A ~ V Y ~-- 4 I Cl oCl 4 A A ~tW --~- ~middot -)bull ~iliJ bull1bull

bull It t-- ti __ __ ~ (~w ~ ()1UI I bullbull bullrmiddot -~)fl l~~~ ) I A IIbull N~L~ r ~~~-ff~ --bull--1) 4 4 bull ()1

~ 14 ~ bull f 4 AA 4~ bull

44( )A - ~

- ti~ f 4 ~ 4 4 4 A bull ~ i

ti ti fl 1 4 tn llflfl44 4 -()1

~ ()1 ti ti fl 4 4 _ 4 bull fl _ 4 ~ ~

~ bull t~ - - I - 1 T T fJifrac12 1f 1~ fl t [ 1 4 bull bull ~ ltt ~4 ~~~11 l~~Nfl---~ ~~ bull ~t144

1 -middot I I f I ~ fl ti ti- Imiddot tJ 1-0 I 14

z o 0 -I

I

Y

)

u u u u 0) ~ ~ ~ ~ N ~ N 0 0 0 0

EAST

1S13

0 z 3

r r I-shy Ishyer gt 0 0 z ()

--_

2 0

--

___J

w CJ r----1 (lJ

0 l() z

Ishy gtlt J LO() N0

z Ishy()

3 0

0 20 3o 0 tj--

0

1S3M

0 w w 0 ()

B-25

------

~ --- _

NORTH 275 325 375 425 475 525 575

dJ 41 l ll~I tgtI I lo fA Itgt IA IA lo 1 IA IQ 1q lq If lq I ~I 4

~ ~ IIJ ~A ltI P Igt Igt Igt P V V V Q q l_-~- q ~ ~ ~ x- ~ ~ Y t~ --___q)11 4 ltI v v v v v v v 1raquo 4 -q q -~ q ~ 1 a

~ 4 ~~_gt~) ) ~~-4_~ A ltI fl v v v v p A V yjq ~ _ _ ~bullbull --shy~~~ ~ I Cl11 ~ 4 v v v v P- deg 4 ~ -V t V ( ~ a bull-

~ 1 ~~~ v ~sa- fl V P -iLpound_~A--4 q Igt P ~ 4 a~ 4 38203820

- _1 fa bull bull ~ II 11 4 4 ltf V P deg q 9 p Igt Igt Igt Igt P~~ _ _ _ bull -

- ~_R middot ~ gt- P-~-j---s--middotp-~~--- Igt p ~(

-~~ _ amp- 4 --v--J ~--~ -__~---- ~~ t f ---~middot bullbull ~ ~ ~ ~ ~~bull--- bull~bull~~ 4 ~-deg ~--~ ~_v -~ _~raquo Wh~

bull bull bull bull ___ol bull bull --___~ ~ _ A~~-~- f_~-~ bull 1 ~bull -~ Igt bull

a l -4 bull bull~ bull ~ ~ bull frac12~ P- __ _middotmiddot11-~~j)6-_ U bull _ JIgt~ bull I- bull ft ~ 4_~~~~ 9 P lgt--1gt~~~_-~_----~~~ ~ bull ~ ~ ~ ~ --~-~- ~~-_middot ~~~A~ ~ 1111 ~- ----~~ -~- IIgt _)-

1111 1111 -( _-middot 4 ~ Po Igt q lgtmiddotv11t_ Igt Igt II

3770 ~ P 0 ~ - bull k ~ 1- 1-

() pound 4 4 ~ q -44 - bull bull Igt ~- t Igt 1 Igt () w Igt 7 lt

3 - bull It It It bull bull ~--~ p ~ Igt ~ w ~~ It It It bull ~ -_t _ ~ bull bull bull bull --~ Igt

deg

td bull ft bull v ~lt~ Igt Ci~ 4gt I ~ It bull bull ~ 6 -It Igt ~

N bull bull It It ~ ~ _ ~_) ~ ~ lr It ft ft ft ft ft ft Igt -II-~ j ~ fil- _ _ _ _ bull 11r 1o 1o It 111- bull ft ft ft ft ft i i f - ~ 3720 bull It bull ft ft ft ltt q -e- ~ ~ ~j1

4

middot bull bull bull It It ft It bull ~ ~ ~ bullmiddot ft ft ft ft ltt ft ltt ltI 1 ~ - It bull It ft ft It bull -0 ~ JIgt ]~

middotmiddotmiddotmiddotbullbull1rt1rtft11- p-bull- ~1frac121 1tftftlttltltPt1t fgtbullbull ~~- bullbull ~

It bullbullbullbull It ltt It It ltt It lrt lrt tgt - ~

~~~ItIt ItItIt 1t11tft lttlttftlttltlt ltt lt11t ~ lgtbullJgtIbullbull bull~bull bull~bull ~ 1 bull bull 3670 367~75 325 375 425 475 525 575

SOUTH

1111111111111111I I I t--l 0 10 20 30 40 50 0 5 10 15

(KM) WIND SPEED (MS)

DWM WINDS AT LEVEL 3 (300M) 400 PST 25JUN87

0 0 0 0 N r-shy N r-shya) r-shy r-- (0 I) I) 1) I)

-

LO r--1) -

l~ i ()

0 z 3

I ~ n 0 z I)

N st-

0 If)

0 - I) 2 0 ~ N -

0

0

1S3M

B-27

---_

2 0 0 0

-

If)

_J

w Cj l-_J OC)

z_ ) lt( J () L()

ON z~ 3~ 20 3oo+

0 0 0 N N C0 (0 I) ~ I)

U)

U)

U) U) N N It) U)

I I-=gt 0

U) V1 N st-

lO N I)

0 lO

0 __ I) 2 0 ~ N _

0

0

__ 2 0

--

_J

w l--Gj OC) _J z I- =gt lt( ~ V1 N 0 1-z V) 3 CL

20 3 g0

1S3M

B-28

I fshyCt 0 z

0 r-shyr-shyI)

0 N r-shyn

0 r-shyl) I)

lO r-shylO

lO N It)

lO N ltt-

--

tlt)

_j

w r---fu o) _J z f- ) lt( ~ f) N 0 1-Z Vgt3 (L

2 03g0

I fshy)

0 l)

0 lO

0 -- n 2 0 ~ N ---

0

0

1S3M

B-29

1S13

-l)~ O 0 w

deg CL w

l)l ~

0 0 z 3

I lshya 0 z

--_

2 0 0 0

--

LO

_j

w__cj IJ)

0 _j z lf I- )

lt ~ ~ V) N

I) 20 - 0 Z(f)

I-

0 ~ 3 CLN -

2 00 3 gOr-

0

1S3M

B-30

Ht 11Sittl

lS13 0 0 0 0 N N II) (0 n I) n n

-- ()

LO t-shy ~ lO

(~i0 z

lO N LO

3

I Ishygt 0

lO () N +

--

2 0

--

_j

wr-----CJ OJ

0 _j z lt) I- )

lt ~ V) N

0 -- 0 1-shyI) 2 z () 0 i 3 ClN --- --

0 28 3 ltD

lf 0~_____________________________~_______________________--- t-- 0 0 0 0 ClCI N N t-shyII) t-shy io n n n n

1S3M

B-31

==- ~-_

NORTH

I bull bull - -f I I bull ~bull - ~__~~~~ ~~~

flt~11 $~~~t=- ~~ ~ 4Aligt~ ~~~ ~~

3820 1~~~- 4 t 11 ~ ~- --~_____-- ~ ~ ~~ 3820 ~~~

~~-~~~~

3770 3770

l1 ()w l-

lllizz tshy

~ ZlZZl ~ ~~~~~~

to I -IllIll

w -I IIIll~N llllll2~~

-II I I J I-~1~ r~~~~ 3720r ~ J J UL 1~A~~ 3720

~IIJJJJJ2~ ~~~ 1 ~ fl I JI JI2~~ 1~~~V fl fl ~ JI J J ~ y ~- 1-f4~) ~ fl fl fl I JI J _A2 1~ V~

~flflflflJIJIJl~2 ~~JIw~ ~ ~jlfljlflJIJIJI~ ~JIJIJflfl~~~ ~ ~~fljlfljlJI~~~~ -

J67 t-V1111111----(((((1i I~laquo rlt~1 I I I I I I I IM m I I I I I I I ~ MJ670 g75 325 375 425 475 525 575

SOUTH

11111 11111 11111 1I I I I I I 0 10 20 30 40 50 middot 0 5 10 15

(KM) WIND SPEED (MS)

DWM WINDS AT LEVEL 3 (300M) 1600 PST 25JUN87

1

NORTH

bj I

w w

i~ -tt--t ~ + ~frac14 diams diams diams diams diams f f f J-~~~l -ff~_x~ diams t diams ---t diams + diams ff f J1ff~t t

-=tl-U +---- ~ ~ t-t- diams diams __ diams~ diams diams ~ J I I 1 1 f ~ -y- ~I -~~-1t-~ diams +__+ diams + ++--J_f 1 ~JJ-11 I --

38201- ~~-- ~ ~--t_-( 1 ~ r 1t + middot~-t_ bull ~-~ bull bull bullmiddot bull r-r 1 ~IiI 1 I ~Ji~l _-=pound-~If~_ It It It bull bull bull bull bull ~ diams f f---bullmiddot+ --I __- _ I I~ 1 f1

( - ~~~~ II lit It It 1tt Iii Iii~ -r-middot -- ___- l_f--1-l -L ~~1 1 ~ ~_( _ -~~ ~------~ 1t(~ bull (t ft- ~ middotv -11-fI 1 - t~~1 1 41

~ - ~-~- lit 1t lk_i -- -~--- -_ -j rf-- l1 r111 1 I It It~ It 1t 11i bull-~ ~- ~ t_bullbull_~ (middot ~--middottY~i_(4Xtl~4j_ middot It It ~ -- ---~----~----_I~)-~-~ -

~-It It ltt middot~- ~ -~-middot ~-pound1[_~ -~- - middot - deg - - It It l diams diams 4 middotbull--bull ~ ~ ~ diams 7 1---~~ -L_- - ~ t( I diams -( bull diams ~ ~ bull ~ -- JI JI Jf JI JI j(_ ~II deg It_ -~ ~- I I I J JI JI JI JI 1

~ J- ~llj ~- diamsdiams +II IllJI_ h~ ~ ~ ~ bull bull ~ JI J J J ~ 1 x111 X7 -~ ~ diamsdiams 4111 JJJIJJ~~~~~~~~1t diamsdiamsdiams ~111 JJIJJIJllllb~ h~~~hh middot ~ - diams diams bull I I J J I I I I JI JI I l1-14~frac12-~~~ji_ ~ + f 1 J I 1 I I I 1 ~ x~ f1 11 middot -

bull JI I I I11~bullY1iz 1 41 ~ f I J J J JI J J J J J I I I lmiddot ~ t JI JI JI 1 JI 1 1 JI J I I I It~ if~_~

It_ ~ 1 JI JI JI JI J J I I l-~ 4 t J J J J J J J JI JI I I l l deg ~~ _ ~ 1111JJIJIJIJIJIJIJIJI t JIJIJIJI~I JIJJIJIJI_

~- I t I I JJJIJIJIJIJII~~~~ t JIJJIJIJIJIIII ~~ JJ JIJIJlllll ~ t IJJIJIJl1 1 1 ~ ~~I 1 t 1 A 11111111 II I I I

325 375 425 475

SOUTH

I I I I I I 0 10 20 30 40 50

(KM)

525 575

1111 111 1111 10 5 10 15

WIND SPEED (MS)

3820

3770 1-() lt( w

3720

3670

DWM WINDS AT LEVEL 1600 PST 25JUN87

5 (1000M)

0 w w CL ()

0

1S13 0 0 0 N r-shy N agt r-shy r--t) I) 1)

I() It)- r-shyU) U)

z U) N It) 3

( I I lshy Ishyo ) 0 0z It)

~lgtIgt~() st- b tgt ~ q st

lgtbbtgtb

b b t t 0 b

N

Igt b t b b b A 6 ~ b b t b C A 4 d 4

ttCt4lt1-it e Igt b tgt tgt V q ltl ltl ltI ltl

ti- deg 1 41 9 q I I ltl q q

i V q ltl q q q q I l() r-shy AlgtV ~ tlt) ~t) -~~~q

~ bull amp ~

0 ~ ~

-qa ~ ~ 1gt1 111111

b-a~-V ltillilI

bull lt bull bull a ~ Igt ~ V V V q 4 __J

It It lgt a -a~ Igt C tgt V w r---(J OC)

bull ~ Igt t 4 bull bull bull bull U) 0 __J z middot 1gt44lt14

U) ) t) rshy J - -N

lt( l() ~ ~~ CI() ~ ~

~

0 Ishy bull bull bull diams 1 z ()~ bull ~ bull diams diams 1 CL3bull ~ ~

i b y ~bullbullTT r I I 0

~ bull bulldiams ~ ~ b b b b ~ bullbull diams T r r I U)______-11____________________________ _ 0

0 O O ON N r- N r--agt r-- _ ~ I) I) I) I)

1S3M

B-34

I

_ _ 3820r- ttr- t f T Jf-Lt If t t 1l-- -~ 1~ t t

NORTH

~bull 1414

~~-_ ~ ~ r-- - --~ ~ - - _ r-- fT W - - r V-V ff f

- t t t t f I~ _AAjAA~-r bull(- -J It ~---1 t ~~~-1-- 1 ( ~~ - J ~ t t i f 1 ~ A_A-yen~_~_ ~ ~ 1 ~ t t ~ t t middotmiddotkt f ~-~-~~-----~~-- ~ ~ ~ ___ll_ bull ~

t -r- _______~~----- r ~bullbull _ ~ ~ tt-~J--~c-~~ ~ 1~--______ bull

~ -t lJ-- f t-J-- r---~~---middot _-- ~~-- ~ bull bull ll~iti~~sect~~~ ~ bullbull~bullbull bull~~n~ bull bull bull n~ bull bull

A)~lfifrac12~~ ~III I --1

3770 l l L l L - - ~ -- ~ - 1 ~ - 770 tshy~ ~~~~~~~~~11 1 ~~=1~~- Ul

W 1lllll~I ~~~~1111~~ lt( w ~1~~1~1~~j~~~m ~~~~ ~ - ~

11 1111 1111~I I 11111111 --- middotE~

tj IIIIIIIII_ ~tI l) llllll_~_p ~1l1 1~A~~~A~~rrr-v

3720t- I I I J J J A__ r r 0 11J)~~~----~_~ppmiddot-~~f Jl~~~~~---~--~~r~-~~q~q ~1

I ~JI I~ A A-_

~JIJl~~~~~A-----A rrbullbull~f~df~ ~~JIJl~~~~A~~--~- fffdfdff

~~JIJI~~~~~~---- bullfbulldbullfdf~

~IJIJl~~~AA~ --middotmiddotmiddotmiddotmiddot~middotmiddot~~~ ~l~JIJIJl~~~Al~pp~~~~bullbullffffffdff X ~~~~JI~- A(- f bullbull P ~ ~~bull1f1q1f1f1f1f1f1d1bull

3670275 325 375

1111 1111 11111 1 1 1

0 10 20 30 4-0 50 0 5 10 15 I I I I I I i(KM) WIND SPEED (MS)

iDWM w1tms AT LEVEL 3 (300M) ir 2200 PST 25JUN87

0 If)

0 __ I) 2 0 ~ (j __

0

0

__ 2 0 0 0

__

LO

_J

w f- GJ ll) _J z I- ) lt( ~ () N 0 1-z () ~ Cl

20 ~~ ON

1S3M

B-36

Page 5: Nind Observations Collected during the Southern California ...

Contents

1 middot INTRODUCTION 1

2 GENERATION OF WIND FIELDS AND ANALYSIS OF AIRFLOWPATIERNS 8

Diagnostic Wind Model 8 General Procedures 9 Summer Intensive Monitoring Periods 10 Autumn Intensive Monitoring Periods 15

3 PARTICLE PATH ANALYSIS 18

Calculation of Particle Paths 18 Summer Particle Paths 31 Autumn Particle Paths 32 Comparison with Tracer Data 33 Uncertainty Analysis 34

References middot 43

Appendix A SCAQS Wind Monitoring Sites Appendix B SCAQS Diagnostic Wind Analyses Appendix C Particle Paths

F4500 91061rl

iii

II

(

1 INTRODUCTION

One objective of the 1987 Southern California Air Quality Study (SCAQS) was to acquire an improved understanding of pollutant transport within the South Coast Air Basin (SOCAB) The complex meteorology of the SOCAB governs the transport of pollutants within the basin and through its boundaries Thus a thorough understanding of the mesoscale airflow patterns in the SOCAB is critical to understanding pollutant transport in the basin

Wind data collected during eight intensive monitoring periods in the SCAQS were used to analyze the mesoscale airflow patterns in the SOCAB The SCAQS data base contains the most comprehensive set of surface and upper-air wind data ever assembled for the SOCAB High spatial and temporal resolution wind measurements are available for 17 intensive study days representing both summer and autumn air-quality episodes

19 June 24-25 June 13-15 July 27-29 August 2-3 September 11-13 December 3 December and 10-11 December

The data set represents data good spatial and temporal resolution of some mesoscale airflow features The SCAQS surface wind monitoring sites are listed in Table 1-1 the upper-air wind monitoring sites are listed in Table 1-2 Data availability varied from episode to episode Plots of the surface and upper-air wind monitoring site locations for each episode are given in Appendix A

The wind data were analyzed using the Systems Applications International (SAi) Diagnostic Wind Model (DWM) (Douglas et al 1990) Using this model observational wind data are incorporated into a first-guess field that consists of a domain-mean wind that has been adjusted for terrain effects Figure 1-1 illustrates the complex topography of the SCAQS wind analysis domain This domain is identical to the Urban Airshed Model modeling domain used by the South Coast Air Quality Management District for modeling performed in support of their 1991 Air Quality Management Plan

9106102 l

TABLE 1-1 SCAQS surface wind monitoring sites

UTM- UTM-Site Easting Northing

Identifier Location (km) (km)

ALHA Alhambra 3945 37727

ANAH Anaheim 4150 37425

AZUS Azusa 4149 37774

BANN Banning-Allesandro 5117 37540

BARS Barstow 4979 38611

BU23 Buoy 46023-Point Conception 1594 38014

BU25 Buoy 46025-Catalina Ridge 3054 37307

BURK Burbank 3795 37830

CASI BLM-CasitasLos Padres NF 2824 38089

CELA Los Angeles-North Main 3869 37701

CHIL BLM-ChilaoAngeles NF 4046 37990

CHIN Chino 4365 37634

CI Santa Catalina Island 3683 36963

ONS Cajon Summit 4617 37990

CLAR Claremont College 4351 37735

CM36 CIMIS-Blythe 7262 37256

CM44 CIMIS-U C Riverside 4690 37581

CM50 CIMIS-Thermal 5703 37230

CM55 CIMIS-Palm Desert 5572 37323

CM60 CIMIS-Barstow 4895 38621

CM62 CIMIS-Temecula 4794 37055

COMP Compton Airport 3855 37503

COST Costa Mesa-Placentia 4138 37242

CRES Lake Gregory-Crestline 4748 37890

ELRO El Rio-Rio Mesa School 3026 37922

ELSN Elsinore 4677 37260

FONT Fontana-Arrow Highway 4534 37731

Continued

2

9106109

n iil itb( r r tt A-TABLE 1-1 Continued

UTM- UTM-Site Easting Northing

Identifier Location (km) (km)

GLEN Glendora-Laurel 4215 37782

HAWT Hawthorne 3734 37543

HESP Hesperia-17288 Olives 4738 38084

HF Henninger Flats 4006 37847

KH Kellogg Hill 4242 37711

LA Los Alamitos-SCE Power Plant 3980 37370

LAHB La Habra 4121 37542

LANC Lancaster 3957 38415

LBCC Long Beach City College 3947 37437

LCAN La Canada 3882 37861

LGBH North Long Beach 3900 37430

LSAL Los Alamitos-Orangewood 4045 37398

LYNN Lynwood 3882 37548

MALI Malibu 3440 37669

MISS Mission Hills 3651 37932

NEWL Newhall-County Fire Station 3590 38060

NORC Norco-Norconian 4472 37533

NTD Pt Mugu Naval Weapons Test Center 3048 37769

OJAI Ojai-1768 Maricopa Highway 2914 38138

PASA Pasadena-Wilson 3961 37773

PERI Perris 4784 37380

PICO Pico Rivera 4023 37641

PIRU Piru-2SW 3324 38076

PLSP Palm Springs-Fire Station 5425 37457

POMA Pomona 4307 37696

PV Palos Verdes-San Pedro Hill 3762 37346

Continued

3 91061 09

TABLE 1-1 Concluded

UTM- UTM-Site Easting Northing

Identifier Location (km) (km)

RDLD Redlands-Dearborn 4853 37686

REDO Redondo Beach 3720 37459

RESE Reseda 3587 37851

RIAL Rialto 4625 37760

RIVR Riverside-Rubidoux 4615 37620

SIMI Simi Valley-5400 Cochran 3449 37940

SNBO San Bernardino 4748 37739

SNI middotsan Nicolas Island 2684 36823

TANB BLM-TanbarkAngeles NF 4301 37849

TEME BLM-TemescalLos Padres NF 3531 38167

TORO El Toro 4320 37252

TRON Trona-Market Street 4361 39573

UPLA Upland ARB 4420 37736

VCTC Victorville-Civic Drive 4707 38185

VENI Venice Beach 3642 37612

VERN Vernon 3874 37625

WALN Walnut 4223 37677

WHIT Whittier 4053 37540

WSLA West Los Angeles-VA Hospital 3657 37686

WSPR BLM-W arm Springs Angeles NF 3552 38291

ZUMA Zuma Beach 3313 37659

9106109 4

TABLE 1-2 SCAQS upper-air wind monitoring sites

UTM- UTM-Site Easting Northing

Identifier Location (km) (km)

BUR BurbankGlendalePasadena Airport 3748 37850

DAGG Daggett SCENES Site 5198 38581

EMUA El Monte-9528 Telstar 4021 37700

GLUA Glendora-near SCAQMD site 7000591 4216 37783

LBCC Long Beach City College 3947 37437

LBCR Long Beach City College 3947 37437

LMUA Loyola Marymount U niversity-Engng Bldg 3694 37604

NEED Needles SCENES Site 7181 38496

NSI San Nicolas Island 2717 36796

NTD Pt Mugu Naval Weapons Test Center 3048 37769

ONT Ontario International Airport 4443 37684

PSP Palm Springs 5460 37429

RAL Rialto 4589 37567

SFUA Santa Fe Springs 4020 middot 37557

TRM Thermal Airport 5776 37209

VBG Vandenberg AFB 1733 38472

YLUA Yorba Linda County Park 4287 37549

591061 10

5~

NORTH 275 325 375 425 475 525 575

~-~

bull ( I (o(r--L__- __ c_ __ ) -9) I _)I --~ ---~ __------__

bull (Q ~ ~ l-- middot r l__ _ _ 1 2 oo--_ - _ ~ shy

-

----- ----

------ ---

~middotmiddot- lt~]~---~ ~ 1 L

~~ 0

- o 7 -

----

~ middot -_ -_ I ( C~ ) ~ middot---) lt____ ) 9 bull ~- J t------------ ~ middotbull _ __ 10o -- - - - - - - 0 __ - J J--aoo ltJ

3620---_--__ _ - 0) ------- ___ -- - - ---- -- - --~- 7--

- middotmiddot -middot-- 0 _ - - I 1---------- ---- ~ ---~-----_ -~- ------- -_ ------~lt()~ --nmiddotor ~o-gtpcbull-middot ccc_--gt ____ middot_middot Ji tdegoo CmiddotI bull -bull - - I ---

middot-middot ___ - 1 c___ ~ i-- l bull - --- bullsoclt---_ middot middot-~soc_ ~- le r---- ltD

_ - -- ____ -c bull -~------1 5

= __ __ ) --~ --_ ---- ____ - _____-~~~-~ ~ _ ---~-frac142--~~ so9~ _ Q___~ - -- _ bull bull 1 middot -~ - -- - bull bull c- rAo 0o(Y--

-_ -------=--=_6CO-------- - ~)_O~ _ ~_ lt--middot_~~--~ (_ )-~- - _- ~ 0

~) ( ___ ------ -~- C jjh --- - ~ I 3770

t- 300- middotoo___ -~- l _2 ---sii middot middot 50~ ( C tshyV10w w ~ C ~_( middot bull i

l_ --t

~

__ _~) igtgt

- 1

- middot

7)_ -o-

- _middot-- -- ~ ---30~lt_~-L_ 9oo_~gn~~-__~~

U)

3770

- - o ~~~~d l -- o~ Jl _

si (_ - (----_ ( 1400t 37203720

- 1 ) reg_~S ~ ~~

7 9 b -- -- 0 ~

i --shyf I I I ~Ibull-bull

367~s I I I I I I I 13251 I I I I I I I 1351 I I I I I I I 14251 I I I I I I 14~51 I I I I I I I ss 7 I I I I I I I5s I I I I 3670

SOUTH

I I I I I I 0 10 20 30 40 50

(KM) i

FIGURE 1-1 The SCAQS 1987 analysis domain (axes labeled in zone 11 UTM coordinates topography contoured in meters)

-- ii gti kd

Our analysis consisted of (1) generation of hourly gridded wind fields for the 17 SCAQS intensive study days using the DWM (2) analysis of the mesoscale airflow patterns and (3) calculation of forward and backward particle trajectories to examine pollutant transport in the SOCAB

The results of the diagnostic analysis of SCAQS wind observations are presented in this report The generation of wind fields and the resulting airflow patterns are described in Section 2 The trajectory analysis is presented in Section 3 Plots of the wind fields are given in Appendix B The trajectory plots are included in Appendix C

9106102 7

2 GENERATION OF WIND FIELDS AND ANALYSIS OF AIRFLOW PATTERNS

DIAGNOSTIC WIND MODEL

Hourly gridded wind fields were generated for the 17 SCAQS intensive monitoring days using the Diagnostic Wind Model (DWM) (Douglas et al 1990) This model incorporates observations where they are available and provides some information on terrain-induced airflows in regions where local observations are absent The model is formulated in terrain-parallel coordinates Wind fields are generated using a two-step procedure

In step 1 a domain-scale mean wind is adjusted for terrain effects These include the kinematic effects of terrain (lifting and acceleration of the airflow over terrain obstacles) thermodynamically generated slope flows and blocking effects Step 1 produces a spatially varying gridded field of u and v for each vertical layer within the model domain

In step 2 observational information is added to the middot(uv) field calculated in step 1 using an objective analysis procedure observations are used within a user-specified radius of influence while the step 1 (uv) field is used in subregions where observations are unavailable The following modified inverse-distance-squared weighting scheme (Ross and Smith 1986) is used for the interpolation of data

where (u0

v0 )k denotes an observed wind at station k rk is the distance from station k to a

given grid point (u v)1 is the step 1 wind field at the grid point and (u v)i is the updated wind vector The parameter R controls the relative influence of the observations and the step 1 wind field

Following the interpolation a five point smoother of the form

9106102

Amiddot 1J

8

is applied to the horizontal wind field to reduce discontinuities that may result from the interpolation The vertical velocity is calculated by integrating the incompressible conservation of mass equation Zero-gradient lateral boundary conditions are used

GENERAL PROCEDURES

Generation of the SCAQS wind fields involved (1) preprocessing of the wind data for input into the DWM (2) plotting and quality control checking of the data (3) specification of the model input parameters (4) exercise of the DWM and (5) graphical display of the gridded wind fields Winds were analyzed at six vertical levels 10 100 300 600 1000 and 1500 meters (m) above ground level (agl)

In the preprocessing step the upper-air data were vertically interpolated to the model levels and temporally interpolated to enhance the temporal consistency of the wind fields and to provide hourly input for the DWM

Following the preprocessing step the data were plotted and examined for horizontal vertical and temporal consistency Data that failed the quality control checks were eliminated from the model input data set

The controlling parameters for the DWM include the maximum radius of influence (RMAX) at which a monitoring station can influence the interpolation at a grid point the weighting parameter for terrain effects (R) the number of stations to be used in the interpolation (NINTRP) and the number of smoothing passes (NSMTH) Note that the maximum radius of influence is specified independently for the surface level ( over land) upper levels (over land) and over-water portions of the domain The weighting parameter for terrain effects and the number of interpolating stations are specified separately for the surface level and upper levels In the diagnostic analysis of the SCAQS wind observations these parameters were specified as follows

RMAX (surface) 20km RMAX (aloft) 100 km RMAX (over water) 150 km R (surface) 10km R (aloft) 50 km NINTRP (surface) 4 NINTRP (aloft) 3 NSMTH 4

Tests were performed to examine the sensitivity of the DWM to the various contr ling parameters and to select the optimum values of these parameters for the SCAQS v nd analysis

9106102 9

The DWM also requires as input a domain-mean wind and stability information For this analysis the domain-mean wind was specified separately for each analysis level and was based upon the average of the level 6 (1500 m agl) wind observations To account for friction the speed of the domain-mean wind was reduced for the lower levels by multiplying the average wind speed for level 6 by the following scaling factors

Level Scaling Factor 1 048 2 072 3 083 4 090 5 096 6 100

The domain-scale lapse rate was the calculated average of four inland sites These varied according to data availability

Six-hourly plots of the level I (surface) level 3 (300 m agl) and level 5 (1000 m agl) wind fields for each episode are given in Appendix B

SUMMER INTENSIVE MONITORING PERIODS (

Mesoscale airflow in the SOCAB during the SCAQS summer intensive monitoring periods appears to have two components

A basic diurnal cycle driven by land-water temperature differences and complex terrain and

A perturbation associated with the overlying synoptic flow

19 June 1987

The surface and upper-air wind monitoring site locations for this intensive monitoring period are indicated on pages A-1 and A-2 respectively Plots of the diagnostic wind analyses for 19 June are given on pages B-1 through B-12

The surface early morning airflow pattern on this day is characterized by weak winds over much of the coastal and inland areas with moderate NW winds over the Coachella Valley and offshore At 300 m agl winds are S over the western half of the domain and W to NW over the eastern half of the domain The overlying flow at 1000 mis W

9106102 10

n1er

The sea breeze is somewhat slow to appear in the western basin on this day but has begun to develop by 1000 PST At this time winds at 300 m agl remain S over the western part of the domain and W to NW over the eastern part of the domain Some S flow is also apparent at 1000 m

During the afternoon hours three distinct features are apparent in the surface airflow pattern

A sea breeze (W flow) develops along the coast between Santa Monica and Palos Verdes and penetrates inland A branch of the sea breeze penetrates into the San Fernando Valley resulting in weak SE flow at Burbank and Reseda

An area of weak (SW) winds forms in the Whittier-La Habra-Pico Rivera area persists throughout the afternoon and fonns a convergence zone in the central basin with the penetrating westerly flow The S component of this flow is due to sea breeze development along the coast near Long Beach

Upslope flow develops along the foothills of the San Gabriel and San Bernardino Mountains (eg at Glendora and San Bernardino) Along the eastern foothills the upslope flow is supplanted during the afternoon by the penetrating W flow

By 1600 PST on 19 June the depth of the upslope flow near Glendora exceeds 600 m Strong outflow is apparent through the Cajon and Banning passes Aloft winds are generally SW with some SE flow near Burbank and NW flow over the Coachella Valley

Significant onshore flow (3 ms) persists along the Santa Monica-Palos Verdes coastline through 2200 PST Feature-s of the afternoon airflow persist aloft through this time

24-25 June 1987

Surface and upper-air wind monitoring site locations for this intensive monitoring period are indicated on pages A-3 and A-4 respectively Plots of the diagnostic wind analyses for 24-25 June are given on pages B-13 through B-36

The airflow patterns on these two days are similar to one another and to the ttern on 19 June The overlying flow is generally weak below 1000 m agl with moderak t5 ms) SE flow at 1500 m agl

On 24 June the early morning surface airflow patterns are characterized by ver middoteak winds At 300 m agl winds in the Coachella Valley are SE By 1000 PST a we1 organized zone of weak S flow extends from Long Beach to Pasadena this S flm

9106102 11

(

reaches a depth of 300 m agl Southeastern flow in the Coachella Valley and E flow through Banning Pass are apparent both at the surface and 300 m agl S to SE flow dominates at 1000 m agl The II three-zone II surface airflow pattern is apparent during the afternoon The wind shifts to Wat Banning Pass by 1500 PST At 300 m agl winds are SW over much of the basin with SE flow at Burbank and in the Coachella Valley At 1000 m winds are generally SW At 2200 PST the airflow pattern is characterized by weak unorganized flow at the surface and 300 m agl Winds at 1000 m are NW over much of the domain but SE over the Coachella Valley

The airflow on 25 June is similar to that on 24 June During the early morning hours winds at the surface are very light Weak SE flow is apParent at 300 m agl At 1000 m agl winds continue to veer toward N The sea breeze develops more quickly than on the previous day and winds at Banning Pass become westerly by 1300 PST Calm winds are observed at Pico Rivera throughout the afternoon As on 24 June the afternoon airflow at 300 m agl is characterized by SW flow over the basin and SE flow at Burbank and over the Coachella Valley Upward propagation of W flow is generally slower than on 24 June Winds at 1000 m agl are S to SE During the evening hours the surface winds become light while at 300 m agl winds over the Coachella Valley become NW Organized W flow is apparent over the W basin through a depth of at least 300 m agl through 2200 PST

13-15 July 1987

Surface and upper-air wind monitoring sites for this intensive monitoring period are shown on pages A-5 and A-6 respectively Plots of the diagnostic wind analyses for 13-15 July are given in Figures B-37 through B-72

Airflow patterns on 13 and 14 July are generally consistent with the basic diurnal cycle described earlier However an unusual airflow pattern develops in the Coachella Valley on both days On 15 July strong SE forcing is associated with a delay in sea breeze development

The 13 July early morning surface airflow pattern is characterized by light winds and a weak cyclonic eddy over the Santa Monica Bay Winds aloft are light to moderate and primarily W The sea breeze develops rapidly on this day and by 1200 PST W flow overwhelms the S sea-breeze flow in the Long Beach Area W flow appears at Banning Pass by 0800 PST The surface afternoon airflow is characterized by the three-zone airflow pattern described earlier with strong upslope flow along the foothills ( gt 5 mls) and significant outflow through Cajon Pass Observations at Palm Spring (NW winds) and Thermal (SE winds) indicate a convergence zone in the Coachella Valley with a depth of at least 600 m W flow dominates at middot1000 m with S to SE flow over the Coachella Valley During the evening hours a cyclonic eddy redevelops over the Santa

9106102 12

rtMt1

Monica Bay winds are weak throughout the basin but airflow into the Coachella Valley is especially strong

Airflow patterns on 14 July are similar to 13 July with a few exceptions During the early morning hours the surface airflow is characterized by weak disorganized flow There is no eddy apparent over the Santa Monica Bay The overlying flow is weak and primarily S to SE at 300 m agl but W to NW at 1000 m agl Sea breeze development is approximately two hours slower on this day than on 13 July By 1000 PST weak S flow has developed over the Whittier-La Habra-Pico Rivera area and SE flow is apparent at Burbank AS component to the flow appears at 1000 m The afternoon surface airflow pattern is similar to that on 13 July but the S upslope flow at Glendora is weaker S flow develops at Elsinore and several coastal Orange County sites The Coachella Valley convergence zone reappears at the surface at 1600 PST two hours later than on the previous day At 300 and 1000 m agl W to SW flow dominates over the western twoshythirds of the domain SE flow is apparent over the Coachella Valley During the evening hours the surface airflow over the central basin is S to SW W flow components persist along the eastern foothills through 2200 PST

On the morning of 15 July surface winds are weak but maintain a S component Moderate SE flow is apparent offshore The overlying flow is generally E to SE By 1000 PST the surface airflow pattern is characterized by S flow over the central basin and along the foothills SE flow in the Coachella Valley and E flow through Banning Pass The depth of the S to SE flow is greater than 1000 m agl During the afternoon a weak sea breeze penetrates inland and winds along the foothills become W Winds shift from E to NW at Banning Pass at 1600 PST A weak S flow component persists in the Whittier-La Habra-Pico Rivera area throughout the afternoon A weak slopevalley circulation develops in the Coachella Valley resulting in SE flow there At 300 m agl winds are SW to W over the central basin and SE over the Burbank and the Coachella Valley At 1000 m S to SE flow dominates W winds persist along the foothills through 2200 PST and weak S to SE flow redevelops at the surface Remnants of the afternoon airflow pattern persist aloft

27-29 August 1987

The surface and upper-air wind monitoring site locations for this intensiv middot1onitoring period are indicated on pages A-7 and A-8 respectively Plots of the dia stic wind analyses for 27-29 August are given on pages B-73 through B-108

On the morning of 27 August surface winds are weak over most land areas a 1djacent coastal waters with moderate (5 ms) NW winds well offshore Winds aloft a Jrimarily N with weak NE flow at 100-300 m agl over the central basin By 1000 PST threeshy

IIzone airflow pattern has developed at the surface and is somewhat apparent ( hin the limits of the upper-air network) at 300 m agl SE flow has developed at 100( agl

9106102 13

This pattern is maintained throughout the afternoon Within the Coachella Valley a classic daytime slopevalley flow pattern develops with SE flow extending to a depth of 1000 m E flow develops at Banning Pass and persists through 1700 PST W flow over the basin develops upward throughout the afternoon By 1600 PST wind at 300 m agl are W to SW over the central basin and SE over Burbank and the Coachella Valley During the evening hours the features of the mesoscale airflow pattern over land weaken both at the surface and aloft There is no clearly developed offshore-directed land breeze

On the morning of 28 August the surface winds are weak and the overlying flow is primarily E Retardation of the sea breeze by the overlying E flow is apparent by 0900 PST S flow develops in the Long Beach area E flow at Banning Pass is substantially stronger than on 27 August During the afternoon of 28 August S flow persists at Long Beach and develops in the Whittier-La Habra-Pico Rivers area SE flow is observed along the Orange County coast E flow through Banning Pass persists throughout the day W wind components along the Santa Monica-Palos Verdes coastline are weaker than on the previous day and NW flow fails to develop at San Nicolas Island W flow over the central basin disrupts the SE flow aloft During the evening hours the airflow features weaken W flow along the foothills does not persist as long as on the previous day

The early morning airflow pattern on 29 August is characterized by SE flow both at the surface and aloft Sea breeze development on this day is slower than on either of the previous two days S flow again develops in the Long Beach area and appears to be stronger than on the previous day Although the sea breeze is weaker winds at Banning Pass shift from E to SW by 1300 PST This shift occurs at 1800 on 27 and 28 August SE flow persists aloft with limited upward development of the W sea breeze flow W flow persists in the western basin area through 2200 PST and SE flow persists aloft

2-3 September 1987

The surface and upper-air monitoring site locations for this intensive monitoring period are indicated on pages A-9 and A-10 respectively Plots of the diagnostic wind analyses for 2-3 September are given on pages B-109 through B-132

The first day of this period is probably the most anomalous of the summer SCAQS intensive measurement days Overlying easterly forcing during the morning hours prevents development of W flow along the foothills and inhibits upward development of the sea breeze over the western and central portions of the basin The easterly forcing appears to reverse rather abruptly on the afternoon of 2 September Unusual winds are also observed at Burbank on 2 September During the late morning and afternoon Burbank experiences an unusual wind shift from SE to W through a depth of 1000 m On 3 September the overlying airflow is W and the airflow patterns are more typical

9106102 14

rrn

On the morning of 2 September strong downslope flow results in N to NE winds at several sites along the foothills of the San Gabriel Mountains At 300 m strong NE winds are apparent over the central basin The overlying flow is E By 1000 PST the sea breeze appears as W flow along the Santa Monica-Palos Verdes coast and S flow in the Long Beach area The surface analysis indicates a band of S flow from Costa Mesa to Azusa W flow has not developed along the eastern foothills Winds are SE in the Coachella Valley and E through Banning Pass E flow aloft continues and intensifies During the early afternoon hours a relatively strong sea breeze penetrates inland to Azusa while winds in the Whittier-La Habra-Pico Rivera area remain weak The sea breeze weakens considerably after mid-afternoon Between 1200 and 1500 PST the wind at Burbank shifts from SE to W through a depth of 600-1000 m By 1600 PST the overlying flow has shifted from SE to W Onshore flow continues at the surface through 2200 PST while the winds weaken considerably Although the overlying W flow persists in general 300 m agl winds at Burbank become SE

The early morning airflow on 3 September is characterized by weak winds at the surface SE flow at 300 m agl and primarily W flow at 1000 m agl Although the major surface airflow features appear to develop as on previous days upward development of the pattern is limited Strong S flow is apparent by 1200 PST between 100 and 300 m agl over the central and western basin By 1600 PST the sea breeze has penetrated well inland Imbedded in the sea breeze is a persistent calm area in the vicinity of Lynwood S flow persists at 100-300 m agl over the central and western basin while flow at this level off shore remains NW At 1000 m agl W flow continues This general pattern persists through 2200 PST but weakens considerably especially at the surface

AUTUMN INTENSIVE MONITORING PERIODS

The mesoscale airflow patterns in the SOCAB during the SCAQS autumn intensive monitoring periods exhibit a weaker diurnal cycle than the summer airflow patterns Synoptic forcing also appears to be stronger

11-13 November 1987

The surface and upper-air wind monitoring site locations for this intensive monitoring period are plotted on pages A-11 and A-12 respectively Plots of the diagnostic wind analyses for 11-13 November are given on pages B-133 through B-168

During the early morning hours of 11 November NE surface winds are apparent over most of the region Surface wind speeds are very light over the basin and somewhat stronger along the foothills and the coast At 300 m agl winds are light and generally E At 1000 m agl winds are W to SW over the western half of the domain and SE over the eastern half of the domain Weak E to NE surface flow persists throughout most of the

9106102

15

morning in the first 300 m An apparent anticyclonic eddy (SE flow at Long Beach weak S flow at Burbank W flow at El Monte) develops between 600 and 1000 m agl on this morning A weak sea breeze forms around 1200 PST penetrating only to the central basin There is no apparent turning of the sea breeze into the San Fernando Valley W to NW flow develops offshore and is deflected around the Palos Verdes Hills This W flow is also apparent at 300 m agl Downslope flow components along the foothills are apparent by 1600 PST At this time the 1000 m agl winds are weak and N The sea breeze rapidly dissipates and NE flow develops at several coastal sites indicating a land breeze NW flow is maintained off shore The nighttime airflow pattern aloft is characterized by weak N winds at 300 m agl and weak W winds at 1000 m agl

The surface airflow pattern on the morning of 12 November is generally similar to that on 11 November E flow over land is apparent through a depth of 300 m while NW flow persists offshore The overlying flow is W The afternoon surface airflow pattern is more similar to a typical summer afternoon pattern than the previous day Turning of the sea breeze into the San Fernando Valley is apparent and W flow develops along the foothills of the San Gabriel and San Bernardino Mountains by 1400 PST Airflow at 300-600 m agl appears to veer continuously from E to W at most inland sites during the afternoon NW flow through a depth of 1000 mis apparent over the Coachella Valley Surface winds become light and disorganized during the evening hours Unlike the previous day NE flow does not develop at the coastal sites and NW flow weakens offshore W winds persist aloft

On 13 November surface winds are very light through the early morning hours with E flow components apparent immediately offshore The overlying flow is WNW but becomes S over the central basin by 1000 PST As on the previous two days a sea breeze becomes apparent at the surface by noon W flow components over the basin and foothill areas are stronger than on the previous two days both at the surface and aloft Significant W flow also develops in Banning Pass Moderate to strong W winds are apparent aloft During the afternoon and evening hours SE winds are apparent at Burbank between 300 and 600 m agl Intense W flow develops off shore and propagates inland during the evening hours W flow continues aloft with some S to SE flow between 100 and 600 m agl at Burbank and El Monte

3 December 1987

The surface and upper-air wind monitoring site locations for this intensive monitoring period are plotted on pages A-13 and A-14 respectively Plots of the diagnostic wind analyses for 3 December are given on pages B-169 through B-180

The early morning surface airflow pattern on 3 December is characterized by weak NE winds over the inland areas and a weak cyclonic eddy off shore The overlying flow is S to SE Surface winds remain light and variable through most of the morning Moderate

9106102 16

txi Iii ttii

E flow is apparent over the western and central basin between 300 and 600 m agl A sea breeze develops around 1200 PST reaching a depth of 300 m and penetrating only approximately 30 km inland S to SE flow persists above 300 m agl The sea breeze weakens during the evening hours and N flow through a depth of 300 m develops at Long Beach E flow components intensify at 600 m agl and above

10-11 December 1987

The surface and upper-air wind monitoring site locations for this intensive monitoring period are plotted on pages A-15 and A-16 respectively Plots o~ the diagnostic wind analyses for 10-11 December are given on pages B-181 through B-204

On 10 December the early morning surface airflow pattern is weak and disorganized Weak NE flow is apparent over much of the basin between 100 and 600 m agl The overlying flow at 1000 m is N The surface airflow over the basin is weak throughout the morning hours while NW flow develops offshore Winds aloft remain N A weak sea breeze is apparent by 1200 PST the sea breeze penetrates only about 30 km inland and is limited to a depth of approximately 300 m There is no apparent turning of the sea breeze into the San Fernando Valley Elsewhere in the basin the surface airflow remains weak By 1600 PST the sea breeze has weakened At this time winds aloft are predominantly W to NW at 300 m agl and N at 1000 m agl During the evening hours surface airflow over the basin becomes weak and disorganized while E flow develops at Palos Verdes Strong N winds appear aloft (300-600 m agl) at Burbank LMU and Long Beach however winds at this level further to the east remain light

On 11 December the early morning surface airflow pattern is similar to that on 10 December Relatively strong ( gt 10 ms) NNW winds persist at 600-1000 m agl at Burbank and LMU E wind in the 100-300 m agl appear at LMU and Long Beach Throughout the morning the surface winds remain light and N winds 9ver Bu~ank weaken considerably A sea breeze is apparent by 1200 PST but is weaker than on the previous day and reaches a depth of only 100 m or less Significant N winds (3-6 ms) develop between San Bernardino and Elsinore and in the western San Fernando Valley NE flow is observed in Ventura County Winds aloft continue to be primarily N however E flow is apparent over the Long Beach area at 1000 m agl Surface airflow over the central and western basin becomes very weak during the evening hours Strong N to NE flow develops at the coast west of Santa Monica while N flow persists in the western San Fernando Valley and in the San BernardinoRiverside area The overlying flow is N to NE

91061 02 17

3 PARTICLE PAm ANALYSIS

A series of forward and backward particle paths (trajectories) were calculated using the SCAQS DWM wind fields The particle paths will be used by other SCAQS investigators in their examination of pollutant transport within the SOCAB The forward particle paths can be used to estimate the transport of pollutants from known source locations The backward particle paths can be used to estimate potential source areas The particle paths can also be used to estimate the residence time of certain pollutants in the SOCAB as a whole or in subregions

CALCULATION OF PARTICLE PAIBS

Two-dimensional particle paths were computed using the DWM wind fields as follows

Starting ( ending) points for a given number of forward (backward) particle paths were specified

Using a time interval of 15 minutes the hourly gridded DWM wind fields were linearly interpolated in time and then interpolated in space to each particle position using an inverse-distance-squared weighting scheme

The particles were then advected horizontally for the specified time interval

The distance traveled by each particle during each time interval was integrated The new position of the particle was reported at hourly intervals

Forward and backward particle paths were calculated for the SCAQS intensive monitoring periods for several vertical levels and a variety of origination and destination points The origination (destination) locations and times for the summer and autumn particle paths are listed in Tables 3-1 and 3-2 respectively Most of the particle paths originated (ended) at one of the SCAQS wind monitoring sites listed in Tables 1-1 and 1-2 Additional sites are identified in Table 3-3 Note that for some sites in Tables 3-1 and 3-2 a new particle path was initiated at the particles 1000 PST location but at a higher level

Additional forward particle paths were calculated for comparison with the SCAQS tracer data (England et al 1989 Horrell et al 1989) The initiation times and locations correspond to the tracer releases and are given in Tables 3-4 and 3-5

9106lrl02

~~ll1~(I titW I~l~~~t~~

TABLE 3-la Summer particle paths forward particle paths

Start Time Origination Start Date (PST) Site Level(s)

624 0500 LBCC 13 CELA 13

624 0700 LBCC 13 CELA 13

624 1000 LBCC 13 CELA 13

624 1500 LBCC 13 CELA 13

624 2100 LBCC 13 CELA 13

625 0500 HHRA 5 PADA 45 FULA 5

625 0700 FULA 5

713 0500 LBCC 13 CELA 13

713 0700 LBCC 13 CELA 13

713 1000 LBCC 13 CELA 13 EMTA 24

713 1500 LBCC 13 CELA 13

713 2100 LBCC 13 CELA 13

714 0500 LBCC 13 CELA 13

714 0700 LBCC 13 CELA 13

714 1000 LBCC 13 CELA 13

714 1500 LBCC 13 CELA 13

714 2100 LBCC 13 CELA 13

Continued

19

91061 07

TABLE 3-la Concluded

Start Time Origination Start Date (PST) Site Level(s)

827 0500 LBCC 13 CELA 13

827 0700 LBCC 13 CELA 13

827 1000 LBCC 13 CELA 13

827 1500 LBCC 13 CELA 13

827 2100 LBCC 13 CELA 13

828 0500 LBCC 13 CELA 13

828 0700 LBCC 13 CELA 13

828 1000 LBCC 13 CELA 13

828 1500 LBCC 13 CELA 13

828 2100 LBCC 13 I CELA 13

92 0500 LBCC 13 CELA 13 HHRA 12

92 0700 LBCC 13 CELA 13 FULA 12

92 1000 LBCC 13 CELA 13

HHRA 45 FULA 45

92 1500 LBCC 13 CELA 13

92 2100 LBCC 13 CELA 13

93 0700 RIVA 12

93 1000 RIVA 45

A new particle path was initiated at the particles 1000 PST location but at a higher level

20

~(Ibull bull 11

41

~1~_11Lmiddot11~1~~tV t rt~~14_ II~~~h1 1r t

TABLE 3-lb Backward particle paths

End Time Destination End Date (PST) Site Level(s)

624 1500 CABA 23 EMTA 45 BURA 1234 HHRA 4 FULA 45

624 1800 RIVA 3

625 0500 CLAR 13 RIVR 13 HHRA 5 PADA 45 FULA 5

625 0700 CLAR 13 RIVR 13 FULA 5

625 1000 CLAR 13 RIVR 13

625 1500 CLAR 13 RIVR 13 CABA 23 EMTA 4 BURA 4 RIVA 45

625 1600 RIVA 45

625 2100 CLAR 13 RIVR 13

713 - 1000 EMTA 24

713 1500 CABA 23 EMTA 45 RIVA 24

713 1600 RIVA 24

714 0500 CLAR 13 RIVR 13

714 0700 CLAR 13 RIVR 13

714 1000 CLAR 13 RIVR 13 BUR 123

714 1500 CLAR 13 RIVR 13 CABA 23 EMTA 4 BURA 234 RIVA 2

714 1600 RIVA 2

Continued

21 nn1 Y1

TABLE 3-lb Continued

End Time Destination I End Date (PST) Site Level(s)

714 2100 CLAR 13 RIVR 13

715 0500 CLAR 13 RIVR 13

715 0700 CLAR 13 RIVR 13

715 1000 CLAR 13 RIVR 13

715 1500 CLAR 13 RIVR 13

715 2100 CLAR 13 RIVR 13

827 1000 CABA 2 EMTA 23 BURA 123

827 1500 CABA 2

828 0500 CLAR 13 RIVR 13

828 0700 CLAR 13( RIVR 13

828 1000 CLAR 13 RIVR 13

828 1500 CLAR 13 RIVR 13

828 2100 CLAR 13 RIVR 13

829 0500 CLAR 13 RIVR 13

829 0700 CLAR 13 RIVR 13

829 1000 CLAR 13 RIVR 13

829 1500 CLAR 13 RIVR 13

829 2100 CLAR 13 RIVR 13

92 1000 PADA 3

92 1100 PADA 3

92 1500 EMTA 2 RIVA 2

Continued

22

91061 07

I

1bullLI bullI I bull ~ii 1 1

1 cl1

[1i1bull~j~1 Iiii~ j t-~dI ~1 1ltl1111111 II r I l~bull~II~middot t1~i~n_11~~ ~middot -

TABLE 3-lb Concluded

End Time Destination End Date (PST) Site Level(s)

92 1600 RIVA 2

93 0500 CLAR 13 RIVR 13

93 0700 CLAR 13 RIVR 13

93 1000 CLAR 13 RIVR 13 CABA 2 BURA 1234

93 1500 CLAR 13 RIVR 13

93 2100 CLAR 13 RIVR 13

23 9106107

TABLE 3-2a Autumn particle paths forward particle paths

Start Time Origination Start Date (PST) Site Level(s)

1111 0300 LBCC 13 CELA 13

1111 0700 LBCC 13 CELA 13

1111 0900 FULA 12

1111 1200 LBCC 13 CELA 13

1111 1500 LBCC 13 CELA 13

1111 2100 LBCC 13 CELA 13

1112 0300 LBCC 13 CELA 13

1112 0700 LBCC 13 CELA 13 FULA 12

1112 1000 FULA 45

1112 1200 LBCC 13 CELA 13(

1112 1500 LBCC 13 CELA 13

1112 2100 LBCC 13 CELA 13

1113 0500 ONTA 123

1113 1000 ONTA 45

123 0300 LBCC 13 CELA 13

123 0700 LBCC 13 CELA 13 FULA 12

123 1000 FULA 45

123 1200 LBCC 13 CELA 13

123 1500 LBCC 13 CELA 13

123 2100 LBCC 13 CELA 13

1210 0300 LBCC 13 CELA 13

1210 0700 LBCC 13 CELA 13

Continued

24 9106108

TABLE 3-2a Concluded

Start Time Origination Start Date (PST) Site Level(s)

1210 1200 LBCC 13 CELA 13 FULA 123

1210 1500 LBCC 13 CELA 13

1210 2100 LBCC 13 CELA 13

1211 0500 ONTA 12

1211 0700 FULA 12

1211 1000 ONTA 45 FULA 45

A new particle path was initiated at the particles 1000 PST location but at a higher level

25 9106108

TABLE 3-2b Backward particle paths

End Time Destination End Date (PST) Site Level(s)

1111 1500 HHRA 34

1112 0300 LBCC 13 CELA 13 RIVR 13

1112 0700 LBCC 13 CELA 13 RIVR 13

1112 1200 LBCC 13 CELA 13 RIVR 13

1112 1500 LBCC 13 CELA 13 RIVR 13 HHRA 34 PADA 3 FULA 34

1112 2100 LBCC 13 CELA 13 RIVR 13

1113 0300 LBCC 13( CELA 13

RIVR 13

1113 0700 LBCC 13 CELA 13 RIVR 13

1113 ~ 1200 LBCC 13 CELA 13 RIVR 13 ONTA 34 EMTA 45

1113 1500 LBCC 13 CELA 13 RIVR 13

1113 2100 LBCC 13 CELA 13 RIVR 13

123 0300 LBCC 13 CELA 13 RIVR 13

123 0700 LBCC 13 CELA 13 RIVR 13

Continued

26 9106108

TABLE 3-2b Concluded

End Time Destination End Date (PSn Site Level(s)

123 1200 LBCC 13 CELA 13 RIVR 13

123 1500 LBCC 13 CELA 13 RIVR 13 PADA 3

123 2100 LBCC 13 CELA 13 RIVR 13

1211 0300 LBCC 13 CELA 13 RIVR 13

1211 0700 LBCC 13 CELA 13 RIVR 13

1211 1200 LBCC 13 CELA 13 RIVR 13

1211 1500 LBCC 13 CELA 13 RIVR 13 PADA 1234 BURA 123

11 13 2100 LBCC 13 CELA 13 RIVR 13

27 9106108

TABLE 3-3 Additional particle path initiation (destination) points

Site Identifier Location UTM Easting (km) UTM Northing (km)

BURA Burbank Airport 3749 37859

CABA Cable Airport 4370 37751

EMTA El Monte Airport 4047 37717

FULA Fullerton Airport 4091 37485

HHRA Hawthorne Airport 3768 37547

ONTA Ontario Airport 4435 37686

PADA PADDR Intersection 3810 37175

RIVA Riverside Airport 4584 37485

28

TABLE 3-4 Forward particle paths calculated for comparison with the SCAQS tracer data

Start Start Origination Date Time Site Levels

0300 LAGS 13 0600 13 0900 II 13 1200 II 13 1500 II 13

625

715 0500 VRNN 1

0800 VRNN 1

828 0600 LAGS 13 1000 II 13 1300 13 1500 13

93 0500 VRNN 1

0800 VRNN 1

1111 1600 LAGS 3 ESGS 3 VRNN 1

1900 LAGS 3 ESGS 3 VRNN 1

1112 0600 ESGS 3 VRNN 1

0900 ESGS 3 VRNN 1

1210 0600 LAGS 3 ESGS 3 VRNN 1

0900 LAGS 3 ESGS 3 VRNN 1

1600 VRNN 1

29

9106lrl09

TABLE 3-5 SCAQS tracer release sites

I_______________________

Site Identifier Location UTM Easting (km) UTM Northing (km)

ESGS El Segundo 3690 37536 LAGS Los Alamitos 3980 37370 VRNN VRNN 3874 37625

(

91061rl09

30

The particle paths were calculated for up to a three-day period In general forward particle paths were calculated through the end of the monitoring period or until the particle was advected out of the domain Backward particle paths were calculated through the beginning of the intensive monitoring period or until the particle left the domain

Selected plots of the forward and backward particle paths are given in Appendix C

SUMMER PARTICLE PATHS

Forward particle paths (levels 1 and 3) originating from Central Los Angeles (CELA) and Long Beach City College (LBCC) at 0700 PST on 24 June 13 and 14 July 27 and 28 August and 2 September are shown on pages C-1 through C-12

The surface-level particle paths originating at CELA indicate northward advection from this site on all days The particle path initiated on 27 August indicates that the initial northward advection is followed by westward advection on the following day the particle path initiated on 2 September indicates that the initial northward advection is followed by eastward advection on the following day In all cases the residence time in the central Los Angeles basin is less than 12 hours

The surface-level particle paths originating at LBCC are carried northward and eastward usually exiting the Los Angeles basin through Cajon Pass On 24 June and 14 July however the particles are carried across the San Gabriel Mountains (with the upslope flow) Considerable eastward transport is indicated by the particle paths initiated on 2 September after 1800 PST -Residence time in the Los Angeles basin varies from day to day and is especially long for the particle path initiated on 27 August (approximately 30 hours) Particle paths initiated on 13 July and 28 August also indicate some recirculation and a significant residence time within the Los Angeles basin

The level 3 particle paths also indicate northward transport from CELA on most days Advection into the San Fernando Valley which may be partly due to the SE flow produced by the turning of the sea breeze into the valley is more pronounced on certain days (14 July 28 August and 2 September) Level 3 particle paths originating at LBCC show mostly northwestward transport Recirculation over the Los Angeles basin is indicated for the 2 September particle path

Backward particle paths (levels 1 and 3) culminating at Claremont College (CLAR) and Riverside-Rubideaux (RIVR) at 1500 PST on 25 June 14 and 15 July 28 and 29 August and 2 September are shown on pages C-13 through C-24 -

_

9106lrl 02

31

The surface-level backward particle paths originate over water on all days the particles are carried eastward and northward into the Los Angeles basin On 14 July and 28 August the particle paths indicate primarily eastward transport There is some indication that particles arriving at the destination sites on 28 August may have originated in the South Central Coast Air Basin (SCCAB) On 25 June 15 July and 3 September the particle paths indicate primarily northeastward transport On 29 August northward transport is indicated

The level 3 backward particle paths also indicate transport from the W SW or SE on the intensive monitoring days The over-water segments of the particle paths indicate eastward advection on 14 and 15 July and 27 and 28 August and northward advection on 25 June and 3 September Again there is some indication that particles arriving at the destination sites on 28 August may have originated in the SCCAB Almost all of the particle paths indicate that the particles are carried onshore between Long Beach and Laguna Beach and advected northeastward to CLAR and RIVR An exception to this occurs on 28 August On this day the particles are carried onshore near Redondo Beach and are recirculated over the Los Angeles basin for approximately 24 hours before arriving at the destination sites

AUTUMN PARTICLE PATIIS

Forward particle paths (levels 1 and 3) originating at CELA and LBCC at 0700 PST on 11 and 12 November 3 and 10 December are presented on pages C-25 through C-32

The autumn particle paths exhibit more day-to-day variability than the summer particle paths indicating more variability in the autumn airflow patterns Because both the CELA and LBCC locations are affected by the land-breezesea breeze circulations all of the surface-level particle paths show some recirculation in the western basin Particle paths initiated on 11 and 12 November eventually indicate eastward transport

The level 3 particle paths also differ among episodes but are all affected by the seashybreeze circulation Particle paths initiated on 11 November show eastward transport from CELA and southward transport from LBCC Northeastward transport at this level is indicated by the 12 November particle paths The particle paths initiated on 3 December illustrate local recirculation by the sea breeze On 10 December southward advection is indicated

Backward particle paths culminating at CELA LBCC and RIVR at 1500 PST on 12 and 13 November 3 and 11 December are presented on pages C-33 through C-40

The surface-level particle paths indicate that particles arriving at CELA at 1500 PST on all four days follow a southward then eastward course Particles arriving at LBCC are affected by some combination of onshore advection and local recirculation The particle

9106Irl02

32

paths culminating at Riverside indicate a variety of possible transport patterns eastward transport on 12 and 13 November northwestward transport on 3 December and southeastward transport on 11 December

The level 3 backward particle paths for 12 November illustrate recirculation aloft by the evolving airflow patterns while the particle paths for 13 November indicate primarily eastward advection The particle paths for 3 December are clearly affected by the SE that occurs on this day the resulting particle paths indicate northwestward transport The particle paths for 11 December indicate southward advection and recirculation by the sea breeze

COMPARISON WITH TRACER DATA

Forward particle paths originating from El Segundo (ESGS) Los Alamitos (LAGS) and Vernon (VRNN) at times corresponding to the SCAQS tracer release times are shown on

middot pages C-41 through C-76 For ground-level tracer releases the particle paths were calculated using level 1 (10 m agl winds) for stack releases the particle paths were calculated using level 3 (300 m agl) winds A qualitative comparison with the observed tracer data is provided here

Surface-level particle paths originating at LAGS on 25 June indicate northward transport during the morning and afternoon hours The level-3 particle paths indicate that material is transported out of the basin through Cajon and Banning Passes by the upper-level winds Both of these indicated transport patterns are supported by observed tracer data

Surface-level particle paths originating at VRNN on 15 July indicate northward transport and exhibit good qualitative agreement with the tracer data

Both the surface-level and level-3 particle paths originating at LAGS on 28 August indicate primarily northeastward transport Most of the particles are eventually advected through Cajon Pass This is consistent with observed tracer at Redlands San Bernardino and Crestline

Surface-level particle paths originating at VRNN on the morning of 3 September do not agree with the tracer data While the particle paths indicate northeastward transport the tracer data indicate northwestward transport

Surface-level particle paths originating at VRNN on the afternoon of 11 November indicate westward transport and a long residence time in the central basin The level-3 particle paths originating at LAGS and ESGS show southeastward transport and recirculationmiddot by the sea breeze Surface-level particle paths originating at VRNN on the following morning again show net westward transport and a long residence time in the

( central basin but the level-3 particle paths indicate northward transport with recirculation

91061rl 02

33

by the sea breeze The smface-level particle paths are consistent with the tracer data Tracer was observed over the north-central basin and along the foothills on the morning of 13 November

The surface-level particle paths originating at VRNN on the morning of 10 December indicate relatively stagnant conditions with a weak sea breeze circulation Some net transport toward the south is indicated Particle paths originating at VRNN on the afternoon of IO December show little movement throughout the following day The long residence time in the basin is in qualitative agreement with the tracer data Tracer was observed in the basin on the following day The dispersion indicated by the widespread tracer concentrations however cannot be represented by a single particle path The level 3 particle paths originating at LAGS and ESGS on the morning of 10 December show southward transport and recirculation by the sea breeze

UNCERTAINTY ANALYSIS

A simple analysis was perlormed in an attempt to quantify the degree of uncertainty inherent in the particle paths The uncertainty analysis was similar to an analysis described by Moore et al (1989)

Three major forms of error in the particle path calculations can be identified The first two result from errors in the wind fields The most fundamental of these is measurement error as measurements can only be regarded as approximations of the true winds Regardless of the accuracy of interpolation techniques measurement error will always affect the final wind field The second type of error results from the interpolation of these measurements and the parameterizations and approximations in the diagnostic wind model This error will be greatest in data-sparse areas The third type of error results from the use of two-dimensional wind fields The two-dimensional particle paths do not incorporate the effects of vertical motion which may be a significant source of error considering the mesoscale regimes present in the study area

The particle path uncertainty in this analysis is the result of all sources of error and is therefore very difficult to estimate A lower bound 11 on the uncertainty was assumed to result from measurement error alone Here we use a lower bound uncertainty estimate to illustrate the effects of measurement error on the particle path calculations Several assumptions were made in order to estimate this uncertainty First average bias for all instruments was assumed to be very small Second instrument precision was assumed to be constant over the region Third measurement error (speed and directional error) was assumed to be normally distributed around zero The standard deviation about the mean was based on observational data

For this uncertainty analysis 20 particle paths were initiated from a single site at a single time For each 15-minute particle path segment u and v were calculated as described in

9106lrl 02

34

(

the previous section Small random wind components (representing the measurement error) were then added to the interpolated wind The smaller components were determined by randomly selecting wind speed and direction error from two separate normal probability density functions (PDF) To do this a uniform random number generator was used to find two error probabilities Ps and Pd between 0 and 1 An inverse normal PDF routine was then used to find the speed or direction error that results in error probability Ps or Pd respectively Commercial statistical software from Th1SL was used to generate uniform random and inverse normal PDF values 1

The PDFs possess means of zero and standard deviations equal to the root mean square error (RMSE) of the measurements For simplicity RMSE values for speed and direction were taken from those specified by Moore et al (1989) namely 02 mis and 10 degrees respectively Random error components were determined for each 15-minute segment of every particle path The resulting divergence in the particle paths represents a lower limit to the uncertainty inherent in the particle-path calculations

Plots illustrating the effect of the lower-bound uncertainty on the particle path calculations are given for one summer and one winter episode in figures 3-1 and 3-2 respectively The summer particle-path bundles (Figure 3-1) were initiated at CELA and LBCC at 0700 PST on 14 July The winter particle paths (Figure 3-2) were initiated at CELA and LBCC at 0700 PST on 12 November The bundles were calculated for levels 1 and 3 In general the bundles indicate that the airflow patterns do not vary abruptly in space or time The winter particle paths are less divergent that the summer particle paths

While plots of the particle path bundles qualitatively indicate the degree of lower-limit uncertainty a quantitative summary of the uncertainty can be obtained via hourly estimates of RMSE of all particle positions relative to that with zero error The RMSE can be obtained from

1 1 M 2 2

RMSE = - ~ dj[ lM ]=l

where

1

dj = [(xj - X1)2 + (yj -y1)2]2

and where Mis the number of particles and ()1 represents the position of the actual particle as calculated in the previous section (ie the zero error particle path) The RMSE is used to determine the growth over time of the confidence interval about the

1 IMSL is the registered trademark of the Scientific Problem-Solving Software System developed by IMSL Inc Houston Texas

91061rl02

35

NORTH

425 31570

SOUTH (a) CELA Level 1I

20

(KM)

NORTH

425 31570

SOUTH (b) LBCC Level 1I

20

(KM)

le-path bundles initiated at 0700 PST 14 July 1987FIGURE 3- composedd par tic le paths1 Forwar of 20 particBundles are

35

NORTH

425 3570

SOUTH

(c) CELA Level 3

NORTH

425 3870

SOUTH

(d) LBCC Level 3

FIGURE 3-l Concluded

37 9106]

70

IlFil

NORTH

CEIA Level 1(a)

3(170

1-Ul j

NORTH

425 3(170

SOUTH

(b) LBCC Level 1

Forward le-path bundles initiated at 0700 12 November 1987FIGURE 3-2 composed par tic le pathsbullBundles are of 20 partic

3391061

425 3870

SOUTH

(c) CELA Level 3

J8

3870425

SOUTH

(d) LBCC Level 3 10 2

(KM)

FIGURE 3-2 Concluded

91061 39

1 1c

i I

trajectory calculated using the DWM winds Hourly RMSE values are given for the particle paths bundles shown in Figures 3-1 and 3-2 in Tables 3-6 and 3-7 respectively For level 1 the average RMSE after 12 hours is 567 km for 14 July and 167 km for 12 November For level 3 the average RMSE after 12 hours is 416 for 14 July and 260 for 12 November

9106lrl 02

40

TABLE 3-6 Hourly RMSEs for particle-path bundles initiated at 0700 PST 14 July 1987

Time LBCC RMSE CELA RMSE (PST) (km) (km)

Surface Level

0700 000 000

0800 042 042

0900 057 069

1000 063 100

1100 093 128

1200 091 143

1300 111 168

1400 136 217

1500 229 227

1600 265 219

1700 394 219

1800 620 265

1900 796 338

Level 3

0700 000 000

0800 018 049

0900 064 090

1000 068 140

1100 087 172

1200 089 162

1300 123 180

1400 231 224

1500 337 258

1600 419 278

1700 427 306

1800 449 347

1900 462 370(

9106104 41

TABLE 3-7 Hourly RMS Es for particle-path bundles initiated at 0700 PST 12 November 1987

Time LBCC RMSE CELA RMSE (PST) (km) (km)

Surface Level

0700 000 000

0800 047 049

0900 078 065

1000 077 066

1100 089 086

1200 109 094

1300 089 092

1400 118 125

1500 100 138

1600 129 150

1700 147 160

1800 161 164

1900 156 176

Level 3

0700 000 000

0800 045 076

0900 061 120

1000 069 139

1100 092 171

1200 098 163

1300 096 156

1400 125 182

1500 150 175

1600 231 171

1700 261 152

1800 308 156

1900 345 175

91061 04 42

References

Douglas S G R C Kessler and E L Carr 1989 Users Guide to the UAM Wind Preprocessor System Systems Applications International San Rafael California (SYSAPP-89079)

England W G and L H Teuscher 1989 Perfluorocarbon Tracer Experiments During the Southern California Air Quality Study Air amp Waste Management Association For presentation at the 82nd Annual Meeting amp Exhibition Anaheim California (June 25-30 1989)

Horrell R S M Deem P Wyckoff F Shair and N Crawford 1989 Ground Release SF6 Tracer Experiments Used to Characterize Transport and Dispersion of Atmospheric Pollutants During the Southern California Air Quality Study of 1987 For presentation

( at the 82nd Annual Meeting amp Exhibition Anaheim California (June 25-30 1989)

Moore G E G Z Whitten J P Killus and R D Stevens 1989 Analysis of 1985 Air Quality and Air Chemistry Data Collected Under the South Central Coast Cooperative Aerometric Monitoring Program Systems Applications International San Rafael California (SYSAPP-89058)

Ross D G and I Smith 1986 Diagnostic Wind Field Modelling for Complex Terrain-Testing and Evaluation Centre for Applied Mathematical Modelling (CAMM Report No 586)

9106105

43

rr T rr

Appendix A

SCAQS WIND MONITORING SITES

(

9106103

-

((--_ 770

-

NORTH CM~RS 42 575

5 I I j I I 1---L 525 middot 1J75 I I I I I I I I I r I I _--- I C2~middot----_J ~ ~-- 1 ( ~ ~J25 I I I I I I I I I I I I l__ ) -475 () I Li 1~)51 (

--~ltJ820f-_ ~------ ---

~- -cli( ol --9-Sl-l

lt ( ~)

CQ p llE RiDO ~ llE ANAH

I middot LAS-L

bull~ LANC ( _ Q - _J ) ) - _ ~ - ---- - ~ _ ____ middot clt G~ _----~____-=-- -___ ~PR __ - ---- --- VCTC ltgt

-- ------ f---- __ - ---_ -middot ------ --___ --~-----TEME --- _ f

-)(j _ _ middot --middot -------- - HESP f ----=----==~~~ l ----~~ -- middot l - --- __ -middotlt- CJ _ --- middot PIRs[- lt NfVL_ ---~ - C~lt --lt _ ~ ~- __ (~~

__ --- bull _ i - f c-_ _ I - )~__) - ---~poundS---_-

3770 t-()

LA llE PICO )Ct444 -w 3 ~~~ZUMA MALI VE VEN llE llE middot Jl~C - ( p

NN WOOHS ~- ~ m - middot - o - I () )IE 55I

1-- (lt - - PERI ) ~ S__~llE

BU25 bull y _ L ~~5o 13720

I ----~- - 515 3670 525

(KM)

~---

SNI

20

SCAQS SURFACE WIND MONITORING SITES

19 JUNE 1987

0

qj n

If) N ~

I

1S13

Ishy)

0 Vl

(f) w I-V)

l)

z a 0 1---

z 0 2

0 z 3 a ~ I r---

0 CX)Wm Q_ shyQ_ ) w

z (f) )

0 7 lt( um Vl ---

0

A-2

-

r~

NORTH CM~RS

I -middot_( lt - middotmiddot -~ ---lt - - - middotbulll- ) middotmiddot-middot - - -c ) 0 0 l__SG- ___ J1 bull_ -- VCTlt I

_ --middot ---middot llSeR - - __ - --middot----- J~__-- middot - - - -middot bull bullbull- HESP ~-_-middot- bull- ~- _~ - -___---middot - ~ -_ ) ME --- -middot - bullmiddot bull -_

38201-_ ~~_ _ TE _ C-bull_- - CJ - ~Jj __ -_

1

1 bull I bull __ (]

SI bull bull=-middot _ -~ ~~ ~_-__ middot _J lt(- j SIMI -M~S -~_-~It_ - - 1Ir- I w _ I B~~ AZ~~~1 AL SNBOC ~ (ELRO l~ Hf~~ ideg_=- --

)1__ CE~ wftcentrHIN RIVRM44 --- ~--- ---~ LA PICO __pound bull P

T ~NN WI-V C) D 2J~55I Wco - middot PERI Lv

R~O ~L ~AN~ TO~~~~ ~ ~ ~-MO

62

~ ~j~l)~gto ay 3670( 525

SCAQS SURFACE WIND MONITORING SITES 24-25 JUNE 1987

~ (

NORTH 275 325 375 425 475 OA~5 575

f_~ CJ ~ -middot--

_middot

middot1 Imiddot

)i

gt--o~0 (~_)r-) _ (~~3s20

--~- middot qlt ( ____ - ---- - lt__ ~ ~ -i~ J ) _ - - -

-~ -__ J V 38201-~--o- lt-

-----~~middot ---- __ - ~---- -_--- ~====- -=_---~ ~ _

~ -- middotbull ~gt ----_ _______ ) ~~~ l -- - - i - --- l

( _ (_-~ _-lt~~ - )

2middot1=~ (~gt lt_) -~~~~~(_~tJt-~~~~t~~~~-~) ~

uR--- -----Qi~ ~ 3770_ 3770 -middotmiddot--rmiddot- -7 ~ 1-

(J) llE ONT _ -middot __ w

Y-_ EMU c __- ~ Ul lt(1 w~

- -- - LMIIEUA sFtA ~

1

----_

~

_

t_~~ -bull _ middotgtI __

~- 0 ~~QgtJn~-~ ~II~

~ f-- -) -) ) ~ ~-

j (_1_j ~~TRM 3720 ( (__ -CcS l l 3720

~- ) -~ --7( ) __~---L_ ~~1-----~D~

1 ~) a --- ~middot 7 rt 0- NSI (

3670 I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I 1 I I I I I f I I I 1 I I I I I I I I I I I I I 36 70 275 325 375 425 475 525 575

SOUTH

I I I I I I 0 10 20 30 4-0 50

(KM)

SCAQS UPPER-AIR WIND MONITORING SITES

24-25 JUNE 1987

--=-

NORTH 25 575

CM6QRS C__j 475 -____

3 ---- 375 425I - L ---) - ~-

SNI

-_-~)---_ lt-____ ___3azor_~c~~ sl

VENt ELRO

BU25

275 ~ c--) ~LANC ~~-_ lt ~ 0 9-~

llE

3670

----~ - J Q ____ ~- lt) ~ 3820____ -- middot--- 0~__~- __ J S --- ---~- ---- -- -- v~ ~ ~ ===-~ - - - - ---- - - ---- - -- -middotv ------------ -~ l f----- _ -- -middot _ - --- __ HESP ~-----=- c~i - - _- --- - - gt - -bull TEME -- -middot - bull ----- -- - _ middot ( lt~ clt=~ ~i cJ~ c _

~I -~~le lt~NJWl--------~- -iHitgt~-=__~~ _I -~ J~~~ ~ 3770 r-1 - - -- -- - ltJ c__ ---middot ~ ( - ------ -c_ - - -~~~ ~ ()-~ ~ - -middotMiss ---~---=-~----r~-__ -middot _frac12 __ i5

j S ~R~~HE -7t$ llE llE ftALSNBO llE ~~ t __ -R~ B~~SA AZ~jl~r RD ~~_ ~ 1( )l___ llE CE~HAllE ~~ - RIVRM44 - llE ------___llE W~HIN -Jti )Ii ----------- __

~--- LA llE PICO l llE C -- r p

ZU VE NN Wt-laquoJHB 0 1~55WT IN - ---- ) llE CO P llE llE ( gt (____ PERI ~

IJl

~ 71t~P325 425

SOUTH

I I I I I I 0 1 0 20 30 40 50

(KM)

SCAQS SURFACE WIND MONITORING SITES 13-15 JULY 1987

clt(middotO -i ~Ill ~

()VL~t

~~) o2~ r

275

-- _~middot middotc-- ( ~ I - ___ ) --____ ~~~

---- ---bull-~ ( lt ) lt I ~ (J () - _ ~ ~ J ) bull middot ( - ~ ~- - --- middot - ~ - middot middot G--~_J lt)

cce- middot- __ V ___ -- l - _- bull middotbull - - _~---~ 3820r----=-~_~Jrlt - - - middot f ~l-~--~--~] I c___ -~c ~ -- ( _ 1middot--- 1___ _~

-I -- = lt -bull lt middotmiddotltmiddot~- middot - middot -L-

- ~-- middotbull ---_- --- J middot J ) ) -- bull- ~-bull _ --middotbullbull- middot middot _ j -- -)) 3770 -ii __gtc _ -- - - middot bull ltmiddot ~- I - _ltbull - -_j-- tn

BURbull-- - middot - - - ) ~~middotj- (~~ ) (middotIi lt(

GL U I ~ - - - w ---~ - -1 __ - ---------= ------___________--- ONT middot middot __ - --_ -

poundMUI - - ~ ____ middot----~~i -__ ~ I

--

--- ~ c) )_

deg ~

_- - (

_l

_ ~ )

C-

~ _middot

( T( f 1-

525

t j 30 50

(KM)

SCAQS UPPER-AIR WIND MONITORING SITES 13-15 JULY 1987

_==--

J ANORTH CM6sectARS

3s201-

~- ~ ~ ~ ~0A - --__ - -----~ ---~- --1(j - A ) __gt ---------_

-~~J TEMEa l_C ~r1

0

820

_--C~ = ~~~ltCH~~ J ~ S~I ----i4~58 ( J

tigt-1

-J 3 BU25

frac14~) 8 F1(5

- HA

APICO RN A A ~ N WVHB

AANAH

~IHIN J _CM44 ~-

A

CY PERI N ~ iJN

D A

HEM

770 ~ V1 lt( w

~ 3670

SCAQS SURFACE WIND MONITORING SITES 27-29 AUGUST 1987

) w l-1

C)

z-a 0 1-

z 0 ~

0 z - r---3 co a Ci)

- -ltI lshy

a )w ) Cl 0 Cl ) ) lt(

V) Ci)

0N ltI u r--- () N

A-8

NORTH CM~RS bull r (_J~

1

325 - - l L=~-) ( bull

1275 _ ( ~ --- -middotbull LANC 1 _ bull I( f LJ- ~ () ~-- 3820 bull- - J bull

- --__ _ -- )- bull bull - middotbull-~- _ I v----_J -- J middot-- - middot- - -middot I I J_______ ---==-------------- WSfgtR - -- VC _____- ltgt

-~--~-- fJ- -middot - - - --- --- _ - ----- --- ----- ) r bull---_ --- - - -- bull p -- --__-----_ - -----

38201-_ -------~- TEME --- --- - - bull -- middot- bull --- _----~ -~ II middot ) - ---- -- -- _ -- HES f I-----=-- ~ ------- ~ l _ -- - I

- bull middotbull-bullbull~ ll( middot bull - middotbullbull - 1 I ~----- middot-bull

9 -- ___ __ _ -------- _=- r _ -- )J -~~ ~~~ 3770 t--SJMImiddot MISS~~~--bull ~--~-- ll( -_ ~-VENt Cllfl58 bull I middot- - middot- - --JOE ~--bull bull ~ V)

ELRo __J 4Esc euRK ~Ej1 fAL sNeo I ~ _ J middotmiddot -~~ 1 i5 l - ~SA ___ I ROLD ~ ~ C~ ( _____~- -~ llE CE~ llE W~(HIN RIVRlK -- - 1 llE __~

3770 middot- ~LA VEN Pl llE _ _- JJ~C _CM44 - ~ p ---__-_

0 ANAC cubull~ - - v~wr LyenNN WHJHB --- -- Q~~W)( ___

- llE HA ~ -lE _ -- _ - -_

I 0

SAi middot-middot J) t450

3720 LA r TO~omiddotlt~lt~~ -~ ~ (~~

~ ~ r-~~~1~ o ~~l~

SNI 1 (l_ amp-~ 575 3670367g75 325 375 425 475 525

SOUTH

I I I I 0 10 20 50

(KM)

SCAOS SURFACE WIND MONITORING SITES 02-03 SEPTEMBER 1987

------J ------------------ ) I-- 38201--__--~~- i) ___

_-- ~--gt--

-__

_

NORTH 275 325 375 425 475 525 575

YI ~middotCJ~bull_bullrmiddot--- lt I __ (_______~ ~ - - I -- J ( - - - - - - - J i O l__ ______________ -~

~j ( lt- bull- ~ 0 C) ~ -- (-- _)) ) ----_--__ -- middot-- _ - --J ) J ---- - ------- ----- middot----- -( ~---_j

3820----==--=-- ( - -middot bull __ - ---~----= --- ---- -- -- ------------ _______ ltJ~~ A I --- - ---- - -_ - _ --_--~-- -_ - --~co___--_--___-__----- f middot l - --- - --- - __- ---_-- -- ~ middot -middot __ J L--~ cmiddot

---- -- middot--~-- -- -- - _ _-- - - ~

--- - middot- - -C-_--- - -~ rmiddot middot) _- ~middot~ I--- ----~deg- -- -- C _-_--_- __ __ _ ___ _--_--~ __---- ~---lt lt ltgt _~-__gt_ ~~-- i~ - UR ---- -------- - ----~ --lt I middot- B ~----- Qll __ ~----- _ CI____ ~ __ --- ---middotir ~ - 3770

1-I- 3770 () U)( - -- -- 0~ - j _j ______- ==--=--_ --___ - ---w lt(

w~

~gt middot1 r-

0

3720 3720

middotmiddotmiddot J ~ ) ~l - ~ ~

~ tmiddot~----_7~~ p__ D2)t~~

NSI I(--_ Imiddot- 3670 3670

275 325 375 425 475 525 575

SOUTH

I I I I I I O 1 0 20 JO 40 50

(KM)

SCAQS UPPER-AIR WIND MONITORING SITES

02-03 SEPTEMBER 1987

~ I

t

NORTH CM61yenRS

----- I uic middot I Ibull 0 z_ ~ p

-_- - - - _ - middot-~-_ ------- VCRV

820 --- -- -- I W-gtER --- _ ---- --- ~ ) - -_ - I _ _ - _ --- _ _ _ -_ bull _____ _ _ - -- -- -- _ --_ ----~ HESP 3 -- ME -- -middot bull - --- _ -- _ TE - -- __ _-- - c----~middot - r

PIRlb -_1 N bull--~ _ --lt~_- - _ _ ---------- - -MISS_ _--- ___ bull---=-- _llE ~ ~ j lt) hlt---- F-~~--_ ----1A-_c=_--middot llE ----_ ()

-middot SIM ~ICAN llE RIALSNBO llE ~J -------~~ tllE ------TmiddotllE~I ~ES BURR~ AZ~ ~-~r- RD ____-- -- ~ bull FIIISA l- bull -~~

( )l__ -middot middot c(~HA w~~N ~tfJ1 -- -- ~ ~ 1

_

375

~) middot middot ---lt -__ lt_ ___ ___ -i____) C-middotdeg - - -

- -- J_ _) lllt

_ =- ) - -

L- ~~- Iii - ~ _________

-~ 0 I -- (

SI lllt

E

NT CM58V

( j gtT__~_____)___ -- ~l- ) (

middotmiddot-- -_ bull _ ~- () ~

I --J vlt__ ltgt

--- --------- ~---------- C -

_

~(__ f - -- ~---middot)1 ~

t ~ I

I- I- ~

3720

ANAC Wo~ middot -~- lt_)

44

PERI ) ~ tlo

25 R~ ~~ANAH _i~~MN ~~-w--- ~ _ 00 )

T middot I BUllE I -eM62 7 llE

-- - ~

~ 425

SOUTH

20

(KM)

SCAQS SURFACE WIND MONITORING SITES 11 -13 NOVEMBER 1987

(_ (___JCcS ~~)

bull ------------~ - - ( ~ r-------------- Dbull ---

J

575 3670

1SV3 0 0 0 0 N r-- N r-- a) r-- r-- co I I) I) I)

I bull bull I I

I I f1 1 ~~ I- I I-)

0 l)

l)

w I-l)

L)

z Ct 0 I-

z 0 2

0 r-- z OJ

m3 Ct a lt( w0

l() mI Ct 2

~ ww Q_ gt

0 - Q_ 0 I) 2 ) z ~ ___0

N (I) n a

0 lt(- u ()

0

n 0 z I)

N +

lf) r-- I)

- I I I

i I

I 0

~ -L

w

i

~ LL

I)

C-1

+

l() r-- I)

1S3M

A-12

-~

igt I _

l)

CM~RS 275 325 375

NORTH 425 475 525 575

_J- I bullbullbullbullbullbull ~ I bullbullbullbullbullbullbull bull I middot bull -gt-----middot bullbullbull 3 )--- ____j lt c----- -_ -- gt _ ___ ----- t__ l___

-- ------- LANC l ~ ---------- __ ) -- __ ~ I ) ~ - -=~__ I -~middotmiddot- - bull middot bull bull bull lt lt Cl --- ------ ____ -~ -

38201-- ------_- ) ) -- _ ---- -- -- -- - () - --------- I --- -~-lt~~ (middot__ TEME ) --gt ~_ ----- - middot--- --- vamp c~ (~ 0~ ___- --- gtIpound - - - - ---- -- - - -- _ - - ~ ---- - - - ------------- 5SI -middot PIRltgt ----~ ( -middot _ - -- --- - --- ) HESP --------~ ltgt

___ __bull_rbull ~--------~-___ -- ___ ----gt--=- bull~ ~~ I - ---__-=---- ----

VENt CM58 _ sti --~~ ~ lt_ -~-- middot_~-~~ r-~- --middot) ~~) _J MISS-~~-- ___-_ __)~ -- ---( C

- --RESpound BUR~--==-=~----r~---_-__- ~- - ~ _- ~ -1 -

3770 I- ANAC

J I )l( ~- ~-- - i middot ----middot -X--Ret-----_~ -~

___ ( - -middot ~SA AZ~ ~ o j -------=--------~--gt~-- dampHA ~~~f __ SNBO ~~ -~

ZUMA MALI LA w~M -jmiddot I R~J ~-s ~__ )() w ~

3720

8U25

VE VERN PICO _ middotyHIN RIVRyen ( ~----- -~ CM44 -~ ~- ----- ~ C WT ~NN Wt-0HB -NQRC - middot- ~NN-a-~~ _ ~ co~ __ -- ( ~ ~

RVIJO ~ilff AN~ gt cmiddotbull yen 0 (~~ p LASAl I bull- - PERI ~ ) ~

rJ]~~_Y)~N ) (_ --

_T -cJ62~-~

~ 5j(bull 1) ~Jso

l -~

- 1 J) -~ ~7~~t~~

3820

3770 1-() lt( w

3720

I I I I I I I I I I I I I I I I I I I I I I367r I 367075

I 325 375 425 475 525 575

SOUTH

I 0

I 10

I 20

I 30

I 40

I 50

(KM)

SCAQS SURFACE WIND MONITORING SITES

03 DECEMBER 1987

NORTH 275 325 375 425 475 525 575

I I ) gt ~ _YC) ~ ~ I ( o c_ _------- (

___ middot i I 97 ~___ _ --1 cbull-- - - C -___J -- lt ( ) - - - - middotmiddot ~ l _ ----_J

I ---middot ___ __ middotmiddot-_ 1 -~ __J ) bull- middotbull_ -

3820 ------~- I -~middot --- _ middot--- -------~

C - ~ (___ _ 1 ) -- _ - - - gt _ bull f-_- --- r ------~__ -----I --- ) I ~ -~ gt ----- - --- -- ~-_]) c_middotI 38201-_~~_ l _ --- - (-- ~ f ~ I~_ - middot - middot -middotgt- -- -_ -- middot_ _- 1 L- l _- -

~----- l -- middot middot ~- middot-_ _- - middot middotmiddot--gt---~--t~~)-1 bull lt_ _ _ bull middot bull - middot- ~ ~0---~ (c ~ I ~

_ I - bull -~~~--gt~~~-~~ bullS- _~_ l ~~1t~~_~(~ t 3770 I -- -- middot __ - I S____ ( 3770

I- 1-() ()

gt w - I __~sect~- ---ONT lt(

w

tgt

f-- I

~

middot - middotI

-

L~i--

37203720 c_J - (_cS) l -~~

NSI

367~~51 3~5 13~51 14~5 I I I 14~51 is~s s~s 3670

SOUTH

I I I I I I 0 10 20 30 40 50

(KM)

fJ~

SCAOS UPPER-AIR WIND MONITORING SITES I 03 DECEMBER 1987 r~J

NORTH CM~RS 275 325 375 425 475 525 575

middot middot ___ I middot 1 I )l ___ QO --middot - v_ (-- - LANC middot ~ C) lt --bull_ I -- -- bull _ ~ - ~-- ) -------_ -- - _~-- V --I 1 J --- - bull I -J- ---middot - _ bull__ - vc i --- ltl

3820~-----=cc~ I middot -middot - middot - _ ___ -- - 1t ~~------- middot - ___) - - middot -

J-cgzot-- ~--- j 0 TEME _middot ---- --- -

-____ -- ---- _- j (

- -_ I -- --~ _JI( ---- bull bull-- llf -middotmiddot l - -- bull _middot_ middot I --- -- middot CM58

_- 1 -- middot - middot~-~ - -~__ ___ ---~-~_--__~----------D J-~J~bull A HESP

middot OJ11 r P1R1tc lt--~i_-_~-~- ~c~_r--~-~_--_~r-=-~~~~--~ _ --~ --lt__~~~~- CSI ~ -~ --- ---- middotmiddot - ---- - _ ~ r ) J

)gt SIMI -MIS5-X ~Cgt~---- middot-cemiddot middot ____~ ~ middot~ l~fu__ suRlfiI_middot- -tk~- flAf SNBO __ middot ~-~ l 3770 _ 377ob -- ~ PJIISA AZ ~JIily~ _- RDL ___ bull ( C t-shy-- -~ I ----- ~HA 71lt V)tn ANAC ~---- CE~ WALflHIN RIVR ----- ~ w

w ~ LA PICO - CM44 - T -~ ~ ZUMA MALI VEN middotbull _ -bulltRc __ ~ ~lt~~7-

N WuHB _~-- -middot bull ) _J~N ~ -- ~ 0 - ) ~ I ltgt -_middot PERI bull I- ( _

V 8U25~ 3720 3720

WJlt~ ( ~ ~ ) 1 i

~ I I I I I I I I I I I I I I I I I I I I I367r I bull I I 3670

75 325 375 425 475 525 575 SOUTH

I I I I I I 0 10 20 30 40 50

(KM)

-~ ~

SCAQS SURFACE WIND MONITORING SITES 10-11 DECEMBER 1987

NORTH 325 375 425 475 525 575275

-- ----_ lt_~- c--- - ~ ~ _ I I - ---~~c------ ) _ -middot - gt~-

3a2or ------__ lt- ) 1 middot--- -- __ - ~bull =-------------- - r---_ ___ - bull- ---- I I ~ ~-- jc- I bull - - (bull I --- middot middotmiddot - ~ -middot - -- ~ - 3820 -~- bull - middot - - ~-_ ~- _ middot- n

(

- 0 lt_( ~_lt- ~-~~- middotmiddot) ---- ()_ (---- --

--

____ middot

-middot

I

f----- (-J 1r---J~ --~ - middotlt ltbullI I ~__---__ ~-

l B~--- _c_ gt-- lt gt- (- - - j 1--_~--~--l~ -- -- --- )l

-- - --~---- middotc middot=-~-~- (~ L ----- -- --middot - -- - - -bull --- - - c-) ~ J _ -- - ---- - ) ) ltl

37703770 EMLgt middotorrmiddotbull __ ) ~~~~ofmiddot - -- __s=__I- - - ~__- ( ~ __ )---__ Ishy

V) ~ ~- lt(w ~ ---- --~ - w if)

-~2_~middot) ~~at~s t I

I-

deg

FUUA

i () ~--J)llC~lt I

3720 3720

~ltl__ (_)i~

~ NSI

367~~51 I I I I I I I 13~51 I I I I I I I 13~51 I I I I I I I 14~51 I I I I I I 14~51 I I I I I I r--- I5~51 1 I T I I I I I 5~51 I I I I 36 70

SOUTH

I I I I I I 0 1 0 20 30 40 50

(KM)

SCAQS UPPER-AIR WIND MONITORING SITES

10-11 DECEMBER 1987

Appendix B

SCAQS DIAGNOSTIC WIND ANALYSES (Six-hourly plots Levels 1 3 and S)

Summer Intensive Monitoring Periods

19 June 1987 24-25 June 1987 13-15 July 1987 27-29 August 1987 2-3 September 1987

Autumn Intensive Monitoring Periods

11-13 November 1987 3 December 1987 10-11 December 1987

Page

B-1 B-13 B-37 B-73 B-109

B-133 B-169 B-181

9106103

Summer Intensive Monitoring Periods

9106103

19 June 1987

9106103

1bullbull-lil

1SV3

I I lshy Ishyo )

0 0 z ()

IO N IO

I()

N -st-

1S3M

-- l1

l~ i --

0 z 3

---

2 0

_J w cjr----_J CD

0 l() z

I- =)lt( 7

f) 0)

0 -- i n 2 Ishy7

0 ~ ()N ____ gt a 0 20

3o 0 ~

0

B-1

1Sv3

( I l-et 0 z

(

lf) N st-

l() N ~

l()

N 0 t--

n

0 N_ n

U)

ON r-shy(0

n

1S3M

B-2

_

2 0 0 tlt)-__

tlt)

_j w 2jr-_j CX)

0 lf) I- z

lt( ~ IJ1 0)

0 _ 0 n 2 z 1-0 ~ N - 3 ~ 0 20

3o 0 Ov

-----

lSVJ

l)

----

l~3 O 0 w

w ll) (1

l)

0 0 z 3

I lshyet 0 z

--

2 0 0 0

-

LO

w ~

GJ r----~

u 0 z

OJ

I- gt lt( J

mif)

00 ---shyI) 2 z I-0 i l) N -- 3 (1

0 2 0 3 0 0 ~ 0

lSJM

B-3

1SV3

- V1 --

~5 O 0

E - w

w Ul_ 0

V1 0 0

z ~

I I lshy I-et =gt0 0Z V1

-

2 0

J wr--CJ OJ J z0

Ul I- =gt lt( ~ V1 -

0 - n 2 0 z 1-() 0 ~ N __ 3 0

0 2038 0

0

U)

l

lO N v

0 N agt n

0

r--n

0 N

0 N r-shyn

U)

U)

U) N U)

Ul

q--

Ill N q--

1S3M

B-4

td I

J1

~ ~~~~~ ~ -~~~~~ J - -~--Qf~J ~lf~ ~---~ ttt~~~~H~f~ ~ ~~lt~~~0 ~ - ltl-_t I~~~~~~-~~~~~ ~~ I _~1c j_~ L ~ (__1-T11__1 ~_-~_ ---~~~~~~ 11 - ~ +f--1~- ~-+--41-- 1-~- ~ ~ -rtt1-~--~~~~~~~ ~ ~ ~ ~ l t I J JI JI~- t _I i~~I~~~~~~

377itttttttt ~- - t I Jf --------_-- _ 70 ~ ttttttttttttti- fllJ~JI-~~_- ~~ _ =- ~~~- tn w - t t I I I_~- -V _ ~ -laquo___ _ - ltC 3 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ t t t t t I I I I JI~ JI JI ~~ I--~- ~ ~~~~~ w

H~HHHH~in+~l~Hnf5-I ~ ~~~~~~~~ ~ ~ ~ lliii it t I~t~ltt~rrrr~~~~ jl++it~~~t~

20-~~~~~~~~~J tttttttf ~~~~~~~~~~---~-~~~~~~~~~~~~~-amp~ ~ t t t t t t f f f I I I I ~ 1 J(-- _ --P ---~~~~~~~~ ~ ~ ~ ~ ~ ~ ~ ~ t t t t t t t t f f I I I I I ~ ~- j~J _ ~ ~ z~ ~ ~ ~ z l I+ nm~t ~ ~ ~ I I~Jt~-~- -~-__~~~ tr ti ~ ~ t t I t f f I I I I I I I - ~-r __ - ~~~~~~~ ~~~~ ~z11 ttt ffflllllIIII -~~---~~~~~~~~~~~ ~~~~ ~~ ttttft ttflltllllllll A~--~~~~~~~~ ~ ~ ~ ~ ~ ~ ~ t t t t t t t t t t t f I I I I I I I I I I I I I ---P~- ttttttttttttlllllllllllI -~--L~-~~~~~~~~~middot

367 70 ~75 325 375 425 475 525 575

SOUTH

1111111111111111I I I I I I 0 10 20 30 40 50 0 5 10 15

(KM) WIND SPEED (MS) i

NORTH 425 575

_ 414111fl-~bull __~) ff I -lt~i ~ + lJ Jmiddot-bull A fl t1 it bull- _I~--~---~----_---~_~~~~~~~11 t1

~~t 11 f + + diamsJ diams 1 )--t-_+ J~ I-(_ 1 1 ~t1 __

__ Lt l l t fL f_l - - +~~----~~---~___-+_~~~ J-t-t t---t-lt t t-t) LJ lt fl ~ -- t---f t tT~-- ~~ 1__t -t ti t_1 + l - -~-~-~-II~-- - ~~~-----~----t----~~~~~~_Efftt -- r1 ~J t l Lt t

fl

~ _ t_ - 11 _ _

Fi ru bulll=ti~ ~ ~ ~ ~1H1~~_~-~-~----~~~~~~~~~~

DWM WINOS AT LEVEL 3 (300M) 1000 PST 19JUN87

1Sv3

I I-shyCt 0 z

1S3M

B-6

0 II)

0 I)

-_2

0 ~ N -

0

0

-_

2 0 0 0 -

LO

_J

w r---CJ O) _J z I- gt ~~ if)

0 1--shyz V) ~ Q_

20 3 g0

NORTH 525 575

~~~__A -~___~~-

F- ~_--P~

~ ff~~-- - _ middot- ~~

_ bull bull bull bull bull

_ p

~L~k~tt ~ 1 t A middot1-t

~ r~ 1 11 1 __ bull bull --l t frac12Q2_

~ ~--r-J-+7L~

1--Ui

3770 _yen~AA- ---~ ~__~_ ~ K---r

eno tshylf)

w ~ ~ ~ lt( 3 I I_

- w

td I

-J

~~~~- ~ ~ ~~~ shy ~ ~ - shy

3720

~ ~~~ -~1~-nu~~~~-

~ -~ - ~_____A~~1~ ~ _~ ~~= ~~~_______2--- ~

720

~~~-~~~~~_ 9~tbullmiddot~qor~frac12

Y~poundpoundpoundpoundpoundpoundL1~~~~r~ ~ middot

375 425 475 525 575

SOUTH

I I I I I I 11 1111 1111 1 0 10 20 30 4-0 50 0 5 10 15

(KM) WIND SPEED (MS)

DWM WINDS AT LEVEL 1 ( 1 OM) 1600 PST 19JUN87

~

NORTH

Arlt~~~ ~L _ -rJ ll

_ I I I t

_t-z~~J ~i~ bull

i- ~~~ Ii ~~( trn

3770 I - bull bull bull bull bull bull bull iigtlaquo

--- bull bull bull _-

~fJ~ t-l-lltf[llJ- jf1 rr]I ~ ~~~ ~ss~810Ja2ot-~~1i lmiddot - 1 17- - -

-ltL

~ ~ 70 y ____~ tshy

l) ) _-y ____~w

w ~

~ -~--- - -- ~ 1 ~~~~ __ _ bull---bull laquo-___~ Y~~

___p~~__---A~_A 1 ~~td I ~----______A 14 1 ~

00 _-________________ ~ __~----~1~ -A________________--r__~~~ ~ ~ ~~~--~-~~~~-~---e--~ ____________~_________-~ h

3 7 20 t-_--~____- ~ _ _ ~~-_- _ _ _ _ ~___~~~r--~~___-K ~~ ~ -~-------~~~----~ ~ ~~__________~~~~~~~______-r_-A~-1--~~~ ~__________________----r~__~__~-Y~~-------__---A----r~ 1 ~ ~__~___________~ ~

367 tcrr~__~y--rrYlt-trltltltltltlaquo-ltltltltltlaquoltlt~~~ ---

9imiddot~75 325 375 -- -

1111 1111 11111 1 1 1

0 10 20 30 40 50 0 5 10 15 I I I I I I

(KM) WIND SPEED (MS)

DWM WINDS AT LEVEL 3 (300M)

1600 PST 19JUN87

NORTH

bl I

0

~________________A-4_gt~~~_____~~__________~A

A~altP_ ~~~_________--~_A 38 20 I--=-~~_~~___~~-_-~~_ -lt~ - ~_-~_A--1~ _

~~------ ~ gt-~ ti ~----~ ~ _~~~~ 0 ~ ~-i---~~411___ I~-~~ I~A-~~----~7A7~-

A A~---~~- ---~ ~ ~ -middot~~ 1-27 ~shyA_~ ~~~ Jl--__r-t~ ~ (K~_ - fl_

A ~I J111 I _ A - ~ _ T-~ v I 1 1 1 1 1 1 ~ 1 1 _ Ji J I~ f --_i__middot1(- ~ ~)( ~JJXZ - _ r ~ - _ )( _ II I 1 ~ 1 I - _~ _)~ ~~

= 1 II II 1 (~ ~--=-~ -7fJ~~~~tm~i I- 3770 Jir - I 11 I 71 (I) ~ ~111 ~

w ~--middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotbullbull bullbull ~~~11Zll~~11~ ~ ~~_~~~llllN~~ -~~ bull 11jh fi 1 1 II 1 1 1 1 1 1 1 1 1 1 1 1 1 I I 1 0i~~~ 1gtcJ~l~p~ ~~~ ~~~ ~rr1111

70 Ishy() lt( w

111111~~ 3720 i- 1 1 ~ ~

~1~I A-A~)I 1111AA _~l11~ 1

lllllll11IIIAII- ~II ~1~~__~~Ill~~~~~ l1_ 1~~~~~~lll~~~~1 llllflfAll-)lllllllll1~~~~~

A I I I I I 1 I I I I 3670

275 325 375 425 575

SOUTH

I I I I I I 1111111111111111 0 1 0 20 30 40 50 0 5 10 15

(KM) WIND SPEED (MS)

DWM WINDS AT LEVEL 5 ( 1 OOOM) 1600 PST 19JUN87

~

A A A

1Sv3

(

1S3M

B-10

()

l ~

---u) 2 __ O 0 ~ w

w It) Q_

()

0 0 z 3

0 It)

~

0 ---I) 2 ~0N _

0

0

---2 0 __

_J

w r--- GJ OJ _J z __ )

~~ () r-

0 __ z ()3 Q_

~o 3~ ON

NORTH

middot-~~) K~xJ~ middot_1~ ~ 71( I IJ ~JI

~A I 1 ~~

liii[i~~ Hf~-~~~=~T-- ----- --=~~g~g~bull11ft _ ~~~ -1-x~~~ ~~~~-~~~--~-~---~ --~ t ~t~ -~1~~ -- ----

-lt J 1middot~~ __---~__

3 770 ~ ~~ --_tn ---------~~ 1 ~____~ _ ___~ -w bull Y ___~~~ (Al _~ _ ~

-- bull _ _ _ bull bull bull bull~___1 1I J~ _~

~- YI J _L ~~ ~~ YJll~E~

td _____-___ ____ __ 1 ~xgtx2-I ____________~__-A (~~~~ _______~~2-1 y~~- ___~__________~ ~

3 7 20 I-___~~__~~ Y --~ ~__ I _ - - _

~_---A~ ~---__~~~~~--_____~ ~ ~_____A~ y ~ ~___-__________~~ ~ -

~__-_______-yen_2 ~ ~ ~~_______~ ~

1 367~ 75 325 375 425

SOUTH

1111 1111 1111I I I I I I 1 1 1 0 10 20 30 40 50 0 5 10 15

(KM) WIND SPEED (MS)

DWM WINDS AT LEVEL 3 (300M)

2200 PST 19JUN87

~-

~ - - ---

NORTH 275

___ -~-___

- ~ I o_ ltAbull~-P- bull bull -P diams bull~--~~~~--- --- ~ ~ ti ~ ~sbull3820 ~=-J~_~~middotmiddotmiddot~~~--_~_=- =~_~c s~ ~3~

~~- bullbull~~bull~~~~~~ - bull -~~bull ~ v i-_ --- __-_ ~----~

~- st-~~1 17-~__4 ~ _~ ~-~-raquo~~~ -f _ _ bull bull bull bull~ bull bull-__-v 4 t ~ ~v ~- Jl_~ ~--z~~=~s~~~~Mil

-- _ ~ frac12--~~- -=~~ ~~l~1~l~tzi9~J t~ 1 1 1 1 1 1 ~-bull ~~___- v q (If V pp p I l_77rtfl _

3770 ~ ~ ---- I h1yenzi 1V-r-() bull bull ~ ~~~~~ w ~ bull ~ _ I JI J(_ )-II101-1 3 ~~A~~~XI IIJ~~~

~ f A I~ I I I I~--L -

tl ~1111111 ~K11~~llll~i~~~~I ~rr ~~ ~xgt~~~t---

N ~I I II)(01~ ~ ~ ~~~ 1~Y~lt~~~~~~~~ ~~~~

3720 iYY11Alllll1lIA~~~~ ~~---Y~---_ _ _ - ~ bullbull - - _

~rrll1IIIIIIIAAAA__

___________~~~AAAA~_~ ______________~~~~KAKAA1~~ lllllllllll~AAA1f~~

_~~

3670 t1i11 i i 1 i i 11111 i i i i -i i [ 111111-111 ~ ~ 11 ~ i I t 1 bull rm r~ij e =~~ raquo-il3t ~ 275 325 375 425

SOUTH

1111 111111 11111 1I I I I I I 0 1 0 20 30 40 50 0 5 10 15

(KM) WIND SPEED (MS)

DWM WINDS AT LEVEL 5 ( 1 OOOM) 2200 PST 19JUN87

24-25 June 1987

9106103

1SV3

1S3M

0 w w Q_ (J1

0 z 3

I f-shy=J 0 (J1

-_

2 0

--

_J w CJ f- _J OC)

0 U) z

f-shy )lt

J q-

(J1 N0 -_ 0

rlt) z rshyl)

N0 _ 3 Q_

0 20 3o 0 q-

0

B-13

lf)_ lf)

If) N If)

lf) r-shy~

I I-o 0 z lf)

~

lO

~

lf) N If)

(

pound bull d ~ bull 4 4 c_ q

1 4 r9middot-

0 N IX)

middot- t--bull ~Igt~

O ~f 4 fT amp)o(oj

4 ltI I~ ~ ~

0

o

middot a

~- v t rgt ( tgtj (~V~-1 f4

3 44 ~-~a4 V VM q -~~-q_4 ~4

_ ~ )

p- ~~t1~1 middot V II J ~ ~ )I 1 11 f ir -~~1I ~

II P P P Igt 4 ~(Iigt ~~ 1) IA

deg deg 4 4 ~ A -1 r 1 1-Y]~t J rz ~

fl r ~ Igt I~y ~ -- -- - 4 ~r___amp V P11 iP Igt P Igt p ~ -0

~bull 7~tpmiddot~P Pf P Ptl middot~ ~ q p Igt 1gt p ~ t b (r 4 P - 4---f ~ ~ bV ltI

ltI ~ ~ I p 6(~ d-_j b d p (4- 4 ~ 1 p Igt 1gt Igt - b ti

)4- a 4_) q V Igt p Igt o

lt(___~ ~- V fgt ~ 111 t Igt -4

~ ~ Igt r p Igt

~ ~ 1 h1

V (I Ilt v middot

t y-

t

t

p

P t P t P ~

0 0N - IX) n

1SV3 0 0 0r-shy N r-shy co

lf) lf)

If) N If)

~ - t bull~--~11n ~ -~bullmiddot t~ lt middot___

o_ ~ ~ ~

0 bull t bull 4_4 4 4IIgt

c 0----~ u c Igt( o ~ c ~A ~ 0 - A 4 4 ~ 1 q

o bull o- -~ 1gt 1gt ~ y4 -~J middot)bullmiddot ~ ~ ~ p 0- 1---f t-~ 1 ~ 4 4 o co u gt)O- eyti ~ ~l 9 -Y P- - I a c 1 oM_il_q A p- p

4 ~ ~-M f p

I 4

~ rv ~--~middot

tJmiddot bull P II f t )I~ bull V ct_~ V V V t P- ~ Igt t middot f lft V VJi P- P- fgt IIgt ~ _ J1 bull bull bull

1 v II p _bull ( ( ir ti- f Igt bull

j ~ r f -~-1t __

_I ltC_t--q_) v -~-ampgt

Q middot--- ~ - t ~ b

II

bull ~

bull bull

diams

1 bull ~ ~~ ~ ~ b b b lgt bull

-- b bull bull bull~4q~ lgtPlgt-4-~_tbblgt

Jraquo P P ~ q 11- 11- b b b b b

P Igt P q bull b b b b b b b b bull

bull bull Igt 4 4 fl ~ b b b b b b b b b bull bull Igt Igt ~ 4 q ~ b _ b b b b b b bull

P bull Igt Igt -4 ltI 9 b b b b b b b b

p bull - Igt Igt 4 lt1 _ b b b b b bull t bull bull Igt ~ 4 b bull b b b b b b bull p Igt Igt Igt bull 9 b b b b b b b b bull P p ~ ~ A 4 q - _ b b b

1S3M

figt j)

~ ~ bull

bull bull bull bull bull bull bull bull bull bull

bull bull bull bull middot bull middot

bull bull ~ ~ 9 9bull bull bull bull bull bull bull bull bull

bull ~ bull bull _ bull bull _ bull bull

~

If) N t

lf) r--11

~

If)

~

0 ONN - co n ~

I fshy=i 0 V)

- 2 0 0 n -

n _j w cjf-

0 l()

0 ~

0N

0

0

---shy2 ~ _

_j OC)

I- z lt( =i

J Vgtv 0N z f-

3 ~ 20 3o 0-t

B-14

---

1S13 0 0 0 N N r--shyltIO r--shy co I) n I)

I() l1 r--shy -U

E~i0 z

U N I() 3

I fshy)

0 U) l1 N -t

--_

2 0 0 0

-

LO

_J w CJf----_J OJ

0 U) z

f- )lt( l1-r ON z f-

3 ~ 0 20

50 U) 0 -sr

0 ON r--shy r--shy

r--shy (0

n I)

1S3M

B-15

lSV3 0 0 0_ N - _ - ~ I)

_ ()

(~i

0 z

If) If)N NIf) 3It)

I Il- I-a =gt0 0z If) If)()

N Nst- st-

_

2 0

--

- w I--- OC)Cj z0 -

I) )I- Jlt( --t-

N() 0 I-z ()

3 o_

0 0 2 0

~ 0 00( 0 0 0-N N _111) r-- 1)

1S3M

B-16

lSVJ 0 0 0 0 N r-shy N r-shy_ _agt lO n n n n

() r-shyU)

u) l() N N u) l()

I I lshy Ishyo )

0 0 z U1 l) N

l() r--_ 2 0 0 n -

n _j

w I GJ OC)

0 _j z

lt) I- ) lt( ~ lf) N 0 1-z l)

3 Q_

0 Lo38 0

0 0 0 0 _N N _ _(() n n n

lSJM

B-17

1SV3 0 0 0 0- -N N- -crJ co I) I) I)

lO II)- - U) It)

U) II) N N lO lO

lO- st

I l-o 0 z U)

N

~

I I-=gt 0 l)

st st

--_ It) - ~ I) 0

0 0 ___

lf)

J w I-

It) N I)

0 II)

~ OC) J z I- =gt lt - lf) N 0 1-z l)

~ 0

0

0

~ 0

38 0

N IIJ I)

- - I)

1S3M

B-18

middot~ bullmiddot I

1Si3 0 0 0 0 N r-shy N r-shya) r-shy r-- co I) I) 1) I)

--_

E~i l)

0 z 3

I r-0 0 z

0 I(

0 --_ n 2 0 ~ N --

0

0

1S3M

B-19

---

_J

w r----2i OC) _J z I- lt( ~ V1 N 0 1-z V)

3n 20 3 iE 0

---- --_

NORTH

-_ t t t f t A +1 t lt-1--JJ-middot+J

r ft_f_frac14 fffftl middotmiddotbull f_ n- ~ tn

ttt1I1~ ~ ~ ~ ~f --H 1--- ~ -

rJj ----~ ~ ~--- ~ l j bull bull - bull bull Ir - ---_- --- --~~~~~I-~~~ ~ bull ~ ~ rt

- - ~rnlit ~~~~ ~~~~ ~~ ~~~~~~~ - _~-~~ ~~~~~-=~~~~~~~-gt

3820

bl I

N 0

tshy() w 3 fftfftlll

ffltlIJ11111~11- I I I J ~-- - ~~~~11J~ -~

3720 - I I JI J ~~~~~~~--------~~ diams bull + I J J _~ 4 bull I I I J ___ ~~~~-s---~~IJ-bullbullbullbullbullbull ~__middot~middotmiddotmiddotmiddotmiddot~~~~~E-e~~

4flA~~middot~middotmiddotmiddotmiddotmiddot~~~~~ ~--_---~- ~~ 1

367~7i51bull1bull11bull1 111 13251777JT7777~7777 I I I 14251

--~--~- ~~_-~-----~ ~~~J

--~-_--~- 1- I 1 I

~ 1lJ

I I I I I I 14751 I I I I I I I s~sl1 I I I 1575 I I

3770 tshy() lt( w

3720

13670

SOUTH

I 0

I 10

I I 20 30

(KM)

I 40

I 50

lllI 0 5 10 15

WIND SPEED (MS)

DWM WINDS AT LEVEL 3 1600 PST 24JUN87

(300M)

lSgt3 0 0 r--shy N r--shy r--shyt)

It r---1)

lO ---- N bull ~~ r lO ~ oe--- I

~~~~ t z~_-----~8 ~ ~~~2~-~----=---~~ t ~~----~~ -frac14~~~--

~v -~ 1 ~ - ~ ~~ ~~~-~~N~~~~~~~~~~~

tf~ ~ ~ -~~~~~imiddot~~~~~ ~~ ~~

_gt~~ middot1 ~ r2 l~ --~- I _Ct _ V I - ftV

0 ~ ~~- X

z~ HF bullIh IJ i It ti ~ 1 IJtl ~ ~ j t ~1

~ ~ 1~1

1 r ~

)

r r~P t t _r )r f

~ 1+ t t t f t ti ~ 1 lt ~ diams t f J t H ff 1 1I I I It diams diams Vf- 1 f f ~ f I 11

(____ t i(_ bullbull ~ bull ~ I r fr1)L_lt--~~vi 1t1J U1 -~- middot~ 1 t) ~ bull ~ bull ~ bull 1 1 f f f I t ~ - ( ~ ~(~ (_ ~ b ~ - ~ bull f 1 f f ~ bull

j ~r~--~ ~ _ ~ ~ ~ l 6 bull bull 4 t ft It _ - __ _ - J ~ ~ ~ t bullbullbullbull t - _ ~--~_____

__ I deg j ~ ~ b ~ _ Igt ~ _ _ ___ bull bull bull bull

~ ~ I ~ ~ ~ _ ~ _ _ _ __ - bull bull bullf

~ bull ~ ~ 4

I -- I bullbullbullbullbull

~~~ ~

1 bull ~

-- V)

LO lshy -----_ lf)

l- w w

=~ It) 0 l)

It)

2= )

0

~

l() 9 __~----- lf)r--- --------J______--L--J-~J-J-______~______~~~___________________________ r---N O O O ON

0 0 z 3

--

2 0 0 0 ----

LO

_j

w I--GJ Cl)

0 _j z lf) )I-

lt( ~ ~

lf) N 0 -- 0 I-n 2 Zlf) ~0 3 0

N ---

0 20 3 g0 -

0

N r- N I-~ I- I- ~ n n n n

1S3M

B-21

1Sv3

U) N U)

lJ) N n

0 N (0 I)

0 r-shyr-shyI)

0 N

I)

It) N It)

U1 r--1)

1S3M

B-22

0 w w (L Vgt

0 z ~

---2 0 __

_j

w _ ~ OC)

0 _j z U1 I- )

lt~ NVgt

0 --shy 0 1-t) 2 z () 0 ~ ~ (LN -middot -

0 20 ~~

0 ON

bull bull bull bull bull

1Sf3 0 0 0 0 N N CX) ID I) I) li li

~ n

~ n

tf) ~

A i -02middot a_ ~ r ____ Igt middotjmiddot i -1 ~ i r middot-~-----------------gt IJ IJ bull 1 j I ------~-----------------

_ IA_Jyen ~ ~ J ~ yen ----~---------------------

~ II --~_a IIgt 11gt Igt middot~ I bull ~ ~ ~ ~

1(1gt i i _JI J Iibull I - IJ Ji H j

bull bull I( --- j J t ~o ~- -- -J I I i J diams bull1bull bull bull i ~ _I I I I J 1 ~~- ~ 11 J l J diams -~ J) bull ~ I- t t ~ ( l f middott J bull 1_~1 ~ IJ II- I ( II ~ j t t bull)

bull t )bull ~) i ~bull bull __ __ I 1gt J I I I middot----- - ~ _ ~ Ji (Ji_ If ~ --~ bull i f l-Ji ~ p VIMyen I ~ middot1 bull I Ibull lt_~ ~ p1 )

I

__________________

~ 4 V ltI - - - -

~) i t --- -- yen 4 yen -- Iii 1yen yen JY yen II

I ~1 Ja a Igt- yen yen yen yen yen yen yenyenIiyen II II

a Igt bull ~ 111) (I J I JY yen tY yen yen II( ltf ~ I~) JY yen liY yen yen yen yen yen yen yen II II II ~ ~(II ~ yen yen yen r yen 1r yen yen yen It Ill

p cl

p 4 ampgt P JI r Igt bull

bull JJ Igt II

- ~ 11- bull

- -

+ _ _ _ __ __ +- ____

- - ----4

bull bull Igt Igt Igt

11 bull bull bull bull

bull bull It

IJ Igt bull t P

Igt bull t

- II Igt fl t middot~~-~~~t_yenyen yenyenyenyenyenyenyenyen

I ~J )Igt) 1 bull yen yen ~yen yen yen yen yen r - yen If II II Igt - I 1 J bull bullI _ _ 1 ~ ~ 1K )

bull -

bull bull II ~ Igt- J 6 bull I 11

fl) 1gt 11 Ill

bull t t fl

~

U1 r- n

~ n

_________o__JJ=---=-------oti~~e-~e11JEJEolELE-ILILLEJLlLu~uJ

l~

0 tf)

~ 0 n

0 N

0

0

- Vl ~ 2 ---

0 w w CL V1

0 z 3

-

2 y --

-

2 0 0 tlt) --

n _J w f-~ OC)

_J z gt

I- Jlt( q-

NVl bull) I-z Vl -~ CL

02 0 3 N 0 NIf)

ONN I N ro r- (0

n n n I)

1S3M

B-23

17z-g

WEST u u u ~ ~ ~ N ~ N

NO N~ 0~0

7J ~ () z -I 0 N (I)

~ )gt c_ -I C zr co ~ -J rT7

r (Jl

-- __ 0 0 0 s _

--_ 7 ~ --

~ z

~-0 0

--s (I) ___

0

0

N o (A 0

t ()1 0

oj(JI

-0

-()1

0 0 0 N -J

A I q bull if ~ ii ii ii I ii if 1 i J (JI

Ab4llltli ~~144

bull~~bull~1111111 11~1middot)1i~~~1 ~4gt~1111111~ II~ - bullbull~Agt~lll11 IIIAII tbull ~4-4~~~III IIll~ I ~14 4 - ~ bull i ~bull-ttt1 111111 I I 1-~ bullbullbullbullbull gt q bullbullbullbull I t I I I I I 4 I I I I I I I 1_ J~ I

4~ A - middot~~lll111I IIll 1 I 4 -1~~ l~ gt1llllllI 1l111 -~~ I N

tn()16 -1 Igt Igt I I l1I v I 7----(Yi ti mbull1-t

~Plgtlt111 VIII ii l middot~1111~~0~ I l~lll~310bullbull I i~W~ffi 1~~~~6~~~ I J~ 1~~~rw 11~~~1~ ~l~~t ~ i 11~~~~~~~ ~~f)~t~~I I~tl -1

~ --J ()1 l 111~1JV1 ~~~1~ I Ill tniz~i~~~~~~ ~~~~ 7 ~K -~~iii~~~~~~~~ il~~~~~~~ 1~~1~~~

middot1 middot1 middot1 middot1 middot1 middot1 middot1 middot1 middot middot1 middot1 middot1 I I I I vr )Igt(_ I II I I~~~~t~ 21~~~r~~~~~v111l I ~ II I -- I~ J(( I I II J l l l Cl ~ I ~ ~ ~ J J I I I yen - - bullbullJ_~ f yen ~ I IJ t I ti

diams J J J I I - ~ - ~ l1 yen -1) I I( t I ~ N J J J J 1- ur~ ~ - Jf1( -I) I I I ti I I j~

() UI diams Mi r)r yen fir_~~ bulll1t) JI 1 I middot i - (JI0 ~ nmiddotmiddotJ jmiddot-1 I I I f ~j--1J ~ __ middot gt C ~ J I f I 1 ltH I fl 1 ti I middotr- I I-I ~ f bull t t l )1j - _ I

t J4J-fbullt t ~ ii middotlfli ii~) - ~bullmiddotttM i f bull bull1 rI-Ku bull bull bull _ middot-~-J_J middot t +imiddot i t t ~ t ( ~ middot(~ I J bull Vf I r1- ~ j~fmiddot + r bull(~t t bullbull_t- J J ~) J ~ Igt

+ __ middot + V+ bull bull ti+ bull + -fi J i bull bull ~ f --- ~ ~ t Li bull bull t ++ diams + t bull +++ + bull ~ __Vbull ~ it 4 ~ i ()1 ~ 1 bullbull diams diams diams diams ++ ++ bull t 1 fA middot_ -----Y 4 ~ tn

~ ~bull t bull + diams + bull diams +++t + bull A VJ ~ bull bull ~ -o middot ~- bull t bull diams diams diams + ~i4_ ~ ~ ~

11 -~ 1 1 1 1 ~t t diams t t ft(middot-- f g a PA

--middott 4 -4 y 1 1 1 )f7~ V g n t A ~ ~bull a~ 4 1 1 ( V P q 1 bull A ~ V Y ~-- 4 I Cl oCl 4 A A ~tW --~- ~middot -)bull ~iliJ bull1bull

bull It t-- ti __ __ ~ (~w ~ ()1UI I bullbull bullrmiddot -~)fl l~~~ ) I A IIbull N~L~ r ~~~-ff~ --bull--1) 4 4 bull ()1

~ 14 ~ bull f 4 AA 4~ bull

44( )A - ~

- ti~ f 4 ~ 4 4 4 A bull ~ i

ti ti fl 1 4 tn llflfl44 4 -()1

~ ()1 ti ti fl 4 4 _ 4 bull fl _ 4 ~ ~

~ bull t~ - - I - 1 T T fJifrac12 1f 1~ fl t [ 1 4 bull bull ~ ltt ~4 ~~~11 l~~Nfl---~ ~~ bull ~t144

1 -middot I I f I ~ fl ti ti- Imiddot tJ 1-0 I 14

z o 0 -I

I

Y

)

u u u u 0) ~ ~ ~ ~ N ~ N 0 0 0 0

EAST

1S13

0 z 3

r r I-shy Ishyer gt 0 0 z ()

--_

2 0

--

___J

w CJ r----1 (lJ

0 l() z

Ishy gtlt J LO() N0

z Ishy()

3 0

0 20 3o 0 tj--

0

1S3M

0 w w 0 ()

B-25

------

~ --- _

NORTH 275 325 375 425 475 525 575

dJ 41 l ll~I tgtI I lo fA Itgt IA IA lo 1 IA IQ 1q lq If lq I ~I 4

~ ~ IIJ ~A ltI P Igt Igt Igt P V V V Q q l_-~- q ~ ~ ~ x- ~ ~ Y t~ --___q)11 4 ltI v v v v v v v 1raquo 4 -q q -~ q ~ 1 a

~ 4 ~~_gt~) ) ~~-4_~ A ltI fl v v v v p A V yjq ~ _ _ ~bullbull --shy~~~ ~ I Cl11 ~ 4 v v v v P- deg 4 ~ -V t V ( ~ a bull-

~ 1 ~~~ v ~sa- fl V P -iLpound_~A--4 q Igt P ~ 4 a~ 4 38203820

- _1 fa bull bull ~ II 11 4 4 ltf V P deg q 9 p Igt Igt Igt Igt P~~ _ _ _ bull -

- ~_R middot ~ gt- P-~-j---s--middotp-~~--- Igt p ~(

-~~ _ amp- 4 --v--J ~--~ -__~---- ~~ t f ---~middot bullbull ~ ~ ~ ~ ~~bull--- bull~bull~~ 4 ~-deg ~--~ ~_v -~ _~raquo Wh~

bull bull bull bull ___ol bull bull --___~ ~ _ A~~-~- f_~-~ bull 1 ~bull -~ Igt bull

a l -4 bull bull~ bull ~ ~ bull frac12~ P- __ _middotmiddot11-~~j)6-_ U bull _ JIgt~ bull I- bull ft ~ 4_~~~~ 9 P lgt--1gt~~~_-~_----~~~ ~ bull ~ ~ ~ ~ --~-~- ~~-_middot ~~~A~ ~ 1111 ~- ----~~ -~- IIgt _)-

1111 1111 -( _-middot 4 ~ Po Igt q lgtmiddotv11t_ Igt Igt II

3770 ~ P 0 ~ - bull k ~ 1- 1-

() pound 4 4 ~ q -44 - bull bull Igt ~- t Igt 1 Igt () w Igt 7 lt

3 - bull It It It bull bull ~--~ p ~ Igt ~ w ~~ It It It bull ~ -_t _ ~ bull bull bull bull --~ Igt

deg

td bull ft bull v ~lt~ Igt Ci~ 4gt I ~ It bull bull ~ 6 -It Igt ~

N bull bull It It ~ ~ _ ~_) ~ ~ lr It ft ft ft ft ft ft Igt -II-~ j ~ fil- _ _ _ _ bull 11r 1o 1o It 111- bull ft ft ft ft ft i i f - ~ 3720 bull It bull ft ft ft ltt q -e- ~ ~ ~j1

4

middot bull bull bull It It ft It bull ~ ~ ~ bullmiddot ft ft ft ft ltt ft ltt ltI 1 ~ - It bull It ft ft It bull -0 ~ JIgt ]~

middotmiddotmiddotmiddotbullbull1rt1rtft11- p-bull- ~1frac121 1tftftlttltltPt1t fgtbullbull ~~- bullbull ~

It bullbullbullbull It ltt It It ltt It lrt lrt tgt - ~

~~~ItIt ItItIt 1t11tft lttlttftlttltlt ltt lt11t ~ lgtbullJgtIbullbull bull~bull bull~bull ~ 1 bull bull 3670 367~75 325 375 425 475 525 575

SOUTH

1111111111111111I I I t--l 0 10 20 30 40 50 0 5 10 15

(KM) WIND SPEED (MS)

DWM WINDS AT LEVEL 3 (300M) 400 PST 25JUN87

0 0 0 0 N r-shy N r-shya) r-shy r-- (0 I) I) 1) I)

-

LO r--1) -

l~ i ()

0 z 3

I ~ n 0 z I)

N st-

0 If)

0 - I) 2 0 ~ N -

0

0

1S3M

B-27

---_

2 0 0 0

-

If)

_J

w Cj l-_J OC)

z_ ) lt( J () L()

ON z~ 3~ 20 3oo+

0 0 0 N N C0 (0 I) ~ I)

U)

U)

U) U) N N It) U)

I I-=gt 0

U) V1 N st-

lO N I)

0 lO

0 __ I) 2 0 ~ N _

0

0

__ 2 0

--

_J

w l--Gj OC) _J z I- =gt lt( ~ V1 N 0 1-z V) 3 CL

20 3 g0

1S3M

B-28

I fshyCt 0 z

0 r-shyr-shyI)

0 N r-shyn

0 r-shyl) I)

lO r-shylO

lO N It)

lO N ltt-

--

tlt)

_j

w r---fu o) _J z f- ) lt( ~ f) N 0 1-Z Vgt3 (L

2 03g0

I fshy)

0 l)

0 lO

0 -- n 2 0 ~ N ---

0

0

1S3M

B-29

1S13

-l)~ O 0 w

deg CL w

l)l ~

0 0 z 3

I lshya 0 z

--_

2 0 0 0

--

LO

_j

w__cj IJ)

0 _j z lf I- )

lt ~ ~ V) N

I) 20 - 0 Z(f)

I-

0 ~ 3 CLN -

2 00 3 gOr-

0

1S3M

B-30

Ht 11Sittl

lS13 0 0 0 0 N N II) (0 n I) n n

-- ()

LO t-shy ~ lO

(~i0 z

lO N LO

3

I Ishygt 0

lO () N +

--

2 0

--

_j

wr-----CJ OJ

0 _j z lt) I- )

lt ~ V) N

0 -- 0 1-shyI) 2 z () 0 i 3 ClN --- --

0 28 3 ltD

lf 0~_____________________________~_______________________--- t-- 0 0 0 0 ClCI N N t-shyII) t-shy io n n n n

1S3M

B-31

==- ~-_

NORTH

I bull bull - -f I I bull ~bull - ~__~~~~ ~~~

flt~11 $~~~t=- ~~ ~ 4Aligt~ ~~~ ~~

3820 1~~~- 4 t 11 ~ ~- --~_____-- ~ ~ ~~ 3820 ~~~

~~-~~~~

3770 3770

l1 ()w l-

lllizz tshy

~ ZlZZl ~ ~~~~~~

to I -IllIll

w -I IIIll~N llllll2~~

-II I I J I-~1~ r~~~~ 3720r ~ J J UL 1~A~~ 3720

~IIJJJJJ2~ ~~~ 1 ~ fl I JI JI2~~ 1~~~V fl fl ~ JI J J ~ y ~- 1-f4~) ~ fl fl fl I JI J _A2 1~ V~

~flflflflJIJIJl~2 ~~JIw~ ~ ~jlfljlflJIJIJI~ ~JIJIJflfl~~~ ~ ~~fljlfljlJI~~~~ -

J67 t-V1111111----(((((1i I~laquo rlt~1 I I I I I I I IM m I I I I I I I ~ MJ670 g75 325 375 425 475 525 575

SOUTH

11111 11111 11111 1I I I I I I 0 10 20 30 40 50 middot 0 5 10 15

(KM) WIND SPEED (MS)

DWM WINDS AT LEVEL 3 (300M) 1600 PST 25JUN87

1

NORTH

bj I

w w

i~ -tt--t ~ + ~frac14 diams diams diams diams diams f f f J-~~~l -ff~_x~ diams t diams ---t diams + diams ff f J1ff~t t

-=tl-U +---- ~ ~ t-t- diams diams __ diams~ diams diams ~ J I I 1 1 f ~ -y- ~I -~~-1t-~ diams +__+ diams + ++--J_f 1 ~JJ-11 I --

38201- ~~-- ~ ~--t_-( 1 ~ r 1t + middot~-t_ bull ~-~ bull bull bullmiddot bull r-r 1 ~IiI 1 I ~Ji~l _-=pound-~If~_ It It It bull bull bull bull bull ~ diams f f---bullmiddot+ --I __- _ I I~ 1 f1

( - ~~~~ II lit It It 1tt Iii Iii~ -r-middot -- ___- l_f--1-l -L ~~1 1 ~ ~_( _ -~~ ~------~ 1t(~ bull (t ft- ~ middotv -11-fI 1 - t~~1 1 41

~ - ~-~- lit 1t lk_i -- -~--- -_ -j rf-- l1 r111 1 I It It~ It 1t 11i bull-~ ~- ~ t_bullbull_~ (middot ~--middottY~i_(4Xtl~4j_ middot It It ~ -- ---~----~----_I~)-~-~ -

~-It It ltt middot~- ~ -~-middot ~-pound1[_~ -~- - middot - deg - - It It l diams diams 4 middotbull--bull ~ ~ ~ diams 7 1---~~ -L_- - ~ t( I diams -( bull diams ~ ~ bull ~ -- JI JI Jf JI JI j(_ ~II deg It_ -~ ~- I I I J JI JI JI JI 1

~ J- ~llj ~- diamsdiams +II IllJI_ h~ ~ ~ ~ bull bull ~ JI J J J ~ 1 x111 X7 -~ ~ diamsdiams 4111 JJJIJJ~~~~~~~~1t diamsdiamsdiams ~111 JJIJJIJllllb~ h~~~hh middot ~ - diams diams bull I I J J I I I I JI JI I l1-14~frac12-~~~ji_ ~ + f 1 J I 1 I I I 1 ~ x~ f1 11 middot -

bull JI I I I11~bullY1iz 1 41 ~ f I J J J JI J J J J J I I I lmiddot ~ t JI JI JI 1 JI 1 1 JI J I I I It~ if~_~

It_ ~ 1 JI JI JI JI J J I I l-~ 4 t J J J J J J J JI JI I I l l deg ~~ _ ~ 1111JJIJIJIJIJIJIJIJI t JIJIJIJI~I JIJJIJIJI_

~- I t I I JJJIJIJIJIJII~~~~ t JIJJIJIJIJIIII ~~ JJ JIJIJlllll ~ t IJJIJIJl1 1 1 ~ ~~I 1 t 1 A 11111111 II I I I

325 375 425 475

SOUTH

I I I I I I 0 10 20 30 40 50

(KM)

525 575

1111 111 1111 10 5 10 15

WIND SPEED (MS)

3820

3770 1-() lt( w

3720

3670

DWM WINDS AT LEVEL 1600 PST 25JUN87

5 (1000M)

0 w w CL ()

0

1S13 0 0 0 N r-shy N agt r-shy r--t) I) 1)

I() It)- r-shyU) U)

z U) N It) 3

( I I lshy Ishyo ) 0 0z It)

~lgtIgt~() st- b tgt ~ q st

lgtbbtgtb

b b t t 0 b

N

Igt b t b b b A 6 ~ b b t b C A 4 d 4

ttCt4lt1-it e Igt b tgt tgt V q ltl ltl ltI ltl

ti- deg 1 41 9 q I I ltl q q

i V q ltl q q q q I l() r-shy AlgtV ~ tlt) ~t) -~~~q

~ bull amp ~

0 ~ ~

-qa ~ ~ 1gt1 111111

b-a~-V ltillilI

bull lt bull bull a ~ Igt ~ V V V q 4 __J

It It lgt a -a~ Igt C tgt V w r---(J OC)

bull ~ Igt t 4 bull bull bull bull U) 0 __J z middot 1gt44lt14

U) ) t) rshy J - -N

lt( l() ~ ~~ CI() ~ ~

~

0 Ishy bull bull bull diams 1 z ()~ bull ~ bull diams diams 1 CL3bull ~ ~

i b y ~bullbullTT r I I 0

~ bull bulldiams ~ ~ b b b b ~ bullbull diams T r r I U)______-11____________________________ _ 0

0 O O ON N r- N r--agt r-- _ ~ I) I) I) I)

1S3M

B-34

I

_ _ 3820r- ttr- t f T Jf-Lt If t t 1l-- -~ 1~ t t

NORTH

~bull 1414

~~-_ ~ ~ r-- - --~ ~ - - _ r-- fT W - - r V-V ff f

- t t t t f I~ _AAjAA~-r bull(- -J It ~---1 t ~~~-1-- 1 ( ~~ - J ~ t t i f 1 ~ A_A-yen~_~_ ~ ~ 1 ~ t t ~ t t middotmiddotkt f ~-~-~~-----~~-- ~ ~ ~ ___ll_ bull ~

t -r- _______~~----- r ~bullbull _ ~ ~ tt-~J--~c-~~ ~ 1~--______ bull

~ -t lJ-- f t-J-- r---~~---middot _-- ~~-- ~ bull bull ll~iti~~sect~~~ ~ bullbull~bullbull bull~~n~ bull bull bull n~ bull bull

A)~lfifrac12~~ ~III I --1

3770 l l L l L - - ~ -- ~ - 1 ~ - 770 tshy~ ~~~~~~~~~11 1 ~~=1~~- Ul

W 1lllll~I ~~~~1111~~ lt( w ~1~~1~1~~j~~~m ~~~~ ~ - ~

11 1111 1111~I I 11111111 --- middotE~

tj IIIIIIIII_ ~tI l) llllll_~_p ~1l1 1~A~~~A~~rrr-v

3720t- I I I J J J A__ r r 0 11J)~~~----~_~ppmiddot-~~f Jl~~~~~---~--~~r~-~~q~q ~1

I ~JI I~ A A-_

~JIJl~~~~~A-----A rrbullbull~f~df~ ~~JIJl~~~~A~~--~- fffdfdff

~~JIJI~~~~~~---- bullfbulldbullfdf~

~IJIJl~~~AA~ --middotmiddotmiddotmiddotmiddot~middotmiddot~~~ ~l~JIJIJl~~~Al~pp~~~~bullbullffffffdff X ~~~~JI~- A(- f bullbull P ~ ~~bull1f1q1f1f1f1f1f1d1bull

3670275 325 375

1111 1111 11111 1 1 1

0 10 20 30 4-0 50 0 5 10 15 I I I I I I i(KM) WIND SPEED (MS)

iDWM w1tms AT LEVEL 3 (300M) ir 2200 PST 25JUN87

0 If)

0 __ I) 2 0 ~ (j __

0

0

__ 2 0 0 0

__

LO

_J

w f- GJ ll) _J z I- ) lt( ~ () N 0 1-z () ~ Cl

20 ~~ ON

1S3M

B-36

Page 6: Nind Observations Collected during the Southern California ...

(

1 INTRODUCTION

One objective of the 1987 Southern California Air Quality Study (SCAQS) was to acquire an improved understanding of pollutant transport within the South Coast Air Basin (SOCAB) The complex meteorology of the SOCAB governs the transport of pollutants within the basin and through its boundaries Thus a thorough understanding of the mesoscale airflow patterns in the SOCAB is critical to understanding pollutant transport in the basin

Wind data collected during eight intensive monitoring periods in the SCAQS were used to analyze the mesoscale airflow patterns in the SOCAB The SCAQS data base contains the most comprehensive set of surface and upper-air wind data ever assembled for the SOCAB High spatial and temporal resolution wind measurements are available for 17 intensive study days representing both summer and autumn air-quality episodes

19 June 24-25 June 13-15 July 27-29 August 2-3 September 11-13 December 3 December and 10-11 December

The data set represents data good spatial and temporal resolution of some mesoscale airflow features The SCAQS surface wind monitoring sites are listed in Table 1-1 the upper-air wind monitoring sites are listed in Table 1-2 Data availability varied from episode to episode Plots of the surface and upper-air wind monitoring site locations for each episode are given in Appendix A

The wind data were analyzed using the Systems Applications International (SAi) Diagnostic Wind Model (DWM) (Douglas et al 1990) Using this model observational wind data are incorporated into a first-guess field that consists of a domain-mean wind that has been adjusted for terrain effects Figure 1-1 illustrates the complex topography of the SCAQS wind analysis domain This domain is identical to the Urban Airshed Model modeling domain used by the South Coast Air Quality Management District for modeling performed in support of their 1991 Air Quality Management Plan

9106102 l

TABLE 1-1 SCAQS surface wind monitoring sites

UTM- UTM-Site Easting Northing

Identifier Location (km) (km)

ALHA Alhambra 3945 37727

ANAH Anaheim 4150 37425

AZUS Azusa 4149 37774

BANN Banning-Allesandro 5117 37540

BARS Barstow 4979 38611

BU23 Buoy 46023-Point Conception 1594 38014

BU25 Buoy 46025-Catalina Ridge 3054 37307

BURK Burbank 3795 37830

CASI BLM-CasitasLos Padres NF 2824 38089

CELA Los Angeles-North Main 3869 37701

CHIL BLM-ChilaoAngeles NF 4046 37990

CHIN Chino 4365 37634

CI Santa Catalina Island 3683 36963

ONS Cajon Summit 4617 37990

CLAR Claremont College 4351 37735

CM36 CIMIS-Blythe 7262 37256

CM44 CIMIS-U C Riverside 4690 37581

CM50 CIMIS-Thermal 5703 37230

CM55 CIMIS-Palm Desert 5572 37323

CM60 CIMIS-Barstow 4895 38621

CM62 CIMIS-Temecula 4794 37055

COMP Compton Airport 3855 37503

COST Costa Mesa-Placentia 4138 37242

CRES Lake Gregory-Crestline 4748 37890

ELRO El Rio-Rio Mesa School 3026 37922

ELSN Elsinore 4677 37260

FONT Fontana-Arrow Highway 4534 37731

Continued

2

9106109

n iil itb( r r tt A-TABLE 1-1 Continued

UTM- UTM-Site Easting Northing

Identifier Location (km) (km)

GLEN Glendora-Laurel 4215 37782

HAWT Hawthorne 3734 37543

HESP Hesperia-17288 Olives 4738 38084

HF Henninger Flats 4006 37847

KH Kellogg Hill 4242 37711

LA Los Alamitos-SCE Power Plant 3980 37370

LAHB La Habra 4121 37542

LANC Lancaster 3957 38415

LBCC Long Beach City College 3947 37437

LCAN La Canada 3882 37861

LGBH North Long Beach 3900 37430

LSAL Los Alamitos-Orangewood 4045 37398

LYNN Lynwood 3882 37548

MALI Malibu 3440 37669

MISS Mission Hills 3651 37932

NEWL Newhall-County Fire Station 3590 38060

NORC Norco-Norconian 4472 37533

NTD Pt Mugu Naval Weapons Test Center 3048 37769

OJAI Ojai-1768 Maricopa Highway 2914 38138

PASA Pasadena-Wilson 3961 37773

PERI Perris 4784 37380

PICO Pico Rivera 4023 37641

PIRU Piru-2SW 3324 38076

PLSP Palm Springs-Fire Station 5425 37457

POMA Pomona 4307 37696

PV Palos Verdes-San Pedro Hill 3762 37346

Continued

3 91061 09

TABLE 1-1 Concluded

UTM- UTM-Site Easting Northing

Identifier Location (km) (km)

RDLD Redlands-Dearborn 4853 37686

REDO Redondo Beach 3720 37459

RESE Reseda 3587 37851

RIAL Rialto 4625 37760

RIVR Riverside-Rubidoux 4615 37620

SIMI Simi Valley-5400 Cochran 3449 37940

SNBO San Bernardino 4748 37739

SNI middotsan Nicolas Island 2684 36823

TANB BLM-TanbarkAngeles NF 4301 37849

TEME BLM-TemescalLos Padres NF 3531 38167

TORO El Toro 4320 37252

TRON Trona-Market Street 4361 39573

UPLA Upland ARB 4420 37736

VCTC Victorville-Civic Drive 4707 38185

VENI Venice Beach 3642 37612

VERN Vernon 3874 37625

WALN Walnut 4223 37677

WHIT Whittier 4053 37540

WSLA West Los Angeles-VA Hospital 3657 37686

WSPR BLM-W arm Springs Angeles NF 3552 38291

ZUMA Zuma Beach 3313 37659

9106109 4

TABLE 1-2 SCAQS upper-air wind monitoring sites

UTM- UTM-Site Easting Northing

Identifier Location (km) (km)

BUR BurbankGlendalePasadena Airport 3748 37850

DAGG Daggett SCENES Site 5198 38581

EMUA El Monte-9528 Telstar 4021 37700

GLUA Glendora-near SCAQMD site 7000591 4216 37783

LBCC Long Beach City College 3947 37437

LBCR Long Beach City College 3947 37437

LMUA Loyola Marymount U niversity-Engng Bldg 3694 37604

NEED Needles SCENES Site 7181 38496

NSI San Nicolas Island 2717 36796

NTD Pt Mugu Naval Weapons Test Center 3048 37769

ONT Ontario International Airport 4443 37684

PSP Palm Springs 5460 37429

RAL Rialto 4589 37567

SFUA Santa Fe Springs 4020 middot 37557

TRM Thermal Airport 5776 37209

VBG Vandenberg AFB 1733 38472

YLUA Yorba Linda County Park 4287 37549

591061 10

5~

NORTH 275 325 375 425 475 525 575

~-~

bull ( I (o(r--L__- __ c_ __ ) -9) I _)I --~ ---~ __------__

bull (Q ~ ~ l-- middot r l__ _ _ 1 2 oo--_ - _ ~ shy

-

----- ----

------ ---

~middotmiddot- lt~]~---~ ~ 1 L

~~ 0

- o 7 -

----

~ middot -_ -_ I ( C~ ) ~ middot---) lt____ ) 9 bull ~- J t------------ ~ middotbull _ __ 10o -- - - - - - - 0 __ - J J--aoo ltJ

3620---_--__ _ - 0) ------- ___ -- - - ---- -- - --~- 7--

- middotmiddot -middot-- 0 _ - - I 1---------- ---- ~ ---~-----_ -~- ------- -_ ------~lt()~ --nmiddotor ~o-gtpcbull-middot ccc_--gt ____ middot_middot Ji tdegoo CmiddotI bull -bull - - I ---

middot-middot ___ - 1 c___ ~ i-- l bull - --- bullsoclt---_ middot middot-~soc_ ~- le r---- ltD

_ - -- ____ -c bull -~------1 5

= __ __ ) --~ --_ ---- ____ - _____-~~~-~ ~ _ ---~-frac142--~~ so9~ _ Q___~ - -- _ bull bull 1 middot -~ - -- - bull bull c- rAo 0o(Y--

-_ -------=--=_6CO-------- - ~)_O~ _ ~_ lt--middot_~~--~ (_ )-~- - _- ~ 0

~) ( ___ ------ -~- C jjh --- - ~ I 3770

t- 300- middotoo___ -~- l _2 ---sii middot middot 50~ ( C tshyV10w w ~ C ~_( middot bull i

l_ --t

~

__ _~) igtgt

- 1

- middot

7)_ -o-

- _middot-- -- ~ ---30~lt_~-L_ 9oo_~gn~~-__~~

U)

3770

- - o ~~~~d l -- o~ Jl _

si (_ - (----_ ( 1400t 37203720

- 1 ) reg_~S ~ ~~

7 9 b -- -- 0 ~

i --shyf I I I ~Ibull-bull

367~s I I I I I I I 13251 I I I I I I I 1351 I I I I I I I 14251 I I I I I I 14~51 I I I I I I I ss 7 I I I I I I I5s I I I I 3670

SOUTH

I I I I I I 0 10 20 30 40 50

(KM) i

FIGURE 1-1 The SCAQS 1987 analysis domain (axes labeled in zone 11 UTM coordinates topography contoured in meters)

-- ii gti kd

Our analysis consisted of (1) generation of hourly gridded wind fields for the 17 SCAQS intensive study days using the DWM (2) analysis of the mesoscale airflow patterns and (3) calculation of forward and backward particle trajectories to examine pollutant transport in the SOCAB

The results of the diagnostic analysis of SCAQS wind observations are presented in this report The generation of wind fields and the resulting airflow patterns are described in Section 2 The trajectory analysis is presented in Section 3 Plots of the wind fields are given in Appendix B The trajectory plots are included in Appendix C

9106102 7

2 GENERATION OF WIND FIELDS AND ANALYSIS OF AIRFLOW PATTERNS

DIAGNOSTIC WIND MODEL

Hourly gridded wind fields were generated for the 17 SCAQS intensive monitoring days using the Diagnostic Wind Model (DWM) (Douglas et al 1990) This model incorporates observations where they are available and provides some information on terrain-induced airflows in regions where local observations are absent The model is formulated in terrain-parallel coordinates Wind fields are generated using a two-step procedure

In step 1 a domain-scale mean wind is adjusted for terrain effects These include the kinematic effects of terrain (lifting and acceleration of the airflow over terrain obstacles) thermodynamically generated slope flows and blocking effects Step 1 produces a spatially varying gridded field of u and v for each vertical layer within the model domain

In step 2 observational information is added to the middot(uv) field calculated in step 1 using an objective analysis procedure observations are used within a user-specified radius of influence while the step 1 (uv) field is used in subregions where observations are unavailable The following modified inverse-distance-squared weighting scheme (Ross and Smith 1986) is used for the interpolation of data

where (u0

v0 )k denotes an observed wind at station k rk is the distance from station k to a

given grid point (u v)1 is the step 1 wind field at the grid point and (u v)i is the updated wind vector The parameter R controls the relative influence of the observations and the step 1 wind field

Following the interpolation a five point smoother of the form

9106102

Amiddot 1J

8

is applied to the horizontal wind field to reduce discontinuities that may result from the interpolation The vertical velocity is calculated by integrating the incompressible conservation of mass equation Zero-gradient lateral boundary conditions are used

GENERAL PROCEDURES

Generation of the SCAQS wind fields involved (1) preprocessing of the wind data for input into the DWM (2) plotting and quality control checking of the data (3) specification of the model input parameters (4) exercise of the DWM and (5) graphical display of the gridded wind fields Winds were analyzed at six vertical levels 10 100 300 600 1000 and 1500 meters (m) above ground level (agl)

In the preprocessing step the upper-air data were vertically interpolated to the model levels and temporally interpolated to enhance the temporal consistency of the wind fields and to provide hourly input for the DWM

Following the preprocessing step the data were plotted and examined for horizontal vertical and temporal consistency Data that failed the quality control checks were eliminated from the model input data set

The controlling parameters for the DWM include the maximum radius of influence (RMAX) at which a monitoring station can influence the interpolation at a grid point the weighting parameter for terrain effects (R) the number of stations to be used in the interpolation (NINTRP) and the number of smoothing passes (NSMTH) Note that the maximum radius of influence is specified independently for the surface level ( over land) upper levels (over land) and over-water portions of the domain The weighting parameter for terrain effects and the number of interpolating stations are specified separately for the surface level and upper levels In the diagnostic analysis of the SCAQS wind observations these parameters were specified as follows

RMAX (surface) 20km RMAX (aloft) 100 km RMAX (over water) 150 km R (surface) 10km R (aloft) 50 km NINTRP (surface) 4 NINTRP (aloft) 3 NSMTH 4

Tests were performed to examine the sensitivity of the DWM to the various contr ling parameters and to select the optimum values of these parameters for the SCAQS v nd analysis

9106102 9

The DWM also requires as input a domain-mean wind and stability information For this analysis the domain-mean wind was specified separately for each analysis level and was based upon the average of the level 6 (1500 m agl) wind observations To account for friction the speed of the domain-mean wind was reduced for the lower levels by multiplying the average wind speed for level 6 by the following scaling factors

Level Scaling Factor 1 048 2 072 3 083 4 090 5 096 6 100

The domain-scale lapse rate was the calculated average of four inland sites These varied according to data availability

Six-hourly plots of the level I (surface) level 3 (300 m agl) and level 5 (1000 m agl) wind fields for each episode are given in Appendix B

SUMMER INTENSIVE MONITORING PERIODS (

Mesoscale airflow in the SOCAB during the SCAQS summer intensive monitoring periods appears to have two components

A basic diurnal cycle driven by land-water temperature differences and complex terrain and

A perturbation associated with the overlying synoptic flow

19 June 1987

The surface and upper-air wind monitoring site locations for this intensive monitoring period are indicated on pages A-1 and A-2 respectively Plots of the diagnostic wind analyses for 19 June are given on pages B-1 through B-12

The surface early morning airflow pattern on this day is characterized by weak winds over much of the coastal and inland areas with moderate NW winds over the Coachella Valley and offshore At 300 m agl winds are S over the western half of the domain and W to NW over the eastern half of the domain The overlying flow at 1000 mis W

9106102 10

n1er

The sea breeze is somewhat slow to appear in the western basin on this day but has begun to develop by 1000 PST At this time winds at 300 m agl remain S over the western part of the domain and W to NW over the eastern part of the domain Some S flow is also apparent at 1000 m

During the afternoon hours three distinct features are apparent in the surface airflow pattern

A sea breeze (W flow) develops along the coast between Santa Monica and Palos Verdes and penetrates inland A branch of the sea breeze penetrates into the San Fernando Valley resulting in weak SE flow at Burbank and Reseda

An area of weak (SW) winds forms in the Whittier-La Habra-Pico Rivera area persists throughout the afternoon and fonns a convergence zone in the central basin with the penetrating westerly flow The S component of this flow is due to sea breeze development along the coast near Long Beach

Upslope flow develops along the foothills of the San Gabriel and San Bernardino Mountains (eg at Glendora and San Bernardino) Along the eastern foothills the upslope flow is supplanted during the afternoon by the penetrating W flow

By 1600 PST on 19 June the depth of the upslope flow near Glendora exceeds 600 m Strong outflow is apparent through the Cajon and Banning passes Aloft winds are generally SW with some SE flow near Burbank and NW flow over the Coachella Valley

Significant onshore flow (3 ms) persists along the Santa Monica-Palos Verdes coastline through 2200 PST Feature-s of the afternoon airflow persist aloft through this time

24-25 June 1987

Surface and upper-air wind monitoring site locations for this intensive monitoring period are indicated on pages A-3 and A-4 respectively Plots of the diagnostic wind analyses for 24-25 June are given on pages B-13 through B-36

The airflow patterns on these two days are similar to one another and to the ttern on 19 June The overlying flow is generally weak below 1000 m agl with moderak t5 ms) SE flow at 1500 m agl

On 24 June the early morning surface airflow patterns are characterized by ver middoteak winds At 300 m agl winds in the Coachella Valley are SE By 1000 PST a we1 organized zone of weak S flow extends from Long Beach to Pasadena this S flm

9106102 11

(

reaches a depth of 300 m agl Southeastern flow in the Coachella Valley and E flow through Banning Pass are apparent both at the surface and 300 m agl S to SE flow dominates at 1000 m agl The II three-zone II surface airflow pattern is apparent during the afternoon The wind shifts to Wat Banning Pass by 1500 PST At 300 m agl winds are SW over much of the basin with SE flow at Burbank and in the Coachella Valley At 1000 m winds are generally SW At 2200 PST the airflow pattern is characterized by weak unorganized flow at the surface and 300 m agl Winds at 1000 m are NW over much of the domain but SE over the Coachella Valley

The airflow on 25 June is similar to that on 24 June During the early morning hours winds at the surface are very light Weak SE flow is apParent at 300 m agl At 1000 m agl winds continue to veer toward N The sea breeze develops more quickly than on the previous day and winds at Banning Pass become westerly by 1300 PST Calm winds are observed at Pico Rivera throughout the afternoon As on 24 June the afternoon airflow at 300 m agl is characterized by SW flow over the basin and SE flow at Burbank and over the Coachella Valley Upward propagation of W flow is generally slower than on 24 June Winds at 1000 m agl are S to SE During the evening hours the surface winds become light while at 300 m agl winds over the Coachella Valley become NW Organized W flow is apparent over the W basin through a depth of at least 300 m agl through 2200 PST

13-15 July 1987

Surface and upper-air wind monitoring sites for this intensive monitoring period are shown on pages A-5 and A-6 respectively Plots of the diagnostic wind analyses for 13-15 July are given in Figures B-37 through B-72

Airflow patterns on 13 and 14 July are generally consistent with the basic diurnal cycle described earlier However an unusual airflow pattern develops in the Coachella Valley on both days On 15 July strong SE forcing is associated with a delay in sea breeze development

The 13 July early morning surface airflow pattern is characterized by light winds and a weak cyclonic eddy over the Santa Monica Bay Winds aloft are light to moderate and primarily W The sea breeze develops rapidly on this day and by 1200 PST W flow overwhelms the S sea-breeze flow in the Long Beach Area W flow appears at Banning Pass by 0800 PST The surface afternoon airflow is characterized by the three-zone airflow pattern described earlier with strong upslope flow along the foothills ( gt 5 mls) and significant outflow through Cajon Pass Observations at Palm Spring (NW winds) and Thermal (SE winds) indicate a convergence zone in the Coachella Valley with a depth of at least 600 m W flow dominates at middot1000 m with S to SE flow over the Coachella Valley During the evening hours a cyclonic eddy redevelops over the Santa

9106102 12

rtMt1

Monica Bay winds are weak throughout the basin but airflow into the Coachella Valley is especially strong

Airflow patterns on 14 July are similar to 13 July with a few exceptions During the early morning hours the surface airflow is characterized by weak disorganized flow There is no eddy apparent over the Santa Monica Bay The overlying flow is weak and primarily S to SE at 300 m agl but W to NW at 1000 m agl Sea breeze development is approximately two hours slower on this day than on 13 July By 1000 PST weak S flow has developed over the Whittier-La Habra-Pico Rivera area and SE flow is apparent at Burbank AS component to the flow appears at 1000 m The afternoon surface airflow pattern is similar to that on 13 July but the S upslope flow at Glendora is weaker S flow develops at Elsinore and several coastal Orange County sites The Coachella Valley convergence zone reappears at the surface at 1600 PST two hours later than on the previous day At 300 and 1000 m agl W to SW flow dominates over the western twoshythirds of the domain SE flow is apparent over the Coachella Valley During the evening hours the surface airflow over the central basin is S to SW W flow components persist along the eastern foothills through 2200 PST

On the morning of 15 July surface winds are weak but maintain a S component Moderate SE flow is apparent offshore The overlying flow is generally E to SE By 1000 PST the surface airflow pattern is characterized by S flow over the central basin and along the foothills SE flow in the Coachella Valley and E flow through Banning Pass The depth of the S to SE flow is greater than 1000 m agl During the afternoon a weak sea breeze penetrates inland and winds along the foothills become W Winds shift from E to NW at Banning Pass at 1600 PST A weak S flow component persists in the Whittier-La Habra-Pico Rivera area throughout the afternoon A weak slopevalley circulation develops in the Coachella Valley resulting in SE flow there At 300 m agl winds are SW to W over the central basin and SE over the Burbank and the Coachella Valley At 1000 m S to SE flow dominates W winds persist along the foothills through 2200 PST and weak S to SE flow redevelops at the surface Remnants of the afternoon airflow pattern persist aloft

27-29 August 1987

The surface and upper-air wind monitoring site locations for this intensiv middot1onitoring period are indicated on pages A-7 and A-8 respectively Plots of the dia stic wind analyses for 27-29 August are given on pages B-73 through B-108

On the morning of 27 August surface winds are weak over most land areas a 1djacent coastal waters with moderate (5 ms) NW winds well offshore Winds aloft a Jrimarily N with weak NE flow at 100-300 m agl over the central basin By 1000 PST threeshy

IIzone airflow pattern has developed at the surface and is somewhat apparent ( hin the limits of the upper-air network) at 300 m agl SE flow has developed at 100( agl

9106102 13

This pattern is maintained throughout the afternoon Within the Coachella Valley a classic daytime slopevalley flow pattern develops with SE flow extending to a depth of 1000 m E flow develops at Banning Pass and persists through 1700 PST W flow over the basin develops upward throughout the afternoon By 1600 PST wind at 300 m agl are W to SW over the central basin and SE over Burbank and the Coachella Valley During the evening hours the features of the mesoscale airflow pattern over land weaken both at the surface and aloft There is no clearly developed offshore-directed land breeze

On the morning of 28 August the surface winds are weak and the overlying flow is primarily E Retardation of the sea breeze by the overlying E flow is apparent by 0900 PST S flow develops in the Long Beach area E flow at Banning Pass is substantially stronger than on 27 August During the afternoon of 28 August S flow persists at Long Beach and develops in the Whittier-La Habra-Pico Rivers area SE flow is observed along the Orange County coast E flow through Banning Pass persists throughout the day W wind components along the Santa Monica-Palos Verdes coastline are weaker than on the previous day and NW flow fails to develop at San Nicolas Island W flow over the central basin disrupts the SE flow aloft During the evening hours the airflow features weaken W flow along the foothills does not persist as long as on the previous day

The early morning airflow pattern on 29 August is characterized by SE flow both at the surface and aloft Sea breeze development on this day is slower than on either of the previous two days S flow again develops in the Long Beach area and appears to be stronger than on the previous day Although the sea breeze is weaker winds at Banning Pass shift from E to SW by 1300 PST This shift occurs at 1800 on 27 and 28 August SE flow persists aloft with limited upward development of the W sea breeze flow W flow persists in the western basin area through 2200 PST and SE flow persists aloft

2-3 September 1987

The surface and upper-air monitoring site locations for this intensive monitoring period are indicated on pages A-9 and A-10 respectively Plots of the diagnostic wind analyses for 2-3 September are given on pages B-109 through B-132

The first day of this period is probably the most anomalous of the summer SCAQS intensive measurement days Overlying easterly forcing during the morning hours prevents development of W flow along the foothills and inhibits upward development of the sea breeze over the western and central portions of the basin The easterly forcing appears to reverse rather abruptly on the afternoon of 2 September Unusual winds are also observed at Burbank on 2 September During the late morning and afternoon Burbank experiences an unusual wind shift from SE to W through a depth of 1000 m On 3 September the overlying airflow is W and the airflow patterns are more typical

9106102 14

rrn

On the morning of 2 September strong downslope flow results in N to NE winds at several sites along the foothills of the San Gabriel Mountains At 300 m strong NE winds are apparent over the central basin The overlying flow is E By 1000 PST the sea breeze appears as W flow along the Santa Monica-Palos Verdes coast and S flow in the Long Beach area The surface analysis indicates a band of S flow from Costa Mesa to Azusa W flow has not developed along the eastern foothills Winds are SE in the Coachella Valley and E through Banning Pass E flow aloft continues and intensifies During the early afternoon hours a relatively strong sea breeze penetrates inland to Azusa while winds in the Whittier-La Habra-Pico Rivera area remain weak The sea breeze weakens considerably after mid-afternoon Between 1200 and 1500 PST the wind at Burbank shifts from SE to W through a depth of 600-1000 m By 1600 PST the overlying flow has shifted from SE to W Onshore flow continues at the surface through 2200 PST while the winds weaken considerably Although the overlying W flow persists in general 300 m agl winds at Burbank become SE

The early morning airflow on 3 September is characterized by weak winds at the surface SE flow at 300 m agl and primarily W flow at 1000 m agl Although the major surface airflow features appear to develop as on previous days upward development of the pattern is limited Strong S flow is apparent by 1200 PST between 100 and 300 m agl over the central and western basin By 1600 PST the sea breeze has penetrated well inland Imbedded in the sea breeze is a persistent calm area in the vicinity of Lynwood S flow persists at 100-300 m agl over the central and western basin while flow at this level off shore remains NW At 1000 m agl W flow continues This general pattern persists through 2200 PST but weakens considerably especially at the surface

AUTUMN INTENSIVE MONITORING PERIODS

The mesoscale airflow patterns in the SOCAB during the SCAQS autumn intensive monitoring periods exhibit a weaker diurnal cycle than the summer airflow patterns Synoptic forcing also appears to be stronger

11-13 November 1987

The surface and upper-air wind monitoring site locations for this intensive monitoring period are plotted on pages A-11 and A-12 respectively Plots of the diagnostic wind analyses for 11-13 November are given on pages B-133 through B-168

During the early morning hours of 11 November NE surface winds are apparent over most of the region Surface wind speeds are very light over the basin and somewhat stronger along the foothills and the coast At 300 m agl winds are light and generally E At 1000 m agl winds are W to SW over the western half of the domain and SE over the eastern half of the domain Weak E to NE surface flow persists throughout most of the

9106102

15

morning in the first 300 m An apparent anticyclonic eddy (SE flow at Long Beach weak S flow at Burbank W flow at El Monte) develops between 600 and 1000 m agl on this morning A weak sea breeze forms around 1200 PST penetrating only to the central basin There is no apparent turning of the sea breeze into the San Fernando Valley W to NW flow develops offshore and is deflected around the Palos Verdes Hills This W flow is also apparent at 300 m agl Downslope flow components along the foothills are apparent by 1600 PST At this time the 1000 m agl winds are weak and N The sea breeze rapidly dissipates and NE flow develops at several coastal sites indicating a land breeze NW flow is maintained off shore The nighttime airflow pattern aloft is characterized by weak N winds at 300 m agl and weak W winds at 1000 m agl

The surface airflow pattern on the morning of 12 November is generally similar to that on 11 November E flow over land is apparent through a depth of 300 m while NW flow persists offshore The overlying flow is W The afternoon surface airflow pattern is more similar to a typical summer afternoon pattern than the previous day Turning of the sea breeze into the San Fernando Valley is apparent and W flow develops along the foothills of the San Gabriel and San Bernardino Mountains by 1400 PST Airflow at 300-600 m agl appears to veer continuously from E to W at most inland sites during the afternoon NW flow through a depth of 1000 mis apparent over the Coachella Valley Surface winds become light and disorganized during the evening hours Unlike the previous day NE flow does not develop at the coastal sites and NW flow weakens offshore W winds persist aloft

On 13 November surface winds are very light through the early morning hours with E flow components apparent immediately offshore The overlying flow is WNW but becomes S over the central basin by 1000 PST As on the previous two days a sea breeze becomes apparent at the surface by noon W flow components over the basin and foothill areas are stronger than on the previous two days both at the surface and aloft Significant W flow also develops in Banning Pass Moderate to strong W winds are apparent aloft During the afternoon and evening hours SE winds are apparent at Burbank between 300 and 600 m agl Intense W flow develops off shore and propagates inland during the evening hours W flow continues aloft with some S to SE flow between 100 and 600 m agl at Burbank and El Monte

3 December 1987

The surface and upper-air wind monitoring site locations for this intensive monitoring period are plotted on pages A-13 and A-14 respectively Plots of the diagnostic wind analyses for 3 December are given on pages B-169 through B-180

The early morning surface airflow pattern on 3 December is characterized by weak NE winds over the inland areas and a weak cyclonic eddy off shore The overlying flow is S to SE Surface winds remain light and variable through most of the morning Moderate

9106102 16

txi Iii ttii

E flow is apparent over the western and central basin between 300 and 600 m agl A sea breeze develops around 1200 PST reaching a depth of 300 m and penetrating only approximately 30 km inland S to SE flow persists above 300 m agl The sea breeze weakens during the evening hours and N flow through a depth of 300 m develops at Long Beach E flow components intensify at 600 m agl and above

10-11 December 1987

The surface and upper-air wind monitoring site locations for this intensive monitoring period are plotted on pages A-15 and A-16 respectively Plots o~ the diagnostic wind analyses for 10-11 December are given on pages B-181 through B-204

On 10 December the early morning surface airflow pattern is weak and disorganized Weak NE flow is apparent over much of the basin between 100 and 600 m agl The overlying flow at 1000 m is N The surface airflow over the basin is weak throughout the morning hours while NW flow develops offshore Winds aloft remain N A weak sea breeze is apparent by 1200 PST the sea breeze penetrates only about 30 km inland and is limited to a depth of approximately 300 m There is no apparent turning of the sea breeze into the San Fernando Valley Elsewhere in the basin the surface airflow remains weak By 1600 PST the sea breeze has weakened At this time winds aloft are predominantly W to NW at 300 m agl and N at 1000 m agl During the evening hours surface airflow over the basin becomes weak and disorganized while E flow develops at Palos Verdes Strong N winds appear aloft (300-600 m agl) at Burbank LMU and Long Beach however winds at this level further to the east remain light

On 11 December the early morning surface airflow pattern is similar to that on 10 December Relatively strong ( gt 10 ms) NNW winds persist at 600-1000 m agl at Burbank and LMU E wind in the 100-300 m agl appear at LMU and Long Beach Throughout the morning the surface winds remain light and N winds 9ver Bu~ank weaken considerably A sea breeze is apparent by 1200 PST but is weaker than on the previous day and reaches a depth of only 100 m or less Significant N winds (3-6 ms) develop between San Bernardino and Elsinore and in the western San Fernando Valley NE flow is observed in Ventura County Winds aloft continue to be primarily N however E flow is apparent over the Long Beach area at 1000 m agl Surface airflow over the central and western basin becomes very weak during the evening hours Strong N to NE flow develops at the coast west of Santa Monica while N flow persists in the western San Fernando Valley and in the San BernardinoRiverside area The overlying flow is N to NE

91061 02 17

3 PARTICLE PAm ANALYSIS

A series of forward and backward particle paths (trajectories) were calculated using the SCAQS DWM wind fields The particle paths will be used by other SCAQS investigators in their examination of pollutant transport within the SOCAB The forward particle paths can be used to estimate the transport of pollutants from known source locations The backward particle paths can be used to estimate potential source areas The particle paths can also be used to estimate the residence time of certain pollutants in the SOCAB as a whole or in subregions

CALCULATION OF PARTICLE PAIBS

Two-dimensional particle paths were computed using the DWM wind fields as follows

Starting ( ending) points for a given number of forward (backward) particle paths were specified

Using a time interval of 15 minutes the hourly gridded DWM wind fields were linearly interpolated in time and then interpolated in space to each particle position using an inverse-distance-squared weighting scheme

The particles were then advected horizontally for the specified time interval

The distance traveled by each particle during each time interval was integrated The new position of the particle was reported at hourly intervals

Forward and backward particle paths were calculated for the SCAQS intensive monitoring periods for several vertical levels and a variety of origination and destination points The origination (destination) locations and times for the summer and autumn particle paths are listed in Tables 3-1 and 3-2 respectively Most of the particle paths originated (ended) at one of the SCAQS wind monitoring sites listed in Tables 1-1 and 1-2 Additional sites are identified in Table 3-3 Note that for some sites in Tables 3-1 and 3-2 a new particle path was initiated at the particles 1000 PST location but at a higher level

Additional forward particle paths were calculated for comparison with the SCAQS tracer data (England et al 1989 Horrell et al 1989) The initiation times and locations correspond to the tracer releases and are given in Tables 3-4 and 3-5

9106lrl02

~~ll1~(I titW I~l~~~t~~

TABLE 3-la Summer particle paths forward particle paths

Start Time Origination Start Date (PST) Site Level(s)

624 0500 LBCC 13 CELA 13

624 0700 LBCC 13 CELA 13

624 1000 LBCC 13 CELA 13

624 1500 LBCC 13 CELA 13

624 2100 LBCC 13 CELA 13

625 0500 HHRA 5 PADA 45 FULA 5

625 0700 FULA 5

713 0500 LBCC 13 CELA 13

713 0700 LBCC 13 CELA 13

713 1000 LBCC 13 CELA 13 EMTA 24

713 1500 LBCC 13 CELA 13

713 2100 LBCC 13 CELA 13

714 0500 LBCC 13 CELA 13

714 0700 LBCC 13 CELA 13

714 1000 LBCC 13 CELA 13

714 1500 LBCC 13 CELA 13

714 2100 LBCC 13 CELA 13

Continued

19

91061 07

TABLE 3-la Concluded

Start Time Origination Start Date (PST) Site Level(s)

827 0500 LBCC 13 CELA 13

827 0700 LBCC 13 CELA 13

827 1000 LBCC 13 CELA 13

827 1500 LBCC 13 CELA 13

827 2100 LBCC 13 CELA 13

828 0500 LBCC 13 CELA 13

828 0700 LBCC 13 CELA 13

828 1000 LBCC 13 CELA 13

828 1500 LBCC 13 CELA 13

828 2100 LBCC 13 I CELA 13

92 0500 LBCC 13 CELA 13 HHRA 12

92 0700 LBCC 13 CELA 13 FULA 12

92 1000 LBCC 13 CELA 13

HHRA 45 FULA 45

92 1500 LBCC 13 CELA 13

92 2100 LBCC 13 CELA 13

93 0700 RIVA 12

93 1000 RIVA 45

A new particle path was initiated at the particles 1000 PST location but at a higher level

20

~(Ibull bull 11

41

~1~_11Lmiddot11~1~~tV t rt~~14_ II~~~h1 1r t

TABLE 3-lb Backward particle paths

End Time Destination End Date (PST) Site Level(s)

624 1500 CABA 23 EMTA 45 BURA 1234 HHRA 4 FULA 45

624 1800 RIVA 3

625 0500 CLAR 13 RIVR 13 HHRA 5 PADA 45 FULA 5

625 0700 CLAR 13 RIVR 13 FULA 5

625 1000 CLAR 13 RIVR 13

625 1500 CLAR 13 RIVR 13 CABA 23 EMTA 4 BURA 4 RIVA 45

625 1600 RIVA 45

625 2100 CLAR 13 RIVR 13

713 - 1000 EMTA 24

713 1500 CABA 23 EMTA 45 RIVA 24

713 1600 RIVA 24

714 0500 CLAR 13 RIVR 13

714 0700 CLAR 13 RIVR 13

714 1000 CLAR 13 RIVR 13 BUR 123

714 1500 CLAR 13 RIVR 13 CABA 23 EMTA 4 BURA 234 RIVA 2

714 1600 RIVA 2

Continued

21 nn1 Y1

TABLE 3-lb Continued

End Time Destination I End Date (PST) Site Level(s)

714 2100 CLAR 13 RIVR 13

715 0500 CLAR 13 RIVR 13

715 0700 CLAR 13 RIVR 13

715 1000 CLAR 13 RIVR 13

715 1500 CLAR 13 RIVR 13

715 2100 CLAR 13 RIVR 13

827 1000 CABA 2 EMTA 23 BURA 123

827 1500 CABA 2

828 0500 CLAR 13 RIVR 13

828 0700 CLAR 13( RIVR 13

828 1000 CLAR 13 RIVR 13

828 1500 CLAR 13 RIVR 13

828 2100 CLAR 13 RIVR 13

829 0500 CLAR 13 RIVR 13

829 0700 CLAR 13 RIVR 13

829 1000 CLAR 13 RIVR 13

829 1500 CLAR 13 RIVR 13

829 2100 CLAR 13 RIVR 13

92 1000 PADA 3

92 1100 PADA 3

92 1500 EMTA 2 RIVA 2

Continued

22

91061 07

I

1bullLI bullI I bull ~ii 1 1

1 cl1

[1i1bull~j~1 Iiii~ j t-~dI ~1 1ltl1111111 II r I l~bull~II~middot t1~i~n_11~~ ~middot -

TABLE 3-lb Concluded

End Time Destination End Date (PST) Site Level(s)

92 1600 RIVA 2

93 0500 CLAR 13 RIVR 13

93 0700 CLAR 13 RIVR 13

93 1000 CLAR 13 RIVR 13 CABA 2 BURA 1234

93 1500 CLAR 13 RIVR 13

93 2100 CLAR 13 RIVR 13

23 9106107

TABLE 3-2a Autumn particle paths forward particle paths

Start Time Origination Start Date (PST) Site Level(s)

1111 0300 LBCC 13 CELA 13

1111 0700 LBCC 13 CELA 13

1111 0900 FULA 12

1111 1200 LBCC 13 CELA 13

1111 1500 LBCC 13 CELA 13

1111 2100 LBCC 13 CELA 13

1112 0300 LBCC 13 CELA 13

1112 0700 LBCC 13 CELA 13 FULA 12

1112 1000 FULA 45

1112 1200 LBCC 13 CELA 13(

1112 1500 LBCC 13 CELA 13

1112 2100 LBCC 13 CELA 13

1113 0500 ONTA 123

1113 1000 ONTA 45

123 0300 LBCC 13 CELA 13

123 0700 LBCC 13 CELA 13 FULA 12

123 1000 FULA 45

123 1200 LBCC 13 CELA 13

123 1500 LBCC 13 CELA 13

123 2100 LBCC 13 CELA 13

1210 0300 LBCC 13 CELA 13

1210 0700 LBCC 13 CELA 13

Continued

24 9106108

TABLE 3-2a Concluded

Start Time Origination Start Date (PST) Site Level(s)

1210 1200 LBCC 13 CELA 13 FULA 123

1210 1500 LBCC 13 CELA 13

1210 2100 LBCC 13 CELA 13

1211 0500 ONTA 12

1211 0700 FULA 12

1211 1000 ONTA 45 FULA 45

A new particle path was initiated at the particles 1000 PST location but at a higher level

25 9106108

TABLE 3-2b Backward particle paths

End Time Destination End Date (PST) Site Level(s)

1111 1500 HHRA 34

1112 0300 LBCC 13 CELA 13 RIVR 13

1112 0700 LBCC 13 CELA 13 RIVR 13

1112 1200 LBCC 13 CELA 13 RIVR 13

1112 1500 LBCC 13 CELA 13 RIVR 13 HHRA 34 PADA 3 FULA 34

1112 2100 LBCC 13 CELA 13 RIVR 13

1113 0300 LBCC 13( CELA 13

RIVR 13

1113 0700 LBCC 13 CELA 13 RIVR 13

1113 ~ 1200 LBCC 13 CELA 13 RIVR 13 ONTA 34 EMTA 45

1113 1500 LBCC 13 CELA 13 RIVR 13

1113 2100 LBCC 13 CELA 13 RIVR 13

123 0300 LBCC 13 CELA 13 RIVR 13

123 0700 LBCC 13 CELA 13 RIVR 13

Continued

26 9106108

TABLE 3-2b Concluded

End Time Destination End Date (PSn Site Level(s)

123 1200 LBCC 13 CELA 13 RIVR 13

123 1500 LBCC 13 CELA 13 RIVR 13 PADA 3

123 2100 LBCC 13 CELA 13 RIVR 13

1211 0300 LBCC 13 CELA 13 RIVR 13

1211 0700 LBCC 13 CELA 13 RIVR 13

1211 1200 LBCC 13 CELA 13 RIVR 13

1211 1500 LBCC 13 CELA 13 RIVR 13 PADA 1234 BURA 123

11 13 2100 LBCC 13 CELA 13 RIVR 13

27 9106108

TABLE 3-3 Additional particle path initiation (destination) points

Site Identifier Location UTM Easting (km) UTM Northing (km)

BURA Burbank Airport 3749 37859

CABA Cable Airport 4370 37751

EMTA El Monte Airport 4047 37717

FULA Fullerton Airport 4091 37485

HHRA Hawthorne Airport 3768 37547

ONTA Ontario Airport 4435 37686

PADA PADDR Intersection 3810 37175

RIVA Riverside Airport 4584 37485

28

TABLE 3-4 Forward particle paths calculated for comparison with the SCAQS tracer data

Start Start Origination Date Time Site Levels

0300 LAGS 13 0600 13 0900 II 13 1200 II 13 1500 II 13

625

715 0500 VRNN 1

0800 VRNN 1

828 0600 LAGS 13 1000 II 13 1300 13 1500 13

93 0500 VRNN 1

0800 VRNN 1

1111 1600 LAGS 3 ESGS 3 VRNN 1

1900 LAGS 3 ESGS 3 VRNN 1

1112 0600 ESGS 3 VRNN 1

0900 ESGS 3 VRNN 1

1210 0600 LAGS 3 ESGS 3 VRNN 1

0900 LAGS 3 ESGS 3 VRNN 1

1600 VRNN 1

29

9106lrl09

TABLE 3-5 SCAQS tracer release sites

I_______________________

Site Identifier Location UTM Easting (km) UTM Northing (km)

ESGS El Segundo 3690 37536 LAGS Los Alamitos 3980 37370 VRNN VRNN 3874 37625

(

91061rl09

30

The particle paths were calculated for up to a three-day period In general forward particle paths were calculated through the end of the monitoring period or until the particle was advected out of the domain Backward particle paths were calculated through the beginning of the intensive monitoring period or until the particle left the domain

Selected plots of the forward and backward particle paths are given in Appendix C

SUMMER PARTICLE PATHS

Forward particle paths (levels 1 and 3) originating from Central Los Angeles (CELA) and Long Beach City College (LBCC) at 0700 PST on 24 June 13 and 14 July 27 and 28 August and 2 September are shown on pages C-1 through C-12

The surface-level particle paths originating at CELA indicate northward advection from this site on all days The particle path initiated on 27 August indicates that the initial northward advection is followed by westward advection on the following day the particle path initiated on 2 September indicates that the initial northward advection is followed by eastward advection on the following day In all cases the residence time in the central Los Angeles basin is less than 12 hours

The surface-level particle paths originating at LBCC are carried northward and eastward usually exiting the Los Angeles basin through Cajon Pass On 24 June and 14 July however the particles are carried across the San Gabriel Mountains (with the upslope flow) Considerable eastward transport is indicated by the particle paths initiated on 2 September after 1800 PST -Residence time in the Los Angeles basin varies from day to day and is especially long for the particle path initiated on 27 August (approximately 30 hours) Particle paths initiated on 13 July and 28 August also indicate some recirculation and a significant residence time within the Los Angeles basin

The level 3 particle paths also indicate northward transport from CELA on most days Advection into the San Fernando Valley which may be partly due to the SE flow produced by the turning of the sea breeze into the valley is more pronounced on certain days (14 July 28 August and 2 September) Level 3 particle paths originating at LBCC show mostly northwestward transport Recirculation over the Los Angeles basin is indicated for the 2 September particle path

Backward particle paths (levels 1 and 3) culminating at Claremont College (CLAR) and Riverside-Rubideaux (RIVR) at 1500 PST on 25 June 14 and 15 July 28 and 29 August and 2 September are shown on pages C-13 through C-24 -

_

9106lrl 02

31

The surface-level backward particle paths originate over water on all days the particles are carried eastward and northward into the Los Angeles basin On 14 July and 28 August the particle paths indicate primarily eastward transport There is some indication that particles arriving at the destination sites on 28 August may have originated in the South Central Coast Air Basin (SCCAB) On 25 June 15 July and 3 September the particle paths indicate primarily northeastward transport On 29 August northward transport is indicated

The level 3 backward particle paths also indicate transport from the W SW or SE on the intensive monitoring days The over-water segments of the particle paths indicate eastward advection on 14 and 15 July and 27 and 28 August and northward advection on 25 June and 3 September Again there is some indication that particles arriving at the destination sites on 28 August may have originated in the SCCAB Almost all of the particle paths indicate that the particles are carried onshore between Long Beach and Laguna Beach and advected northeastward to CLAR and RIVR An exception to this occurs on 28 August On this day the particles are carried onshore near Redondo Beach and are recirculated over the Los Angeles basin for approximately 24 hours before arriving at the destination sites

AUTUMN PARTICLE PATIIS

Forward particle paths (levels 1 and 3) originating at CELA and LBCC at 0700 PST on 11 and 12 November 3 and 10 December are presented on pages C-25 through C-32

The autumn particle paths exhibit more day-to-day variability than the summer particle paths indicating more variability in the autumn airflow patterns Because both the CELA and LBCC locations are affected by the land-breezesea breeze circulations all of the surface-level particle paths show some recirculation in the western basin Particle paths initiated on 11 and 12 November eventually indicate eastward transport

The level 3 particle paths also differ among episodes but are all affected by the seashybreeze circulation Particle paths initiated on 11 November show eastward transport from CELA and southward transport from LBCC Northeastward transport at this level is indicated by the 12 November particle paths The particle paths initiated on 3 December illustrate local recirculation by the sea breeze On 10 December southward advection is indicated

Backward particle paths culminating at CELA LBCC and RIVR at 1500 PST on 12 and 13 November 3 and 11 December are presented on pages C-33 through C-40

The surface-level particle paths indicate that particles arriving at CELA at 1500 PST on all four days follow a southward then eastward course Particles arriving at LBCC are affected by some combination of onshore advection and local recirculation The particle

9106Irl02

32

paths culminating at Riverside indicate a variety of possible transport patterns eastward transport on 12 and 13 November northwestward transport on 3 December and southeastward transport on 11 December

The level 3 backward particle paths for 12 November illustrate recirculation aloft by the evolving airflow patterns while the particle paths for 13 November indicate primarily eastward advection The particle paths for 3 December are clearly affected by the SE that occurs on this day the resulting particle paths indicate northwestward transport The particle paths for 11 December indicate southward advection and recirculation by the sea breeze

COMPARISON WITH TRACER DATA

Forward particle paths originating from El Segundo (ESGS) Los Alamitos (LAGS) and Vernon (VRNN) at times corresponding to the SCAQS tracer release times are shown on

middot pages C-41 through C-76 For ground-level tracer releases the particle paths were calculated using level 1 (10 m agl winds) for stack releases the particle paths were calculated using level 3 (300 m agl) winds A qualitative comparison with the observed tracer data is provided here

Surface-level particle paths originating at LAGS on 25 June indicate northward transport during the morning and afternoon hours The level-3 particle paths indicate that material is transported out of the basin through Cajon and Banning Passes by the upper-level winds Both of these indicated transport patterns are supported by observed tracer data

Surface-level particle paths originating at VRNN on 15 July indicate northward transport and exhibit good qualitative agreement with the tracer data

Both the surface-level and level-3 particle paths originating at LAGS on 28 August indicate primarily northeastward transport Most of the particles are eventually advected through Cajon Pass This is consistent with observed tracer at Redlands San Bernardino and Crestline

Surface-level particle paths originating at VRNN on the morning of 3 September do not agree with the tracer data While the particle paths indicate northeastward transport the tracer data indicate northwestward transport

Surface-level particle paths originating at VRNN on the afternoon of 11 November indicate westward transport and a long residence time in the central basin The level-3 particle paths originating at LAGS and ESGS show southeastward transport and recirculationmiddot by the sea breeze Surface-level particle paths originating at VRNN on the following morning again show net westward transport and a long residence time in the

( central basin but the level-3 particle paths indicate northward transport with recirculation

91061rl 02

33

by the sea breeze The smface-level particle paths are consistent with the tracer data Tracer was observed over the north-central basin and along the foothills on the morning of 13 November

The surface-level particle paths originating at VRNN on the morning of 10 December indicate relatively stagnant conditions with a weak sea breeze circulation Some net transport toward the south is indicated Particle paths originating at VRNN on the afternoon of IO December show little movement throughout the following day The long residence time in the basin is in qualitative agreement with the tracer data Tracer was observed in the basin on the following day The dispersion indicated by the widespread tracer concentrations however cannot be represented by a single particle path The level 3 particle paths originating at LAGS and ESGS on the morning of 10 December show southward transport and recirculation by the sea breeze

UNCERTAINTY ANALYSIS

A simple analysis was perlormed in an attempt to quantify the degree of uncertainty inherent in the particle paths The uncertainty analysis was similar to an analysis described by Moore et al (1989)

Three major forms of error in the particle path calculations can be identified The first two result from errors in the wind fields The most fundamental of these is measurement error as measurements can only be regarded as approximations of the true winds Regardless of the accuracy of interpolation techniques measurement error will always affect the final wind field The second type of error results from the interpolation of these measurements and the parameterizations and approximations in the diagnostic wind model This error will be greatest in data-sparse areas The third type of error results from the use of two-dimensional wind fields The two-dimensional particle paths do not incorporate the effects of vertical motion which may be a significant source of error considering the mesoscale regimes present in the study area

The particle path uncertainty in this analysis is the result of all sources of error and is therefore very difficult to estimate A lower bound 11 on the uncertainty was assumed to result from measurement error alone Here we use a lower bound uncertainty estimate to illustrate the effects of measurement error on the particle path calculations Several assumptions were made in order to estimate this uncertainty First average bias for all instruments was assumed to be very small Second instrument precision was assumed to be constant over the region Third measurement error (speed and directional error) was assumed to be normally distributed around zero The standard deviation about the mean was based on observational data

For this uncertainty analysis 20 particle paths were initiated from a single site at a single time For each 15-minute particle path segment u and v were calculated as described in

9106lrl 02

34

(

the previous section Small random wind components (representing the measurement error) were then added to the interpolated wind The smaller components were determined by randomly selecting wind speed and direction error from two separate normal probability density functions (PDF) To do this a uniform random number generator was used to find two error probabilities Ps and Pd between 0 and 1 An inverse normal PDF routine was then used to find the speed or direction error that results in error probability Ps or Pd respectively Commercial statistical software from Th1SL was used to generate uniform random and inverse normal PDF values 1

The PDFs possess means of zero and standard deviations equal to the root mean square error (RMSE) of the measurements For simplicity RMSE values for speed and direction were taken from those specified by Moore et al (1989) namely 02 mis and 10 degrees respectively Random error components were determined for each 15-minute segment of every particle path The resulting divergence in the particle paths represents a lower limit to the uncertainty inherent in the particle-path calculations

Plots illustrating the effect of the lower-bound uncertainty on the particle path calculations are given for one summer and one winter episode in figures 3-1 and 3-2 respectively The summer particle-path bundles (Figure 3-1) were initiated at CELA and LBCC at 0700 PST on 14 July The winter particle paths (Figure 3-2) were initiated at CELA and LBCC at 0700 PST on 12 November The bundles were calculated for levels 1 and 3 In general the bundles indicate that the airflow patterns do not vary abruptly in space or time The winter particle paths are less divergent that the summer particle paths

While plots of the particle path bundles qualitatively indicate the degree of lower-limit uncertainty a quantitative summary of the uncertainty can be obtained via hourly estimates of RMSE of all particle positions relative to that with zero error The RMSE can be obtained from

1 1 M 2 2

RMSE = - ~ dj[ lM ]=l

where

1

dj = [(xj - X1)2 + (yj -y1)2]2

and where Mis the number of particles and ()1 represents the position of the actual particle as calculated in the previous section (ie the zero error particle path) The RMSE is used to determine the growth over time of the confidence interval about the

1 IMSL is the registered trademark of the Scientific Problem-Solving Software System developed by IMSL Inc Houston Texas

91061rl02

35

NORTH

425 31570

SOUTH (a) CELA Level 1I

20

(KM)

NORTH

425 31570

SOUTH (b) LBCC Level 1I

20

(KM)

le-path bundles initiated at 0700 PST 14 July 1987FIGURE 3- composedd par tic le paths1 Forwar of 20 particBundles are

35

NORTH

425 3570

SOUTH

(c) CELA Level 3

NORTH

425 3870

SOUTH

(d) LBCC Level 3

FIGURE 3-l Concluded

37 9106]

70

IlFil

NORTH

CEIA Level 1(a)

3(170

1-Ul j

NORTH

425 3(170

SOUTH

(b) LBCC Level 1

Forward le-path bundles initiated at 0700 12 November 1987FIGURE 3-2 composed par tic le pathsbullBundles are of 20 partic

3391061

425 3870

SOUTH

(c) CELA Level 3

J8

3870425

SOUTH

(d) LBCC Level 3 10 2

(KM)

FIGURE 3-2 Concluded

91061 39

1 1c

i I

trajectory calculated using the DWM winds Hourly RMSE values are given for the particle paths bundles shown in Figures 3-1 and 3-2 in Tables 3-6 and 3-7 respectively For level 1 the average RMSE after 12 hours is 567 km for 14 July and 167 km for 12 November For level 3 the average RMSE after 12 hours is 416 for 14 July and 260 for 12 November

9106lrl 02

40

TABLE 3-6 Hourly RMSEs for particle-path bundles initiated at 0700 PST 14 July 1987

Time LBCC RMSE CELA RMSE (PST) (km) (km)

Surface Level

0700 000 000

0800 042 042

0900 057 069

1000 063 100

1100 093 128

1200 091 143

1300 111 168

1400 136 217

1500 229 227

1600 265 219

1700 394 219

1800 620 265

1900 796 338

Level 3

0700 000 000

0800 018 049

0900 064 090

1000 068 140

1100 087 172

1200 089 162

1300 123 180

1400 231 224

1500 337 258

1600 419 278

1700 427 306

1800 449 347

1900 462 370(

9106104 41

TABLE 3-7 Hourly RMS Es for particle-path bundles initiated at 0700 PST 12 November 1987

Time LBCC RMSE CELA RMSE (PST) (km) (km)

Surface Level

0700 000 000

0800 047 049

0900 078 065

1000 077 066

1100 089 086

1200 109 094

1300 089 092

1400 118 125

1500 100 138

1600 129 150

1700 147 160

1800 161 164

1900 156 176

Level 3

0700 000 000

0800 045 076

0900 061 120

1000 069 139

1100 092 171

1200 098 163

1300 096 156

1400 125 182

1500 150 175

1600 231 171

1700 261 152

1800 308 156

1900 345 175

91061 04 42

References

Douglas S G R C Kessler and E L Carr 1989 Users Guide to the UAM Wind Preprocessor System Systems Applications International San Rafael California (SYSAPP-89079)

England W G and L H Teuscher 1989 Perfluorocarbon Tracer Experiments During the Southern California Air Quality Study Air amp Waste Management Association For presentation at the 82nd Annual Meeting amp Exhibition Anaheim California (June 25-30 1989)

Horrell R S M Deem P Wyckoff F Shair and N Crawford 1989 Ground Release SF6 Tracer Experiments Used to Characterize Transport and Dispersion of Atmospheric Pollutants During the Southern California Air Quality Study of 1987 For presentation

( at the 82nd Annual Meeting amp Exhibition Anaheim California (June 25-30 1989)

Moore G E G Z Whitten J P Killus and R D Stevens 1989 Analysis of 1985 Air Quality and Air Chemistry Data Collected Under the South Central Coast Cooperative Aerometric Monitoring Program Systems Applications International San Rafael California (SYSAPP-89058)

Ross D G and I Smith 1986 Diagnostic Wind Field Modelling for Complex Terrain-Testing and Evaluation Centre for Applied Mathematical Modelling (CAMM Report No 586)

9106105

43

rr T rr

Appendix A

SCAQS WIND MONITORING SITES

(

9106103

-

((--_ 770

-

NORTH CM~RS 42 575

5 I I j I I 1---L 525 middot 1J75 I I I I I I I I I r I I _--- I C2~middot----_J ~ ~-- 1 ( ~ ~J25 I I I I I I I I I I I I l__ ) -475 () I Li 1~)51 (

--~ltJ820f-_ ~------ ---

~- -cli( ol --9-Sl-l

lt ( ~)

CQ p llE RiDO ~ llE ANAH

I middot LAS-L

bull~ LANC ( _ Q - _J ) ) - _ ~ - ---- - ~ _ ____ middot clt G~ _----~____-=-- -___ ~PR __ - ---- --- VCTC ltgt

-- ------ f---- __ - ---_ -middot ------ --___ --~-----TEME --- _ f

-)(j _ _ middot --middot -------- - HESP f ----=----==~~~ l ----~~ -- middot l - --- __ -middotlt- CJ _ --- middot PIRs[- lt NfVL_ ---~ - C~lt --lt _ ~ ~- __ (~~

__ --- bull _ i - f c-_ _ I - )~__) - ---~poundS---_-

3770 t-()

LA llE PICO )Ct444 -w 3 ~~~ZUMA MALI VE VEN llE llE middot Jl~C - ( p

NN WOOHS ~- ~ m - middot - o - I () )IE 55I

1-- (lt - - PERI ) ~ S__~llE

BU25 bull y _ L ~~5o 13720

I ----~- - 515 3670 525

(KM)

~---

SNI

20

SCAQS SURFACE WIND MONITORING SITES

19 JUNE 1987

0

qj n

If) N ~

I

1S13

Ishy)

0 Vl

(f) w I-V)

l)

z a 0 1---

z 0 2

0 z 3 a ~ I r---

0 CX)Wm Q_ shyQ_ ) w

z (f) )

0 7 lt( um Vl ---

0

A-2

-

r~

NORTH CM~RS

I -middot_( lt - middotmiddot -~ ---lt - - - middotbulll- ) middotmiddot-middot - - -c ) 0 0 l__SG- ___ J1 bull_ -- VCTlt I

_ --middot ---middot llSeR - - __ - --middot----- J~__-- middot - - - -middot bull bullbull- HESP ~-_-middot- bull- ~- _~ - -___---middot - ~ -_ ) ME --- -middot - bullmiddot bull -_

38201-_ ~~_ _ TE _ C-bull_- - CJ - ~Jj __ -_

1

1 bull I bull __ (]

SI bull bull=-middot _ -~ ~~ ~_-__ middot _J lt(- j SIMI -M~S -~_-~It_ - - 1Ir- I w _ I B~~ AZ~~~1 AL SNBOC ~ (ELRO l~ Hf~~ ideg_=- --

)1__ CE~ wftcentrHIN RIVRM44 --- ~--- ---~ LA PICO __pound bull P

T ~NN WI-V C) D 2J~55I Wco - middot PERI Lv

R~O ~L ~AN~ TO~~~~ ~ ~ ~-MO

62

~ ~j~l)~gto ay 3670( 525

SCAQS SURFACE WIND MONITORING SITES 24-25 JUNE 1987

~ (

NORTH 275 325 375 425 475 OA~5 575

f_~ CJ ~ -middot--

_middot

middot1 Imiddot

)i

gt--o~0 (~_)r-) _ (~~3s20

--~- middot qlt ( ____ - ---- - lt__ ~ ~ -i~ J ) _ - - -

-~ -__ J V 38201-~--o- lt-

-----~~middot ---- __ - ~---- -_--- ~====- -=_---~ ~ _

~ -- middotbull ~gt ----_ _______ ) ~~~ l -- - - i - --- l

( _ (_-~ _-lt~~ - )

2middot1=~ (~gt lt_) -~~~~~(_~tJt-~~~~t~~~~-~) ~

uR--- -----Qi~ ~ 3770_ 3770 -middotmiddot--rmiddot- -7 ~ 1-

(J) llE ONT _ -middot __ w

Y-_ EMU c __- ~ Ul lt(1 w~

- -- - LMIIEUA sFtA ~

1

----_

~

_

t_~~ -bull _ middotgtI __

~- 0 ~~QgtJn~-~ ~II~

~ f-- -) -) ) ~ ~-

j (_1_j ~~TRM 3720 ( (__ -CcS l l 3720

~- ) -~ --7( ) __~---L_ ~~1-----~D~

1 ~) a --- ~middot 7 rt 0- NSI (

3670 I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I 1 I I I I I f I I I 1 I I I I I I I I I I I I I 36 70 275 325 375 425 475 525 575

SOUTH

I I I I I I 0 10 20 30 4-0 50

(KM)

SCAQS UPPER-AIR WIND MONITORING SITES

24-25 JUNE 1987

--=-

NORTH 25 575

CM6QRS C__j 475 -____

3 ---- 375 425I - L ---) - ~-

SNI

-_-~)---_ lt-____ ___3azor_~c~~ sl

VENt ELRO

BU25

275 ~ c--) ~LANC ~~-_ lt ~ 0 9-~

llE

3670

----~ - J Q ____ ~- lt) ~ 3820____ -- middot--- 0~__~- __ J S --- ---~- ---- -- -- v~ ~ ~ ===-~ - - - - ---- - - ---- - -- -middotv ------------ -~ l f----- _ -- -middot _ - --- __ HESP ~-----=- c~i - - _- --- - - gt - -bull TEME -- -middot - bull ----- -- - _ middot ( lt~ clt=~ ~i cJ~ c _

~I -~~le lt~NJWl--------~- -iHitgt~-=__~~ _I -~ J~~~ ~ 3770 r-1 - - -- -- - ltJ c__ ---middot ~ ( - ------ -c_ - - -~~~ ~ ()-~ ~ - -middotMiss ---~---=-~----r~-__ -middot _frac12 __ i5

j S ~R~~HE -7t$ llE llE ftALSNBO llE ~~ t __ -R~ B~~SA AZ~jl~r RD ~~_ ~ 1( )l___ llE CE~HAllE ~~ - RIVRM44 - llE ------___llE W~HIN -Jti )Ii ----------- __

~--- LA llE PICO l llE C -- r p

ZU VE NN Wt-laquoJHB 0 1~55WT IN - ---- ) llE CO P llE llE ( gt (____ PERI ~

IJl

~ 71t~P325 425

SOUTH

I I I I I I 0 1 0 20 30 40 50

(KM)

SCAQS SURFACE WIND MONITORING SITES 13-15 JULY 1987

clt(middotO -i ~Ill ~

()VL~t

~~) o2~ r

275

-- _~middot middotc-- ( ~ I - ___ ) --____ ~~~

---- ---bull-~ ( lt ) lt I ~ (J () - _ ~ ~ J ) bull middot ( - ~ ~- - --- middot - ~ - middot middot G--~_J lt)

cce- middot- __ V ___ -- l - _- bull middotbull - - _~---~ 3820r----=-~_~Jrlt - - - middot f ~l-~--~--~] I c___ -~c ~ -- ( _ 1middot--- 1___ _~

-I -- = lt -bull lt middotmiddotltmiddot~- middot - middot -L-

- ~-- middotbull ---_- --- J middot J ) ) -- bull- ~-bull _ --middotbullbull- middot middot _ j -- -)) 3770 -ii __gtc _ -- - - middot bull ltmiddot ~- I - _ltbull - -_j-- tn

BURbull-- - middot - - - ) ~~middotj- (~~ ) (middotIi lt(

GL U I ~ - - - w ---~ - -1 __ - ---------= ------___________--- ONT middot middot __ - --_ -

poundMUI - - ~ ____ middot----~~i -__ ~ I

--

--- ~ c) )_

deg ~

_- - (

_l

_ ~ )

C-

~ _middot

( T( f 1-

525

t j 30 50

(KM)

SCAQS UPPER-AIR WIND MONITORING SITES 13-15 JULY 1987

_==--

J ANORTH CM6sectARS

3s201-

~- ~ ~ ~ ~0A - --__ - -----~ ---~- --1(j - A ) __gt ---------_

-~~J TEMEa l_C ~r1

0

820

_--C~ = ~~~ltCH~~ J ~ S~I ----i4~58 ( J

tigt-1

-J 3 BU25

frac14~) 8 F1(5

- HA

APICO RN A A ~ N WVHB

AANAH

~IHIN J _CM44 ~-

A

CY PERI N ~ iJN

D A

HEM

770 ~ V1 lt( w

~ 3670

SCAQS SURFACE WIND MONITORING SITES 27-29 AUGUST 1987

) w l-1

C)

z-a 0 1-

z 0 ~

0 z - r---3 co a Ci)

- -ltI lshy

a )w ) Cl 0 Cl ) ) lt(

V) Ci)

0N ltI u r--- () N

A-8

NORTH CM~RS bull r (_J~

1

325 - - l L=~-) ( bull

1275 _ ( ~ --- -middotbull LANC 1 _ bull I( f LJ- ~ () ~-- 3820 bull- - J bull

- --__ _ -- )- bull bull - middotbull-~- _ I v----_J -- J middot-- - middot- - -middot I I J_______ ---==-------------- WSfgtR - -- VC _____- ltgt

-~--~-- fJ- -middot - - - --- --- _ - ----- --- ----- ) r bull---_ --- - - -- bull p -- --__-----_ - -----

38201-_ -------~- TEME --- --- - - bull -- middot- bull --- _----~ -~ II middot ) - ---- -- -- _ -- HES f I-----=-- ~ ------- ~ l _ -- - I

- bull middotbull-bullbull~ ll( middot bull - middotbullbull - 1 I ~----- middot-bull

9 -- ___ __ _ -------- _=- r _ -- )J -~~ ~~~ 3770 t--SJMImiddot MISS~~~--bull ~--~-- ll( -_ ~-VENt Cllfl58 bull I middot- - middot- - --JOE ~--bull bull ~ V)

ELRo __J 4Esc euRK ~Ej1 fAL sNeo I ~ _ J middotmiddot -~~ 1 i5 l - ~SA ___ I ROLD ~ ~ C~ ( _____~- -~ llE CE~ llE W~(HIN RIVRlK -- - 1 llE __~

3770 middot- ~LA VEN Pl llE _ _- JJ~C _CM44 - ~ p ---__-_

0 ANAC cubull~ - - v~wr LyenNN WHJHB --- -- Q~~W)( ___

- llE HA ~ -lE _ -- _ - -_

I 0

SAi middot-middot J) t450

3720 LA r TO~omiddotlt~lt~~ -~ ~ (~~

~ ~ r-~~~1~ o ~~l~

SNI 1 (l_ amp-~ 575 3670367g75 325 375 425 475 525

SOUTH

I I I I 0 10 20 50

(KM)

SCAOS SURFACE WIND MONITORING SITES 02-03 SEPTEMBER 1987

------J ------------------ ) I-- 38201--__--~~- i) ___

_-- ~--gt--

-__

_

NORTH 275 325 375 425 475 525 575

YI ~middotCJ~bull_bullrmiddot--- lt I __ (_______~ ~ - - I -- J ( - - - - - - - J i O l__ ______________ -~

~j ( lt- bull- ~ 0 C) ~ -- (-- _)) ) ----_--__ -- middot-- _ - --J ) J ---- - ------- ----- middot----- -( ~---_j

3820----==--=-- ( - -middot bull __ - ---~----= --- ---- -- -- ------------ _______ ltJ~~ A I --- - ---- - -_ - _ --_--~-- -_ - --~co___--_--___-__----- f middot l - --- - --- - __- ---_-- -- ~ middot -middot __ J L--~ cmiddot

---- -- middot--~-- -- -- - _ _-- - - ~

--- - middot- - -C-_--- - -~ rmiddot middot) _- ~middot~ I--- ----~deg- -- -- C _-_--_- __ __ _ ___ _--_--~ __---- ~---lt lt ltgt _~-__gt_ ~~-- i~ - UR ---- -------- - ----~ --lt I middot- B ~----- Qll __ ~----- _ CI____ ~ __ --- ---middotir ~ - 3770

1-I- 3770 () U)( - -- -- 0~ - j _j ______- ==--=--_ --___ - ---w lt(

w~

~gt middot1 r-

0

3720 3720

middotmiddotmiddot J ~ ) ~l - ~ ~

~ tmiddot~----_7~~ p__ D2)t~~

NSI I(--_ Imiddot- 3670 3670

275 325 375 425 475 525 575

SOUTH

I I I I I I O 1 0 20 JO 40 50

(KM)

SCAQS UPPER-AIR WIND MONITORING SITES

02-03 SEPTEMBER 1987

~ I

t

NORTH CM61yenRS

----- I uic middot I Ibull 0 z_ ~ p

-_- - - - _ - middot-~-_ ------- VCRV

820 --- -- -- I W-gtER --- _ ---- --- ~ ) - -_ - I _ _ - _ --- _ _ _ -_ bull _____ _ _ - -- -- -- _ --_ ----~ HESP 3 -- ME -- -middot bull - --- _ -- _ TE - -- __ _-- - c----~middot - r

PIRlb -_1 N bull--~ _ --lt~_- - _ _ ---------- - -MISS_ _--- ___ bull---=-- _llE ~ ~ j lt) hlt---- F-~~--_ ----1A-_c=_--middot llE ----_ ()

-middot SIM ~ICAN llE RIALSNBO llE ~J -------~~ tllE ------TmiddotllE~I ~ES BURR~ AZ~ ~-~r- RD ____-- -- ~ bull FIIISA l- bull -~~

( )l__ -middot middot c(~HA w~~N ~tfJ1 -- -- ~ ~ 1

_

375

~) middot middot ---lt -__ lt_ ___ ___ -i____) C-middotdeg - - -

- -- J_ _) lllt

_ =- ) - -

L- ~~- Iii - ~ _________

-~ 0 I -- (

SI lllt

E

NT CM58V

( j gtT__~_____)___ -- ~l- ) (

middotmiddot-- -_ bull _ ~- () ~

I --J vlt__ ltgt

--- --------- ~---------- C -

_

~(__ f - -- ~---middot)1 ~

t ~ I

I- I- ~

3720

ANAC Wo~ middot -~- lt_)

44

PERI ) ~ tlo

25 R~ ~~ANAH _i~~MN ~~-w--- ~ _ 00 )

T middot I BUllE I -eM62 7 llE

-- - ~

~ 425

SOUTH

20

(KM)

SCAQS SURFACE WIND MONITORING SITES 11 -13 NOVEMBER 1987

(_ (___JCcS ~~)

bull ------------~ - - ( ~ r-------------- Dbull ---

J

575 3670

1SV3 0 0 0 0 N r-- N r-- a) r-- r-- co I I) I) I)

I bull bull I I

I I f1 1 ~~ I- I I-)

0 l)

l)

w I-l)

L)

z Ct 0 I-

z 0 2

0 r-- z OJ

m3 Ct a lt( w0

l() mI Ct 2

~ ww Q_ gt

0 - Q_ 0 I) 2 ) z ~ ___0

N (I) n a

0 lt(- u ()

0

n 0 z I)

N +

lf) r-- I)

- I I I

i I

I 0

~ -L

w

i

~ LL

I)

C-1

+

l() r-- I)

1S3M

A-12

-~

igt I _

l)

CM~RS 275 325 375

NORTH 425 475 525 575

_J- I bullbullbullbullbullbull ~ I bullbullbullbullbullbullbull bull I middot bull -gt-----middot bullbullbull 3 )--- ____j lt c----- -_ -- gt _ ___ ----- t__ l___

-- ------- LANC l ~ ---------- __ ) -- __ ~ I ) ~ - -=~__ I -~middotmiddot- - bull middot bull bull bull lt lt Cl --- ------ ____ -~ -

38201-- ------_- ) ) -- _ ---- -- -- -- - () - --------- I --- -~-lt~~ (middot__ TEME ) --gt ~_ ----- - middot--- --- vamp c~ (~ 0~ ___- --- gtIpound - - - - ---- -- - - -- _ - - ~ ---- - - - ------------- 5SI -middot PIRltgt ----~ ( -middot _ - -- --- - --- ) HESP --------~ ltgt

___ __bull_rbull ~--------~-___ -- ___ ----gt--=- bull~ ~~ I - ---__-=---- ----

VENt CM58 _ sti --~~ ~ lt_ -~-- middot_~-~~ r-~- --middot) ~~) _J MISS-~~-- ___-_ __)~ -- ---( C

- --RESpound BUR~--==-=~----r~---_-__- ~- - ~ _- ~ -1 -

3770 I- ANAC

J I )l( ~- ~-- - i middot ----middot -X--Ret-----_~ -~

___ ( - -middot ~SA AZ~ ~ o j -------=--------~--gt~-- dampHA ~~~f __ SNBO ~~ -~

ZUMA MALI LA w~M -jmiddot I R~J ~-s ~__ )() w ~

3720

8U25

VE VERN PICO _ middotyHIN RIVRyen ( ~----- -~ CM44 -~ ~- ----- ~ C WT ~NN Wt-0HB -NQRC - middot- ~NN-a-~~ _ ~ co~ __ -- ( ~ ~

RVIJO ~ilff AN~ gt cmiddotbull yen 0 (~~ p LASAl I bull- - PERI ~ ) ~

rJ]~~_Y)~N ) (_ --

_T -cJ62~-~

~ 5j(bull 1) ~Jso

l -~

- 1 J) -~ ~7~~t~~

3820

3770 1-() lt( w

3720

I I I I I I I I I I I I I I I I I I I I I I367r I 367075

I 325 375 425 475 525 575

SOUTH

I 0

I 10

I 20

I 30

I 40

I 50

(KM)

SCAQS SURFACE WIND MONITORING SITES

03 DECEMBER 1987

NORTH 275 325 375 425 475 525 575

I I ) gt ~ _YC) ~ ~ I ( o c_ _------- (

___ middot i I 97 ~___ _ --1 cbull-- - - C -___J -- lt ( ) - - - - middotmiddot ~ l _ ----_J

I ---middot ___ __ middotmiddot-_ 1 -~ __J ) bull- middotbull_ -

3820 ------~- I -~middot --- _ middot--- -------~

C - ~ (___ _ 1 ) -- _ - - - gt _ bull f-_- --- r ------~__ -----I --- ) I ~ -~ gt ----- - --- -- ~-_]) c_middotI 38201-_~~_ l _ --- - (-- ~ f ~ I~_ - middot - middot -middotgt- -- -_ -- middot_ _- 1 L- l _- -

~----- l -- middot middot ~- middot-_ _- - middot middotmiddot--gt---~--t~~)-1 bull lt_ _ _ bull middot bull - middot- ~ ~0---~ (c ~ I ~

_ I - bull -~~~--gt~~~-~~ bullS- _~_ l ~~1t~~_~(~ t 3770 I -- -- middot __ - I S____ ( 3770

I- 1-() ()

gt w - I __~sect~- ---ONT lt(

w

tgt

f-- I

~

middot - middotI

-

L~i--

37203720 c_J - (_cS) l -~~

NSI

367~~51 3~5 13~51 14~5 I I I 14~51 is~s s~s 3670

SOUTH

I I I I I I 0 10 20 30 40 50

(KM)

fJ~

SCAOS UPPER-AIR WIND MONITORING SITES I 03 DECEMBER 1987 r~J

NORTH CM~RS 275 325 375 425 475 525 575

middot middot ___ I middot 1 I )l ___ QO --middot - v_ (-- - LANC middot ~ C) lt --bull_ I -- -- bull _ ~ - ~-- ) -------_ -- - _~-- V --I 1 J --- - bull I -J- ---middot - _ bull__ - vc i --- ltl

3820~-----=cc~ I middot -middot - middot - _ ___ -- - 1t ~~------- middot - ___) - - middot -

J-cgzot-- ~--- j 0 TEME _middot ---- --- -

-____ -- ---- _- j (

- -_ I -- --~ _JI( ---- bull bull-- llf -middotmiddot l - -- bull _middot_ middot I --- -- middot CM58

_- 1 -- middot - middot~-~ - -~__ ___ ---~-~_--__~----------D J-~J~bull A HESP

middot OJ11 r P1R1tc lt--~i_-_~-~- ~c~_r--~-~_--_~r-=-~~~~--~ _ --~ --lt__~~~~- CSI ~ -~ --- ---- middotmiddot - ---- - _ ~ r ) J

)gt SIMI -MIS5-X ~Cgt~---- middot-cemiddot middot ____~ ~ middot~ l~fu__ suRlfiI_middot- -tk~- flAf SNBO __ middot ~-~ l 3770 _ 377ob -- ~ PJIISA AZ ~JIily~ _- RDL ___ bull ( C t-shy-- -~ I ----- ~HA 71lt V)tn ANAC ~---- CE~ WALflHIN RIVR ----- ~ w

w ~ LA PICO - CM44 - T -~ ~ ZUMA MALI VEN middotbull _ -bulltRc __ ~ ~lt~~7-

N WuHB _~-- -middot bull ) _J~N ~ -- ~ 0 - ) ~ I ltgt -_middot PERI bull I- ( _

V 8U25~ 3720 3720

WJlt~ ( ~ ~ ) 1 i

~ I I I I I I I I I I I I I I I I I I I I I367r I bull I I 3670

75 325 375 425 475 525 575 SOUTH

I I I I I I 0 10 20 30 40 50

(KM)

-~ ~

SCAQS SURFACE WIND MONITORING SITES 10-11 DECEMBER 1987

NORTH 325 375 425 475 525 575275

-- ----_ lt_~- c--- - ~ ~ _ I I - ---~~c------ ) _ -middot - gt~-

3a2or ------__ lt- ) 1 middot--- -- __ - ~bull =-------------- - r---_ ___ - bull- ---- I I ~ ~-- jc- I bull - - (bull I --- middot middotmiddot - ~ -middot - -- ~ - 3820 -~- bull - middot - - ~-_ ~- _ middot- n

(

- 0 lt_( ~_lt- ~-~~- middotmiddot) ---- ()_ (---- --

--

____ middot

-middot

I

f----- (-J 1r---J~ --~ - middotlt ltbullI I ~__---__ ~-

l B~--- _c_ gt-- lt gt- (- - - j 1--_~--~--l~ -- -- --- )l

-- - --~---- middotc middot=-~-~- (~ L ----- -- --middot - -- - - -bull --- - - c-) ~ J _ -- - ---- - ) ) ltl

37703770 EMLgt middotorrmiddotbull __ ) ~~~~ofmiddot - -- __s=__I- - - ~__- ( ~ __ )---__ Ishy

V) ~ ~- lt(w ~ ---- --~ - w if)

-~2_~middot) ~~at~s t I

I-

deg

FUUA

i () ~--J)llC~lt I

3720 3720

~ltl__ (_)i~

~ NSI

367~~51 I I I I I I I 13~51 I I I I I I I 13~51 I I I I I I I 14~51 I I I I I I 14~51 I I I I I I r--- I5~51 1 I T I I I I I 5~51 I I I I 36 70

SOUTH

I I I I I I 0 1 0 20 30 40 50

(KM)

SCAQS UPPER-AIR WIND MONITORING SITES

10-11 DECEMBER 1987

Appendix B

SCAQS DIAGNOSTIC WIND ANALYSES (Six-hourly plots Levels 1 3 and S)

Summer Intensive Monitoring Periods

19 June 1987 24-25 June 1987 13-15 July 1987 27-29 August 1987 2-3 September 1987

Autumn Intensive Monitoring Periods

11-13 November 1987 3 December 1987 10-11 December 1987

Page

B-1 B-13 B-37 B-73 B-109

B-133 B-169 B-181

9106103

Summer Intensive Monitoring Periods

9106103

19 June 1987

9106103

1bullbull-lil

1SV3

I I lshy Ishyo )

0 0 z ()

IO N IO

I()

N -st-

1S3M

-- l1

l~ i --

0 z 3

---

2 0

_J w cjr----_J CD

0 l() z

I- =)lt( 7

f) 0)

0 -- i n 2 Ishy7

0 ~ ()N ____ gt a 0 20

3o 0 ~

0

B-1

1Sv3

( I l-et 0 z

(

lf) N st-

l() N ~

l()

N 0 t--

n

0 N_ n

U)

ON r-shy(0

n

1S3M

B-2

_

2 0 0 tlt)-__

tlt)

_j w 2jr-_j CX)

0 lf) I- z

lt( ~ IJ1 0)

0 _ 0 n 2 z 1-0 ~ N - 3 ~ 0 20

3o 0 Ov

-----

lSVJ

l)

----

l~3 O 0 w

w ll) (1

l)

0 0 z 3

I lshyet 0 z

--

2 0 0 0

-

LO

w ~

GJ r----~

u 0 z

OJ

I- gt lt( J

mif)

00 ---shyI) 2 z I-0 i l) N -- 3 (1

0 2 0 3 0 0 ~ 0

lSJM

B-3

1SV3

- V1 --

~5 O 0

E - w

w Ul_ 0

V1 0 0

z ~

I I lshy I-et =gt0 0Z V1

-

2 0

J wr--CJ OJ J z0

Ul I- =gt lt( ~ V1 -

0 - n 2 0 z 1-() 0 ~ N __ 3 0

0 2038 0

0

U)

l

lO N v

0 N agt n

0

r--n

0 N

0 N r-shyn

U)

U)

U) N U)

Ul

q--

Ill N q--

1S3M

B-4

td I

J1

~ ~~~~~ ~ -~~~~~ J - -~--Qf~J ~lf~ ~---~ ttt~~~~H~f~ ~ ~~lt~~~0 ~ - ltl-_t I~~~~~~-~~~~~ ~~ I _~1c j_~ L ~ (__1-T11__1 ~_-~_ ---~~~~~~ 11 - ~ +f--1~- ~-+--41-- 1-~- ~ ~ -rtt1-~--~~~~~~~ ~ ~ ~ ~ l t I J JI JI~- t _I i~~I~~~~~~

377itttttttt ~- - t I Jf --------_-- _ 70 ~ ttttttttttttti- fllJ~JI-~~_- ~~ _ =- ~~~- tn w - t t I I I_~- -V _ ~ -laquo___ _ - ltC 3 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ t t t t t I I I I JI~ JI JI ~~ I--~- ~ ~~~~~ w

H~HHHH~in+~l~Hnf5-I ~ ~~~~~~~~ ~ ~ ~ lliii it t I~t~ltt~rrrr~~~~ jl++it~~~t~

20-~~~~~~~~~J tttttttf ~~~~~~~~~~---~-~~~~~~~~~~~~~-amp~ ~ t t t t t t f f f I I I I ~ 1 J(-- _ --P ---~~~~~~~~ ~ ~ ~ ~ ~ ~ ~ ~ t t t t t t t t f f I I I I I ~ ~- j~J _ ~ ~ z~ ~ ~ ~ z l I+ nm~t ~ ~ ~ I I~Jt~-~- -~-__~~~ tr ti ~ ~ t t I t f f I I I I I I I - ~-r __ - ~~~~~~~ ~~~~ ~z11 ttt ffflllllIIII -~~---~~~~~~~~~~~ ~~~~ ~~ ttttft ttflltllllllll A~--~~~~~~~~ ~ ~ ~ ~ ~ ~ ~ t t t t t t t t t t t f I I I I I I I I I I I I I ---P~- ttttttttttttlllllllllllI -~--L~-~~~~~~~~~middot

367 70 ~75 325 375 425 475 525 575

SOUTH

1111111111111111I I I I I I 0 10 20 30 40 50 0 5 10 15

(KM) WIND SPEED (MS) i

NORTH 425 575

_ 414111fl-~bull __~) ff I -lt~i ~ + lJ Jmiddot-bull A fl t1 it bull- _I~--~---~----_---~_~~~~~~~11 t1

~~t 11 f + + diamsJ diams 1 )--t-_+ J~ I-(_ 1 1 ~t1 __

__ Lt l l t fL f_l - - +~~----~~---~___-+_~~~ J-t-t t---t-lt t t-t) LJ lt fl ~ -- t---f t tT~-- ~~ 1__t -t ti t_1 + l - -~-~-~-II~-- - ~~~-----~----t----~~~~~~_Efftt -- r1 ~J t l Lt t

fl

~ _ t_ - 11 _ _

Fi ru bulll=ti~ ~ ~ ~ ~1H1~~_~-~-~----~~~~~~~~~~

DWM WINOS AT LEVEL 3 (300M) 1000 PST 19JUN87

1Sv3

I I-shyCt 0 z

1S3M

B-6

0 II)

0 I)

-_2

0 ~ N -

0

0

-_

2 0 0 0 -

LO

_J

w r---CJ O) _J z I- gt ~~ if)

0 1--shyz V) ~ Q_

20 3 g0

NORTH 525 575

~~~__A -~___~~-

F- ~_--P~

~ ff~~-- - _ middot- ~~

_ bull bull bull bull bull

_ p

~L~k~tt ~ 1 t A middot1-t

~ r~ 1 11 1 __ bull bull --l t frac12Q2_

~ ~--r-J-+7L~

1--Ui

3770 _yen~AA- ---~ ~__~_ ~ K---r

eno tshylf)

w ~ ~ ~ lt( 3 I I_

- w

td I

-J

~~~~- ~ ~ ~~~ shy ~ ~ - shy

3720

~ ~~~ -~1~-nu~~~~-

~ -~ - ~_____A~~1~ ~ _~ ~~= ~~~_______2--- ~

720

~~~-~~~~~_ 9~tbullmiddot~qor~frac12

Y~poundpoundpoundpoundpoundpoundL1~~~~r~ ~ middot

375 425 475 525 575

SOUTH

I I I I I I 11 1111 1111 1 0 10 20 30 4-0 50 0 5 10 15

(KM) WIND SPEED (MS)

DWM WINDS AT LEVEL 1 ( 1 OM) 1600 PST 19JUN87

~

NORTH

Arlt~~~ ~L _ -rJ ll

_ I I I t

_t-z~~J ~i~ bull

i- ~~~ Ii ~~( trn

3770 I - bull bull bull bull bull bull bull iigtlaquo

--- bull bull bull _-

~fJ~ t-l-lltf[llJ- jf1 rr]I ~ ~~~ ~ss~810Ja2ot-~~1i lmiddot - 1 17- - -

-ltL

~ ~ 70 y ____~ tshy

l) ) _-y ____~w

w ~

~ -~--- - -- ~ 1 ~~~~ __ _ bull---bull laquo-___~ Y~~

___p~~__---A~_A 1 ~~td I ~----______A 14 1 ~

00 _-________________ ~ __~----~1~ -A________________--r__~~~ ~ ~ ~~~--~-~~~~-~---e--~ ____________~_________-~ h

3 7 20 t-_--~____- ~ _ _ ~~-_- _ _ _ _ ~___~~~r--~~___-K ~~ ~ -~-------~~~----~ ~ ~~__________~~~~~~~______-r_-A~-1--~~~ ~__________________----r~__~__~-Y~~-------__---A----r~ 1 ~ ~__~___________~ ~

367 tcrr~__~y--rrYlt-trltltltltltlaquo-ltltltltltlaquoltlt~~~ ---

9imiddot~75 325 375 -- -

1111 1111 11111 1 1 1

0 10 20 30 40 50 0 5 10 15 I I I I I I

(KM) WIND SPEED (MS)

DWM WINDS AT LEVEL 3 (300M)

1600 PST 19JUN87

NORTH

bl I

0

~________________A-4_gt~~~_____~~__________~A

A~altP_ ~~~_________--~_A 38 20 I--=-~~_~~___~~-_-~~_ -lt~ - ~_-~_A--1~ _

~~------ ~ gt-~ ti ~----~ ~ _~~~~ 0 ~ ~-i---~~411___ I~-~~ I~A-~~----~7A7~-

A A~---~~- ---~ ~ ~ -middot~~ 1-27 ~shyA_~ ~~~ Jl--__r-t~ ~ (K~_ - fl_

A ~I J111 I _ A - ~ _ T-~ v I 1 1 1 1 1 1 ~ 1 1 _ Ji J I~ f --_i__middot1(- ~ ~)( ~JJXZ - _ r ~ - _ )( _ II I 1 ~ 1 I - _~ _)~ ~~

= 1 II II 1 (~ ~--=-~ -7fJ~~~~tm~i I- 3770 Jir - I 11 I 71 (I) ~ ~111 ~

w ~--middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotbullbull bullbull ~~~11Zll~~11~ ~ ~~_~~~llllN~~ -~~ bull 11jh fi 1 1 II 1 1 1 1 1 1 1 1 1 1 1 1 1 I I 1 0i~~~ 1gtcJ~l~p~ ~~~ ~~~ ~rr1111

70 Ishy() lt( w

111111~~ 3720 i- 1 1 ~ ~

~1~I A-A~)I 1111AA _~l11~ 1

lllllll11IIIAII- ~II ~1~~__~~Ill~~~~~ l1_ 1~~~~~~lll~~~~1 llllflfAll-)lllllllll1~~~~~

A I I I I I 1 I I I I 3670

275 325 375 425 575

SOUTH

I I I I I I 1111111111111111 0 1 0 20 30 40 50 0 5 10 15

(KM) WIND SPEED (MS)

DWM WINDS AT LEVEL 5 ( 1 OOOM) 1600 PST 19JUN87

~

A A A

1Sv3

(

1S3M

B-10

()

l ~

---u) 2 __ O 0 ~ w

w It) Q_

()

0 0 z 3

0 It)

~

0 ---I) 2 ~0N _

0

0

---2 0 __

_J

w r--- GJ OJ _J z __ )

~~ () r-

0 __ z ()3 Q_

~o 3~ ON

NORTH

middot-~~) K~xJ~ middot_1~ ~ 71( I IJ ~JI

~A I 1 ~~

liii[i~~ Hf~-~~~=~T-- ----- --=~~g~g~bull11ft _ ~~~ -1-x~~~ ~~~~-~~~--~-~---~ --~ t ~t~ -~1~~ -- ----

-lt J 1middot~~ __---~__

3 770 ~ ~~ --_tn ---------~~ 1 ~____~ _ ___~ -w bull Y ___~~~ (Al _~ _ ~

-- bull _ _ _ bull bull bull bull~___1 1I J~ _~

~- YI J _L ~~ ~~ YJll~E~

td _____-___ ____ __ 1 ~xgtx2-I ____________~__-A (~~~~ _______~~2-1 y~~- ___~__________~ ~

3 7 20 I-___~~__~~ Y --~ ~__ I _ - - _

~_---A~ ~---__~~~~~--_____~ ~ ~_____A~ y ~ ~___-__________~~ ~ -

~__-_______-yen_2 ~ ~ ~~_______~ ~

1 367~ 75 325 375 425

SOUTH

1111 1111 1111I I I I I I 1 1 1 0 10 20 30 40 50 0 5 10 15

(KM) WIND SPEED (MS)

DWM WINDS AT LEVEL 3 (300M)

2200 PST 19JUN87

~-

~ - - ---

NORTH 275

___ -~-___

- ~ I o_ ltAbull~-P- bull bull -P diams bull~--~~~~--- --- ~ ~ ti ~ ~sbull3820 ~=-J~_~~middotmiddotmiddot~~~--_~_=- =~_~c s~ ~3~

~~- bullbull~~bull~~~~~~ - bull -~~bull ~ v i-_ --- __-_ ~----~

~- st-~~1 17-~__4 ~ _~ ~-~-raquo~~~ -f _ _ bull bull bull bull~ bull bull-__-v 4 t ~ ~v ~- Jl_~ ~--z~~=~s~~~~Mil

-- _ ~ frac12--~~- -=~~ ~~l~1~l~tzi9~J t~ 1 1 1 1 1 1 ~-bull ~~___- v q (If V pp p I l_77rtfl _

3770 ~ ~ ---- I h1yenzi 1V-r-() bull bull ~ ~~~~~ w ~ bull ~ _ I JI J(_ )-II101-1 3 ~~A~~~XI IIJ~~~

~ f A I~ I I I I~--L -

tl ~1111111 ~K11~~llll~i~~~~I ~rr ~~ ~xgt~~~t---

N ~I I II)(01~ ~ ~ ~~~ 1~Y~lt~~~~~~~~ ~~~~

3720 iYY11Alllll1lIA~~~~ ~~---Y~---_ _ _ - ~ bullbull - - _

~rrll1IIIIIIIAAAA__

___________~~~AAAA~_~ ______________~~~~KAKAA1~~ lllllllllll~AAA1f~~

_~~

3670 t1i11 i i 1 i i 11111 i i i i -i i [ 111111-111 ~ ~ 11 ~ i I t 1 bull rm r~ij e =~~ raquo-il3t ~ 275 325 375 425

SOUTH

1111 111111 11111 1I I I I I I 0 1 0 20 30 40 50 0 5 10 15

(KM) WIND SPEED (MS)

DWM WINDS AT LEVEL 5 ( 1 OOOM) 2200 PST 19JUN87

24-25 June 1987

9106103

1SV3

1S3M

0 w w Q_ (J1

0 z 3

I f-shy=J 0 (J1

-_

2 0

--

_J w CJ f- _J OC)

0 U) z

f-shy )lt

J q-

(J1 N0 -_ 0

rlt) z rshyl)

N0 _ 3 Q_

0 20 3o 0 q-

0

B-13

lf)_ lf)

If) N If)

lf) r-shy~

I I-o 0 z lf)

~

lO

~

lf) N If)

(

pound bull d ~ bull 4 4 c_ q

1 4 r9middot-

0 N IX)

middot- t--bull ~Igt~

O ~f 4 fT amp)o(oj

4 ltI I~ ~ ~

0

o

middot a

~- v t rgt ( tgtj (~V~-1 f4

3 44 ~-~a4 V VM q -~~-q_4 ~4

_ ~ )

p- ~~t1~1 middot V II J ~ ~ )I 1 11 f ir -~~1I ~

II P P P Igt 4 ~(Iigt ~~ 1) IA

deg deg 4 4 ~ A -1 r 1 1-Y]~t J rz ~

fl r ~ Igt I~y ~ -- -- - 4 ~r___amp V P11 iP Igt P Igt p ~ -0

~bull 7~tpmiddot~P Pf P Ptl middot~ ~ q p Igt 1gt p ~ t b (r 4 P - 4---f ~ ~ bV ltI

ltI ~ ~ I p 6(~ d-_j b d p (4- 4 ~ 1 p Igt 1gt Igt - b ti

)4- a 4_) q V Igt p Igt o

lt(___~ ~- V fgt ~ 111 t Igt -4

~ ~ Igt r p Igt

~ ~ 1 h1

V (I Ilt v middot

t y-

t

t

p

P t P t P ~

0 0N - IX) n

1SV3 0 0 0r-shy N r-shy co

lf) lf)

If) N If)

~ - t bull~--~11n ~ -~bullmiddot t~ lt middot___

o_ ~ ~ ~

0 bull t bull 4_4 4 4IIgt

c 0----~ u c Igt( o ~ c ~A ~ 0 - A 4 4 ~ 1 q

o bull o- -~ 1gt 1gt ~ y4 -~J middot)bullmiddot ~ ~ ~ p 0- 1---f t-~ 1 ~ 4 4 o co u gt)O- eyti ~ ~l 9 -Y P- - I a c 1 oM_il_q A p- p

4 ~ ~-M f p

I 4

~ rv ~--~middot

tJmiddot bull P II f t )I~ bull V ct_~ V V V t P- ~ Igt t middot f lft V VJi P- P- fgt IIgt ~ _ J1 bull bull bull

1 v II p _bull ( ( ir ti- f Igt bull

j ~ r f -~-1t __

_I ltC_t--q_) v -~-ampgt

Q middot--- ~ - t ~ b

II

bull ~

bull bull

diams

1 bull ~ ~~ ~ ~ b b b lgt bull

-- b bull bull bull~4q~ lgtPlgt-4-~_tbblgt

Jraquo P P ~ q 11- 11- b b b b b

P Igt P q bull b b b b b b b b bull

bull bull Igt 4 4 fl ~ b b b b b b b b b bull bull Igt Igt ~ 4 q ~ b _ b b b b b b bull

P bull Igt Igt -4 ltI 9 b b b b b b b b

p bull - Igt Igt 4 lt1 _ b b b b b bull t bull bull Igt ~ 4 b bull b b b b b b bull p Igt Igt Igt bull 9 b b b b b b b b bull P p ~ ~ A 4 q - _ b b b

1S3M

figt j)

~ ~ bull

bull bull bull bull bull bull bull bull bull bull

bull bull bull bull middot bull middot

bull bull ~ ~ 9 9bull bull bull bull bull bull bull bull bull

bull ~ bull bull _ bull bull _ bull bull

~

If) N t

lf) r--11

~

If)

~

0 ONN - co n ~

I fshy=i 0 V)

- 2 0 0 n -

n _j w cjf-

0 l()

0 ~

0N

0

0

---shy2 ~ _

_j OC)

I- z lt( =i

J Vgtv 0N z f-

3 ~ 20 3o 0-t

B-14

---

1S13 0 0 0 N N r--shyltIO r--shy co I) n I)

I() l1 r--shy -U

E~i0 z

U N I() 3

I fshy)

0 U) l1 N -t

--_

2 0 0 0

-

LO

_J w CJf----_J OJ

0 U) z

f- )lt( l1-r ON z f-

3 ~ 0 20

50 U) 0 -sr

0 ON r--shy r--shy

r--shy (0

n I)

1S3M

B-15

lSV3 0 0 0_ N - _ - ~ I)

_ ()

(~i

0 z

If) If)N NIf) 3It)

I Il- I-a =gt0 0z If) If)()

N Nst- st-

_

2 0

--

- w I--- OC)Cj z0 -

I) )I- Jlt( --t-

N() 0 I-z ()

3 o_

0 0 2 0

~ 0 00( 0 0 0-N N _111) r-- 1)

1S3M

B-16

lSVJ 0 0 0 0 N r-shy N r-shy_ _agt lO n n n n

() r-shyU)

u) l() N N u) l()

I I lshy Ishyo )

0 0 z U1 l) N

l() r--_ 2 0 0 n -

n _j

w I GJ OC)

0 _j z

lt) I- ) lt( ~ lf) N 0 1-z l)

3 Q_

0 Lo38 0

0 0 0 0 _N N _ _(() n n n

lSJM

B-17

1SV3 0 0 0 0- -N N- -crJ co I) I) I)

lO II)- - U) It)

U) II) N N lO lO

lO- st

I l-o 0 z U)

N

~

I I-=gt 0 l)

st st

--_ It) - ~ I) 0

0 0 ___

lf)

J w I-

It) N I)

0 II)

~ OC) J z I- =gt lt - lf) N 0 1-z l)

~ 0

0

0

~ 0

38 0

N IIJ I)

- - I)

1S3M

B-18

middot~ bullmiddot I

1Si3 0 0 0 0 N r-shy N r-shya) r-shy r-- co I) I) 1) I)

--_

E~i l)

0 z 3

I r-0 0 z

0 I(

0 --_ n 2 0 ~ N --

0

0

1S3M

B-19

---

_J

w r----2i OC) _J z I- lt( ~ V1 N 0 1-z V)

3n 20 3 iE 0

---- --_

NORTH

-_ t t t f t A +1 t lt-1--JJ-middot+J

r ft_f_frac14 fffftl middotmiddotbull f_ n- ~ tn

ttt1I1~ ~ ~ ~ ~f --H 1--- ~ -

rJj ----~ ~ ~--- ~ l j bull bull - bull bull Ir - ---_- --- --~~~~~I-~~~ ~ bull ~ ~ rt

- - ~rnlit ~~~~ ~~~~ ~~ ~~~~~~~ - _~-~~ ~~~~~-=~~~~~~~-gt

3820

bl I

N 0

tshy() w 3 fftfftlll

ffltlIJ11111~11- I I I J ~-- - ~~~~11J~ -~

3720 - I I JI J ~~~~~~~--------~~ diams bull + I J J _~ 4 bull I I I J ___ ~~~~-s---~~IJ-bullbullbullbullbullbull ~__middot~middotmiddotmiddotmiddotmiddot~~~~~E-e~~

4flA~~middot~middotmiddotmiddotmiddotmiddot~~~~~ ~--_---~- ~~ 1

367~7i51bull1bull11bull1 111 13251777JT7777~7777 I I I 14251

--~--~- ~~_-~-----~ ~~~J

--~-_--~- 1- I 1 I

~ 1lJ

I I I I I I 14751 I I I I I I I s~sl1 I I I 1575 I I

3770 tshy() lt( w

3720

13670

SOUTH

I 0

I 10

I I 20 30

(KM)

I 40

I 50

lllI 0 5 10 15

WIND SPEED (MS)

DWM WINDS AT LEVEL 3 1600 PST 24JUN87

(300M)

lSgt3 0 0 r--shy N r--shy r--shyt)

It r---1)

lO ---- N bull ~~ r lO ~ oe--- I

~~~~ t z~_-----~8 ~ ~~~2~-~----=---~~ t ~~----~~ -frac14~~~--

~v -~ 1 ~ - ~ ~~ ~~~-~~N~~~~~~~~~~~

tf~ ~ ~ -~~~~~imiddot~~~~~ ~~ ~~

_gt~~ middot1 ~ r2 l~ --~- I _Ct _ V I - ftV

0 ~ ~~- X

z~ HF bullIh IJ i It ti ~ 1 IJtl ~ ~ j t ~1

~ ~ 1~1

1 r ~

)

r r~P t t _r )r f

~ 1+ t t t f t ti ~ 1 lt ~ diams t f J t H ff 1 1I I I It diams diams Vf- 1 f f ~ f I 11

(____ t i(_ bullbull ~ bull ~ I r fr1)L_lt--~~vi 1t1J U1 -~- middot~ 1 t) ~ bull ~ bull ~ bull 1 1 f f f I t ~ - ( ~ ~(~ (_ ~ b ~ - ~ bull f 1 f f ~ bull

j ~r~--~ ~ _ ~ ~ ~ l 6 bull bull 4 t ft It _ - __ _ - J ~ ~ ~ t bullbullbullbull t - _ ~--~_____

__ I deg j ~ ~ b ~ _ Igt ~ _ _ ___ bull bull bull bull

~ ~ I ~ ~ ~ _ ~ _ _ _ __ - bull bull bullf

~ bull ~ ~ 4

I -- I bullbullbullbullbull

~~~ ~

1 bull ~

-- V)

LO lshy -----_ lf)

l- w w

=~ It) 0 l)

It)

2= )

0

~

l() 9 __~----- lf)r--- --------J______--L--J-~J-J-______~______~~~___________________________ r---N O O O ON

0 0 z 3

--

2 0 0 0 ----

LO

_j

w I--GJ Cl)

0 _j z lf) )I-

lt( ~ ~

lf) N 0 -- 0 I-n 2 Zlf) ~0 3 0

N ---

0 20 3 g0 -

0

N r- N I-~ I- I- ~ n n n n

1S3M

B-21

1Sv3

U) N U)

lJ) N n

0 N (0 I)

0 r-shyr-shyI)

0 N

I)

It) N It)

U1 r--1)

1S3M

B-22

0 w w (L Vgt

0 z ~

---2 0 __

_j

w _ ~ OC)

0 _j z U1 I- )

lt~ NVgt

0 --shy 0 1-t) 2 z () 0 ~ ~ (LN -middot -

0 20 ~~

0 ON

bull bull bull bull bull

1Sf3 0 0 0 0 N N CX) ID I) I) li li

~ n

~ n

tf) ~

A i -02middot a_ ~ r ____ Igt middotjmiddot i -1 ~ i r middot-~-----------------gt IJ IJ bull 1 j I ------~-----------------

_ IA_Jyen ~ ~ J ~ yen ----~---------------------

~ II --~_a IIgt 11gt Igt middot~ I bull ~ ~ ~ ~

1(1gt i i _JI J Iibull I - IJ Ji H j

bull bull I( --- j J t ~o ~- -- -J I I i J diams bull1bull bull bull i ~ _I I I I J 1 ~~- ~ 11 J l J diams -~ J) bull ~ I- t t ~ ( l f middott J bull 1_~1 ~ IJ II- I ( II ~ j t t bull)

bull t )bull ~) i ~bull bull __ __ I 1gt J I I I middot----- - ~ _ ~ Ji (Ji_ If ~ --~ bull i f l-Ji ~ p VIMyen I ~ middot1 bull I Ibull lt_~ ~ p1 )

I

__________________

~ 4 V ltI - - - -

~) i t --- -- yen 4 yen -- Iii 1yen yen JY yen II

I ~1 Ja a Igt- yen yen yen yen yen yen yenyenIiyen II II

a Igt bull ~ 111) (I J I JY yen tY yen yen II( ltf ~ I~) JY yen liY yen yen yen yen yen yen yen II II II ~ ~(II ~ yen yen yen r yen 1r yen yen yen It Ill

p cl

p 4 ampgt P JI r Igt bull

bull JJ Igt II

- ~ 11- bull

- -

+ _ _ _ __ __ +- ____

- - ----4

bull bull Igt Igt Igt

11 bull bull bull bull

bull bull It

IJ Igt bull t P

Igt bull t

- II Igt fl t middot~~-~~~t_yenyen yenyenyenyenyenyenyenyen

I ~J )Igt) 1 bull yen yen ~yen yen yen yen yen r - yen If II II Igt - I 1 J bull bullI _ _ 1 ~ ~ 1K )

bull -

bull bull II ~ Igt- J 6 bull I 11

fl) 1gt 11 Ill

bull t t fl

~

U1 r- n

~ n

_________o__JJ=---=-------oti~~e-~e11JEJEolELE-ILILLEJLlLu~uJ

l~

0 tf)

~ 0 n

0 N

0

0

- Vl ~ 2 ---

0 w w CL V1

0 z 3

-

2 y --

-

2 0 0 tlt) --

n _J w f-~ OC)

_J z gt

I- Jlt( q-

NVl bull) I-z Vl -~ CL

02 0 3 N 0 NIf)

ONN I N ro r- (0

n n n I)

1S3M

B-23

17z-g

WEST u u u ~ ~ ~ N ~ N

NO N~ 0~0

7J ~ () z -I 0 N (I)

~ )gt c_ -I C zr co ~ -J rT7

r (Jl

-- __ 0 0 0 s _

--_ 7 ~ --

~ z

~-0 0

--s (I) ___

0

0

N o (A 0

t ()1 0

oj(JI

-0

-()1

0 0 0 N -J

A I q bull if ~ ii ii ii I ii if 1 i J (JI

Ab4llltli ~~144

bull~~bull~1111111 11~1middot)1i~~~1 ~4gt~1111111~ II~ - bullbull~Agt~lll11 IIIAII tbull ~4-4~~~III IIll~ I ~14 4 - ~ bull i ~bull-ttt1 111111 I I 1-~ bullbullbullbullbull gt q bullbullbullbull I t I I I I I 4 I I I I I I I 1_ J~ I

4~ A - middot~~lll111I IIll 1 I 4 -1~~ l~ gt1llllllI 1l111 -~~ I N

tn()16 -1 Igt Igt I I l1I v I 7----(Yi ti mbull1-t

~Plgtlt111 VIII ii l middot~1111~~0~ I l~lll~310bullbull I i~W~ffi 1~~~~6~~~ I J~ 1~~~rw 11~~~1~ ~l~~t ~ i 11~~~~~~~ ~~f)~t~~I I~tl -1

~ --J ()1 l 111~1JV1 ~~~1~ I Ill tniz~i~~~~~~ ~~~~ 7 ~K -~~iii~~~~~~~~ il~~~~~~~ 1~~1~~~

middot1 middot1 middot1 middot1 middot1 middot1 middot1 middot1 middot middot1 middot1 middot1 I I I I vr )Igt(_ I II I I~~~~t~ 21~~~r~~~~~v111l I ~ II I -- I~ J(( I I II J l l l Cl ~ I ~ ~ ~ J J I I I yen - - bullbullJ_~ f yen ~ I IJ t I ti

diams J J J I I - ~ - ~ l1 yen -1) I I( t I ~ N J J J J 1- ur~ ~ - Jf1( -I) I I I ti I I j~

() UI diams Mi r)r yen fir_~~ bulll1t) JI 1 I middot i - (JI0 ~ nmiddotmiddotJ jmiddot-1 I I I f ~j--1J ~ __ middot gt C ~ J I f I 1 ltH I fl 1 ti I middotr- I I-I ~ f bull t t l )1j - _ I

t J4J-fbullt t ~ ii middotlfli ii~) - ~bullmiddotttM i f bull bull1 rI-Ku bull bull bull _ middot-~-J_J middot t +imiddot i t t ~ t ( ~ middot(~ I J bull Vf I r1- ~ j~fmiddot + r bull(~t t bullbull_t- J J ~) J ~ Igt

+ __ middot + V+ bull bull ti+ bull + -fi J i bull bull ~ f --- ~ ~ t Li bull bull t ++ diams + t bull +++ + bull ~ __Vbull ~ it 4 ~ i ()1 ~ 1 bullbull diams diams diams diams ++ ++ bull t 1 fA middot_ -----Y 4 ~ tn

~ ~bull t bull + diams + bull diams +++t + bull A VJ ~ bull bull ~ -o middot ~- bull t bull diams diams diams + ~i4_ ~ ~ ~

11 -~ 1 1 1 1 ~t t diams t t ft(middot-- f g a PA

--middott 4 -4 y 1 1 1 )f7~ V g n t A ~ ~bull a~ 4 1 1 ( V P q 1 bull A ~ V Y ~-- 4 I Cl oCl 4 A A ~tW --~- ~middot -)bull ~iliJ bull1bull

bull It t-- ti __ __ ~ (~w ~ ()1UI I bullbull bullrmiddot -~)fl l~~~ ) I A IIbull N~L~ r ~~~-ff~ --bull--1) 4 4 bull ()1

~ 14 ~ bull f 4 AA 4~ bull

44( )A - ~

- ti~ f 4 ~ 4 4 4 A bull ~ i

ti ti fl 1 4 tn llflfl44 4 -()1

~ ()1 ti ti fl 4 4 _ 4 bull fl _ 4 ~ ~

~ bull t~ - - I - 1 T T fJifrac12 1f 1~ fl t [ 1 4 bull bull ~ ltt ~4 ~~~11 l~~Nfl---~ ~~ bull ~t144

1 -middot I I f I ~ fl ti ti- Imiddot tJ 1-0 I 14

z o 0 -I

I

Y

)

u u u u 0) ~ ~ ~ ~ N ~ N 0 0 0 0

EAST

1S13

0 z 3

r r I-shy Ishyer gt 0 0 z ()

--_

2 0

--

___J

w CJ r----1 (lJ

0 l() z

Ishy gtlt J LO() N0

z Ishy()

3 0

0 20 3o 0 tj--

0

1S3M

0 w w 0 ()

B-25

------

~ --- _

NORTH 275 325 375 425 475 525 575

dJ 41 l ll~I tgtI I lo fA Itgt IA IA lo 1 IA IQ 1q lq If lq I ~I 4

~ ~ IIJ ~A ltI P Igt Igt Igt P V V V Q q l_-~- q ~ ~ ~ x- ~ ~ Y t~ --___q)11 4 ltI v v v v v v v 1raquo 4 -q q -~ q ~ 1 a

~ 4 ~~_gt~) ) ~~-4_~ A ltI fl v v v v p A V yjq ~ _ _ ~bullbull --shy~~~ ~ I Cl11 ~ 4 v v v v P- deg 4 ~ -V t V ( ~ a bull-

~ 1 ~~~ v ~sa- fl V P -iLpound_~A--4 q Igt P ~ 4 a~ 4 38203820

- _1 fa bull bull ~ II 11 4 4 ltf V P deg q 9 p Igt Igt Igt Igt P~~ _ _ _ bull -

- ~_R middot ~ gt- P-~-j---s--middotp-~~--- Igt p ~(

-~~ _ amp- 4 --v--J ~--~ -__~---- ~~ t f ---~middot bullbull ~ ~ ~ ~ ~~bull--- bull~bull~~ 4 ~-deg ~--~ ~_v -~ _~raquo Wh~

bull bull bull bull ___ol bull bull --___~ ~ _ A~~-~- f_~-~ bull 1 ~bull -~ Igt bull

a l -4 bull bull~ bull ~ ~ bull frac12~ P- __ _middotmiddot11-~~j)6-_ U bull _ JIgt~ bull I- bull ft ~ 4_~~~~ 9 P lgt--1gt~~~_-~_----~~~ ~ bull ~ ~ ~ ~ --~-~- ~~-_middot ~~~A~ ~ 1111 ~- ----~~ -~- IIgt _)-

1111 1111 -( _-middot 4 ~ Po Igt q lgtmiddotv11t_ Igt Igt II

3770 ~ P 0 ~ - bull k ~ 1- 1-

() pound 4 4 ~ q -44 - bull bull Igt ~- t Igt 1 Igt () w Igt 7 lt

3 - bull It It It bull bull ~--~ p ~ Igt ~ w ~~ It It It bull ~ -_t _ ~ bull bull bull bull --~ Igt

deg

td bull ft bull v ~lt~ Igt Ci~ 4gt I ~ It bull bull ~ 6 -It Igt ~

N bull bull It It ~ ~ _ ~_) ~ ~ lr It ft ft ft ft ft ft Igt -II-~ j ~ fil- _ _ _ _ bull 11r 1o 1o It 111- bull ft ft ft ft ft i i f - ~ 3720 bull It bull ft ft ft ltt q -e- ~ ~ ~j1

4

middot bull bull bull It It ft It bull ~ ~ ~ bullmiddot ft ft ft ft ltt ft ltt ltI 1 ~ - It bull It ft ft It bull -0 ~ JIgt ]~

middotmiddotmiddotmiddotbullbull1rt1rtft11- p-bull- ~1frac121 1tftftlttltltPt1t fgtbullbull ~~- bullbull ~

It bullbullbullbull It ltt It It ltt It lrt lrt tgt - ~

~~~ItIt ItItIt 1t11tft lttlttftlttltlt ltt lt11t ~ lgtbullJgtIbullbull bull~bull bull~bull ~ 1 bull bull 3670 367~75 325 375 425 475 525 575

SOUTH

1111111111111111I I I t--l 0 10 20 30 40 50 0 5 10 15

(KM) WIND SPEED (MS)

DWM WINDS AT LEVEL 3 (300M) 400 PST 25JUN87

0 0 0 0 N r-shy N r-shya) r-shy r-- (0 I) I) 1) I)

-

LO r--1) -

l~ i ()

0 z 3

I ~ n 0 z I)

N st-

0 If)

0 - I) 2 0 ~ N -

0

0

1S3M

B-27

---_

2 0 0 0

-

If)

_J

w Cj l-_J OC)

z_ ) lt( J () L()

ON z~ 3~ 20 3oo+

0 0 0 N N C0 (0 I) ~ I)

U)

U)

U) U) N N It) U)

I I-=gt 0

U) V1 N st-

lO N I)

0 lO

0 __ I) 2 0 ~ N _

0

0

__ 2 0

--

_J

w l--Gj OC) _J z I- =gt lt( ~ V1 N 0 1-z V) 3 CL

20 3 g0

1S3M

B-28

I fshyCt 0 z

0 r-shyr-shyI)

0 N r-shyn

0 r-shyl) I)

lO r-shylO

lO N It)

lO N ltt-

--

tlt)

_j

w r---fu o) _J z f- ) lt( ~ f) N 0 1-Z Vgt3 (L

2 03g0

I fshy)

0 l)

0 lO

0 -- n 2 0 ~ N ---

0

0

1S3M

B-29

1S13

-l)~ O 0 w

deg CL w

l)l ~

0 0 z 3

I lshya 0 z

--_

2 0 0 0

--

LO

_j

w__cj IJ)

0 _j z lf I- )

lt ~ ~ V) N

I) 20 - 0 Z(f)

I-

0 ~ 3 CLN -

2 00 3 gOr-

0

1S3M

B-30

Ht 11Sittl

lS13 0 0 0 0 N N II) (0 n I) n n

-- ()

LO t-shy ~ lO

(~i0 z

lO N LO

3

I Ishygt 0

lO () N +

--

2 0

--

_j

wr-----CJ OJ

0 _j z lt) I- )

lt ~ V) N

0 -- 0 1-shyI) 2 z () 0 i 3 ClN --- --

0 28 3 ltD

lf 0~_____________________________~_______________________--- t-- 0 0 0 0 ClCI N N t-shyII) t-shy io n n n n

1S3M

B-31

==- ~-_

NORTH

I bull bull - -f I I bull ~bull - ~__~~~~ ~~~

flt~11 $~~~t=- ~~ ~ 4Aligt~ ~~~ ~~

3820 1~~~- 4 t 11 ~ ~- --~_____-- ~ ~ ~~ 3820 ~~~

~~-~~~~

3770 3770

l1 ()w l-

lllizz tshy

~ ZlZZl ~ ~~~~~~

to I -IllIll

w -I IIIll~N llllll2~~

-II I I J I-~1~ r~~~~ 3720r ~ J J UL 1~A~~ 3720

~IIJJJJJ2~ ~~~ 1 ~ fl I JI JI2~~ 1~~~V fl fl ~ JI J J ~ y ~- 1-f4~) ~ fl fl fl I JI J _A2 1~ V~

~flflflflJIJIJl~2 ~~JIw~ ~ ~jlfljlflJIJIJI~ ~JIJIJflfl~~~ ~ ~~fljlfljlJI~~~~ -

J67 t-V1111111----(((((1i I~laquo rlt~1 I I I I I I I IM m I I I I I I I ~ MJ670 g75 325 375 425 475 525 575

SOUTH

11111 11111 11111 1I I I I I I 0 10 20 30 40 50 middot 0 5 10 15

(KM) WIND SPEED (MS)

DWM WINDS AT LEVEL 3 (300M) 1600 PST 25JUN87

1

NORTH

bj I

w w

i~ -tt--t ~ + ~frac14 diams diams diams diams diams f f f J-~~~l -ff~_x~ diams t diams ---t diams + diams ff f J1ff~t t

-=tl-U +---- ~ ~ t-t- diams diams __ diams~ diams diams ~ J I I 1 1 f ~ -y- ~I -~~-1t-~ diams +__+ diams + ++--J_f 1 ~JJ-11 I --

38201- ~~-- ~ ~--t_-( 1 ~ r 1t + middot~-t_ bull ~-~ bull bull bullmiddot bull r-r 1 ~IiI 1 I ~Ji~l _-=pound-~If~_ It It It bull bull bull bull bull ~ diams f f---bullmiddot+ --I __- _ I I~ 1 f1

( - ~~~~ II lit It It 1tt Iii Iii~ -r-middot -- ___- l_f--1-l -L ~~1 1 ~ ~_( _ -~~ ~------~ 1t(~ bull (t ft- ~ middotv -11-fI 1 - t~~1 1 41

~ - ~-~- lit 1t lk_i -- -~--- -_ -j rf-- l1 r111 1 I It It~ It 1t 11i bull-~ ~- ~ t_bullbull_~ (middot ~--middottY~i_(4Xtl~4j_ middot It It ~ -- ---~----~----_I~)-~-~ -

~-It It ltt middot~- ~ -~-middot ~-pound1[_~ -~- - middot - deg - - It It l diams diams 4 middotbull--bull ~ ~ ~ diams 7 1---~~ -L_- - ~ t( I diams -( bull diams ~ ~ bull ~ -- JI JI Jf JI JI j(_ ~II deg It_ -~ ~- I I I J JI JI JI JI 1

~ J- ~llj ~- diamsdiams +II IllJI_ h~ ~ ~ ~ bull bull ~ JI J J J ~ 1 x111 X7 -~ ~ diamsdiams 4111 JJJIJJ~~~~~~~~1t diamsdiamsdiams ~111 JJIJJIJllllb~ h~~~hh middot ~ - diams diams bull I I J J I I I I JI JI I l1-14~frac12-~~~ji_ ~ + f 1 J I 1 I I I 1 ~ x~ f1 11 middot -

bull JI I I I11~bullY1iz 1 41 ~ f I J J J JI J J J J J I I I lmiddot ~ t JI JI JI 1 JI 1 1 JI J I I I It~ if~_~

It_ ~ 1 JI JI JI JI J J I I l-~ 4 t J J J J J J J JI JI I I l l deg ~~ _ ~ 1111JJIJIJIJIJIJIJIJI t JIJIJIJI~I JIJJIJIJI_

~- I t I I JJJIJIJIJIJII~~~~ t JIJJIJIJIJIIII ~~ JJ JIJIJlllll ~ t IJJIJIJl1 1 1 ~ ~~I 1 t 1 A 11111111 II I I I

325 375 425 475

SOUTH

I I I I I I 0 10 20 30 40 50

(KM)

525 575

1111 111 1111 10 5 10 15

WIND SPEED (MS)

3820

3770 1-() lt( w

3720

3670

DWM WINDS AT LEVEL 1600 PST 25JUN87

5 (1000M)

0 w w CL ()

0

1S13 0 0 0 N r-shy N agt r-shy r--t) I) 1)

I() It)- r-shyU) U)

z U) N It) 3

( I I lshy Ishyo ) 0 0z It)

~lgtIgt~() st- b tgt ~ q st

lgtbbtgtb

b b t t 0 b

N

Igt b t b b b A 6 ~ b b t b C A 4 d 4

ttCt4lt1-it e Igt b tgt tgt V q ltl ltl ltI ltl

ti- deg 1 41 9 q I I ltl q q

i V q ltl q q q q I l() r-shy AlgtV ~ tlt) ~t) -~~~q

~ bull amp ~

0 ~ ~

-qa ~ ~ 1gt1 111111

b-a~-V ltillilI

bull lt bull bull a ~ Igt ~ V V V q 4 __J

It It lgt a -a~ Igt C tgt V w r---(J OC)

bull ~ Igt t 4 bull bull bull bull U) 0 __J z middot 1gt44lt14

U) ) t) rshy J - -N

lt( l() ~ ~~ CI() ~ ~

~

0 Ishy bull bull bull diams 1 z ()~ bull ~ bull diams diams 1 CL3bull ~ ~

i b y ~bullbullTT r I I 0

~ bull bulldiams ~ ~ b b b b ~ bullbull diams T r r I U)______-11____________________________ _ 0

0 O O ON N r- N r--agt r-- _ ~ I) I) I) I)

1S3M

B-34

I

_ _ 3820r- ttr- t f T Jf-Lt If t t 1l-- -~ 1~ t t

NORTH

~bull 1414

~~-_ ~ ~ r-- - --~ ~ - - _ r-- fT W - - r V-V ff f

- t t t t f I~ _AAjAA~-r bull(- -J It ~---1 t ~~~-1-- 1 ( ~~ - J ~ t t i f 1 ~ A_A-yen~_~_ ~ ~ 1 ~ t t ~ t t middotmiddotkt f ~-~-~~-----~~-- ~ ~ ~ ___ll_ bull ~

t -r- _______~~----- r ~bullbull _ ~ ~ tt-~J--~c-~~ ~ 1~--______ bull

~ -t lJ-- f t-J-- r---~~---middot _-- ~~-- ~ bull bull ll~iti~~sect~~~ ~ bullbull~bullbull bull~~n~ bull bull bull n~ bull bull

A)~lfifrac12~~ ~III I --1

3770 l l L l L - - ~ -- ~ - 1 ~ - 770 tshy~ ~~~~~~~~~11 1 ~~=1~~- Ul

W 1lllll~I ~~~~1111~~ lt( w ~1~~1~1~~j~~~m ~~~~ ~ - ~

11 1111 1111~I I 11111111 --- middotE~

tj IIIIIIIII_ ~tI l) llllll_~_p ~1l1 1~A~~~A~~rrr-v

3720t- I I I J J J A__ r r 0 11J)~~~----~_~ppmiddot-~~f Jl~~~~~---~--~~r~-~~q~q ~1

I ~JI I~ A A-_

~JIJl~~~~~A-----A rrbullbull~f~df~ ~~JIJl~~~~A~~--~- fffdfdff

~~JIJI~~~~~~---- bullfbulldbullfdf~

~IJIJl~~~AA~ --middotmiddotmiddotmiddotmiddot~middotmiddot~~~ ~l~JIJIJl~~~Al~pp~~~~bullbullffffffdff X ~~~~JI~- A(- f bullbull P ~ ~~bull1f1q1f1f1f1f1f1d1bull

3670275 325 375

1111 1111 11111 1 1 1

0 10 20 30 4-0 50 0 5 10 15 I I I I I I i(KM) WIND SPEED (MS)

iDWM w1tms AT LEVEL 3 (300M) ir 2200 PST 25JUN87

0 If)

0 __ I) 2 0 ~ (j __

0

0

__ 2 0 0 0

__

LO

_J

w f- GJ ll) _J z I- ) lt( ~ () N 0 1-z () ~ Cl

20 ~~ ON

1S3M

B-36

Page 7: Nind Observations Collected during the Southern California ...

TABLE 1-1 SCAQS surface wind monitoring sites

UTM- UTM-Site Easting Northing

Identifier Location (km) (km)

ALHA Alhambra 3945 37727

ANAH Anaheim 4150 37425

AZUS Azusa 4149 37774

BANN Banning-Allesandro 5117 37540

BARS Barstow 4979 38611

BU23 Buoy 46023-Point Conception 1594 38014

BU25 Buoy 46025-Catalina Ridge 3054 37307

BURK Burbank 3795 37830

CASI BLM-CasitasLos Padres NF 2824 38089

CELA Los Angeles-North Main 3869 37701

CHIL BLM-ChilaoAngeles NF 4046 37990

CHIN Chino 4365 37634

CI Santa Catalina Island 3683 36963

ONS Cajon Summit 4617 37990

CLAR Claremont College 4351 37735

CM36 CIMIS-Blythe 7262 37256

CM44 CIMIS-U C Riverside 4690 37581

CM50 CIMIS-Thermal 5703 37230

CM55 CIMIS-Palm Desert 5572 37323

CM60 CIMIS-Barstow 4895 38621

CM62 CIMIS-Temecula 4794 37055

COMP Compton Airport 3855 37503

COST Costa Mesa-Placentia 4138 37242

CRES Lake Gregory-Crestline 4748 37890

ELRO El Rio-Rio Mesa School 3026 37922

ELSN Elsinore 4677 37260

FONT Fontana-Arrow Highway 4534 37731

Continued

2

9106109

n iil itb( r r tt A-TABLE 1-1 Continued

UTM- UTM-Site Easting Northing

Identifier Location (km) (km)

GLEN Glendora-Laurel 4215 37782

HAWT Hawthorne 3734 37543

HESP Hesperia-17288 Olives 4738 38084

HF Henninger Flats 4006 37847

KH Kellogg Hill 4242 37711

LA Los Alamitos-SCE Power Plant 3980 37370

LAHB La Habra 4121 37542

LANC Lancaster 3957 38415

LBCC Long Beach City College 3947 37437

LCAN La Canada 3882 37861

LGBH North Long Beach 3900 37430

LSAL Los Alamitos-Orangewood 4045 37398

LYNN Lynwood 3882 37548

MALI Malibu 3440 37669

MISS Mission Hills 3651 37932

NEWL Newhall-County Fire Station 3590 38060

NORC Norco-Norconian 4472 37533

NTD Pt Mugu Naval Weapons Test Center 3048 37769

OJAI Ojai-1768 Maricopa Highway 2914 38138

PASA Pasadena-Wilson 3961 37773

PERI Perris 4784 37380

PICO Pico Rivera 4023 37641

PIRU Piru-2SW 3324 38076

PLSP Palm Springs-Fire Station 5425 37457

POMA Pomona 4307 37696

PV Palos Verdes-San Pedro Hill 3762 37346

Continued

3 91061 09

TABLE 1-1 Concluded

UTM- UTM-Site Easting Northing

Identifier Location (km) (km)

RDLD Redlands-Dearborn 4853 37686

REDO Redondo Beach 3720 37459

RESE Reseda 3587 37851

RIAL Rialto 4625 37760

RIVR Riverside-Rubidoux 4615 37620

SIMI Simi Valley-5400 Cochran 3449 37940

SNBO San Bernardino 4748 37739

SNI middotsan Nicolas Island 2684 36823

TANB BLM-TanbarkAngeles NF 4301 37849

TEME BLM-TemescalLos Padres NF 3531 38167

TORO El Toro 4320 37252

TRON Trona-Market Street 4361 39573

UPLA Upland ARB 4420 37736

VCTC Victorville-Civic Drive 4707 38185

VENI Venice Beach 3642 37612

VERN Vernon 3874 37625

WALN Walnut 4223 37677

WHIT Whittier 4053 37540

WSLA West Los Angeles-VA Hospital 3657 37686

WSPR BLM-W arm Springs Angeles NF 3552 38291

ZUMA Zuma Beach 3313 37659

9106109 4

TABLE 1-2 SCAQS upper-air wind monitoring sites

UTM- UTM-Site Easting Northing

Identifier Location (km) (km)

BUR BurbankGlendalePasadena Airport 3748 37850

DAGG Daggett SCENES Site 5198 38581

EMUA El Monte-9528 Telstar 4021 37700

GLUA Glendora-near SCAQMD site 7000591 4216 37783

LBCC Long Beach City College 3947 37437

LBCR Long Beach City College 3947 37437

LMUA Loyola Marymount U niversity-Engng Bldg 3694 37604

NEED Needles SCENES Site 7181 38496

NSI San Nicolas Island 2717 36796

NTD Pt Mugu Naval Weapons Test Center 3048 37769

ONT Ontario International Airport 4443 37684

PSP Palm Springs 5460 37429

RAL Rialto 4589 37567

SFUA Santa Fe Springs 4020 middot 37557

TRM Thermal Airport 5776 37209

VBG Vandenberg AFB 1733 38472

YLUA Yorba Linda County Park 4287 37549

591061 10

5~

NORTH 275 325 375 425 475 525 575

~-~

bull ( I (o(r--L__- __ c_ __ ) -9) I _)I --~ ---~ __------__

bull (Q ~ ~ l-- middot r l__ _ _ 1 2 oo--_ - _ ~ shy

-

----- ----

------ ---

~middotmiddot- lt~]~---~ ~ 1 L

~~ 0

- o 7 -

----

~ middot -_ -_ I ( C~ ) ~ middot---) lt____ ) 9 bull ~- J t------------ ~ middotbull _ __ 10o -- - - - - - - 0 __ - J J--aoo ltJ

3620---_--__ _ - 0) ------- ___ -- - - ---- -- - --~- 7--

- middotmiddot -middot-- 0 _ - - I 1---------- ---- ~ ---~-----_ -~- ------- -_ ------~lt()~ --nmiddotor ~o-gtpcbull-middot ccc_--gt ____ middot_middot Ji tdegoo CmiddotI bull -bull - - I ---

middot-middot ___ - 1 c___ ~ i-- l bull - --- bullsoclt---_ middot middot-~soc_ ~- le r---- ltD

_ - -- ____ -c bull -~------1 5

= __ __ ) --~ --_ ---- ____ - _____-~~~-~ ~ _ ---~-frac142--~~ so9~ _ Q___~ - -- _ bull bull 1 middot -~ - -- - bull bull c- rAo 0o(Y--

-_ -------=--=_6CO-------- - ~)_O~ _ ~_ lt--middot_~~--~ (_ )-~- - _- ~ 0

~) ( ___ ------ -~- C jjh --- - ~ I 3770

t- 300- middotoo___ -~- l _2 ---sii middot middot 50~ ( C tshyV10w w ~ C ~_( middot bull i

l_ --t

~

__ _~) igtgt

- 1

- middot

7)_ -o-

- _middot-- -- ~ ---30~lt_~-L_ 9oo_~gn~~-__~~

U)

3770

- - o ~~~~d l -- o~ Jl _

si (_ - (----_ ( 1400t 37203720

- 1 ) reg_~S ~ ~~

7 9 b -- -- 0 ~

i --shyf I I I ~Ibull-bull

367~s I I I I I I I 13251 I I I I I I I 1351 I I I I I I I 14251 I I I I I I 14~51 I I I I I I I ss 7 I I I I I I I5s I I I I 3670

SOUTH

I I I I I I 0 10 20 30 40 50

(KM) i

FIGURE 1-1 The SCAQS 1987 analysis domain (axes labeled in zone 11 UTM coordinates topography contoured in meters)

-- ii gti kd

Our analysis consisted of (1) generation of hourly gridded wind fields for the 17 SCAQS intensive study days using the DWM (2) analysis of the mesoscale airflow patterns and (3) calculation of forward and backward particle trajectories to examine pollutant transport in the SOCAB

The results of the diagnostic analysis of SCAQS wind observations are presented in this report The generation of wind fields and the resulting airflow patterns are described in Section 2 The trajectory analysis is presented in Section 3 Plots of the wind fields are given in Appendix B The trajectory plots are included in Appendix C

9106102 7

2 GENERATION OF WIND FIELDS AND ANALYSIS OF AIRFLOW PATTERNS

DIAGNOSTIC WIND MODEL

Hourly gridded wind fields were generated for the 17 SCAQS intensive monitoring days using the Diagnostic Wind Model (DWM) (Douglas et al 1990) This model incorporates observations where they are available and provides some information on terrain-induced airflows in regions where local observations are absent The model is formulated in terrain-parallel coordinates Wind fields are generated using a two-step procedure

In step 1 a domain-scale mean wind is adjusted for terrain effects These include the kinematic effects of terrain (lifting and acceleration of the airflow over terrain obstacles) thermodynamically generated slope flows and blocking effects Step 1 produces a spatially varying gridded field of u and v for each vertical layer within the model domain

In step 2 observational information is added to the middot(uv) field calculated in step 1 using an objective analysis procedure observations are used within a user-specified radius of influence while the step 1 (uv) field is used in subregions where observations are unavailable The following modified inverse-distance-squared weighting scheme (Ross and Smith 1986) is used for the interpolation of data

where (u0

v0 )k denotes an observed wind at station k rk is the distance from station k to a

given grid point (u v)1 is the step 1 wind field at the grid point and (u v)i is the updated wind vector The parameter R controls the relative influence of the observations and the step 1 wind field

Following the interpolation a five point smoother of the form

9106102

Amiddot 1J

8

is applied to the horizontal wind field to reduce discontinuities that may result from the interpolation The vertical velocity is calculated by integrating the incompressible conservation of mass equation Zero-gradient lateral boundary conditions are used

GENERAL PROCEDURES

Generation of the SCAQS wind fields involved (1) preprocessing of the wind data for input into the DWM (2) plotting and quality control checking of the data (3) specification of the model input parameters (4) exercise of the DWM and (5) graphical display of the gridded wind fields Winds were analyzed at six vertical levels 10 100 300 600 1000 and 1500 meters (m) above ground level (agl)

In the preprocessing step the upper-air data were vertically interpolated to the model levels and temporally interpolated to enhance the temporal consistency of the wind fields and to provide hourly input for the DWM

Following the preprocessing step the data were plotted and examined for horizontal vertical and temporal consistency Data that failed the quality control checks were eliminated from the model input data set

The controlling parameters for the DWM include the maximum radius of influence (RMAX) at which a monitoring station can influence the interpolation at a grid point the weighting parameter for terrain effects (R) the number of stations to be used in the interpolation (NINTRP) and the number of smoothing passes (NSMTH) Note that the maximum radius of influence is specified independently for the surface level ( over land) upper levels (over land) and over-water portions of the domain The weighting parameter for terrain effects and the number of interpolating stations are specified separately for the surface level and upper levels In the diagnostic analysis of the SCAQS wind observations these parameters were specified as follows

RMAX (surface) 20km RMAX (aloft) 100 km RMAX (over water) 150 km R (surface) 10km R (aloft) 50 km NINTRP (surface) 4 NINTRP (aloft) 3 NSMTH 4

Tests were performed to examine the sensitivity of the DWM to the various contr ling parameters and to select the optimum values of these parameters for the SCAQS v nd analysis

9106102 9

The DWM also requires as input a domain-mean wind and stability information For this analysis the domain-mean wind was specified separately for each analysis level and was based upon the average of the level 6 (1500 m agl) wind observations To account for friction the speed of the domain-mean wind was reduced for the lower levels by multiplying the average wind speed for level 6 by the following scaling factors

Level Scaling Factor 1 048 2 072 3 083 4 090 5 096 6 100

The domain-scale lapse rate was the calculated average of four inland sites These varied according to data availability

Six-hourly plots of the level I (surface) level 3 (300 m agl) and level 5 (1000 m agl) wind fields for each episode are given in Appendix B

SUMMER INTENSIVE MONITORING PERIODS (

Mesoscale airflow in the SOCAB during the SCAQS summer intensive monitoring periods appears to have two components

A basic diurnal cycle driven by land-water temperature differences and complex terrain and

A perturbation associated with the overlying synoptic flow

19 June 1987

The surface and upper-air wind monitoring site locations for this intensive monitoring period are indicated on pages A-1 and A-2 respectively Plots of the diagnostic wind analyses for 19 June are given on pages B-1 through B-12

The surface early morning airflow pattern on this day is characterized by weak winds over much of the coastal and inland areas with moderate NW winds over the Coachella Valley and offshore At 300 m agl winds are S over the western half of the domain and W to NW over the eastern half of the domain The overlying flow at 1000 mis W

9106102 10

n1er

The sea breeze is somewhat slow to appear in the western basin on this day but has begun to develop by 1000 PST At this time winds at 300 m agl remain S over the western part of the domain and W to NW over the eastern part of the domain Some S flow is also apparent at 1000 m

During the afternoon hours three distinct features are apparent in the surface airflow pattern

A sea breeze (W flow) develops along the coast between Santa Monica and Palos Verdes and penetrates inland A branch of the sea breeze penetrates into the San Fernando Valley resulting in weak SE flow at Burbank and Reseda

An area of weak (SW) winds forms in the Whittier-La Habra-Pico Rivera area persists throughout the afternoon and fonns a convergence zone in the central basin with the penetrating westerly flow The S component of this flow is due to sea breeze development along the coast near Long Beach

Upslope flow develops along the foothills of the San Gabriel and San Bernardino Mountains (eg at Glendora and San Bernardino) Along the eastern foothills the upslope flow is supplanted during the afternoon by the penetrating W flow

By 1600 PST on 19 June the depth of the upslope flow near Glendora exceeds 600 m Strong outflow is apparent through the Cajon and Banning passes Aloft winds are generally SW with some SE flow near Burbank and NW flow over the Coachella Valley

Significant onshore flow (3 ms) persists along the Santa Monica-Palos Verdes coastline through 2200 PST Feature-s of the afternoon airflow persist aloft through this time

24-25 June 1987

Surface and upper-air wind monitoring site locations for this intensive monitoring period are indicated on pages A-3 and A-4 respectively Plots of the diagnostic wind analyses for 24-25 June are given on pages B-13 through B-36

The airflow patterns on these two days are similar to one another and to the ttern on 19 June The overlying flow is generally weak below 1000 m agl with moderak t5 ms) SE flow at 1500 m agl

On 24 June the early morning surface airflow patterns are characterized by ver middoteak winds At 300 m agl winds in the Coachella Valley are SE By 1000 PST a we1 organized zone of weak S flow extends from Long Beach to Pasadena this S flm

9106102 11

(

reaches a depth of 300 m agl Southeastern flow in the Coachella Valley and E flow through Banning Pass are apparent both at the surface and 300 m agl S to SE flow dominates at 1000 m agl The II three-zone II surface airflow pattern is apparent during the afternoon The wind shifts to Wat Banning Pass by 1500 PST At 300 m agl winds are SW over much of the basin with SE flow at Burbank and in the Coachella Valley At 1000 m winds are generally SW At 2200 PST the airflow pattern is characterized by weak unorganized flow at the surface and 300 m agl Winds at 1000 m are NW over much of the domain but SE over the Coachella Valley

The airflow on 25 June is similar to that on 24 June During the early morning hours winds at the surface are very light Weak SE flow is apParent at 300 m agl At 1000 m agl winds continue to veer toward N The sea breeze develops more quickly than on the previous day and winds at Banning Pass become westerly by 1300 PST Calm winds are observed at Pico Rivera throughout the afternoon As on 24 June the afternoon airflow at 300 m agl is characterized by SW flow over the basin and SE flow at Burbank and over the Coachella Valley Upward propagation of W flow is generally slower than on 24 June Winds at 1000 m agl are S to SE During the evening hours the surface winds become light while at 300 m agl winds over the Coachella Valley become NW Organized W flow is apparent over the W basin through a depth of at least 300 m agl through 2200 PST

13-15 July 1987

Surface and upper-air wind monitoring sites for this intensive monitoring period are shown on pages A-5 and A-6 respectively Plots of the diagnostic wind analyses for 13-15 July are given in Figures B-37 through B-72

Airflow patterns on 13 and 14 July are generally consistent with the basic diurnal cycle described earlier However an unusual airflow pattern develops in the Coachella Valley on both days On 15 July strong SE forcing is associated with a delay in sea breeze development

The 13 July early morning surface airflow pattern is characterized by light winds and a weak cyclonic eddy over the Santa Monica Bay Winds aloft are light to moderate and primarily W The sea breeze develops rapidly on this day and by 1200 PST W flow overwhelms the S sea-breeze flow in the Long Beach Area W flow appears at Banning Pass by 0800 PST The surface afternoon airflow is characterized by the three-zone airflow pattern described earlier with strong upslope flow along the foothills ( gt 5 mls) and significant outflow through Cajon Pass Observations at Palm Spring (NW winds) and Thermal (SE winds) indicate a convergence zone in the Coachella Valley with a depth of at least 600 m W flow dominates at middot1000 m with S to SE flow over the Coachella Valley During the evening hours a cyclonic eddy redevelops over the Santa

9106102 12

rtMt1

Monica Bay winds are weak throughout the basin but airflow into the Coachella Valley is especially strong

Airflow patterns on 14 July are similar to 13 July with a few exceptions During the early morning hours the surface airflow is characterized by weak disorganized flow There is no eddy apparent over the Santa Monica Bay The overlying flow is weak and primarily S to SE at 300 m agl but W to NW at 1000 m agl Sea breeze development is approximately two hours slower on this day than on 13 July By 1000 PST weak S flow has developed over the Whittier-La Habra-Pico Rivera area and SE flow is apparent at Burbank AS component to the flow appears at 1000 m The afternoon surface airflow pattern is similar to that on 13 July but the S upslope flow at Glendora is weaker S flow develops at Elsinore and several coastal Orange County sites The Coachella Valley convergence zone reappears at the surface at 1600 PST two hours later than on the previous day At 300 and 1000 m agl W to SW flow dominates over the western twoshythirds of the domain SE flow is apparent over the Coachella Valley During the evening hours the surface airflow over the central basin is S to SW W flow components persist along the eastern foothills through 2200 PST

On the morning of 15 July surface winds are weak but maintain a S component Moderate SE flow is apparent offshore The overlying flow is generally E to SE By 1000 PST the surface airflow pattern is characterized by S flow over the central basin and along the foothills SE flow in the Coachella Valley and E flow through Banning Pass The depth of the S to SE flow is greater than 1000 m agl During the afternoon a weak sea breeze penetrates inland and winds along the foothills become W Winds shift from E to NW at Banning Pass at 1600 PST A weak S flow component persists in the Whittier-La Habra-Pico Rivera area throughout the afternoon A weak slopevalley circulation develops in the Coachella Valley resulting in SE flow there At 300 m agl winds are SW to W over the central basin and SE over the Burbank and the Coachella Valley At 1000 m S to SE flow dominates W winds persist along the foothills through 2200 PST and weak S to SE flow redevelops at the surface Remnants of the afternoon airflow pattern persist aloft

27-29 August 1987

The surface and upper-air wind monitoring site locations for this intensiv middot1onitoring period are indicated on pages A-7 and A-8 respectively Plots of the dia stic wind analyses for 27-29 August are given on pages B-73 through B-108

On the morning of 27 August surface winds are weak over most land areas a 1djacent coastal waters with moderate (5 ms) NW winds well offshore Winds aloft a Jrimarily N with weak NE flow at 100-300 m agl over the central basin By 1000 PST threeshy

IIzone airflow pattern has developed at the surface and is somewhat apparent ( hin the limits of the upper-air network) at 300 m agl SE flow has developed at 100( agl

9106102 13

This pattern is maintained throughout the afternoon Within the Coachella Valley a classic daytime slopevalley flow pattern develops with SE flow extending to a depth of 1000 m E flow develops at Banning Pass and persists through 1700 PST W flow over the basin develops upward throughout the afternoon By 1600 PST wind at 300 m agl are W to SW over the central basin and SE over Burbank and the Coachella Valley During the evening hours the features of the mesoscale airflow pattern over land weaken both at the surface and aloft There is no clearly developed offshore-directed land breeze

On the morning of 28 August the surface winds are weak and the overlying flow is primarily E Retardation of the sea breeze by the overlying E flow is apparent by 0900 PST S flow develops in the Long Beach area E flow at Banning Pass is substantially stronger than on 27 August During the afternoon of 28 August S flow persists at Long Beach and develops in the Whittier-La Habra-Pico Rivers area SE flow is observed along the Orange County coast E flow through Banning Pass persists throughout the day W wind components along the Santa Monica-Palos Verdes coastline are weaker than on the previous day and NW flow fails to develop at San Nicolas Island W flow over the central basin disrupts the SE flow aloft During the evening hours the airflow features weaken W flow along the foothills does not persist as long as on the previous day

The early morning airflow pattern on 29 August is characterized by SE flow both at the surface and aloft Sea breeze development on this day is slower than on either of the previous two days S flow again develops in the Long Beach area and appears to be stronger than on the previous day Although the sea breeze is weaker winds at Banning Pass shift from E to SW by 1300 PST This shift occurs at 1800 on 27 and 28 August SE flow persists aloft with limited upward development of the W sea breeze flow W flow persists in the western basin area through 2200 PST and SE flow persists aloft

2-3 September 1987

The surface and upper-air monitoring site locations for this intensive monitoring period are indicated on pages A-9 and A-10 respectively Plots of the diagnostic wind analyses for 2-3 September are given on pages B-109 through B-132

The first day of this period is probably the most anomalous of the summer SCAQS intensive measurement days Overlying easterly forcing during the morning hours prevents development of W flow along the foothills and inhibits upward development of the sea breeze over the western and central portions of the basin The easterly forcing appears to reverse rather abruptly on the afternoon of 2 September Unusual winds are also observed at Burbank on 2 September During the late morning and afternoon Burbank experiences an unusual wind shift from SE to W through a depth of 1000 m On 3 September the overlying airflow is W and the airflow patterns are more typical

9106102 14

rrn

On the morning of 2 September strong downslope flow results in N to NE winds at several sites along the foothills of the San Gabriel Mountains At 300 m strong NE winds are apparent over the central basin The overlying flow is E By 1000 PST the sea breeze appears as W flow along the Santa Monica-Palos Verdes coast and S flow in the Long Beach area The surface analysis indicates a band of S flow from Costa Mesa to Azusa W flow has not developed along the eastern foothills Winds are SE in the Coachella Valley and E through Banning Pass E flow aloft continues and intensifies During the early afternoon hours a relatively strong sea breeze penetrates inland to Azusa while winds in the Whittier-La Habra-Pico Rivera area remain weak The sea breeze weakens considerably after mid-afternoon Between 1200 and 1500 PST the wind at Burbank shifts from SE to W through a depth of 600-1000 m By 1600 PST the overlying flow has shifted from SE to W Onshore flow continues at the surface through 2200 PST while the winds weaken considerably Although the overlying W flow persists in general 300 m agl winds at Burbank become SE

The early morning airflow on 3 September is characterized by weak winds at the surface SE flow at 300 m agl and primarily W flow at 1000 m agl Although the major surface airflow features appear to develop as on previous days upward development of the pattern is limited Strong S flow is apparent by 1200 PST between 100 and 300 m agl over the central and western basin By 1600 PST the sea breeze has penetrated well inland Imbedded in the sea breeze is a persistent calm area in the vicinity of Lynwood S flow persists at 100-300 m agl over the central and western basin while flow at this level off shore remains NW At 1000 m agl W flow continues This general pattern persists through 2200 PST but weakens considerably especially at the surface

AUTUMN INTENSIVE MONITORING PERIODS

The mesoscale airflow patterns in the SOCAB during the SCAQS autumn intensive monitoring periods exhibit a weaker diurnal cycle than the summer airflow patterns Synoptic forcing also appears to be stronger

11-13 November 1987

The surface and upper-air wind monitoring site locations for this intensive monitoring period are plotted on pages A-11 and A-12 respectively Plots of the diagnostic wind analyses for 11-13 November are given on pages B-133 through B-168

During the early morning hours of 11 November NE surface winds are apparent over most of the region Surface wind speeds are very light over the basin and somewhat stronger along the foothills and the coast At 300 m agl winds are light and generally E At 1000 m agl winds are W to SW over the western half of the domain and SE over the eastern half of the domain Weak E to NE surface flow persists throughout most of the

9106102

15

morning in the first 300 m An apparent anticyclonic eddy (SE flow at Long Beach weak S flow at Burbank W flow at El Monte) develops between 600 and 1000 m agl on this morning A weak sea breeze forms around 1200 PST penetrating only to the central basin There is no apparent turning of the sea breeze into the San Fernando Valley W to NW flow develops offshore and is deflected around the Palos Verdes Hills This W flow is also apparent at 300 m agl Downslope flow components along the foothills are apparent by 1600 PST At this time the 1000 m agl winds are weak and N The sea breeze rapidly dissipates and NE flow develops at several coastal sites indicating a land breeze NW flow is maintained off shore The nighttime airflow pattern aloft is characterized by weak N winds at 300 m agl and weak W winds at 1000 m agl

The surface airflow pattern on the morning of 12 November is generally similar to that on 11 November E flow over land is apparent through a depth of 300 m while NW flow persists offshore The overlying flow is W The afternoon surface airflow pattern is more similar to a typical summer afternoon pattern than the previous day Turning of the sea breeze into the San Fernando Valley is apparent and W flow develops along the foothills of the San Gabriel and San Bernardino Mountains by 1400 PST Airflow at 300-600 m agl appears to veer continuously from E to W at most inland sites during the afternoon NW flow through a depth of 1000 mis apparent over the Coachella Valley Surface winds become light and disorganized during the evening hours Unlike the previous day NE flow does not develop at the coastal sites and NW flow weakens offshore W winds persist aloft

On 13 November surface winds are very light through the early morning hours with E flow components apparent immediately offshore The overlying flow is WNW but becomes S over the central basin by 1000 PST As on the previous two days a sea breeze becomes apparent at the surface by noon W flow components over the basin and foothill areas are stronger than on the previous two days both at the surface and aloft Significant W flow also develops in Banning Pass Moderate to strong W winds are apparent aloft During the afternoon and evening hours SE winds are apparent at Burbank between 300 and 600 m agl Intense W flow develops off shore and propagates inland during the evening hours W flow continues aloft with some S to SE flow between 100 and 600 m agl at Burbank and El Monte

3 December 1987

The surface and upper-air wind monitoring site locations for this intensive monitoring period are plotted on pages A-13 and A-14 respectively Plots of the diagnostic wind analyses for 3 December are given on pages B-169 through B-180

The early morning surface airflow pattern on 3 December is characterized by weak NE winds over the inland areas and a weak cyclonic eddy off shore The overlying flow is S to SE Surface winds remain light and variable through most of the morning Moderate

9106102 16

txi Iii ttii

E flow is apparent over the western and central basin between 300 and 600 m agl A sea breeze develops around 1200 PST reaching a depth of 300 m and penetrating only approximately 30 km inland S to SE flow persists above 300 m agl The sea breeze weakens during the evening hours and N flow through a depth of 300 m develops at Long Beach E flow components intensify at 600 m agl and above

10-11 December 1987

The surface and upper-air wind monitoring site locations for this intensive monitoring period are plotted on pages A-15 and A-16 respectively Plots o~ the diagnostic wind analyses for 10-11 December are given on pages B-181 through B-204

On 10 December the early morning surface airflow pattern is weak and disorganized Weak NE flow is apparent over much of the basin between 100 and 600 m agl The overlying flow at 1000 m is N The surface airflow over the basin is weak throughout the morning hours while NW flow develops offshore Winds aloft remain N A weak sea breeze is apparent by 1200 PST the sea breeze penetrates only about 30 km inland and is limited to a depth of approximately 300 m There is no apparent turning of the sea breeze into the San Fernando Valley Elsewhere in the basin the surface airflow remains weak By 1600 PST the sea breeze has weakened At this time winds aloft are predominantly W to NW at 300 m agl and N at 1000 m agl During the evening hours surface airflow over the basin becomes weak and disorganized while E flow develops at Palos Verdes Strong N winds appear aloft (300-600 m agl) at Burbank LMU and Long Beach however winds at this level further to the east remain light

On 11 December the early morning surface airflow pattern is similar to that on 10 December Relatively strong ( gt 10 ms) NNW winds persist at 600-1000 m agl at Burbank and LMU E wind in the 100-300 m agl appear at LMU and Long Beach Throughout the morning the surface winds remain light and N winds 9ver Bu~ank weaken considerably A sea breeze is apparent by 1200 PST but is weaker than on the previous day and reaches a depth of only 100 m or less Significant N winds (3-6 ms) develop between San Bernardino and Elsinore and in the western San Fernando Valley NE flow is observed in Ventura County Winds aloft continue to be primarily N however E flow is apparent over the Long Beach area at 1000 m agl Surface airflow over the central and western basin becomes very weak during the evening hours Strong N to NE flow develops at the coast west of Santa Monica while N flow persists in the western San Fernando Valley and in the San BernardinoRiverside area The overlying flow is N to NE

91061 02 17

3 PARTICLE PAm ANALYSIS

A series of forward and backward particle paths (trajectories) were calculated using the SCAQS DWM wind fields The particle paths will be used by other SCAQS investigators in their examination of pollutant transport within the SOCAB The forward particle paths can be used to estimate the transport of pollutants from known source locations The backward particle paths can be used to estimate potential source areas The particle paths can also be used to estimate the residence time of certain pollutants in the SOCAB as a whole or in subregions

CALCULATION OF PARTICLE PAIBS

Two-dimensional particle paths were computed using the DWM wind fields as follows

Starting ( ending) points for a given number of forward (backward) particle paths were specified

Using a time interval of 15 minutes the hourly gridded DWM wind fields were linearly interpolated in time and then interpolated in space to each particle position using an inverse-distance-squared weighting scheme

The particles were then advected horizontally for the specified time interval

The distance traveled by each particle during each time interval was integrated The new position of the particle was reported at hourly intervals

Forward and backward particle paths were calculated for the SCAQS intensive monitoring periods for several vertical levels and a variety of origination and destination points The origination (destination) locations and times for the summer and autumn particle paths are listed in Tables 3-1 and 3-2 respectively Most of the particle paths originated (ended) at one of the SCAQS wind monitoring sites listed in Tables 1-1 and 1-2 Additional sites are identified in Table 3-3 Note that for some sites in Tables 3-1 and 3-2 a new particle path was initiated at the particles 1000 PST location but at a higher level

Additional forward particle paths were calculated for comparison with the SCAQS tracer data (England et al 1989 Horrell et al 1989) The initiation times and locations correspond to the tracer releases and are given in Tables 3-4 and 3-5

9106lrl02

~~ll1~(I titW I~l~~~t~~

TABLE 3-la Summer particle paths forward particle paths

Start Time Origination Start Date (PST) Site Level(s)

624 0500 LBCC 13 CELA 13

624 0700 LBCC 13 CELA 13

624 1000 LBCC 13 CELA 13

624 1500 LBCC 13 CELA 13

624 2100 LBCC 13 CELA 13

625 0500 HHRA 5 PADA 45 FULA 5

625 0700 FULA 5

713 0500 LBCC 13 CELA 13

713 0700 LBCC 13 CELA 13

713 1000 LBCC 13 CELA 13 EMTA 24

713 1500 LBCC 13 CELA 13

713 2100 LBCC 13 CELA 13

714 0500 LBCC 13 CELA 13

714 0700 LBCC 13 CELA 13

714 1000 LBCC 13 CELA 13

714 1500 LBCC 13 CELA 13

714 2100 LBCC 13 CELA 13

Continued

19

91061 07

TABLE 3-la Concluded

Start Time Origination Start Date (PST) Site Level(s)

827 0500 LBCC 13 CELA 13

827 0700 LBCC 13 CELA 13

827 1000 LBCC 13 CELA 13

827 1500 LBCC 13 CELA 13

827 2100 LBCC 13 CELA 13

828 0500 LBCC 13 CELA 13

828 0700 LBCC 13 CELA 13

828 1000 LBCC 13 CELA 13

828 1500 LBCC 13 CELA 13

828 2100 LBCC 13 I CELA 13

92 0500 LBCC 13 CELA 13 HHRA 12

92 0700 LBCC 13 CELA 13 FULA 12

92 1000 LBCC 13 CELA 13

HHRA 45 FULA 45

92 1500 LBCC 13 CELA 13

92 2100 LBCC 13 CELA 13

93 0700 RIVA 12

93 1000 RIVA 45

A new particle path was initiated at the particles 1000 PST location but at a higher level

20

~(Ibull bull 11

41

~1~_11Lmiddot11~1~~tV t rt~~14_ II~~~h1 1r t

TABLE 3-lb Backward particle paths

End Time Destination End Date (PST) Site Level(s)

624 1500 CABA 23 EMTA 45 BURA 1234 HHRA 4 FULA 45

624 1800 RIVA 3

625 0500 CLAR 13 RIVR 13 HHRA 5 PADA 45 FULA 5

625 0700 CLAR 13 RIVR 13 FULA 5

625 1000 CLAR 13 RIVR 13

625 1500 CLAR 13 RIVR 13 CABA 23 EMTA 4 BURA 4 RIVA 45

625 1600 RIVA 45

625 2100 CLAR 13 RIVR 13

713 - 1000 EMTA 24

713 1500 CABA 23 EMTA 45 RIVA 24

713 1600 RIVA 24

714 0500 CLAR 13 RIVR 13

714 0700 CLAR 13 RIVR 13

714 1000 CLAR 13 RIVR 13 BUR 123

714 1500 CLAR 13 RIVR 13 CABA 23 EMTA 4 BURA 234 RIVA 2

714 1600 RIVA 2

Continued

21 nn1 Y1

TABLE 3-lb Continued

End Time Destination I End Date (PST) Site Level(s)

714 2100 CLAR 13 RIVR 13

715 0500 CLAR 13 RIVR 13

715 0700 CLAR 13 RIVR 13

715 1000 CLAR 13 RIVR 13

715 1500 CLAR 13 RIVR 13

715 2100 CLAR 13 RIVR 13

827 1000 CABA 2 EMTA 23 BURA 123

827 1500 CABA 2

828 0500 CLAR 13 RIVR 13

828 0700 CLAR 13( RIVR 13

828 1000 CLAR 13 RIVR 13

828 1500 CLAR 13 RIVR 13

828 2100 CLAR 13 RIVR 13

829 0500 CLAR 13 RIVR 13

829 0700 CLAR 13 RIVR 13

829 1000 CLAR 13 RIVR 13

829 1500 CLAR 13 RIVR 13

829 2100 CLAR 13 RIVR 13

92 1000 PADA 3

92 1100 PADA 3

92 1500 EMTA 2 RIVA 2

Continued

22

91061 07

I

1bullLI bullI I bull ~ii 1 1

1 cl1

[1i1bull~j~1 Iiii~ j t-~dI ~1 1ltl1111111 II r I l~bull~II~middot t1~i~n_11~~ ~middot -

TABLE 3-lb Concluded

End Time Destination End Date (PST) Site Level(s)

92 1600 RIVA 2

93 0500 CLAR 13 RIVR 13

93 0700 CLAR 13 RIVR 13

93 1000 CLAR 13 RIVR 13 CABA 2 BURA 1234

93 1500 CLAR 13 RIVR 13

93 2100 CLAR 13 RIVR 13

23 9106107

TABLE 3-2a Autumn particle paths forward particle paths

Start Time Origination Start Date (PST) Site Level(s)

1111 0300 LBCC 13 CELA 13

1111 0700 LBCC 13 CELA 13

1111 0900 FULA 12

1111 1200 LBCC 13 CELA 13

1111 1500 LBCC 13 CELA 13

1111 2100 LBCC 13 CELA 13

1112 0300 LBCC 13 CELA 13

1112 0700 LBCC 13 CELA 13 FULA 12

1112 1000 FULA 45

1112 1200 LBCC 13 CELA 13(

1112 1500 LBCC 13 CELA 13

1112 2100 LBCC 13 CELA 13

1113 0500 ONTA 123

1113 1000 ONTA 45

123 0300 LBCC 13 CELA 13

123 0700 LBCC 13 CELA 13 FULA 12

123 1000 FULA 45

123 1200 LBCC 13 CELA 13

123 1500 LBCC 13 CELA 13

123 2100 LBCC 13 CELA 13

1210 0300 LBCC 13 CELA 13

1210 0700 LBCC 13 CELA 13

Continued

24 9106108

TABLE 3-2a Concluded

Start Time Origination Start Date (PST) Site Level(s)

1210 1200 LBCC 13 CELA 13 FULA 123

1210 1500 LBCC 13 CELA 13

1210 2100 LBCC 13 CELA 13

1211 0500 ONTA 12

1211 0700 FULA 12

1211 1000 ONTA 45 FULA 45

A new particle path was initiated at the particles 1000 PST location but at a higher level

25 9106108

TABLE 3-2b Backward particle paths

End Time Destination End Date (PST) Site Level(s)

1111 1500 HHRA 34

1112 0300 LBCC 13 CELA 13 RIVR 13

1112 0700 LBCC 13 CELA 13 RIVR 13

1112 1200 LBCC 13 CELA 13 RIVR 13

1112 1500 LBCC 13 CELA 13 RIVR 13 HHRA 34 PADA 3 FULA 34

1112 2100 LBCC 13 CELA 13 RIVR 13

1113 0300 LBCC 13( CELA 13

RIVR 13

1113 0700 LBCC 13 CELA 13 RIVR 13

1113 ~ 1200 LBCC 13 CELA 13 RIVR 13 ONTA 34 EMTA 45

1113 1500 LBCC 13 CELA 13 RIVR 13

1113 2100 LBCC 13 CELA 13 RIVR 13

123 0300 LBCC 13 CELA 13 RIVR 13

123 0700 LBCC 13 CELA 13 RIVR 13

Continued

26 9106108

TABLE 3-2b Concluded

End Time Destination End Date (PSn Site Level(s)

123 1200 LBCC 13 CELA 13 RIVR 13

123 1500 LBCC 13 CELA 13 RIVR 13 PADA 3

123 2100 LBCC 13 CELA 13 RIVR 13

1211 0300 LBCC 13 CELA 13 RIVR 13

1211 0700 LBCC 13 CELA 13 RIVR 13

1211 1200 LBCC 13 CELA 13 RIVR 13

1211 1500 LBCC 13 CELA 13 RIVR 13 PADA 1234 BURA 123

11 13 2100 LBCC 13 CELA 13 RIVR 13

27 9106108

TABLE 3-3 Additional particle path initiation (destination) points

Site Identifier Location UTM Easting (km) UTM Northing (km)

BURA Burbank Airport 3749 37859

CABA Cable Airport 4370 37751

EMTA El Monte Airport 4047 37717

FULA Fullerton Airport 4091 37485

HHRA Hawthorne Airport 3768 37547

ONTA Ontario Airport 4435 37686

PADA PADDR Intersection 3810 37175

RIVA Riverside Airport 4584 37485

28

TABLE 3-4 Forward particle paths calculated for comparison with the SCAQS tracer data

Start Start Origination Date Time Site Levels

0300 LAGS 13 0600 13 0900 II 13 1200 II 13 1500 II 13

625

715 0500 VRNN 1

0800 VRNN 1

828 0600 LAGS 13 1000 II 13 1300 13 1500 13

93 0500 VRNN 1

0800 VRNN 1

1111 1600 LAGS 3 ESGS 3 VRNN 1

1900 LAGS 3 ESGS 3 VRNN 1

1112 0600 ESGS 3 VRNN 1

0900 ESGS 3 VRNN 1

1210 0600 LAGS 3 ESGS 3 VRNN 1

0900 LAGS 3 ESGS 3 VRNN 1

1600 VRNN 1

29

9106lrl09

TABLE 3-5 SCAQS tracer release sites

I_______________________

Site Identifier Location UTM Easting (km) UTM Northing (km)

ESGS El Segundo 3690 37536 LAGS Los Alamitos 3980 37370 VRNN VRNN 3874 37625

(

91061rl09

30

The particle paths were calculated for up to a three-day period In general forward particle paths were calculated through the end of the monitoring period or until the particle was advected out of the domain Backward particle paths were calculated through the beginning of the intensive monitoring period or until the particle left the domain

Selected plots of the forward and backward particle paths are given in Appendix C

SUMMER PARTICLE PATHS

Forward particle paths (levels 1 and 3) originating from Central Los Angeles (CELA) and Long Beach City College (LBCC) at 0700 PST on 24 June 13 and 14 July 27 and 28 August and 2 September are shown on pages C-1 through C-12

The surface-level particle paths originating at CELA indicate northward advection from this site on all days The particle path initiated on 27 August indicates that the initial northward advection is followed by westward advection on the following day the particle path initiated on 2 September indicates that the initial northward advection is followed by eastward advection on the following day In all cases the residence time in the central Los Angeles basin is less than 12 hours

The surface-level particle paths originating at LBCC are carried northward and eastward usually exiting the Los Angeles basin through Cajon Pass On 24 June and 14 July however the particles are carried across the San Gabriel Mountains (with the upslope flow) Considerable eastward transport is indicated by the particle paths initiated on 2 September after 1800 PST -Residence time in the Los Angeles basin varies from day to day and is especially long for the particle path initiated on 27 August (approximately 30 hours) Particle paths initiated on 13 July and 28 August also indicate some recirculation and a significant residence time within the Los Angeles basin

The level 3 particle paths also indicate northward transport from CELA on most days Advection into the San Fernando Valley which may be partly due to the SE flow produced by the turning of the sea breeze into the valley is more pronounced on certain days (14 July 28 August and 2 September) Level 3 particle paths originating at LBCC show mostly northwestward transport Recirculation over the Los Angeles basin is indicated for the 2 September particle path

Backward particle paths (levels 1 and 3) culminating at Claremont College (CLAR) and Riverside-Rubideaux (RIVR) at 1500 PST on 25 June 14 and 15 July 28 and 29 August and 2 September are shown on pages C-13 through C-24 -

_

9106lrl 02

31

The surface-level backward particle paths originate over water on all days the particles are carried eastward and northward into the Los Angeles basin On 14 July and 28 August the particle paths indicate primarily eastward transport There is some indication that particles arriving at the destination sites on 28 August may have originated in the South Central Coast Air Basin (SCCAB) On 25 June 15 July and 3 September the particle paths indicate primarily northeastward transport On 29 August northward transport is indicated

The level 3 backward particle paths also indicate transport from the W SW or SE on the intensive monitoring days The over-water segments of the particle paths indicate eastward advection on 14 and 15 July and 27 and 28 August and northward advection on 25 June and 3 September Again there is some indication that particles arriving at the destination sites on 28 August may have originated in the SCCAB Almost all of the particle paths indicate that the particles are carried onshore between Long Beach and Laguna Beach and advected northeastward to CLAR and RIVR An exception to this occurs on 28 August On this day the particles are carried onshore near Redondo Beach and are recirculated over the Los Angeles basin for approximately 24 hours before arriving at the destination sites

AUTUMN PARTICLE PATIIS

Forward particle paths (levels 1 and 3) originating at CELA and LBCC at 0700 PST on 11 and 12 November 3 and 10 December are presented on pages C-25 through C-32

The autumn particle paths exhibit more day-to-day variability than the summer particle paths indicating more variability in the autumn airflow patterns Because both the CELA and LBCC locations are affected by the land-breezesea breeze circulations all of the surface-level particle paths show some recirculation in the western basin Particle paths initiated on 11 and 12 November eventually indicate eastward transport

The level 3 particle paths also differ among episodes but are all affected by the seashybreeze circulation Particle paths initiated on 11 November show eastward transport from CELA and southward transport from LBCC Northeastward transport at this level is indicated by the 12 November particle paths The particle paths initiated on 3 December illustrate local recirculation by the sea breeze On 10 December southward advection is indicated

Backward particle paths culminating at CELA LBCC and RIVR at 1500 PST on 12 and 13 November 3 and 11 December are presented on pages C-33 through C-40

The surface-level particle paths indicate that particles arriving at CELA at 1500 PST on all four days follow a southward then eastward course Particles arriving at LBCC are affected by some combination of onshore advection and local recirculation The particle

9106Irl02

32

paths culminating at Riverside indicate a variety of possible transport patterns eastward transport on 12 and 13 November northwestward transport on 3 December and southeastward transport on 11 December

The level 3 backward particle paths for 12 November illustrate recirculation aloft by the evolving airflow patterns while the particle paths for 13 November indicate primarily eastward advection The particle paths for 3 December are clearly affected by the SE that occurs on this day the resulting particle paths indicate northwestward transport The particle paths for 11 December indicate southward advection and recirculation by the sea breeze

COMPARISON WITH TRACER DATA

Forward particle paths originating from El Segundo (ESGS) Los Alamitos (LAGS) and Vernon (VRNN) at times corresponding to the SCAQS tracer release times are shown on

middot pages C-41 through C-76 For ground-level tracer releases the particle paths were calculated using level 1 (10 m agl winds) for stack releases the particle paths were calculated using level 3 (300 m agl) winds A qualitative comparison with the observed tracer data is provided here

Surface-level particle paths originating at LAGS on 25 June indicate northward transport during the morning and afternoon hours The level-3 particle paths indicate that material is transported out of the basin through Cajon and Banning Passes by the upper-level winds Both of these indicated transport patterns are supported by observed tracer data

Surface-level particle paths originating at VRNN on 15 July indicate northward transport and exhibit good qualitative agreement with the tracer data

Both the surface-level and level-3 particle paths originating at LAGS on 28 August indicate primarily northeastward transport Most of the particles are eventually advected through Cajon Pass This is consistent with observed tracer at Redlands San Bernardino and Crestline

Surface-level particle paths originating at VRNN on the morning of 3 September do not agree with the tracer data While the particle paths indicate northeastward transport the tracer data indicate northwestward transport

Surface-level particle paths originating at VRNN on the afternoon of 11 November indicate westward transport and a long residence time in the central basin The level-3 particle paths originating at LAGS and ESGS show southeastward transport and recirculationmiddot by the sea breeze Surface-level particle paths originating at VRNN on the following morning again show net westward transport and a long residence time in the

( central basin but the level-3 particle paths indicate northward transport with recirculation

91061rl 02

33

by the sea breeze The smface-level particle paths are consistent with the tracer data Tracer was observed over the north-central basin and along the foothills on the morning of 13 November

The surface-level particle paths originating at VRNN on the morning of 10 December indicate relatively stagnant conditions with a weak sea breeze circulation Some net transport toward the south is indicated Particle paths originating at VRNN on the afternoon of IO December show little movement throughout the following day The long residence time in the basin is in qualitative agreement with the tracer data Tracer was observed in the basin on the following day The dispersion indicated by the widespread tracer concentrations however cannot be represented by a single particle path The level 3 particle paths originating at LAGS and ESGS on the morning of 10 December show southward transport and recirculation by the sea breeze

UNCERTAINTY ANALYSIS

A simple analysis was perlormed in an attempt to quantify the degree of uncertainty inherent in the particle paths The uncertainty analysis was similar to an analysis described by Moore et al (1989)

Three major forms of error in the particle path calculations can be identified The first two result from errors in the wind fields The most fundamental of these is measurement error as measurements can only be regarded as approximations of the true winds Regardless of the accuracy of interpolation techniques measurement error will always affect the final wind field The second type of error results from the interpolation of these measurements and the parameterizations and approximations in the diagnostic wind model This error will be greatest in data-sparse areas The third type of error results from the use of two-dimensional wind fields The two-dimensional particle paths do not incorporate the effects of vertical motion which may be a significant source of error considering the mesoscale regimes present in the study area

The particle path uncertainty in this analysis is the result of all sources of error and is therefore very difficult to estimate A lower bound 11 on the uncertainty was assumed to result from measurement error alone Here we use a lower bound uncertainty estimate to illustrate the effects of measurement error on the particle path calculations Several assumptions were made in order to estimate this uncertainty First average bias for all instruments was assumed to be very small Second instrument precision was assumed to be constant over the region Third measurement error (speed and directional error) was assumed to be normally distributed around zero The standard deviation about the mean was based on observational data

For this uncertainty analysis 20 particle paths were initiated from a single site at a single time For each 15-minute particle path segment u and v were calculated as described in

9106lrl 02

34

(

the previous section Small random wind components (representing the measurement error) were then added to the interpolated wind The smaller components were determined by randomly selecting wind speed and direction error from two separate normal probability density functions (PDF) To do this a uniform random number generator was used to find two error probabilities Ps and Pd between 0 and 1 An inverse normal PDF routine was then used to find the speed or direction error that results in error probability Ps or Pd respectively Commercial statistical software from Th1SL was used to generate uniform random and inverse normal PDF values 1

The PDFs possess means of zero and standard deviations equal to the root mean square error (RMSE) of the measurements For simplicity RMSE values for speed and direction were taken from those specified by Moore et al (1989) namely 02 mis and 10 degrees respectively Random error components were determined for each 15-minute segment of every particle path The resulting divergence in the particle paths represents a lower limit to the uncertainty inherent in the particle-path calculations

Plots illustrating the effect of the lower-bound uncertainty on the particle path calculations are given for one summer and one winter episode in figures 3-1 and 3-2 respectively The summer particle-path bundles (Figure 3-1) were initiated at CELA and LBCC at 0700 PST on 14 July The winter particle paths (Figure 3-2) were initiated at CELA and LBCC at 0700 PST on 12 November The bundles were calculated for levels 1 and 3 In general the bundles indicate that the airflow patterns do not vary abruptly in space or time The winter particle paths are less divergent that the summer particle paths

While plots of the particle path bundles qualitatively indicate the degree of lower-limit uncertainty a quantitative summary of the uncertainty can be obtained via hourly estimates of RMSE of all particle positions relative to that with zero error The RMSE can be obtained from

1 1 M 2 2

RMSE = - ~ dj[ lM ]=l

where

1

dj = [(xj - X1)2 + (yj -y1)2]2

and where Mis the number of particles and ()1 represents the position of the actual particle as calculated in the previous section (ie the zero error particle path) The RMSE is used to determine the growth over time of the confidence interval about the

1 IMSL is the registered trademark of the Scientific Problem-Solving Software System developed by IMSL Inc Houston Texas

91061rl02

35

NORTH

425 31570

SOUTH (a) CELA Level 1I

20

(KM)

NORTH

425 31570

SOUTH (b) LBCC Level 1I

20

(KM)

le-path bundles initiated at 0700 PST 14 July 1987FIGURE 3- composedd par tic le paths1 Forwar of 20 particBundles are

35

NORTH

425 3570

SOUTH

(c) CELA Level 3

NORTH

425 3870

SOUTH

(d) LBCC Level 3

FIGURE 3-l Concluded

37 9106]

70

IlFil

NORTH

CEIA Level 1(a)

3(170

1-Ul j

NORTH

425 3(170

SOUTH

(b) LBCC Level 1

Forward le-path bundles initiated at 0700 12 November 1987FIGURE 3-2 composed par tic le pathsbullBundles are of 20 partic

3391061

425 3870

SOUTH

(c) CELA Level 3

J8

3870425

SOUTH

(d) LBCC Level 3 10 2

(KM)

FIGURE 3-2 Concluded

91061 39

1 1c

i I

trajectory calculated using the DWM winds Hourly RMSE values are given for the particle paths bundles shown in Figures 3-1 and 3-2 in Tables 3-6 and 3-7 respectively For level 1 the average RMSE after 12 hours is 567 km for 14 July and 167 km for 12 November For level 3 the average RMSE after 12 hours is 416 for 14 July and 260 for 12 November

9106lrl 02

40

TABLE 3-6 Hourly RMSEs for particle-path bundles initiated at 0700 PST 14 July 1987

Time LBCC RMSE CELA RMSE (PST) (km) (km)

Surface Level

0700 000 000

0800 042 042

0900 057 069

1000 063 100

1100 093 128

1200 091 143

1300 111 168

1400 136 217

1500 229 227

1600 265 219

1700 394 219

1800 620 265

1900 796 338

Level 3

0700 000 000

0800 018 049

0900 064 090

1000 068 140

1100 087 172

1200 089 162

1300 123 180

1400 231 224

1500 337 258

1600 419 278

1700 427 306

1800 449 347

1900 462 370(

9106104 41

TABLE 3-7 Hourly RMS Es for particle-path bundles initiated at 0700 PST 12 November 1987

Time LBCC RMSE CELA RMSE (PST) (km) (km)

Surface Level

0700 000 000

0800 047 049

0900 078 065

1000 077 066

1100 089 086

1200 109 094

1300 089 092

1400 118 125

1500 100 138

1600 129 150

1700 147 160

1800 161 164

1900 156 176

Level 3

0700 000 000

0800 045 076

0900 061 120

1000 069 139

1100 092 171

1200 098 163

1300 096 156

1400 125 182

1500 150 175

1600 231 171

1700 261 152

1800 308 156

1900 345 175

91061 04 42

References

Douglas S G R C Kessler and E L Carr 1989 Users Guide to the UAM Wind Preprocessor System Systems Applications International San Rafael California (SYSAPP-89079)

England W G and L H Teuscher 1989 Perfluorocarbon Tracer Experiments During the Southern California Air Quality Study Air amp Waste Management Association For presentation at the 82nd Annual Meeting amp Exhibition Anaheim California (June 25-30 1989)

Horrell R S M Deem P Wyckoff F Shair and N Crawford 1989 Ground Release SF6 Tracer Experiments Used to Characterize Transport and Dispersion of Atmospheric Pollutants During the Southern California Air Quality Study of 1987 For presentation

( at the 82nd Annual Meeting amp Exhibition Anaheim California (June 25-30 1989)

Moore G E G Z Whitten J P Killus and R D Stevens 1989 Analysis of 1985 Air Quality and Air Chemistry Data Collected Under the South Central Coast Cooperative Aerometric Monitoring Program Systems Applications International San Rafael California (SYSAPP-89058)

Ross D G and I Smith 1986 Diagnostic Wind Field Modelling for Complex Terrain-Testing and Evaluation Centre for Applied Mathematical Modelling (CAMM Report No 586)

9106105

43

rr T rr

Appendix A

SCAQS WIND MONITORING SITES

(

9106103

-

((--_ 770

-

NORTH CM~RS 42 575

5 I I j I I 1---L 525 middot 1J75 I I I I I I I I I r I I _--- I C2~middot----_J ~ ~-- 1 ( ~ ~J25 I I I I I I I I I I I I l__ ) -475 () I Li 1~)51 (

--~ltJ820f-_ ~------ ---

~- -cli( ol --9-Sl-l

lt ( ~)

CQ p llE RiDO ~ llE ANAH

I middot LAS-L

bull~ LANC ( _ Q - _J ) ) - _ ~ - ---- - ~ _ ____ middot clt G~ _----~____-=-- -___ ~PR __ - ---- --- VCTC ltgt

-- ------ f---- __ - ---_ -middot ------ --___ --~-----TEME --- _ f

-)(j _ _ middot --middot -------- - HESP f ----=----==~~~ l ----~~ -- middot l - --- __ -middotlt- CJ _ --- middot PIRs[- lt NfVL_ ---~ - C~lt --lt _ ~ ~- __ (~~

__ --- bull _ i - f c-_ _ I - )~__) - ---~poundS---_-

3770 t-()

LA llE PICO )Ct444 -w 3 ~~~ZUMA MALI VE VEN llE llE middot Jl~C - ( p

NN WOOHS ~- ~ m - middot - o - I () )IE 55I

1-- (lt - - PERI ) ~ S__~llE

BU25 bull y _ L ~~5o 13720

I ----~- - 515 3670 525

(KM)

~---

SNI

20

SCAQS SURFACE WIND MONITORING SITES

19 JUNE 1987

0

qj n

If) N ~

I

1S13

Ishy)

0 Vl

(f) w I-V)

l)

z a 0 1---

z 0 2

0 z 3 a ~ I r---

0 CX)Wm Q_ shyQ_ ) w

z (f) )

0 7 lt( um Vl ---

0

A-2

-

r~

NORTH CM~RS

I -middot_( lt - middotmiddot -~ ---lt - - - middotbulll- ) middotmiddot-middot - - -c ) 0 0 l__SG- ___ J1 bull_ -- VCTlt I

_ --middot ---middot llSeR - - __ - --middot----- J~__-- middot - - - -middot bull bullbull- HESP ~-_-middot- bull- ~- _~ - -___---middot - ~ -_ ) ME --- -middot - bullmiddot bull -_

38201-_ ~~_ _ TE _ C-bull_- - CJ - ~Jj __ -_

1

1 bull I bull __ (]

SI bull bull=-middot _ -~ ~~ ~_-__ middot _J lt(- j SIMI -M~S -~_-~It_ - - 1Ir- I w _ I B~~ AZ~~~1 AL SNBOC ~ (ELRO l~ Hf~~ ideg_=- --

)1__ CE~ wftcentrHIN RIVRM44 --- ~--- ---~ LA PICO __pound bull P

T ~NN WI-V C) D 2J~55I Wco - middot PERI Lv

R~O ~L ~AN~ TO~~~~ ~ ~ ~-MO

62

~ ~j~l)~gto ay 3670( 525

SCAQS SURFACE WIND MONITORING SITES 24-25 JUNE 1987

~ (

NORTH 275 325 375 425 475 OA~5 575

f_~ CJ ~ -middot--

_middot

middot1 Imiddot

)i

gt--o~0 (~_)r-) _ (~~3s20

--~- middot qlt ( ____ - ---- - lt__ ~ ~ -i~ J ) _ - - -

-~ -__ J V 38201-~--o- lt-

-----~~middot ---- __ - ~---- -_--- ~====- -=_---~ ~ _

~ -- middotbull ~gt ----_ _______ ) ~~~ l -- - - i - --- l

( _ (_-~ _-lt~~ - )

2middot1=~ (~gt lt_) -~~~~~(_~tJt-~~~~t~~~~-~) ~

uR--- -----Qi~ ~ 3770_ 3770 -middotmiddot--rmiddot- -7 ~ 1-

(J) llE ONT _ -middot __ w

Y-_ EMU c __- ~ Ul lt(1 w~

- -- - LMIIEUA sFtA ~

1

----_

~

_

t_~~ -bull _ middotgtI __

~- 0 ~~QgtJn~-~ ~II~

~ f-- -) -) ) ~ ~-

j (_1_j ~~TRM 3720 ( (__ -CcS l l 3720

~- ) -~ --7( ) __~---L_ ~~1-----~D~

1 ~) a --- ~middot 7 rt 0- NSI (

3670 I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I 1 I I I I I f I I I 1 I I I I I I I I I I I I I 36 70 275 325 375 425 475 525 575

SOUTH

I I I I I I 0 10 20 30 4-0 50

(KM)

SCAQS UPPER-AIR WIND MONITORING SITES

24-25 JUNE 1987

--=-

NORTH 25 575

CM6QRS C__j 475 -____

3 ---- 375 425I - L ---) - ~-

SNI

-_-~)---_ lt-____ ___3azor_~c~~ sl

VENt ELRO

BU25

275 ~ c--) ~LANC ~~-_ lt ~ 0 9-~

llE

3670

----~ - J Q ____ ~- lt) ~ 3820____ -- middot--- 0~__~- __ J S --- ---~- ---- -- -- v~ ~ ~ ===-~ - - - - ---- - - ---- - -- -middotv ------------ -~ l f----- _ -- -middot _ - --- __ HESP ~-----=- c~i - - _- --- - - gt - -bull TEME -- -middot - bull ----- -- - _ middot ( lt~ clt=~ ~i cJ~ c _

~I -~~le lt~NJWl--------~- -iHitgt~-=__~~ _I -~ J~~~ ~ 3770 r-1 - - -- -- - ltJ c__ ---middot ~ ( - ------ -c_ - - -~~~ ~ ()-~ ~ - -middotMiss ---~---=-~----r~-__ -middot _frac12 __ i5

j S ~R~~HE -7t$ llE llE ftALSNBO llE ~~ t __ -R~ B~~SA AZ~jl~r RD ~~_ ~ 1( )l___ llE CE~HAllE ~~ - RIVRM44 - llE ------___llE W~HIN -Jti )Ii ----------- __

~--- LA llE PICO l llE C -- r p

ZU VE NN Wt-laquoJHB 0 1~55WT IN - ---- ) llE CO P llE llE ( gt (____ PERI ~

IJl

~ 71t~P325 425

SOUTH

I I I I I I 0 1 0 20 30 40 50

(KM)

SCAQS SURFACE WIND MONITORING SITES 13-15 JULY 1987

clt(middotO -i ~Ill ~

()VL~t

~~) o2~ r

275

-- _~middot middotc-- ( ~ I - ___ ) --____ ~~~

---- ---bull-~ ( lt ) lt I ~ (J () - _ ~ ~ J ) bull middot ( - ~ ~- - --- middot - ~ - middot middot G--~_J lt)

cce- middot- __ V ___ -- l - _- bull middotbull - - _~---~ 3820r----=-~_~Jrlt - - - middot f ~l-~--~--~] I c___ -~c ~ -- ( _ 1middot--- 1___ _~

-I -- = lt -bull lt middotmiddotltmiddot~- middot - middot -L-

- ~-- middotbull ---_- --- J middot J ) ) -- bull- ~-bull _ --middotbullbull- middot middot _ j -- -)) 3770 -ii __gtc _ -- - - middot bull ltmiddot ~- I - _ltbull - -_j-- tn

BURbull-- - middot - - - ) ~~middotj- (~~ ) (middotIi lt(

GL U I ~ - - - w ---~ - -1 __ - ---------= ------___________--- ONT middot middot __ - --_ -

poundMUI - - ~ ____ middot----~~i -__ ~ I

--

--- ~ c) )_

deg ~

_- - (

_l

_ ~ )

C-

~ _middot

( T( f 1-

525

t j 30 50

(KM)

SCAQS UPPER-AIR WIND MONITORING SITES 13-15 JULY 1987

_==--

J ANORTH CM6sectARS

3s201-

~- ~ ~ ~ ~0A - --__ - -----~ ---~- --1(j - A ) __gt ---------_

-~~J TEMEa l_C ~r1

0

820

_--C~ = ~~~ltCH~~ J ~ S~I ----i4~58 ( J

tigt-1

-J 3 BU25

frac14~) 8 F1(5

- HA

APICO RN A A ~ N WVHB

AANAH

~IHIN J _CM44 ~-

A

CY PERI N ~ iJN

D A

HEM

770 ~ V1 lt( w

~ 3670

SCAQS SURFACE WIND MONITORING SITES 27-29 AUGUST 1987

) w l-1

C)

z-a 0 1-

z 0 ~

0 z - r---3 co a Ci)

- -ltI lshy

a )w ) Cl 0 Cl ) ) lt(

V) Ci)

0N ltI u r--- () N

A-8

NORTH CM~RS bull r (_J~

1

325 - - l L=~-) ( bull

1275 _ ( ~ --- -middotbull LANC 1 _ bull I( f LJ- ~ () ~-- 3820 bull- - J bull

- --__ _ -- )- bull bull - middotbull-~- _ I v----_J -- J middot-- - middot- - -middot I I J_______ ---==-------------- WSfgtR - -- VC _____- ltgt

-~--~-- fJ- -middot - - - --- --- _ - ----- --- ----- ) r bull---_ --- - - -- bull p -- --__-----_ - -----

38201-_ -------~- TEME --- --- - - bull -- middot- bull --- _----~ -~ II middot ) - ---- -- -- _ -- HES f I-----=-- ~ ------- ~ l _ -- - I

- bull middotbull-bullbull~ ll( middot bull - middotbullbull - 1 I ~----- middot-bull

9 -- ___ __ _ -------- _=- r _ -- )J -~~ ~~~ 3770 t--SJMImiddot MISS~~~--bull ~--~-- ll( -_ ~-VENt Cllfl58 bull I middot- - middot- - --JOE ~--bull bull ~ V)

ELRo __J 4Esc euRK ~Ej1 fAL sNeo I ~ _ J middotmiddot -~~ 1 i5 l - ~SA ___ I ROLD ~ ~ C~ ( _____~- -~ llE CE~ llE W~(HIN RIVRlK -- - 1 llE __~

3770 middot- ~LA VEN Pl llE _ _- JJ~C _CM44 - ~ p ---__-_

0 ANAC cubull~ - - v~wr LyenNN WHJHB --- -- Q~~W)( ___

- llE HA ~ -lE _ -- _ - -_

I 0

SAi middot-middot J) t450

3720 LA r TO~omiddotlt~lt~~ -~ ~ (~~

~ ~ r-~~~1~ o ~~l~

SNI 1 (l_ amp-~ 575 3670367g75 325 375 425 475 525

SOUTH

I I I I 0 10 20 50

(KM)

SCAOS SURFACE WIND MONITORING SITES 02-03 SEPTEMBER 1987

------J ------------------ ) I-- 38201--__--~~- i) ___

_-- ~--gt--

-__

_

NORTH 275 325 375 425 475 525 575

YI ~middotCJ~bull_bullrmiddot--- lt I __ (_______~ ~ - - I -- J ( - - - - - - - J i O l__ ______________ -~

~j ( lt- bull- ~ 0 C) ~ -- (-- _)) ) ----_--__ -- middot-- _ - --J ) J ---- - ------- ----- middot----- -( ~---_j

3820----==--=-- ( - -middot bull __ - ---~----= --- ---- -- -- ------------ _______ ltJ~~ A I --- - ---- - -_ - _ --_--~-- -_ - --~co___--_--___-__----- f middot l - --- - --- - __- ---_-- -- ~ middot -middot __ J L--~ cmiddot

---- -- middot--~-- -- -- - _ _-- - - ~

--- - middot- - -C-_--- - -~ rmiddot middot) _- ~middot~ I--- ----~deg- -- -- C _-_--_- __ __ _ ___ _--_--~ __---- ~---lt lt ltgt _~-__gt_ ~~-- i~ - UR ---- -------- - ----~ --lt I middot- B ~----- Qll __ ~----- _ CI____ ~ __ --- ---middotir ~ - 3770

1-I- 3770 () U)( - -- -- 0~ - j _j ______- ==--=--_ --___ - ---w lt(

w~

~gt middot1 r-

0

3720 3720

middotmiddotmiddot J ~ ) ~l - ~ ~

~ tmiddot~----_7~~ p__ D2)t~~

NSI I(--_ Imiddot- 3670 3670

275 325 375 425 475 525 575

SOUTH

I I I I I I O 1 0 20 JO 40 50

(KM)

SCAQS UPPER-AIR WIND MONITORING SITES

02-03 SEPTEMBER 1987

~ I

t

NORTH CM61yenRS

----- I uic middot I Ibull 0 z_ ~ p

-_- - - - _ - middot-~-_ ------- VCRV

820 --- -- -- I W-gtER --- _ ---- --- ~ ) - -_ - I _ _ - _ --- _ _ _ -_ bull _____ _ _ - -- -- -- _ --_ ----~ HESP 3 -- ME -- -middot bull - --- _ -- _ TE - -- __ _-- - c----~middot - r

PIRlb -_1 N bull--~ _ --lt~_- - _ _ ---------- - -MISS_ _--- ___ bull---=-- _llE ~ ~ j lt) hlt---- F-~~--_ ----1A-_c=_--middot llE ----_ ()

-middot SIM ~ICAN llE RIALSNBO llE ~J -------~~ tllE ------TmiddotllE~I ~ES BURR~ AZ~ ~-~r- RD ____-- -- ~ bull FIIISA l- bull -~~

( )l__ -middot middot c(~HA w~~N ~tfJ1 -- -- ~ ~ 1

_

375

~) middot middot ---lt -__ lt_ ___ ___ -i____) C-middotdeg - - -

- -- J_ _) lllt

_ =- ) - -

L- ~~- Iii - ~ _________

-~ 0 I -- (

SI lllt

E

NT CM58V

( j gtT__~_____)___ -- ~l- ) (

middotmiddot-- -_ bull _ ~- () ~

I --J vlt__ ltgt

--- --------- ~---------- C -

_

~(__ f - -- ~---middot)1 ~

t ~ I

I- I- ~

3720

ANAC Wo~ middot -~- lt_)

44

PERI ) ~ tlo

25 R~ ~~ANAH _i~~MN ~~-w--- ~ _ 00 )

T middot I BUllE I -eM62 7 llE

-- - ~

~ 425

SOUTH

20

(KM)

SCAQS SURFACE WIND MONITORING SITES 11 -13 NOVEMBER 1987

(_ (___JCcS ~~)

bull ------------~ - - ( ~ r-------------- Dbull ---

J

575 3670

1SV3 0 0 0 0 N r-- N r-- a) r-- r-- co I I) I) I)

I bull bull I I

I I f1 1 ~~ I- I I-)

0 l)

l)

w I-l)

L)

z Ct 0 I-

z 0 2

0 r-- z OJ

m3 Ct a lt( w0

l() mI Ct 2

~ ww Q_ gt

0 - Q_ 0 I) 2 ) z ~ ___0

N (I) n a

0 lt(- u ()

0

n 0 z I)

N +

lf) r-- I)

- I I I

i I

I 0

~ -L

w

i

~ LL

I)

C-1

+

l() r-- I)

1S3M

A-12

-~

igt I _

l)

CM~RS 275 325 375

NORTH 425 475 525 575

_J- I bullbullbullbullbullbull ~ I bullbullbullbullbullbullbull bull I middot bull -gt-----middot bullbullbull 3 )--- ____j lt c----- -_ -- gt _ ___ ----- t__ l___

-- ------- LANC l ~ ---------- __ ) -- __ ~ I ) ~ - -=~__ I -~middotmiddot- - bull middot bull bull bull lt lt Cl --- ------ ____ -~ -

38201-- ------_- ) ) -- _ ---- -- -- -- - () - --------- I --- -~-lt~~ (middot__ TEME ) --gt ~_ ----- - middot--- --- vamp c~ (~ 0~ ___- --- gtIpound - - - - ---- -- - - -- _ - - ~ ---- - - - ------------- 5SI -middot PIRltgt ----~ ( -middot _ - -- --- - --- ) HESP --------~ ltgt

___ __bull_rbull ~--------~-___ -- ___ ----gt--=- bull~ ~~ I - ---__-=---- ----

VENt CM58 _ sti --~~ ~ lt_ -~-- middot_~-~~ r-~- --middot) ~~) _J MISS-~~-- ___-_ __)~ -- ---( C

- --RESpound BUR~--==-=~----r~---_-__- ~- - ~ _- ~ -1 -

3770 I- ANAC

J I )l( ~- ~-- - i middot ----middot -X--Ret-----_~ -~

___ ( - -middot ~SA AZ~ ~ o j -------=--------~--gt~-- dampHA ~~~f __ SNBO ~~ -~

ZUMA MALI LA w~M -jmiddot I R~J ~-s ~__ )() w ~

3720

8U25

VE VERN PICO _ middotyHIN RIVRyen ( ~----- -~ CM44 -~ ~- ----- ~ C WT ~NN Wt-0HB -NQRC - middot- ~NN-a-~~ _ ~ co~ __ -- ( ~ ~

RVIJO ~ilff AN~ gt cmiddotbull yen 0 (~~ p LASAl I bull- - PERI ~ ) ~

rJ]~~_Y)~N ) (_ --

_T -cJ62~-~

~ 5j(bull 1) ~Jso

l -~

- 1 J) -~ ~7~~t~~

3820

3770 1-() lt( w

3720

I I I I I I I I I I I I I I I I I I I I I I367r I 367075

I 325 375 425 475 525 575

SOUTH

I 0

I 10

I 20

I 30

I 40

I 50

(KM)

SCAQS SURFACE WIND MONITORING SITES

03 DECEMBER 1987

NORTH 275 325 375 425 475 525 575

I I ) gt ~ _YC) ~ ~ I ( o c_ _------- (

___ middot i I 97 ~___ _ --1 cbull-- - - C -___J -- lt ( ) - - - - middotmiddot ~ l _ ----_J

I ---middot ___ __ middotmiddot-_ 1 -~ __J ) bull- middotbull_ -

3820 ------~- I -~middot --- _ middot--- -------~

C - ~ (___ _ 1 ) -- _ - - - gt _ bull f-_- --- r ------~__ -----I --- ) I ~ -~ gt ----- - --- -- ~-_]) c_middotI 38201-_~~_ l _ --- - (-- ~ f ~ I~_ - middot - middot -middotgt- -- -_ -- middot_ _- 1 L- l _- -

~----- l -- middot middot ~- middot-_ _- - middot middotmiddot--gt---~--t~~)-1 bull lt_ _ _ bull middot bull - middot- ~ ~0---~ (c ~ I ~

_ I - bull -~~~--gt~~~-~~ bullS- _~_ l ~~1t~~_~(~ t 3770 I -- -- middot __ - I S____ ( 3770

I- 1-() ()

gt w - I __~sect~- ---ONT lt(

w

tgt

f-- I

~

middot - middotI

-

L~i--

37203720 c_J - (_cS) l -~~

NSI

367~~51 3~5 13~51 14~5 I I I 14~51 is~s s~s 3670

SOUTH

I I I I I I 0 10 20 30 40 50

(KM)

fJ~

SCAOS UPPER-AIR WIND MONITORING SITES I 03 DECEMBER 1987 r~J

NORTH CM~RS 275 325 375 425 475 525 575

middot middot ___ I middot 1 I )l ___ QO --middot - v_ (-- - LANC middot ~ C) lt --bull_ I -- -- bull _ ~ - ~-- ) -------_ -- - _~-- V --I 1 J --- - bull I -J- ---middot - _ bull__ - vc i --- ltl

3820~-----=cc~ I middot -middot - middot - _ ___ -- - 1t ~~------- middot - ___) - - middot -

J-cgzot-- ~--- j 0 TEME _middot ---- --- -

-____ -- ---- _- j (

- -_ I -- --~ _JI( ---- bull bull-- llf -middotmiddot l - -- bull _middot_ middot I --- -- middot CM58

_- 1 -- middot - middot~-~ - -~__ ___ ---~-~_--__~----------D J-~J~bull A HESP

middot OJ11 r P1R1tc lt--~i_-_~-~- ~c~_r--~-~_--_~r-=-~~~~--~ _ --~ --lt__~~~~- CSI ~ -~ --- ---- middotmiddot - ---- - _ ~ r ) J

)gt SIMI -MIS5-X ~Cgt~---- middot-cemiddot middot ____~ ~ middot~ l~fu__ suRlfiI_middot- -tk~- flAf SNBO __ middot ~-~ l 3770 _ 377ob -- ~ PJIISA AZ ~JIily~ _- RDL ___ bull ( C t-shy-- -~ I ----- ~HA 71lt V)tn ANAC ~---- CE~ WALflHIN RIVR ----- ~ w

w ~ LA PICO - CM44 - T -~ ~ ZUMA MALI VEN middotbull _ -bulltRc __ ~ ~lt~~7-

N WuHB _~-- -middot bull ) _J~N ~ -- ~ 0 - ) ~ I ltgt -_middot PERI bull I- ( _

V 8U25~ 3720 3720

WJlt~ ( ~ ~ ) 1 i

~ I I I I I I I I I I I I I I I I I I I I I367r I bull I I 3670

75 325 375 425 475 525 575 SOUTH

I I I I I I 0 10 20 30 40 50

(KM)

-~ ~

SCAQS SURFACE WIND MONITORING SITES 10-11 DECEMBER 1987

NORTH 325 375 425 475 525 575275

-- ----_ lt_~- c--- - ~ ~ _ I I - ---~~c------ ) _ -middot - gt~-

3a2or ------__ lt- ) 1 middot--- -- __ - ~bull =-------------- - r---_ ___ - bull- ---- I I ~ ~-- jc- I bull - - (bull I --- middot middotmiddot - ~ -middot - -- ~ - 3820 -~- bull - middot - - ~-_ ~- _ middot- n

(

- 0 lt_( ~_lt- ~-~~- middotmiddot) ---- ()_ (---- --

--

____ middot

-middot

I

f----- (-J 1r---J~ --~ - middotlt ltbullI I ~__---__ ~-

l B~--- _c_ gt-- lt gt- (- - - j 1--_~--~--l~ -- -- --- )l

-- - --~---- middotc middot=-~-~- (~ L ----- -- --middot - -- - - -bull --- - - c-) ~ J _ -- - ---- - ) ) ltl

37703770 EMLgt middotorrmiddotbull __ ) ~~~~ofmiddot - -- __s=__I- - - ~__- ( ~ __ )---__ Ishy

V) ~ ~- lt(w ~ ---- --~ - w if)

-~2_~middot) ~~at~s t I

I-

deg

FUUA

i () ~--J)llC~lt I

3720 3720

~ltl__ (_)i~

~ NSI

367~~51 I I I I I I I 13~51 I I I I I I I 13~51 I I I I I I I 14~51 I I I I I I 14~51 I I I I I I r--- I5~51 1 I T I I I I I 5~51 I I I I 36 70

SOUTH

I I I I I I 0 1 0 20 30 40 50

(KM)

SCAQS UPPER-AIR WIND MONITORING SITES

10-11 DECEMBER 1987

Appendix B

SCAQS DIAGNOSTIC WIND ANALYSES (Six-hourly plots Levels 1 3 and S)

Summer Intensive Monitoring Periods

19 June 1987 24-25 June 1987 13-15 July 1987 27-29 August 1987 2-3 September 1987

Autumn Intensive Monitoring Periods

11-13 November 1987 3 December 1987 10-11 December 1987

Page

B-1 B-13 B-37 B-73 B-109

B-133 B-169 B-181

9106103

Summer Intensive Monitoring Periods

9106103

19 June 1987

9106103

1bullbull-lil

1SV3

I I lshy Ishyo )

0 0 z ()

IO N IO

I()

N -st-

1S3M

-- l1

l~ i --

0 z 3

---

2 0

_J w cjr----_J CD

0 l() z

I- =)lt( 7

f) 0)

0 -- i n 2 Ishy7

0 ~ ()N ____ gt a 0 20

3o 0 ~

0

B-1

1Sv3

( I l-et 0 z

(

lf) N st-

l() N ~

l()

N 0 t--

n

0 N_ n

U)

ON r-shy(0

n

1S3M

B-2

_

2 0 0 tlt)-__

tlt)

_j w 2jr-_j CX)

0 lf) I- z

lt( ~ IJ1 0)

0 _ 0 n 2 z 1-0 ~ N - 3 ~ 0 20

3o 0 Ov

-----

lSVJ

l)

----

l~3 O 0 w

w ll) (1

l)

0 0 z 3

I lshyet 0 z

--

2 0 0 0

-

LO

w ~

GJ r----~

u 0 z

OJ

I- gt lt( J

mif)

00 ---shyI) 2 z I-0 i l) N -- 3 (1

0 2 0 3 0 0 ~ 0

lSJM

B-3

1SV3

- V1 --

~5 O 0

E - w

w Ul_ 0

V1 0 0

z ~

I I lshy I-et =gt0 0Z V1

-

2 0

J wr--CJ OJ J z0

Ul I- =gt lt( ~ V1 -

0 - n 2 0 z 1-() 0 ~ N __ 3 0

0 2038 0

0

U)

l

lO N v

0 N agt n

0

r--n

0 N

0 N r-shyn

U)

U)

U) N U)

Ul

q--

Ill N q--

1S3M

B-4

td I

J1

~ ~~~~~ ~ -~~~~~ J - -~--Qf~J ~lf~ ~---~ ttt~~~~H~f~ ~ ~~lt~~~0 ~ - ltl-_t I~~~~~~-~~~~~ ~~ I _~1c j_~ L ~ (__1-T11__1 ~_-~_ ---~~~~~~ 11 - ~ +f--1~- ~-+--41-- 1-~- ~ ~ -rtt1-~--~~~~~~~ ~ ~ ~ ~ l t I J JI JI~- t _I i~~I~~~~~~

377itttttttt ~- - t I Jf --------_-- _ 70 ~ ttttttttttttti- fllJ~JI-~~_- ~~ _ =- ~~~- tn w - t t I I I_~- -V _ ~ -laquo___ _ - ltC 3 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ t t t t t I I I I JI~ JI JI ~~ I--~- ~ ~~~~~ w

H~HHHH~in+~l~Hnf5-I ~ ~~~~~~~~ ~ ~ ~ lliii it t I~t~ltt~rrrr~~~~ jl++it~~~t~

20-~~~~~~~~~J tttttttf ~~~~~~~~~~---~-~~~~~~~~~~~~~-amp~ ~ t t t t t t f f f I I I I ~ 1 J(-- _ --P ---~~~~~~~~ ~ ~ ~ ~ ~ ~ ~ ~ t t t t t t t t f f I I I I I ~ ~- j~J _ ~ ~ z~ ~ ~ ~ z l I+ nm~t ~ ~ ~ I I~Jt~-~- -~-__~~~ tr ti ~ ~ t t I t f f I I I I I I I - ~-r __ - ~~~~~~~ ~~~~ ~z11 ttt ffflllllIIII -~~---~~~~~~~~~~~ ~~~~ ~~ ttttft ttflltllllllll A~--~~~~~~~~ ~ ~ ~ ~ ~ ~ ~ t t t t t t t t t t t f I I I I I I I I I I I I I ---P~- ttttttttttttlllllllllllI -~--L~-~~~~~~~~~middot

367 70 ~75 325 375 425 475 525 575

SOUTH

1111111111111111I I I I I I 0 10 20 30 40 50 0 5 10 15

(KM) WIND SPEED (MS) i

NORTH 425 575

_ 414111fl-~bull __~) ff I -lt~i ~ + lJ Jmiddot-bull A fl t1 it bull- _I~--~---~----_---~_~~~~~~~11 t1

~~t 11 f + + diamsJ diams 1 )--t-_+ J~ I-(_ 1 1 ~t1 __

__ Lt l l t fL f_l - - +~~----~~---~___-+_~~~ J-t-t t---t-lt t t-t) LJ lt fl ~ -- t---f t tT~-- ~~ 1__t -t ti t_1 + l - -~-~-~-II~-- - ~~~-----~----t----~~~~~~_Efftt -- r1 ~J t l Lt t

fl

~ _ t_ - 11 _ _

Fi ru bulll=ti~ ~ ~ ~ ~1H1~~_~-~-~----~~~~~~~~~~

DWM WINOS AT LEVEL 3 (300M) 1000 PST 19JUN87

1Sv3

I I-shyCt 0 z

1S3M

B-6

0 II)

0 I)

-_2

0 ~ N -

0

0

-_

2 0 0 0 -

LO

_J

w r---CJ O) _J z I- gt ~~ if)

0 1--shyz V) ~ Q_

20 3 g0

NORTH 525 575

~~~__A -~___~~-

F- ~_--P~

~ ff~~-- - _ middot- ~~

_ bull bull bull bull bull

_ p

~L~k~tt ~ 1 t A middot1-t

~ r~ 1 11 1 __ bull bull --l t frac12Q2_

~ ~--r-J-+7L~

1--Ui

3770 _yen~AA- ---~ ~__~_ ~ K---r

eno tshylf)

w ~ ~ ~ lt( 3 I I_

- w

td I

-J

~~~~- ~ ~ ~~~ shy ~ ~ - shy

3720

~ ~~~ -~1~-nu~~~~-

~ -~ - ~_____A~~1~ ~ _~ ~~= ~~~_______2--- ~

720

~~~-~~~~~_ 9~tbullmiddot~qor~frac12

Y~poundpoundpoundpoundpoundpoundL1~~~~r~ ~ middot

375 425 475 525 575

SOUTH

I I I I I I 11 1111 1111 1 0 10 20 30 4-0 50 0 5 10 15

(KM) WIND SPEED (MS)

DWM WINDS AT LEVEL 1 ( 1 OM) 1600 PST 19JUN87

~

NORTH

Arlt~~~ ~L _ -rJ ll

_ I I I t

_t-z~~J ~i~ bull

i- ~~~ Ii ~~( trn

3770 I - bull bull bull bull bull bull bull iigtlaquo

--- bull bull bull _-

~fJ~ t-l-lltf[llJ- jf1 rr]I ~ ~~~ ~ss~810Ja2ot-~~1i lmiddot - 1 17- - -

-ltL

~ ~ 70 y ____~ tshy

l) ) _-y ____~w

w ~

~ -~--- - -- ~ 1 ~~~~ __ _ bull---bull laquo-___~ Y~~

___p~~__---A~_A 1 ~~td I ~----______A 14 1 ~

00 _-________________ ~ __~----~1~ -A________________--r__~~~ ~ ~ ~~~--~-~~~~-~---e--~ ____________~_________-~ h

3 7 20 t-_--~____- ~ _ _ ~~-_- _ _ _ _ ~___~~~r--~~___-K ~~ ~ -~-------~~~----~ ~ ~~__________~~~~~~~______-r_-A~-1--~~~ ~__________________----r~__~__~-Y~~-------__---A----r~ 1 ~ ~__~___________~ ~

367 tcrr~__~y--rrYlt-trltltltltltlaquo-ltltltltltlaquoltlt~~~ ---

9imiddot~75 325 375 -- -

1111 1111 11111 1 1 1

0 10 20 30 40 50 0 5 10 15 I I I I I I

(KM) WIND SPEED (MS)

DWM WINDS AT LEVEL 3 (300M)

1600 PST 19JUN87

NORTH

bl I

0

~________________A-4_gt~~~_____~~__________~A

A~altP_ ~~~_________--~_A 38 20 I--=-~~_~~___~~-_-~~_ -lt~ - ~_-~_A--1~ _

~~------ ~ gt-~ ti ~----~ ~ _~~~~ 0 ~ ~-i---~~411___ I~-~~ I~A-~~----~7A7~-

A A~---~~- ---~ ~ ~ -middot~~ 1-27 ~shyA_~ ~~~ Jl--__r-t~ ~ (K~_ - fl_

A ~I J111 I _ A - ~ _ T-~ v I 1 1 1 1 1 1 ~ 1 1 _ Ji J I~ f --_i__middot1(- ~ ~)( ~JJXZ - _ r ~ - _ )( _ II I 1 ~ 1 I - _~ _)~ ~~

= 1 II II 1 (~ ~--=-~ -7fJ~~~~tm~i I- 3770 Jir - I 11 I 71 (I) ~ ~111 ~

w ~--middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotbullbull bullbull ~~~11Zll~~11~ ~ ~~_~~~llllN~~ -~~ bull 11jh fi 1 1 II 1 1 1 1 1 1 1 1 1 1 1 1 1 I I 1 0i~~~ 1gtcJ~l~p~ ~~~ ~~~ ~rr1111

70 Ishy() lt( w

111111~~ 3720 i- 1 1 ~ ~

~1~I A-A~)I 1111AA _~l11~ 1

lllllll11IIIAII- ~II ~1~~__~~Ill~~~~~ l1_ 1~~~~~~lll~~~~1 llllflfAll-)lllllllll1~~~~~

A I I I I I 1 I I I I 3670

275 325 375 425 575

SOUTH

I I I I I I 1111111111111111 0 1 0 20 30 40 50 0 5 10 15

(KM) WIND SPEED (MS)

DWM WINDS AT LEVEL 5 ( 1 OOOM) 1600 PST 19JUN87

~

A A A

1Sv3

(

1S3M

B-10

()

l ~

---u) 2 __ O 0 ~ w

w It) Q_

()

0 0 z 3

0 It)

~

0 ---I) 2 ~0N _

0

0

---2 0 __

_J

w r--- GJ OJ _J z __ )

~~ () r-

0 __ z ()3 Q_

~o 3~ ON

NORTH

middot-~~) K~xJ~ middot_1~ ~ 71( I IJ ~JI

~A I 1 ~~

liii[i~~ Hf~-~~~=~T-- ----- --=~~g~g~bull11ft _ ~~~ -1-x~~~ ~~~~-~~~--~-~---~ --~ t ~t~ -~1~~ -- ----

-lt J 1middot~~ __---~__

3 770 ~ ~~ --_tn ---------~~ 1 ~____~ _ ___~ -w bull Y ___~~~ (Al _~ _ ~

-- bull _ _ _ bull bull bull bull~___1 1I J~ _~

~- YI J _L ~~ ~~ YJll~E~

td _____-___ ____ __ 1 ~xgtx2-I ____________~__-A (~~~~ _______~~2-1 y~~- ___~__________~ ~

3 7 20 I-___~~__~~ Y --~ ~__ I _ - - _

~_---A~ ~---__~~~~~--_____~ ~ ~_____A~ y ~ ~___-__________~~ ~ -

~__-_______-yen_2 ~ ~ ~~_______~ ~

1 367~ 75 325 375 425

SOUTH

1111 1111 1111I I I I I I 1 1 1 0 10 20 30 40 50 0 5 10 15

(KM) WIND SPEED (MS)

DWM WINDS AT LEVEL 3 (300M)

2200 PST 19JUN87

~-

~ - - ---

NORTH 275

___ -~-___

- ~ I o_ ltAbull~-P- bull bull -P diams bull~--~~~~--- --- ~ ~ ti ~ ~sbull3820 ~=-J~_~~middotmiddotmiddot~~~--_~_=- =~_~c s~ ~3~

~~- bullbull~~bull~~~~~~ - bull -~~bull ~ v i-_ --- __-_ ~----~

~- st-~~1 17-~__4 ~ _~ ~-~-raquo~~~ -f _ _ bull bull bull bull~ bull bull-__-v 4 t ~ ~v ~- Jl_~ ~--z~~=~s~~~~Mil

-- _ ~ frac12--~~- -=~~ ~~l~1~l~tzi9~J t~ 1 1 1 1 1 1 ~-bull ~~___- v q (If V pp p I l_77rtfl _

3770 ~ ~ ---- I h1yenzi 1V-r-() bull bull ~ ~~~~~ w ~ bull ~ _ I JI J(_ )-II101-1 3 ~~A~~~XI IIJ~~~

~ f A I~ I I I I~--L -

tl ~1111111 ~K11~~llll~i~~~~I ~rr ~~ ~xgt~~~t---

N ~I I II)(01~ ~ ~ ~~~ 1~Y~lt~~~~~~~~ ~~~~

3720 iYY11Alllll1lIA~~~~ ~~---Y~---_ _ _ - ~ bullbull - - _

~rrll1IIIIIIIAAAA__

___________~~~AAAA~_~ ______________~~~~KAKAA1~~ lllllllllll~AAA1f~~

_~~

3670 t1i11 i i 1 i i 11111 i i i i -i i [ 111111-111 ~ ~ 11 ~ i I t 1 bull rm r~ij e =~~ raquo-il3t ~ 275 325 375 425

SOUTH

1111 111111 11111 1I I I I I I 0 1 0 20 30 40 50 0 5 10 15

(KM) WIND SPEED (MS)

DWM WINDS AT LEVEL 5 ( 1 OOOM) 2200 PST 19JUN87

24-25 June 1987

9106103

1SV3

1S3M

0 w w Q_ (J1

0 z 3

I f-shy=J 0 (J1

-_

2 0

--

_J w CJ f- _J OC)

0 U) z

f-shy )lt

J q-

(J1 N0 -_ 0

rlt) z rshyl)

N0 _ 3 Q_

0 20 3o 0 q-

0

B-13

lf)_ lf)

If) N If)

lf) r-shy~

I I-o 0 z lf)

~

lO

~

lf) N If)

(

pound bull d ~ bull 4 4 c_ q

1 4 r9middot-

0 N IX)

middot- t--bull ~Igt~

O ~f 4 fT amp)o(oj

4 ltI I~ ~ ~

0

o

middot a

~- v t rgt ( tgtj (~V~-1 f4

3 44 ~-~a4 V VM q -~~-q_4 ~4

_ ~ )

p- ~~t1~1 middot V II J ~ ~ )I 1 11 f ir -~~1I ~

II P P P Igt 4 ~(Iigt ~~ 1) IA

deg deg 4 4 ~ A -1 r 1 1-Y]~t J rz ~

fl r ~ Igt I~y ~ -- -- - 4 ~r___amp V P11 iP Igt P Igt p ~ -0

~bull 7~tpmiddot~P Pf P Ptl middot~ ~ q p Igt 1gt p ~ t b (r 4 P - 4---f ~ ~ bV ltI

ltI ~ ~ I p 6(~ d-_j b d p (4- 4 ~ 1 p Igt 1gt Igt - b ti

)4- a 4_) q V Igt p Igt o

lt(___~ ~- V fgt ~ 111 t Igt -4

~ ~ Igt r p Igt

~ ~ 1 h1

V (I Ilt v middot

t y-

t

t

p

P t P t P ~

0 0N - IX) n

1SV3 0 0 0r-shy N r-shy co

lf) lf)

If) N If)

~ - t bull~--~11n ~ -~bullmiddot t~ lt middot___

o_ ~ ~ ~

0 bull t bull 4_4 4 4IIgt

c 0----~ u c Igt( o ~ c ~A ~ 0 - A 4 4 ~ 1 q

o bull o- -~ 1gt 1gt ~ y4 -~J middot)bullmiddot ~ ~ ~ p 0- 1---f t-~ 1 ~ 4 4 o co u gt)O- eyti ~ ~l 9 -Y P- - I a c 1 oM_il_q A p- p

4 ~ ~-M f p

I 4

~ rv ~--~middot

tJmiddot bull P II f t )I~ bull V ct_~ V V V t P- ~ Igt t middot f lft V VJi P- P- fgt IIgt ~ _ J1 bull bull bull

1 v II p _bull ( ( ir ti- f Igt bull

j ~ r f -~-1t __

_I ltC_t--q_) v -~-ampgt

Q middot--- ~ - t ~ b

II

bull ~

bull bull

diams

1 bull ~ ~~ ~ ~ b b b lgt bull

-- b bull bull bull~4q~ lgtPlgt-4-~_tbblgt

Jraquo P P ~ q 11- 11- b b b b b

P Igt P q bull b b b b b b b b bull

bull bull Igt 4 4 fl ~ b b b b b b b b b bull bull Igt Igt ~ 4 q ~ b _ b b b b b b bull

P bull Igt Igt -4 ltI 9 b b b b b b b b

p bull - Igt Igt 4 lt1 _ b b b b b bull t bull bull Igt ~ 4 b bull b b b b b b bull p Igt Igt Igt bull 9 b b b b b b b b bull P p ~ ~ A 4 q - _ b b b

1S3M

figt j)

~ ~ bull

bull bull bull bull bull bull bull bull bull bull

bull bull bull bull middot bull middot

bull bull ~ ~ 9 9bull bull bull bull bull bull bull bull bull

bull ~ bull bull _ bull bull _ bull bull

~

If) N t

lf) r--11

~

If)

~

0 ONN - co n ~

I fshy=i 0 V)

- 2 0 0 n -

n _j w cjf-

0 l()

0 ~

0N

0

0

---shy2 ~ _

_j OC)

I- z lt( =i

J Vgtv 0N z f-

3 ~ 20 3o 0-t

B-14

---

1S13 0 0 0 N N r--shyltIO r--shy co I) n I)

I() l1 r--shy -U

E~i0 z

U N I() 3

I fshy)

0 U) l1 N -t

--_

2 0 0 0

-

LO

_J w CJf----_J OJ

0 U) z

f- )lt( l1-r ON z f-

3 ~ 0 20

50 U) 0 -sr

0 ON r--shy r--shy

r--shy (0

n I)

1S3M

B-15

lSV3 0 0 0_ N - _ - ~ I)

_ ()

(~i

0 z

If) If)N NIf) 3It)

I Il- I-a =gt0 0z If) If)()

N Nst- st-

_

2 0

--

- w I--- OC)Cj z0 -

I) )I- Jlt( --t-

N() 0 I-z ()

3 o_

0 0 2 0

~ 0 00( 0 0 0-N N _111) r-- 1)

1S3M

B-16

lSVJ 0 0 0 0 N r-shy N r-shy_ _agt lO n n n n

() r-shyU)

u) l() N N u) l()

I I lshy Ishyo )

0 0 z U1 l) N

l() r--_ 2 0 0 n -

n _j

w I GJ OC)

0 _j z

lt) I- ) lt( ~ lf) N 0 1-z l)

3 Q_

0 Lo38 0

0 0 0 0 _N N _ _(() n n n

lSJM

B-17

1SV3 0 0 0 0- -N N- -crJ co I) I) I)

lO II)- - U) It)

U) II) N N lO lO

lO- st

I l-o 0 z U)

N

~

I I-=gt 0 l)

st st

--_ It) - ~ I) 0

0 0 ___

lf)

J w I-

It) N I)

0 II)

~ OC) J z I- =gt lt - lf) N 0 1-z l)

~ 0

0

0

~ 0

38 0

N IIJ I)

- - I)

1S3M

B-18

middot~ bullmiddot I

1Si3 0 0 0 0 N r-shy N r-shya) r-shy r-- co I) I) 1) I)

--_

E~i l)

0 z 3

I r-0 0 z

0 I(

0 --_ n 2 0 ~ N --

0

0

1S3M

B-19

---

_J

w r----2i OC) _J z I- lt( ~ V1 N 0 1-z V)

3n 20 3 iE 0

---- --_

NORTH

-_ t t t f t A +1 t lt-1--JJ-middot+J

r ft_f_frac14 fffftl middotmiddotbull f_ n- ~ tn

ttt1I1~ ~ ~ ~ ~f --H 1--- ~ -

rJj ----~ ~ ~--- ~ l j bull bull - bull bull Ir - ---_- --- --~~~~~I-~~~ ~ bull ~ ~ rt

- - ~rnlit ~~~~ ~~~~ ~~ ~~~~~~~ - _~-~~ ~~~~~-=~~~~~~~-gt

3820

bl I

N 0

tshy() w 3 fftfftlll

ffltlIJ11111~11- I I I J ~-- - ~~~~11J~ -~

3720 - I I JI J ~~~~~~~--------~~ diams bull + I J J _~ 4 bull I I I J ___ ~~~~-s---~~IJ-bullbullbullbullbullbull ~__middot~middotmiddotmiddotmiddotmiddot~~~~~E-e~~

4flA~~middot~middotmiddotmiddotmiddotmiddot~~~~~ ~--_---~- ~~ 1

367~7i51bull1bull11bull1 111 13251777JT7777~7777 I I I 14251

--~--~- ~~_-~-----~ ~~~J

--~-_--~- 1- I 1 I

~ 1lJ

I I I I I I 14751 I I I I I I I s~sl1 I I I 1575 I I

3770 tshy() lt( w

3720

13670

SOUTH

I 0

I 10

I I 20 30

(KM)

I 40

I 50

lllI 0 5 10 15

WIND SPEED (MS)

DWM WINDS AT LEVEL 3 1600 PST 24JUN87

(300M)

lSgt3 0 0 r--shy N r--shy r--shyt)

It r---1)

lO ---- N bull ~~ r lO ~ oe--- I

~~~~ t z~_-----~8 ~ ~~~2~-~----=---~~ t ~~----~~ -frac14~~~--

~v -~ 1 ~ - ~ ~~ ~~~-~~N~~~~~~~~~~~

tf~ ~ ~ -~~~~~imiddot~~~~~ ~~ ~~

_gt~~ middot1 ~ r2 l~ --~- I _Ct _ V I - ftV

0 ~ ~~- X

z~ HF bullIh IJ i It ti ~ 1 IJtl ~ ~ j t ~1

~ ~ 1~1

1 r ~

)

r r~P t t _r )r f

~ 1+ t t t f t ti ~ 1 lt ~ diams t f J t H ff 1 1I I I It diams diams Vf- 1 f f ~ f I 11

(____ t i(_ bullbull ~ bull ~ I r fr1)L_lt--~~vi 1t1J U1 -~- middot~ 1 t) ~ bull ~ bull ~ bull 1 1 f f f I t ~ - ( ~ ~(~ (_ ~ b ~ - ~ bull f 1 f f ~ bull

j ~r~--~ ~ _ ~ ~ ~ l 6 bull bull 4 t ft It _ - __ _ - J ~ ~ ~ t bullbullbullbull t - _ ~--~_____

__ I deg j ~ ~ b ~ _ Igt ~ _ _ ___ bull bull bull bull

~ ~ I ~ ~ ~ _ ~ _ _ _ __ - bull bull bullf

~ bull ~ ~ 4

I -- I bullbullbullbullbull

~~~ ~

1 bull ~

-- V)

LO lshy -----_ lf)

l- w w

=~ It) 0 l)

It)

2= )

0

~

l() 9 __~----- lf)r--- --------J______--L--J-~J-J-______~______~~~___________________________ r---N O O O ON

0 0 z 3

--

2 0 0 0 ----

LO

_j

w I--GJ Cl)

0 _j z lf) )I-

lt( ~ ~

lf) N 0 -- 0 I-n 2 Zlf) ~0 3 0

N ---

0 20 3 g0 -

0

N r- N I-~ I- I- ~ n n n n

1S3M

B-21

1Sv3

U) N U)

lJ) N n

0 N (0 I)

0 r-shyr-shyI)

0 N

I)

It) N It)

U1 r--1)

1S3M

B-22

0 w w (L Vgt

0 z ~

---2 0 __

_j

w _ ~ OC)

0 _j z U1 I- )

lt~ NVgt

0 --shy 0 1-t) 2 z () 0 ~ ~ (LN -middot -

0 20 ~~

0 ON

bull bull bull bull bull

1Sf3 0 0 0 0 N N CX) ID I) I) li li

~ n

~ n

tf) ~

A i -02middot a_ ~ r ____ Igt middotjmiddot i -1 ~ i r middot-~-----------------gt IJ IJ bull 1 j I ------~-----------------

_ IA_Jyen ~ ~ J ~ yen ----~---------------------

~ II --~_a IIgt 11gt Igt middot~ I bull ~ ~ ~ ~

1(1gt i i _JI J Iibull I - IJ Ji H j

bull bull I( --- j J t ~o ~- -- -J I I i J diams bull1bull bull bull i ~ _I I I I J 1 ~~- ~ 11 J l J diams -~ J) bull ~ I- t t ~ ( l f middott J bull 1_~1 ~ IJ II- I ( II ~ j t t bull)

bull t )bull ~) i ~bull bull __ __ I 1gt J I I I middot----- - ~ _ ~ Ji (Ji_ If ~ --~ bull i f l-Ji ~ p VIMyen I ~ middot1 bull I Ibull lt_~ ~ p1 )

I

__________________

~ 4 V ltI - - - -

~) i t --- -- yen 4 yen -- Iii 1yen yen JY yen II

I ~1 Ja a Igt- yen yen yen yen yen yen yenyenIiyen II II

a Igt bull ~ 111) (I J I JY yen tY yen yen II( ltf ~ I~) JY yen liY yen yen yen yen yen yen yen II II II ~ ~(II ~ yen yen yen r yen 1r yen yen yen It Ill

p cl

p 4 ampgt P JI r Igt bull

bull JJ Igt II

- ~ 11- bull

- -

+ _ _ _ __ __ +- ____

- - ----4

bull bull Igt Igt Igt

11 bull bull bull bull

bull bull It

IJ Igt bull t P

Igt bull t

- II Igt fl t middot~~-~~~t_yenyen yenyenyenyenyenyenyenyen

I ~J )Igt) 1 bull yen yen ~yen yen yen yen yen r - yen If II II Igt - I 1 J bull bullI _ _ 1 ~ ~ 1K )

bull -

bull bull II ~ Igt- J 6 bull I 11

fl) 1gt 11 Ill

bull t t fl

~

U1 r- n

~ n

_________o__JJ=---=-------oti~~e-~e11JEJEolELE-ILILLEJLlLu~uJ

l~

0 tf)

~ 0 n

0 N

0

0

- Vl ~ 2 ---

0 w w CL V1

0 z 3

-

2 y --

-

2 0 0 tlt) --

n _J w f-~ OC)

_J z gt

I- Jlt( q-

NVl bull) I-z Vl -~ CL

02 0 3 N 0 NIf)

ONN I N ro r- (0

n n n I)

1S3M

B-23

17z-g

WEST u u u ~ ~ ~ N ~ N

NO N~ 0~0

7J ~ () z -I 0 N (I)

~ )gt c_ -I C zr co ~ -J rT7

r (Jl

-- __ 0 0 0 s _

--_ 7 ~ --

~ z

~-0 0

--s (I) ___

0

0

N o (A 0

t ()1 0

oj(JI

-0

-()1

0 0 0 N -J

A I q bull if ~ ii ii ii I ii if 1 i J (JI

Ab4llltli ~~144

bull~~bull~1111111 11~1middot)1i~~~1 ~4gt~1111111~ II~ - bullbull~Agt~lll11 IIIAII tbull ~4-4~~~III IIll~ I ~14 4 - ~ bull i ~bull-ttt1 111111 I I 1-~ bullbullbullbullbull gt q bullbullbullbull I t I I I I I 4 I I I I I I I 1_ J~ I

4~ A - middot~~lll111I IIll 1 I 4 -1~~ l~ gt1llllllI 1l111 -~~ I N

tn()16 -1 Igt Igt I I l1I v I 7----(Yi ti mbull1-t

~Plgtlt111 VIII ii l middot~1111~~0~ I l~lll~310bullbull I i~W~ffi 1~~~~6~~~ I J~ 1~~~rw 11~~~1~ ~l~~t ~ i 11~~~~~~~ ~~f)~t~~I I~tl -1

~ --J ()1 l 111~1JV1 ~~~1~ I Ill tniz~i~~~~~~ ~~~~ 7 ~K -~~iii~~~~~~~~ il~~~~~~~ 1~~1~~~

middot1 middot1 middot1 middot1 middot1 middot1 middot1 middot1 middot middot1 middot1 middot1 I I I I vr )Igt(_ I II I I~~~~t~ 21~~~r~~~~~v111l I ~ II I -- I~ J(( I I II J l l l Cl ~ I ~ ~ ~ J J I I I yen - - bullbullJ_~ f yen ~ I IJ t I ti

diams J J J I I - ~ - ~ l1 yen -1) I I( t I ~ N J J J J 1- ur~ ~ - Jf1( -I) I I I ti I I j~

() UI diams Mi r)r yen fir_~~ bulll1t) JI 1 I middot i - (JI0 ~ nmiddotmiddotJ jmiddot-1 I I I f ~j--1J ~ __ middot gt C ~ J I f I 1 ltH I fl 1 ti I middotr- I I-I ~ f bull t t l )1j - _ I

t J4J-fbullt t ~ ii middotlfli ii~) - ~bullmiddotttM i f bull bull1 rI-Ku bull bull bull _ middot-~-J_J middot t +imiddot i t t ~ t ( ~ middot(~ I J bull Vf I r1- ~ j~fmiddot + r bull(~t t bullbull_t- J J ~) J ~ Igt

+ __ middot + V+ bull bull ti+ bull + -fi J i bull bull ~ f --- ~ ~ t Li bull bull t ++ diams + t bull +++ + bull ~ __Vbull ~ it 4 ~ i ()1 ~ 1 bullbull diams diams diams diams ++ ++ bull t 1 fA middot_ -----Y 4 ~ tn

~ ~bull t bull + diams + bull diams +++t + bull A VJ ~ bull bull ~ -o middot ~- bull t bull diams diams diams + ~i4_ ~ ~ ~

11 -~ 1 1 1 1 ~t t diams t t ft(middot-- f g a PA

--middott 4 -4 y 1 1 1 )f7~ V g n t A ~ ~bull a~ 4 1 1 ( V P q 1 bull A ~ V Y ~-- 4 I Cl oCl 4 A A ~tW --~- ~middot -)bull ~iliJ bull1bull

bull It t-- ti __ __ ~ (~w ~ ()1UI I bullbull bullrmiddot -~)fl l~~~ ) I A IIbull N~L~ r ~~~-ff~ --bull--1) 4 4 bull ()1

~ 14 ~ bull f 4 AA 4~ bull

44( )A - ~

- ti~ f 4 ~ 4 4 4 A bull ~ i

ti ti fl 1 4 tn llflfl44 4 -()1

~ ()1 ti ti fl 4 4 _ 4 bull fl _ 4 ~ ~

~ bull t~ - - I - 1 T T fJifrac12 1f 1~ fl t [ 1 4 bull bull ~ ltt ~4 ~~~11 l~~Nfl---~ ~~ bull ~t144

1 -middot I I f I ~ fl ti ti- Imiddot tJ 1-0 I 14

z o 0 -I

I

Y

)

u u u u 0) ~ ~ ~ ~ N ~ N 0 0 0 0

EAST

1S13

0 z 3

r r I-shy Ishyer gt 0 0 z ()

--_

2 0

--

___J

w CJ r----1 (lJ

0 l() z

Ishy gtlt J LO() N0

z Ishy()

3 0

0 20 3o 0 tj--

0

1S3M

0 w w 0 ()

B-25

------

~ --- _

NORTH 275 325 375 425 475 525 575

dJ 41 l ll~I tgtI I lo fA Itgt IA IA lo 1 IA IQ 1q lq If lq I ~I 4

~ ~ IIJ ~A ltI P Igt Igt Igt P V V V Q q l_-~- q ~ ~ ~ x- ~ ~ Y t~ --___q)11 4 ltI v v v v v v v 1raquo 4 -q q -~ q ~ 1 a

~ 4 ~~_gt~) ) ~~-4_~ A ltI fl v v v v p A V yjq ~ _ _ ~bullbull --shy~~~ ~ I Cl11 ~ 4 v v v v P- deg 4 ~ -V t V ( ~ a bull-

~ 1 ~~~ v ~sa- fl V P -iLpound_~A--4 q Igt P ~ 4 a~ 4 38203820

- _1 fa bull bull ~ II 11 4 4 ltf V P deg q 9 p Igt Igt Igt Igt P~~ _ _ _ bull -

- ~_R middot ~ gt- P-~-j---s--middotp-~~--- Igt p ~(

-~~ _ amp- 4 --v--J ~--~ -__~---- ~~ t f ---~middot bullbull ~ ~ ~ ~ ~~bull--- bull~bull~~ 4 ~-deg ~--~ ~_v -~ _~raquo Wh~

bull bull bull bull ___ol bull bull --___~ ~ _ A~~-~- f_~-~ bull 1 ~bull -~ Igt bull

a l -4 bull bull~ bull ~ ~ bull frac12~ P- __ _middotmiddot11-~~j)6-_ U bull _ JIgt~ bull I- bull ft ~ 4_~~~~ 9 P lgt--1gt~~~_-~_----~~~ ~ bull ~ ~ ~ ~ --~-~- ~~-_middot ~~~A~ ~ 1111 ~- ----~~ -~- IIgt _)-

1111 1111 -( _-middot 4 ~ Po Igt q lgtmiddotv11t_ Igt Igt II

3770 ~ P 0 ~ - bull k ~ 1- 1-

() pound 4 4 ~ q -44 - bull bull Igt ~- t Igt 1 Igt () w Igt 7 lt

3 - bull It It It bull bull ~--~ p ~ Igt ~ w ~~ It It It bull ~ -_t _ ~ bull bull bull bull --~ Igt

deg

td bull ft bull v ~lt~ Igt Ci~ 4gt I ~ It bull bull ~ 6 -It Igt ~

N bull bull It It ~ ~ _ ~_) ~ ~ lr It ft ft ft ft ft ft Igt -II-~ j ~ fil- _ _ _ _ bull 11r 1o 1o It 111- bull ft ft ft ft ft i i f - ~ 3720 bull It bull ft ft ft ltt q -e- ~ ~ ~j1

4

middot bull bull bull It It ft It bull ~ ~ ~ bullmiddot ft ft ft ft ltt ft ltt ltI 1 ~ - It bull It ft ft It bull -0 ~ JIgt ]~

middotmiddotmiddotmiddotbullbull1rt1rtft11- p-bull- ~1frac121 1tftftlttltltPt1t fgtbullbull ~~- bullbull ~

It bullbullbullbull It ltt It It ltt It lrt lrt tgt - ~

~~~ItIt ItItIt 1t11tft lttlttftlttltlt ltt lt11t ~ lgtbullJgtIbullbull bull~bull bull~bull ~ 1 bull bull 3670 367~75 325 375 425 475 525 575

SOUTH

1111111111111111I I I t--l 0 10 20 30 40 50 0 5 10 15

(KM) WIND SPEED (MS)

DWM WINDS AT LEVEL 3 (300M) 400 PST 25JUN87

0 0 0 0 N r-shy N r-shya) r-shy r-- (0 I) I) 1) I)

-

LO r--1) -

l~ i ()

0 z 3

I ~ n 0 z I)

N st-

0 If)

0 - I) 2 0 ~ N -

0

0

1S3M

B-27

---_

2 0 0 0

-

If)

_J

w Cj l-_J OC)

z_ ) lt( J () L()

ON z~ 3~ 20 3oo+

0 0 0 N N C0 (0 I) ~ I)

U)

U)

U) U) N N It) U)

I I-=gt 0

U) V1 N st-

lO N I)

0 lO

0 __ I) 2 0 ~ N _

0

0

__ 2 0

--

_J

w l--Gj OC) _J z I- =gt lt( ~ V1 N 0 1-z V) 3 CL

20 3 g0

1S3M

B-28

I fshyCt 0 z

0 r-shyr-shyI)

0 N r-shyn

0 r-shyl) I)

lO r-shylO

lO N It)

lO N ltt-

--

tlt)

_j

w r---fu o) _J z f- ) lt( ~ f) N 0 1-Z Vgt3 (L

2 03g0

I fshy)

0 l)

0 lO

0 -- n 2 0 ~ N ---

0

0

1S3M

B-29

1S13

-l)~ O 0 w

deg CL w

l)l ~

0 0 z 3

I lshya 0 z

--_

2 0 0 0

--

LO

_j

w__cj IJ)

0 _j z lf I- )

lt ~ ~ V) N

I) 20 - 0 Z(f)

I-

0 ~ 3 CLN -

2 00 3 gOr-

0

1S3M

B-30

Ht 11Sittl

lS13 0 0 0 0 N N II) (0 n I) n n

-- ()

LO t-shy ~ lO

(~i0 z

lO N LO

3

I Ishygt 0

lO () N +

--

2 0

--

_j

wr-----CJ OJ

0 _j z lt) I- )

lt ~ V) N

0 -- 0 1-shyI) 2 z () 0 i 3 ClN --- --

0 28 3 ltD

lf 0~_____________________________~_______________________--- t-- 0 0 0 0 ClCI N N t-shyII) t-shy io n n n n

1S3M

B-31

==- ~-_

NORTH

I bull bull - -f I I bull ~bull - ~__~~~~ ~~~

flt~11 $~~~t=- ~~ ~ 4Aligt~ ~~~ ~~

3820 1~~~- 4 t 11 ~ ~- --~_____-- ~ ~ ~~ 3820 ~~~

~~-~~~~

3770 3770

l1 ()w l-

lllizz tshy

~ ZlZZl ~ ~~~~~~

to I -IllIll

w -I IIIll~N llllll2~~

-II I I J I-~1~ r~~~~ 3720r ~ J J UL 1~A~~ 3720

~IIJJJJJ2~ ~~~ 1 ~ fl I JI JI2~~ 1~~~V fl fl ~ JI J J ~ y ~- 1-f4~) ~ fl fl fl I JI J _A2 1~ V~

~flflflflJIJIJl~2 ~~JIw~ ~ ~jlfljlflJIJIJI~ ~JIJIJflfl~~~ ~ ~~fljlfljlJI~~~~ -

J67 t-V1111111----(((((1i I~laquo rlt~1 I I I I I I I IM m I I I I I I I ~ MJ670 g75 325 375 425 475 525 575

SOUTH

11111 11111 11111 1I I I I I I 0 10 20 30 40 50 middot 0 5 10 15

(KM) WIND SPEED (MS)

DWM WINDS AT LEVEL 3 (300M) 1600 PST 25JUN87

1

NORTH

bj I

w w

i~ -tt--t ~ + ~frac14 diams diams diams diams diams f f f J-~~~l -ff~_x~ diams t diams ---t diams + diams ff f J1ff~t t

-=tl-U +---- ~ ~ t-t- diams diams __ diams~ diams diams ~ J I I 1 1 f ~ -y- ~I -~~-1t-~ diams +__+ diams + ++--J_f 1 ~JJ-11 I --

38201- ~~-- ~ ~--t_-( 1 ~ r 1t + middot~-t_ bull ~-~ bull bull bullmiddot bull r-r 1 ~IiI 1 I ~Ji~l _-=pound-~If~_ It It It bull bull bull bull bull ~ diams f f---bullmiddot+ --I __- _ I I~ 1 f1

( - ~~~~ II lit It It 1tt Iii Iii~ -r-middot -- ___- l_f--1-l -L ~~1 1 ~ ~_( _ -~~ ~------~ 1t(~ bull (t ft- ~ middotv -11-fI 1 - t~~1 1 41

~ - ~-~- lit 1t lk_i -- -~--- -_ -j rf-- l1 r111 1 I It It~ It 1t 11i bull-~ ~- ~ t_bullbull_~ (middot ~--middottY~i_(4Xtl~4j_ middot It It ~ -- ---~----~----_I~)-~-~ -

~-It It ltt middot~- ~ -~-middot ~-pound1[_~ -~- - middot - deg - - It It l diams diams 4 middotbull--bull ~ ~ ~ diams 7 1---~~ -L_- - ~ t( I diams -( bull diams ~ ~ bull ~ -- JI JI Jf JI JI j(_ ~II deg It_ -~ ~- I I I J JI JI JI JI 1

~ J- ~llj ~- diamsdiams +II IllJI_ h~ ~ ~ ~ bull bull ~ JI J J J ~ 1 x111 X7 -~ ~ diamsdiams 4111 JJJIJJ~~~~~~~~1t diamsdiamsdiams ~111 JJIJJIJllllb~ h~~~hh middot ~ - diams diams bull I I J J I I I I JI JI I l1-14~frac12-~~~ji_ ~ + f 1 J I 1 I I I 1 ~ x~ f1 11 middot -

bull JI I I I11~bullY1iz 1 41 ~ f I J J J JI J J J J J I I I lmiddot ~ t JI JI JI 1 JI 1 1 JI J I I I It~ if~_~

It_ ~ 1 JI JI JI JI J J I I l-~ 4 t J J J J J J J JI JI I I l l deg ~~ _ ~ 1111JJIJIJIJIJIJIJIJI t JIJIJIJI~I JIJJIJIJI_

~- I t I I JJJIJIJIJIJII~~~~ t JIJJIJIJIJIIII ~~ JJ JIJIJlllll ~ t IJJIJIJl1 1 1 ~ ~~I 1 t 1 A 11111111 II I I I

325 375 425 475

SOUTH

I I I I I I 0 10 20 30 40 50

(KM)

525 575

1111 111 1111 10 5 10 15

WIND SPEED (MS)

3820

3770 1-() lt( w

3720

3670

DWM WINDS AT LEVEL 1600 PST 25JUN87

5 (1000M)

0 w w CL ()

0

1S13 0 0 0 N r-shy N agt r-shy r--t) I) 1)

I() It)- r-shyU) U)

z U) N It) 3

( I I lshy Ishyo ) 0 0z It)

~lgtIgt~() st- b tgt ~ q st

lgtbbtgtb

b b t t 0 b

N

Igt b t b b b A 6 ~ b b t b C A 4 d 4

ttCt4lt1-it e Igt b tgt tgt V q ltl ltl ltI ltl

ti- deg 1 41 9 q I I ltl q q

i V q ltl q q q q I l() r-shy AlgtV ~ tlt) ~t) -~~~q

~ bull amp ~

0 ~ ~

-qa ~ ~ 1gt1 111111

b-a~-V ltillilI

bull lt bull bull a ~ Igt ~ V V V q 4 __J

It It lgt a -a~ Igt C tgt V w r---(J OC)

bull ~ Igt t 4 bull bull bull bull U) 0 __J z middot 1gt44lt14

U) ) t) rshy J - -N

lt( l() ~ ~~ CI() ~ ~

~

0 Ishy bull bull bull diams 1 z ()~ bull ~ bull diams diams 1 CL3bull ~ ~

i b y ~bullbullTT r I I 0

~ bull bulldiams ~ ~ b b b b ~ bullbull diams T r r I U)______-11____________________________ _ 0

0 O O ON N r- N r--agt r-- _ ~ I) I) I) I)

1S3M

B-34

I

_ _ 3820r- ttr- t f T Jf-Lt If t t 1l-- -~ 1~ t t

NORTH

~bull 1414

~~-_ ~ ~ r-- - --~ ~ - - _ r-- fT W - - r V-V ff f

- t t t t f I~ _AAjAA~-r bull(- -J It ~---1 t ~~~-1-- 1 ( ~~ - J ~ t t i f 1 ~ A_A-yen~_~_ ~ ~ 1 ~ t t ~ t t middotmiddotkt f ~-~-~~-----~~-- ~ ~ ~ ___ll_ bull ~

t -r- _______~~----- r ~bullbull _ ~ ~ tt-~J--~c-~~ ~ 1~--______ bull

~ -t lJ-- f t-J-- r---~~---middot _-- ~~-- ~ bull bull ll~iti~~sect~~~ ~ bullbull~bullbull bull~~n~ bull bull bull n~ bull bull

A)~lfifrac12~~ ~III I --1

3770 l l L l L - - ~ -- ~ - 1 ~ - 770 tshy~ ~~~~~~~~~11 1 ~~=1~~- Ul

W 1lllll~I ~~~~1111~~ lt( w ~1~~1~1~~j~~~m ~~~~ ~ - ~

11 1111 1111~I I 11111111 --- middotE~

tj IIIIIIIII_ ~tI l) llllll_~_p ~1l1 1~A~~~A~~rrr-v

3720t- I I I J J J A__ r r 0 11J)~~~----~_~ppmiddot-~~f Jl~~~~~---~--~~r~-~~q~q ~1

I ~JI I~ A A-_

~JIJl~~~~~A-----A rrbullbull~f~df~ ~~JIJl~~~~A~~--~- fffdfdff

~~JIJI~~~~~~---- bullfbulldbullfdf~

~IJIJl~~~AA~ --middotmiddotmiddotmiddotmiddot~middotmiddot~~~ ~l~JIJIJl~~~Al~pp~~~~bullbullffffffdff X ~~~~JI~- A(- f bullbull P ~ ~~bull1f1q1f1f1f1f1f1d1bull

3670275 325 375

1111 1111 11111 1 1 1

0 10 20 30 4-0 50 0 5 10 15 I I I I I I i(KM) WIND SPEED (MS)

iDWM w1tms AT LEVEL 3 (300M) ir 2200 PST 25JUN87

0 If)

0 __ I) 2 0 ~ (j __

0

0

__ 2 0 0 0

__

LO

_J

w f- GJ ll) _J z I- ) lt( ~ () N 0 1-z () ~ Cl

20 ~~ ON

1S3M

B-36

Page 8: Nind Observations Collected during the Southern California ...

n iil itb( r r tt A-TABLE 1-1 Continued

UTM- UTM-Site Easting Northing

Identifier Location (km) (km)

GLEN Glendora-Laurel 4215 37782

HAWT Hawthorne 3734 37543

HESP Hesperia-17288 Olives 4738 38084

HF Henninger Flats 4006 37847

KH Kellogg Hill 4242 37711

LA Los Alamitos-SCE Power Plant 3980 37370

LAHB La Habra 4121 37542

LANC Lancaster 3957 38415

LBCC Long Beach City College 3947 37437

LCAN La Canada 3882 37861

LGBH North Long Beach 3900 37430

LSAL Los Alamitos-Orangewood 4045 37398

LYNN Lynwood 3882 37548

MALI Malibu 3440 37669

MISS Mission Hills 3651 37932

NEWL Newhall-County Fire Station 3590 38060

NORC Norco-Norconian 4472 37533

NTD Pt Mugu Naval Weapons Test Center 3048 37769

OJAI Ojai-1768 Maricopa Highway 2914 38138

PASA Pasadena-Wilson 3961 37773

PERI Perris 4784 37380

PICO Pico Rivera 4023 37641

PIRU Piru-2SW 3324 38076

PLSP Palm Springs-Fire Station 5425 37457

POMA Pomona 4307 37696

PV Palos Verdes-San Pedro Hill 3762 37346

Continued

3 91061 09

TABLE 1-1 Concluded

UTM- UTM-Site Easting Northing

Identifier Location (km) (km)

RDLD Redlands-Dearborn 4853 37686

REDO Redondo Beach 3720 37459

RESE Reseda 3587 37851

RIAL Rialto 4625 37760

RIVR Riverside-Rubidoux 4615 37620

SIMI Simi Valley-5400 Cochran 3449 37940

SNBO San Bernardino 4748 37739

SNI middotsan Nicolas Island 2684 36823

TANB BLM-TanbarkAngeles NF 4301 37849

TEME BLM-TemescalLos Padres NF 3531 38167

TORO El Toro 4320 37252

TRON Trona-Market Street 4361 39573

UPLA Upland ARB 4420 37736

VCTC Victorville-Civic Drive 4707 38185

VENI Venice Beach 3642 37612

VERN Vernon 3874 37625

WALN Walnut 4223 37677

WHIT Whittier 4053 37540

WSLA West Los Angeles-VA Hospital 3657 37686

WSPR BLM-W arm Springs Angeles NF 3552 38291

ZUMA Zuma Beach 3313 37659

9106109 4

TABLE 1-2 SCAQS upper-air wind monitoring sites

UTM- UTM-Site Easting Northing

Identifier Location (km) (km)

BUR BurbankGlendalePasadena Airport 3748 37850

DAGG Daggett SCENES Site 5198 38581

EMUA El Monte-9528 Telstar 4021 37700

GLUA Glendora-near SCAQMD site 7000591 4216 37783

LBCC Long Beach City College 3947 37437

LBCR Long Beach City College 3947 37437

LMUA Loyola Marymount U niversity-Engng Bldg 3694 37604

NEED Needles SCENES Site 7181 38496

NSI San Nicolas Island 2717 36796

NTD Pt Mugu Naval Weapons Test Center 3048 37769

ONT Ontario International Airport 4443 37684

PSP Palm Springs 5460 37429

RAL Rialto 4589 37567

SFUA Santa Fe Springs 4020 middot 37557

TRM Thermal Airport 5776 37209

VBG Vandenberg AFB 1733 38472

YLUA Yorba Linda County Park 4287 37549

591061 10

5~

NORTH 275 325 375 425 475 525 575

~-~

bull ( I (o(r--L__- __ c_ __ ) -9) I _)I --~ ---~ __------__

bull (Q ~ ~ l-- middot r l__ _ _ 1 2 oo--_ - _ ~ shy

-

----- ----

------ ---

~middotmiddot- lt~]~---~ ~ 1 L

~~ 0

- o 7 -

----

~ middot -_ -_ I ( C~ ) ~ middot---) lt____ ) 9 bull ~- J t------------ ~ middotbull _ __ 10o -- - - - - - - 0 __ - J J--aoo ltJ

3620---_--__ _ - 0) ------- ___ -- - - ---- -- - --~- 7--

- middotmiddot -middot-- 0 _ - - I 1---------- ---- ~ ---~-----_ -~- ------- -_ ------~lt()~ --nmiddotor ~o-gtpcbull-middot ccc_--gt ____ middot_middot Ji tdegoo CmiddotI bull -bull - - I ---

middot-middot ___ - 1 c___ ~ i-- l bull - --- bullsoclt---_ middot middot-~soc_ ~- le r---- ltD

_ - -- ____ -c bull -~------1 5

= __ __ ) --~ --_ ---- ____ - _____-~~~-~ ~ _ ---~-frac142--~~ so9~ _ Q___~ - -- _ bull bull 1 middot -~ - -- - bull bull c- rAo 0o(Y--

-_ -------=--=_6CO-------- - ~)_O~ _ ~_ lt--middot_~~--~ (_ )-~- - _- ~ 0

~) ( ___ ------ -~- C jjh --- - ~ I 3770

t- 300- middotoo___ -~- l _2 ---sii middot middot 50~ ( C tshyV10w w ~ C ~_( middot bull i

l_ --t

~

__ _~) igtgt

- 1

- middot

7)_ -o-

- _middot-- -- ~ ---30~lt_~-L_ 9oo_~gn~~-__~~

U)

3770

- - o ~~~~d l -- o~ Jl _

si (_ - (----_ ( 1400t 37203720

- 1 ) reg_~S ~ ~~

7 9 b -- -- 0 ~

i --shyf I I I ~Ibull-bull

367~s I I I I I I I 13251 I I I I I I I 1351 I I I I I I I 14251 I I I I I I 14~51 I I I I I I I ss 7 I I I I I I I5s I I I I 3670

SOUTH

I I I I I I 0 10 20 30 40 50

(KM) i

FIGURE 1-1 The SCAQS 1987 analysis domain (axes labeled in zone 11 UTM coordinates topography contoured in meters)

-- ii gti kd

Our analysis consisted of (1) generation of hourly gridded wind fields for the 17 SCAQS intensive study days using the DWM (2) analysis of the mesoscale airflow patterns and (3) calculation of forward and backward particle trajectories to examine pollutant transport in the SOCAB

The results of the diagnostic analysis of SCAQS wind observations are presented in this report The generation of wind fields and the resulting airflow patterns are described in Section 2 The trajectory analysis is presented in Section 3 Plots of the wind fields are given in Appendix B The trajectory plots are included in Appendix C

9106102 7

2 GENERATION OF WIND FIELDS AND ANALYSIS OF AIRFLOW PATTERNS

DIAGNOSTIC WIND MODEL

Hourly gridded wind fields were generated for the 17 SCAQS intensive monitoring days using the Diagnostic Wind Model (DWM) (Douglas et al 1990) This model incorporates observations where they are available and provides some information on terrain-induced airflows in regions where local observations are absent The model is formulated in terrain-parallel coordinates Wind fields are generated using a two-step procedure

In step 1 a domain-scale mean wind is adjusted for terrain effects These include the kinematic effects of terrain (lifting and acceleration of the airflow over terrain obstacles) thermodynamically generated slope flows and blocking effects Step 1 produces a spatially varying gridded field of u and v for each vertical layer within the model domain

In step 2 observational information is added to the middot(uv) field calculated in step 1 using an objective analysis procedure observations are used within a user-specified radius of influence while the step 1 (uv) field is used in subregions where observations are unavailable The following modified inverse-distance-squared weighting scheme (Ross and Smith 1986) is used for the interpolation of data

where (u0

v0 )k denotes an observed wind at station k rk is the distance from station k to a

given grid point (u v)1 is the step 1 wind field at the grid point and (u v)i is the updated wind vector The parameter R controls the relative influence of the observations and the step 1 wind field

Following the interpolation a five point smoother of the form

9106102

Amiddot 1J

8

is applied to the horizontal wind field to reduce discontinuities that may result from the interpolation The vertical velocity is calculated by integrating the incompressible conservation of mass equation Zero-gradient lateral boundary conditions are used

GENERAL PROCEDURES

Generation of the SCAQS wind fields involved (1) preprocessing of the wind data for input into the DWM (2) plotting and quality control checking of the data (3) specification of the model input parameters (4) exercise of the DWM and (5) graphical display of the gridded wind fields Winds were analyzed at six vertical levels 10 100 300 600 1000 and 1500 meters (m) above ground level (agl)

In the preprocessing step the upper-air data were vertically interpolated to the model levels and temporally interpolated to enhance the temporal consistency of the wind fields and to provide hourly input for the DWM

Following the preprocessing step the data were plotted and examined for horizontal vertical and temporal consistency Data that failed the quality control checks were eliminated from the model input data set

The controlling parameters for the DWM include the maximum radius of influence (RMAX) at which a monitoring station can influence the interpolation at a grid point the weighting parameter for terrain effects (R) the number of stations to be used in the interpolation (NINTRP) and the number of smoothing passes (NSMTH) Note that the maximum radius of influence is specified independently for the surface level ( over land) upper levels (over land) and over-water portions of the domain The weighting parameter for terrain effects and the number of interpolating stations are specified separately for the surface level and upper levels In the diagnostic analysis of the SCAQS wind observations these parameters were specified as follows

RMAX (surface) 20km RMAX (aloft) 100 km RMAX (over water) 150 km R (surface) 10km R (aloft) 50 km NINTRP (surface) 4 NINTRP (aloft) 3 NSMTH 4

Tests were performed to examine the sensitivity of the DWM to the various contr ling parameters and to select the optimum values of these parameters for the SCAQS v nd analysis

9106102 9

The DWM also requires as input a domain-mean wind and stability information For this analysis the domain-mean wind was specified separately for each analysis level and was based upon the average of the level 6 (1500 m agl) wind observations To account for friction the speed of the domain-mean wind was reduced for the lower levels by multiplying the average wind speed for level 6 by the following scaling factors

Level Scaling Factor 1 048 2 072 3 083 4 090 5 096 6 100

The domain-scale lapse rate was the calculated average of four inland sites These varied according to data availability

Six-hourly plots of the level I (surface) level 3 (300 m agl) and level 5 (1000 m agl) wind fields for each episode are given in Appendix B

SUMMER INTENSIVE MONITORING PERIODS (

Mesoscale airflow in the SOCAB during the SCAQS summer intensive monitoring periods appears to have two components

A basic diurnal cycle driven by land-water temperature differences and complex terrain and

A perturbation associated with the overlying synoptic flow

19 June 1987

The surface and upper-air wind monitoring site locations for this intensive monitoring period are indicated on pages A-1 and A-2 respectively Plots of the diagnostic wind analyses for 19 June are given on pages B-1 through B-12

The surface early morning airflow pattern on this day is characterized by weak winds over much of the coastal and inland areas with moderate NW winds over the Coachella Valley and offshore At 300 m agl winds are S over the western half of the domain and W to NW over the eastern half of the domain The overlying flow at 1000 mis W

9106102 10

n1er

The sea breeze is somewhat slow to appear in the western basin on this day but has begun to develop by 1000 PST At this time winds at 300 m agl remain S over the western part of the domain and W to NW over the eastern part of the domain Some S flow is also apparent at 1000 m

During the afternoon hours three distinct features are apparent in the surface airflow pattern

A sea breeze (W flow) develops along the coast between Santa Monica and Palos Verdes and penetrates inland A branch of the sea breeze penetrates into the San Fernando Valley resulting in weak SE flow at Burbank and Reseda

An area of weak (SW) winds forms in the Whittier-La Habra-Pico Rivera area persists throughout the afternoon and fonns a convergence zone in the central basin with the penetrating westerly flow The S component of this flow is due to sea breeze development along the coast near Long Beach

Upslope flow develops along the foothills of the San Gabriel and San Bernardino Mountains (eg at Glendora and San Bernardino) Along the eastern foothills the upslope flow is supplanted during the afternoon by the penetrating W flow

By 1600 PST on 19 June the depth of the upslope flow near Glendora exceeds 600 m Strong outflow is apparent through the Cajon and Banning passes Aloft winds are generally SW with some SE flow near Burbank and NW flow over the Coachella Valley

Significant onshore flow (3 ms) persists along the Santa Monica-Palos Verdes coastline through 2200 PST Feature-s of the afternoon airflow persist aloft through this time

24-25 June 1987

Surface and upper-air wind monitoring site locations for this intensive monitoring period are indicated on pages A-3 and A-4 respectively Plots of the diagnostic wind analyses for 24-25 June are given on pages B-13 through B-36

The airflow patterns on these two days are similar to one another and to the ttern on 19 June The overlying flow is generally weak below 1000 m agl with moderak t5 ms) SE flow at 1500 m agl

On 24 June the early morning surface airflow patterns are characterized by ver middoteak winds At 300 m agl winds in the Coachella Valley are SE By 1000 PST a we1 organized zone of weak S flow extends from Long Beach to Pasadena this S flm

9106102 11

(

reaches a depth of 300 m agl Southeastern flow in the Coachella Valley and E flow through Banning Pass are apparent both at the surface and 300 m agl S to SE flow dominates at 1000 m agl The II three-zone II surface airflow pattern is apparent during the afternoon The wind shifts to Wat Banning Pass by 1500 PST At 300 m agl winds are SW over much of the basin with SE flow at Burbank and in the Coachella Valley At 1000 m winds are generally SW At 2200 PST the airflow pattern is characterized by weak unorganized flow at the surface and 300 m agl Winds at 1000 m are NW over much of the domain but SE over the Coachella Valley

The airflow on 25 June is similar to that on 24 June During the early morning hours winds at the surface are very light Weak SE flow is apParent at 300 m agl At 1000 m agl winds continue to veer toward N The sea breeze develops more quickly than on the previous day and winds at Banning Pass become westerly by 1300 PST Calm winds are observed at Pico Rivera throughout the afternoon As on 24 June the afternoon airflow at 300 m agl is characterized by SW flow over the basin and SE flow at Burbank and over the Coachella Valley Upward propagation of W flow is generally slower than on 24 June Winds at 1000 m agl are S to SE During the evening hours the surface winds become light while at 300 m agl winds over the Coachella Valley become NW Organized W flow is apparent over the W basin through a depth of at least 300 m agl through 2200 PST

13-15 July 1987

Surface and upper-air wind monitoring sites for this intensive monitoring period are shown on pages A-5 and A-6 respectively Plots of the diagnostic wind analyses for 13-15 July are given in Figures B-37 through B-72

Airflow patterns on 13 and 14 July are generally consistent with the basic diurnal cycle described earlier However an unusual airflow pattern develops in the Coachella Valley on both days On 15 July strong SE forcing is associated with a delay in sea breeze development

The 13 July early morning surface airflow pattern is characterized by light winds and a weak cyclonic eddy over the Santa Monica Bay Winds aloft are light to moderate and primarily W The sea breeze develops rapidly on this day and by 1200 PST W flow overwhelms the S sea-breeze flow in the Long Beach Area W flow appears at Banning Pass by 0800 PST The surface afternoon airflow is characterized by the three-zone airflow pattern described earlier with strong upslope flow along the foothills ( gt 5 mls) and significant outflow through Cajon Pass Observations at Palm Spring (NW winds) and Thermal (SE winds) indicate a convergence zone in the Coachella Valley with a depth of at least 600 m W flow dominates at middot1000 m with S to SE flow over the Coachella Valley During the evening hours a cyclonic eddy redevelops over the Santa

9106102 12

rtMt1

Monica Bay winds are weak throughout the basin but airflow into the Coachella Valley is especially strong

Airflow patterns on 14 July are similar to 13 July with a few exceptions During the early morning hours the surface airflow is characterized by weak disorganized flow There is no eddy apparent over the Santa Monica Bay The overlying flow is weak and primarily S to SE at 300 m agl but W to NW at 1000 m agl Sea breeze development is approximately two hours slower on this day than on 13 July By 1000 PST weak S flow has developed over the Whittier-La Habra-Pico Rivera area and SE flow is apparent at Burbank AS component to the flow appears at 1000 m The afternoon surface airflow pattern is similar to that on 13 July but the S upslope flow at Glendora is weaker S flow develops at Elsinore and several coastal Orange County sites The Coachella Valley convergence zone reappears at the surface at 1600 PST two hours later than on the previous day At 300 and 1000 m agl W to SW flow dominates over the western twoshythirds of the domain SE flow is apparent over the Coachella Valley During the evening hours the surface airflow over the central basin is S to SW W flow components persist along the eastern foothills through 2200 PST

On the morning of 15 July surface winds are weak but maintain a S component Moderate SE flow is apparent offshore The overlying flow is generally E to SE By 1000 PST the surface airflow pattern is characterized by S flow over the central basin and along the foothills SE flow in the Coachella Valley and E flow through Banning Pass The depth of the S to SE flow is greater than 1000 m agl During the afternoon a weak sea breeze penetrates inland and winds along the foothills become W Winds shift from E to NW at Banning Pass at 1600 PST A weak S flow component persists in the Whittier-La Habra-Pico Rivera area throughout the afternoon A weak slopevalley circulation develops in the Coachella Valley resulting in SE flow there At 300 m agl winds are SW to W over the central basin and SE over the Burbank and the Coachella Valley At 1000 m S to SE flow dominates W winds persist along the foothills through 2200 PST and weak S to SE flow redevelops at the surface Remnants of the afternoon airflow pattern persist aloft

27-29 August 1987

The surface and upper-air wind monitoring site locations for this intensiv middot1onitoring period are indicated on pages A-7 and A-8 respectively Plots of the dia stic wind analyses for 27-29 August are given on pages B-73 through B-108

On the morning of 27 August surface winds are weak over most land areas a 1djacent coastal waters with moderate (5 ms) NW winds well offshore Winds aloft a Jrimarily N with weak NE flow at 100-300 m agl over the central basin By 1000 PST threeshy

IIzone airflow pattern has developed at the surface and is somewhat apparent ( hin the limits of the upper-air network) at 300 m agl SE flow has developed at 100( agl

9106102 13

This pattern is maintained throughout the afternoon Within the Coachella Valley a classic daytime slopevalley flow pattern develops with SE flow extending to a depth of 1000 m E flow develops at Banning Pass and persists through 1700 PST W flow over the basin develops upward throughout the afternoon By 1600 PST wind at 300 m agl are W to SW over the central basin and SE over Burbank and the Coachella Valley During the evening hours the features of the mesoscale airflow pattern over land weaken both at the surface and aloft There is no clearly developed offshore-directed land breeze

On the morning of 28 August the surface winds are weak and the overlying flow is primarily E Retardation of the sea breeze by the overlying E flow is apparent by 0900 PST S flow develops in the Long Beach area E flow at Banning Pass is substantially stronger than on 27 August During the afternoon of 28 August S flow persists at Long Beach and develops in the Whittier-La Habra-Pico Rivers area SE flow is observed along the Orange County coast E flow through Banning Pass persists throughout the day W wind components along the Santa Monica-Palos Verdes coastline are weaker than on the previous day and NW flow fails to develop at San Nicolas Island W flow over the central basin disrupts the SE flow aloft During the evening hours the airflow features weaken W flow along the foothills does not persist as long as on the previous day

The early morning airflow pattern on 29 August is characterized by SE flow both at the surface and aloft Sea breeze development on this day is slower than on either of the previous two days S flow again develops in the Long Beach area and appears to be stronger than on the previous day Although the sea breeze is weaker winds at Banning Pass shift from E to SW by 1300 PST This shift occurs at 1800 on 27 and 28 August SE flow persists aloft with limited upward development of the W sea breeze flow W flow persists in the western basin area through 2200 PST and SE flow persists aloft

2-3 September 1987

The surface and upper-air monitoring site locations for this intensive monitoring period are indicated on pages A-9 and A-10 respectively Plots of the diagnostic wind analyses for 2-3 September are given on pages B-109 through B-132

The first day of this period is probably the most anomalous of the summer SCAQS intensive measurement days Overlying easterly forcing during the morning hours prevents development of W flow along the foothills and inhibits upward development of the sea breeze over the western and central portions of the basin The easterly forcing appears to reverse rather abruptly on the afternoon of 2 September Unusual winds are also observed at Burbank on 2 September During the late morning and afternoon Burbank experiences an unusual wind shift from SE to W through a depth of 1000 m On 3 September the overlying airflow is W and the airflow patterns are more typical

9106102 14

rrn

On the morning of 2 September strong downslope flow results in N to NE winds at several sites along the foothills of the San Gabriel Mountains At 300 m strong NE winds are apparent over the central basin The overlying flow is E By 1000 PST the sea breeze appears as W flow along the Santa Monica-Palos Verdes coast and S flow in the Long Beach area The surface analysis indicates a band of S flow from Costa Mesa to Azusa W flow has not developed along the eastern foothills Winds are SE in the Coachella Valley and E through Banning Pass E flow aloft continues and intensifies During the early afternoon hours a relatively strong sea breeze penetrates inland to Azusa while winds in the Whittier-La Habra-Pico Rivera area remain weak The sea breeze weakens considerably after mid-afternoon Between 1200 and 1500 PST the wind at Burbank shifts from SE to W through a depth of 600-1000 m By 1600 PST the overlying flow has shifted from SE to W Onshore flow continues at the surface through 2200 PST while the winds weaken considerably Although the overlying W flow persists in general 300 m agl winds at Burbank become SE

The early morning airflow on 3 September is characterized by weak winds at the surface SE flow at 300 m agl and primarily W flow at 1000 m agl Although the major surface airflow features appear to develop as on previous days upward development of the pattern is limited Strong S flow is apparent by 1200 PST between 100 and 300 m agl over the central and western basin By 1600 PST the sea breeze has penetrated well inland Imbedded in the sea breeze is a persistent calm area in the vicinity of Lynwood S flow persists at 100-300 m agl over the central and western basin while flow at this level off shore remains NW At 1000 m agl W flow continues This general pattern persists through 2200 PST but weakens considerably especially at the surface

AUTUMN INTENSIVE MONITORING PERIODS

The mesoscale airflow patterns in the SOCAB during the SCAQS autumn intensive monitoring periods exhibit a weaker diurnal cycle than the summer airflow patterns Synoptic forcing also appears to be stronger

11-13 November 1987

The surface and upper-air wind monitoring site locations for this intensive monitoring period are plotted on pages A-11 and A-12 respectively Plots of the diagnostic wind analyses for 11-13 November are given on pages B-133 through B-168

During the early morning hours of 11 November NE surface winds are apparent over most of the region Surface wind speeds are very light over the basin and somewhat stronger along the foothills and the coast At 300 m agl winds are light and generally E At 1000 m agl winds are W to SW over the western half of the domain and SE over the eastern half of the domain Weak E to NE surface flow persists throughout most of the

9106102

15

morning in the first 300 m An apparent anticyclonic eddy (SE flow at Long Beach weak S flow at Burbank W flow at El Monte) develops between 600 and 1000 m agl on this morning A weak sea breeze forms around 1200 PST penetrating only to the central basin There is no apparent turning of the sea breeze into the San Fernando Valley W to NW flow develops offshore and is deflected around the Palos Verdes Hills This W flow is also apparent at 300 m agl Downslope flow components along the foothills are apparent by 1600 PST At this time the 1000 m agl winds are weak and N The sea breeze rapidly dissipates and NE flow develops at several coastal sites indicating a land breeze NW flow is maintained off shore The nighttime airflow pattern aloft is characterized by weak N winds at 300 m agl and weak W winds at 1000 m agl

The surface airflow pattern on the morning of 12 November is generally similar to that on 11 November E flow over land is apparent through a depth of 300 m while NW flow persists offshore The overlying flow is W The afternoon surface airflow pattern is more similar to a typical summer afternoon pattern than the previous day Turning of the sea breeze into the San Fernando Valley is apparent and W flow develops along the foothills of the San Gabriel and San Bernardino Mountains by 1400 PST Airflow at 300-600 m agl appears to veer continuously from E to W at most inland sites during the afternoon NW flow through a depth of 1000 mis apparent over the Coachella Valley Surface winds become light and disorganized during the evening hours Unlike the previous day NE flow does not develop at the coastal sites and NW flow weakens offshore W winds persist aloft

On 13 November surface winds are very light through the early morning hours with E flow components apparent immediately offshore The overlying flow is WNW but becomes S over the central basin by 1000 PST As on the previous two days a sea breeze becomes apparent at the surface by noon W flow components over the basin and foothill areas are stronger than on the previous two days both at the surface and aloft Significant W flow also develops in Banning Pass Moderate to strong W winds are apparent aloft During the afternoon and evening hours SE winds are apparent at Burbank between 300 and 600 m agl Intense W flow develops off shore and propagates inland during the evening hours W flow continues aloft with some S to SE flow between 100 and 600 m agl at Burbank and El Monte

3 December 1987

The surface and upper-air wind monitoring site locations for this intensive monitoring period are plotted on pages A-13 and A-14 respectively Plots of the diagnostic wind analyses for 3 December are given on pages B-169 through B-180

The early morning surface airflow pattern on 3 December is characterized by weak NE winds over the inland areas and a weak cyclonic eddy off shore The overlying flow is S to SE Surface winds remain light and variable through most of the morning Moderate

9106102 16

txi Iii ttii

E flow is apparent over the western and central basin between 300 and 600 m agl A sea breeze develops around 1200 PST reaching a depth of 300 m and penetrating only approximately 30 km inland S to SE flow persists above 300 m agl The sea breeze weakens during the evening hours and N flow through a depth of 300 m develops at Long Beach E flow components intensify at 600 m agl and above

10-11 December 1987

The surface and upper-air wind monitoring site locations for this intensive monitoring period are plotted on pages A-15 and A-16 respectively Plots o~ the diagnostic wind analyses for 10-11 December are given on pages B-181 through B-204

On 10 December the early morning surface airflow pattern is weak and disorganized Weak NE flow is apparent over much of the basin between 100 and 600 m agl The overlying flow at 1000 m is N The surface airflow over the basin is weak throughout the morning hours while NW flow develops offshore Winds aloft remain N A weak sea breeze is apparent by 1200 PST the sea breeze penetrates only about 30 km inland and is limited to a depth of approximately 300 m There is no apparent turning of the sea breeze into the San Fernando Valley Elsewhere in the basin the surface airflow remains weak By 1600 PST the sea breeze has weakened At this time winds aloft are predominantly W to NW at 300 m agl and N at 1000 m agl During the evening hours surface airflow over the basin becomes weak and disorganized while E flow develops at Palos Verdes Strong N winds appear aloft (300-600 m agl) at Burbank LMU and Long Beach however winds at this level further to the east remain light

On 11 December the early morning surface airflow pattern is similar to that on 10 December Relatively strong ( gt 10 ms) NNW winds persist at 600-1000 m agl at Burbank and LMU E wind in the 100-300 m agl appear at LMU and Long Beach Throughout the morning the surface winds remain light and N winds 9ver Bu~ank weaken considerably A sea breeze is apparent by 1200 PST but is weaker than on the previous day and reaches a depth of only 100 m or less Significant N winds (3-6 ms) develop between San Bernardino and Elsinore and in the western San Fernando Valley NE flow is observed in Ventura County Winds aloft continue to be primarily N however E flow is apparent over the Long Beach area at 1000 m agl Surface airflow over the central and western basin becomes very weak during the evening hours Strong N to NE flow develops at the coast west of Santa Monica while N flow persists in the western San Fernando Valley and in the San BernardinoRiverside area The overlying flow is N to NE

91061 02 17

3 PARTICLE PAm ANALYSIS

A series of forward and backward particle paths (trajectories) were calculated using the SCAQS DWM wind fields The particle paths will be used by other SCAQS investigators in their examination of pollutant transport within the SOCAB The forward particle paths can be used to estimate the transport of pollutants from known source locations The backward particle paths can be used to estimate potential source areas The particle paths can also be used to estimate the residence time of certain pollutants in the SOCAB as a whole or in subregions

CALCULATION OF PARTICLE PAIBS

Two-dimensional particle paths were computed using the DWM wind fields as follows

Starting ( ending) points for a given number of forward (backward) particle paths were specified

Using a time interval of 15 minutes the hourly gridded DWM wind fields were linearly interpolated in time and then interpolated in space to each particle position using an inverse-distance-squared weighting scheme

The particles were then advected horizontally for the specified time interval

The distance traveled by each particle during each time interval was integrated The new position of the particle was reported at hourly intervals

Forward and backward particle paths were calculated for the SCAQS intensive monitoring periods for several vertical levels and a variety of origination and destination points The origination (destination) locations and times for the summer and autumn particle paths are listed in Tables 3-1 and 3-2 respectively Most of the particle paths originated (ended) at one of the SCAQS wind monitoring sites listed in Tables 1-1 and 1-2 Additional sites are identified in Table 3-3 Note that for some sites in Tables 3-1 and 3-2 a new particle path was initiated at the particles 1000 PST location but at a higher level

Additional forward particle paths were calculated for comparison with the SCAQS tracer data (England et al 1989 Horrell et al 1989) The initiation times and locations correspond to the tracer releases and are given in Tables 3-4 and 3-5

9106lrl02

~~ll1~(I titW I~l~~~t~~

TABLE 3-la Summer particle paths forward particle paths

Start Time Origination Start Date (PST) Site Level(s)

624 0500 LBCC 13 CELA 13

624 0700 LBCC 13 CELA 13

624 1000 LBCC 13 CELA 13

624 1500 LBCC 13 CELA 13

624 2100 LBCC 13 CELA 13

625 0500 HHRA 5 PADA 45 FULA 5

625 0700 FULA 5

713 0500 LBCC 13 CELA 13

713 0700 LBCC 13 CELA 13

713 1000 LBCC 13 CELA 13 EMTA 24

713 1500 LBCC 13 CELA 13

713 2100 LBCC 13 CELA 13

714 0500 LBCC 13 CELA 13

714 0700 LBCC 13 CELA 13

714 1000 LBCC 13 CELA 13

714 1500 LBCC 13 CELA 13

714 2100 LBCC 13 CELA 13

Continued

19

91061 07

TABLE 3-la Concluded

Start Time Origination Start Date (PST) Site Level(s)

827 0500 LBCC 13 CELA 13

827 0700 LBCC 13 CELA 13

827 1000 LBCC 13 CELA 13

827 1500 LBCC 13 CELA 13

827 2100 LBCC 13 CELA 13

828 0500 LBCC 13 CELA 13

828 0700 LBCC 13 CELA 13

828 1000 LBCC 13 CELA 13

828 1500 LBCC 13 CELA 13

828 2100 LBCC 13 I CELA 13

92 0500 LBCC 13 CELA 13 HHRA 12

92 0700 LBCC 13 CELA 13 FULA 12

92 1000 LBCC 13 CELA 13

HHRA 45 FULA 45

92 1500 LBCC 13 CELA 13

92 2100 LBCC 13 CELA 13

93 0700 RIVA 12

93 1000 RIVA 45

A new particle path was initiated at the particles 1000 PST location but at a higher level

20

~(Ibull bull 11

41

~1~_11Lmiddot11~1~~tV t rt~~14_ II~~~h1 1r t

TABLE 3-lb Backward particle paths

End Time Destination End Date (PST) Site Level(s)

624 1500 CABA 23 EMTA 45 BURA 1234 HHRA 4 FULA 45

624 1800 RIVA 3

625 0500 CLAR 13 RIVR 13 HHRA 5 PADA 45 FULA 5

625 0700 CLAR 13 RIVR 13 FULA 5

625 1000 CLAR 13 RIVR 13

625 1500 CLAR 13 RIVR 13 CABA 23 EMTA 4 BURA 4 RIVA 45

625 1600 RIVA 45

625 2100 CLAR 13 RIVR 13

713 - 1000 EMTA 24

713 1500 CABA 23 EMTA 45 RIVA 24

713 1600 RIVA 24

714 0500 CLAR 13 RIVR 13

714 0700 CLAR 13 RIVR 13

714 1000 CLAR 13 RIVR 13 BUR 123

714 1500 CLAR 13 RIVR 13 CABA 23 EMTA 4 BURA 234 RIVA 2

714 1600 RIVA 2

Continued

21 nn1 Y1

TABLE 3-lb Continued

End Time Destination I End Date (PST) Site Level(s)

714 2100 CLAR 13 RIVR 13

715 0500 CLAR 13 RIVR 13

715 0700 CLAR 13 RIVR 13

715 1000 CLAR 13 RIVR 13

715 1500 CLAR 13 RIVR 13

715 2100 CLAR 13 RIVR 13

827 1000 CABA 2 EMTA 23 BURA 123

827 1500 CABA 2

828 0500 CLAR 13 RIVR 13

828 0700 CLAR 13( RIVR 13

828 1000 CLAR 13 RIVR 13

828 1500 CLAR 13 RIVR 13

828 2100 CLAR 13 RIVR 13

829 0500 CLAR 13 RIVR 13

829 0700 CLAR 13 RIVR 13

829 1000 CLAR 13 RIVR 13

829 1500 CLAR 13 RIVR 13

829 2100 CLAR 13 RIVR 13

92 1000 PADA 3

92 1100 PADA 3

92 1500 EMTA 2 RIVA 2

Continued

22

91061 07

I

1bullLI bullI I bull ~ii 1 1

1 cl1

[1i1bull~j~1 Iiii~ j t-~dI ~1 1ltl1111111 II r I l~bull~II~middot t1~i~n_11~~ ~middot -

TABLE 3-lb Concluded

End Time Destination End Date (PST) Site Level(s)

92 1600 RIVA 2

93 0500 CLAR 13 RIVR 13

93 0700 CLAR 13 RIVR 13

93 1000 CLAR 13 RIVR 13 CABA 2 BURA 1234

93 1500 CLAR 13 RIVR 13

93 2100 CLAR 13 RIVR 13

23 9106107

TABLE 3-2a Autumn particle paths forward particle paths

Start Time Origination Start Date (PST) Site Level(s)

1111 0300 LBCC 13 CELA 13

1111 0700 LBCC 13 CELA 13

1111 0900 FULA 12

1111 1200 LBCC 13 CELA 13

1111 1500 LBCC 13 CELA 13

1111 2100 LBCC 13 CELA 13

1112 0300 LBCC 13 CELA 13

1112 0700 LBCC 13 CELA 13 FULA 12

1112 1000 FULA 45

1112 1200 LBCC 13 CELA 13(

1112 1500 LBCC 13 CELA 13

1112 2100 LBCC 13 CELA 13

1113 0500 ONTA 123

1113 1000 ONTA 45

123 0300 LBCC 13 CELA 13

123 0700 LBCC 13 CELA 13 FULA 12

123 1000 FULA 45

123 1200 LBCC 13 CELA 13

123 1500 LBCC 13 CELA 13

123 2100 LBCC 13 CELA 13

1210 0300 LBCC 13 CELA 13

1210 0700 LBCC 13 CELA 13

Continued

24 9106108

TABLE 3-2a Concluded

Start Time Origination Start Date (PST) Site Level(s)

1210 1200 LBCC 13 CELA 13 FULA 123

1210 1500 LBCC 13 CELA 13

1210 2100 LBCC 13 CELA 13

1211 0500 ONTA 12

1211 0700 FULA 12

1211 1000 ONTA 45 FULA 45

A new particle path was initiated at the particles 1000 PST location but at a higher level

25 9106108

TABLE 3-2b Backward particle paths

End Time Destination End Date (PST) Site Level(s)

1111 1500 HHRA 34

1112 0300 LBCC 13 CELA 13 RIVR 13

1112 0700 LBCC 13 CELA 13 RIVR 13

1112 1200 LBCC 13 CELA 13 RIVR 13

1112 1500 LBCC 13 CELA 13 RIVR 13 HHRA 34 PADA 3 FULA 34

1112 2100 LBCC 13 CELA 13 RIVR 13

1113 0300 LBCC 13( CELA 13

RIVR 13

1113 0700 LBCC 13 CELA 13 RIVR 13

1113 ~ 1200 LBCC 13 CELA 13 RIVR 13 ONTA 34 EMTA 45

1113 1500 LBCC 13 CELA 13 RIVR 13

1113 2100 LBCC 13 CELA 13 RIVR 13

123 0300 LBCC 13 CELA 13 RIVR 13

123 0700 LBCC 13 CELA 13 RIVR 13

Continued

26 9106108

TABLE 3-2b Concluded

End Time Destination End Date (PSn Site Level(s)

123 1200 LBCC 13 CELA 13 RIVR 13

123 1500 LBCC 13 CELA 13 RIVR 13 PADA 3

123 2100 LBCC 13 CELA 13 RIVR 13

1211 0300 LBCC 13 CELA 13 RIVR 13

1211 0700 LBCC 13 CELA 13 RIVR 13

1211 1200 LBCC 13 CELA 13 RIVR 13

1211 1500 LBCC 13 CELA 13 RIVR 13 PADA 1234 BURA 123

11 13 2100 LBCC 13 CELA 13 RIVR 13

27 9106108

TABLE 3-3 Additional particle path initiation (destination) points

Site Identifier Location UTM Easting (km) UTM Northing (km)

BURA Burbank Airport 3749 37859

CABA Cable Airport 4370 37751

EMTA El Monte Airport 4047 37717

FULA Fullerton Airport 4091 37485

HHRA Hawthorne Airport 3768 37547

ONTA Ontario Airport 4435 37686

PADA PADDR Intersection 3810 37175

RIVA Riverside Airport 4584 37485

28

TABLE 3-4 Forward particle paths calculated for comparison with the SCAQS tracer data

Start Start Origination Date Time Site Levels

0300 LAGS 13 0600 13 0900 II 13 1200 II 13 1500 II 13

625

715 0500 VRNN 1

0800 VRNN 1

828 0600 LAGS 13 1000 II 13 1300 13 1500 13

93 0500 VRNN 1

0800 VRNN 1

1111 1600 LAGS 3 ESGS 3 VRNN 1

1900 LAGS 3 ESGS 3 VRNN 1

1112 0600 ESGS 3 VRNN 1

0900 ESGS 3 VRNN 1

1210 0600 LAGS 3 ESGS 3 VRNN 1

0900 LAGS 3 ESGS 3 VRNN 1

1600 VRNN 1

29

9106lrl09

TABLE 3-5 SCAQS tracer release sites

I_______________________

Site Identifier Location UTM Easting (km) UTM Northing (km)

ESGS El Segundo 3690 37536 LAGS Los Alamitos 3980 37370 VRNN VRNN 3874 37625

(

91061rl09

30

The particle paths were calculated for up to a three-day period In general forward particle paths were calculated through the end of the monitoring period or until the particle was advected out of the domain Backward particle paths were calculated through the beginning of the intensive monitoring period or until the particle left the domain

Selected plots of the forward and backward particle paths are given in Appendix C

SUMMER PARTICLE PATHS

Forward particle paths (levels 1 and 3) originating from Central Los Angeles (CELA) and Long Beach City College (LBCC) at 0700 PST on 24 June 13 and 14 July 27 and 28 August and 2 September are shown on pages C-1 through C-12

The surface-level particle paths originating at CELA indicate northward advection from this site on all days The particle path initiated on 27 August indicates that the initial northward advection is followed by westward advection on the following day the particle path initiated on 2 September indicates that the initial northward advection is followed by eastward advection on the following day In all cases the residence time in the central Los Angeles basin is less than 12 hours

The surface-level particle paths originating at LBCC are carried northward and eastward usually exiting the Los Angeles basin through Cajon Pass On 24 June and 14 July however the particles are carried across the San Gabriel Mountains (with the upslope flow) Considerable eastward transport is indicated by the particle paths initiated on 2 September after 1800 PST -Residence time in the Los Angeles basin varies from day to day and is especially long for the particle path initiated on 27 August (approximately 30 hours) Particle paths initiated on 13 July and 28 August also indicate some recirculation and a significant residence time within the Los Angeles basin

The level 3 particle paths also indicate northward transport from CELA on most days Advection into the San Fernando Valley which may be partly due to the SE flow produced by the turning of the sea breeze into the valley is more pronounced on certain days (14 July 28 August and 2 September) Level 3 particle paths originating at LBCC show mostly northwestward transport Recirculation over the Los Angeles basin is indicated for the 2 September particle path

Backward particle paths (levels 1 and 3) culminating at Claremont College (CLAR) and Riverside-Rubideaux (RIVR) at 1500 PST on 25 June 14 and 15 July 28 and 29 August and 2 September are shown on pages C-13 through C-24 -

_

9106lrl 02

31

The surface-level backward particle paths originate over water on all days the particles are carried eastward and northward into the Los Angeles basin On 14 July and 28 August the particle paths indicate primarily eastward transport There is some indication that particles arriving at the destination sites on 28 August may have originated in the South Central Coast Air Basin (SCCAB) On 25 June 15 July and 3 September the particle paths indicate primarily northeastward transport On 29 August northward transport is indicated

The level 3 backward particle paths also indicate transport from the W SW or SE on the intensive monitoring days The over-water segments of the particle paths indicate eastward advection on 14 and 15 July and 27 and 28 August and northward advection on 25 June and 3 September Again there is some indication that particles arriving at the destination sites on 28 August may have originated in the SCCAB Almost all of the particle paths indicate that the particles are carried onshore between Long Beach and Laguna Beach and advected northeastward to CLAR and RIVR An exception to this occurs on 28 August On this day the particles are carried onshore near Redondo Beach and are recirculated over the Los Angeles basin for approximately 24 hours before arriving at the destination sites

AUTUMN PARTICLE PATIIS

Forward particle paths (levels 1 and 3) originating at CELA and LBCC at 0700 PST on 11 and 12 November 3 and 10 December are presented on pages C-25 through C-32

The autumn particle paths exhibit more day-to-day variability than the summer particle paths indicating more variability in the autumn airflow patterns Because both the CELA and LBCC locations are affected by the land-breezesea breeze circulations all of the surface-level particle paths show some recirculation in the western basin Particle paths initiated on 11 and 12 November eventually indicate eastward transport

The level 3 particle paths also differ among episodes but are all affected by the seashybreeze circulation Particle paths initiated on 11 November show eastward transport from CELA and southward transport from LBCC Northeastward transport at this level is indicated by the 12 November particle paths The particle paths initiated on 3 December illustrate local recirculation by the sea breeze On 10 December southward advection is indicated

Backward particle paths culminating at CELA LBCC and RIVR at 1500 PST on 12 and 13 November 3 and 11 December are presented on pages C-33 through C-40

The surface-level particle paths indicate that particles arriving at CELA at 1500 PST on all four days follow a southward then eastward course Particles arriving at LBCC are affected by some combination of onshore advection and local recirculation The particle

9106Irl02

32

paths culminating at Riverside indicate a variety of possible transport patterns eastward transport on 12 and 13 November northwestward transport on 3 December and southeastward transport on 11 December

The level 3 backward particle paths for 12 November illustrate recirculation aloft by the evolving airflow patterns while the particle paths for 13 November indicate primarily eastward advection The particle paths for 3 December are clearly affected by the SE that occurs on this day the resulting particle paths indicate northwestward transport The particle paths for 11 December indicate southward advection and recirculation by the sea breeze

COMPARISON WITH TRACER DATA

Forward particle paths originating from El Segundo (ESGS) Los Alamitos (LAGS) and Vernon (VRNN) at times corresponding to the SCAQS tracer release times are shown on

middot pages C-41 through C-76 For ground-level tracer releases the particle paths were calculated using level 1 (10 m agl winds) for stack releases the particle paths were calculated using level 3 (300 m agl) winds A qualitative comparison with the observed tracer data is provided here

Surface-level particle paths originating at LAGS on 25 June indicate northward transport during the morning and afternoon hours The level-3 particle paths indicate that material is transported out of the basin through Cajon and Banning Passes by the upper-level winds Both of these indicated transport patterns are supported by observed tracer data

Surface-level particle paths originating at VRNN on 15 July indicate northward transport and exhibit good qualitative agreement with the tracer data

Both the surface-level and level-3 particle paths originating at LAGS on 28 August indicate primarily northeastward transport Most of the particles are eventually advected through Cajon Pass This is consistent with observed tracer at Redlands San Bernardino and Crestline

Surface-level particle paths originating at VRNN on the morning of 3 September do not agree with the tracer data While the particle paths indicate northeastward transport the tracer data indicate northwestward transport

Surface-level particle paths originating at VRNN on the afternoon of 11 November indicate westward transport and a long residence time in the central basin The level-3 particle paths originating at LAGS and ESGS show southeastward transport and recirculationmiddot by the sea breeze Surface-level particle paths originating at VRNN on the following morning again show net westward transport and a long residence time in the

( central basin but the level-3 particle paths indicate northward transport with recirculation

91061rl 02

33

by the sea breeze The smface-level particle paths are consistent with the tracer data Tracer was observed over the north-central basin and along the foothills on the morning of 13 November

The surface-level particle paths originating at VRNN on the morning of 10 December indicate relatively stagnant conditions with a weak sea breeze circulation Some net transport toward the south is indicated Particle paths originating at VRNN on the afternoon of IO December show little movement throughout the following day The long residence time in the basin is in qualitative agreement with the tracer data Tracer was observed in the basin on the following day The dispersion indicated by the widespread tracer concentrations however cannot be represented by a single particle path The level 3 particle paths originating at LAGS and ESGS on the morning of 10 December show southward transport and recirculation by the sea breeze

UNCERTAINTY ANALYSIS

A simple analysis was perlormed in an attempt to quantify the degree of uncertainty inherent in the particle paths The uncertainty analysis was similar to an analysis described by Moore et al (1989)

Three major forms of error in the particle path calculations can be identified The first two result from errors in the wind fields The most fundamental of these is measurement error as measurements can only be regarded as approximations of the true winds Regardless of the accuracy of interpolation techniques measurement error will always affect the final wind field The second type of error results from the interpolation of these measurements and the parameterizations and approximations in the diagnostic wind model This error will be greatest in data-sparse areas The third type of error results from the use of two-dimensional wind fields The two-dimensional particle paths do not incorporate the effects of vertical motion which may be a significant source of error considering the mesoscale regimes present in the study area

The particle path uncertainty in this analysis is the result of all sources of error and is therefore very difficult to estimate A lower bound 11 on the uncertainty was assumed to result from measurement error alone Here we use a lower bound uncertainty estimate to illustrate the effects of measurement error on the particle path calculations Several assumptions were made in order to estimate this uncertainty First average bias for all instruments was assumed to be very small Second instrument precision was assumed to be constant over the region Third measurement error (speed and directional error) was assumed to be normally distributed around zero The standard deviation about the mean was based on observational data

For this uncertainty analysis 20 particle paths were initiated from a single site at a single time For each 15-minute particle path segment u and v were calculated as described in

9106lrl 02

34

(

the previous section Small random wind components (representing the measurement error) were then added to the interpolated wind The smaller components were determined by randomly selecting wind speed and direction error from two separate normal probability density functions (PDF) To do this a uniform random number generator was used to find two error probabilities Ps and Pd between 0 and 1 An inverse normal PDF routine was then used to find the speed or direction error that results in error probability Ps or Pd respectively Commercial statistical software from Th1SL was used to generate uniform random and inverse normal PDF values 1

The PDFs possess means of zero and standard deviations equal to the root mean square error (RMSE) of the measurements For simplicity RMSE values for speed and direction were taken from those specified by Moore et al (1989) namely 02 mis and 10 degrees respectively Random error components were determined for each 15-minute segment of every particle path The resulting divergence in the particle paths represents a lower limit to the uncertainty inherent in the particle-path calculations

Plots illustrating the effect of the lower-bound uncertainty on the particle path calculations are given for one summer and one winter episode in figures 3-1 and 3-2 respectively The summer particle-path bundles (Figure 3-1) were initiated at CELA and LBCC at 0700 PST on 14 July The winter particle paths (Figure 3-2) were initiated at CELA and LBCC at 0700 PST on 12 November The bundles were calculated for levels 1 and 3 In general the bundles indicate that the airflow patterns do not vary abruptly in space or time The winter particle paths are less divergent that the summer particle paths

While plots of the particle path bundles qualitatively indicate the degree of lower-limit uncertainty a quantitative summary of the uncertainty can be obtained via hourly estimates of RMSE of all particle positions relative to that with zero error The RMSE can be obtained from

1 1 M 2 2

RMSE = - ~ dj[ lM ]=l

where

1

dj = [(xj - X1)2 + (yj -y1)2]2

and where Mis the number of particles and ()1 represents the position of the actual particle as calculated in the previous section (ie the zero error particle path) The RMSE is used to determine the growth over time of the confidence interval about the

1 IMSL is the registered trademark of the Scientific Problem-Solving Software System developed by IMSL Inc Houston Texas

91061rl02

35

NORTH

425 31570

SOUTH (a) CELA Level 1I

20

(KM)

NORTH

425 31570

SOUTH (b) LBCC Level 1I

20

(KM)

le-path bundles initiated at 0700 PST 14 July 1987FIGURE 3- composedd par tic le paths1 Forwar of 20 particBundles are

35

NORTH

425 3570

SOUTH

(c) CELA Level 3

NORTH

425 3870

SOUTH

(d) LBCC Level 3

FIGURE 3-l Concluded

37 9106]

70

IlFil

NORTH

CEIA Level 1(a)

3(170

1-Ul j

NORTH

425 3(170

SOUTH

(b) LBCC Level 1

Forward le-path bundles initiated at 0700 12 November 1987FIGURE 3-2 composed par tic le pathsbullBundles are of 20 partic

3391061

425 3870

SOUTH

(c) CELA Level 3

J8

3870425

SOUTH

(d) LBCC Level 3 10 2

(KM)

FIGURE 3-2 Concluded

91061 39

1 1c

i I

trajectory calculated using the DWM winds Hourly RMSE values are given for the particle paths bundles shown in Figures 3-1 and 3-2 in Tables 3-6 and 3-7 respectively For level 1 the average RMSE after 12 hours is 567 km for 14 July and 167 km for 12 November For level 3 the average RMSE after 12 hours is 416 for 14 July and 260 for 12 November

9106lrl 02

40

TABLE 3-6 Hourly RMSEs for particle-path bundles initiated at 0700 PST 14 July 1987

Time LBCC RMSE CELA RMSE (PST) (km) (km)

Surface Level

0700 000 000

0800 042 042

0900 057 069

1000 063 100

1100 093 128

1200 091 143

1300 111 168

1400 136 217

1500 229 227

1600 265 219

1700 394 219

1800 620 265

1900 796 338

Level 3

0700 000 000

0800 018 049

0900 064 090

1000 068 140

1100 087 172

1200 089 162

1300 123 180

1400 231 224

1500 337 258

1600 419 278

1700 427 306

1800 449 347

1900 462 370(

9106104 41

TABLE 3-7 Hourly RMS Es for particle-path bundles initiated at 0700 PST 12 November 1987

Time LBCC RMSE CELA RMSE (PST) (km) (km)

Surface Level

0700 000 000

0800 047 049

0900 078 065

1000 077 066

1100 089 086

1200 109 094

1300 089 092

1400 118 125

1500 100 138

1600 129 150

1700 147 160

1800 161 164

1900 156 176

Level 3

0700 000 000

0800 045 076

0900 061 120

1000 069 139

1100 092 171

1200 098 163

1300 096 156

1400 125 182

1500 150 175

1600 231 171

1700 261 152

1800 308 156

1900 345 175

91061 04 42

References

Douglas S G R C Kessler and E L Carr 1989 Users Guide to the UAM Wind Preprocessor System Systems Applications International San Rafael California (SYSAPP-89079)

England W G and L H Teuscher 1989 Perfluorocarbon Tracer Experiments During the Southern California Air Quality Study Air amp Waste Management Association For presentation at the 82nd Annual Meeting amp Exhibition Anaheim California (June 25-30 1989)

Horrell R S M Deem P Wyckoff F Shair and N Crawford 1989 Ground Release SF6 Tracer Experiments Used to Characterize Transport and Dispersion of Atmospheric Pollutants During the Southern California Air Quality Study of 1987 For presentation

( at the 82nd Annual Meeting amp Exhibition Anaheim California (June 25-30 1989)

Moore G E G Z Whitten J P Killus and R D Stevens 1989 Analysis of 1985 Air Quality and Air Chemistry Data Collected Under the South Central Coast Cooperative Aerometric Monitoring Program Systems Applications International San Rafael California (SYSAPP-89058)

Ross D G and I Smith 1986 Diagnostic Wind Field Modelling for Complex Terrain-Testing and Evaluation Centre for Applied Mathematical Modelling (CAMM Report No 586)

9106105

43

rr T rr

Appendix A

SCAQS WIND MONITORING SITES

(

9106103

-

((--_ 770

-

NORTH CM~RS 42 575

5 I I j I I 1---L 525 middot 1J75 I I I I I I I I I r I I _--- I C2~middot----_J ~ ~-- 1 ( ~ ~J25 I I I I I I I I I I I I l__ ) -475 () I Li 1~)51 (

--~ltJ820f-_ ~------ ---

~- -cli( ol --9-Sl-l

lt ( ~)

CQ p llE RiDO ~ llE ANAH

I middot LAS-L

bull~ LANC ( _ Q - _J ) ) - _ ~ - ---- - ~ _ ____ middot clt G~ _----~____-=-- -___ ~PR __ - ---- --- VCTC ltgt

-- ------ f---- __ - ---_ -middot ------ --___ --~-----TEME --- _ f

-)(j _ _ middot --middot -------- - HESP f ----=----==~~~ l ----~~ -- middot l - --- __ -middotlt- CJ _ --- middot PIRs[- lt NfVL_ ---~ - C~lt --lt _ ~ ~- __ (~~

__ --- bull _ i - f c-_ _ I - )~__) - ---~poundS---_-

3770 t-()

LA llE PICO )Ct444 -w 3 ~~~ZUMA MALI VE VEN llE llE middot Jl~C - ( p

NN WOOHS ~- ~ m - middot - o - I () )IE 55I

1-- (lt - - PERI ) ~ S__~llE

BU25 bull y _ L ~~5o 13720

I ----~- - 515 3670 525

(KM)

~---

SNI

20

SCAQS SURFACE WIND MONITORING SITES

19 JUNE 1987

0

qj n

If) N ~

I

1S13

Ishy)

0 Vl

(f) w I-V)

l)

z a 0 1---

z 0 2

0 z 3 a ~ I r---

0 CX)Wm Q_ shyQ_ ) w

z (f) )

0 7 lt( um Vl ---

0

A-2

-

r~

NORTH CM~RS

I -middot_( lt - middotmiddot -~ ---lt - - - middotbulll- ) middotmiddot-middot - - -c ) 0 0 l__SG- ___ J1 bull_ -- VCTlt I

_ --middot ---middot llSeR - - __ - --middot----- J~__-- middot - - - -middot bull bullbull- HESP ~-_-middot- bull- ~- _~ - -___---middot - ~ -_ ) ME --- -middot - bullmiddot bull -_

38201-_ ~~_ _ TE _ C-bull_- - CJ - ~Jj __ -_

1

1 bull I bull __ (]

SI bull bull=-middot _ -~ ~~ ~_-__ middot _J lt(- j SIMI -M~S -~_-~It_ - - 1Ir- I w _ I B~~ AZ~~~1 AL SNBOC ~ (ELRO l~ Hf~~ ideg_=- --

)1__ CE~ wftcentrHIN RIVRM44 --- ~--- ---~ LA PICO __pound bull P

T ~NN WI-V C) D 2J~55I Wco - middot PERI Lv

R~O ~L ~AN~ TO~~~~ ~ ~ ~-MO

62

~ ~j~l)~gto ay 3670( 525

SCAQS SURFACE WIND MONITORING SITES 24-25 JUNE 1987

~ (

NORTH 275 325 375 425 475 OA~5 575

f_~ CJ ~ -middot--

_middot

middot1 Imiddot

)i

gt--o~0 (~_)r-) _ (~~3s20

--~- middot qlt ( ____ - ---- - lt__ ~ ~ -i~ J ) _ - - -

-~ -__ J V 38201-~--o- lt-

-----~~middot ---- __ - ~---- -_--- ~====- -=_---~ ~ _

~ -- middotbull ~gt ----_ _______ ) ~~~ l -- - - i - --- l

( _ (_-~ _-lt~~ - )

2middot1=~ (~gt lt_) -~~~~~(_~tJt-~~~~t~~~~-~) ~

uR--- -----Qi~ ~ 3770_ 3770 -middotmiddot--rmiddot- -7 ~ 1-

(J) llE ONT _ -middot __ w

Y-_ EMU c __- ~ Ul lt(1 w~

- -- - LMIIEUA sFtA ~

1

----_

~

_

t_~~ -bull _ middotgtI __

~- 0 ~~QgtJn~-~ ~II~

~ f-- -) -) ) ~ ~-

j (_1_j ~~TRM 3720 ( (__ -CcS l l 3720

~- ) -~ --7( ) __~---L_ ~~1-----~D~

1 ~) a --- ~middot 7 rt 0- NSI (

3670 I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I 1 I I I I I f I I I 1 I I I I I I I I I I I I I 36 70 275 325 375 425 475 525 575

SOUTH

I I I I I I 0 10 20 30 4-0 50

(KM)

SCAQS UPPER-AIR WIND MONITORING SITES

24-25 JUNE 1987

--=-

NORTH 25 575

CM6QRS C__j 475 -____

3 ---- 375 425I - L ---) - ~-

SNI

-_-~)---_ lt-____ ___3azor_~c~~ sl

VENt ELRO

BU25

275 ~ c--) ~LANC ~~-_ lt ~ 0 9-~

llE

3670

----~ - J Q ____ ~- lt) ~ 3820____ -- middot--- 0~__~- __ J S --- ---~- ---- -- -- v~ ~ ~ ===-~ - - - - ---- - - ---- - -- -middotv ------------ -~ l f----- _ -- -middot _ - --- __ HESP ~-----=- c~i - - _- --- - - gt - -bull TEME -- -middot - bull ----- -- - _ middot ( lt~ clt=~ ~i cJ~ c _

~I -~~le lt~NJWl--------~- -iHitgt~-=__~~ _I -~ J~~~ ~ 3770 r-1 - - -- -- - ltJ c__ ---middot ~ ( - ------ -c_ - - -~~~ ~ ()-~ ~ - -middotMiss ---~---=-~----r~-__ -middot _frac12 __ i5

j S ~R~~HE -7t$ llE llE ftALSNBO llE ~~ t __ -R~ B~~SA AZ~jl~r RD ~~_ ~ 1( )l___ llE CE~HAllE ~~ - RIVRM44 - llE ------___llE W~HIN -Jti )Ii ----------- __

~--- LA llE PICO l llE C -- r p

ZU VE NN Wt-laquoJHB 0 1~55WT IN - ---- ) llE CO P llE llE ( gt (____ PERI ~

IJl

~ 71t~P325 425

SOUTH

I I I I I I 0 1 0 20 30 40 50

(KM)

SCAQS SURFACE WIND MONITORING SITES 13-15 JULY 1987

clt(middotO -i ~Ill ~

()VL~t

~~) o2~ r

275

-- _~middot middotc-- ( ~ I - ___ ) --____ ~~~

---- ---bull-~ ( lt ) lt I ~ (J () - _ ~ ~ J ) bull middot ( - ~ ~- - --- middot - ~ - middot middot G--~_J lt)

cce- middot- __ V ___ -- l - _- bull middotbull - - _~---~ 3820r----=-~_~Jrlt - - - middot f ~l-~--~--~] I c___ -~c ~ -- ( _ 1middot--- 1___ _~

-I -- = lt -bull lt middotmiddotltmiddot~- middot - middot -L-

- ~-- middotbull ---_- --- J middot J ) ) -- bull- ~-bull _ --middotbullbull- middot middot _ j -- -)) 3770 -ii __gtc _ -- - - middot bull ltmiddot ~- I - _ltbull - -_j-- tn

BURbull-- - middot - - - ) ~~middotj- (~~ ) (middotIi lt(

GL U I ~ - - - w ---~ - -1 __ - ---------= ------___________--- ONT middot middot __ - --_ -

poundMUI - - ~ ____ middot----~~i -__ ~ I

--

--- ~ c) )_

deg ~

_- - (

_l

_ ~ )

C-

~ _middot

( T( f 1-

525

t j 30 50

(KM)

SCAQS UPPER-AIR WIND MONITORING SITES 13-15 JULY 1987

_==--

J ANORTH CM6sectARS

3s201-

~- ~ ~ ~ ~0A - --__ - -----~ ---~- --1(j - A ) __gt ---------_

-~~J TEMEa l_C ~r1

0

820

_--C~ = ~~~ltCH~~ J ~ S~I ----i4~58 ( J

tigt-1

-J 3 BU25

frac14~) 8 F1(5

- HA

APICO RN A A ~ N WVHB

AANAH

~IHIN J _CM44 ~-

A

CY PERI N ~ iJN

D A

HEM

770 ~ V1 lt( w

~ 3670

SCAQS SURFACE WIND MONITORING SITES 27-29 AUGUST 1987

) w l-1

C)

z-a 0 1-

z 0 ~

0 z - r---3 co a Ci)

- -ltI lshy

a )w ) Cl 0 Cl ) ) lt(

V) Ci)

0N ltI u r--- () N

A-8

NORTH CM~RS bull r (_J~

1

325 - - l L=~-) ( bull

1275 _ ( ~ --- -middotbull LANC 1 _ bull I( f LJ- ~ () ~-- 3820 bull- - J bull

- --__ _ -- )- bull bull - middotbull-~- _ I v----_J -- J middot-- - middot- - -middot I I J_______ ---==-------------- WSfgtR - -- VC _____- ltgt

-~--~-- fJ- -middot - - - --- --- _ - ----- --- ----- ) r bull---_ --- - - -- bull p -- --__-----_ - -----

38201-_ -------~- TEME --- --- - - bull -- middot- bull --- _----~ -~ II middot ) - ---- -- -- _ -- HES f I-----=-- ~ ------- ~ l _ -- - I

- bull middotbull-bullbull~ ll( middot bull - middotbullbull - 1 I ~----- middot-bull

9 -- ___ __ _ -------- _=- r _ -- )J -~~ ~~~ 3770 t--SJMImiddot MISS~~~--bull ~--~-- ll( -_ ~-VENt Cllfl58 bull I middot- - middot- - --JOE ~--bull bull ~ V)

ELRo __J 4Esc euRK ~Ej1 fAL sNeo I ~ _ J middotmiddot -~~ 1 i5 l - ~SA ___ I ROLD ~ ~ C~ ( _____~- -~ llE CE~ llE W~(HIN RIVRlK -- - 1 llE __~

3770 middot- ~LA VEN Pl llE _ _- JJ~C _CM44 - ~ p ---__-_

0 ANAC cubull~ - - v~wr LyenNN WHJHB --- -- Q~~W)( ___

- llE HA ~ -lE _ -- _ - -_

I 0

SAi middot-middot J) t450

3720 LA r TO~omiddotlt~lt~~ -~ ~ (~~

~ ~ r-~~~1~ o ~~l~

SNI 1 (l_ amp-~ 575 3670367g75 325 375 425 475 525

SOUTH

I I I I 0 10 20 50

(KM)

SCAOS SURFACE WIND MONITORING SITES 02-03 SEPTEMBER 1987

------J ------------------ ) I-- 38201--__--~~- i) ___

_-- ~--gt--

-__

_

NORTH 275 325 375 425 475 525 575

YI ~middotCJ~bull_bullrmiddot--- lt I __ (_______~ ~ - - I -- J ( - - - - - - - J i O l__ ______________ -~

~j ( lt- bull- ~ 0 C) ~ -- (-- _)) ) ----_--__ -- middot-- _ - --J ) J ---- - ------- ----- middot----- -( ~---_j

3820----==--=-- ( - -middot bull __ - ---~----= --- ---- -- -- ------------ _______ ltJ~~ A I --- - ---- - -_ - _ --_--~-- -_ - --~co___--_--___-__----- f middot l - --- - --- - __- ---_-- -- ~ middot -middot __ J L--~ cmiddot

---- -- middot--~-- -- -- - _ _-- - - ~

--- - middot- - -C-_--- - -~ rmiddot middot) _- ~middot~ I--- ----~deg- -- -- C _-_--_- __ __ _ ___ _--_--~ __---- ~---lt lt ltgt _~-__gt_ ~~-- i~ - UR ---- -------- - ----~ --lt I middot- B ~----- Qll __ ~----- _ CI____ ~ __ --- ---middotir ~ - 3770

1-I- 3770 () U)( - -- -- 0~ - j _j ______- ==--=--_ --___ - ---w lt(

w~

~gt middot1 r-

0

3720 3720

middotmiddotmiddot J ~ ) ~l - ~ ~

~ tmiddot~----_7~~ p__ D2)t~~

NSI I(--_ Imiddot- 3670 3670

275 325 375 425 475 525 575

SOUTH

I I I I I I O 1 0 20 JO 40 50

(KM)

SCAQS UPPER-AIR WIND MONITORING SITES

02-03 SEPTEMBER 1987

~ I

t

NORTH CM61yenRS

----- I uic middot I Ibull 0 z_ ~ p

-_- - - - _ - middot-~-_ ------- VCRV

820 --- -- -- I W-gtER --- _ ---- --- ~ ) - -_ - I _ _ - _ --- _ _ _ -_ bull _____ _ _ - -- -- -- _ --_ ----~ HESP 3 -- ME -- -middot bull - --- _ -- _ TE - -- __ _-- - c----~middot - r

PIRlb -_1 N bull--~ _ --lt~_- - _ _ ---------- - -MISS_ _--- ___ bull---=-- _llE ~ ~ j lt) hlt---- F-~~--_ ----1A-_c=_--middot llE ----_ ()

-middot SIM ~ICAN llE RIALSNBO llE ~J -------~~ tllE ------TmiddotllE~I ~ES BURR~ AZ~ ~-~r- RD ____-- -- ~ bull FIIISA l- bull -~~

( )l__ -middot middot c(~HA w~~N ~tfJ1 -- -- ~ ~ 1

_

375

~) middot middot ---lt -__ lt_ ___ ___ -i____) C-middotdeg - - -

- -- J_ _) lllt

_ =- ) - -

L- ~~- Iii - ~ _________

-~ 0 I -- (

SI lllt

E

NT CM58V

( j gtT__~_____)___ -- ~l- ) (

middotmiddot-- -_ bull _ ~- () ~

I --J vlt__ ltgt

--- --------- ~---------- C -

_

~(__ f - -- ~---middot)1 ~

t ~ I

I- I- ~

3720

ANAC Wo~ middot -~- lt_)

44

PERI ) ~ tlo

25 R~ ~~ANAH _i~~MN ~~-w--- ~ _ 00 )

T middot I BUllE I -eM62 7 llE

-- - ~

~ 425

SOUTH

20

(KM)

SCAQS SURFACE WIND MONITORING SITES 11 -13 NOVEMBER 1987

(_ (___JCcS ~~)

bull ------------~ - - ( ~ r-------------- Dbull ---

J

575 3670

1SV3 0 0 0 0 N r-- N r-- a) r-- r-- co I I) I) I)

I bull bull I I

I I f1 1 ~~ I- I I-)

0 l)

l)

w I-l)

L)

z Ct 0 I-

z 0 2

0 r-- z OJ

m3 Ct a lt( w0

l() mI Ct 2

~ ww Q_ gt

0 - Q_ 0 I) 2 ) z ~ ___0

N (I) n a

0 lt(- u ()

0

n 0 z I)

N +

lf) r-- I)

- I I I

i I

I 0

~ -L

w

i

~ LL

I)

C-1

+

l() r-- I)

1S3M

A-12

-~

igt I _

l)

CM~RS 275 325 375

NORTH 425 475 525 575

_J- I bullbullbullbullbullbull ~ I bullbullbullbullbullbullbull bull I middot bull -gt-----middot bullbullbull 3 )--- ____j lt c----- -_ -- gt _ ___ ----- t__ l___

-- ------- LANC l ~ ---------- __ ) -- __ ~ I ) ~ - -=~__ I -~middotmiddot- - bull middot bull bull bull lt lt Cl --- ------ ____ -~ -

38201-- ------_- ) ) -- _ ---- -- -- -- - () - --------- I --- -~-lt~~ (middot__ TEME ) --gt ~_ ----- - middot--- --- vamp c~ (~ 0~ ___- --- gtIpound - - - - ---- -- - - -- _ - - ~ ---- - - - ------------- 5SI -middot PIRltgt ----~ ( -middot _ - -- --- - --- ) HESP --------~ ltgt

___ __bull_rbull ~--------~-___ -- ___ ----gt--=- bull~ ~~ I - ---__-=---- ----

VENt CM58 _ sti --~~ ~ lt_ -~-- middot_~-~~ r-~- --middot) ~~) _J MISS-~~-- ___-_ __)~ -- ---( C

- --RESpound BUR~--==-=~----r~---_-__- ~- - ~ _- ~ -1 -

3770 I- ANAC

J I )l( ~- ~-- - i middot ----middot -X--Ret-----_~ -~

___ ( - -middot ~SA AZ~ ~ o j -------=--------~--gt~-- dampHA ~~~f __ SNBO ~~ -~

ZUMA MALI LA w~M -jmiddot I R~J ~-s ~__ )() w ~

3720

8U25

VE VERN PICO _ middotyHIN RIVRyen ( ~----- -~ CM44 -~ ~- ----- ~ C WT ~NN Wt-0HB -NQRC - middot- ~NN-a-~~ _ ~ co~ __ -- ( ~ ~

RVIJO ~ilff AN~ gt cmiddotbull yen 0 (~~ p LASAl I bull- - PERI ~ ) ~

rJ]~~_Y)~N ) (_ --

_T -cJ62~-~

~ 5j(bull 1) ~Jso

l -~

- 1 J) -~ ~7~~t~~

3820

3770 1-() lt( w

3720

I I I I I I I I I I I I I I I I I I I I I I367r I 367075

I 325 375 425 475 525 575

SOUTH

I 0

I 10

I 20

I 30

I 40

I 50

(KM)

SCAQS SURFACE WIND MONITORING SITES

03 DECEMBER 1987

NORTH 275 325 375 425 475 525 575

I I ) gt ~ _YC) ~ ~ I ( o c_ _------- (

___ middot i I 97 ~___ _ --1 cbull-- - - C -___J -- lt ( ) - - - - middotmiddot ~ l _ ----_J

I ---middot ___ __ middotmiddot-_ 1 -~ __J ) bull- middotbull_ -

3820 ------~- I -~middot --- _ middot--- -------~

C - ~ (___ _ 1 ) -- _ - - - gt _ bull f-_- --- r ------~__ -----I --- ) I ~ -~ gt ----- - --- -- ~-_]) c_middotI 38201-_~~_ l _ --- - (-- ~ f ~ I~_ - middot - middot -middotgt- -- -_ -- middot_ _- 1 L- l _- -

~----- l -- middot middot ~- middot-_ _- - middot middotmiddot--gt---~--t~~)-1 bull lt_ _ _ bull middot bull - middot- ~ ~0---~ (c ~ I ~

_ I - bull -~~~--gt~~~-~~ bullS- _~_ l ~~1t~~_~(~ t 3770 I -- -- middot __ - I S____ ( 3770

I- 1-() ()

gt w - I __~sect~- ---ONT lt(

w

tgt

f-- I

~

middot - middotI

-

L~i--

37203720 c_J - (_cS) l -~~

NSI

367~~51 3~5 13~51 14~5 I I I 14~51 is~s s~s 3670

SOUTH

I I I I I I 0 10 20 30 40 50

(KM)

fJ~

SCAOS UPPER-AIR WIND MONITORING SITES I 03 DECEMBER 1987 r~J

NORTH CM~RS 275 325 375 425 475 525 575

middot middot ___ I middot 1 I )l ___ QO --middot - v_ (-- - LANC middot ~ C) lt --bull_ I -- -- bull _ ~ - ~-- ) -------_ -- - _~-- V --I 1 J --- - bull I -J- ---middot - _ bull__ - vc i --- ltl

3820~-----=cc~ I middot -middot - middot - _ ___ -- - 1t ~~------- middot - ___) - - middot -

J-cgzot-- ~--- j 0 TEME _middot ---- --- -

-____ -- ---- _- j (

- -_ I -- --~ _JI( ---- bull bull-- llf -middotmiddot l - -- bull _middot_ middot I --- -- middot CM58

_- 1 -- middot - middot~-~ - -~__ ___ ---~-~_--__~----------D J-~J~bull A HESP

middot OJ11 r P1R1tc lt--~i_-_~-~- ~c~_r--~-~_--_~r-=-~~~~--~ _ --~ --lt__~~~~- CSI ~ -~ --- ---- middotmiddot - ---- - _ ~ r ) J

)gt SIMI -MIS5-X ~Cgt~---- middot-cemiddot middot ____~ ~ middot~ l~fu__ suRlfiI_middot- -tk~- flAf SNBO __ middot ~-~ l 3770 _ 377ob -- ~ PJIISA AZ ~JIily~ _- RDL ___ bull ( C t-shy-- -~ I ----- ~HA 71lt V)tn ANAC ~---- CE~ WALflHIN RIVR ----- ~ w

w ~ LA PICO - CM44 - T -~ ~ ZUMA MALI VEN middotbull _ -bulltRc __ ~ ~lt~~7-

N WuHB _~-- -middot bull ) _J~N ~ -- ~ 0 - ) ~ I ltgt -_middot PERI bull I- ( _

V 8U25~ 3720 3720

WJlt~ ( ~ ~ ) 1 i

~ I I I I I I I I I I I I I I I I I I I I I367r I bull I I 3670

75 325 375 425 475 525 575 SOUTH

I I I I I I 0 10 20 30 40 50

(KM)

-~ ~

SCAQS SURFACE WIND MONITORING SITES 10-11 DECEMBER 1987

NORTH 325 375 425 475 525 575275

-- ----_ lt_~- c--- - ~ ~ _ I I - ---~~c------ ) _ -middot - gt~-

3a2or ------__ lt- ) 1 middot--- -- __ - ~bull =-------------- - r---_ ___ - bull- ---- I I ~ ~-- jc- I bull - - (bull I --- middot middotmiddot - ~ -middot - -- ~ - 3820 -~- bull - middot - - ~-_ ~- _ middot- n

(

- 0 lt_( ~_lt- ~-~~- middotmiddot) ---- ()_ (---- --

--

____ middot

-middot

I

f----- (-J 1r---J~ --~ - middotlt ltbullI I ~__---__ ~-

l B~--- _c_ gt-- lt gt- (- - - j 1--_~--~--l~ -- -- --- )l

-- - --~---- middotc middot=-~-~- (~ L ----- -- --middot - -- - - -bull --- - - c-) ~ J _ -- - ---- - ) ) ltl

37703770 EMLgt middotorrmiddotbull __ ) ~~~~ofmiddot - -- __s=__I- - - ~__- ( ~ __ )---__ Ishy

V) ~ ~- lt(w ~ ---- --~ - w if)

-~2_~middot) ~~at~s t I

I-

deg

FUUA

i () ~--J)llC~lt I

3720 3720

~ltl__ (_)i~

~ NSI

367~~51 I I I I I I I 13~51 I I I I I I I 13~51 I I I I I I I 14~51 I I I I I I 14~51 I I I I I I r--- I5~51 1 I T I I I I I 5~51 I I I I 36 70

SOUTH

I I I I I I 0 1 0 20 30 40 50

(KM)

SCAQS UPPER-AIR WIND MONITORING SITES

10-11 DECEMBER 1987

Appendix B

SCAQS DIAGNOSTIC WIND ANALYSES (Six-hourly plots Levels 1 3 and S)

Summer Intensive Monitoring Periods

19 June 1987 24-25 June 1987 13-15 July 1987 27-29 August 1987 2-3 September 1987

Autumn Intensive Monitoring Periods

11-13 November 1987 3 December 1987 10-11 December 1987

Page

B-1 B-13 B-37 B-73 B-109

B-133 B-169 B-181

9106103

Summer Intensive Monitoring Periods

9106103

19 June 1987

9106103

1bullbull-lil

1SV3

I I lshy Ishyo )

0 0 z ()

IO N IO

I()

N -st-

1S3M

-- l1

l~ i --

0 z 3

---

2 0

_J w cjr----_J CD

0 l() z

I- =)lt( 7

f) 0)

0 -- i n 2 Ishy7

0 ~ ()N ____ gt a 0 20

3o 0 ~

0

B-1

1Sv3

( I l-et 0 z

(

lf) N st-

l() N ~

l()

N 0 t--

n

0 N_ n

U)

ON r-shy(0

n

1S3M

B-2

_

2 0 0 tlt)-__

tlt)

_j w 2jr-_j CX)

0 lf) I- z

lt( ~ IJ1 0)

0 _ 0 n 2 z 1-0 ~ N - 3 ~ 0 20

3o 0 Ov

-----

lSVJ

l)

----

l~3 O 0 w

w ll) (1

l)

0 0 z 3

I lshyet 0 z

--

2 0 0 0

-

LO

w ~

GJ r----~

u 0 z

OJ

I- gt lt( J

mif)

00 ---shyI) 2 z I-0 i l) N -- 3 (1

0 2 0 3 0 0 ~ 0

lSJM

B-3

1SV3

- V1 --

~5 O 0

E - w

w Ul_ 0

V1 0 0

z ~

I I lshy I-et =gt0 0Z V1

-

2 0

J wr--CJ OJ J z0

Ul I- =gt lt( ~ V1 -

0 - n 2 0 z 1-() 0 ~ N __ 3 0

0 2038 0

0

U)

l

lO N v

0 N agt n

0

r--n

0 N

0 N r-shyn

U)

U)

U) N U)

Ul

q--

Ill N q--

1S3M

B-4

td I

J1

~ ~~~~~ ~ -~~~~~ J - -~--Qf~J ~lf~ ~---~ ttt~~~~H~f~ ~ ~~lt~~~0 ~ - ltl-_t I~~~~~~-~~~~~ ~~ I _~1c j_~ L ~ (__1-T11__1 ~_-~_ ---~~~~~~ 11 - ~ +f--1~- ~-+--41-- 1-~- ~ ~ -rtt1-~--~~~~~~~ ~ ~ ~ ~ l t I J JI JI~- t _I i~~I~~~~~~

377itttttttt ~- - t I Jf --------_-- _ 70 ~ ttttttttttttti- fllJ~JI-~~_- ~~ _ =- ~~~- tn w - t t I I I_~- -V _ ~ -laquo___ _ - ltC 3 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ t t t t t I I I I JI~ JI JI ~~ I--~- ~ ~~~~~ w

H~HHHH~in+~l~Hnf5-I ~ ~~~~~~~~ ~ ~ ~ lliii it t I~t~ltt~rrrr~~~~ jl++it~~~t~

20-~~~~~~~~~J tttttttf ~~~~~~~~~~---~-~~~~~~~~~~~~~-amp~ ~ t t t t t t f f f I I I I ~ 1 J(-- _ --P ---~~~~~~~~ ~ ~ ~ ~ ~ ~ ~ ~ t t t t t t t t f f I I I I I ~ ~- j~J _ ~ ~ z~ ~ ~ ~ z l I+ nm~t ~ ~ ~ I I~Jt~-~- -~-__~~~ tr ti ~ ~ t t I t f f I I I I I I I - ~-r __ - ~~~~~~~ ~~~~ ~z11 ttt ffflllllIIII -~~---~~~~~~~~~~~ ~~~~ ~~ ttttft ttflltllllllll A~--~~~~~~~~ ~ ~ ~ ~ ~ ~ ~ t t t t t t t t t t t f I I I I I I I I I I I I I ---P~- ttttttttttttlllllllllllI -~--L~-~~~~~~~~~middot

367 70 ~75 325 375 425 475 525 575

SOUTH

1111111111111111I I I I I I 0 10 20 30 40 50 0 5 10 15

(KM) WIND SPEED (MS) i

NORTH 425 575

_ 414111fl-~bull __~) ff I -lt~i ~ + lJ Jmiddot-bull A fl t1 it bull- _I~--~---~----_---~_~~~~~~~11 t1

~~t 11 f + + diamsJ diams 1 )--t-_+ J~ I-(_ 1 1 ~t1 __

__ Lt l l t fL f_l - - +~~----~~---~___-+_~~~ J-t-t t---t-lt t t-t) LJ lt fl ~ -- t---f t tT~-- ~~ 1__t -t ti t_1 + l - -~-~-~-II~-- - ~~~-----~----t----~~~~~~_Efftt -- r1 ~J t l Lt t

fl

~ _ t_ - 11 _ _

Fi ru bulll=ti~ ~ ~ ~ ~1H1~~_~-~-~----~~~~~~~~~~

DWM WINOS AT LEVEL 3 (300M) 1000 PST 19JUN87

1Sv3

I I-shyCt 0 z

1S3M

B-6

0 II)

0 I)

-_2

0 ~ N -

0

0

-_

2 0 0 0 -

LO

_J

w r---CJ O) _J z I- gt ~~ if)

0 1--shyz V) ~ Q_

20 3 g0

NORTH 525 575

~~~__A -~___~~-

F- ~_--P~

~ ff~~-- - _ middot- ~~

_ bull bull bull bull bull

_ p

~L~k~tt ~ 1 t A middot1-t

~ r~ 1 11 1 __ bull bull --l t frac12Q2_

~ ~--r-J-+7L~

1--Ui

3770 _yen~AA- ---~ ~__~_ ~ K---r

eno tshylf)

w ~ ~ ~ lt( 3 I I_

- w

td I

-J

~~~~- ~ ~ ~~~ shy ~ ~ - shy

3720

~ ~~~ -~1~-nu~~~~-

~ -~ - ~_____A~~1~ ~ _~ ~~= ~~~_______2--- ~

720

~~~-~~~~~_ 9~tbullmiddot~qor~frac12

Y~poundpoundpoundpoundpoundpoundL1~~~~r~ ~ middot

375 425 475 525 575

SOUTH

I I I I I I 11 1111 1111 1 0 10 20 30 4-0 50 0 5 10 15

(KM) WIND SPEED (MS)

DWM WINDS AT LEVEL 1 ( 1 OM) 1600 PST 19JUN87

~

NORTH

Arlt~~~ ~L _ -rJ ll

_ I I I t

_t-z~~J ~i~ bull

i- ~~~ Ii ~~( trn

3770 I - bull bull bull bull bull bull bull iigtlaquo

--- bull bull bull _-

~fJ~ t-l-lltf[llJ- jf1 rr]I ~ ~~~ ~ss~810Ja2ot-~~1i lmiddot - 1 17- - -

-ltL

~ ~ 70 y ____~ tshy

l) ) _-y ____~w

w ~

~ -~--- - -- ~ 1 ~~~~ __ _ bull---bull laquo-___~ Y~~

___p~~__---A~_A 1 ~~td I ~----______A 14 1 ~

00 _-________________ ~ __~----~1~ -A________________--r__~~~ ~ ~ ~~~--~-~~~~-~---e--~ ____________~_________-~ h

3 7 20 t-_--~____- ~ _ _ ~~-_- _ _ _ _ ~___~~~r--~~___-K ~~ ~ -~-------~~~----~ ~ ~~__________~~~~~~~______-r_-A~-1--~~~ ~__________________----r~__~__~-Y~~-------__---A----r~ 1 ~ ~__~___________~ ~

367 tcrr~__~y--rrYlt-trltltltltltlaquo-ltltltltltlaquoltlt~~~ ---

9imiddot~75 325 375 -- -

1111 1111 11111 1 1 1

0 10 20 30 40 50 0 5 10 15 I I I I I I

(KM) WIND SPEED (MS)

DWM WINDS AT LEVEL 3 (300M)

1600 PST 19JUN87

NORTH

bl I

0

~________________A-4_gt~~~_____~~__________~A

A~altP_ ~~~_________--~_A 38 20 I--=-~~_~~___~~-_-~~_ -lt~ - ~_-~_A--1~ _

~~------ ~ gt-~ ti ~----~ ~ _~~~~ 0 ~ ~-i---~~411___ I~-~~ I~A-~~----~7A7~-

A A~---~~- ---~ ~ ~ -middot~~ 1-27 ~shyA_~ ~~~ Jl--__r-t~ ~ (K~_ - fl_

A ~I J111 I _ A - ~ _ T-~ v I 1 1 1 1 1 1 ~ 1 1 _ Ji J I~ f --_i__middot1(- ~ ~)( ~JJXZ - _ r ~ - _ )( _ II I 1 ~ 1 I - _~ _)~ ~~

= 1 II II 1 (~ ~--=-~ -7fJ~~~~tm~i I- 3770 Jir - I 11 I 71 (I) ~ ~111 ~

w ~--middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotbullbull bullbull ~~~11Zll~~11~ ~ ~~_~~~llllN~~ -~~ bull 11jh fi 1 1 II 1 1 1 1 1 1 1 1 1 1 1 1 1 I I 1 0i~~~ 1gtcJ~l~p~ ~~~ ~~~ ~rr1111

70 Ishy() lt( w

111111~~ 3720 i- 1 1 ~ ~

~1~I A-A~)I 1111AA _~l11~ 1

lllllll11IIIAII- ~II ~1~~__~~Ill~~~~~ l1_ 1~~~~~~lll~~~~1 llllflfAll-)lllllllll1~~~~~

A I I I I I 1 I I I I 3670

275 325 375 425 575

SOUTH

I I I I I I 1111111111111111 0 1 0 20 30 40 50 0 5 10 15

(KM) WIND SPEED (MS)

DWM WINDS AT LEVEL 5 ( 1 OOOM) 1600 PST 19JUN87

~

A A A

1Sv3

(

1S3M

B-10

()

l ~

---u) 2 __ O 0 ~ w

w It) Q_

()

0 0 z 3

0 It)

~

0 ---I) 2 ~0N _

0

0

---2 0 __

_J

w r--- GJ OJ _J z __ )

~~ () r-

0 __ z ()3 Q_

~o 3~ ON

NORTH

middot-~~) K~xJ~ middot_1~ ~ 71( I IJ ~JI

~A I 1 ~~

liii[i~~ Hf~-~~~=~T-- ----- --=~~g~g~bull11ft _ ~~~ -1-x~~~ ~~~~-~~~--~-~---~ --~ t ~t~ -~1~~ -- ----

-lt J 1middot~~ __---~__

3 770 ~ ~~ --_tn ---------~~ 1 ~____~ _ ___~ -w bull Y ___~~~ (Al _~ _ ~

-- bull _ _ _ bull bull bull bull~___1 1I J~ _~

~- YI J _L ~~ ~~ YJll~E~

td _____-___ ____ __ 1 ~xgtx2-I ____________~__-A (~~~~ _______~~2-1 y~~- ___~__________~ ~

3 7 20 I-___~~__~~ Y --~ ~__ I _ - - _

~_---A~ ~---__~~~~~--_____~ ~ ~_____A~ y ~ ~___-__________~~ ~ -

~__-_______-yen_2 ~ ~ ~~_______~ ~

1 367~ 75 325 375 425

SOUTH

1111 1111 1111I I I I I I 1 1 1 0 10 20 30 40 50 0 5 10 15

(KM) WIND SPEED (MS)

DWM WINDS AT LEVEL 3 (300M)

2200 PST 19JUN87

~-

~ - - ---

NORTH 275

___ -~-___

- ~ I o_ ltAbull~-P- bull bull -P diams bull~--~~~~--- --- ~ ~ ti ~ ~sbull3820 ~=-J~_~~middotmiddotmiddot~~~--_~_=- =~_~c s~ ~3~

~~- bullbull~~bull~~~~~~ - bull -~~bull ~ v i-_ --- __-_ ~----~

~- st-~~1 17-~__4 ~ _~ ~-~-raquo~~~ -f _ _ bull bull bull bull~ bull bull-__-v 4 t ~ ~v ~- Jl_~ ~--z~~=~s~~~~Mil

-- _ ~ frac12--~~- -=~~ ~~l~1~l~tzi9~J t~ 1 1 1 1 1 1 ~-bull ~~___- v q (If V pp p I l_77rtfl _

3770 ~ ~ ---- I h1yenzi 1V-r-() bull bull ~ ~~~~~ w ~ bull ~ _ I JI J(_ )-II101-1 3 ~~A~~~XI IIJ~~~

~ f A I~ I I I I~--L -

tl ~1111111 ~K11~~llll~i~~~~I ~rr ~~ ~xgt~~~t---

N ~I I II)(01~ ~ ~ ~~~ 1~Y~lt~~~~~~~~ ~~~~

3720 iYY11Alllll1lIA~~~~ ~~---Y~---_ _ _ - ~ bullbull - - _

~rrll1IIIIIIIAAAA__

___________~~~AAAA~_~ ______________~~~~KAKAA1~~ lllllllllll~AAA1f~~

_~~

3670 t1i11 i i 1 i i 11111 i i i i -i i [ 111111-111 ~ ~ 11 ~ i I t 1 bull rm r~ij e =~~ raquo-il3t ~ 275 325 375 425

SOUTH

1111 111111 11111 1I I I I I I 0 1 0 20 30 40 50 0 5 10 15

(KM) WIND SPEED (MS)

DWM WINDS AT LEVEL 5 ( 1 OOOM) 2200 PST 19JUN87

24-25 June 1987

9106103

1SV3

1S3M

0 w w Q_ (J1

0 z 3

I f-shy=J 0 (J1

-_

2 0

--

_J w CJ f- _J OC)

0 U) z

f-shy )lt

J q-

(J1 N0 -_ 0

rlt) z rshyl)

N0 _ 3 Q_

0 20 3o 0 q-

0

B-13

lf)_ lf)

If) N If)

lf) r-shy~

I I-o 0 z lf)

~

lO

~

lf) N If)

(

pound bull d ~ bull 4 4 c_ q

1 4 r9middot-

0 N IX)

middot- t--bull ~Igt~

O ~f 4 fT amp)o(oj

4 ltI I~ ~ ~

0

o

middot a

~- v t rgt ( tgtj (~V~-1 f4

3 44 ~-~a4 V VM q -~~-q_4 ~4

_ ~ )

p- ~~t1~1 middot V II J ~ ~ )I 1 11 f ir -~~1I ~

II P P P Igt 4 ~(Iigt ~~ 1) IA

deg deg 4 4 ~ A -1 r 1 1-Y]~t J rz ~

fl r ~ Igt I~y ~ -- -- - 4 ~r___amp V P11 iP Igt P Igt p ~ -0

~bull 7~tpmiddot~P Pf P Ptl middot~ ~ q p Igt 1gt p ~ t b (r 4 P - 4---f ~ ~ bV ltI

ltI ~ ~ I p 6(~ d-_j b d p (4- 4 ~ 1 p Igt 1gt Igt - b ti

)4- a 4_) q V Igt p Igt o

lt(___~ ~- V fgt ~ 111 t Igt -4

~ ~ Igt r p Igt

~ ~ 1 h1

V (I Ilt v middot

t y-

t

t

p

P t P t P ~

0 0N - IX) n

1SV3 0 0 0r-shy N r-shy co

lf) lf)

If) N If)

~ - t bull~--~11n ~ -~bullmiddot t~ lt middot___

o_ ~ ~ ~

0 bull t bull 4_4 4 4IIgt

c 0----~ u c Igt( o ~ c ~A ~ 0 - A 4 4 ~ 1 q

o bull o- -~ 1gt 1gt ~ y4 -~J middot)bullmiddot ~ ~ ~ p 0- 1---f t-~ 1 ~ 4 4 o co u gt)O- eyti ~ ~l 9 -Y P- - I a c 1 oM_il_q A p- p

4 ~ ~-M f p

I 4

~ rv ~--~middot

tJmiddot bull P II f t )I~ bull V ct_~ V V V t P- ~ Igt t middot f lft V VJi P- P- fgt IIgt ~ _ J1 bull bull bull

1 v II p _bull ( ( ir ti- f Igt bull

j ~ r f -~-1t __

_I ltC_t--q_) v -~-ampgt

Q middot--- ~ - t ~ b

II

bull ~

bull bull

diams

1 bull ~ ~~ ~ ~ b b b lgt bull

-- b bull bull bull~4q~ lgtPlgt-4-~_tbblgt

Jraquo P P ~ q 11- 11- b b b b b

P Igt P q bull b b b b b b b b bull

bull bull Igt 4 4 fl ~ b b b b b b b b b bull bull Igt Igt ~ 4 q ~ b _ b b b b b b bull

P bull Igt Igt -4 ltI 9 b b b b b b b b

p bull - Igt Igt 4 lt1 _ b b b b b bull t bull bull Igt ~ 4 b bull b b b b b b bull p Igt Igt Igt bull 9 b b b b b b b b bull P p ~ ~ A 4 q - _ b b b

1S3M

figt j)

~ ~ bull

bull bull bull bull bull bull bull bull bull bull

bull bull bull bull middot bull middot

bull bull ~ ~ 9 9bull bull bull bull bull bull bull bull bull

bull ~ bull bull _ bull bull _ bull bull

~

If) N t

lf) r--11

~

If)

~

0 ONN - co n ~

I fshy=i 0 V)

- 2 0 0 n -

n _j w cjf-

0 l()

0 ~

0N

0

0

---shy2 ~ _

_j OC)

I- z lt( =i

J Vgtv 0N z f-

3 ~ 20 3o 0-t

B-14

---

1S13 0 0 0 N N r--shyltIO r--shy co I) n I)

I() l1 r--shy -U

E~i0 z

U N I() 3

I fshy)

0 U) l1 N -t

--_

2 0 0 0

-

LO

_J w CJf----_J OJ

0 U) z

f- )lt( l1-r ON z f-

3 ~ 0 20

50 U) 0 -sr

0 ON r--shy r--shy

r--shy (0

n I)

1S3M

B-15

lSV3 0 0 0_ N - _ - ~ I)

_ ()

(~i

0 z

If) If)N NIf) 3It)

I Il- I-a =gt0 0z If) If)()

N Nst- st-

_

2 0

--

- w I--- OC)Cj z0 -

I) )I- Jlt( --t-

N() 0 I-z ()

3 o_

0 0 2 0

~ 0 00( 0 0 0-N N _111) r-- 1)

1S3M

B-16

lSVJ 0 0 0 0 N r-shy N r-shy_ _agt lO n n n n

() r-shyU)

u) l() N N u) l()

I I lshy Ishyo )

0 0 z U1 l) N

l() r--_ 2 0 0 n -

n _j

w I GJ OC)

0 _j z

lt) I- ) lt( ~ lf) N 0 1-z l)

3 Q_

0 Lo38 0

0 0 0 0 _N N _ _(() n n n

lSJM

B-17

1SV3 0 0 0 0- -N N- -crJ co I) I) I)

lO II)- - U) It)

U) II) N N lO lO

lO- st

I l-o 0 z U)

N

~

I I-=gt 0 l)

st st

--_ It) - ~ I) 0

0 0 ___

lf)

J w I-

It) N I)

0 II)

~ OC) J z I- =gt lt - lf) N 0 1-z l)

~ 0

0

0

~ 0

38 0

N IIJ I)

- - I)

1S3M

B-18

middot~ bullmiddot I

1Si3 0 0 0 0 N r-shy N r-shya) r-shy r-- co I) I) 1) I)

--_

E~i l)

0 z 3

I r-0 0 z

0 I(

0 --_ n 2 0 ~ N --

0

0

1S3M

B-19

---

_J

w r----2i OC) _J z I- lt( ~ V1 N 0 1-z V)

3n 20 3 iE 0

---- --_

NORTH

-_ t t t f t A +1 t lt-1--JJ-middot+J

r ft_f_frac14 fffftl middotmiddotbull f_ n- ~ tn

ttt1I1~ ~ ~ ~ ~f --H 1--- ~ -

rJj ----~ ~ ~--- ~ l j bull bull - bull bull Ir - ---_- --- --~~~~~I-~~~ ~ bull ~ ~ rt

- - ~rnlit ~~~~ ~~~~ ~~ ~~~~~~~ - _~-~~ ~~~~~-=~~~~~~~-gt

3820

bl I

N 0

tshy() w 3 fftfftlll

ffltlIJ11111~11- I I I J ~-- - ~~~~11J~ -~

3720 - I I JI J ~~~~~~~--------~~ diams bull + I J J _~ 4 bull I I I J ___ ~~~~-s---~~IJ-bullbullbullbullbullbull ~__middot~middotmiddotmiddotmiddotmiddot~~~~~E-e~~

4flA~~middot~middotmiddotmiddotmiddotmiddot~~~~~ ~--_---~- ~~ 1

367~7i51bull1bull11bull1 111 13251777JT7777~7777 I I I 14251

--~--~- ~~_-~-----~ ~~~J

--~-_--~- 1- I 1 I

~ 1lJ

I I I I I I 14751 I I I I I I I s~sl1 I I I 1575 I I

3770 tshy() lt( w

3720

13670

SOUTH

I 0

I 10

I I 20 30

(KM)

I 40

I 50

lllI 0 5 10 15

WIND SPEED (MS)

DWM WINDS AT LEVEL 3 1600 PST 24JUN87

(300M)

lSgt3 0 0 r--shy N r--shy r--shyt)

It r---1)

lO ---- N bull ~~ r lO ~ oe--- I

~~~~ t z~_-----~8 ~ ~~~2~-~----=---~~ t ~~----~~ -frac14~~~--

~v -~ 1 ~ - ~ ~~ ~~~-~~N~~~~~~~~~~~

tf~ ~ ~ -~~~~~imiddot~~~~~ ~~ ~~

_gt~~ middot1 ~ r2 l~ --~- I _Ct _ V I - ftV

0 ~ ~~- X

z~ HF bullIh IJ i It ti ~ 1 IJtl ~ ~ j t ~1

~ ~ 1~1

1 r ~

)

r r~P t t _r )r f

~ 1+ t t t f t ti ~ 1 lt ~ diams t f J t H ff 1 1I I I It diams diams Vf- 1 f f ~ f I 11

(____ t i(_ bullbull ~ bull ~ I r fr1)L_lt--~~vi 1t1J U1 -~- middot~ 1 t) ~ bull ~ bull ~ bull 1 1 f f f I t ~ - ( ~ ~(~ (_ ~ b ~ - ~ bull f 1 f f ~ bull

j ~r~--~ ~ _ ~ ~ ~ l 6 bull bull 4 t ft It _ - __ _ - J ~ ~ ~ t bullbullbullbull t - _ ~--~_____

__ I deg j ~ ~ b ~ _ Igt ~ _ _ ___ bull bull bull bull

~ ~ I ~ ~ ~ _ ~ _ _ _ __ - bull bull bullf

~ bull ~ ~ 4

I -- I bullbullbullbullbull

~~~ ~

1 bull ~

-- V)

LO lshy -----_ lf)

l- w w

=~ It) 0 l)

It)

2= )

0

~

l() 9 __~----- lf)r--- --------J______--L--J-~J-J-______~______~~~___________________________ r---N O O O ON

0 0 z 3

--

2 0 0 0 ----

LO

_j

w I--GJ Cl)

0 _j z lf) )I-

lt( ~ ~

lf) N 0 -- 0 I-n 2 Zlf) ~0 3 0

N ---

0 20 3 g0 -

0

N r- N I-~ I- I- ~ n n n n

1S3M

B-21

1Sv3

U) N U)

lJ) N n

0 N (0 I)

0 r-shyr-shyI)

0 N

I)

It) N It)

U1 r--1)

1S3M

B-22

0 w w (L Vgt

0 z ~

---2 0 __

_j

w _ ~ OC)

0 _j z U1 I- )

lt~ NVgt

0 --shy 0 1-t) 2 z () 0 ~ ~ (LN -middot -

0 20 ~~

0 ON

bull bull bull bull bull

1Sf3 0 0 0 0 N N CX) ID I) I) li li

~ n

~ n

tf) ~

A i -02middot a_ ~ r ____ Igt middotjmiddot i -1 ~ i r middot-~-----------------gt IJ IJ bull 1 j I ------~-----------------

_ IA_Jyen ~ ~ J ~ yen ----~---------------------

~ II --~_a IIgt 11gt Igt middot~ I bull ~ ~ ~ ~

1(1gt i i _JI J Iibull I - IJ Ji H j

bull bull I( --- j J t ~o ~- -- -J I I i J diams bull1bull bull bull i ~ _I I I I J 1 ~~- ~ 11 J l J diams -~ J) bull ~ I- t t ~ ( l f middott J bull 1_~1 ~ IJ II- I ( II ~ j t t bull)

bull t )bull ~) i ~bull bull __ __ I 1gt J I I I middot----- - ~ _ ~ Ji (Ji_ If ~ --~ bull i f l-Ji ~ p VIMyen I ~ middot1 bull I Ibull lt_~ ~ p1 )

I

__________________

~ 4 V ltI - - - -

~) i t --- -- yen 4 yen -- Iii 1yen yen JY yen II

I ~1 Ja a Igt- yen yen yen yen yen yen yenyenIiyen II II

a Igt bull ~ 111) (I J I JY yen tY yen yen II( ltf ~ I~) JY yen liY yen yen yen yen yen yen yen II II II ~ ~(II ~ yen yen yen r yen 1r yen yen yen It Ill

p cl

p 4 ampgt P JI r Igt bull

bull JJ Igt II

- ~ 11- bull

- -

+ _ _ _ __ __ +- ____

- - ----4

bull bull Igt Igt Igt

11 bull bull bull bull

bull bull It

IJ Igt bull t P

Igt bull t

- II Igt fl t middot~~-~~~t_yenyen yenyenyenyenyenyenyenyen

I ~J )Igt) 1 bull yen yen ~yen yen yen yen yen r - yen If II II Igt - I 1 J bull bullI _ _ 1 ~ ~ 1K )

bull -

bull bull II ~ Igt- J 6 bull I 11

fl) 1gt 11 Ill

bull t t fl

~

U1 r- n

~ n

_________o__JJ=---=-------oti~~e-~e11JEJEolELE-ILILLEJLlLu~uJ

l~

0 tf)

~ 0 n

0 N

0

0

- Vl ~ 2 ---

0 w w CL V1

0 z 3

-

2 y --

-

2 0 0 tlt) --

n _J w f-~ OC)

_J z gt

I- Jlt( q-

NVl bull) I-z Vl -~ CL

02 0 3 N 0 NIf)

ONN I N ro r- (0

n n n I)

1S3M

B-23

17z-g

WEST u u u ~ ~ ~ N ~ N

NO N~ 0~0

7J ~ () z -I 0 N (I)

~ )gt c_ -I C zr co ~ -J rT7

r (Jl

-- __ 0 0 0 s _

--_ 7 ~ --

~ z

~-0 0

--s (I) ___

0

0

N o (A 0

t ()1 0

oj(JI

-0

-()1

0 0 0 N -J

A I q bull if ~ ii ii ii I ii if 1 i J (JI

Ab4llltli ~~144

bull~~bull~1111111 11~1middot)1i~~~1 ~4gt~1111111~ II~ - bullbull~Agt~lll11 IIIAII tbull ~4-4~~~III IIll~ I ~14 4 - ~ bull i ~bull-ttt1 111111 I I 1-~ bullbullbullbullbull gt q bullbullbullbull I t I I I I I 4 I I I I I I I 1_ J~ I

4~ A - middot~~lll111I IIll 1 I 4 -1~~ l~ gt1llllllI 1l111 -~~ I N

tn()16 -1 Igt Igt I I l1I v I 7----(Yi ti mbull1-t

~Plgtlt111 VIII ii l middot~1111~~0~ I l~lll~310bullbull I i~W~ffi 1~~~~6~~~ I J~ 1~~~rw 11~~~1~ ~l~~t ~ i 11~~~~~~~ ~~f)~t~~I I~tl -1

~ --J ()1 l 111~1JV1 ~~~1~ I Ill tniz~i~~~~~~ ~~~~ 7 ~K -~~iii~~~~~~~~ il~~~~~~~ 1~~1~~~

middot1 middot1 middot1 middot1 middot1 middot1 middot1 middot1 middot middot1 middot1 middot1 I I I I vr )Igt(_ I II I I~~~~t~ 21~~~r~~~~~v111l I ~ II I -- I~ J(( I I II J l l l Cl ~ I ~ ~ ~ J J I I I yen - - bullbullJ_~ f yen ~ I IJ t I ti

diams J J J I I - ~ - ~ l1 yen -1) I I( t I ~ N J J J J 1- ur~ ~ - Jf1( -I) I I I ti I I j~

() UI diams Mi r)r yen fir_~~ bulll1t) JI 1 I middot i - (JI0 ~ nmiddotmiddotJ jmiddot-1 I I I f ~j--1J ~ __ middot gt C ~ J I f I 1 ltH I fl 1 ti I middotr- I I-I ~ f bull t t l )1j - _ I

t J4J-fbullt t ~ ii middotlfli ii~) - ~bullmiddotttM i f bull bull1 rI-Ku bull bull bull _ middot-~-J_J middot t +imiddot i t t ~ t ( ~ middot(~ I J bull Vf I r1- ~ j~fmiddot + r bull(~t t bullbull_t- J J ~) J ~ Igt

+ __ middot + V+ bull bull ti+ bull + -fi J i bull bull ~ f --- ~ ~ t Li bull bull t ++ diams + t bull +++ + bull ~ __Vbull ~ it 4 ~ i ()1 ~ 1 bullbull diams diams diams diams ++ ++ bull t 1 fA middot_ -----Y 4 ~ tn

~ ~bull t bull + diams + bull diams +++t + bull A VJ ~ bull bull ~ -o middot ~- bull t bull diams diams diams + ~i4_ ~ ~ ~

11 -~ 1 1 1 1 ~t t diams t t ft(middot-- f g a PA

--middott 4 -4 y 1 1 1 )f7~ V g n t A ~ ~bull a~ 4 1 1 ( V P q 1 bull A ~ V Y ~-- 4 I Cl oCl 4 A A ~tW --~- ~middot -)bull ~iliJ bull1bull

bull It t-- ti __ __ ~ (~w ~ ()1UI I bullbull bullrmiddot -~)fl l~~~ ) I A IIbull N~L~ r ~~~-ff~ --bull--1) 4 4 bull ()1

~ 14 ~ bull f 4 AA 4~ bull

44( )A - ~

- ti~ f 4 ~ 4 4 4 A bull ~ i

ti ti fl 1 4 tn llflfl44 4 -()1

~ ()1 ti ti fl 4 4 _ 4 bull fl _ 4 ~ ~

~ bull t~ - - I - 1 T T fJifrac12 1f 1~ fl t [ 1 4 bull bull ~ ltt ~4 ~~~11 l~~Nfl---~ ~~ bull ~t144

1 -middot I I f I ~ fl ti ti- Imiddot tJ 1-0 I 14

z o 0 -I

I

Y

)

u u u u 0) ~ ~ ~ ~ N ~ N 0 0 0 0

EAST

1S13

0 z 3

r r I-shy Ishyer gt 0 0 z ()

--_

2 0

--

___J

w CJ r----1 (lJ

0 l() z

Ishy gtlt J LO() N0

z Ishy()

3 0

0 20 3o 0 tj--

0

1S3M

0 w w 0 ()

B-25

------

~ --- _

NORTH 275 325 375 425 475 525 575

dJ 41 l ll~I tgtI I lo fA Itgt IA IA lo 1 IA IQ 1q lq If lq I ~I 4

~ ~ IIJ ~A ltI P Igt Igt Igt P V V V Q q l_-~- q ~ ~ ~ x- ~ ~ Y t~ --___q)11 4 ltI v v v v v v v 1raquo 4 -q q -~ q ~ 1 a

~ 4 ~~_gt~) ) ~~-4_~ A ltI fl v v v v p A V yjq ~ _ _ ~bullbull --shy~~~ ~ I Cl11 ~ 4 v v v v P- deg 4 ~ -V t V ( ~ a bull-

~ 1 ~~~ v ~sa- fl V P -iLpound_~A--4 q Igt P ~ 4 a~ 4 38203820

- _1 fa bull bull ~ II 11 4 4 ltf V P deg q 9 p Igt Igt Igt Igt P~~ _ _ _ bull -

- ~_R middot ~ gt- P-~-j---s--middotp-~~--- Igt p ~(

-~~ _ amp- 4 --v--J ~--~ -__~---- ~~ t f ---~middot bullbull ~ ~ ~ ~ ~~bull--- bull~bull~~ 4 ~-deg ~--~ ~_v -~ _~raquo Wh~

bull bull bull bull ___ol bull bull --___~ ~ _ A~~-~- f_~-~ bull 1 ~bull -~ Igt bull

a l -4 bull bull~ bull ~ ~ bull frac12~ P- __ _middotmiddot11-~~j)6-_ U bull _ JIgt~ bull I- bull ft ~ 4_~~~~ 9 P lgt--1gt~~~_-~_----~~~ ~ bull ~ ~ ~ ~ --~-~- ~~-_middot ~~~A~ ~ 1111 ~- ----~~ -~- IIgt _)-

1111 1111 -( _-middot 4 ~ Po Igt q lgtmiddotv11t_ Igt Igt II

3770 ~ P 0 ~ - bull k ~ 1- 1-

() pound 4 4 ~ q -44 - bull bull Igt ~- t Igt 1 Igt () w Igt 7 lt

3 - bull It It It bull bull ~--~ p ~ Igt ~ w ~~ It It It bull ~ -_t _ ~ bull bull bull bull --~ Igt

deg

td bull ft bull v ~lt~ Igt Ci~ 4gt I ~ It bull bull ~ 6 -It Igt ~

N bull bull It It ~ ~ _ ~_) ~ ~ lr It ft ft ft ft ft ft Igt -II-~ j ~ fil- _ _ _ _ bull 11r 1o 1o It 111- bull ft ft ft ft ft i i f - ~ 3720 bull It bull ft ft ft ltt q -e- ~ ~ ~j1

4

middot bull bull bull It It ft It bull ~ ~ ~ bullmiddot ft ft ft ft ltt ft ltt ltI 1 ~ - It bull It ft ft It bull -0 ~ JIgt ]~

middotmiddotmiddotmiddotbullbull1rt1rtft11- p-bull- ~1frac121 1tftftlttltltPt1t fgtbullbull ~~- bullbull ~

It bullbullbullbull It ltt It It ltt It lrt lrt tgt - ~

~~~ItIt ItItIt 1t11tft lttlttftlttltlt ltt lt11t ~ lgtbullJgtIbullbull bull~bull bull~bull ~ 1 bull bull 3670 367~75 325 375 425 475 525 575

SOUTH

1111111111111111I I I t--l 0 10 20 30 40 50 0 5 10 15

(KM) WIND SPEED (MS)

DWM WINDS AT LEVEL 3 (300M) 400 PST 25JUN87

0 0 0 0 N r-shy N r-shya) r-shy r-- (0 I) I) 1) I)

-

LO r--1) -

l~ i ()

0 z 3

I ~ n 0 z I)

N st-

0 If)

0 - I) 2 0 ~ N -

0

0

1S3M

B-27

---_

2 0 0 0

-

If)

_J

w Cj l-_J OC)

z_ ) lt( J () L()

ON z~ 3~ 20 3oo+

0 0 0 N N C0 (0 I) ~ I)

U)

U)

U) U) N N It) U)

I I-=gt 0

U) V1 N st-

lO N I)

0 lO

0 __ I) 2 0 ~ N _

0

0

__ 2 0

--

_J

w l--Gj OC) _J z I- =gt lt( ~ V1 N 0 1-z V) 3 CL

20 3 g0

1S3M

B-28

I fshyCt 0 z

0 r-shyr-shyI)

0 N r-shyn

0 r-shyl) I)

lO r-shylO

lO N It)

lO N ltt-

--

tlt)

_j

w r---fu o) _J z f- ) lt( ~ f) N 0 1-Z Vgt3 (L

2 03g0

I fshy)

0 l)

0 lO

0 -- n 2 0 ~ N ---

0

0

1S3M

B-29

1S13

-l)~ O 0 w

deg CL w

l)l ~

0 0 z 3

I lshya 0 z

--_

2 0 0 0

--

LO

_j

w__cj IJ)

0 _j z lf I- )

lt ~ ~ V) N

I) 20 - 0 Z(f)

I-

0 ~ 3 CLN -

2 00 3 gOr-

0

1S3M

B-30

Ht 11Sittl

lS13 0 0 0 0 N N II) (0 n I) n n

-- ()

LO t-shy ~ lO

(~i0 z

lO N LO

3

I Ishygt 0

lO () N +

--

2 0

--

_j

wr-----CJ OJ

0 _j z lt) I- )

lt ~ V) N

0 -- 0 1-shyI) 2 z () 0 i 3 ClN --- --

0 28 3 ltD

lf 0~_____________________________~_______________________--- t-- 0 0 0 0 ClCI N N t-shyII) t-shy io n n n n

1S3M

B-31

==- ~-_

NORTH

I bull bull - -f I I bull ~bull - ~__~~~~ ~~~

flt~11 $~~~t=- ~~ ~ 4Aligt~ ~~~ ~~

3820 1~~~- 4 t 11 ~ ~- --~_____-- ~ ~ ~~ 3820 ~~~

~~-~~~~

3770 3770

l1 ()w l-

lllizz tshy

~ ZlZZl ~ ~~~~~~

to I -IllIll

w -I IIIll~N llllll2~~

-II I I J I-~1~ r~~~~ 3720r ~ J J UL 1~A~~ 3720

~IIJJJJJ2~ ~~~ 1 ~ fl I JI JI2~~ 1~~~V fl fl ~ JI J J ~ y ~- 1-f4~) ~ fl fl fl I JI J _A2 1~ V~

~flflflflJIJIJl~2 ~~JIw~ ~ ~jlfljlflJIJIJI~ ~JIJIJflfl~~~ ~ ~~fljlfljlJI~~~~ -

J67 t-V1111111----(((((1i I~laquo rlt~1 I I I I I I I IM m I I I I I I I ~ MJ670 g75 325 375 425 475 525 575

SOUTH

11111 11111 11111 1I I I I I I 0 10 20 30 40 50 middot 0 5 10 15

(KM) WIND SPEED (MS)

DWM WINDS AT LEVEL 3 (300M) 1600 PST 25JUN87

1

NORTH

bj I

w w

i~ -tt--t ~ + ~frac14 diams diams diams diams diams f f f J-~~~l -ff~_x~ diams t diams ---t diams + diams ff f J1ff~t t

-=tl-U +---- ~ ~ t-t- diams diams __ diams~ diams diams ~ J I I 1 1 f ~ -y- ~I -~~-1t-~ diams +__+ diams + ++--J_f 1 ~JJ-11 I --

38201- ~~-- ~ ~--t_-( 1 ~ r 1t + middot~-t_ bull ~-~ bull bull bullmiddot bull r-r 1 ~IiI 1 I ~Ji~l _-=pound-~If~_ It It It bull bull bull bull bull ~ diams f f---bullmiddot+ --I __- _ I I~ 1 f1

( - ~~~~ II lit It It 1tt Iii Iii~ -r-middot -- ___- l_f--1-l -L ~~1 1 ~ ~_( _ -~~ ~------~ 1t(~ bull (t ft- ~ middotv -11-fI 1 - t~~1 1 41

~ - ~-~- lit 1t lk_i -- -~--- -_ -j rf-- l1 r111 1 I It It~ It 1t 11i bull-~ ~- ~ t_bullbull_~ (middot ~--middottY~i_(4Xtl~4j_ middot It It ~ -- ---~----~----_I~)-~-~ -

~-It It ltt middot~- ~ -~-middot ~-pound1[_~ -~- - middot - deg - - It It l diams diams 4 middotbull--bull ~ ~ ~ diams 7 1---~~ -L_- - ~ t( I diams -( bull diams ~ ~ bull ~ -- JI JI Jf JI JI j(_ ~II deg It_ -~ ~- I I I J JI JI JI JI 1

~ J- ~llj ~- diamsdiams +II IllJI_ h~ ~ ~ ~ bull bull ~ JI J J J ~ 1 x111 X7 -~ ~ diamsdiams 4111 JJJIJJ~~~~~~~~1t diamsdiamsdiams ~111 JJIJJIJllllb~ h~~~hh middot ~ - diams diams bull I I J J I I I I JI JI I l1-14~frac12-~~~ji_ ~ + f 1 J I 1 I I I 1 ~ x~ f1 11 middot -

bull JI I I I11~bullY1iz 1 41 ~ f I J J J JI J J J J J I I I lmiddot ~ t JI JI JI 1 JI 1 1 JI J I I I It~ if~_~

It_ ~ 1 JI JI JI JI J J I I l-~ 4 t J J J J J J J JI JI I I l l deg ~~ _ ~ 1111JJIJIJIJIJIJIJIJI t JIJIJIJI~I JIJJIJIJI_

~- I t I I JJJIJIJIJIJII~~~~ t JIJJIJIJIJIIII ~~ JJ JIJIJlllll ~ t IJJIJIJl1 1 1 ~ ~~I 1 t 1 A 11111111 II I I I

325 375 425 475

SOUTH

I I I I I I 0 10 20 30 40 50

(KM)

525 575

1111 111 1111 10 5 10 15

WIND SPEED (MS)

3820

3770 1-() lt( w

3720

3670

DWM WINDS AT LEVEL 1600 PST 25JUN87

5 (1000M)

0 w w CL ()

0

1S13 0 0 0 N r-shy N agt r-shy r--t) I) 1)

I() It)- r-shyU) U)

z U) N It) 3

( I I lshy Ishyo ) 0 0z It)

~lgtIgt~() st- b tgt ~ q st

lgtbbtgtb

b b t t 0 b

N

Igt b t b b b A 6 ~ b b t b C A 4 d 4

ttCt4lt1-it e Igt b tgt tgt V q ltl ltl ltI ltl

ti- deg 1 41 9 q I I ltl q q

i V q ltl q q q q I l() r-shy AlgtV ~ tlt) ~t) -~~~q

~ bull amp ~

0 ~ ~

-qa ~ ~ 1gt1 111111

b-a~-V ltillilI

bull lt bull bull a ~ Igt ~ V V V q 4 __J

It It lgt a -a~ Igt C tgt V w r---(J OC)

bull ~ Igt t 4 bull bull bull bull U) 0 __J z middot 1gt44lt14

U) ) t) rshy J - -N

lt( l() ~ ~~ CI() ~ ~

~

0 Ishy bull bull bull diams 1 z ()~ bull ~ bull diams diams 1 CL3bull ~ ~

i b y ~bullbullTT r I I 0

~ bull bulldiams ~ ~ b b b b ~ bullbull diams T r r I U)______-11____________________________ _ 0

0 O O ON N r- N r--agt r-- _ ~ I) I) I) I)

1S3M

B-34

I

_ _ 3820r- ttr- t f T Jf-Lt If t t 1l-- -~ 1~ t t

NORTH

~bull 1414

~~-_ ~ ~ r-- - --~ ~ - - _ r-- fT W - - r V-V ff f

- t t t t f I~ _AAjAA~-r bull(- -J It ~---1 t ~~~-1-- 1 ( ~~ - J ~ t t i f 1 ~ A_A-yen~_~_ ~ ~ 1 ~ t t ~ t t middotmiddotkt f ~-~-~~-----~~-- ~ ~ ~ ___ll_ bull ~

t -r- _______~~----- r ~bullbull _ ~ ~ tt-~J--~c-~~ ~ 1~--______ bull

~ -t lJ-- f t-J-- r---~~---middot _-- ~~-- ~ bull bull ll~iti~~sect~~~ ~ bullbull~bullbull bull~~n~ bull bull bull n~ bull bull

A)~lfifrac12~~ ~III I --1

3770 l l L l L - - ~ -- ~ - 1 ~ - 770 tshy~ ~~~~~~~~~11 1 ~~=1~~- Ul

W 1lllll~I ~~~~1111~~ lt( w ~1~~1~1~~j~~~m ~~~~ ~ - ~

11 1111 1111~I I 11111111 --- middotE~

tj IIIIIIIII_ ~tI l) llllll_~_p ~1l1 1~A~~~A~~rrr-v

3720t- I I I J J J A__ r r 0 11J)~~~----~_~ppmiddot-~~f Jl~~~~~---~--~~r~-~~q~q ~1

I ~JI I~ A A-_

~JIJl~~~~~A-----A rrbullbull~f~df~ ~~JIJl~~~~A~~--~- fffdfdff

~~JIJI~~~~~~---- bullfbulldbullfdf~

~IJIJl~~~AA~ --middotmiddotmiddotmiddotmiddot~middotmiddot~~~ ~l~JIJIJl~~~Al~pp~~~~bullbullffffffdff X ~~~~JI~- A(- f bullbull P ~ ~~bull1f1q1f1f1f1f1f1d1bull

3670275 325 375

1111 1111 11111 1 1 1

0 10 20 30 4-0 50 0 5 10 15 I I I I I I i(KM) WIND SPEED (MS)

iDWM w1tms AT LEVEL 3 (300M) ir 2200 PST 25JUN87

0 If)

0 __ I) 2 0 ~ (j __

0

0

__ 2 0 0 0

__

LO

_J

w f- GJ ll) _J z I- ) lt( ~ () N 0 1-z () ~ Cl

20 ~~ ON

1S3M

B-36

Page 9: Nind Observations Collected during the Southern California ...

TABLE 1-1 Concluded

UTM- UTM-Site Easting Northing

Identifier Location (km) (km)

RDLD Redlands-Dearborn 4853 37686

REDO Redondo Beach 3720 37459

RESE Reseda 3587 37851

RIAL Rialto 4625 37760

RIVR Riverside-Rubidoux 4615 37620

SIMI Simi Valley-5400 Cochran 3449 37940

SNBO San Bernardino 4748 37739

SNI middotsan Nicolas Island 2684 36823

TANB BLM-TanbarkAngeles NF 4301 37849

TEME BLM-TemescalLos Padres NF 3531 38167

TORO El Toro 4320 37252

TRON Trona-Market Street 4361 39573

UPLA Upland ARB 4420 37736

VCTC Victorville-Civic Drive 4707 38185

VENI Venice Beach 3642 37612

VERN Vernon 3874 37625

WALN Walnut 4223 37677

WHIT Whittier 4053 37540

WSLA West Los Angeles-VA Hospital 3657 37686

WSPR BLM-W arm Springs Angeles NF 3552 38291

ZUMA Zuma Beach 3313 37659

9106109 4

TABLE 1-2 SCAQS upper-air wind monitoring sites

UTM- UTM-Site Easting Northing

Identifier Location (km) (km)

BUR BurbankGlendalePasadena Airport 3748 37850

DAGG Daggett SCENES Site 5198 38581

EMUA El Monte-9528 Telstar 4021 37700

GLUA Glendora-near SCAQMD site 7000591 4216 37783

LBCC Long Beach City College 3947 37437

LBCR Long Beach City College 3947 37437

LMUA Loyola Marymount U niversity-Engng Bldg 3694 37604

NEED Needles SCENES Site 7181 38496

NSI San Nicolas Island 2717 36796

NTD Pt Mugu Naval Weapons Test Center 3048 37769

ONT Ontario International Airport 4443 37684

PSP Palm Springs 5460 37429

RAL Rialto 4589 37567

SFUA Santa Fe Springs 4020 middot 37557

TRM Thermal Airport 5776 37209

VBG Vandenberg AFB 1733 38472

YLUA Yorba Linda County Park 4287 37549

591061 10

5~

NORTH 275 325 375 425 475 525 575

~-~

bull ( I (o(r--L__- __ c_ __ ) -9) I _)I --~ ---~ __------__

bull (Q ~ ~ l-- middot r l__ _ _ 1 2 oo--_ - _ ~ shy

-

----- ----

------ ---

~middotmiddot- lt~]~---~ ~ 1 L

~~ 0

- o 7 -

----

~ middot -_ -_ I ( C~ ) ~ middot---) lt____ ) 9 bull ~- J t------------ ~ middotbull _ __ 10o -- - - - - - - 0 __ - J J--aoo ltJ

3620---_--__ _ - 0) ------- ___ -- - - ---- -- - --~- 7--

- middotmiddot -middot-- 0 _ - - I 1---------- ---- ~ ---~-----_ -~- ------- -_ ------~lt()~ --nmiddotor ~o-gtpcbull-middot ccc_--gt ____ middot_middot Ji tdegoo CmiddotI bull -bull - - I ---

middot-middot ___ - 1 c___ ~ i-- l bull - --- bullsoclt---_ middot middot-~soc_ ~- le r---- ltD

_ - -- ____ -c bull -~------1 5

= __ __ ) --~ --_ ---- ____ - _____-~~~-~ ~ _ ---~-frac142--~~ so9~ _ Q___~ - -- _ bull bull 1 middot -~ - -- - bull bull c- rAo 0o(Y--

-_ -------=--=_6CO-------- - ~)_O~ _ ~_ lt--middot_~~--~ (_ )-~- - _- ~ 0

~) ( ___ ------ -~- C jjh --- - ~ I 3770

t- 300- middotoo___ -~- l _2 ---sii middot middot 50~ ( C tshyV10w w ~ C ~_( middot bull i

l_ --t

~

__ _~) igtgt

- 1

- middot

7)_ -o-

- _middot-- -- ~ ---30~lt_~-L_ 9oo_~gn~~-__~~

U)

3770

- - o ~~~~d l -- o~ Jl _

si (_ - (----_ ( 1400t 37203720

- 1 ) reg_~S ~ ~~

7 9 b -- -- 0 ~

i --shyf I I I ~Ibull-bull

367~s I I I I I I I 13251 I I I I I I I 1351 I I I I I I I 14251 I I I I I I 14~51 I I I I I I I ss 7 I I I I I I I5s I I I I 3670

SOUTH

I I I I I I 0 10 20 30 40 50

(KM) i

FIGURE 1-1 The SCAQS 1987 analysis domain (axes labeled in zone 11 UTM coordinates topography contoured in meters)

-- ii gti kd

Our analysis consisted of (1) generation of hourly gridded wind fields for the 17 SCAQS intensive study days using the DWM (2) analysis of the mesoscale airflow patterns and (3) calculation of forward and backward particle trajectories to examine pollutant transport in the SOCAB

The results of the diagnostic analysis of SCAQS wind observations are presented in this report The generation of wind fields and the resulting airflow patterns are described in Section 2 The trajectory analysis is presented in Section 3 Plots of the wind fields are given in Appendix B The trajectory plots are included in Appendix C

9106102 7

2 GENERATION OF WIND FIELDS AND ANALYSIS OF AIRFLOW PATTERNS

DIAGNOSTIC WIND MODEL

Hourly gridded wind fields were generated for the 17 SCAQS intensive monitoring days using the Diagnostic Wind Model (DWM) (Douglas et al 1990) This model incorporates observations where they are available and provides some information on terrain-induced airflows in regions where local observations are absent The model is formulated in terrain-parallel coordinates Wind fields are generated using a two-step procedure

In step 1 a domain-scale mean wind is adjusted for terrain effects These include the kinematic effects of terrain (lifting and acceleration of the airflow over terrain obstacles) thermodynamically generated slope flows and blocking effects Step 1 produces a spatially varying gridded field of u and v for each vertical layer within the model domain

In step 2 observational information is added to the middot(uv) field calculated in step 1 using an objective analysis procedure observations are used within a user-specified radius of influence while the step 1 (uv) field is used in subregions where observations are unavailable The following modified inverse-distance-squared weighting scheme (Ross and Smith 1986) is used for the interpolation of data

where (u0

v0 )k denotes an observed wind at station k rk is the distance from station k to a

given grid point (u v)1 is the step 1 wind field at the grid point and (u v)i is the updated wind vector The parameter R controls the relative influence of the observations and the step 1 wind field

Following the interpolation a five point smoother of the form

9106102

Amiddot 1J

8

is applied to the horizontal wind field to reduce discontinuities that may result from the interpolation The vertical velocity is calculated by integrating the incompressible conservation of mass equation Zero-gradient lateral boundary conditions are used

GENERAL PROCEDURES

Generation of the SCAQS wind fields involved (1) preprocessing of the wind data for input into the DWM (2) plotting and quality control checking of the data (3) specification of the model input parameters (4) exercise of the DWM and (5) graphical display of the gridded wind fields Winds were analyzed at six vertical levels 10 100 300 600 1000 and 1500 meters (m) above ground level (agl)

In the preprocessing step the upper-air data were vertically interpolated to the model levels and temporally interpolated to enhance the temporal consistency of the wind fields and to provide hourly input for the DWM

Following the preprocessing step the data were plotted and examined for horizontal vertical and temporal consistency Data that failed the quality control checks were eliminated from the model input data set

The controlling parameters for the DWM include the maximum radius of influence (RMAX) at which a monitoring station can influence the interpolation at a grid point the weighting parameter for terrain effects (R) the number of stations to be used in the interpolation (NINTRP) and the number of smoothing passes (NSMTH) Note that the maximum radius of influence is specified independently for the surface level ( over land) upper levels (over land) and over-water portions of the domain The weighting parameter for terrain effects and the number of interpolating stations are specified separately for the surface level and upper levels In the diagnostic analysis of the SCAQS wind observations these parameters were specified as follows

RMAX (surface) 20km RMAX (aloft) 100 km RMAX (over water) 150 km R (surface) 10km R (aloft) 50 km NINTRP (surface) 4 NINTRP (aloft) 3 NSMTH 4

Tests were performed to examine the sensitivity of the DWM to the various contr ling parameters and to select the optimum values of these parameters for the SCAQS v nd analysis

9106102 9

The DWM also requires as input a domain-mean wind and stability information For this analysis the domain-mean wind was specified separately for each analysis level and was based upon the average of the level 6 (1500 m agl) wind observations To account for friction the speed of the domain-mean wind was reduced for the lower levels by multiplying the average wind speed for level 6 by the following scaling factors

Level Scaling Factor 1 048 2 072 3 083 4 090 5 096 6 100

The domain-scale lapse rate was the calculated average of four inland sites These varied according to data availability

Six-hourly plots of the level I (surface) level 3 (300 m agl) and level 5 (1000 m agl) wind fields for each episode are given in Appendix B

SUMMER INTENSIVE MONITORING PERIODS (

Mesoscale airflow in the SOCAB during the SCAQS summer intensive monitoring periods appears to have two components

A basic diurnal cycle driven by land-water temperature differences and complex terrain and

A perturbation associated with the overlying synoptic flow

19 June 1987

The surface and upper-air wind monitoring site locations for this intensive monitoring period are indicated on pages A-1 and A-2 respectively Plots of the diagnostic wind analyses for 19 June are given on pages B-1 through B-12

The surface early morning airflow pattern on this day is characterized by weak winds over much of the coastal and inland areas with moderate NW winds over the Coachella Valley and offshore At 300 m agl winds are S over the western half of the domain and W to NW over the eastern half of the domain The overlying flow at 1000 mis W

9106102 10

n1er

The sea breeze is somewhat slow to appear in the western basin on this day but has begun to develop by 1000 PST At this time winds at 300 m agl remain S over the western part of the domain and W to NW over the eastern part of the domain Some S flow is also apparent at 1000 m

During the afternoon hours three distinct features are apparent in the surface airflow pattern

A sea breeze (W flow) develops along the coast between Santa Monica and Palos Verdes and penetrates inland A branch of the sea breeze penetrates into the San Fernando Valley resulting in weak SE flow at Burbank and Reseda

An area of weak (SW) winds forms in the Whittier-La Habra-Pico Rivera area persists throughout the afternoon and fonns a convergence zone in the central basin with the penetrating westerly flow The S component of this flow is due to sea breeze development along the coast near Long Beach

Upslope flow develops along the foothills of the San Gabriel and San Bernardino Mountains (eg at Glendora and San Bernardino) Along the eastern foothills the upslope flow is supplanted during the afternoon by the penetrating W flow

By 1600 PST on 19 June the depth of the upslope flow near Glendora exceeds 600 m Strong outflow is apparent through the Cajon and Banning passes Aloft winds are generally SW with some SE flow near Burbank and NW flow over the Coachella Valley

Significant onshore flow (3 ms) persists along the Santa Monica-Palos Verdes coastline through 2200 PST Feature-s of the afternoon airflow persist aloft through this time

24-25 June 1987

Surface and upper-air wind monitoring site locations for this intensive monitoring period are indicated on pages A-3 and A-4 respectively Plots of the diagnostic wind analyses for 24-25 June are given on pages B-13 through B-36

The airflow patterns on these two days are similar to one another and to the ttern on 19 June The overlying flow is generally weak below 1000 m agl with moderak t5 ms) SE flow at 1500 m agl

On 24 June the early morning surface airflow patterns are characterized by ver middoteak winds At 300 m agl winds in the Coachella Valley are SE By 1000 PST a we1 organized zone of weak S flow extends from Long Beach to Pasadena this S flm

9106102 11

(

reaches a depth of 300 m agl Southeastern flow in the Coachella Valley and E flow through Banning Pass are apparent both at the surface and 300 m agl S to SE flow dominates at 1000 m agl The II three-zone II surface airflow pattern is apparent during the afternoon The wind shifts to Wat Banning Pass by 1500 PST At 300 m agl winds are SW over much of the basin with SE flow at Burbank and in the Coachella Valley At 1000 m winds are generally SW At 2200 PST the airflow pattern is characterized by weak unorganized flow at the surface and 300 m agl Winds at 1000 m are NW over much of the domain but SE over the Coachella Valley

The airflow on 25 June is similar to that on 24 June During the early morning hours winds at the surface are very light Weak SE flow is apParent at 300 m agl At 1000 m agl winds continue to veer toward N The sea breeze develops more quickly than on the previous day and winds at Banning Pass become westerly by 1300 PST Calm winds are observed at Pico Rivera throughout the afternoon As on 24 June the afternoon airflow at 300 m agl is characterized by SW flow over the basin and SE flow at Burbank and over the Coachella Valley Upward propagation of W flow is generally slower than on 24 June Winds at 1000 m agl are S to SE During the evening hours the surface winds become light while at 300 m agl winds over the Coachella Valley become NW Organized W flow is apparent over the W basin through a depth of at least 300 m agl through 2200 PST

13-15 July 1987

Surface and upper-air wind monitoring sites for this intensive monitoring period are shown on pages A-5 and A-6 respectively Plots of the diagnostic wind analyses for 13-15 July are given in Figures B-37 through B-72

Airflow patterns on 13 and 14 July are generally consistent with the basic diurnal cycle described earlier However an unusual airflow pattern develops in the Coachella Valley on both days On 15 July strong SE forcing is associated with a delay in sea breeze development

The 13 July early morning surface airflow pattern is characterized by light winds and a weak cyclonic eddy over the Santa Monica Bay Winds aloft are light to moderate and primarily W The sea breeze develops rapidly on this day and by 1200 PST W flow overwhelms the S sea-breeze flow in the Long Beach Area W flow appears at Banning Pass by 0800 PST The surface afternoon airflow is characterized by the three-zone airflow pattern described earlier with strong upslope flow along the foothills ( gt 5 mls) and significant outflow through Cajon Pass Observations at Palm Spring (NW winds) and Thermal (SE winds) indicate a convergence zone in the Coachella Valley with a depth of at least 600 m W flow dominates at middot1000 m with S to SE flow over the Coachella Valley During the evening hours a cyclonic eddy redevelops over the Santa

9106102 12

rtMt1

Monica Bay winds are weak throughout the basin but airflow into the Coachella Valley is especially strong

Airflow patterns on 14 July are similar to 13 July with a few exceptions During the early morning hours the surface airflow is characterized by weak disorganized flow There is no eddy apparent over the Santa Monica Bay The overlying flow is weak and primarily S to SE at 300 m agl but W to NW at 1000 m agl Sea breeze development is approximately two hours slower on this day than on 13 July By 1000 PST weak S flow has developed over the Whittier-La Habra-Pico Rivera area and SE flow is apparent at Burbank AS component to the flow appears at 1000 m The afternoon surface airflow pattern is similar to that on 13 July but the S upslope flow at Glendora is weaker S flow develops at Elsinore and several coastal Orange County sites The Coachella Valley convergence zone reappears at the surface at 1600 PST two hours later than on the previous day At 300 and 1000 m agl W to SW flow dominates over the western twoshythirds of the domain SE flow is apparent over the Coachella Valley During the evening hours the surface airflow over the central basin is S to SW W flow components persist along the eastern foothills through 2200 PST

On the morning of 15 July surface winds are weak but maintain a S component Moderate SE flow is apparent offshore The overlying flow is generally E to SE By 1000 PST the surface airflow pattern is characterized by S flow over the central basin and along the foothills SE flow in the Coachella Valley and E flow through Banning Pass The depth of the S to SE flow is greater than 1000 m agl During the afternoon a weak sea breeze penetrates inland and winds along the foothills become W Winds shift from E to NW at Banning Pass at 1600 PST A weak S flow component persists in the Whittier-La Habra-Pico Rivera area throughout the afternoon A weak slopevalley circulation develops in the Coachella Valley resulting in SE flow there At 300 m agl winds are SW to W over the central basin and SE over the Burbank and the Coachella Valley At 1000 m S to SE flow dominates W winds persist along the foothills through 2200 PST and weak S to SE flow redevelops at the surface Remnants of the afternoon airflow pattern persist aloft

27-29 August 1987

The surface and upper-air wind monitoring site locations for this intensiv middot1onitoring period are indicated on pages A-7 and A-8 respectively Plots of the dia stic wind analyses for 27-29 August are given on pages B-73 through B-108

On the morning of 27 August surface winds are weak over most land areas a 1djacent coastal waters with moderate (5 ms) NW winds well offshore Winds aloft a Jrimarily N with weak NE flow at 100-300 m agl over the central basin By 1000 PST threeshy

IIzone airflow pattern has developed at the surface and is somewhat apparent ( hin the limits of the upper-air network) at 300 m agl SE flow has developed at 100( agl

9106102 13

This pattern is maintained throughout the afternoon Within the Coachella Valley a classic daytime slopevalley flow pattern develops with SE flow extending to a depth of 1000 m E flow develops at Banning Pass and persists through 1700 PST W flow over the basin develops upward throughout the afternoon By 1600 PST wind at 300 m agl are W to SW over the central basin and SE over Burbank and the Coachella Valley During the evening hours the features of the mesoscale airflow pattern over land weaken both at the surface and aloft There is no clearly developed offshore-directed land breeze

On the morning of 28 August the surface winds are weak and the overlying flow is primarily E Retardation of the sea breeze by the overlying E flow is apparent by 0900 PST S flow develops in the Long Beach area E flow at Banning Pass is substantially stronger than on 27 August During the afternoon of 28 August S flow persists at Long Beach and develops in the Whittier-La Habra-Pico Rivers area SE flow is observed along the Orange County coast E flow through Banning Pass persists throughout the day W wind components along the Santa Monica-Palos Verdes coastline are weaker than on the previous day and NW flow fails to develop at San Nicolas Island W flow over the central basin disrupts the SE flow aloft During the evening hours the airflow features weaken W flow along the foothills does not persist as long as on the previous day

The early morning airflow pattern on 29 August is characterized by SE flow both at the surface and aloft Sea breeze development on this day is slower than on either of the previous two days S flow again develops in the Long Beach area and appears to be stronger than on the previous day Although the sea breeze is weaker winds at Banning Pass shift from E to SW by 1300 PST This shift occurs at 1800 on 27 and 28 August SE flow persists aloft with limited upward development of the W sea breeze flow W flow persists in the western basin area through 2200 PST and SE flow persists aloft

2-3 September 1987

The surface and upper-air monitoring site locations for this intensive monitoring period are indicated on pages A-9 and A-10 respectively Plots of the diagnostic wind analyses for 2-3 September are given on pages B-109 through B-132

The first day of this period is probably the most anomalous of the summer SCAQS intensive measurement days Overlying easterly forcing during the morning hours prevents development of W flow along the foothills and inhibits upward development of the sea breeze over the western and central portions of the basin The easterly forcing appears to reverse rather abruptly on the afternoon of 2 September Unusual winds are also observed at Burbank on 2 September During the late morning and afternoon Burbank experiences an unusual wind shift from SE to W through a depth of 1000 m On 3 September the overlying airflow is W and the airflow patterns are more typical

9106102 14

rrn

On the morning of 2 September strong downslope flow results in N to NE winds at several sites along the foothills of the San Gabriel Mountains At 300 m strong NE winds are apparent over the central basin The overlying flow is E By 1000 PST the sea breeze appears as W flow along the Santa Monica-Palos Verdes coast and S flow in the Long Beach area The surface analysis indicates a band of S flow from Costa Mesa to Azusa W flow has not developed along the eastern foothills Winds are SE in the Coachella Valley and E through Banning Pass E flow aloft continues and intensifies During the early afternoon hours a relatively strong sea breeze penetrates inland to Azusa while winds in the Whittier-La Habra-Pico Rivera area remain weak The sea breeze weakens considerably after mid-afternoon Between 1200 and 1500 PST the wind at Burbank shifts from SE to W through a depth of 600-1000 m By 1600 PST the overlying flow has shifted from SE to W Onshore flow continues at the surface through 2200 PST while the winds weaken considerably Although the overlying W flow persists in general 300 m agl winds at Burbank become SE

The early morning airflow on 3 September is characterized by weak winds at the surface SE flow at 300 m agl and primarily W flow at 1000 m agl Although the major surface airflow features appear to develop as on previous days upward development of the pattern is limited Strong S flow is apparent by 1200 PST between 100 and 300 m agl over the central and western basin By 1600 PST the sea breeze has penetrated well inland Imbedded in the sea breeze is a persistent calm area in the vicinity of Lynwood S flow persists at 100-300 m agl over the central and western basin while flow at this level off shore remains NW At 1000 m agl W flow continues This general pattern persists through 2200 PST but weakens considerably especially at the surface

AUTUMN INTENSIVE MONITORING PERIODS

The mesoscale airflow patterns in the SOCAB during the SCAQS autumn intensive monitoring periods exhibit a weaker diurnal cycle than the summer airflow patterns Synoptic forcing also appears to be stronger

11-13 November 1987

The surface and upper-air wind monitoring site locations for this intensive monitoring period are plotted on pages A-11 and A-12 respectively Plots of the diagnostic wind analyses for 11-13 November are given on pages B-133 through B-168

During the early morning hours of 11 November NE surface winds are apparent over most of the region Surface wind speeds are very light over the basin and somewhat stronger along the foothills and the coast At 300 m agl winds are light and generally E At 1000 m agl winds are W to SW over the western half of the domain and SE over the eastern half of the domain Weak E to NE surface flow persists throughout most of the

9106102

15

morning in the first 300 m An apparent anticyclonic eddy (SE flow at Long Beach weak S flow at Burbank W flow at El Monte) develops between 600 and 1000 m agl on this morning A weak sea breeze forms around 1200 PST penetrating only to the central basin There is no apparent turning of the sea breeze into the San Fernando Valley W to NW flow develops offshore and is deflected around the Palos Verdes Hills This W flow is also apparent at 300 m agl Downslope flow components along the foothills are apparent by 1600 PST At this time the 1000 m agl winds are weak and N The sea breeze rapidly dissipates and NE flow develops at several coastal sites indicating a land breeze NW flow is maintained off shore The nighttime airflow pattern aloft is characterized by weak N winds at 300 m agl and weak W winds at 1000 m agl

The surface airflow pattern on the morning of 12 November is generally similar to that on 11 November E flow over land is apparent through a depth of 300 m while NW flow persists offshore The overlying flow is W The afternoon surface airflow pattern is more similar to a typical summer afternoon pattern than the previous day Turning of the sea breeze into the San Fernando Valley is apparent and W flow develops along the foothills of the San Gabriel and San Bernardino Mountains by 1400 PST Airflow at 300-600 m agl appears to veer continuously from E to W at most inland sites during the afternoon NW flow through a depth of 1000 mis apparent over the Coachella Valley Surface winds become light and disorganized during the evening hours Unlike the previous day NE flow does not develop at the coastal sites and NW flow weakens offshore W winds persist aloft

On 13 November surface winds are very light through the early morning hours with E flow components apparent immediately offshore The overlying flow is WNW but becomes S over the central basin by 1000 PST As on the previous two days a sea breeze becomes apparent at the surface by noon W flow components over the basin and foothill areas are stronger than on the previous two days both at the surface and aloft Significant W flow also develops in Banning Pass Moderate to strong W winds are apparent aloft During the afternoon and evening hours SE winds are apparent at Burbank between 300 and 600 m agl Intense W flow develops off shore and propagates inland during the evening hours W flow continues aloft with some S to SE flow between 100 and 600 m agl at Burbank and El Monte

3 December 1987

The surface and upper-air wind monitoring site locations for this intensive monitoring period are plotted on pages A-13 and A-14 respectively Plots of the diagnostic wind analyses for 3 December are given on pages B-169 through B-180

The early morning surface airflow pattern on 3 December is characterized by weak NE winds over the inland areas and a weak cyclonic eddy off shore The overlying flow is S to SE Surface winds remain light and variable through most of the morning Moderate

9106102 16

txi Iii ttii

E flow is apparent over the western and central basin between 300 and 600 m agl A sea breeze develops around 1200 PST reaching a depth of 300 m and penetrating only approximately 30 km inland S to SE flow persists above 300 m agl The sea breeze weakens during the evening hours and N flow through a depth of 300 m develops at Long Beach E flow components intensify at 600 m agl and above

10-11 December 1987

The surface and upper-air wind monitoring site locations for this intensive monitoring period are plotted on pages A-15 and A-16 respectively Plots o~ the diagnostic wind analyses for 10-11 December are given on pages B-181 through B-204

On 10 December the early morning surface airflow pattern is weak and disorganized Weak NE flow is apparent over much of the basin between 100 and 600 m agl The overlying flow at 1000 m is N The surface airflow over the basin is weak throughout the morning hours while NW flow develops offshore Winds aloft remain N A weak sea breeze is apparent by 1200 PST the sea breeze penetrates only about 30 km inland and is limited to a depth of approximately 300 m There is no apparent turning of the sea breeze into the San Fernando Valley Elsewhere in the basin the surface airflow remains weak By 1600 PST the sea breeze has weakened At this time winds aloft are predominantly W to NW at 300 m agl and N at 1000 m agl During the evening hours surface airflow over the basin becomes weak and disorganized while E flow develops at Palos Verdes Strong N winds appear aloft (300-600 m agl) at Burbank LMU and Long Beach however winds at this level further to the east remain light

On 11 December the early morning surface airflow pattern is similar to that on 10 December Relatively strong ( gt 10 ms) NNW winds persist at 600-1000 m agl at Burbank and LMU E wind in the 100-300 m agl appear at LMU and Long Beach Throughout the morning the surface winds remain light and N winds 9ver Bu~ank weaken considerably A sea breeze is apparent by 1200 PST but is weaker than on the previous day and reaches a depth of only 100 m or less Significant N winds (3-6 ms) develop between San Bernardino and Elsinore and in the western San Fernando Valley NE flow is observed in Ventura County Winds aloft continue to be primarily N however E flow is apparent over the Long Beach area at 1000 m agl Surface airflow over the central and western basin becomes very weak during the evening hours Strong N to NE flow develops at the coast west of Santa Monica while N flow persists in the western San Fernando Valley and in the San BernardinoRiverside area The overlying flow is N to NE

91061 02 17

3 PARTICLE PAm ANALYSIS

A series of forward and backward particle paths (trajectories) were calculated using the SCAQS DWM wind fields The particle paths will be used by other SCAQS investigators in their examination of pollutant transport within the SOCAB The forward particle paths can be used to estimate the transport of pollutants from known source locations The backward particle paths can be used to estimate potential source areas The particle paths can also be used to estimate the residence time of certain pollutants in the SOCAB as a whole or in subregions

CALCULATION OF PARTICLE PAIBS

Two-dimensional particle paths were computed using the DWM wind fields as follows

Starting ( ending) points for a given number of forward (backward) particle paths were specified

Using a time interval of 15 minutes the hourly gridded DWM wind fields were linearly interpolated in time and then interpolated in space to each particle position using an inverse-distance-squared weighting scheme

The particles were then advected horizontally for the specified time interval

The distance traveled by each particle during each time interval was integrated The new position of the particle was reported at hourly intervals

Forward and backward particle paths were calculated for the SCAQS intensive monitoring periods for several vertical levels and a variety of origination and destination points The origination (destination) locations and times for the summer and autumn particle paths are listed in Tables 3-1 and 3-2 respectively Most of the particle paths originated (ended) at one of the SCAQS wind monitoring sites listed in Tables 1-1 and 1-2 Additional sites are identified in Table 3-3 Note that for some sites in Tables 3-1 and 3-2 a new particle path was initiated at the particles 1000 PST location but at a higher level

Additional forward particle paths were calculated for comparison with the SCAQS tracer data (England et al 1989 Horrell et al 1989) The initiation times and locations correspond to the tracer releases and are given in Tables 3-4 and 3-5

9106lrl02

~~ll1~(I titW I~l~~~t~~

TABLE 3-la Summer particle paths forward particle paths

Start Time Origination Start Date (PST) Site Level(s)

624 0500 LBCC 13 CELA 13

624 0700 LBCC 13 CELA 13

624 1000 LBCC 13 CELA 13

624 1500 LBCC 13 CELA 13

624 2100 LBCC 13 CELA 13

625 0500 HHRA 5 PADA 45 FULA 5

625 0700 FULA 5

713 0500 LBCC 13 CELA 13

713 0700 LBCC 13 CELA 13

713 1000 LBCC 13 CELA 13 EMTA 24

713 1500 LBCC 13 CELA 13

713 2100 LBCC 13 CELA 13

714 0500 LBCC 13 CELA 13

714 0700 LBCC 13 CELA 13

714 1000 LBCC 13 CELA 13

714 1500 LBCC 13 CELA 13

714 2100 LBCC 13 CELA 13

Continued

19

91061 07

TABLE 3-la Concluded

Start Time Origination Start Date (PST) Site Level(s)

827 0500 LBCC 13 CELA 13

827 0700 LBCC 13 CELA 13

827 1000 LBCC 13 CELA 13

827 1500 LBCC 13 CELA 13

827 2100 LBCC 13 CELA 13

828 0500 LBCC 13 CELA 13

828 0700 LBCC 13 CELA 13

828 1000 LBCC 13 CELA 13

828 1500 LBCC 13 CELA 13

828 2100 LBCC 13 I CELA 13

92 0500 LBCC 13 CELA 13 HHRA 12

92 0700 LBCC 13 CELA 13 FULA 12

92 1000 LBCC 13 CELA 13

HHRA 45 FULA 45

92 1500 LBCC 13 CELA 13

92 2100 LBCC 13 CELA 13

93 0700 RIVA 12

93 1000 RIVA 45

A new particle path was initiated at the particles 1000 PST location but at a higher level

20

~(Ibull bull 11

41

~1~_11Lmiddot11~1~~tV t rt~~14_ II~~~h1 1r t

TABLE 3-lb Backward particle paths

End Time Destination End Date (PST) Site Level(s)

624 1500 CABA 23 EMTA 45 BURA 1234 HHRA 4 FULA 45

624 1800 RIVA 3

625 0500 CLAR 13 RIVR 13 HHRA 5 PADA 45 FULA 5

625 0700 CLAR 13 RIVR 13 FULA 5

625 1000 CLAR 13 RIVR 13

625 1500 CLAR 13 RIVR 13 CABA 23 EMTA 4 BURA 4 RIVA 45

625 1600 RIVA 45

625 2100 CLAR 13 RIVR 13

713 - 1000 EMTA 24

713 1500 CABA 23 EMTA 45 RIVA 24

713 1600 RIVA 24

714 0500 CLAR 13 RIVR 13

714 0700 CLAR 13 RIVR 13

714 1000 CLAR 13 RIVR 13 BUR 123

714 1500 CLAR 13 RIVR 13 CABA 23 EMTA 4 BURA 234 RIVA 2

714 1600 RIVA 2

Continued

21 nn1 Y1

TABLE 3-lb Continued

End Time Destination I End Date (PST) Site Level(s)

714 2100 CLAR 13 RIVR 13

715 0500 CLAR 13 RIVR 13

715 0700 CLAR 13 RIVR 13

715 1000 CLAR 13 RIVR 13

715 1500 CLAR 13 RIVR 13

715 2100 CLAR 13 RIVR 13

827 1000 CABA 2 EMTA 23 BURA 123

827 1500 CABA 2

828 0500 CLAR 13 RIVR 13

828 0700 CLAR 13( RIVR 13

828 1000 CLAR 13 RIVR 13

828 1500 CLAR 13 RIVR 13

828 2100 CLAR 13 RIVR 13

829 0500 CLAR 13 RIVR 13

829 0700 CLAR 13 RIVR 13

829 1000 CLAR 13 RIVR 13

829 1500 CLAR 13 RIVR 13

829 2100 CLAR 13 RIVR 13

92 1000 PADA 3

92 1100 PADA 3

92 1500 EMTA 2 RIVA 2

Continued

22

91061 07

I

1bullLI bullI I bull ~ii 1 1

1 cl1

[1i1bull~j~1 Iiii~ j t-~dI ~1 1ltl1111111 II r I l~bull~II~middot t1~i~n_11~~ ~middot -

TABLE 3-lb Concluded

End Time Destination End Date (PST) Site Level(s)

92 1600 RIVA 2

93 0500 CLAR 13 RIVR 13

93 0700 CLAR 13 RIVR 13

93 1000 CLAR 13 RIVR 13 CABA 2 BURA 1234

93 1500 CLAR 13 RIVR 13

93 2100 CLAR 13 RIVR 13

23 9106107

TABLE 3-2a Autumn particle paths forward particle paths

Start Time Origination Start Date (PST) Site Level(s)

1111 0300 LBCC 13 CELA 13

1111 0700 LBCC 13 CELA 13

1111 0900 FULA 12

1111 1200 LBCC 13 CELA 13

1111 1500 LBCC 13 CELA 13

1111 2100 LBCC 13 CELA 13

1112 0300 LBCC 13 CELA 13

1112 0700 LBCC 13 CELA 13 FULA 12

1112 1000 FULA 45

1112 1200 LBCC 13 CELA 13(

1112 1500 LBCC 13 CELA 13

1112 2100 LBCC 13 CELA 13

1113 0500 ONTA 123

1113 1000 ONTA 45

123 0300 LBCC 13 CELA 13

123 0700 LBCC 13 CELA 13 FULA 12

123 1000 FULA 45

123 1200 LBCC 13 CELA 13

123 1500 LBCC 13 CELA 13

123 2100 LBCC 13 CELA 13

1210 0300 LBCC 13 CELA 13

1210 0700 LBCC 13 CELA 13

Continued

24 9106108

TABLE 3-2a Concluded

Start Time Origination Start Date (PST) Site Level(s)

1210 1200 LBCC 13 CELA 13 FULA 123

1210 1500 LBCC 13 CELA 13

1210 2100 LBCC 13 CELA 13

1211 0500 ONTA 12

1211 0700 FULA 12

1211 1000 ONTA 45 FULA 45

A new particle path was initiated at the particles 1000 PST location but at a higher level

25 9106108

TABLE 3-2b Backward particle paths

End Time Destination End Date (PST) Site Level(s)

1111 1500 HHRA 34

1112 0300 LBCC 13 CELA 13 RIVR 13

1112 0700 LBCC 13 CELA 13 RIVR 13

1112 1200 LBCC 13 CELA 13 RIVR 13

1112 1500 LBCC 13 CELA 13 RIVR 13 HHRA 34 PADA 3 FULA 34

1112 2100 LBCC 13 CELA 13 RIVR 13

1113 0300 LBCC 13( CELA 13

RIVR 13

1113 0700 LBCC 13 CELA 13 RIVR 13

1113 ~ 1200 LBCC 13 CELA 13 RIVR 13 ONTA 34 EMTA 45

1113 1500 LBCC 13 CELA 13 RIVR 13

1113 2100 LBCC 13 CELA 13 RIVR 13

123 0300 LBCC 13 CELA 13 RIVR 13

123 0700 LBCC 13 CELA 13 RIVR 13

Continued

26 9106108

TABLE 3-2b Concluded

End Time Destination End Date (PSn Site Level(s)

123 1200 LBCC 13 CELA 13 RIVR 13

123 1500 LBCC 13 CELA 13 RIVR 13 PADA 3

123 2100 LBCC 13 CELA 13 RIVR 13

1211 0300 LBCC 13 CELA 13 RIVR 13

1211 0700 LBCC 13 CELA 13 RIVR 13

1211 1200 LBCC 13 CELA 13 RIVR 13

1211 1500 LBCC 13 CELA 13 RIVR 13 PADA 1234 BURA 123

11 13 2100 LBCC 13 CELA 13 RIVR 13

27 9106108

TABLE 3-3 Additional particle path initiation (destination) points

Site Identifier Location UTM Easting (km) UTM Northing (km)

BURA Burbank Airport 3749 37859

CABA Cable Airport 4370 37751

EMTA El Monte Airport 4047 37717

FULA Fullerton Airport 4091 37485

HHRA Hawthorne Airport 3768 37547

ONTA Ontario Airport 4435 37686

PADA PADDR Intersection 3810 37175

RIVA Riverside Airport 4584 37485

28

TABLE 3-4 Forward particle paths calculated for comparison with the SCAQS tracer data

Start Start Origination Date Time Site Levels

0300 LAGS 13 0600 13 0900 II 13 1200 II 13 1500 II 13

625

715 0500 VRNN 1

0800 VRNN 1

828 0600 LAGS 13 1000 II 13 1300 13 1500 13

93 0500 VRNN 1

0800 VRNN 1

1111 1600 LAGS 3 ESGS 3 VRNN 1

1900 LAGS 3 ESGS 3 VRNN 1

1112 0600 ESGS 3 VRNN 1

0900 ESGS 3 VRNN 1

1210 0600 LAGS 3 ESGS 3 VRNN 1

0900 LAGS 3 ESGS 3 VRNN 1

1600 VRNN 1

29

9106lrl09

TABLE 3-5 SCAQS tracer release sites

I_______________________

Site Identifier Location UTM Easting (km) UTM Northing (km)

ESGS El Segundo 3690 37536 LAGS Los Alamitos 3980 37370 VRNN VRNN 3874 37625

(

91061rl09

30

The particle paths were calculated for up to a three-day period In general forward particle paths were calculated through the end of the monitoring period or until the particle was advected out of the domain Backward particle paths were calculated through the beginning of the intensive monitoring period or until the particle left the domain

Selected plots of the forward and backward particle paths are given in Appendix C

SUMMER PARTICLE PATHS

Forward particle paths (levels 1 and 3) originating from Central Los Angeles (CELA) and Long Beach City College (LBCC) at 0700 PST on 24 June 13 and 14 July 27 and 28 August and 2 September are shown on pages C-1 through C-12

The surface-level particle paths originating at CELA indicate northward advection from this site on all days The particle path initiated on 27 August indicates that the initial northward advection is followed by westward advection on the following day the particle path initiated on 2 September indicates that the initial northward advection is followed by eastward advection on the following day In all cases the residence time in the central Los Angeles basin is less than 12 hours

The surface-level particle paths originating at LBCC are carried northward and eastward usually exiting the Los Angeles basin through Cajon Pass On 24 June and 14 July however the particles are carried across the San Gabriel Mountains (with the upslope flow) Considerable eastward transport is indicated by the particle paths initiated on 2 September after 1800 PST -Residence time in the Los Angeles basin varies from day to day and is especially long for the particle path initiated on 27 August (approximately 30 hours) Particle paths initiated on 13 July and 28 August also indicate some recirculation and a significant residence time within the Los Angeles basin

The level 3 particle paths also indicate northward transport from CELA on most days Advection into the San Fernando Valley which may be partly due to the SE flow produced by the turning of the sea breeze into the valley is more pronounced on certain days (14 July 28 August and 2 September) Level 3 particle paths originating at LBCC show mostly northwestward transport Recirculation over the Los Angeles basin is indicated for the 2 September particle path

Backward particle paths (levels 1 and 3) culminating at Claremont College (CLAR) and Riverside-Rubideaux (RIVR) at 1500 PST on 25 June 14 and 15 July 28 and 29 August and 2 September are shown on pages C-13 through C-24 -

_

9106lrl 02

31

The surface-level backward particle paths originate over water on all days the particles are carried eastward and northward into the Los Angeles basin On 14 July and 28 August the particle paths indicate primarily eastward transport There is some indication that particles arriving at the destination sites on 28 August may have originated in the South Central Coast Air Basin (SCCAB) On 25 June 15 July and 3 September the particle paths indicate primarily northeastward transport On 29 August northward transport is indicated

The level 3 backward particle paths also indicate transport from the W SW or SE on the intensive monitoring days The over-water segments of the particle paths indicate eastward advection on 14 and 15 July and 27 and 28 August and northward advection on 25 June and 3 September Again there is some indication that particles arriving at the destination sites on 28 August may have originated in the SCCAB Almost all of the particle paths indicate that the particles are carried onshore between Long Beach and Laguna Beach and advected northeastward to CLAR and RIVR An exception to this occurs on 28 August On this day the particles are carried onshore near Redondo Beach and are recirculated over the Los Angeles basin for approximately 24 hours before arriving at the destination sites

AUTUMN PARTICLE PATIIS

Forward particle paths (levels 1 and 3) originating at CELA and LBCC at 0700 PST on 11 and 12 November 3 and 10 December are presented on pages C-25 through C-32

The autumn particle paths exhibit more day-to-day variability than the summer particle paths indicating more variability in the autumn airflow patterns Because both the CELA and LBCC locations are affected by the land-breezesea breeze circulations all of the surface-level particle paths show some recirculation in the western basin Particle paths initiated on 11 and 12 November eventually indicate eastward transport

The level 3 particle paths also differ among episodes but are all affected by the seashybreeze circulation Particle paths initiated on 11 November show eastward transport from CELA and southward transport from LBCC Northeastward transport at this level is indicated by the 12 November particle paths The particle paths initiated on 3 December illustrate local recirculation by the sea breeze On 10 December southward advection is indicated

Backward particle paths culminating at CELA LBCC and RIVR at 1500 PST on 12 and 13 November 3 and 11 December are presented on pages C-33 through C-40

The surface-level particle paths indicate that particles arriving at CELA at 1500 PST on all four days follow a southward then eastward course Particles arriving at LBCC are affected by some combination of onshore advection and local recirculation The particle

9106Irl02

32

paths culminating at Riverside indicate a variety of possible transport patterns eastward transport on 12 and 13 November northwestward transport on 3 December and southeastward transport on 11 December

The level 3 backward particle paths for 12 November illustrate recirculation aloft by the evolving airflow patterns while the particle paths for 13 November indicate primarily eastward advection The particle paths for 3 December are clearly affected by the SE that occurs on this day the resulting particle paths indicate northwestward transport The particle paths for 11 December indicate southward advection and recirculation by the sea breeze

COMPARISON WITH TRACER DATA

Forward particle paths originating from El Segundo (ESGS) Los Alamitos (LAGS) and Vernon (VRNN) at times corresponding to the SCAQS tracer release times are shown on

middot pages C-41 through C-76 For ground-level tracer releases the particle paths were calculated using level 1 (10 m agl winds) for stack releases the particle paths were calculated using level 3 (300 m agl) winds A qualitative comparison with the observed tracer data is provided here

Surface-level particle paths originating at LAGS on 25 June indicate northward transport during the morning and afternoon hours The level-3 particle paths indicate that material is transported out of the basin through Cajon and Banning Passes by the upper-level winds Both of these indicated transport patterns are supported by observed tracer data

Surface-level particle paths originating at VRNN on 15 July indicate northward transport and exhibit good qualitative agreement with the tracer data

Both the surface-level and level-3 particle paths originating at LAGS on 28 August indicate primarily northeastward transport Most of the particles are eventually advected through Cajon Pass This is consistent with observed tracer at Redlands San Bernardino and Crestline

Surface-level particle paths originating at VRNN on the morning of 3 September do not agree with the tracer data While the particle paths indicate northeastward transport the tracer data indicate northwestward transport

Surface-level particle paths originating at VRNN on the afternoon of 11 November indicate westward transport and a long residence time in the central basin The level-3 particle paths originating at LAGS and ESGS show southeastward transport and recirculationmiddot by the sea breeze Surface-level particle paths originating at VRNN on the following morning again show net westward transport and a long residence time in the

( central basin but the level-3 particle paths indicate northward transport with recirculation

91061rl 02

33

by the sea breeze The smface-level particle paths are consistent with the tracer data Tracer was observed over the north-central basin and along the foothills on the morning of 13 November

The surface-level particle paths originating at VRNN on the morning of 10 December indicate relatively stagnant conditions with a weak sea breeze circulation Some net transport toward the south is indicated Particle paths originating at VRNN on the afternoon of IO December show little movement throughout the following day The long residence time in the basin is in qualitative agreement with the tracer data Tracer was observed in the basin on the following day The dispersion indicated by the widespread tracer concentrations however cannot be represented by a single particle path The level 3 particle paths originating at LAGS and ESGS on the morning of 10 December show southward transport and recirculation by the sea breeze

UNCERTAINTY ANALYSIS

A simple analysis was perlormed in an attempt to quantify the degree of uncertainty inherent in the particle paths The uncertainty analysis was similar to an analysis described by Moore et al (1989)

Three major forms of error in the particle path calculations can be identified The first two result from errors in the wind fields The most fundamental of these is measurement error as measurements can only be regarded as approximations of the true winds Regardless of the accuracy of interpolation techniques measurement error will always affect the final wind field The second type of error results from the interpolation of these measurements and the parameterizations and approximations in the diagnostic wind model This error will be greatest in data-sparse areas The third type of error results from the use of two-dimensional wind fields The two-dimensional particle paths do not incorporate the effects of vertical motion which may be a significant source of error considering the mesoscale regimes present in the study area

The particle path uncertainty in this analysis is the result of all sources of error and is therefore very difficult to estimate A lower bound 11 on the uncertainty was assumed to result from measurement error alone Here we use a lower bound uncertainty estimate to illustrate the effects of measurement error on the particle path calculations Several assumptions were made in order to estimate this uncertainty First average bias for all instruments was assumed to be very small Second instrument precision was assumed to be constant over the region Third measurement error (speed and directional error) was assumed to be normally distributed around zero The standard deviation about the mean was based on observational data

For this uncertainty analysis 20 particle paths were initiated from a single site at a single time For each 15-minute particle path segment u and v were calculated as described in

9106lrl 02

34

(

the previous section Small random wind components (representing the measurement error) were then added to the interpolated wind The smaller components were determined by randomly selecting wind speed and direction error from two separate normal probability density functions (PDF) To do this a uniform random number generator was used to find two error probabilities Ps and Pd between 0 and 1 An inverse normal PDF routine was then used to find the speed or direction error that results in error probability Ps or Pd respectively Commercial statistical software from Th1SL was used to generate uniform random and inverse normal PDF values 1

The PDFs possess means of zero and standard deviations equal to the root mean square error (RMSE) of the measurements For simplicity RMSE values for speed and direction were taken from those specified by Moore et al (1989) namely 02 mis and 10 degrees respectively Random error components were determined for each 15-minute segment of every particle path The resulting divergence in the particle paths represents a lower limit to the uncertainty inherent in the particle-path calculations

Plots illustrating the effect of the lower-bound uncertainty on the particle path calculations are given for one summer and one winter episode in figures 3-1 and 3-2 respectively The summer particle-path bundles (Figure 3-1) were initiated at CELA and LBCC at 0700 PST on 14 July The winter particle paths (Figure 3-2) were initiated at CELA and LBCC at 0700 PST on 12 November The bundles were calculated for levels 1 and 3 In general the bundles indicate that the airflow patterns do not vary abruptly in space or time The winter particle paths are less divergent that the summer particle paths

While plots of the particle path bundles qualitatively indicate the degree of lower-limit uncertainty a quantitative summary of the uncertainty can be obtained via hourly estimates of RMSE of all particle positions relative to that with zero error The RMSE can be obtained from

1 1 M 2 2

RMSE = - ~ dj[ lM ]=l

where

1

dj = [(xj - X1)2 + (yj -y1)2]2

and where Mis the number of particles and ()1 represents the position of the actual particle as calculated in the previous section (ie the zero error particle path) The RMSE is used to determine the growth over time of the confidence interval about the

1 IMSL is the registered trademark of the Scientific Problem-Solving Software System developed by IMSL Inc Houston Texas

91061rl02

35

NORTH

425 31570

SOUTH (a) CELA Level 1I

20

(KM)

NORTH

425 31570

SOUTH (b) LBCC Level 1I

20

(KM)

le-path bundles initiated at 0700 PST 14 July 1987FIGURE 3- composedd par tic le paths1 Forwar of 20 particBundles are

35

NORTH

425 3570

SOUTH

(c) CELA Level 3

NORTH

425 3870

SOUTH

(d) LBCC Level 3

FIGURE 3-l Concluded

37 9106]

70

IlFil

NORTH

CEIA Level 1(a)

3(170

1-Ul j

NORTH

425 3(170

SOUTH

(b) LBCC Level 1

Forward le-path bundles initiated at 0700 12 November 1987FIGURE 3-2 composed par tic le pathsbullBundles are of 20 partic

3391061

425 3870

SOUTH

(c) CELA Level 3

J8

3870425

SOUTH

(d) LBCC Level 3 10 2

(KM)

FIGURE 3-2 Concluded

91061 39

1 1c

i I

trajectory calculated using the DWM winds Hourly RMSE values are given for the particle paths bundles shown in Figures 3-1 and 3-2 in Tables 3-6 and 3-7 respectively For level 1 the average RMSE after 12 hours is 567 km for 14 July and 167 km for 12 November For level 3 the average RMSE after 12 hours is 416 for 14 July and 260 for 12 November

9106lrl 02

40

TABLE 3-6 Hourly RMSEs for particle-path bundles initiated at 0700 PST 14 July 1987

Time LBCC RMSE CELA RMSE (PST) (km) (km)

Surface Level

0700 000 000

0800 042 042

0900 057 069

1000 063 100

1100 093 128

1200 091 143

1300 111 168

1400 136 217

1500 229 227

1600 265 219

1700 394 219

1800 620 265

1900 796 338

Level 3

0700 000 000

0800 018 049

0900 064 090

1000 068 140

1100 087 172

1200 089 162

1300 123 180

1400 231 224

1500 337 258

1600 419 278

1700 427 306

1800 449 347

1900 462 370(

9106104 41

TABLE 3-7 Hourly RMS Es for particle-path bundles initiated at 0700 PST 12 November 1987

Time LBCC RMSE CELA RMSE (PST) (km) (km)

Surface Level

0700 000 000

0800 047 049

0900 078 065

1000 077 066

1100 089 086

1200 109 094

1300 089 092

1400 118 125

1500 100 138

1600 129 150

1700 147 160

1800 161 164

1900 156 176

Level 3

0700 000 000

0800 045 076

0900 061 120

1000 069 139

1100 092 171

1200 098 163

1300 096 156

1400 125 182

1500 150 175

1600 231 171

1700 261 152

1800 308 156

1900 345 175

91061 04 42

References

Douglas S G R C Kessler and E L Carr 1989 Users Guide to the UAM Wind Preprocessor System Systems Applications International San Rafael California (SYSAPP-89079)

England W G and L H Teuscher 1989 Perfluorocarbon Tracer Experiments During the Southern California Air Quality Study Air amp Waste Management Association For presentation at the 82nd Annual Meeting amp Exhibition Anaheim California (June 25-30 1989)

Horrell R S M Deem P Wyckoff F Shair and N Crawford 1989 Ground Release SF6 Tracer Experiments Used to Characterize Transport and Dispersion of Atmospheric Pollutants During the Southern California Air Quality Study of 1987 For presentation

( at the 82nd Annual Meeting amp Exhibition Anaheim California (June 25-30 1989)

Moore G E G Z Whitten J P Killus and R D Stevens 1989 Analysis of 1985 Air Quality and Air Chemistry Data Collected Under the South Central Coast Cooperative Aerometric Monitoring Program Systems Applications International San Rafael California (SYSAPP-89058)

Ross D G and I Smith 1986 Diagnostic Wind Field Modelling for Complex Terrain-Testing and Evaluation Centre for Applied Mathematical Modelling (CAMM Report No 586)

9106105

43

rr T rr

Appendix A

SCAQS WIND MONITORING SITES

(

9106103

-

((--_ 770

-

NORTH CM~RS 42 575

5 I I j I I 1---L 525 middot 1J75 I I I I I I I I I r I I _--- I C2~middot----_J ~ ~-- 1 ( ~ ~J25 I I I I I I I I I I I I l__ ) -475 () I Li 1~)51 (

--~ltJ820f-_ ~------ ---

~- -cli( ol --9-Sl-l

lt ( ~)

CQ p llE RiDO ~ llE ANAH

I middot LAS-L

bull~ LANC ( _ Q - _J ) ) - _ ~ - ---- - ~ _ ____ middot clt G~ _----~____-=-- -___ ~PR __ - ---- --- VCTC ltgt

-- ------ f---- __ - ---_ -middot ------ --___ --~-----TEME --- _ f

-)(j _ _ middot --middot -------- - HESP f ----=----==~~~ l ----~~ -- middot l - --- __ -middotlt- CJ _ --- middot PIRs[- lt NfVL_ ---~ - C~lt --lt _ ~ ~- __ (~~

__ --- bull _ i - f c-_ _ I - )~__) - ---~poundS---_-

3770 t-()

LA llE PICO )Ct444 -w 3 ~~~ZUMA MALI VE VEN llE llE middot Jl~C - ( p

NN WOOHS ~- ~ m - middot - o - I () )IE 55I

1-- (lt - - PERI ) ~ S__~llE

BU25 bull y _ L ~~5o 13720

I ----~- - 515 3670 525

(KM)

~---

SNI

20

SCAQS SURFACE WIND MONITORING SITES

19 JUNE 1987

0

qj n

If) N ~

I

1S13

Ishy)

0 Vl

(f) w I-V)

l)

z a 0 1---

z 0 2

0 z 3 a ~ I r---

0 CX)Wm Q_ shyQ_ ) w

z (f) )

0 7 lt( um Vl ---

0

A-2

-

r~

NORTH CM~RS

I -middot_( lt - middotmiddot -~ ---lt - - - middotbulll- ) middotmiddot-middot - - -c ) 0 0 l__SG- ___ J1 bull_ -- VCTlt I

_ --middot ---middot llSeR - - __ - --middot----- J~__-- middot - - - -middot bull bullbull- HESP ~-_-middot- bull- ~- _~ - -___---middot - ~ -_ ) ME --- -middot - bullmiddot bull -_

38201-_ ~~_ _ TE _ C-bull_- - CJ - ~Jj __ -_

1

1 bull I bull __ (]

SI bull bull=-middot _ -~ ~~ ~_-__ middot _J lt(- j SIMI -M~S -~_-~It_ - - 1Ir- I w _ I B~~ AZ~~~1 AL SNBOC ~ (ELRO l~ Hf~~ ideg_=- --

)1__ CE~ wftcentrHIN RIVRM44 --- ~--- ---~ LA PICO __pound bull P

T ~NN WI-V C) D 2J~55I Wco - middot PERI Lv

R~O ~L ~AN~ TO~~~~ ~ ~ ~-MO

62

~ ~j~l)~gto ay 3670( 525

SCAQS SURFACE WIND MONITORING SITES 24-25 JUNE 1987

~ (

NORTH 275 325 375 425 475 OA~5 575

f_~ CJ ~ -middot--

_middot

middot1 Imiddot

)i

gt--o~0 (~_)r-) _ (~~3s20

--~- middot qlt ( ____ - ---- - lt__ ~ ~ -i~ J ) _ - - -

-~ -__ J V 38201-~--o- lt-

-----~~middot ---- __ - ~---- -_--- ~====- -=_---~ ~ _

~ -- middotbull ~gt ----_ _______ ) ~~~ l -- - - i - --- l

( _ (_-~ _-lt~~ - )

2middot1=~ (~gt lt_) -~~~~~(_~tJt-~~~~t~~~~-~) ~

uR--- -----Qi~ ~ 3770_ 3770 -middotmiddot--rmiddot- -7 ~ 1-

(J) llE ONT _ -middot __ w

Y-_ EMU c __- ~ Ul lt(1 w~

- -- - LMIIEUA sFtA ~

1

----_

~

_

t_~~ -bull _ middotgtI __

~- 0 ~~QgtJn~-~ ~II~

~ f-- -) -) ) ~ ~-

j (_1_j ~~TRM 3720 ( (__ -CcS l l 3720

~- ) -~ --7( ) __~---L_ ~~1-----~D~

1 ~) a --- ~middot 7 rt 0- NSI (

3670 I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I 1 I I I I I f I I I 1 I I I I I I I I I I I I I 36 70 275 325 375 425 475 525 575

SOUTH

I I I I I I 0 10 20 30 4-0 50

(KM)

SCAQS UPPER-AIR WIND MONITORING SITES

24-25 JUNE 1987

--=-

NORTH 25 575

CM6QRS C__j 475 -____

3 ---- 375 425I - L ---) - ~-

SNI

-_-~)---_ lt-____ ___3azor_~c~~ sl

VENt ELRO

BU25

275 ~ c--) ~LANC ~~-_ lt ~ 0 9-~

llE

3670

----~ - J Q ____ ~- lt) ~ 3820____ -- middot--- 0~__~- __ J S --- ---~- ---- -- -- v~ ~ ~ ===-~ - - - - ---- - - ---- - -- -middotv ------------ -~ l f----- _ -- -middot _ - --- __ HESP ~-----=- c~i - - _- --- - - gt - -bull TEME -- -middot - bull ----- -- - _ middot ( lt~ clt=~ ~i cJ~ c _

~I -~~le lt~NJWl--------~- -iHitgt~-=__~~ _I -~ J~~~ ~ 3770 r-1 - - -- -- - ltJ c__ ---middot ~ ( - ------ -c_ - - -~~~ ~ ()-~ ~ - -middotMiss ---~---=-~----r~-__ -middot _frac12 __ i5

j S ~R~~HE -7t$ llE llE ftALSNBO llE ~~ t __ -R~ B~~SA AZ~jl~r RD ~~_ ~ 1( )l___ llE CE~HAllE ~~ - RIVRM44 - llE ------___llE W~HIN -Jti )Ii ----------- __

~--- LA llE PICO l llE C -- r p

ZU VE NN Wt-laquoJHB 0 1~55WT IN - ---- ) llE CO P llE llE ( gt (____ PERI ~

IJl

~ 71t~P325 425

SOUTH

I I I I I I 0 1 0 20 30 40 50

(KM)

SCAQS SURFACE WIND MONITORING SITES 13-15 JULY 1987

clt(middotO -i ~Ill ~

()VL~t

~~) o2~ r

275

-- _~middot middotc-- ( ~ I - ___ ) --____ ~~~

---- ---bull-~ ( lt ) lt I ~ (J () - _ ~ ~ J ) bull middot ( - ~ ~- - --- middot - ~ - middot middot G--~_J lt)

cce- middot- __ V ___ -- l - _- bull middotbull - - _~---~ 3820r----=-~_~Jrlt - - - middot f ~l-~--~--~] I c___ -~c ~ -- ( _ 1middot--- 1___ _~

-I -- = lt -bull lt middotmiddotltmiddot~- middot - middot -L-

- ~-- middotbull ---_- --- J middot J ) ) -- bull- ~-bull _ --middotbullbull- middot middot _ j -- -)) 3770 -ii __gtc _ -- - - middot bull ltmiddot ~- I - _ltbull - -_j-- tn

BURbull-- - middot - - - ) ~~middotj- (~~ ) (middotIi lt(

GL U I ~ - - - w ---~ - -1 __ - ---------= ------___________--- ONT middot middot __ - --_ -

poundMUI - - ~ ____ middot----~~i -__ ~ I

--

--- ~ c) )_

deg ~

_- - (

_l

_ ~ )

C-

~ _middot

( T( f 1-

525

t j 30 50

(KM)

SCAQS UPPER-AIR WIND MONITORING SITES 13-15 JULY 1987

_==--

J ANORTH CM6sectARS

3s201-

~- ~ ~ ~ ~0A - --__ - -----~ ---~- --1(j - A ) __gt ---------_

-~~J TEMEa l_C ~r1

0

820

_--C~ = ~~~ltCH~~ J ~ S~I ----i4~58 ( J

tigt-1

-J 3 BU25

frac14~) 8 F1(5

- HA

APICO RN A A ~ N WVHB

AANAH

~IHIN J _CM44 ~-

A

CY PERI N ~ iJN

D A

HEM

770 ~ V1 lt( w

~ 3670

SCAQS SURFACE WIND MONITORING SITES 27-29 AUGUST 1987

) w l-1

C)

z-a 0 1-

z 0 ~

0 z - r---3 co a Ci)

- -ltI lshy

a )w ) Cl 0 Cl ) ) lt(

V) Ci)

0N ltI u r--- () N

A-8

NORTH CM~RS bull r (_J~

1

325 - - l L=~-) ( bull

1275 _ ( ~ --- -middotbull LANC 1 _ bull I( f LJ- ~ () ~-- 3820 bull- - J bull

- --__ _ -- )- bull bull - middotbull-~- _ I v----_J -- J middot-- - middot- - -middot I I J_______ ---==-------------- WSfgtR - -- VC _____- ltgt

-~--~-- fJ- -middot - - - --- --- _ - ----- --- ----- ) r bull---_ --- - - -- bull p -- --__-----_ - -----

38201-_ -------~- TEME --- --- - - bull -- middot- bull --- _----~ -~ II middot ) - ---- -- -- _ -- HES f I-----=-- ~ ------- ~ l _ -- - I

- bull middotbull-bullbull~ ll( middot bull - middotbullbull - 1 I ~----- middot-bull

9 -- ___ __ _ -------- _=- r _ -- )J -~~ ~~~ 3770 t--SJMImiddot MISS~~~--bull ~--~-- ll( -_ ~-VENt Cllfl58 bull I middot- - middot- - --JOE ~--bull bull ~ V)

ELRo __J 4Esc euRK ~Ej1 fAL sNeo I ~ _ J middotmiddot -~~ 1 i5 l - ~SA ___ I ROLD ~ ~ C~ ( _____~- -~ llE CE~ llE W~(HIN RIVRlK -- - 1 llE __~

3770 middot- ~LA VEN Pl llE _ _- JJ~C _CM44 - ~ p ---__-_

0 ANAC cubull~ - - v~wr LyenNN WHJHB --- -- Q~~W)( ___

- llE HA ~ -lE _ -- _ - -_

I 0

SAi middot-middot J) t450

3720 LA r TO~omiddotlt~lt~~ -~ ~ (~~

~ ~ r-~~~1~ o ~~l~

SNI 1 (l_ amp-~ 575 3670367g75 325 375 425 475 525

SOUTH

I I I I 0 10 20 50

(KM)

SCAOS SURFACE WIND MONITORING SITES 02-03 SEPTEMBER 1987

------J ------------------ ) I-- 38201--__--~~- i) ___

_-- ~--gt--

-__

_

NORTH 275 325 375 425 475 525 575

YI ~middotCJ~bull_bullrmiddot--- lt I __ (_______~ ~ - - I -- J ( - - - - - - - J i O l__ ______________ -~

~j ( lt- bull- ~ 0 C) ~ -- (-- _)) ) ----_--__ -- middot-- _ - --J ) J ---- - ------- ----- middot----- -( ~---_j

3820----==--=-- ( - -middot bull __ - ---~----= --- ---- -- -- ------------ _______ ltJ~~ A I --- - ---- - -_ - _ --_--~-- -_ - --~co___--_--___-__----- f middot l - --- - --- - __- ---_-- -- ~ middot -middot __ J L--~ cmiddot

---- -- middot--~-- -- -- - _ _-- - - ~

--- - middot- - -C-_--- - -~ rmiddot middot) _- ~middot~ I--- ----~deg- -- -- C _-_--_- __ __ _ ___ _--_--~ __---- ~---lt lt ltgt _~-__gt_ ~~-- i~ - UR ---- -------- - ----~ --lt I middot- B ~----- Qll __ ~----- _ CI____ ~ __ --- ---middotir ~ - 3770

1-I- 3770 () U)( - -- -- 0~ - j _j ______- ==--=--_ --___ - ---w lt(

w~

~gt middot1 r-

0

3720 3720

middotmiddotmiddot J ~ ) ~l - ~ ~

~ tmiddot~----_7~~ p__ D2)t~~

NSI I(--_ Imiddot- 3670 3670

275 325 375 425 475 525 575

SOUTH

I I I I I I O 1 0 20 JO 40 50

(KM)

SCAQS UPPER-AIR WIND MONITORING SITES

02-03 SEPTEMBER 1987

~ I

t

NORTH CM61yenRS

----- I uic middot I Ibull 0 z_ ~ p

-_- - - - _ - middot-~-_ ------- VCRV

820 --- -- -- I W-gtER --- _ ---- --- ~ ) - -_ - I _ _ - _ --- _ _ _ -_ bull _____ _ _ - -- -- -- _ --_ ----~ HESP 3 -- ME -- -middot bull - --- _ -- _ TE - -- __ _-- - c----~middot - r

PIRlb -_1 N bull--~ _ --lt~_- - _ _ ---------- - -MISS_ _--- ___ bull---=-- _llE ~ ~ j lt) hlt---- F-~~--_ ----1A-_c=_--middot llE ----_ ()

-middot SIM ~ICAN llE RIALSNBO llE ~J -------~~ tllE ------TmiddotllE~I ~ES BURR~ AZ~ ~-~r- RD ____-- -- ~ bull FIIISA l- bull -~~

( )l__ -middot middot c(~HA w~~N ~tfJ1 -- -- ~ ~ 1

_

375

~) middot middot ---lt -__ lt_ ___ ___ -i____) C-middotdeg - - -

- -- J_ _) lllt

_ =- ) - -

L- ~~- Iii - ~ _________

-~ 0 I -- (

SI lllt

E

NT CM58V

( j gtT__~_____)___ -- ~l- ) (

middotmiddot-- -_ bull _ ~- () ~

I --J vlt__ ltgt

--- --------- ~---------- C -

_

~(__ f - -- ~---middot)1 ~

t ~ I

I- I- ~

3720

ANAC Wo~ middot -~- lt_)

44

PERI ) ~ tlo

25 R~ ~~ANAH _i~~MN ~~-w--- ~ _ 00 )

T middot I BUllE I -eM62 7 llE

-- - ~

~ 425

SOUTH

20

(KM)

SCAQS SURFACE WIND MONITORING SITES 11 -13 NOVEMBER 1987

(_ (___JCcS ~~)

bull ------------~ - - ( ~ r-------------- Dbull ---

J

575 3670

1SV3 0 0 0 0 N r-- N r-- a) r-- r-- co I I) I) I)

I bull bull I I

I I f1 1 ~~ I- I I-)

0 l)

l)

w I-l)

L)

z Ct 0 I-

z 0 2

0 r-- z OJ

m3 Ct a lt( w0

l() mI Ct 2

~ ww Q_ gt

0 - Q_ 0 I) 2 ) z ~ ___0

N (I) n a

0 lt(- u ()

0

n 0 z I)

N +

lf) r-- I)

- I I I

i I

I 0

~ -L

w

i

~ LL

I)

C-1

+

l() r-- I)

1S3M

A-12

-~

igt I _

l)

CM~RS 275 325 375

NORTH 425 475 525 575

_J- I bullbullbullbullbullbull ~ I bullbullbullbullbullbullbull bull I middot bull -gt-----middot bullbullbull 3 )--- ____j lt c----- -_ -- gt _ ___ ----- t__ l___

-- ------- LANC l ~ ---------- __ ) -- __ ~ I ) ~ - -=~__ I -~middotmiddot- - bull middot bull bull bull lt lt Cl --- ------ ____ -~ -

38201-- ------_- ) ) -- _ ---- -- -- -- - () - --------- I --- -~-lt~~ (middot__ TEME ) --gt ~_ ----- - middot--- --- vamp c~ (~ 0~ ___- --- gtIpound - - - - ---- -- - - -- _ - - ~ ---- - - - ------------- 5SI -middot PIRltgt ----~ ( -middot _ - -- --- - --- ) HESP --------~ ltgt

___ __bull_rbull ~--------~-___ -- ___ ----gt--=- bull~ ~~ I - ---__-=---- ----

VENt CM58 _ sti --~~ ~ lt_ -~-- middot_~-~~ r-~- --middot) ~~) _J MISS-~~-- ___-_ __)~ -- ---( C

- --RESpound BUR~--==-=~----r~---_-__- ~- - ~ _- ~ -1 -

3770 I- ANAC

J I )l( ~- ~-- - i middot ----middot -X--Ret-----_~ -~

___ ( - -middot ~SA AZ~ ~ o j -------=--------~--gt~-- dampHA ~~~f __ SNBO ~~ -~

ZUMA MALI LA w~M -jmiddot I R~J ~-s ~__ )() w ~

3720

8U25

VE VERN PICO _ middotyHIN RIVRyen ( ~----- -~ CM44 -~ ~- ----- ~ C WT ~NN Wt-0HB -NQRC - middot- ~NN-a-~~ _ ~ co~ __ -- ( ~ ~

RVIJO ~ilff AN~ gt cmiddotbull yen 0 (~~ p LASAl I bull- - PERI ~ ) ~

rJ]~~_Y)~N ) (_ --

_T -cJ62~-~

~ 5j(bull 1) ~Jso

l -~

- 1 J) -~ ~7~~t~~

3820

3770 1-() lt( w

3720

I I I I I I I I I I I I I I I I I I I I I I367r I 367075

I 325 375 425 475 525 575

SOUTH

I 0

I 10

I 20

I 30

I 40

I 50

(KM)

SCAQS SURFACE WIND MONITORING SITES

03 DECEMBER 1987

NORTH 275 325 375 425 475 525 575

I I ) gt ~ _YC) ~ ~ I ( o c_ _------- (

___ middot i I 97 ~___ _ --1 cbull-- - - C -___J -- lt ( ) - - - - middotmiddot ~ l _ ----_J

I ---middot ___ __ middotmiddot-_ 1 -~ __J ) bull- middotbull_ -

3820 ------~- I -~middot --- _ middot--- -------~

C - ~ (___ _ 1 ) -- _ - - - gt _ bull f-_- --- r ------~__ -----I --- ) I ~ -~ gt ----- - --- -- ~-_]) c_middotI 38201-_~~_ l _ --- - (-- ~ f ~ I~_ - middot - middot -middotgt- -- -_ -- middot_ _- 1 L- l _- -

~----- l -- middot middot ~- middot-_ _- - middot middotmiddot--gt---~--t~~)-1 bull lt_ _ _ bull middot bull - middot- ~ ~0---~ (c ~ I ~

_ I - bull -~~~--gt~~~-~~ bullS- _~_ l ~~1t~~_~(~ t 3770 I -- -- middot __ - I S____ ( 3770

I- 1-() ()

gt w - I __~sect~- ---ONT lt(

w

tgt

f-- I

~

middot - middotI

-

L~i--

37203720 c_J - (_cS) l -~~

NSI

367~~51 3~5 13~51 14~5 I I I 14~51 is~s s~s 3670

SOUTH

I I I I I I 0 10 20 30 40 50

(KM)

fJ~

SCAOS UPPER-AIR WIND MONITORING SITES I 03 DECEMBER 1987 r~J

NORTH CM~RS 275 325 375 425 475 525 575

middot middot ___ I middot 1 I )l ___ QO --middot - v_ (-- - LANC middot ~ C) lt --bull_ I -- -- bull _ ~ - ~-- ) -------_ -- - _~-- V --I 1 J --- - bull I -J- ---middot - _ bull__ - vc i --- ltl

3820~-----=cc~ I middot -middot - middot - _ ___ -- - 1t ~~------- middot - ___) - - middot -

J-cgzot-- ~--- j 0 TEME _middot ---- --- -

-____ -- ---- _- j (

- -_ I -- --~ _JI( ---- bull bull-- llf -middotmiddot l - -- bull _middot_ middot I --- -- middot CM58

_- 1 -- middot - middot~-~ - -~__ ___ ---~-~_--__~----------D J-~J~bull A HESP

middot OJ11 r P1R1tc lt--~i_-_~-~- ~c~_r--~-~_--_~r-=-~~~~--~ _ --~ --lt__~~~~- CSI ~ -~ --- ---- middotmiddot - ---- - _ ~ r ) J

)gt SIMI -MIS5-X ~Cgt~---- middot-cemiddot middot ____~ ~ middot~ l~fu__ suRlfiI_middot- -tk~- flAf SNBO __ middot ~-~ l 3770 _ 377ob -- ~ PJIISA AZ ~JIily~ _- RDL ___ bull ( C t-shy-- -~ I ----- ~HA 71lt V)tn ANAC ~---- CE~ WALflHIN RIVR ----- ~ w

w ~ LA PICO - CM44 - T -~ ~ ZUMA MALI VEN middotbull _ -bulltRc __ ~ ~lt~~7-

N WuHB _~-- -middot bull ) _J~N ~ -- ~ 0 - ) ~ I ltgt -_middot PERI bull I- ( _

V 8U25~ 3720 3720

WJlt~ ( ~ ~ ) 1 i

~ I I I I I I I I I I I I I I I I I I I I I367r I bull I I 3670

75 325 375 425 475 525 575 SOUTH

I I I I I I 0 10 20 30 40 50

(KM)

-~ ~

SCAQS SURFACE WIND MONITORING SITES 10-11 DECEMBER 1987

NORTH 325 375 425 475 525 575275

-- ----_ lt_~- c--- - ~ ~ _ I I - ---~~c------ ) _ -middot - gt~-

3a2or ------__ lt- ) 1 middot--- -- __ - ~bull =-------------- - r---_ ___ - bull- ---- I I ~ ~-- jc- I bull - - (bull I --- middot middotmiddot - ~ -middot - -- ~ - 3820 -~- bull - middot - - ~-_ ~- _ middot- n

(

- 0 lt_( ~_lt- ~-~~- middotmiddot) ---- ()_ (---- --

--

____ middot

-middot

I

f----- (-J 1r---J~ --~ - middotlt ltbullI I ~__---__ ~-

l B~--- _c_ gt-- lt gt- (- - - j 1--_~--~--l~ -- -- --- )l

-- - --~---- middotc middot=-~-~- (~ L ----- -- --middot - -- - - -bull --- - - c-) ~ J _ -- - ---- - ) ) ltl

37703770 EMLgt middotorrmiddotbull __ ) ~~~~ofmiddot - -- __s=__I- - - ~__- ( ~ __ )---__ Ishy

V) ~ ~- lt(w ~ ---- --~ - w if)

-~2_~middot) ~~at~s t I

I-

deg

FUUA

i () ~--J)llC~lt I

3720 3720

~ltl__ (_)i~

~ NSI

367~~51 I I I I I I I 13~51 I I I I I I I 13~51 I I I I I I I 14~51 I I I I I I 14~51 I I I I I I r--- I5~51 1 I T I I I I I 5~51 I I I I 36 70

SOUTH

I I I I I I 0 1 0 20 30 40 50

(KM)

SCAQS UPPER-AIR WIND MONITORING SITES

10-11 DECEMBER 1987

Appendix B

SCAQS DIAGNOSTIC WIND ANALYSES (Six-hourly plots Levels 1 3 and S)

Summer Intensive Monitoring Periods

19 June 1987 24-25 June 1987 13-15 July 1987 27-29 August 1987 2-3 September 1987

Autumn Intensive Monitoring Periods

11-13 November 1987 3 December 1987 10-11 December 1987

Page

B-1 B-13 B-37 B-73 B-109

B-133 B-169 B-181

9106103

Summer Intensive Monitoring Periods

9106103

19 June 1987

9106103

1bullbull-lil

1SV3

I I lshy Ishyo )

0 0 z ()

IO N IO

I()

N -st-

1S3M

-- l1

l~ i --

0 z 3

---

2 0

_J w cjr----_J CD

0 l() z

I- =)lt( 7

f) 0)

0 -- i n 2 Ishy7

0 ~ ()N ____ gt a 0 20

3o 0 ~

0

B-1

1Sv3

( I l-et 0 z

(

lf) N st-

l() N ~

l()

N 0 t--

n

0 N_ n

U)

ON r-shy(0

n

1S3M

B-2

_

2 0 0 tlt)-__

tlt)

_j w 2jr-_j CX)

0 lf) I- z

lt( ~ IJ1 0)

0 _ 0 n 2 z 1-0 ~ N - 3 ~ 0 20

3o 0 Ov

-----

lSVJ

l)

----

l~3 O 0 w

w ll) (1

l)

0 0 z 3

I lshyet 0 z

--

2 0 0 0

-

LO

w ~

GJ r----~

u 0 z

OJ

I- gt lt( J

mif)

00 ---shyI) 2 z I-0 i l) N -- 3 (1

0 2 0 3 0 0 ~ 0

lSJM

B-3

1SV3

- V1 --

~5 O 0

E - w

w Ul_ 0

V1 0 0

z ~

I I lshy I-et =gt0 0Z V1

-

2 0

J wr--CJ OJ J z0

Ul I- =gt lt( ~ V1 -

0 - n 2 0 z 1-() 0 ~ N __ 3 0

0 2038 0

0

U)

l

lO N v

0 N agt n

0

r--n

0 N

0 N r-shyn

U)

U)

U) N U)

Ul

q--

Ill N q--

1S3M

B-4

td I

J1

~ ~~~~~ ~ -~~~~~ J - -~--Qf~J ~lf~ ~---~ ttt~~~~H~f~ ~ ~~lt~~~0 ~ - ltl-_t I~~~~~~-~~~~~ ~~ I _~1c j_~ L ~ (__1-T11__1 ~_-~_ ---~~~~~~ 11 - ~ +f--1~- ~-+--41-- 1-~- ~ ~ -rtt1-~--~~~~~~~ ~ ~ ~ ~ l t I J JI JI~- t _I i~~I~~~~~~

377itttttttt ~- - t I Jf --------_-- _ 70 ~ ttttttttttttti- fllJ~JI-~~_- ~~ _ =- ~~~- tn w - t t I I I_~- -V _ ~ -laquo___ _ - ltC 3 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ t t t t t I I I I JI~ JI JI ~~ I--~- ~ ~~~~~ w

H~HHHH~in+~l~Hnf5-I ~ ~~~~~~~~ ~ ~ ~ lliii it t I~t~ltt~rrrr~~~~ jl++it~~~t~

20-~~~~~~~~~J tttttttf ~~~~~~~~~~---~-~~~~~~~~~~~~~-amp~ ~ t t t t t t f f f I I I I ~ 1 J(-- _ --P ---~~~~~~~~ ~ ~ ~ ~ ~ ~ ~ ~ t t t t t t t t f f I I I I I ~ ~- j~J _ ~ ~ z~ ~ ~ ~ z l I+ nm~t ~ ~ ~ I I~Jt~-~- -~-__~~~ tr ti ~ ~ t t I t f f I I I I I I I - ~-r __ - ~~~~~~~ ~~~~ ~z11 ttt ffflllllIIII -~~---~~~~~~~~~~~ ~~~~ ~~ ttttft ttflltllllllll A~--~~~~~~~~ ~ ~ ~ ~ ~ ~ ~ t t t t t t t t t t t f I I I I I I I I I I I I I ---P~- ttttttttttttlllllllllllI -~--L~-~~~~~~~~~middot

367 70 ~75 325 375 425 475 525 575

SOUTH

1111111111111111I I I I I I 0 10 20 30 40 50 0 5 10 15

(KM) WIND SPEED (MS) i

NORTH 425 575

_ 414111fl-~bull __~) ff I -lt~i ~ + lJ Jmiddot-bull A fl t1 it bull- _I~--~---~----_---~_~~~~~~~11 t1

~~t 11 f + + diamsJ diams 1 )--t-_+ J~ I-(_ 1 1 ~t1 __

__ Lt l l t fL f_l - - +~~----~~---~___-+_~~~ J-t-t t---t-lt t t-t) LJ lt fl ~ -- t---f t tT~-- ~~ 1__t -t ti t_1 + l - -~-~-~-II~-- - ~~~-----~----t----~~~~~~_Efftt -- r1 ~J t l Lt t

fl

~ _ t_ - 11 _ _

Fi ru bulll=ti~ ~ ~ ~ ~1H1~~_~-~-~----~~~~~~~~~~

DWM WINOS AT LEVEL 3 (300M) 1000 PST 19JUN87

1Sv3

I I-shyCt 0 z

1S3M

B-6

0 II)

0 I)

-_2

0 ~ N -

0

0

-_

2 0 0 0 -

LO

_J

w r---CJ O) _J z I- gt ~~ if)

0 1--shyz V) ~ Q_

20 3 g0

NORTH 525 575

~~~__A -~___~~-

F- ~_--P~

~ ff~~-- - _ middot- ~~

_ bull bull bull bull bull

_ p

~L~k~tt ~ 1 t A middot1-t

~ r~ 1 11 1 __ bull bull --l t frac12Q2_

~ ~--r-J-+7L~

1--Ui

3770 _yen~AA- ---~ ~__~_ ~ K---r

eno tshylf)

w ~ ~ ~ lt( 3 I I_

- w

td I

-J

~~~~- ~ ~ ~~~ shy ~ ~ - shy

3720

~ ~~~ -~1~-nu~~~~-

~ -~ - ~_____A~~1~ ~ _~ ~~= ~~~_______2--- ~

720

~~~-~~~~~_ 9~tbullmiddot~qor~frac12

Y~poundpoundpoundpoundpoundpoundL1~~~~r~ ~ middot

375 425 475 525 575

SOUTH

I I I I I I 11 1111 1111 1 0 10 20 30 4-0 50 0 5 10 15

(KM) WIND SPEED (MS)

DWM WINDS AT LEVEL 1 ( 1 OM) 1600 PST 19JUN87

~

NORTH

Arlt~~~ ~L _ -rJ ll

_ I I I t

_t-z~~J ~i~ bull

i- ~~~ Ii ~~( trn

3770 I - bull bull bull bull bull bull bull iigtlaquo

--- bull bull bull _-

~fJ~ t-l-lltf[llJ- jf1 rr]I ~ ~~~ ~ss~810Ja2ot-~~1i lmiddot - 1 17- - -

-ltL

~ ~ 70 y ____~ tshy

l) ) _-y ____~w

w ~

~ -~--- - -- ~ 1 ~~~~ __ _ bull---bull laquo-___~ Y~~

___p~~__---A~_A 1 ~~td I ~----______A 14 1 ~

00 _-________________ ~ __~----~1~ -A________________--r__~~~ ~ ~ ~~~--~-~~~~-~---e--~ ____________~_________-~ h

3 7 20 t-_--~____- ~ _ _ ~~-_- _ _ _ _ ~___~~~r--~~___-K ~~ ~ -~-------~~~----~ ~ ~~__________~~~~~~~______-r_-A~-1--~~~ ~__________________----r~__~__~-Y~~-------__---A----r~ 1 ~ ~__~___________~ ~

367 tcrr~__~y--rrYlt-trltltltltltlaquo-ltltltltltlaquoltlt~~~ ---

9imiddot~75 325 375 -- -

1111 1111 11111 1 1 1

0 10 20 30 40 50 0 5 10 15 I I I I I I

(KM) WIND SPEED (MS)

DWM WINDS AT LEVEL 3 (300M)

1600 PST 19JUN87

NORTH

bl I

0

~________________A-4_gt~~~_____~~__________~A

A~altP_ ~~~_________--~_A 38 20 I--=-~~_~~___~~-_-~~_ -lt~ - ~_-~_A--1~ _

~~------ ~ gt-~ ti ~----~ ~ _~~~~ 0 ~ ~-i---~~411___ I~-~~ I~A-~~----~7A7~-

A A~---~~- ---~ ~ ~ -middot~~ 1-27 ~shyA_~ ~~~ Jl--__r-t~ ~ (K~_ - fl_

A ~I J111 I _ A - ~ _ T-~ v I 1 1 1 1 1 1 ~ 1 1 _ Ji J I~ f --_i__middot1(- ~ ~)( ~JJXZ - _ r ~ - _ )( _ II I 1 ~ 1 I - _~ _)~ ~~

= 1 II II 1 (~ ~--=-~ -7fJ~~~~tm~i I- 3770 Jir - I 11 I 71 (I) ~ ~111 ~

w ~--middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotbullbull bullbull ~~~11Zll~~11~ ~ ~~_~~~llllN~~ -~~ bull 11jh fi 1 1 II 1 1 1 1 1 1 1 1 1 1 1 1 1 I I 1 0i~~~ 1gtcJ~l~p~ ~~~ ~~~ ~rr1111

70 Ishy() lt( w

111111~~ 3720 i- 1 1 ~ ~

~1~I A-A~)I 1111AA _~l11~ 1

lllllll11IIIAII- ~II ~1~~__~~Ill~~~~~ l1_ 1~~~~~~lll~~~~1 llllflfAll-)lllllllll1~~~~~

A I I I I I 1 I I I I 3670

275 325 375 425 575

SOUTH

I I I I I I 1111111111111111 0 1 0 20 30 40 50 0 5 10 15

(KM) WIND SPEED (MS)

DWM WINDS AT LEVEL 5 ( 1 OOOM) 1600 PST 19JUN87

~

A A A

1Sv3

(

1S3M

B-10

()

l ~

---u) 2 __ O 0 ~ w

w It) Q_

()

0 0 z 3

0 It)

~

0 ---I) 2 ~0N _

0

0

---2 0 __

_J

w r--- GJ OJ _J z __ )

~~ () r-

0 __ z ()3 Q_

~o 3~ ON

NORTH

middot-~~) K~xJ~ middot_1~ ~ 71( I IJ ~JI

~A I 1 ~~

liii[i~~ Hf~-~~~=~T-- ----- --=~~g~g~bull11ft _ ~~~ -1-x~~~ ~~~~-~~~--~-~---~ --~ t ~t~ -~1~~ -- ----

-lt J 1middot~~ __---~__

3 770 ~ ~~ --_tn ---------~~ 1 ~____~ _ ___~ -w bull Y ___~~~ (Al _~ _ ~

-- bull _ _ _ bull bull bull bull~___1 1I J~ _~

~- YI J _L ~~ ~~ YJll~E~

td _____-___ ____ __ 1 ~xgtx2-I ____________~__-A (~~~~ _______~~2-1 y~~- ___~__________~ ~

3 7 20 I-___~~__~~ Y --~ ~__ I _ - - _

~_---A~ ~---__~~~~~--_____~ ~ ~_____A~ y ~ ~___-__________~~ ~ -

~__-_______-yen_2 ~ ~ ~~_______~ ~

1 367~ 75 325 375 425

SOUTH

1111 1111 1111I I I I I I 1 1 1 0 10 20 30 40 50 0 5 10 15

(KM) WIND SPEED (MS)

DWM WINDS AT LEVEL 3 (300M)

2200 PST 19JUN87

~-

~ - - ---

NORTH 275

___ -~-___

- ~ I o_ ltAbull~-P- bull bull -P diams bull~--~~~~--- --- ~ ~ ti ~ ~sbull3820 ~=-J~_~~middotmiddotmiddot~~~--_~_=- =~_~c s~ ~3~

~~- bullbull~~bull~~~~~~ - bull -~~bull ~ v i-_ --- __-_ ~----~

~- st-~~1 17-~__4 ~ _~ ~-~-raquo~~~ -f _ _ bull bull bull bull~ bull bull-__-v 4 t ~ ~v ~- Jl_~ ~--z~~=~s~~~~Mil

-- _ ~ frac12--~~- -=~~ ~~l~1~l~tzi9~J t~ 1 1 1 1 1 1 ~-bull ~~___- v q (If V pp p I l_77rtfl _

3770 ~ ~ ---- I h1yenzi 1V-r-() bull bull ~ ~~~~~ w ~ bull ~ _ I JI J(_ )-II101-1 3 ~~A~~~XI IIJ~~~

~ f A I~ I I I I~--L -

tl ~1111111 ~K11~~llll~i~~~~I ~rr ~~ ~xgt~~~t---

N ~I I II)(01~ ~ ~ ~~~ 1~Y~lt~~~~~~~~ ~~~~

3720 iYY11Alllll1lIA~~~~ ~~---Y~---_ _ _ - ~ bullbull - - _

~rrll1IIIIIIIAAAA__

___________~~~AAAA~_~ ______________~~~~KAKAA1~~ lllllllllll~AAA1f~~

_~~

3670 t1i11 i i 1 i i 11111 i i i i -i i [ 111111-111 ~ ~ 11 ~ i I t 1 bull rm r~ij e =~~ raquo-il3t ~ 275 325 375 425

SOUTH

1111 111111 11111 1I I I I I I 0 1 0 20 30 40 50 0 5 10 15

(KM) WIND SPEED (MS)

DWM WINDS AT LEVEL 5 ( 1 OOOM) 2200 PST 19JUN87

24-25 June 1987

9106103

1SV3

1S3M

0 w w Q_ (J1

0 z 3

I f-shy=J 0 (J1

-_

2 0

--

_J w CJ f- _J OC)

0 U) z

f-shy )lt

J q-

(J1 N0 -_ 0

rlt) z rshyl)

N0 _ 3 Q_

0 20 3o 0 q-

0

B-13

lf)_ lf)

If) N If)

lf) r-shy~

I I-o 0 z lf)

~

lO

~

lf) N If)

(

pound bull d ~ bull 4 4 c_ q

1 4 r9middot-

0 N IX)

middot- t--bull ~Igt~

O ~f 4 fT amp)o(oj

4 ltI I~ ~ ~

0

o

middot a

~- v t rgt ( tgtj (~V~-1 f4

3 44 ~-~a4 V VM q -~~-q_4 ~4

_ ~ )

p- ~~t1~1 middot V II J ~ ~ )I 1 11 f ir -~~1I ~

II P P P Igt 4 ~(Iigt ~~ 1) IA

deg deg 4 4 ~ A -1 r 1 1-Y]~t J rz ~

fl r ~ Igt I~y ~ -- -- - 4 ~r___amp V P11 iP Igt P Igt p ~ -0

~bull 7~tpmiddot~P Pf P Ptl middot~ ~ q p Igt 1gt p ~ t b (r 4 P - 4---f ~ ~ bV ltI

ltI ~ ~ I p 6(~ d-_j b d p (4- 4 ~ 1 p Igt 1gt Igt - b ti

)4- a 4_) q V Igt p Igt o

lt(___~ ~- V fgt ~ 111 t Igt -4

~ ~ Igt r p Igt

~ ~ 1 h1

V (I Ilt v middot

t y-

t

t

p

P t P t P ~

0 0N - IX) n

1SV3 0 0 0r-shy N r-shy co

lf) lf)

If) N If)

~ - t bull~--~11n ~ -~bullmiddot t~ lt middot___

o_ ~ ~ ~

0 bull t bull 4_4 4 4IIgt

c 0----~ u c Igt( o ~ c ~A ~ 0 - A 4 4 ~ 1 q

o bull o- -~ 1gt 1gt ~ y4 -~J middot)bullmiddot ~ ~ ~ p 0- 1---f t-~ 1 ~ 4 4 o co u gt)O- eyti ~ ~l 9 -Y P- - I a c 1 oM_il_q A p- p

4 ~ ~-M f p

I 4

~ rv ~--~middot

tJmiddot bull P II f t )I~ bull V ct_~ V V V t P- ~ Igt t middot f lft V VJi P- P- fgt IIgt ~ _ J1 bull bull bull

1 v II p _bull ( ( ir ti- f Igt bull

j ~ r f -~-1t __

_I ltC_t--q_) v -~-ampgt

Q middot--- ~ - t ~ b

II

bull ~

bull bull

diams

1 bull ~ ~~ ~ ~ b b b lgt bull

-- b bull bull bull~4q~ lgtPlgt-4-~_tbblgt

Jraquo P P ~ q 11- 11- b b b b b

P Igt P q bull b b b b b b b b bull

bull bull Igt 4 4 fl ~ b b b b b b b b b bull bull Igt Igt ~ 4 q ~ b _ b b b b b b bull

P bull Igt Igt -4 ltI 9 b b b b b b b b

p bull - Igt Igt 4 lt1 _ b b b b b bull t bull bull Igt ~ 4 b bull b b b b b b bull p Igt Igt Igt bull 9 b b b b b b b b bull P p ~ ~ A 4 q - _ b b b

1S3M

figt j)

~ ~ bull

bull bull bull bull bull bull bull bull bull bull

bull bull bull bull middot bull middot

bull bull ~ ~ 9 9bull bull bull bull bull bull bull bull bull

bull ~ bull bull _ bull bull _ bull bull

~

If) N t

lf) r--11

~

If)

~

0 ONN - co n ~

I fshy=i 0 V)

- 2 0 0 n -

n _j w cjf-

0 l()

0 ~

0N

0

0

---shy2 ~ _

_j OC)

I- z lt( =i

J Vgtv 0N z f-

3 ~ 20 3o 0-t

B-14

---

1S13 0 0 0 N N r--shyltIO r--shy co I) n I)

I() l1 r--shy -U

E~i0 z

U N I() 3

I fshy)

0 U) l1 N -t

--_

2 0 0 0

-

LO

_J w CJf----_J OJ

0 U) z

f- )lt( l1-r ON z f-

3 ~ 0 20

50 U) 0 -sr

0 ON r--shy r--shy

r--shy (0

n I)

1S3M

B-15

lSV3 0 0 0_ N - _ - ~ I)

_ ()

(~i

0 z

If) If)N NIf) 3It)

I Il- I-a =gt0 0z If) If)()

N Nst- st-

_

2 0

--

- w I--- OC)Cj z0 -

I) )I- Jlt( --t-

N() 0 I-z ()

3 o_

0 0 2 0

~ 0 00( 0 0 0-N N _111) r-- 1)

1S3M

B-16

lSVJ 0 0 0 0 N r-shy N r-shy_ _agt lO n n n n

() r-shyU)

u) l() N N u) l()

I I lshy Ishyo )

0 0 z U1 l) N

l() r--_ 2 0 0 n -

n _j

w I GJ OC)

0 _j z

lt) I- ) lt( ~ lf) N 0 1-z l)

3 Q_

0 Lo38 0

0 0 0 0 _N N _ _(() n n n

lSJM

B-17

1SV3 0 0 0 0- -N N- -crJ co I) I) I)

lO II)- - U) It)

U) II) N N lO lO

lO- st

I l-o 0 z U)

N

~

I I-=gt 0 l)

st st

--_ It) - ~ I) 0

0 0 ___

lf)

J w I-

It) N I)

0 II)

~ OC) J z I- =gt lt - lf) N 0 1-z l)

~ 0

0

0

~ 0

38 0

N IIJ I)

- - I)

1S3M

B-18

middot~ bullmiddot I

1Si3 0 0 0 0 N r-shy N r-shya) r-shy r-- co I) I) 1) I)

--_

E~i l)

0 z 3

I r-0 0 z

0 I(

0 --_ n 2 0 ~ N --

0

0

1S3M

B-19

---

_J

w r----2i OC) _J z I- lt( ~ V1 N 0 1-z V)

3n 20 3 iE 0

---- --_

NORTH

-_ t t t f t A +1 t lt-1--JJ-middot+J

r ft_f_frac14 fffftl middotmiddotbull f_ n- ~ tn

ttt1I1~ ~ ~ ~ ~f --H 1--- ~ -

rJj ----~ ~ ~--- ~ l j bull bull - bull bull Ir - ---_- --- --~~~~~I-~~~ ~ bull ~ ~ rt

- - ~rnlit ~~~~ ~~~~ ~~ ~~~~~~~ - _~-~~ ~~~~~-=~~~~~~~-gt

3820

bl I

N 0

tshy() w 3 fftfftlll

ffltlIJ11111~11- I I I J ~-- - ~~~~11J~ -~

3720 - I I JI J ~~~~~~~--------~~ diams bull + I J J _~ 4 bull I I I J ___ ~~~~-s---~~IJ-bullbullbullbullbullbull ~__middot~middotmiddotmiddotmiddotmiddot~~~~~E-e~~

4flA~~middot~middotmiddotmiddotmiddotmiddot~~~~~ ~--_---~- ~~ 1

367~7i51bull1bull11bull1 111 13251777JT7777~7777 I I I 14251

--~--~- ~~_-~-----~ ~~~J

--~-_--~- 1- I 1 I

~ 1lJ

I I I I I I 14751 I I I I I I I s~sl1 I I I 1575 I I

3770 tshy() lt( w

3720

13670

SOUTH

I 0

I 10

I I 20 30

(KM)

I 40

I 50

lllI 0 5 10 15

WIND SPEED (MS)

DWM WINDS AT LEVEL 3 1600 PST 24JUN87

(300M)

lSgt3 0 0 r--shy N r--shy r--shyt)

It r---1)

lO ---- N bull ~~ r lO ~ oe--- I

~~~~ t z~_-----~8 ~ ~~~2~-~----=---~~ t ~~----~~ -frac14~~~--

~v -~ 1 ~ - ~ ~~ ~~~-~~N~~~~~~~~~~~

tf~ ~ ~ -~~~~~imiddot~~~~~ ~~ ~~

_gt~~ middot1 ~ r2 l~ --~- I _Ct _ V I - ftV

0 ~ ~~- X

z~ HF bullIh IJ i It ti ~ 1 IJtl ~ ~ j t ~1

~ ~ 1~1

1 r ~

)

r r~P t t _r )r f

~ 1+ t t t f t ti ~ 1 lt ~ diams t f J t H ff 1 1I I I It diams diams Vf- 1 f f ~ f I 11

(____ t i(_ bullbull ~ bull ~ I r fr1)L_lt--~~vi 1t1J U1 -~- middot~ 1 t) ~ bull ~ bull ~ bull 1 1 f f f I t ~ - ( ~ ~(~ (_ ~ b ~ - ~ bull f 1 f f ~ bull

j ~r~--~ ~ _ ~ ~ ~ l 6 bull bull 4 t ft It _ - __ _ - J ~ ~ ~ t bullbullbullbull t - _ ~--~_____

__ I deg j ~ ~ b ~ _ Igt ~ _ _ ___ bull bull bull bull

~ ~ I ~ ~ ~ _ ~ _ _ _ __ - bull bull bullf

~ bull ~ ~ 4

I -- I bullbullbullbullbull

~~~ ~

1 bull ~

-- V)

LO lshy -----_ lf)

l- w w

=~ It) 0 l)

It)

2= )

0

~

l() 9 __~----- lf)r--- --------J______--L--J-~J-J-______~______~~~___________________________ r---N O O O ON

0 0 z 3

--

2 0 0 0 ----

LO

_j

w I--GJ Cl)

0 _j z lf) )I-

lt( ~ ~

lf) N 0 -- 0 I-n 2 Zlf) ~0 3 0

N ---

0 20 3 g0 -

0

N r- N I-~ I- I- ~ n n n n

1S3M

B-21

1Sv3

U) N U)

lJ) N n

0 N (0 I)

0 r-shyr-shyI)

0 N

I)

It) N It)

U1 r--1)

1S3M

B-22

0 w w (L Vgt

0 z ~

---2 0 __

_j

w _ ~ OC)

0 _j z U1 I- )

lt~ NVgt

0 --shy 0 1-t) 2 z () 0 ~ ~ (LN -middot -

0 20 ~~

0 ON

bull bull bull bull bull

1Sf3 0 0 0 0 N N CX) ID I) I) li li

~ n

~ n

tf) ~

A i -02middot a_ ~ r ____ Igt middotjmiddot i -1 ~ i r middot-~-----------------gt IJ IJ bull 1 j I ------~-----------------

_ IA_Jyen ~ ~ J ~ yen ----~---------------------

~ II --~_a IIgt 11gt Igt middot~ I bull ~ ~ ~ ~

1(1gt i i _JI J Iibull I - IJ Ji H j

bull bull I( --- j J t ~o ~- -- -J I I i J diams bull1bull bull bull i ~ _I I I I J 1 ~~- ~ 11 J l J diams -~ J) bull ~ I- t t ~ ( l f middott J bull 1_~1 ~ IJ II- I ( II ~ j t t bull)

bull t )bull ~) i ~bull bull __ __ I 1gt J I I I middot----- - ~ _ ~ Ji (Ji_ If ~ --~ bull i f l-Ji ~ p VIMyen I ~ middot1 bull I Ibull lt_~ ~ p1 )

I

__________________

~ 4 V ltI - - - -

~) i t --- -- yen 4 yen -- Iii 1yen yen JY yen II

I ~1 Ja a Igt- yen yen yen yen yen yen yenyenIiyen II II

a Igt bull ~ 111) (I J I JY yen tY yen yen II( ltf ~ I~) JY yen liY yen yen yen yen yen yen yen II II II ~ ~(II ~ yen yen yen r yen 1r yen yen yen It Ill

p cl

p 4 ampgt P JI r Igt bull

bull JJ Igt II

- ~ 11- bull

- -

+ _ _ _ __ __ +- ____

- - ----4

bull bull Igt Igt Igt

11 bull bull bull bull

bull bull It

IJ Igt bull t P

Igt bull t

- II Igt fl t middot~~-~~~t_yenyen yenyenyenyenyenyenyenyen

I ~J )Igt) 1 bull yen yen ~yen yen yen yen yen r - yen If II II Igt - I 1 J bull bullI _ _ 1 ~ ~ 1K )

bull -

bull bull II ~ Igt- J 6 bull I 11

fl) 1gt 11 Ill

bull t t fl

~

U1 r- n

~ n

_________o__JJ=---=-------oti~~e-~e11JEJEolELE-ILILLEJLlLu~uJ

l~

0 tf)

~ 0 n

0 N

0

0

- Vl ~ 2 ---

0 w w CL V1

0 z 3

-

2 y --

-

2 0 0 tlt) --

n _J w f-~ OC)

_J z gt

I- Jlt( q-

NVl bull) I-z Vl -~ CL

02 0 3 N 0 NIf)

ONN I N ro r- (0

n n n I)

1S3M

B-23

17z-g

WEST u u u ~ ~ ~ N ~ N

NO N~ 0~0

7J ~ () z -I 0 N (I)

~ )gt c_ -I C zr co ~ -J rT7

r (Jl

-- __ 0 0 0 s _

--_ 7 ~ --

~ z

~-0 0

--s (I) ___

0

0

N o (A 0

t ()1 0

oj(JI

-0

-()1

0 0 0 N -J

A I q bull if ~ ii ii ii I ii if 1 i J (JI

Ab4llltli ~~144

bull~~bull~1111111 11~1middot)1i~~~1 ~4gt~1111111~ II~ - bullbull~Agt~lll11 IIIAII tbull ~4-4~~~III IIll~ I ~14 4 - ~ bull i ~bull-ttt1 111111 I I 1-~ bullbullbullbullbull gt q bullbullbullbull I t I I I I I 4 I I I I I I I 1_ J~ I

4~ A - middot~~lll111I IIll 1 I 4 -1~~ l~ gt1llllllI 1l111 -~~ I N

tn()16 -1 Igt Igt I I l1I v I 7----(Yi ti mbull1-t

~Plgtlt111 VIII ii l middot~1111~~0~ I l~lll~310bullbull I i~W~ffi 1~~~~6~~~ I J~ 1~~~rw 11~~~1~ ~l~~t ~ i 11~~~~~~~ ~~f)~t~~I I~tl -1

~ --J ()1 l 111~1JV1 ~~~1~ I Ill tniz~i~~~~~~ ~~~~ 7 ~K -~~iii~~~~~~~~ il~~~~~~~ 1~~1~~~

middot1 middot1 middot1 middot1 middot1 middot1 middot1 middot1 middot middot1 middot1 middot1 I I I I vr )Igt(_ I II I I~~~~t~ 21~~~r~~~~~v111l I ~ II I -- I~ J(( I I II J l l l Cl ~ I ~ ~ ~ J J I I I yen - - bullbullJ_~ f yen ~ I IJ t I ti

diams J J J I I - ~ - ~ l1 yen -1) I I( t I ~ N J J J J 1- ur~ ~ - Jf1( -I) I I I ti I I j~

() UI diams Mi r)r yen fir_~~ bulll1t) JI 1 I middot i - (JI0 ~ nmiddotmiddotJ jmiddot-1 I I I f ~j--1J ~ __ middot gt C ~ J I f I 1 ltH I fl 1 ti I middotr- I I-I ~ f bull t t l )1j - _ I

t J4J-fbullt t ~ ii middotlfli ii~) - ~bullmiddotttM i f bull bull1 rI-Ku bull bull bull _ middot-~-J_J middot t +imiddot i t t ~ t ( ~ middot(~ I J bull Vf I r1- ~ j~fmiddot + r bull(~t t bullbull_t- J J ~) J ~ Igt

+ __ middot + V+ bull bull ti+ bull + -fi J i bull bull ~ f --- ~ ~ t Li bull bull t ++ diams + t bull +++ + bull ~ __Vbull ~ it 4 ~ i ()1 ~ 1 bullbull diams diams diams diams ++ ++ bull t 1 fA middot_ -----Y 4 ~ tn

~ ~bull t bull + diams + bull diams +++t + bull A VJ ~ bull bull ~ -o middot ~- bull t bull diams diams diams + ~i4_ ~ ~ ~

11 -~ 1 1 1 1 ~t t diams t t ft(middot-- f g a PA

--middott 4 -4 y 1 1 1 )f7~ V g n t A ~ ~bull a~ 4 1 1 ( V P q 1 bull A ~ V Y ~-- 4 I Cl oCl 4 A A ~tW --~- ~middot -)bull ~iliJ bull1bull

bull It t-- ti __ __ ~ (~w ~ ()1UI I bullbull bullrmiddot -~)fl l~~~ ) I A IIbull N~L~ r ~~~-ff~ --bull--1) 4 4 bull ()1

~ 14 ~ bull f 4 AA 4~ bull

44( )A - ~

- ti~ f 4 ~ 4 4 4 A bull ~ i

ti ti fl 1 4 tn llflfl44 4 -()1

~ ()1 ti ti fl 4 4 _ 4 bull fl _ 4 ~ ~

~ bull t~ - - I - 1 T T fJifrac12 1f 1~ fl t [ 1 4 bull bull ~ ltt ~4 ~~~11 l~~Nfl---~ ~~ bull ~t144

1 -middot I I f I ~ fl ti ti- Imiddot tJ 1-0 I 14

z o 0 -I

I

Y

)

u u u u 0) ~ ~ ~ ~ N ~ N 0 0 0 0

EAST

1S13

0 z 3

r r I-shy Ishyer gt 0 0 z ()

--_

2 0

--

___J

w CJ r----1 (lJ

0 l() z

Ishy gtlt J LO() N0

z Ishy()

3 0

0 20 3o 0 tj--

0

1S3M

0 w w 0 ()

B-25

------

~ --- _

NORTH 275 325 375 425 475 525 575

dJ 41 l ll~I tgtI I lo fA Itgt IA IA lo 1 IA IQ 1q lq If lq I ~I 4

~ ~ IIJ ~A ltI P Igt Igt Igt P V V V Q q l_-~- q ~ ~ ~ x- ~ ~ Y t~ --___q)11 4 ltI v v v v v v v 1raquo 4 -q q -~ q ~ 1 a

~ 4 ~~_gt~) ) ~~-4_~ A ltI fl v v v v p A V yjq ~ _ _ ~bullbull --shy~~~ ~ I Cl11 ~ 4 v v v v P- deg 4 ~ -V t V ( ~ a bull-

~ 1 ~~~ v ~sa- fl V P -iLpound_~A--4 q Igt P ~ 4 a~ 4 38203820

- _1 fa bull bull ~ II 11 4 4 ltf V P deg q 9 p Igt Igt Igt Igt P~~ _ _ _ bull -

- ~_R middot ~ gt- P-~-j---s--middotp-~~--- Igt p ~(

-~~ _ amp- 4 --v--J ~--~ -__~---- ~~ t f ---~middot bullbull ~ ~ ~ ~ ~~bull--- bull~bull~~ 4 ~-deg ~--~ ~_v -~ _~raquo Wh~

bull bull bull bull ___ol bull bull --___~ ~ _ A~~-~- f_~-~ bull 1 ~bull -~ Igt bull

a l -4 bull bull~ bull ~ ~ bull frac12~ P- __ _middotmiddot11-~~j)6-_ U bull _ JIgt~ bull I- bull ft ~ 4_~~~~ 9 P lgt--1gt~~~_-~_----~~~ ~ bull ~ ~ ~ ~ --~-~- ~~-_middot ~~~A~ ~ 1111 ~- ----~~ -~- IIgt _)-

1111 1111 -( _-middot 4 ~ Po Igt q lgtmiddotv11t_ Igt Igt II

3770 ~ P 0 ~ - bull k ~ 1- 1-

() pound 4 4 ~ q -44 - bull bull Igt ~- t Igt 1 Igt () w Igt 7 lt

3 - bull It It It bull bull ~--~ p ~ Igt ~ w ~~ It It It bull ~ -_t _ ~ bull bull bull bull --~ Igt

deg

td bull ft bull v ~lt~ Igt Ci~ 4gt I ~ It bull bull ~ 6 -It Igt ~

N bull bull It It ~ ~ _ ~_) ~ ~ lr It ft ft ft ft ft ft Igt -II-~ j ~ fil- _ _ _ _ bull 11r 1o 1o It 111- bull ft ft ft ft ft i i f - ~ 3720 bull It bull ft ft ft ltt q -e- ~ ~ ~j1

4

middot bull bull bull It It ft It bull ~ ~ ~ bullmiddot ft ft ft ft ltt ft ltt ltI 1 ~ - It bull It ft ft It bull -0 ~ JIgt ]~

middotmiddotmiddotmiddotbullbull1rt1rtft11- p-bull- ~1frac121 1tftftlttltltPt1t fgtbullbull ~~- bullbull ~

It bullbullbullbull It ltt It It ltt It lrt lrt tgt - ~

~~~ItIt ItItIt 1t11tft lttlttftlttltlt ltt lt11t ~ lgtbullJgtIbullbull bull~bull bull~bull ~ 1 bull bull 3670 367~75 325 375 425 475 525 575

SOUTH

1111111111111111I I I t--l 0 10 20 30 40 50 0 5 10 15

(KM) WIND SPEED (MS)

DWM WINDS AT LEVEL 3 (300M) 400 PST 25JUN87

0 0 0 0 N r-shy N r-shya) r-shy r-- (0 I) I) 1) I)

-

LO r--1) -

l~ i ()

0 z 3

I ~ n 0 z I)

N st-

0 If)

0 - I) 2 0 ~ N -

0

0

1S3M

B-27

---_

2 0 0 0

-

If)

_J

w Cj l-_J OC)

z_ ) lt( J () L()

ON z~ 3~ 20 3oo+

0 0 0 N N C0 (0 I) ~ I)

U)

U)

U) U) N N It) U)

I I-=gt 0

U) V1 N st-

lO N I)

0 lO

0 __ I) 2 0 ~ N _

0

0

__ 2 0

--

_J

w l--Gj OC) _J z I- =gt lt( ~ V1 N 0 1-z V) 3 CL

20 3 g0

1S3M

B-28

I fshyCt 0 z

0 r-shyr-shyI)

0 N r-shyn

0 r-shyl) I)

lO r-shylO

lO N It)

lO N ltt-

--

tlt)

_j

w r---fu o) _J z f- ) lt( ~ f) N 0 1-Z Vgt3 (L

2 03g0

I fshy)

0 l)

0 lO

0 -- n 2 0 ~ N ---

0

0

1S3M

B-29

1S13

-l)~ O 0 w

deg CL w

l)l ~

0 0 z 3

I lshya 0 z

--_

2 0 0 0

--

LO

_j

w__cj IJ)

0 _j z lf I- )

lt ~ ~ V) N

I) 20 - 0 Z(f)

I-

0 ~ 3 CLN -

2 00 3 gOr-

0

1S3M

B-30

Ht 11Sittl

lS13 0 0 0 0 N N II) (0 n I) n n

-- ()

LO t-shy ~ lO

(~i0 z

lO N LO

3

I Ishygt 0

lO () N +

--

2 0

--

_j

wr-----CJ OJ

0 _j z lt) I- )

lt ~ V) N

0 -- 0 1-shyI) 2 z () 0 i 3 ClN --- --

0 28 3 ltD

lf 0~_____________________________~_______________________--- t-- 0 0 0 0 ClCI N N t-shyII) t-shy io n n n n

1S3M

B-31

==- ~-_

NORTH

I bull bull - -f I I bull ~bull - ~__~~~~ ~~~

flt~11 $~~~t=- ~~ ~ 4Aligt~ ~~~ ~~

3820 1~~~- 4 t 11 ~ ~- --~_____-- ~ ~ ~~ 3820 ~~~

~~-~~~~

3770 3770

l1 ()w l-

lllizz tshy

~ ZlZZl ~ ~~~~~~

to I -IllIll

w -I IIIll~N llllll2~~

-II I I J I-~1~ r~~~~ 3720r ~ J J UL 1~A~~ 3720

~IIJJJJJ2~ ~~~ 1 ~ fl I JI JI2~~ 1~~~V fl fl ~ JI J J ~ y ~- 1-f4~) ~ fl fl fl I JI J _A2 1~ V~

~flflflflJIJIJl~2 ~~JIw~ ~ ~jlfljlflJIJIJI~ ~JIJIJflfl~~~ ~ ~~fljlfljlJI~~~~ -

J67 t-V1111111----(((((1i I~laquo rlt~1 I I I I I I I IM m I I I I I I I ~ MJ670 g75 325 375 425 475 525 575

SOUTH

11111 11111 11111 1I I I I I I 0 10 20 30 40 50 middot 0 5 10 15

(KM) WIND SPEED (MS)

DWM WINDS AT LEVEL 3 (300M) 1600 PST 25JUN87

1

NORTH

bj I

w w

i~ -tt--t ~ + ~frac14 diams diams diams diams diams f f f J-~~~l -ff~_x~ diams t diams ---t diams + diams ff f J1ff~t t

-=tl-U +---- ~ ~ t-t- diams diams __ diams~ diams diams ~ J I I 1 1 f ~ -y- ~I -~~-1t-~ diams +__+ diams + ++--J_f 1 ~JJ-11 I --

38201- ~~-- ~ ~--t_-( 1 ~ r 1t + middot~-t_ bull ~-~ bull bull bullmiddot bull r-r 1 ~IiI 1 I ~Ji~l _-=pound-~If~_ It It It bull bull bull bull bull ~ diams f f---bullmiddot+ --I __- _ I I~ 1 f1

( - ~~~~ II lit It It 1tt Iii Iii~ -r-middot -- ___- l_f--1-l -L ~~1 1 ~ ~_( _ -~~ ~------~ 1t(~ bull (t ft- ~ middotv -11-fI 1 - t~~1 1 41

~ - ~-~- lit 1t lk_i -- -~--- -_ -j rf-- l1 r111 1 I It It~ It 1t 11i bull-~ ~- ~ t_bullbull_~ (middot ~--middottY~i_(4Xtl~4j_ middot It It ~ -- ---~----~----_I~)-~-~ -

~-It It ltt middot~- ~ -~-middot ~-pound1[_~ -~- - middot - deg - - It It l diams diams 4 middotbull--bull ~ ~ ~ diams 7 1---~~ -L_- - ~ t( I diams -( bull diams ~ ~ bull ~ -- JI JI Jf JI JI j(_ ~II deg It_ -~ ~- I I I J JI JI JI JI 1

~ J- ~llj ~- diamsdiams +II IllJI_ h~ ~ ~ ~ bull bull ~ JI J J J ~ 1 x111 X7 -~ ~ diamsdiams 4111 JJJIJJ~~~~~~~~1t diamsdiamsdiams ~111 JJIJJIJllllb~ h~~~hh middot ~ - diams diams bull I I J J I I I I JI JI I l1-14~frac12-~~~ji_ ~ + f 1 J I 1 I I I 1 ~ x~ f1 11 middot -

bull JI I I I11~bullY1iz 1 41 ~ f I J J J JI J J J J J I I I lmiddot ~ t JI JI JI 1 JI 1 1 JI J I I I It~ if~_~

It_ ~ 1 JI JI JI JI J J I I l-~ 4 t J J J J J J J JI JI I I l l deg ~~ _ ~ 1111JJIJIJIJIJIJIJIJI t JIJIJIJI~I JIJJIJIJI_

~- I t I I JJJIJIJIJIJII~~~~ t JIJJIJIJIJIIII ~~ JJ JIJIJlllll ~ t IJJIJIJl1 1 1 ~ ~~I 1 t 1 A 11111111 II I I I

325 375 425 475

SOUTH

I I I I I I 0 10 20 30 40 50

(KM)

525 575

1111 111 1111 10 5 10 15

WIND SPEED (MS)

3820

3770 1-() lt( w

3720

3670

DWM WINDS AT LEVEL 1600 PST 25JUN87

5 (1000M)

0 w w CL ()

0

1S13 0 0 0 N r-shy N agt r-shy r--t) I) 1)

I() It)- r-shyU) U)

z U) N It) 3

( I I lshy Ishyo ) 0 0z It)

~lgtIgt~() st- b tgt ~ q st

lgtbbtgtb

b b t t 0 b

N

Igt b t b b b A 6 ~ b b t b C A 4 d 4

ttCt4lt1-it e Igt b tgt tgt V q ltl ltl ltI ltl

ti- deg 1 41 9 q I I ltl q q

i V q ltl q q q q I l() r-shy AlgtV ~ tlt) ~t) -~~~q

~ bull amp ~

0 ~ ~

-qa ~ ~ 1gt1 111111

b-a~-V ltillilI

bull lt bull bull a ~ Igt ~ V V V q 4 __J

It It lgt a -a~ Igt C tgt V w r---(J OC)

bull ~ Igt t 4 bull bull bull bull U) 0 __J z middot 1gt44lt14

U) ) t) rshy J - -N

lt( l() ~ ~~ CI() ~ ~

~

0 Ishy bull bull bull diams 1 z ()~ bull ~ bull diams diams 1 CL3bull ~ ~

i b y ~bullbullTT r I I 0

~ bull bulldiams ~ ~ b b b b ~ bullbull diams T r r I U)______-11____________________________ _ 0

0 O O ON N r- N r--agt r-- _ ~ I) I) I) I)

1S3M

B-34

I

_ _ 3820r- ttr- t f T Jf-Lt If t t 1l-- -~ 1~ t t

NORTH

~bull 1414

~~-_ ~ ~ r-- - --~ ~ - - _ r-- fT W - - r V-V ff f

- t t t t f I~ _AAjAA~-r bull(- -J It ~---1 t ~~~-1-- 1 ( ~~ - J ~ t t i f 1 ~ A_A-yen~_~_ ~ ~ 1 ~ t t ~ t t middotmiddotkt f ~-~-~~-----~~-- ~ ~ ~ ___ll_ bull ~

t -r- _______~~----- r ~bullbull _ ~ ~ tt-~J--~c-~~ ~ 1~--______ bull

~ -t lJ-- f t-J-- r---~~---middot _-- ~~-- ~ bull bull ll~iti~~sect~~~ ~ bullbull~bullbull bull~~n~ bull bull bull n~ bull bull

A)~lfifrac12~~ ~III I --1

3770 l l L l L - - ~ -- ~ - 1 ~ - 770 tshy~ ~~~~~~~~~11 1 ~~=1~~- Ul

W 1lllll~I ~~~~1111~~ lt( w ~1~~1~1~~j~~~m ~~~~ ~ - ~

11 1111 1111~I I 11111111 --- middotE~

tj IIIIIIIII_ ~tI l) llllll_~_p ~1l1 1~A~~~A~~rrr-v

3720t- I I I J J J A__ r r 0 11J)~~~----~_~ppmiddot-~~f Jl~~~~~---~--~~r~-~~q~q ~1

I ~JI I~ A A-_

~JIJl~~~~~A-----A rrbullbull~f~df~ ~~JIJl~~~~A~~--~- fffdfdff

~~JIJI~~~~~~---- bullfbulldbullfdf~

~IJIJl~~~AA~ --middotmiddotmiddotmiddotmiddot~middotmiddot~~~ ~l~JIJIJl~~~Al~pp~~~~bullbullffffffdff X ~~~~JI~- A(- f bullbull P ~ ~~bull1f1q1f1f1f1f1f1d1bull

3670275 325 375

1111 1111 11111 1 1 1

0 10 20 30 4-0 50 0 5 10 15 I I I I I I i(KM) WIND SPEED (MS)

iDWM w1tms AT LEVEL 3 (300M) ir 2200 PST 25JUN87

0 If)

0 __ I) 2 0 ~ (j __

0

0

__ 2 0 0 0

__

LO

_J

w f- GJ ll) _J z I- ) lt( ~ () N 0 1-z () ~ Cl

20 ~~ ON

1S3M

B-36

Page 10: Nind Observations Collected during the Southern California ...

TABLE 1-2 SCAQS upper-air wind monitoring sites

UTM- UTM-Site Easting Northing

Identifier Location (km) (km)

BUR BurbankGlendalePasadena Airport 3748 37850

DAGG Daggett SCENES Site 5198 38581

EMUA El Monte-9528 Telstar 4021 37700

GLUA Glendora-near SCAQMD site 7000591 4216 37783

LBCC Long Beach City College 3947 37437

LBCR Long Beach City College 3947 37437

LMUA Loyola Marymount U niversity-Engng Bldg 3694 37604

NEED Needles SCENES Site 7181 38496

NSI San Nicolas Island 2717 36796

NTD Pt Mugu Naval Weapons Test Center 3048 37769

ONT Ontario International Airport 4443 37684

PSP Palm Springs 5460 37429

RAL Rialto 4589 37567

SFUA Santa Fe Springs 4020 middot 37557

TRM Thermal Airport 5776 37209

VBG Vandenberg AFB 1733 38472

YLUA Yorba Linda County Park 4287 37549

591061 10

5~

NORTH 275 325 375 425 475 525 575

~-~

bull ( I (o(r--L__- __ c_ __ ) -9) I _)I --~ ---~ __------__

bull (Q ~ ~ l-- middot r l__ _ _ 1 2 oo--_ - _ ~ shy

-

----- ----

------ ---

~middotmiddot- lt~]~---~ ~ 1 L

~~ 0

- o 7 -

----

~ middot -_ -_ I ( C~ ) ~ middot---) lt____ ) 9 bull ~- J t------------ ~ middotbull _ __ 10o -- - - - - - - 0 __ - J J--aoo ltJ

3620---_--__ _ - 0) ------- ___ -- - - ---- -- - --~- 7--

- middotmiddot -middot-- 0 _ - - I 1---------- ---- ~ ---~-----_ -~- ------- -_ ------~lt()~ --nmiddotor ~o-gtpcbull-middot ccc_--gt ____ middot_middot Ji tdegoo CmiddotI bull -bull - - I ---

middot-middot ___ - 1 c___ ~ i-- l bull - --- bullsoclt---_ middot middot-~soc_ ~- le r---- ltD

_ - -- ____ -c bull -~------1 5

= __ __ ) --~ --_ ---- ____ - _____-~~~-~ ~ _ ---~-frac142--~~ so9~ _ Q___~ - -- _ bull bull 1 middot -~ - -- - bull bull c- rAo 0o(Y--

-_ -------=--=_6CO-------- - ~)_O~ _ ~_ lt--middot_~~--~ (_ )-~- - _- ~ 0

~) ( ___ ------ -~- C jjh --- - ~ I 3770

t- 300- middotoo___ -~- l _2 ---sii middot middot 50~ ( C tshyV10w w ~ C ~_( middot bull i

l_ --t

~

__ _~) igtgt

- 1

- middot

7)_ -o-

- _middot-- -- ~ ---30~lt_~-L_ 9oo_~gn~~-__~~

U)

3770

- - o ~~~~d l -- o~ Jl _

si (_ - (----_ ( 1400t 37203720

- 1 ) reg_~S ~ ~~

7 9 b -- -- 0 ~

i --shyf I I I ~Ibull-bull

367~s I I I I I I I 13251 I I I I I I I 1351 I I I I I I I 14251 I I I I I I 14~51 I I I I I I I ss 7 I I I I I I I5s I I I I 3670

SOUTH

I I I I I I 0 10 20 30 40 50

(KM) i

FIGURE 1-1 The SCAQS 1987 analysis domain (axes labeled in zone 11 UTM coordinates topography contoured in meters)

-- ii gti kd

Our analysis consisted of (1) generation of hourly gridded wind fields for the 17 SCAQS intensive study days using the DWM (2) analysis of the mesoscale airflow patterns and (3) calculation of forward and backward particle trajectories to examine pollutant transport in the SOCAB

The results of the diagnostic analysis of SCAQS wind observations are presented in this report The generation of wind fields and the resulting airflow patterns are described in Section 2 The trajectory analysis is presented in Section 3 Plots of the wind fields are given in Appendix B The trajectory plots are included in Appendix C

9106102 7

2 GENERATION OF WIND FIELDS AND ANALYSIS OF AIRFLOW PATTERNS

DIAGNOSTIC WIND MODEL

Hourly gridded wind fields were generated for the 17 SCAQS intensive monitoring days using the Diagnostic Wind Model (DWM) (Douglas et al 1990) This model incorporates observations where they are available and provides some information on terrain-induced airflows in regions where local observations are absent The model is formulated in terrain-parallel coordinates Wind fields are generated using a two-step procedure

In step 1 a domain-scale mean wind is adjusted for terrain effects These include the kinematic effects of terrain (lifting and acceleration of the airflow over terrain obstacles) thermodynamically generated slope flows and blocking effects Step 1 produces a spatially varying gridded field of u and v for each vertical layer within the model domain

In step 2 observational information is added to the middot(uv) field calculated in step 1 using an objective analysis procedure observations are used within a user-specified radius of influence while the step 1 (uv) field is used in subregions where observations are unavailable The following modified inverse-distance-squared weighting scheme (Ross and Smith 1986) is used for the interpolation of data

where (u0

v0 )k denotes an observed wind at station k rk is the distance from station k to a

given grid point (u v)1 is the step 1 wind field at the grid point and (u v)i is the updated wind vector The parameter R controls the relative influence of the observations and the step 1 wind field

Following the interpolation a five point smoother of the form

9106102

Amiddot 1J

8

is applied to the horizontal wind field to reduce discontinuities that may result from the interpolation The vertical velocity is calculated by integrating the incompressible conservation of mass equation Zero-gradient lateral boundary conditions are used

GENERAL PROCEDURES

Generation of the SCAQS wind fields involved (1) preprocessing of the wind data for input into the DWM (2) plotting and quality control checking of the data (3) specification of the model input parameters (4) exercise of the DWM and (5) graphical display of the gridded wind fields Winds were analyzed at six vertical levels 10 100 300 600 1000 and 1500 meters (m) above ground level (agl)

In the preprocessing step the upper-air data were vertically interpolated to the model levels and temporally interpolated to enhance the temporal consistency of the wind fields and to provide hourly input for the DWM

Following the preprocessing step the data were plotted and examined for horizontal vertical and temporal consistency Data that failed the quality control checks were eliminated from the model input data set

The controlling parameters for the DWM include the maximum radius of influence (RMAX) at which a monitoring station can influence the interpolation at a grid point the weighting parameter for terrain effects (R) the number of stations to be used in the interpolation (NINTRP) and the number of smoothing passes (NSMTH) Note that the maximum radius of influence is specified independently for the surface level ( over land) upper levels (over land) and over-water portions of the domain The weighting parameter for terrain effects and the number of interpolating stations are specified separately for the surface level and upper levels In the diagnostic analysis of the SCAQS wind observations these parameters were specified as follows

RMAX (surface) 20km RMAX (aloft) 100 km RMAX (over water) 150 km R (surface) 10km R (aloft) 50 km NINTRP (surface) 4 NINTRP (aloft) 3 NSMTH 4

Tests were performed to examine the sensitivity of the DWM to the various contr ling parameters and to select the optimum values of these parameters for the SCAQS v nd analysis

9106102 9

The DWM also requires as input a domain-mean wind and stability information For this analysis the domain-mean wind was specified separately for each analysis level and was based upon the average of the level 6 (1500 m agl) wind observations To account for friction the speed of the domain-mean wind was reduced for the lower levels by multiplying the average wind speed for level 6 by the following scaling factors

Level Scaling Factor 1 048 2 072 3 083 4 090 5 096 6 100

The domain-scale lapse rate was the calculated average of four inland sites These varied according to data availability

Six-hourly plots of the level I (surface) level 3 (300 m agl) and level 5 (1000 m agl) wind fields for each episode are given in Appendix B

SUMMER INTENSIVE MONITORING PERIODS (

Mesoscale airflow in the SOCAB during the SCAQS summer intensive monitoring periods appears to have two components

A basic diurnal cycle driven by land-water temperature differences and complex terrain and

A perturbation associated with the overlying synoptic flow

19 June 1987

The surface and upper-air wind monitoring site locations for this intensive monitoring period are indicated on pages A-1 and A-2 respectively Plots of the diagnostic wind analyses for 19 June are given on pages B-1 through B-12

The surface early morning airflow pattern on this day is characterized by weak winds over much of the coastal and inland areas with moderate NW winds over the Coachella Valley and offshore At 300 m agl winds are S over the western half of the domain and W to NW over the eastern half of the domain The overlying flow at 1000 mis W

9106102 10

n1er

The sea breeze is somewhat slow to appear in the western basin on this day but has begun to develop by 1000 PST At this time winds at 300 m agl remain S over the western part of the domain and W to NW over the eastern part of the domain Some S flow is also apparent at 1000 m

During the afternoon hours three distinct features are apparent in the surface airflow pattern

A sea breeze (W flow) develops along the coast between Santa Monica and Palos Verdes and penetrates inland A branch of the sea breeze penetrates into the San Fernando Valley resulting in weak SE flow at Burbank and Reseda

An area of weak (SW) winds forms in the Whittier-La Habra-Pico Rivera area persists throughout the afternoon and fonns a convergence zone in the central basin with the penetrating westerly flow The S component of this flow is due to sea breeze development along the coast near Long Beach

Upslope flow develops along the foothills of the San Gabriel and San Bernardino Mountains (eg at Glendora and San Bernardino) Along the eastern foothills the upslope flow is supplanted during the afternoon by the penetrating W flow

By 1600 PST on 19 June the depth of the upslope flow near Glendora exceeds 600 m Strong outflow is apparent through the Cajon and Banning passes Aloft winds are generally SW with some SE flow near Burbank and NW flow over the Coachella Valley

Significant onshore flow (3 ms) persists along the Santa Monica-Palos Verdes coastline through 2200 PST Feature-s of the afternoon airflow persist aloft through this time

24-25 June 1987

Surface and upper-air wind monitoring site locations for this intensive monitoring period are indicated on pages A-3 and A-4 respectively Plots of the diagnostic wind analyses for 24-25 June are given on pages B-13 through B-36

The airflow patterns on these two days are similar to one another and to the ttern on 19 June The overlying flow is generally weak below 1000 m agl with moderak t5 ms) SE flow at 1500 m agl

On 24 June the early morning surface airflow patterns are characterized by ver middoteak winds At 300 m agl winds in the Coachella Valley are SE By 1000 PST a we1 organized zone of weak S flow extends from Long Beach to Pasadena this S flm

9106102 11

(

reaches a depth of 300 m agl Southeastern flow in the Coachella Valley and E flow through Banning Pass are apparent both at the surface and 300 m agl S to SE flow dominates at 1000 m agl The II three-zone II surface airflow pattern is apparent during the afternoon The wind shifts to Wat Banning Pass by 1500 PST At 300 m agl winds are SW over much of the basin with SE flow at Burbank and in the Coachella Valley At 1000 m winds are generally SW At 2200 PST the airflow pattern is characterized by weak unorganized flow at the surface and 300 m agl Winds at 1000 m are NW over much of the domain but SE over the Coachella Valley

The airflow on 25 June is similar to that on 24 June During the early morning hours winds at the surface are very light Weak SE flow is apParent at 300 m agl At 1000 m agl winds continue to veer toward N The sea breeze develops more quickly than on the previous day and winds at Banning Pass become westerly by 1300 PST Calm winds are observed at Pico Rivera throughout the afternoon As on 24 June the afternoon airflow at 300 m agl is characterized by SW flow over the basin and SE flow at Burbank and over the Coachella Valley Upward propagation of W flow is generally slower than on 24 June Winds at 1000 m agl are S to SE During the evening hours the surface winds become light while at 300 m agl winds over the Coachella Valley become NW Organized W flow is apparent over the W basin through a depth of at least 300 m agl through 2200 PST

13-15 July 1987

Surface and upper-air wind monitoring sites for this intensive monitoring period are shown on pages A-5 and A-6 respectively Plots of the diagnostic wind analyses for 13-15 July are given in Figures B-37 through B-72

Airflow patterns on 13 and 14 July are generally consistent with the basic diurnal cycle described earlier However an unusual airflow pattern develops in the Coachella Valley on both days On 15 July strong SE forcing is associated with a delay in sea breeze development

The 13 July early morning surface airflow pattern is characterized by light winds and a weak cyclonic eddy over the Santa Monica Bay Winds aloft are light to moderate and primarily W The sea breeze develops rapidly on this day and by 1200 PST W flow overwhelms the S sea-breeze flow in the Long Beach Area W flow appears at Banning Pass by 0800 PST The surface afternoon airflow is characterized by the three-zone airflow pattern described earlier with strong upslope flow along the foothills ( gt 5 mls) and significant outflow through Cajon Pass Observations at Palm Spring (NW winds) and Thermal (SE winds) indicate a convergence zone in the Coachella Valley with a depth of at least 600 m W flow dominates at middot1000 m with S to SE flow over the Coachella Valley During the evening hours a cyclonic eddy redevelops over the Santa

9106102 12

rtMt1

Monica Bay winds are weak throughout the basin but airflow into the Coachella Valley is especially strong

Airflow patterns on 14 July are similar to 13 July with a few exceptions During the early morning hours the surface airflow is characterized by weak disorganized flow There is no eddy apparent over the Santa Monica Bay The overlying flow is weak and primarily S to SE at 300 m agl but W to NW at 1000 m agl Sea breeze development is approximately two hours slower on this day than on 13 July By 1000 PST weak S flow has developed over the Whittier-La Habra-Pico Rivera area and SE flow is apparent at Burbank AS component to the flow appears at 1000 m The afternoon surface airflow pattern is similar to that on 13 July but the S upslope flow at Glendora is weaker S flow develops at Elsinore and several coastal Orange County sites The Coachella Valley convergence zone reappears at the surface at 1600 PST two hours later than on the previous day At 300 and 1000 m agl W to SW flow dominates over the western twoshythirds of the domain SE flow is apparent over the Coachella Valley During the evening hours the surface airflow over the central basin is S to SW W flow components persist along the eastern foothills through 2200 PST

On the morning of 15 July surface winds are weak but maintain a S component Moderate SE flow is apparent offshore The overlying flow is generally E to SE By 1000 PST the surface airflow pattern is characterized by S flow over the central basin and along the foothills SE flow in the Coachella Valley and E flow through Banning Pass The depth of the S to SE flow is greater than 1000 m agl During the afternoon a weak sea breeze penetrates inland and winds along the foothills become W Winds shift from E to NW at Banning Pass at 1600 PST A weak S flow component persists in the Whittier-La Habra-Pico Rivera area throughout the afternoon A weak slopevalley circulation develops in the Coachella Valley resulting in SE flow there At 300 m agl winds are SW to W over the central basin and SE over the Burbank and the Coachella Valley At 1000 m S to SE flow dominates W winds persist along the foothills through 2200 PST and weak S to SE flow redevelops at the surface Remnants of the afternoon airflow pattern persist aloft

27-29 August 1987

The surface and upper-air wind monitoring site locations for this intensiv middot1onitoring period are indicated on pages A-7 and A-8 respectively Plots of the dia stic wind analyses for 27-29 August are given on pages B-73 through B-108

On the morning of 27 August surface winds are weak over most land areas a 1djacent coastal waters with moderate (5 ms) NW winds well offshore Winds aloft a Jrimarily N with weak NE flow at 100-300 m agl over the central basin By 1000 PST threeshy

IIzone airflow pattern has developed at the surface and is somewhat apparent ( hin the limits of the upper-air network) at 300 m agl SE flow has developed at 100( agl

9106102 13

This pattern is maintained throughout the afternoon Within the Coachella Valley a classic daytime slopevalley flow pattern develops with SE flow extending to a depth of 1000 m E flow develops at Banning Pass and persists through 1700 PST W flow over the basin develops upward throughout the afternoon By 1600 PST wind at 300 m agl are W to SW over the central basin and SE over Burbank and the Coachella Valley During the evening hours the features of the mesoscale airflow pattern over land weaken both at the surface and aloft There is no clearly developed offshore-directed land breeze

On the morning of 28 August the surface winds are weak and the overlying flow is primarily E Retardation of the sea breeze by the overlying E flow is apparent by 0900 PST S flow develops in the Long Beach area E flow at Banning Pass is substantially stronger than on 27 August During the afternoon of 28 August S flow persists at Long Beach and develops in the Whittier-La Habra-Pico Rivers area SE flow is observed along the Orange County coast E flow through Banning Pass persists throughout the day W wind components along the Santa Monica-Palos Verdes coastline are weaker than on the previous day and NW flow fails to develop at San Nicolas Island W flow over the central basin disrupts the SE flow aloft During the evening hours the airflow features weaken W flow along the foothills does not persist as long as on the previous day

The early morning airflow pattern on 29 August is characterized by SE flow both at the surface and aloft Sea breeze development on this day is slower than on either of the previous two days S flow again develops in the Long Beach area and appears to be stronger than on the previous day Although the sea breeze is weaker winds at Banning Pass shift from E to SW by 1300 PST This shift occurs at 1800 on 27 and 28 August SE flow persists aloft with limited upward development of the W sea breeze flow W flow persists in the western basin area through 2200 PST and SE flow persists aloft

2-3 September 1987

The surface and upper-air monitoring site locations for this intensive monitoring period are indicated on pages A-9 and A-10 respectively Plots of the diagnostic wind analyses for 2-3 September are given on pages B-109 through B-132

The first day of this period is probably the most anomalous of the summer SCAQS intensive measurement days Overlying easterly forcing during the morning hours prevents development of W flow along the foothills and inhibits upward development of the sea breeze over the western and central portions of the basin The easterly forcing appears to reverse rather abruptly on the afternoon of 2 September Unusual winds are also observed at Burbank on 2 September During the late morning and afternoon Burbank experiences an unusual wind shift from SE to W through a depth of 1000 m On 3 September the overlying airflow is W and the airflow patterns are more typical

9106102 14

rrn

On the morning of 2 September strong downslope flow results in N to NE winds at several sites along the foothills of the San Gabriel Mountains At 300 m strong NE winds are apparent over the central basin The overlying flow is E By 1000 PST the sea breeze appears as W flow along the Santa Monica-Palos Verdes coast and S flow in the Long Beach area The surface analysis indicates a band of S flow from Costa Mesa to Azusa W flow has not developed along the eastern foothills Winds are SE in the Coachella Valley and E through Banning Pass E flow aloft continues and intensifies During the early afternoon hours a relatively strong sea breeze penetrates inland to Azusa while winds in the Whittier-La Habra-Pico Rivera area remain weak The sea breeze weakens considerably after mid-afternoon Between 1200 and 1500 PST the wind at Burbank shifts from SE to W through a depth of 600-1000 m By 1600 PST the overlying flow has shifted from SE to W Onshore flow continues at the surface through 2200 PST while the winds weaken considerably Although the overlying W flow persists in general 300 m agl winds at Burbank become SE

The early morning airflow on 3 September is characterized by weak winds at the surface SE flow at 300 m agl and primarily W flow at 1000 m agl Although the major surface airflow features appear to develop as on previous days upward development of the pattern is limited Strong S flow is apparent by 1200 PST between 100 and 300 m agl over the central and western basin By 1600 PST the sea breeze has penetrated well inland Imbedded in the sea breeze is a persistent calm area in the vicinity of Lynwood S flow persists at 100-300 m agl over the central and western basin while flow at this level off shore remains NW At 1000 m agl W flow continues This general pattern persists through 2200 PST but weakens considerably especially at the surface

AUTUMN INTENSIVE MONITORING PERIODS

The mesoscale airflow patterns in the SOCAB during the SCAQS autumn intensive monitoring periods exhibit a weaker diurnal cycle than the summer airflow patterns Synoptic forcing also appears to be stronger

11-13 November 1987

The surface and upper-air wind monitoring site locations for this intensive monitoring period are plotted on pages A-11 and A-12 respectively Plots of the diagnostic wind analyses for 11-13 November are given on pages B-133 through B-168

During the early morning hours of 11 November NE surface winds are apparent over most of the region Surface wind speeds are very light over the basin and somewhat stronger along the foothills and the coast At 300 m agl winds are light and generally E At 1000 m agl winds are W to SW over the western half of the domain and SE over the eastern half of the domain Weak E to NE surface flow persists throughout most of the

9106102

15

morning in the first 300 m An apparent anticyclonic eddy (SE flow at Long Beach weak S flow at Burbank W flow at El Monte) develops between 600 and 1000 m agl on this morning A weak sea breeze forms around 1200 PST penetrating only to the central basin There is no apparent turning of the sea breeze into the San Fernando Valley W to NW flow develops offshore and is deflected around the Palos Verdes Hills This W flow is also apparent at 300 m agl Downslope flow components along the foothills are apparent by 1600 PST At this time the 1000 m agl winds are weak and N The sea breeze rapidly dissipates and NE flow develops at several coastal sites indicating a land breeze NW flow is maintained off shore The nighttime airflow pattern aloft is characterized by weak N winds at 300 m agl and weak W winds at 1000 m agl

The surface airflow pattern on the morning of 12 November is generally similar to that on 11 November E flow over land is apparent through a depth of 300 m while NW flow persists offshore The overlying flow is W The afternoon surface airflow pattern is more similar to a typical summer afternoon pattern than the previous day Turning of the sea breeze into the San Fernando Valley is apparent and W flow develops along the foothills of the San Gabriel and San Bernardino Mountains by 1400 PST Airflow at 300-600 m agl appears to veer continuously from E to W at most inland sites during the afternoon NW flow through a depth of 1000 mis apparent over the Coachella Valley Surface winds become light and disorganized during the evening hours Unlike the previous day NE flow does not develop at the coastal sites and NW flow weakens offshore W winds persist aloft

On 13 November surface winds are very light through the early morning hours with E flow components apparent immediately offshore The overlying flow is WNW but becomes S over the central basin by 1000 PST As on the previous two days a sea breeze becomes apparent at the surface by noon W flow components over the basin and foothill areas are stronger than on the previous two days both at the surface and aloft Significant W flow also develops in Banning Pass Moderate to strong W winds are apparent aloft During the afternoon and evening hours SE winds are apparent at Burbank between 300 and 600 m agl Intense W flow develops off shore and propagates inland during the evening hours W flow continues aloft with some S to SE flow between 100 and 600 m agl at Burbank and El Monte

3 December 1987

The surface and upper-air wind monitoring site locations for this intensive monitoring period are plotted on pages A-13 and A-14 respectively Plots of the diagnostic wind analyses for 3 December are given on pages B-169 through B-180

The early morning surface airflow pattern on 3 December is characterized by weak NE winds over the inland areas and a weak cyclonic eddy off shore The overlying flow is S to SE Surface winds remain light and variable through most of the morning Moderate

9106102 16

txi Iii ttii

E flow is apparent over the western and central basin between 300 and 600 m agl A sea breeze develops around 1200 PST reaching a depth of 300 m and penetrating only approximately 30 km inland S to SE flow persists above 300 m agl The sea breeze weakens during the evening hours and N flow through a depth of 300 m develops at Long Beach E flow components intensify at 600 m agl and above

10-11 December 1987

The surface and upper-air wind monitoring site locations for this intensive monitoring period are plotted on pages A-15 and A-16 respectively Plots o~ the diagnostic wind analyses for 10-11 December are given on pages B-181 through B-204

On 10 December the early morning surface airflow pattern is weak and disorganized Weak NE flow is apparent over much of the basin between 100 and 600 m agl The overlying flow at 1000 m is N The surface airflow over the basin is weak throughout the morning hours while NW flow develops offshore Winds aloft remain N A weak sea breeze is apparent by 1200 PST the sea breeze penetrates only about 30 km inland and is limited to a depth of approximately 300 m There is no apparent turning of the sea breeze into the San Fernando Valley Elsewhere in the basin the surface airflow remains weak By 1600 PST the sea breeze has weakened At this time winds aloft are predominantly W to NW at 300 m agl and N at 1000 m agl During the evening hours surface airflow over the basin becomes weak and disorganized while E flow develops at Palos Verdes Strong N winds appear aloft (300-600 m agl) at Burbank LMU and Long Beach however winds at this level further to the east remain light

On 11 December the early morning surface airflow pattern is similar to that on 10 December Relatively strong ( gt 10 ms) NNW winds persist at 600-1000 m agl at Burbank and LMU E wind in the 100-300 m agl appear at LMU and Long Beach Throughout the morning the surface winds remain light and N winds 9ver Bu~ank weaken considerably A sea breeze is apparent by 1200 PST but is weaker than on the previous day and reaches a depth of only 100 m or less Significant N winds (3-6 ms) develop between San Bernardino and Elsinore and in the western San Fernando Valley NE flow is observed in Ventura County Winds aloft continue to be primarily N however E flow is apparent over the Long Beach area at 1000 m agl Surface airflow over the central and western basin becomes very weak during the evening hours Strong N to NE flow develops at the coast west of Santa Monica while N flow persists in the western San Fernando Valley and in the San BernardinoRiverside area The overlying flow is N to NE

91061 02 17

3 PARTICLE PAm ANALYSIS

A series of forward and backward particle paths (trajectories) were calculated using the SCAQS DWM wind fields The particle paths will be used by other SCAQS investigators in their examination of pollutant transport within the SOCAB The forward particle paths can be used to estimate the transport of pollutants from known source locations The backward particle paths can be used to estimate potential source areas The particle paths can also be used to estimate the residence time of certain pollutants in the SOCAB as a whole or in subregions

CALCULATION OF PARTICLE PAIBS

Two-dimensional particle paths were computed using the DWM wind fields as follows

Starting ( ending) points for a given number of forward (backward) particle paths were specified

Using a time interval of 15 minutes the hourly gridded DWM wind fields were linearly interpolated in time and then interpolated in space to each particle position using an inverse-distance-squared weighting scheme

The particles were then advected horizontally for the specified time interval

The distance traveled by each particle during each time interval was integrated The new position of the particle was reported at hourly intervals

Forward and backward particle paths were calculated for the SCAQS intensive monitoring periods for several vertical levels and a variety of origination and destination points The origination (destination) locations and times for the summer and autumn particle paths are listed in Tables 3-1 and 3-2 respectively Most of the particle paths originated (ended) at one of the SCAQS wind monitoring sites listed in Tables 1-1 and 1-2 Additional sites are identified in Table 3-3 Note that for some sites in Tables 3-1 and 3-2 a new particle path was initiated at the particles 1000 PST location but at a higher level

Additional forward particle paths were calculated for comparison with the SCAQS tracer data (England et al 1989 Horrell et al 1989) The initiation times and locations correspond to the tracer releases and are given in Tables 3-4 and 3-5

9106lrl02

~~ll1~(I titW I~l~~~t~~

TABLE 3-la Summer particle paths forward particle paths

Start Time Origination Start Date (PST) Site Level(s)

624 0500 LBCC 13 CELA 13

624 0700 LBCC 13 CELA 13

624 1000 LBCC 13 CELA 13

624 1500 LBCC 13 CELA 13

624 2100 LBCC 13 CELA 13

625 0500 HHRA 5 PADA 45 FULA 5

625 0700 FULA 5

713 0500 LBCC 13 CELA 13

713 0700 LBCC 13 CELA 13

713 1000 LBCC 13 CELA 13 EMTA 24

713 1500 LBCC 13 CELA 13

713 2100 LBCC 13 CELA 13

714 0500 LBCC 13 CELA 13

714 0700 LBCC 13 CELA 13

714 1000 LBCC 13 CELA 13

714 1500 LBCC 13 CELA 13

714 2100 LBCC 13 CELA 13

Continued

19

91061 07

TABLE 3-la Concluded

Start Time Origination Start Date (PST) Site Level(s)

827 0500 LBCC 13 CELA 13

827 0700 LBCC 13 CELA 13

827 1000 LBCC 13 CELA 13

827 1500 LBCC 13 CELA 13

827 2100 LBCC 13 CELA 13

828 0500 LBCC 13 CELA 13

828 0700 LBCC 13 CELA 13

828 1000 LBCC 13 CELA 13

828 1500 LBCC 13 CELA 13

828 2100 LBCC 13 I CELA 13

92 0500 LBCC 13 CELA 13 HHRA 12

92 0700 LBCC 13 CELA 13 FULA 12

92 1000 LBCC 13 CELA 13

HHRA 45 FULA 45

92 1500 LBCC 13 CELA 13

92 2100 LBCC 13 CELA 13

93 0700 RIVA 12

93 1000 RIVA 45

A new particle path was initiated at the particles 1000 PST location but at a higher level

20

~(Ibull bull 11

41

~1~_11Lmiddot11~1~~tV t rt~~14_ II~~~h1 1r t

TABLE 3-lb Backward particle paths

End Time Destination End Date (PST) Site Level(s)

624 1500 CABA 23 EMTA 45 BURA 1234 HHRA 4 FULA 45

624 1800 RIVA 3

625 0500 CLAR 13 RIVR 13 HHRA 5 PADA 45 FULA 5

625 0700 CLAR 13 RIVR 13 FULA 5

625 1000 CLAR 13 RIVR 13

625 1500 CLAR 13 RIVR 13 CABA 23 EMTA 4 BURA 4 RIVA 45

625 1600 RIVA 45

625 2100 CLAR 13 RIVR 13

713 - 1000 EMTA 24

713 1500 CABA 23 EMTA 45 RIVA 24

713 1600 RIVA 24

714 0500 CLAR 13 RIVR 13

714 0700 CLAR 13 RIVR 13

714 1000 CLAR 13 RIVR 13 BUR 123

714 1500 CLAR 13 RIVR 13 CABA 23 EMTA 4 BURA 234 RIVA 2

714 1600 RIVA 2

Continued

21 nn1 Y1

TABLE 3-lb Continued

End Time Destination I End Date (PST) Site Level(s)

714 2100 CLAR 13 RIVR 13

715 0500 CLAR 13 RIVR 13

715 0700 CLAR 13 RIVR 13

715 1000 CLAR 13 RIVR 13

715 1500 CLAR 13 RIVR 13

715 2100 CLAR 13 RIVR 13

827 1000 CABA 2 EMTA 23 BURA 123

827 1500 CABA 2

828 0500 CLAR 13 RIVR 13

828 0700 CLAR 13( RIVR 13

828 1000 CLAR 13 RIVR 13

828 1500 CLAR 13 RIVR 13

828 2100 CLAR 13 RIVR 13

829 0500 CLAR 13 RIVR 13

829 0700 CLAR 13 RIVR 13

829 1000 CLAR 13 RIVR 13

829 1500 CLAR 13 RIVR 13

829 2100 CLAR 13 RIVR 13

92 1000 PADA 3

92 1100 PADA 3

92 1500 EMTA 2 RIVA 2

Continued

22

91061 07

I

1bullLI bullI I bull ~ii 1 1

1 cl1

[1i1bull~j~1 Iiii~ j t-~dI ~1 1ltl1111111 II r I l~bull~II~middot t1~i~n_11~~ ~middot -

TABLE 3-lb Concluded

End Time Destination End Date (PST) Site Level(s)

92 1600 RIVA 2

93 0500 CLAR 13 RIVR 13

93 0700 CLAR 13 RIVR 13

93 1000 CLAR 13 RIVR 13 CABA 2 BURA 1234

93 1500 CLAR 13 RIVR 13

93 2100 CLAR 13 RIVR 13

23 9106107

TABLE 3-2a Autumn particle paths forward particle paths

Start Time Origination Start Date (PST) Site Level(s)

1111 0300 LBCC 13 CELA 13

1111 0700 LBCC 13 CELA 13

1111 0900 FULA 12

1111 1200 LBCC 13 CELA 13

1111 1500 LBCC 13 CELA 13

1111 2100 LBCC 13 CELA 13

1112 0300 LBCC 13 CELA 13

1112 0700 LBCC 13 CELA 13 FULA 12

1112 1000 FULA 45

1112 1200 LBCC 13 CELA 13(

1112 1500 LBCC 13 CELA 13

1112 2100 LBCC 13 CELA 13

1113 0500 ONTA 123

1113 1000 ONTA 45

123 0300 LBCC 13 CELA 13

123 0700 LBCC 13 CELA 13 FULA 12

123 1000 FULA 45

123 1200 LBCC 13 CELA 13

123 1500 LBCC 13 CELA 13

123 2100 LBCC 13 CELA 13

1210 0300 LBCC 13 CELA 13

1210 0700 LBCC 13 CELA 13

Continued

24 9106108

TABLE 3-2a Concluded

Start Time Origination Start Date (PST) Site Level(s)

1210 1200 LBCC 13 CELA 13 FULA 123

1210 1500 LBCC 13 CELA 13

1210 2100 LBCC 13 CELA 13

1211 0500 ONTA 12

1211 0700 FULA 12

1211 1000 ONTA 45 FULA 45

A new particle path was initiated at the particles 1000 PST location but at a higher level

25 9106108

TABLE 3-2b Backward particle paths

End Time Destination End Date (PST) Site Level(s)

1111 1500 HHRA 34

1112 0300 LBCC 13 CELA 13 RIVR 13

1112 0700 LBCC 13 CELA 13 RIVR 13

1112 1200 LBCC 13 CELA 13 RIVR 13

1112 1500 LBCC 13 CELA 13 RIVR 13 HHRA 34 PADA 3 FULA 34

1112 2100 LBCC 13 CELA 13 RIVR 13

1113 0300 LBCC 13( CELA 13

RIVR 13

1113 0700 LBCC 13 CELA 13 RIVR 13

1113 ~ 1200 LBCC 13 CELA 13 RIVR 13 ONTA 34 EMTA 45

1113 1500 LBCC 13 CELA 13 RIVR 13

1113 2100 LBCC 13 CELA 13 RIVR 13

123 0300 LBCC 13 CELA 13 RIVR 13

123 0700 LBCC 13 CELA 13 RIVR 13

Continued

26 9106108

TABLE 3-2b Concluded

End Time Destination End Date (PSn Site Level(s)

123 1200 LBCC 13 CELA 13 RIVR 13

123 1500 LBCC 13 CELA 13 RIVR 13 PADA 3

123 2100 LBCC 13 CELA 13 RIVR 13

1211 0300 LBCC 13 CELA 13 RIVR 13

1211 0700 LBCC 13 CELA 13 RIVR 13

1211 1200 LBCC 13 CELA 13 RIVR 13

1211 1500 LBCC 13 CELA 13 RIVR 13 PADA 1234 BURA 123

11 13 2100 LBCC 13 CELA 13 RIVR 13

27 9106108

TABLE 3-3 Additional particle path initiation (destination) points

Site Identifier Location UTM Easting (km) UTM Northing (km)

BURA Burbank Airport 3749 37859

CABA Cable Airport 4370 37751

EMTA El Monte Airport 4047 37717

FULA Fullerton Airport 4091 37485

HHRA Hawthorne Airport 3768 37547

ONTA Ontario Airport 4435 37686

PADA PADDR Intersection 3810 37175

RIVA Riverside Airport 4584 37485

28

TABLE 3-4 Forward particle paths calculated for comparison with the SCAQS tracer data

Start Start Origination Date Time Site Levels

0300 LAGS 13 0600 13 0900 II 13 1200 II 13 1500 II 13

625

715 0500 VRNN 1

0800 VRNN 1

828 0600 LAGS 13 1000 II 13 1300 13 1500 13

93 0500 VRNN 1

0800 VRNN 1

1111 1600 LAGS 3 ESGS 3 VRNN 1

1900 LAGS 3 ESGS 3 VRNN 1

1112 0600 ESGS 3 VRNN 1

0900 ESGS 3 VRNN 1

1210 0600 LAGS 3 ESGS 3 VRNN 1

0900 LAGS 3 ESGS 3 VRNN 1

1600 VRNN 1

29

9106lrl09

TABLE 3-5 SCAQS tracer release sites

I_______________________

Site Identifier Location UTM Easting (km) UTM Northing (km)

ESGS El Segundo 3690 37536 LAGS Los Alamitos 3980 37370 VRNN VRNN 3874 37625

(

91061rl09

30

The particle paths were calculated for up to a three-day period In general forward particle paths were calculated through the end of the monitoring period or until the particle was advected out of the domain Backward particle paths were calculated through the beginning of the intensive monitoring period or until the particle left the domain

Selected plots of the forward and backward particle paths are given in Appendix C

SUMMER PARTICLE PATHS

Forward particle paths (levels 1 and 3) originating from Central Los Angeles (CELA) and Long Beach City College (LBCC) at 0700 PST on 24 June 13 and 14 July 27 and 28 August and 2 September are shown on pages C-1 through C-12

The surface-level particle paths originating at CELA indicate northward advection from this site on all days The particle path initiated on 27 August indicates that the initial northward advection is followed by westward advection on the following day the particle path initiated on 2 September indicates that the initial northward advection is followed by eastward advection on the following day In all cases the residence time in the central Los Angeles basin is less than 12 hours

The surface-level particle paths originating at LBCC are carried northward and eastward usually exiting the Los Angeles basin through Cajon Pass On 24 June and 14 July however the particles are carried across the San Gabriel Mountains (with the upslope flow) Considerable eastward transport is indicated by the particle paths initiated on 2 September after 1800 PST -Residence time in the Los Angeles basin varies from day to day and is especially long for the particle path initiated on 27 August (approximately 30 hours) Particle paths initiated on 13 July and 28 August also indicate some recirculation and a significant residence time within the Los Angeles basin

The level 3 particle paths also indicate northward transport from CELA on most days Advection into the San Fernando Valley which may be partly due to the SE flow produced by the turning of the sea breeze into the valley is more pronounced on certain days (14 July 28 August and 2 September) Level 3 particle paths originating at LBCC show mostly northwestward transport Recirculation over the Los Angeles basin is indicated for the 2 September particle path

Backward particle paths (levels 1 and 3) culminating at Claremont College (CLAR) and Riverside-Rubideaux (RIVR) at 1500 PST on 25 June 14 and 15 July 28 and 29 August and 2 September are shown on pages C-13 through C-24 -

_

9106lrl 02

31

The surface-level backward particle paths originate over water on all days the particles are carried eastward and northward into the Los Angeles basin On 14 July and 28 August the particle paths indicate primarily eastward transport There is some indication that particles arriving at the destination sites on 28 August may have originated in the South Central Coast Air Basin (SCCAB) On 25 June 15 July and 3 September the particle paths indicate primarily northeastward transport On 29 August northward transport is indicated

The level 3 backward particle paths also indicate transport from the W SW or SE on the intensive monitoring days The over-water segments of the particle paths indicate eastward advection on 14 and 15 July and 27 and 28 August and northward advection on 25 June and 3 September Again there is some indication that particles arriving at the destination sites on 28 August may have originated in the SCCAB Almost all of the particle paths indicate that the particles are carried onshore between Long Beach and Laguna Beach and advected northeastward to CLAR and RIVR An exception to this occurs on 28 August On this day the particles are carried onshore near Redondo Beach and are recirculated over the Los Angeles basin for approximately 24 hours before arriving at the destination sites

AUTUMN PARTICLE PATIIS

Forward particle paths (levels 1 and 3) originating at CELA and LBCC at 0700 PST on 11 and 12 November 3 and 10 December are presented on pages C-25 through C-32

The autumn particle paths exhibit more day-to-day variability than the summer particle paths indicating more variability in the autumn airflow patterns Because both the CELA and LBCC locations are affected by the land-breezesea breeze circulations all of the surface-level particle paths show some recirculation in the western basin Particle paths initiated on 11 and 12 November eventually indicate eastward transport

The level 3 particle paths also differ among episodes but are all affected by the seashybreeze circulation Particle paths initiated on 11 November show eastward transport from CELA and southward transport from LBCC Northeastward transport at this level is indicated by the 12 November particle paths The particle paths initiated on 3 December illustrate local recirculation by the sea breeze On 10 December southward advection is indicated

Backward particle paths culminating at CELA LBCC and RIVR at 1500 PST on 12 and 13 November 3 and 11 December are presented on pages C-33 through C-40

The surface-level particle paths indicate that particles arriving at CELA at 1500 PST on all four days follow a southward then eastward course Particles arriving at LBCC are affected by some combination of onshore advection and local recirculation The particle

9106Irl02

32

paths culminating at Riverside indicate a variety of possible transport patterns eastward transport on 12 and 13 November northwestward transport on 3 December and southeastward transport on 11 December

The level 3 backward particle paths for 12 November illustrate recirculation aloft by the evolving airflow patterns while the particle paths for 13 November indicate primarily eastward advection The particle paths for 3 December are clearly affected by the SE that occurs on this day the resulting particle paths indicate northwestward transport The particle paths for 11 December indicate southward advection and recirculation by the sea breeze

COMPARISON WITH TRACER DATA

Forward particle paths originating from El Segundo (ESGS) Los Alamitos (LAGS) and Vernon (VRNN) at times corresponding to the SCAQS tracer release times are shown on

middot pages C-41 through C-76 For ground-level tracer releases the particle paths were calculated using level 1 (10 m agl winds) for stack releases the particle paths were calculated using level 3 (300 m agl) winds A qualitative comparison with the observed tracer data is provided here

Surface-level particle paths originating at LAGS on 25 June indicate northward transport during the morning and afternoon hours The level-3 particle paths indicate that material is transported out of the basin through Cajon and Banning Passes by the upper-level winds Both of these indicated transport patterns are supported by observed tracer data

Surface-level particle paths originating at VRNN on 15 July indicate northward transport and exhibit good qualitative agreement with the tracer data

Both the surface-level and level-3 particle paths originating at LAGS on 28 August indicate primarily northeastward transport Most of the particles are eventually advected through Cajon Pass This is consistent with observed tracer at Redlands San Bernardino and Crestline

Surface-level particle paths originating at VRNN on the morning of 3 September do not agree with the tracer data While the particle paths indicate northeastward transport the tracer data indicate northwestward transport

Surface-level particle paths originating at VRNN on the afternoon of 11 November indicate westward transport and a long residence time in the central basin The level-3 particle paths originating at LAGS and ESGS show southeastward transport and recirculationmiddot by the sea breeze Surface-level particle paths originating at VRNN on the following morning again show net westward transport and a long residence time in the

( central basin but the level-3 particle paths indicate northward transport with recirculation

91061rl 02

33

by the sea breeze The smface-level particle paths are consistent with the tracer data Tracer was observed over the north-central basin and along the foothills on the morning of 13 November

The surface-level particle paths originating at VRNN on the morning of 10 December indicate relatively stagnant conditions with a weak sea breeze circulation Some net transport toward the south is indicated Particle paths originating at VRNN on the afternoon of IO December show little movement throughout the following day The long residence time in the basin is in qualitative agreement with the tracer data Tracer was observed in the basin on the following day The dispersion indicated by the widespread tracer concentrations however cannot be represented by a single particle path The level 3 particle paths originating at LAGS and ESGS on the morning of 10 December show southward transport and recirculation by the sea breeze

UNCERTAINTY ANALYSIS

A simple analysis was perlormed in an attempt to quantify the degree of uncertainty inherent in the particle paths The uncertainty analysis was similar to an analysis described by Moore et al (1989)

Three major forms of error in the particle path calculations can be identified The first two result from errors in the wind fields The most fundamental of these is measurement error as measurements can only be regarded as approximations of the true winds Regardless of the accuracy of interpolation techniques measurement error will always affect the final wind field The second type of error results from the interpolation of these measurements and the parameterizations and approximations in the diagnostic wind model This error will be greatest in data-sparse areas The third type of error results from the use of two-dimensional wind fields The two-dimensional particle paths do not incorporate the effects of vertical motion which may be a significant source of error considering the mesoscale regimes present in the study area

The particle path uncertainty in this analysis is the result of all sources of error and is therefore very difficult to estimate A lower bound 11 on the uncertainty was assumed to result from measurement error alone Here we use a lower bound uncertainty estimate to illustrate the effects of measurement error on the particle path calculations Several assumptions were made in order to estimate this uncertainty First average bias for all instruments was assumed to be very small Second instrument precision was assumed to be constant over the region Third measurement error (speed and directional error) was assumed to be normally distributed around zero The standard deviation about the mean was based on observational data

For this uncertainty analysis 20 particle paths were initiated from a single site at a single time For each 15-minute particle path segment u and v were calculated as described in

9106lrl 02

34

(

the previous section Small random wind components (representing the measurement error) were then added to the interpolated wind The smaller components were determined by randomly selecting wind speed and direction error from two separate normal probability density functions (PDF) To do this a uniform random number generator was used to find two error probabilities Ps and Pd between 0 and 1 An inverse normal PDF routine was then used to find the speed or direction error that results in error probability Ps or Pd respectively Commercial statistical software from Th1SL was used to generate uniform random and inverse normal PDF values 1

The PDFs possess means of zero and standard deviations equal to the root mean square error (RMSE) of the measurements For simplicity RMSE values for speed and direction were taken from those specified by Moore et al (1989) namely 02 mis and 10 degrees respectively Random error components were determined for each 15-minute segment of every particle path The resulting divergence in the particle paths represents a lower limit to the uncertainty inherent in the particle-path calculations

Plots illustrating the effect of the lower-bound uncertainty on the particle path calculations are given for one summer and one winter episode in figures 3-1 and 3-2 respectively The summer particle-path bundles (Figure 3-1) were initiated at CELA and LBCC at 0700 PST on 14 July The winter particle paths (Figure 3-2) were initiated at CELA and LBCC at 0700 PST on 12 November The bundles were calculated for levels 1 and 3 In general the bundles indicate that the airflow patterns do not vary abruptly in space or time The winter particle paths are less divergent that the summer particle paths

While plots of the particle path bundles qualitatively indicate the degree of lower-limit uncertainty a quantitative summary of the uncertainty can be obtained via hourly estimates of RMSE of all particle positions relative to that with zero error The RMSE can be obtained from

1 1 M 2 2

RMSE = - ~ dj[ lM ]=l

where

1

dj = [(xj - X1)2 + (yj -y1)2]2

and where Mis the number of particles and ()1 represents the position of the actual particle as calculated in the previous section (ie the zero error particle path) The RMSE is used to determine the growth over time of the confidence interval about the

1 IMSL is the registered trademark of the Scientific Problem-Solving Software System developed by IMSL Inc Houston Texas

91061rl02

35

NORTH

425 31570

SOUTH (a) CELA Level 1I

20

(KM)

NORTH

425 31570

SOUTH (b) LBCC Level 1I

20

(KM)

le-path bundles initiated at 0700 PST 14 July 1987FIGURE 3- composedd par tic le paths1 Forwar of 20 particBundles are

35

NORTH

425 3570

SOUTH

(c) CELA Level 3

NORTH

425 3870

SOUTH

(d) LBCC Level 3

FIGURE 3-l Concluded

37 9106]

70

IlFil

NORTH

CEIA Level 1(a)

3(170

1-Ul j

NORTH

425 3(170

SOUTH

(b) LBCC Level 1

Forward le-path bundles initiated at 0700 12 November 1987FIGURE 3-2 composed par tic le pathsbullBundles are of 20 partic

3391061

425 3870

SOUTH

(c) CELA Level 3

J8

3870425

SOUTH

(d) LBCC Level 3 10 2

(KM)

FIGURE 3-2 Concluded

91061 39

1 1c

i I

trajectory calculated using the DWM winds Hourly RMSE values are given for the particle paths bundles shown in Figures 3-1 and 3-2 in Tables 3-6 and 3-7 respectively For level 1 the average RMSE after 12 hours is 567 km for 14 July and 167 km for 12 November For level 3 the average RMSE after 12 hours is 416 for 14 July and 260 for 12 November

9106lrl 02

40

TABLE 3-6 Hourly RMSEs for particle-path bundles initiated at 0700 PST 14 July 1987

Time LBCC RMSE CELA RMSE (PST) (km) (km)

Surface Level

0700 000 000

0800 042 042

0900 057 069

1000 063 100

1100 093 128

1200 091 143

1300 111 168

1400 136 217

1500 229 227

1600 265 219

1700 394 219

1800 620 265

1900 796 338

Level 3

0700 000 000

0800 018 049

0900 064 090

1000 068 140

1100 087 172

1200 089 162

1300 123 180

1400 231 224

1500 337 258

1600 419 278

1700 427 306

1800 449 347

1900 462 370(

9106104 41

TABLE 3-7 Hourly RMS Es for particle-path bundles initiated at 0700 PST 12 November 1987

Time LBCC RMSE CELA RMSE (PST) (km) (km)

Surface Level

0700 000 000

0800 047 049

0900 078 065

1000 077 066

1100 089 086

1200 109 094

1300 089 092

1400 118 125

1500 100 138

1600 129 150

1700 147 160

1800 161 164

1900 156 176

Level 3

0700 000 000

0800 045 076

0900 061 120

1000 069 139

1100 092 171

1200 098 163

1300 096 156

1400 125 182

1500 150 175

1600 231 171

1700 261 152

1800 308 156

1900 345 175

91061 04 42

References

Douglas S G R C Kessler and E L Carr 1989 Users Guide to the UAM Wind Preprocessor System Systems Applications International San Rafael California (SYSAPP-89079)

England W G and L H Teuscher 1989 Perfluorocarbon Tracer Experiments During the Southern California Air Quality Study Air amp Waste Management Association For presentation at the 82nd Annual Meeting amp Exhibition Anaheim California (June 25-30 1989)

Horrell R S M Deem P Wyckoff F Shair and N Crawford 1989 Ground Release SF6 Tracer Experiments Used to Characterize Transport and Dispersion of Atmospheric Pollutants During the Southern California Air Quality Study of 1987 For presentation

( at the 82nd Annual Meeting amp Exhibition Anaheim California (June 25-30 1989)

Moore G E G Z Whitten J P Killus and R D Stevens 1989 Analysis of 1985 Air Quality and Air Chemistry Data Collected Under the South Central Coast Cooperative Aerometric Monitoring Program Systems Applications International San Rafael California (SYSAPP-89058)

Ross D G and I Smith 1986 Diagnostic Wind Field Modelling for Complex Terrain-Testing and Evaluation Centre for Applied Mathematical Modelling (CAMM Report No 586)

9106105

43

rr T rr

Appendix A

SCAQS WIND MONITORING SITES

(

9106103

-

((--_ 770

-

NORTH CM~RS 42 575

5 I I j I I 1---L 525 middot 1J75 I I I I I I I I I r I I _--- I C2~middot----_J ~ ~-- 1 ( ~ ~J25 I I I I I I I I I I I I l__ ) -475 () I Li 1~)51 (

--~ltJ820f-_ ~------ ---

~- -cli( ol --9-Sl-l

lt ( ~)

CQ p llE RiDO ~ llE ANAH

I middot LAS-L

bull~ LANC ( _ Q - _J ) ) - _ ~ - ---- - ~ _ ____ middot clt G~ _----~____-=-- -___ ~PR __ - ---- --- VCTC ltgt

-- ------ f---- __ - ---_ -middot ------ --___ --~-----TEME --- _ f

-)(j _ _ middot --middot -------- - HESP f ----=----==~~~ l ----~~ -- middot l - --- __ -middotlt- CJ _ --- middot PIRs[- lt NfVL_ ---~ - C~lt --lt _ ~ ~- __ (~~

__ --- bull _ i - f c-_ _ I - )~__) - ---~poundS---_-

3770 t-()

LA llE PICO )Ct444 -w 3 ~~~ZUMA MALI VE VEN llE llE middot Jl~C - ( p

NN WOOHS ~- ~ m - middot - o - I () )IE 55I

1-- (lt - - PERI ) ~ S__~llE

BU25 bull y _ L ~~5o 13720

I ----~- - 515 3670 525

(KM)

~---

SNI

20

SCAQS SURFACE WIND MONITORING SITES

19 JUNE 1987

0

qj n

If) N ~

I

1S13

Ishy)

0 Vl

(f) w I-V)

l)

z a 0 1---

z 0 2

0 z 3 a ~ I r---

0 CX)Wm Q_ shyQ_ ) w

z (f) )

0 7 lt( um Vl ---

0

A-2

-

r~

NORTH CM~RS

I -middot_( lt - middotmiddot -~ ---lt - - - middotbulll- ) middotmiddot-middot - - -c ) 0 0 l__SG- ___ J1 bull_ -- VCTlt I

_ --middot ---middot llSeR - - __ - --middot----- J~__-- middot - - - -middot bull bullbull- HESP ~-_-middot- bull- ~- _~ - -___---middot - ~ -_ ) ME --- -middot - bullmiddot bull -_

38201-_ ~~_ _ TE _ C-bull_- - CJ - ~Jj __ -_

1

1 bull I bull __ (]

SI bull bull=-middot _ -~ ~~ ~_-__ middot _J lt(- j SIMI -M~S -~_-~It_ - - 1Ir- I w _ I B~~ AZ~~~1 AL SNBOC ~ (ELRO l~ Hf~~ ideg_=- --

)1__ CE~ wftcentrHIN RIVRM44 --- ~--- ---~ LA PICO __pound bull P

T ~NN WI-V C) D 2J~55I Wco - middot PERI Lv

R~O ~L ~AN~ TO~~~~ ~ ~ ~-MO

62

~ ~j~l)~gto ay 3670( 525

SCAQS SURFACE WIND MONITORING SITES 24-25 JUNE 1987

~ (

NORTH 275 325 375 425 475 OA~5 575

f_~ CJ ~ -middot--

_middot

middot1 Imiddot

)i

gt--o~0 (~_)r-) _ (~~3s20

--~- middot qlt ( ____ - ---- - lt__ ~ ~ -i~ J ) _ - - -

-~ -__ J V 38201-~--o- lt-

-----~~middot ---- __ - ~---- -_--- ~====- -=_---~ ~ _

~ -- middotbull ~gt ----_ _______ ) ~~~ l -- - - i - --- l

( _ (_-~ _-lt~~ - )

2middot1=~ (~gt lt_) -~~~~~(_~tJt-~~~~t~~~~-~) ~

uR--- -----Qi~ ~ 3770_ 3770 -middotmiddot--rmiddot- -7 ~ 1-

(J) llE ONT _ -middot __ w

Y-_ EMU c __- ~ Ul lt(1 w~

- -- - LMIIEUA sFtA ~

1

----_

~

_

t_~~ -bull _ middotgtI __

~- 0 ~~QgtJn~-~ ~II~

~ f-- -) -) ) ~ ~-

j (_1_j ~~TRM 3720 ( (__ -CcS l l 3720

~- ) -~ --7( ) __~---L_ ~~1-----~D~

1 ~) a --- ~middot 7 rt 0- NSI (

3670 I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I 1 I I I I I f I I I 1 I I I I I I I I I I I I I 36 70 275 325 375 425 475 525 575

SOUTH

I I I I I I 0 10 20 30 4-0 50

(KM)

SCAQS UPPER-AIR WIND MONITORING SITES

24-25 JUNE 1987

--=-

NORTH 25 575

CM6QRS C__j 475 -____

3 ---- 375 425I - L ---) - ~-

SNI

-_-~)---_ lt-____ ___3azor_~c~~ sl

VENt ELRO

BU25

275 ~ c--) ~LANC ~~-_ lt ~ 0 9-~

llE

3670

----~ - J Q ____ ~- lt) ~ 3820____ -- middot--- 0~__~- __ J S --- ---~- ---- -- -- v~ ~ ~ ===-~ - - - - ---- - - ---- - -- -middotv ------------ -~ l f----- _ -- -middot _ - --- __ HESP ~-----=- c~i - - _- --- - - gt - -bull TEME -- -middot - bull ----- -- - _ middot ( lt~ clt=~ ~i cJ~ c _

~I -~~le lt~NJWl--------~- -iHitgt~-=__~~ _I -~ J~~~ ~ 3770 r-1 - - -- -- - ltJ c__ ---middot ~ ( - ------ -c_ - - -~~~ ~ ()-~ ~ - -middotMiss ---~---=-~----r~-__ -middot _frac12 __ i5

j S ~R~~HE -7t$ llE llE ftALSNBO llE ~~ t __ -R~ B~~SA AZ~jl~r RD ~~_ ~ 1( )l___ llE CE~HAllE ~~ - RIVRM44 - llE ------___llE W~HIN -Jti )Ii ----------- __

~--- LA llE PICO l llE C -- r p

ZU VE NN Wt-laquoJHB 0 1~55WT IN - ---- ) llE CO P llE llE ( gt (____ PERI ~

IJl

~ 71t~P325 425

SOUTH

I I I I I I 0 1 0 20 30 40 50

(KM)

SCAQS SURFACE WIND MONITORING SITES 13-15 JULY 1987

clt(middotO -i ~Ill ~

()VL~t

~~) o2~ r

275

-- _~middot middotc-- ( ~ I - ___ ) --____ ~~~

---- ---bull-~ ( lt ) lt I ~ (J () - _ ~ ~ J ) bull middot ( - ~ ~- - --- middot - ~ - middot middot G--~_J lt)

cce- middot- __ V ___ -- l - _- bull middotbull - - _~---~ 3820r----=-~_~Jrlt - - - middot f ~l-~--~--~] I c___ -~c ~ -- ( _ 1middot--- 1___ _~

-I -- = lt -bull lt middotmiddotltmiddot~- middot - middot -L-

- ~-- middotbull ---_- --- J middot J ) ) -- bull- ~-bull _ --middotbullbull- middot middot _ j -- -)) 3770 -ii __gtc _ -- - - middot bull ltmiddot ~- I - _ltbull - -_j-- tn

BURbull-- - middot - - - ) ~~middotj- (~~ ) (middotIi lt(

GL U I ~ - - - w ---~ - -1 __ - ---------= ------___________--- ONT middot middot __ - --_ -

poundMUI - - ~ ____ middot----~~i -__ ~ I

--

--- ~ c) )_

deg ~

_- - (

_l

_ ~ )

C-

~ _middot

( T( f 1-

525

t j 30 50

(KM)

SCAQS UPPER-AIR WIND MONITORING SITES 13-15 JULY 1987

_==--

J ANORTH CM6sectARS

3s201-

~- ~ ~ ~ ~0A - --__ - -----~ ---~- --1(j - A ) __gt ---------_

-~~J TEMEa l_C ~r1

0

820

_--C~ = ~~~ltCH~~ J ~ S~I ----i4~58 ( J

tigt-1

-J 3 BU25

frac14~) 8 F1(5

- HA

APICO RN A A ~ N WVHB

AANAH

~IHIN J _CM44 ~-

A

CY PERI N ~ iJN

D A

HEM

770 ~ V1 lt( w

~ 3670

SCAQS SURFACE WIND MONITORING SITES 27-29 AUGUST 1987

) w l-1

C)

z-a 0 1-

z 0 ~

0 z - r---3 co a Ci)

- -ltI lshy

a )w ) Cl 0 Cl ) ) lt(

V) Ci)

0N ltI u r--- () N

A-8

NORTH CM~RS bull r (_J~

1

325 - - l L=~-) ( bull

1275 _ ( ~ --- -middotbull LANC 1 _ bull I( f LJ- ~ () ~-- 3820 bull- - J bull

- --__ _ -- )- bull bull - middotbull-~- _ I v----_J -- J middot-- - middot- - -middot I I J_______ ---==-------------- WSfgtR - -- VC _____- ltgt

-~--~-- fJ- -middot - - - --- --- _ - ----- --- ----- ) r bull---_ --- - - -- bull p -- --__-----_ - -----

38201-_ -------~- TEME --- --- - - bull -- middot- bull --- _----~ -~ II middot ) - ---- -- -- _ -- HES f I-----=-- ~ ------- ~ l _ -- - I

- bull middotbull-bullbull~ ll( middot bull - middotbullbull - 1 I ~----- middot-bull

9 -- ___ __ _ -------- _=- r _ -- )J -~~ ~~~ 3770 t--SJMImiddot MISS~~~--bull ~--~-- ll( -_ ~-VENt Cllfl58 bull I middot- - middot- - --JOE ~--bull bull ~ V)

ELRo __J 4Esc euRK ~Ej1 fAL sNeo I ~ _ J middotmiddot -~~ 1 i5 l - ~SA ___ I ROLD ~ ~ C~ ( _____~- -~ llE CE~ llE W~(HIN RIVRlK -- - 1 llE __~

3770 middot- ~LA VEN Pl llE _ _- JJ~C _CM44 - ~ p ---__-_

0 ANAC cubull~ - - v~wr LyenNN WHJHB --- -- Q~~W)( ___

- llE HA ~ -lE _ -- _ - -_

I 0

SAi middot-middot J) t450

3720 LA r TO~omiddotlt~lt~~ -~ ~ (~~

~ ~ r-~~~1~ o ~~l~

SNI 1 (l_ amp-~ 575 3670367g75 325 375 425 475 525

SOUTH

I I I I 0 10 20 50

(KM)

SCAOS SURFACE WIND MONITORING SITES 02-03 SEPTEMBER 1987

------J ------------------ ) I-- 38201--__--~~- i) ___

_-- ~--gt--

-__

_

NORTH 275 325 375 425 475 525 575

YI ~middotCJ~bull_bullrmiddot--- lt I __ (_______~ ~ - - I -- J ( - - - - - - - J i O l__ ______________ -~

~j ( lt- bull- ~ 0 C) ~ -- (-- _)) ) ----_--__ -- middot-- _ - --J ) J ---- - ------- ----- middot----- -( ~---_j

3820----==--=-- ( - -middot bull __ - ---~----= --- ---- -- -- ------------ _______ ltJ~~ A I --- - ---- - -_ - _ --_--~-- -_ - --~co___--_--___-__----- f middot l - --- - --- - __- ---_-- -- ~ middot -middot __ J L--~ cmiddot

---- -- middot--~-- -- -- - _ _-- - - ~

--- - middot- - -C-_--- - -~ rmiddot middot) _- ~middot~ I--- ----~deg- -- -- C _-_--_- __ __ _ ___ _--_--~ __---- ~---lt lt ltgt _~-__gt_ ~~-- i~ - UR ---- -------- - ----~ --lt I middot- B ~----- Qll __ ~----- _ CI____ ~ __ --- ---middotir ~ - 3770

1-I- 3770 () U)( - -- -- 0~ - j _j ______- ==--=--_ --___ - ---w lt(

w~

~gt middot1 r-

0

3720 3720

middotmiddotmiddot J ~ ) ~l - ~ ~

~ tmiddot~----_7~~ p__ D2)t~~

NSI I(--_ Imiddot- 3670 3670

275 325 375 425 475 525 575

SOUTH

I I I I I I O 1 0 20 JO 40 50

(KM)

SCAQS UPPER-AIR WIND MONITORING SITES

02-03 SEPTEMBER 1987

~ I

t

NORTH CM61yenRS

----- I uic middot I Ibull 0 z_ ~ p

-_- - - - _ - middot-~-_ ------- VCRV

820 --- -- -- I W-gtER --- _ ---- --- ~ ) - -_ - I _ _ - _ --- _ _ _ -_ bull _____ _ _ - -- -- -- _ --_ ----~ HESP 3 -- ME -- -middot bull - --- _ -- _ TE - -- __ _-- - c----~middot - r

PIRlb -_1 N bull--~ _ --lt~_- - _ _ ---------- - -MISS_ _--- ___ bull---=-- _llE ~ ~ j lt) hlt---- F-~~--_ ----1A-_c=_--middot llE ----_ ()

-middot SIM ~ICAN llE RIALSNBO llE ~J -------~~ tllE ------TmiddotllE~I ~ES BURR~ AZ~ ~-~r- RD ____-- -- ~ bull FIIISA l- bull -~~

( )l__ -middot middot c(~HA w~~N ~tfJ1 -- -- ~ ~ 1

_

375

~) middot middot ---lt -__ lt_ ___ ___ -i____) C-middotdeg - - -

- -- J_ _) lllt

_ =- ) - -

L- ~~- Iii - ~ _________

-~ 0 I -- (

SI lllt

E

NT CM58V

( j gtT__~_____)___ -- ~l- ) (

middotmiddot-- -_ bull _ ~- () ~

I --J vlt__ ltgt

--- --------- ~---------- C -

_

~(__ f - -- ~---middot)1 ~

t ~ I

I- I- ~

3720

ANAC Wo~ middot -~- lt_)

44

PERI ) ~ tlo

25 R~ ~~ANAH _i~~MN ~~-w--- ~ _ 00 )

T middot I BUllE I -eM62 7 llE

-- - ~

~ 425

SOUTH

20

(KM)

SCAQS SURFACE WIND MONITORING SITES 11 -13 NOVEMBER 1987

(_ (___JCcS ~~)

bull ------------~ - - ( ~ r-------------- Dbull ---

J

575 3670

1SV3 0 0 0 0 N r-- N r-- a) r-- r-- co I I) I) I)

I bull bull I I

I I f1 1 ~~ I- I I-)

0 l)

l)

w I-l)

L)

z Ct 0 I-

z 0 2

0 r-- z OJ

m3 Ct a lt( w0

l() mI Ct 2

~ ww Q_ gt

0 - Q_ 0 I) 2 ) z ~ ___0

N (I) n a

0 lt(- u ()

0

n 0 z I)

N +

lf) r-- I)

- I I I

i I

I 0

~ -L

w

i

~ LL

I)

C-1

+

l() r-- I)

1S3M

A-12

-~

igt I _

l)

CM~RS 275 325 375

NORTH 425 475 525 575

_J- I bullbullbullbullbullbull ~ I bullbullbullbullbullbullbull bull I middot bull -gt-----middot bullbullbull 3 )--- ____j lt c----- -_ -- gt _ ___ ----- t__ l___

-- ------- LANC l ~ ---------- __ ) -- __ ~ I ) ~ - -=~__ I -~middotmiddot- - bull middot bull bull bull lt lt Cl --- ------ ____ -~ -

38201-- ------_- ) ) -- _ ---- -- -- -- - () - --------- I --- -~-lt~~ (middot__ TEME ) --gt ~_ ----- - middot--- --- vamp c~ (~ 0~ ___- --- gtIpound - - - - ---- -- - - -- _ - - ~ ---- - - - ------------- 5SI -middot PIRltgt ----~ ( -middot _ - -- --- - --- ) HESP --------~ ltgt

___ __bull_rbull ~--------~-___ -- ___ ----gt--=- bull~ ~~ I - ---__-=---- ----

VENt CM58 _ sti --~~ ~ lt_ -~-- middot_~-~~ r-~- --middot) ~~) _J MISS-~~-- ___-_ __)~ -- ---( C

- --RESpound BUR~--==-=~----r~---_-__- ~- - ~ _- ~ -1 -

3770 I- ANAC

J I )l( ~- ~-- - i middot ----middot -X--Ret-----_~ -~

___ ( - -middot ~SA AZ~ ~ o j -------=--------~--gt~-- dampHA ~~~f __ SNBO ~~ -~

ZUMA MALI LA w~M -jmiddot I R~J ~-s ~__ )() w ~

3720

8U25

VE VERN PICO _ middotyHIN RIVRyen ( ~----- -~ CM44 -~ ~- ----- ~ C WT ~NN Wt-0HB -NQRC - middot- ~NN-a-~~ _ ~ co~ __ -- ( ~ ~

RVIJO ~ilff AN~ gt cmiddotbull yen 0 (~~ p LASAl I bull- - PERI ~ ) ~

rJ]~~_Y)~N ) (_ --

_T -cJ62~-~

~ 5j(bull 1) ~Jso

l -~

- 1 J) -~ ~7~~t~~

3820

3770 1-() lt( w

3720

I I I I I I I I I I I I I I I I I I I I I I367r I 367075

I 325 375 425 475 525 575

SOUTH

I 0

I 10

I 20

I 30

I 40

I 50

(KM)

SCAQS SURFACE WIND MONITORING SITES

03 DECEMBER 1987

NORTH 275 325 375 425 475 525 575

I I ) gt ~ _YC) ~ ~ I ( o c_ _------- (

___ middot i I 97 ~___ _ --1 cbull-- - - C -___J -- lt ( ) - - - - middotmiddot ~ l _ ----_J

I ---middot ___ __ middotmiddot-_ 1 -~ __J ) bull- middotbull_ -

3820 ------~- I -~middot --- _ middot--- -------~

C - ~ (___ _ 1 ) -- _ - - - gt _ bull f-_- --- r ------~__ -----I --- ) I ~ -~ gt ----- - --- -- ~-_]) c_middotI 38201-_~~_ l _ --- - (-- ~ f ~ I~_ - middot - middot -middotgt- -- -_ -- middot_ _- 1 L- l _- -

~----- l -- middot middot ~- middot-_ _- - middot middotmiddot--gt---~--t~~)-1 bull lt_ _ _ bull middot bull - middot- ~ ~0---~ (c ~ I ~

_ I - bull -~~~--gt~~~-~~ bullS- _~_ l ~~1t~~_~(~ t 3770 I -- -- middot __ - I S____ ( 3770

I- 1-() ()

gt w - I __~sect~- ---ONT lt(

w

tgt

f-- I

~

middot - middotI

-

L~i--

37203720 c_J - (_cS) l -~~

NSI

367~~51 3~5 13~51 14~5 I I I 14~51 is~s s~s 3670

SOUTH

I I I I I I 0 10 20 30 40 50

(KM)

fJ~

SCAOS UPPER-AIR WIND MONITORING SITES I 03 DECEMBER 1987 r~J

NORTH CM~RS 275 325 375 425 475 525 575

middot middot ___ I middot 1 I )l ___ QO --middot - v_ (-- - LANC middot ~ C) lt --bull_ I -- -- bull _ ~ - ~-- ) -------_ -- - _~-- V --I 1 J --- - bull I -J- ---middot - _ bull__ - vc i --- ltl

3820~-----=cc~ I middot -middot - middot - _ ___ -- - 1t ~~------- middot - ___) - - middot -

J-cgzot-- ~--- j 0 TEME _middot ---- --- -

-____ -- ---- _- j (

- -_ I -- --~ _JI( ---- bull bull-- llf -middotmiddot l - -- bull _middot_ middot I --- -- middot CM58

_- 1 -- middot - middot~-~ - -~__ ___ ---~-~_--__~----------D J-~J~bull A HESP

middot OJ11 r P1R1tc lt--~i_-_~-~- ~c~_r--~-~_--_~r-=-~~~~--~ _ --~ --lt__~~~~- CSI ~ -~ --- ---- middotmiddot - ---- - _ ~ r ) J

)gt SIMI -MIS5-X ~Cgt~---- middot-cemiddot middot ____~ ~ middot~ l~fu__ suRlfiI_middot- -tk~- flAf SNBO __ middot ~-~ l 3770 _ 377ob -- ~ PJIISA AZ ~JIily~ _- RDL ___ bull ( C t-shy-- -~ I ----- ~HA 71lt V)tn ANAC ~---- CE~ WALflHIN RIVR ----- ~ w

w ~ LA PICO - CM44 - T -~ ~ ZUMA MALI VEN middotbull _ -bulltRc __ ~ ~lt~~7-

N WuHB _~-- -middot bull ) _J~N ~ -- ~ 0 - ) ~ I ltgt -_middot PERI bull I- ( _

V 8U25~ 3720 3720

WJlt~ ( ~ ~ ) 1 i

~ I I I I I I I I I I I I I I I I I I I I I367r I bull I I 3670

75 325 375 425 475 525 575 SOUTH

I I I I I I 0 10 20 30 40 50

(KM)

-~ ~

SCAQS SURFACE WIND MONITORING SITES 10-11 DECEMBER 1987

NORTH 325 375 425 475 525 575275

-- ----_ lt_~- c--- - ~ ~ _ I I - ---~~c------ ) _ -middot - gt~-

3a2or ------__ lt- ) 1 middot--- -- __ - ~bull =-------------- - r---_ ___ - bull- ---- I I ~ ~-- jc- I bull - - (bull I --- middot middotmiddot - ~ -middot - -- ~ - 3820 -~- bull - middot - - ~-_ ~- _ middot- n

(

- 0 lt_( ~_lt- ~-~~- middotmiddot) ---- ()_ (---- --

--

____ middot

-middot

I

f----- (-J 1r---J~ --~ - middotlt ltbullI I ~__---__ ~-

l B~--- _c_ gt-- lt gt- (- - - j 1--_~--~--l~ -- -- --- )l

-- - --~---- middotc middot=-~-~- (~ L ----- -- --middot - -- - - -bull --- - - c-) ~ J _ -- - ---- - ) ) ltl

37703770 EMLgt middotorrmiddotbull __ ) ~~~~ofmiddot - -- __s=__I- - - ~__- ( ~ __ )---__ Ishy

V) ~ ~- lt(w ~ ---- --~ - w if)

-~2_~middot) ~~at~s t I

I-

deg

FUUA

i () ~--J)llC~lt I

3720 3720

~ltl__ (_)i~

~ NSI

367~~51 I I I I I I I 13~51 I I I I I I I 13~51 I I I I I I I 14~51 I I I I I I 14~51 I I I I I I r--- I5~51 1 I T I I I I I 5~51 I I I I 36 70

SOUTH

I I I I I I 0 1 0 20 30 40 50

(KM)

SCAQS UPPER-AIR WIND MONITORING SITES

10-11 DECEMBER 1987

Appendix B

SCAQS DIAGNOSTIC WIND ANALYSES (Six-hourly plots Levels 1 3 and S)

Summer Intensive Monitoring Periods

19 June 1987 24-25 June 1987 13-15 July 1987 27-29 August 1987 2-3 September 1987

Autumn Intensive Monitoring Periods

11-13 November 1987 3 December 1987 10-11 December 1987

Page

B-1 B-13 B-37 B-73 B-109

B-133 B-169 B-181

9106103

Summer Intensive Monitoring Periods

9106103

19 June 1987

9106103

1bullbull-lil

1SV3

I I lshy Ishyo )

0 0 z ()

IO N IO

I()

N -st-

1S3M

-- l1

l~ i --

0 z 3

---

2 0

_J w cjr----_J CD

0 l() z

I- =)lt( 7

f) 0)

0 -- i n 2 Ishy7

0 ~ ()N ____ gt a 0 20

3o 0 ~

0

B-1

1Sv3

( I l-et 0 z

(

lf) N st-

l() N ~

l()

N 0 t--

n

0 N_ n

U)

ON r-shy(0

n

1S3M

B-2

_

2 0 0 tlt)-__

tlt)

_j w 2jr-_j CX)

0 lf) I- z

lt( ~ IJ1 0)

0 _ 0 n 2 z 1-0 ~ N - 3 ~ 0 20

3o 0 Ov

-----

lSVJ

l)

----

l~3 O 0 w

w ll) (1

l)

0 0 z 3

I lshyet 0 z

--

2 0 0 0

-

LO

w ~

GJ r----~

u 0 z

OJ

I- gt lt( J

mif)

00 ---shyI) 2 z I-0 i l) N -- 3 (1

0 2 0 3 0 0 ~ 0

lSJM

B-3

1SV3

- V1 --

~5 O 0

E - w

w Ul_ 0

V1 0 0

z ~

I I lshy I-et =gt0 0Z V1

-

2 0

J wr--CJ OJ J z0

Ul I- =gt lt( ~ V1 -

0 - n 2 0 z 1-() 0 ~ N __ 3 0

0 2038 0

0

U)

l

lO N v

0 N agt n

0

r--n

0 N

0 N r-shyn

U)

U)

U) N U)

Ul

q--

Ill N q--

1S3M

B-4

td I

J1

~ ~~~~~ ~ -~~~~~ J - -~--Qf~J ~lf~ ~---~ ttt~~~~H~f~ ~ ~~lt~~~0 ~ - ltl-_t I~~~~~~-~~~~~ ~~ I _~1c j_~ L ~ (__1-T11__1 ~_-~_ ---~~~~~~ 11 - ~ +f--1~- ~-+--41-- 1-~- ~ ~ -rtt1-~--~~~~~~~ ~ ~ ~ ~ l t I J JI JI~- t _I i~~I~~~~~~

377itttttttt ~- - t I Jf --------_-- _ 70 ~ ttttttttttttti- fllJ~JI-~~_- ~~ _ =- ~~~- tn w - t t I I I_~- -V _ ~ -laquo___ _ - ltC 3 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ t t t t t I I I I JI~ JI JI ~~ I--~- ~ ~~~~~ w

H~HHHH~in+~l~Hnf5-I ~ ~~~~~~~~ ~ ~ ~ lliii it t I~t~ltt~rrrr~~~~ jl++it~~~t~

20-~~~~~~~~~J tttttttf ~~~~~~~~~~---~-~~~~~~~~~~~~~-amp~ ~ t t t t t t f f f I I I I ~ 1 J(-- _ --P ---~~~~~~~~ ~ ~ ~ ~ ~ ~ ~ ~ t t t t t t t t f f I I I I I ~ ~- j~J _ ~ ~ z~ ~ ~ ~ z l I+ nm~t ~ ~ ~ I I~Jt~-~- -~-__~~~ tr ti ~ ~ t t I t f f I I I I I I I - ~-r __ - ~~~~~~~ ~~~~ ~z11 ttt ffflllllIIII -~~---~~~~~~~~~~~ ~~~~ ~~ ttttft ttflltllllllll A~--~~~~~~~~ ~ ~ ~ ~ ~ ~ ~ t t t t t t t t t t t f I I I I I I I I I I I I I ---P~- ttttttttttttlllllllllllI -~--L~-~~~~~~~~~middot

367 70 ~75 325 375 425 475 525 575

SOUTH

1111111111111111I I I I I I 0 10 20 30 40 50 0 5 10 15

(KM) WIND SPEED (MS) i

NORTH 425 575

_ 414111fl-~bull __~) ff I -lt~i ~ + lJ Jmiddot-bull A fl t1 it bull- _I~--~---~----_---~_~~~~~~~11 t1

~~t 11 f + + diamsJ diams 1 )--t-_+ J~ I-(_ 1 1 ~t1 __

__ Lt l l t fL f_l - - +~~----~~---~___-+_~~~ J-t-t t---t-lt t t-t) LJ lt fl ~ -- t---f t tT~-- ~~ 1__t -t ti t_1 + l - -~-~-~-II~-- - ~~~-----~----t----~~~~~~_Efftt -- r1 ~J t l Lt t

fl

~ _ t_ - 11 _ _

Fi ru bulll=ti~ ~ ~ ~ ~1H1~~_~-~-~----~~~~~~~~~~

DWM WINOS AT LEVEL 3 (300M) 1000 PST 19JUN87

1Sv3

I I-shyCt 0 z

1S3M

B-6

0 II)

0 I)

-_2

0 ~ N -

0

0

-_

2 0 0 0 -

LO

_J

w r---CJ O) _J z I- gt ~~ if)

0 1--shyz V) ~ Q_

20 3 g0

NORTH 525 575

~~~__A -~___~~-

F- ~_--P~

~ ff~~-- - _ middot- ~~

_ bull bull bull bull bull

_ p

~L~k~tt ~ 1 t A middot1-t

~ r~ 1 11 1 __ bull bull --l t frac12Q2_

~ ~--r-J-+7L~

1--Ui

3770 _yen~AA- ---~ ~__~_ ~ K---r

eno tshylf)

w ~ ~ ~ lt( 3 I I_

- w

td I

-J

~~~~- ~ ~ ~~~ shy ~ ~ - shy

3720

~ ~~~ -~1~-nu~~~~-

~ -~ - ~_____A~~1~ ~ _~ ~~= ~~~_______2--- ~

720

~~~-~~~~~_ 9~tbullmiddot~qor~frac12

Y~poundpoundpoundpoundpoundpoundL1~~~~r~ ~ middot

375 425 475 525 575

SOUTH

I I I I I I 11 1111 1111 1 0 10 20 30 4-0 50 0 5 10 15

(KM) WIND SPEED (MS)

DWM WINDS AT LEVEL 1 ( 1 OM) 1600 PST 19JUN87

~

NORTH

Arlt~~~ ~L _ -rJ ll

_ I I I t

_t-z~~J ~i~ bull

i- ~~~ Ii ~~( trn

3770 I - bull bull bull bull bull bull bull iigtlaquo

--- bull bull bull _-

~fJ~ t-l-lltf[llJ- jf1 rr]I ~ ~~~ ~ss~810Ja2ot-~~1i lmiddot - 1 17- - -

-ltL

~ ~ 70 y ____~ tshy

l) ) _-y ____~w

w ~

~ -~--- - -- ~ 1 ~~~~ __ _ bull---bull laquo-___~ Y~~

___p~~__---A~_A 1 ~~td I ~----______A 14 1 ~

00 _-________________ ~ __~----~1~ -A________________--r__~~~ ~ ~ ~~~--~-~~~~-~---e--~ ____________~_________-~ h

3 7 20 t-_--~____- ~ _ _ ~~-_- _ _ _ _ ~___~~~r--~~___-K ~~ ~ -~-------~~~----~ ~ ~~__________~~~~~~~______-r_-A~-1--~~~ ~__________________----r~__~__~-Y~~-------__---A----r~ 1 ~ ~__~___________~ ~

367 tcrr~__~y--rrYlt-trltltltltltlaquo-ltltltltltlaquoltlt~~~ ---

9imiddot~75 325 375 -- -

1111 1111 11111 1 1 1

0 10 20 30 40 50 0 5 10 15 I I I I I I

(KM) WIND SPEED (MS)

DWM WINDS AT LEVEL 3 (300M)

1600 PST 19JUN87

NORTH

bl I

0

~________________A-4_gt~~~_____~~__________~A

A~altP_ ~~~_________--~_A 38 20 I--=-~~_~~___~~-_-~~_ -lt~ - ~_-~_A--1~ _

~~------ ~ gt-~ ti ~----~ ~ _~~~~ 0 ~ ~-i---~~411___ I~-~~ I~A-~~----~7A7~-

A A~---~~- ---~ ~ ~ -middot~~ 1-27 ~shyA_~ ~~~ Jl--__r-t~ ~ (K~_ - fl_

A ~I J111 I _ A - ~ _ T-~ v I 1 1 1 1 1 1 ~ 1 1 _ Ji J I~ f --_i__middot1(- ~ ~)( ~JJXZ - _ r ~ - _ )( _ II I 1 ~ 1 I - _~ _)~ ~~

= 1 II II 1 (~ ~--=-~ -7fJ~~~~tm~i I- 3770 Jir - I 11 I 71 (I) ~ ~111 ~

w ~--middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotbullbull bullbull ~~~11Zll~~11~ ~ ~~_~~~llllN~~ -~~ bull 11jh fi 1 1 II 1 1 1 1 1 1 1 1 1 1 1 1 1 I I 1 0i~~~ 1gtcJ~l~p~ ~~~ ~~~ ~rr1111

70 Ishy() lt( w

111111~~ 3720 i- 1 1 ~ ~

~1~I A-A~)I 1111AA _~l11~ 1

lllllll11IIIAII- ~II ~1~~__~~Ill~~~~~ l1_ 1~~~~~~lll~~~~1 llllflfAll-)lllllllll1~~~~~

A I I I I I 1 I I I I 3670

275 325 375 425 575

SOUTH

I I I I I I 1111111111111111 0 1 0 20 30 40 50 0 5 10 15

(KM) WIND SPEED (MS)

DWM WINDS AT LEVEL 5 ( 1 OOOM) 1600 PST 19JUN87

~

A A A

1Sv3

(

1S3M

B-10

()

l ~

---u) 2 __ O 0 ~ w

w It) Q_

()

0 0 z 3

0 It)

~

0 ---I) 2 ~0N _

0

0

---2 0 __

_J

w r--- GJ OJ _J z __ )

~~ () r-

0 __ z ()3 Q_

~o 3~ ON

NORTH

middot-~~) K~xJ~ middot_1~ ~ 71( I IJ ~JI

~A I 1 ~~

liii[i~~ Hf~-~~~=~T-- ----- --=~~g~g~bull11ft _ ~~~ -1-x~~~ ~~~~-~~~--~-~---~ --~ t ~t~ -~1~~ -- ----

-lt J 1middot~~ __---~__

3 770 ~ ~~ --_tn ---------~~ 1 ~____~ _ ___~ -w bull Y ___~~~ (Al _~ _ ~

-- bull _ _ _ bull bull bull bull~___1 1I J~ _~

~- YI J _L ~~ ~~ YJll~E~

td _____-___ ____ __ 1 ~xgtx2-I ____________~__-A (~~~~ _______~~2-1 y~~- ___~__________~ ~

3 7 20 I-___~~__~~ Y --~ ~__ I _ - - _

~_---A~ ~---__~~~~~--_____~ ~ ~_____A~ y ~ ~___-__________~~ ~ -

~__-_______-yen_2 ~ ~ ~~_______~ ~

1 367~ 75 325 375 425

SOUTH

1111 1111 1111I I I I I I 1 1 1 0 10 20 30 40 50 0 5 10 15

(KM) WIND SPEED (MS)

DWM WINDS AT LEVEL 3 (300M)

2200 PST 19JUN87

~-

~ - - ---

NORTH 275

___ -~-___

- ~ I o_ ltAbull~-P- bull bull -P diams bull~--~~~~--- --- ~ ~ ti ~ ~sbull3820 ~=-J~_~~middotmiddotmiddot~~~--_~_=- =~_~c s~ ~3~

~~- bullbull~~bull~~~~~~ - bull -~~bull ~ v i-_ --- __-_ ~----~

~- st-~~1 17-~__4 ~ _~ ~-~-raquo~~~ -f _ _ bull bull bull bull~ bull bull-__-v 4 t ~ ~v ~- Jl_~ ~--z~~=~s~~~~Mil

-- _ ~ frac12--~~- -=~~ ~~l~1~l~tzi9~J t~ 1 1 1 1 1 1 ~-bull ~~___- v q (If V pp p I l_77rtfl _

3770 ~ ~ ---- I h1yenzi 1V-r-() bull bull ~ ~~~~~ w ~ bull ~ _ I JI J(_ )-II101-1 3 ~~A~~~XI IIJ~~~

~ f A I~ I I I I~--L -

tl ~1111111 ~K11~~llll~i~~~~I ~rr ~~ ~xgt~~~t---

N ~I I II)(01~ ~ ~ ~~~ 1~Y~lt~~~~~~~~ ~~~~

3720 iYY11Alllll1lIA~~~~ ~~---Y~---_ _ _ - ~ bullbull - - _

~rrll1IIIIIIIAAAA__

___________~~~AAAA~_~ ______________~~~~KAKAA1~~ lllllllllll~AAA1f~~

_~~

3670 t1i11 i i 1 i i 11111 i i i i -i i [ 111111-111 ~ ~ 11 ~ i I t 1 bull rm r~ij e =~~ raquo-il3t ~ 275 325 375 425

SOUTH

1111 111111 11111 1I I I I I I 0 1 0 20 30 40 50 0 5 10 15

(KM) WIND SPEED (MS)

DWM WINDS AT LEVEL 5 ( 1 OOOM) 2200 PST 19JUN87

24-25 June 1987

9106103

1SV3

1S3M

0 w w Q_ (J1

0 z 3

I f-shy=J 0 (J1

-_

2 0

--

_J w CJ f- _J OC)

0 U) z

f-shy )lt

J q-

(J1 N0 -_ 0

rlt) z rshyl)

N0 _ 3 Q_

0 20 3o 0 q-

0

B-13

lf)_ lf)

If) N If)

lf) r-shy~

I I-o 0 z lf)

~

lO

~

lf) N If)

(

pound bull d ~ bull 4 4 c_ q

1 4 r9middot-

0 N IX)

middot- t--bull ~Igt~

O ~f 4 fT amp)o(oj

4 ltI I~ ~ ~

0

o

middot a

~- v t rgt ( tgtj (~V~-1 f4

3 44 ~-~a4 V VM q -~~-q_4 ~4

_ ~ )

p- ~~t1~1 middot V II J ~ ~ )I 1 11 f ir -~~1I ~

II P P P Igt 4 ~(Iigt ~~ 1) IA

deg deg 4 4 ~ A -1 r 1 1-Y]~t J rz ~

fl r ~ Igt I~y ~ -- -- - 4 ~r___amp V P11 iP Igt P Igt p ~ -0

~bull 7~tpmiddot~P Pf P Ptl middot~ ~ q p Igt 1gt p ~ t b (r 4 P - 4---f ~ ~ bV ltI

ltI ~ ~ I p 6(~ d-_j b d p (4- 4 ~ 1 p Igt 1gt Igt - b ti

)4- a 4_) q V Igt p Igt o

lt(___~ ~- V fgt ~ 111 t Igt -4

~ ~ Igt r p Igt

~ ~ 1 h1

V (I Ilt v middot

t y-

t

t

p

P t P t P ~

0 0N - IX) n

1SV3 0 0 0r-shy N r-shy co

lf) lf)

If) N If)

~ - t bull~--~11n ~ -~bullmiddot t~ lt middot___

o_ ~ ~ ~

0 bull t bull 4_4 4 4IIgt

c 0----~ u c Igt( o ~ c ~A ~ 0 - A 4 4 ~ 1 q

o bull o- -~ 1gt 1gt ~ y4 -~J middot)bullmiddot ~ ~ ~ p 0- 1---f t-~ 1 ~ 4 4 o co u gt)O- eyti ~ ~l 9 -Y P- - I a c 1 oM_il_q A p- p

4 ~ ~-M f p

I 4

~ rv ~--~middot

tJmiddot bull P II f t )I~ bull V ct_~ V V V t P- ~ Igt t middot f lft V VJi P- P- fgt IIgt ~ _ J1 bull bull bull

1 v II p _bull ( ( ir ti- f Igt bull

j ~ r f -~-1t __

_I ltC_t--q_) v -~-ampgt

Q middot--- ~ - t ~ b

II

bull ~

bull bull

diams

1 bull ~ ~~ ~ ~ b b b lgt bull

-- b bull bull bull~4q~ lgtPlgt-4-~_tbblgt

Jraquo P P ~ q 11- 11- b b b b b

P Igt P q bull b b b b b b b b bull

bull bull Igt 4 4 fl ~ b b b b b b b b b bull bull Igt Igt ~ 4 q ~ b _ b b b b b b bull

P bull Igt Igt -4 ltI 9 b b b b b b b b

p bull - Igt Igt 4 lt1 _ b b b b b bull t bull bull Igt ~ 4 b bull b b b b b b bull p Igt Igt Igt bull 9 b b b b b b b b bull P p ~ ~ A 4 q - _ b b b

1S3M

figt j)

~ ~ bull

bull bull bull bull bull bull bull bull bull bull

bull bull bull bull middot bull middot

bull bull ~ ~ 9 9bull bull bull bull bull bull bull bull bull

bull ~ bull bull _ bull bull _ bull bull

~

If) N t

lf) r--11

~

If)

~

0 ONN - co n ~

I fshy=i 0 V)

- 2 0 0 n -

n _j w cjf-

0 l()

0 ~

0N

0

0

---shy2 ~ _

_j OC)

I- z lt( =i

J Vgtv 0N z f-

3 ~ 20 3o 0-t

B-14

---

1S13 0 0 0 N N r--shyltIO r--shy co I) n I)

I() l1 r--shy -U

E~i0 z

U N I() 3

I fshy)

0 U) l1 N -t

--_

2 0 0 0

-

LO

_J w CJf----_J OJ

0 U) z

f- )lt( l1-r ON z f-

3 ~ 0 20

50 U) 0 -sr

0 ON r--shy r--shy

r--shy (0

n I)

1S3M

B-15

lSV3 0 0 0_ N - _ - ~ I)

_ ()

(~i

0 z

If) If)N NIf) 3It)

I Il- I-a =gt0 0z If) If)()

N Nst- st-

_

2 0

--

- w I--- OC)Cj z0 -

I) )I- Jlt( --t-

N() 0 I-z ()

3 o_

0 0 2 0

~ 0 00( 0 0 0-N N _111) r-- 1)

1S3M

B-16

lSVJ 0 0 0 0 N r-shy N r-shy_ _agt lO n n n n

() r-shyU)

u) l() N N u) l()

I I lshy Ishyo )

0 0 z U1 l) N

l() r--_ 2 0 0 n -

n _j

w I GJ OC)

0 _j z

lt) I- ) lt( ~ lf) N 0 1-z l)

3 Q_

0 Lo38 0

0 0 0 0 _N N _ _(() n n n

lSJM

B-17

1SV3 0 0 0 0- -N N- -crJ co I) I) I)

lO II)- - U) It)

U) II) N N lO lO

lO- st

I l-o 0 z U)

N

~

I I-=gt 0 l)

st st

--_ It) - ~ I) 0

0 0 ___

lf)

J w I-

It) N I)

0 II)

~ OC) J z I- =gt lt - lf) N 0 1-z l)

~ 0

0

0

~ 0

38 0

N IIJ I)

- - I)

1S3M

B-18

middot~ bullmiddot I

1Si3 0 0 0 0 N r-shy N r-shya) r-shy r-- co I) I) 1) I)

--_

E~i l)

0 z 3

I r-0 0 z

0 I(

0 --_ n 2 0 ~ N --

0

0

1S3M

B-19

---

_J

w r----2i OC) _J z I- lt( ~ V1 N 0 1-z V)

3n 20 3 iE 0

---- --_

NORTH

-_ t t t f t A +1 t lt-1--JJ-middot+J

r ft_f_frac14 fffftl middotmiddotbull f_ n- ~ tn

ttt1I1~ ~ ~ ~ ~f --H 1--- ~ -

rJj ----~ ~ ~--- ~ l j bull bull - bull bull Ir - ---_- --- --~~~~~I-~~~ ~ bull ~ ~ rt

- - ~rnlit ~~~~ ~~~~ ~~ ~~~~~~~ - _~-~~ ~~~~~-=~~~~~~~-gt

3820

bl I

N 0

tshy() w 3 fftfftlll

ffltlIJ11111~11- I I I J ~-- - ~~~~11J~ -~

3720 - I I JI J ~~~~~~~--------~~ diams bull + I J J _~ 4 bull I I I J ___ ~~~~-s---~~IJ-bullbullbullbullbullbull ~__middot~middotmiddotmiddotmiddotmiddot~~~~~E-e~~

4flA~~middot~middotmiddotmiddotmiddotmiddot~~~~~ ~--_---~- ~~ 1

367~7i51bull1bull11bull1 111 13251777JT7777~7777 I I I 14251

--~--~- ~~_-~-----~ ~~~J

--~-_--~- 1- I 1 I

~ 1lJ

I I I I I I 14751 I I I I I I I s~sl1 I I I 1575 I I

3770 tshy() lt( w

3720

13670

SOUTH

I 0

I 10

I I 20 30

(KM)

I 40

I 50

lllI 0 5 10 15

WIND SPEED (MS)

DWM WINDS AT LEVEL 3 1600 PST 24JUN87

(300M)

lSgt3 0 0 r--shy N r--shy r--shyt)

It r---1)

lO ---- N bull ~~ r lO ~ oe--- I

~~~~ t z~_-----~8 ~ ~~~2~-~----=---~~ t ~~----~~ -frac14~~~--

~v -~ 1 ~ - ~ ~~ ~~~-~~N~~~~~~~~~~~

tf~ ~ ~ -~~~~~imiddot~~~~~ ~~ ~~

_gt~~ middot1 ~ r2 l~ --~- I _Ct _ V I - ftV

0 ~ ~~- X

z~ HF bullIh IJ i It ti ~ 1 IJtl ~ ~ j t ~1

~ ~ 1~1

1 r ~

)

r r~P t t _r )r f

~ 1+ t t t f t ti ~ 1 lt ~ diams t f J t H ff 1 1I I I It diams diams Vf- 1 f f ~ f I 11

(____ t i(_ bullbull ~ bull ~ I r fr1)L_lt--~~vi 1t1J U1 -~- middot~ 1 t) ~ bull ~ bull ~ bull 1 1 f f f I t ~ - ( ~ ~(~ (_ ~ b ~ - ~ bull f 1 f f ~ bull

j ~r~--~ ~ _ ~ ~ ~ l 6 bull bull 4 t ft It _ - __ _ - J ~ ~ ~ t bullbullbullbull t - _ ~--~_____

__ I deg j ~ ~ b ~ _ Igt ~ _ _ ___ bull bull bull bull

~ ~ I ~ ~ ~ _ ~ _ _ _ __ - bull bull bullf

~ bull ~ ~ 4

I -- I bullbullbullbullbull

~~~ ~

1 bull ~

-- V)

LO lshy -----_ lf)

l- w w

=~ It) 0 l)

It)

2= )

0

~

l() 9 __~----- lf)r--- --------J______--L--J-~J-J-______~______~~~___________________________ r---N O O O ON

0 0 z 3

--

2 0 0 0 ----

LO

_j

w I--GJ Cl)

0 _j z lf) )I-

lt( ~ ~

lf) N 0 -- 0 I-n 2 Zlf) ~0 3 0

N ---

0 20 3 g0 -

0

N r- N I-~ I- I- ~ n n n n

1S3M

B-21

1Sv3

U) N U)

lJ) N n

0 N (0 I)

0 r-shyr-shyI)

0 N

I)

It) N It)

U1 r--1)

1S3M

B-22

0 w w (L Vgt

0 z ~

---2 0 __

_j

w _ ~ OC)

0 _j z U1 I- )

lt~ NVgt

0 --shy 0 1-t) 2 z () 0 ~ ~ (LN -middot -

0 20 ~~

0 ON

bull bull bull bull bull

1Sf3 0 0 0 0 N N CX) ID I) I) li li

~ n

~ n

tf) ~

A i -02middot a_ ~ r ____ Igt middotjmiddot i -1 ~ i r middot-~-----------------gt IJ IJ bull 1 j I ------~-----------------

_ IA_Jyen ~ ~ J ~ yen ----~---------------------

~ II --~_a IIgt 11gt Igt middot~ I bull ~ ~ ~ ~

1(1gt i i _JI J Iibull I - IJ Ji H j

bull bull I( --- j J t ~o ~- -- -J I I i J diams bull1bull bull bull i ~ _I I I I J 1 ~~- ~ 11 J l J diams -~ J) bull ~ I- t t ~ ( l f middott J bull 1_~1 ~ IJ II- I ( II ~ j t t bull)

bull t )bull ~) i ~bull bull __ __ I 1gt J I I I middot----- - ~ _ ~ Ji (Ji_ If ~ --~ bull i f l-Ji ~ p VIMyen I ~ middot1 bull I Ibull lt_~ ~ p1 )

I

__________________

~ 4 V ltI - - - -

~) i t --- -- yen 4 yen -- Iii 1yen yen JY yen II

I ~1 Ja a Igt- yen yen yen yen yen yen yenyenIiyen II II

a Igt bull ~ 111) (I J I JY yen tY yen yen II( ltf ~ I~) JY yen liY yen yen yen yen yen yen yen II II II ~ ~(II ~ yen yen yen r yen 1r yen yen yen It Ill

p cl

p 4 ampgt P JI r Igt bull

bull JJ Igt II

- ~ 11- bull

- -

+ _ _ _ __ __ +- ____

- - ----4

bull bull Igt Igt Igt

11 bull bull bull bull

bull bull It

IJ Igt bull t P

Igt bull t

- II Igt fl t middot~~-~~~t_yenyen yenyenyenyenyenyenyenyen

I ~J )Igt) 1 bull yen yen ~yen yen yen yen yen r - yen If II II Igt - I 1 J bull bullI _ _ 1 ~ ~ 1K )

bull -

bull bull II ~ Igt- J 6 bull I 11

fl) 1gt 11 Ill

bull t t fl

~

U1 r- n

~ n

_________o__JJ=---=-------oti~~e-~e11JEJEolELE-ILILLEJLlLu~uJ

l~

0 tf)

~ 0 n

0 N

0

0

- Vl ~ 2 ---

0 w w CL V1

0 z 3

-

2 y --

-

2 0 0 tlt) --

n _J w f-~ OC)

_J z gt

I- Jlt( q-

NVl bull) I-z Vl -~ CL

02 0 3 N 0 NIf)

ONN I N ro r- (0

n n n I)

1S3M

B-23

17z-g

WEST u u u ~ ~ ~ N ~ N

NO N~ 0~0

7J ~ () z -I 0 N (I)

~ )gt c_ -I C zr co ~ -J rT7

r (Jl

-- __ 0 0 0 s _

--_ 7 ~ --

~ z

~-0 0

--s (I) ___

0

0

N o (A 0

t ()1 0

oj(JI

-0

-()1

0 0 0 N -J

A I q bull if ~ ii ii ii I ii if 1 i J (JI

Ab4llltli ~~144

bull~~bull~1111111 11~1middot)1i~~~1 ~4gt~1111111~ II~ - bullbull~Agt~lll11 IIIAII tbull ~4-4~~~III IIll~ I ~14 4 - ~ bull i ~bull-ttt1 111111 I I 1-~ bullbullbullbullbull gt q bullbullbullbull I t I I I I I 4 I I I I I I I 1_ J~ I

4~ A - middot~~lll111I IIll 1 I 4 -1~~ l~ gt1llllllI 1l111 -~~ I N

tn()16 -1 Igt Igt I I l1I v I 7----(Yi ti mbull1-t

~Plgtlt111 VIII ii l middot~1111~~0~ I l~lll~310bullbull I i~W~ffi 1~~~~6~~~ I J~ 1~~~rw 11~~~1~ ~l~~t ~ i 11~~~~~~~ ~~f)~t~~I I~tl -1

~ --J ()1 l 111~1JV1 ~~~1~ I Ill tniz~i~~~~~~ ~~~~ 7 ~K -~~iii~~~~~~~~ il~~~~~~~ 1~~1~~~

middot1 middot1 middot1 middot1 middot1 middot1 middot1 middot1 middot middot1 middot1 middot1 I I I I vr )Igt(_ I II I I~~~~t~ 21~~~r~~~~~v111l I ~ II I -- I~ J(( I I II J l l l Cl ~ I ~ ~ ~ J J I I I yen - - bullbullJ_~ f yen ~ I IJ t I ti

diams J J J I I - ~ - ~ l1 yen -1) I I( t I ~ N J J J J 1- ur~ ~ - Jf1( -I) I I I ti I I j~

() UI diams Mi r)r yen fir_~~ bulll1t) JI 1 I middot i - (JI0 ~ nmiddotmiddotJ jmiddot-1 I I I f ~j--1J ~ __ middot gt C ~ J I f I 1 ltH I fl 1 ti I middotr- I I-I ~ f bull t t l )1j - _ I

t J4J-fbullt t ~ ii middotlfli ii~) - ~bullmiddotttM i f bull bull1 rI-Ku bull bull bull _ middot-~-J_J middot t +imiddot i t t ~ t ( ~ middot(~ I J bull Vf I r1- ~ j~fmiddot + r bull(~t t bullbull_t- J J ~) J ~ Igt

+ __ middot + V+ bull bull ti+ bull + -fi J i bull bull ~ f --- ~ ~ t Li bull bull t ++ diams + t bull +++ + bull ~ __Vbull ~ it 4 ~ i ()1 ~ 1 bullbull diams diams diams diams ++ ++ bull t 1 fA middot_ -----Y 4 ~ tn

~ ~bull t bull + diams + bull diams +++t + bull A VJ ~ bull bull ~ -o middot ~- bull t bull diams diams diams + ~i4_ ~ ~ ~

11 -~ 1 1 1 1 ~t t diams t t ft(middot-- f g a PA

--middott 4 -4 y 1 1 1 )f7~ V g n t A ~ ~bull a~ 4 1 1 ( V P q 1 bull A ~ V Y ~-- 4 I Cl oCl 4 A A ~tW --~- ~middot -)bull ~iliJ bull1bull

bull It t-- ti __ __ ~ (~w ~ ()1UI I bullbull bullrmiddot -~)fl l~~~ ) I A IIbull N~L~ r ~~~-ff~ --bull--1) 4 4 bull ()1

~ 14 ~ bull f 4 AA 4~ bull

44( )A - ~

- ti~ f 4 ~ 4 4 4 A bull ~ i

ti ti fl 1 4 tn llflfl44 4 -()1

~ ()1 ti ti fl 4 4 _ 4 bull fl _ 4 ~ ~

~ bull t~ - - I - 1 T T fJifrac12 1f 1~ fl t [ 1 4 bull bull ~ ltt ~4 ~~~11 l~~Nfl---~ ~~ bull ~t144

1 -middot I I f I ~ fl ti ti- Imiddot tJ 1-0 I 14

z o 0 -I

I

Y

)

u u u u 0) ~ ~ ~ ~ N ~ N 0 0 0 0

EAST

1S13

0 z 3

r r I-shy Ishyer gt 0 0 z ()

--_

2 0

--

___J

w CJ r----1 (lJ

0 l() z

Ishy gtlt J LO() N0

z Ishy()

3 0

0 20 3o 0 tj--

0

1S3M

0 w w 0 ()

B-25

------

~ --- _

NORTH 275 325 375 425 475 525 575

dJ 41 l ll~I tgtI I lo fA Itgt IA IA lo 1 IA IQ 1q lq If lq I ~I 4

~ ~ IIJ ~A ltI P Igt Igt Igt P V V V Q q l_-~- q ~ ~ ~ x- ~ ~ Y t~ --___q)11 4 ltI v v v v v v v 1raquo 4 -q q -~ q ~ 1 a

~ 4 ~~_gt~) ) ~~-4_~ A ltI fl v v v v p A V yjq ~ _ _ ~bullbull --shy~~~ ~ I Cl11 ~ 4 v v v v P- deg 4 ~ -V t V ( ~ a bull-

~ 1 ~~~ v ~sa- fl V P -iLpound_~A--4 q Igt P ~ 4 a~ 4 38203820

- _1 fa bull bull ~ II 11 4 4 ltf V P deg q 9 p Igt Igt Igt Igt P~~ _ _ _ bull -

- ~_R middot ~ gt- P-~-j---s--middotp-~~--- Igt p ~(

-~~ _ amp- 4 --v--J ~--~ -__~---- ~~ t f ---~middot bullbull ~ ~ ~ ~ ~~bull--- bull~bull~~ 4 ~-deg ~--~ ~_v -~ _~raquo Wh~

bull bull bull bull ___ol bull bull --___~ ~ _ A~~-~- f_~-~ bull 1 ~bull -~ Igt bull

a l -4 bull bull~ bull ~ ~ bull frac12~ P- __ _middotmiddot11-~~j)6-_ U bull _ JIgt~ bull I- bull ft ~ 4_~~~~ 9 P lgt--1gt~~~_-~_----~~~ ~ bull ~ ~ ~ ~ --~-~- ~~-_middot ~~~A~ ~ 1111 ~- ----~~ -~- IIgt _)-

1111 1111 -( _-middot 4 ~ Po Igt q lgtmiddotv11t_ Igt Igt II

3770 ~ P 0 ~ - bull k ~ 1- 1-

() pound 4 4 ~ q -44 - bull bull Igt ~- t Igt 1 Igt () w Igt 7 lt

3 - bull It It It bull bull ~--~ p ~ Igt ~ w ~~ It It It bull ~ -_t _ ~ bull bull bull bull --~ Igt

deg

td bull ft bull v ~lt~ Igt Ci~ 4gt I ~ It bull bull ~ 6 -It Igt ~

N bull bull It It ~ ~ _ ~_) ~ ~ lr It ft ft ft ft ft ft Igt -II-~ j ~ fil- _ _ _ _ bull 11r 1o 1o It 111- bull ft ft ft ft ft i i f - ~ 3720 bull It bull ft ft ft ltt q -e- ~ ~ ~j1

4

middot bull bull bull It It ft It bull ~ ~ ~ bullmiddot ft ft ft ft ltt ft ltt ltI 1 ~ - It bull It ft ft It bull -0 ~ JIgt ]~

middotmiddotmiddotmiddotbullbull1rt1rtft11- p-bull- ~1frac121 1tftftlttltltPt1t fgtbullbull ~~- bullbull ~

It bullbullbullbull It ltt It It ltt It lrt lrt tgt - ~

~~~ItIt ItItIt 1t11tft lttlttftlttltlt ltt lt11t ~ lgtbullJgtIbullbull bull~bull bull~bull ~ 1 bull bull 3670 367~75 325 375 425 475 525 575

SOUTH

1111111111111111I I I t--l 0 10 20 30 40 50 0 5 10 15

(KM) WIND SPEED (MS)

DWM WINDS AT LEVEL 3 (300M) 400 PST 25JUN87

0 0 0 0 N r-shy N r-shya) r-shy r-- (0 I) I) 1) I)

-

LO r--1) -

l~ i ()

0 z 3

I ~ n 0 z I)

N st-

0 If)

0 - I) 2 0 ~ N -

0

0

1S3M

B-27

---_

2 0 0 0

-

If)

_J

w Cj l-_J OC)

z_ ) lt( J () L()

ON z~ 3~ 20 3oo+

0 0 0 N N C0 (0 I) ~ I)

U)

U)

U) U) N N It) U)

I I-=gt 0

U) V1 N st-

lO N I)

0 lO

0 __ I) 2 0 ~ N _

0

0

__ 2 0

--

_J

w l--Gj OC) _J z I- =gt lt( ~ V1 N 0 1-z V) 3 CL

20 3 g0

1S3M

B-28

I fshyCt 0 z

0 r-shyr-shyI)

0 N r-shyn

0 r-shyl) I)

lO r-shylO

lO N It)

lO N ltt-

--

tlt)

_j

w r---fu o) _J z f- ) lt( ~ f) N 0 1-Z Vgt3 (L

2 03g0

I fshy)

0 l)

0 lO

0 -- n 2 0 ~ N ---

0

0

1S3M

B-29

1S13

-l)~ O 0 w

deg CL w

l)l ~

0 0 z 3

I lshya 0 z

--_

2 0 0 0

--

LO

_j

w__cj IJ)

0 _j z lf I- )

lt ~ ~ V) N

I) 20 - 0 Z(f)

I-

0 ~ 3 CLN -

2 00 3 gOr-

0

1S3M

B-30

Ht 11Sittl

lS13 0 0 0 0 N N II) (0 n I) n n

-- ()

LO t-shy ~ lO

(~i0 z

lO N LO

3

I Ishygt 0

lO () N +

--

2 0

--

_j

wr-----CJ OJ

0 _j z lt) I- )

lt ~ V) N

0 -- 0 1-shyI) 2 z () 0 i 3 ClN --- --

0 28 3 ltD

lf 0~_____________________________~_______________________--- t-- 0 0 0 0 ClCI N N t-shyII) t-shy io n n n n

1S3M

B-31

==- ~-_

NORTH

I bull bull - -f I I bull ~bull - ~__~~~~ ~~~

flt~11 $~~~t=- ~~ ~ 4Aligt~ ~~~ ~~

3820 1~~~- 4 t 11 ~ ~- --~_____-- ~ ~ ~~ 3820 ~~~

~~-~~~~

3770 3770

l1 ()w l-

lllizz tshy

~ ZlZZl ~ ~~~~~~

to I -IllIll

w -I IIIll~N llllll2~~

-II I I J I-~1~ r~~~~ 3720r ~ J J UL 1~A~~ 3720

~IIJJJJJ2~ ~~~ 1 ~ fl I JI JI2~~ 1~~~V fl fl ~ JI J J ~ y ~- 1-f4~) ~ fl fl fl I JI J _A2 1~ V~

~flflflflJIJIJl~2 ~~JIw~ ~ ~jlfljlflJIJIJI~ ~JIJIJflfl~~~ ~ ~~fljlfljlJI~~~~ -

J67 t-V1111111----(((((1i I~laquo rlt~1 I I I I I I I IM m I I I I I I I ~ MJ670 g75 325 375 425 475 525 575

SOUTH

11111 11111 11111 1I I I I I I 0 10 20 30 40 50 middot 0 5 10 15

(KM) WIND SPEED (MS)

DWM WINDS AT LEVEL 3 (300M) 1600 PST 25JUN87

1

NORTH

bj I

w w

i~ -tt--t ~ + ~frac14 diams diams diams diams diams f f f J-~~~l -ff~_x~ diams t diams ---t diams + diams ff f J1ff~t t

-=tl-U +---- ~ ~ t-t- diams diams __ diams~ diams diams ~ J I I 1 1 f ~ -y- ~I -~~-1t-~ diams +__+ diams + ++--J_f 1 ~JJ-11 I --

38201- ~~-- ~ ~--t_-( 1 ~ r 1t + middot~-t_ bull ~-~ bull bull bullmiddot bull r-r 1 ~IiI 1 I ~Ji~l _-=pound-~If~_ It It It bull bull bull bull bull ~ diams f f---bullmiddot+ --I __- _ I I~ 1 f1

( - ~~~~ II lit It It 1tt Iii Iii~ -r-middot -- ___- l_f--1-l -L ~~1 1 ~ ~_( _ -~~ ~------~ 1t(~ bull (t ft- ~ middotv -11-fI 1 - t~~1 1 41

~ - ~-~- lit 1t lk_i -- -~--- -_ -j rf-- l1 r111 1 I It It~ It 1t 11i bull-~ ~- ~ t_bullbull_~ (middot ~--middottY~i_(4Xtl~4j_ middot It It ~ -- ---~----~----_I~)-~-~ -

~-It It ltt middot~- ~ -~-middot ~-pound1[_~ -~- - middot - deg - - It It l diams diams 4 middotbull--bull ~ ~ ~ diams 7 1---~~ -L_- - ~ t( I diams -( bull diams ~ ~ bull ~ -- JI JI Jf JI JI j(_ ~II deg It_ -~ ~- I I I J JI JI JI JI 1

~ J- ~llj ~- diamsdiams +II IllJI_ h~ ~ ~ ~ bull bull ~ JI J J J ~ 1 x111 X7 -~ ~ diamsdiams 4111 JJJIJJ~~~~~~~~1t diamsdiamsdiams ~111 JJIJJIJllllb~ h~~~hh middot ~ - diams diams bull I I J J I I I I JI JI I l1-14~frac12-~~~ji_ ~ + f 1 J I 1 I I I 1 ~ x~ f1 11 middot -

bull JI I I I11~bullY1iz 1 41 ~ f I J J J JI J J J J J I I I lmiddot ~ t JI JI JI 1 JI 1 1 JI J I I I It~ if~_~

It_ ~ 1 JI JI JI JI J J I I l-~ 4 t J J J J J J J JI JI I I l l deg ~~ _ ~ 1111JJIJIJIJIJIJIJIJI t JIJIJIJI~I JIJJIJIJI_

~- I t I I JJJIJIJIJIJII~~~~ t JIJJIJIJIJIIII ~~ JJ JIJIJlllll ~ t IJJIJIJl1 1 1 ~ ~~I 1 t 1 A 11111111 II I I I

325 375 425 475

SOUTH

I I I I I I 0 10 20 30 40 50

(KM)

525 575

1111 111 1111 10 5 10 15

WIND SPEED (MS)

3820

3770 1-() lt( w

3720

3670

DWM WINDS AT LEVEL 1600 PST 25JUN87

5 (1000M)

0 w w CL ()

0

1S13 0 0 0 N r-shy N agt r-shy r--t) I) 1)

I() It)- r-shyU) U)

z U) N It) 3

( I I lshy Ishyo ) 0 0z It)

~lgtIgt~() st- b tgt ~ q st

lgtbbtgtb

b b t t 0 b

N

Igt b t b b b A 6 ~ b b t b C A 4 d 4

ttCt4lt1-it e Igt b tgt tgt V q ltl ltl ltI ltl

ti- deg 1 41 9 q I I ltl q q

i V q ltl q q q q I l() r-shy AlgtV ~ tlt) ~t) -~~~q

~ bull amp ~

0 ~ ~

-qa ~ ~ 1gt1 111111

b-a~-V ltillilI

bull lt bull bull a ~ Igt ~ V V V q 4 __J

It It lgt a -a~ Igt C tgt V w r---(J OC)

bull ~ Igt t 4 bull bull bull bull U) 0 __J z middot 1gt44lt14

U) ) t) rshy J - -N

lt( l() ~ ~~ CI() ~ ~

~

0 Ishy bull bull bull diams 1 z ()~ bull ~ bull diams diams 1 CL3bull ~ ~

i b y ~bullbullTT r I I 0

~ bull bulldiams ~ ~ b b b b ~ bullbull diams T r r I U)______-11____________________________ _ 0

0 O O ON N r- N r--agt r-- _ ~ I) I) I) I)

1S3M

B-34

I

_ _ 3820r- ttr- t f T Jf-Lt If t t 1l-- -~ 1~ t t

NORTH

~bull 1414

~~-_ ~ ~ r-- - --~ ~ - - _ r-- fT W - - r V-V ff f

- t t t t f I~ _AAjAA~-r bull(- -J It ~---1 t ~~~-1-- 1 ( ~~ - J ~ t t i f 1 ~ A_A-yen~_~_ ~ ~ 1 ~ t t ~ t t middotmiddotkt f ~-~-~~-----~~-- ~ ~ ~ ___ll_ bull ~

t -r- _______~~----- r ~bullbull _ ~ ~ tt-~J--~c-~~ ~ 1~--______ bull

~ -t lJ-- f t-J-- r---~~---middot _-- ~~-- ~ bull bull ll~iti~~sect~~~ ~ bullbull~bullbull bull~~n~ bull bull bull n~ bull bull

A)~lfifrac12~~ ~III I --1

3770 l l L l L - - ~ -- ~ - 1 ~ - 770 tshy~ ~~~~~~~~~11 1 ~~=1~~- Ul

W 1lllll~I ~~~~1111~~ lt( w ~1~~1~1~~j~~~m ~~~~ ~ - ~

11 1111 1111~I I 11111111 --- middotE~

tj IIIIIIIII_ ~tI l) llllll_~_p ~1l1 1~A~~~A~~rrr-v

3720t- I I I J J J A__ r r 0 11J)~~~----~_~ppmiddot-~~f Jl~~~~~---~--~~r~-~~q~q ~1

I ~JI I~ A A-_

~JIJl~~~~~A-----A rrbullbull~f~df~ ~~JIJl~~~~A~~--~- fffdfdff

~~JIJI~~~~~~---- bullfbulldbullfdf~

~IJIJl~~~AA~ --middotmiddotmiddotmiddotmiddot~middotmiddot~~~ ~l~JIJIJl~~~Al~pp~~~~bullbullffffffdff X ~~~~JI~- A(- f bullbull P ~ ~~bull1f1q1f1f1f1f1f1d1bull

3670275 325 375

1111 1111 11111 1 1 1

0 10 20 30 4-0 50 0 5 10 15 I I I I I I i(KM) WIND SPEED (MS)

iDWM w1tms AT LEVEL 3 (300M) ir 2200 PST 25JUN87

0 If)

0 __ I) 2 0 ~ (j __

0

0

__ 2 0 0 0

__

LO

_J

w f- GJ ll) _J z I- ) lt( ~ () N 0 1-z () ~ Cl

20 ~~ ON

1S3M

B-36

Page 11: Nind Observations Collected during the Southern California ...

5~

NORTH 275 325 375 425 475 525 575

~-~

bull ( I (o(r--L__- __ c_ __ ) -9) I _)I --~ ---~ __------__

bull (Q ~ ~ l-- middot r l__ _ _ 1 2 oo--_ - _ ~ shy

-

----- ----

------ ---

~middotmiddot- lt~]~---~ ~ 1 L

~~ 0

- o 7 -

----

~ middot -_ -_ I ( C~ ) ~ middot---) lt____ ) 9 bull ~- J t------------ ~ middotbull _ __ 10o -- - - - - - - 0 __ - J J--aoo ltJ

3620---_--__ _ - 0) ------- ___ -- - - ---- -- - --~- 7--

- middotmiddot -middot-- 0 _ - - I 1---------- ---- ~ ---~-----_ -~- ------- -_ ------~lt()~ --nmiddotor ~o-gtpcbull-middot ccc_--gt ____ middot_middot Ji tdegoo CmiddotI bull -bull - - I ---

middot-middot ___ - 1 c___ ~ i-- l bull - --- bullsoclt---_ middot middot-~soc_ ~- le r---- ltD

_ - -- ____ -c bull -~------1 5

= __ __ ) --~ --_ ---- ____ - _____-~~~-~ ~ _ ---~-frac142--~~ so9~ _ Q___~ - -- _ bull bull 1 middot -~ - -- - bull bull c- rAo 0o(Y--

-_ -------=--=_6CO-------- - ~)_O~ _ ~_ lt--middot_~~--~ (_ )-~- - _- ~ 0

~) ( ___ ------ -~- C jjh --- - ~ I 3770

t- 300- middotoo___ -~- l _2 ---sii middot middot 50~ ( C tshyV10w w ~ C ~_( middot bull i

l_ --t

~

__ _~) igtgt

- 1

- middot

7)_ -o-

- _middot-- -- ~ ---30~lt_~-L_ 9oo_~gn~~-__~~

U)

3770

- - o ~~~~d l -- o~ Jl _

si (_ - (----_ ( 1400t 37203720

- 1 ) reg_~S ~ ~~

7 9 b -- -- 0 ~

i --shyf I I I ~Ibull-bull

367~s I I I I I I I 13251 I I I I I I I 1351 I I I I I I I 14251 I I I I I I 14~51 I I I I I I I ss 7 I I I I I I I5s I I I I 3670

SOUTH

I I I I I I 0 10 20 30 40 50

(KM) i

FIGURE 1-1 The SCAQS 1987 analysis domain (axes labeled in zone 11 UTM coordinates topography contoured in meters)

-- ii gti kd

Our analysis consisted of (1) generation of hourly gridded wind fields for the 17 SCAQS intensive study days using the DWM (2) analysis of the mesoscale airflow patterns and (3) calculation of forward and backward particle trajectories to examine pollutant transport in the SOCAB

The results of the diagnostic analysis of SCAQS wind observations are presented in this report The generation of wind fields and the resulting airflow patterns are described in Section 2 The trajectory analysis is presented in Section 3 Plots of the wind fields are given in Appendix B The trajectory plots are included in Appendix C

9106102 7

2 GENERATION OF WIND FIELDS AND ANALYSIS OF AIRFLOW PATTERNS

DIAGNOSTIC WIND MODEL

Hourly gridded wind fields were generated for the 17 SCAQS intensive monitoring days using the Diagnostic Wind Model (DWM) (Douglas et al 1990) This model incorporates observations where they are available and provides some information on terrain-induced airflows in regions where local observations are absent The model is formulated in terrain-parallel coordinates Wind fields are generated using a two-step procedure

In step 1 a domain-scale mean wind is adjusted for terrain effects These include the kinematic effects of terrain (lifting and acceleration of the airflow over terrain obstacles) thermodynamically generated slope flows and blocking effects Step 1 produces a spatially varying gridded field of u and v for each vertical layer within the model domain

In step 2 observational information is added to the middot(uv) field calculated in step 1 using an objective analysis procedure observations are used within a user-specified radius of influence while the step 1 (uv) field is used in subregions where observations are unavailable The following modified inverse-distance-squared weighting scheme (Ross and Smith 1986) is used for the interpolation of data

where (u0

v0 )k denotes an observed wind at station k rk is the distance from station k to a

given grid point (u v)1 is the step 1 wind field at the grid point and (u v)i is the updated wind vector The parameter R controls the relative influence of the observations and the step 1 wind field

Following the interpolation a five point smoother of the form

9106102

Amiddot 1J

8

is applied to the horizontal wind field to reduce discontinuities that may result from the interpolation The vertical velocity is calculated by integrating the incompressible conservation of mass equation Zero-gradient lateral boundary conditions are used

GENERAL PROCEDURES

Generation of the SCAQS wind fields involved (1) preprocessing of the wind data for input into the DWM (2) plotting and quality control checking of the data (3) specification of the model input parameters (4) exercise of the DWM and (5) graphical display of the gridded wind fields Winds were analyzed at six vertical levels 10 100 300 600 1000 and 1500 meters (m) above ground level (agl)

In the preprocessing step the upper-air data were vertically interpolated to the model levels and temporally interpolated to enhance the temporal consistency of the wind fields and to provide hourly input for the DWM

Following the preprocessing step the data were plotted and examined for horizontal vertical and temporal consistency Data that failed the quality control checks were eliminated from the model input data set

The controlling parameters for the DWM include the maximum radius of influence (RMAX) at which a monitoring station can influence the interpolation at a grid point the weighting parameter for terrain effects (R) the number of stations to be used in the interpolation (NINTRP) and the number of smoothing passes (NSMTH) Note that the maximum radius of influence is specified independently for the surface level ( over land) upper levels (over land) and over-water portions of the domain The weighting parameter for terrain effects and the number of interpolating stations are specified separately for the surface level and upper levels In the diagnostic analysis of the SCAQS wind observations these parameters were specified as follows

RMAX (surface) 20km RMAX (aloft) 100 km RMAX (over water) 150 km R (surface) 10km R (aloft) 50 km NINTRP (surface) 4 NINTRP (aloft) 3 NSMTH 4

Tests were performed to examine the sensitivity of the DWM to the various contr ling parameters and to select the optimum values of these parameters for the SCAQS v nd analysis

9106102 9

The DWM also requires as input a domain-mean wind and stability information For this analysis the domain-mean wind was specified separately for each analysis level and was based upon the average of the level 6 (1500 m agl) wind observations To account for friction the speed of the domain-mean wind was reduced for the lower levels by multiplying the average wind speed for level 6 by the following scaling factors

Level Scaling Factor 1 048 2 072 3 083 4 090 5 096 6 100

The domain-scale lapse rate was the calculated average of four inland sites These varied according to data availability

Six-hourly plots of the level I (surface) level 3 (300 m agl) and level 5 (1000 m agl) wind fields for each episode are given in Appendix B

SUMMER INTENSIVE MONITORING PERIODS (

Mesoscale airflow in the SOCAB during the SCAQS summer intensive monitoring periods appears to have two components

A basic diurnal cycle driven by land-water temperature differences and complex terrain and

A perturbation associated with the overlying synoptic flow

19 June 1987

The surface and upper-air wind monitoring site locations for this intensive monitoring period are indicated on pages A-1 and A-2 respectively Plots of the diagnostic wind analyses for 19 June are given on pages B-1 through B-12

The surface early morning airflow pattern on this day is characterized by weak winds over much of the coastal and inland areas with moderate NW winds over the Coachella Valley and offshore At 300 m agl winds are S over the western half of the domain and W to NW over the eastern half of the domain The overlying flow at 1000 mis W

9106102 10

n1er

The sea breeze is somewhat slow to appear in the western basin on this day but has begun to develop by 1000 PST At this time winds at 300 m agl remain S over the western part of the domain and W to NW over the eastern part of the domain Some S flow is also apparent at 1000 m

During the afternoon hours three distinct features are apparent in the surface airflow pattern

A sea breeze (W flow) develops along the coast between Santa Monica and Palos Verdes and penetrates inland A branch of the sea breeze penetrates into the San Fernando Valley resulting in weak SE flow at Burbank and Reseda

An area of weak (SW) winds forms in the Whittier-La Habra-Pico Rivera area persists throughout the afternoon and fonns a convergence zone in the central basin with the penetrating westerly flow The S component of this flow is due to sea breeze development along the coast near Long Beach

Upslope flow develops along the foothills of the San Gabriel and San Bernardino Mountains (eg at Glendora and San Bernardino) Along the eastern foothills the upslope flow is supplanted during the afternoon by the penetrating W flow

By 1600 PST on 19 June the depth of the upslope flow near Glendora exceeds 600 m Strong outflow is apparent through the Cajon and Banning passes Aloft winds are generally SW with some SE flow near Burbank and NW flow over the Coachella Valley

Significant onshore flow (3 ms) persists along the Santa Monica-Palos Verdes coastline through 2200 PST Feature-s of the afternoon airflow persist aloft through this time

24-25 June 1987

Surface and upper-air wind monitoring site locations for this intensive monitoring period are indicated on pages A-3 and A-4 respectively Plots of the diagnostic wind analyses for 24-25 June are given on pages B-13 through B-36

The airflow patterns on these two days are similar to one another and to the ttern on 19 June The overlying flow is generally weak below 1000 m agl with moderak t5 ms) SE flow at 1500 m agl

On 24 June the early morning surface airflow patterns are characterized by ver middoteak winds At 300 m agl winds in the Coachella Valley are SE By 1000 PST a we1 organized zone of weak S flow extends from Long Beach to Pasadena this S flm

9106102 11

(

reaches a depth of 300 m agl Southeastern flow in the Coachella Valley and E flow through Banning Pass are apparent both at the surface and 300 m agl S to SE flow dominates at 1000 m agl The II three-zone II surface airflow pattern is apparent during the afternoon The wind shifts to Wat Banning Pass by 1500 PST At 300 m agl winds are SW over much of the basin with SE flow at Burbank and in the Coachella Valley At 1000 m winds are generally SW At 2200 PST the airflow pattern is characterized by weak unorganized flow at the surface and 300 m agl Winds at 1000 m are NW over much of the domain but SE over the Coachella Valley

The airflow on 25 June is similar to that on 24 June During the early morning hours winds at the surface are very light Weak SE flow is apParent at 300 m agl At 1000 m agl winds continue to veer toward N The sea breeze develops more quickly than on the previous day and winds at Banning Pass become westerly by 1300 PST Calm winds are observed at Pico Rivera throughout the afternoon As on 24 June the afternoon airflow at 300 m agl is characterized by SW flow over the basin and SE flow at Burbank and over the Coachella Valley Upward propagation of W flow is generally slower than on 24 June Winds at 1000 m agl are S to SE During the evening hours the surface winds become light while at 300 m agl winds over the Coachella Valley become NW Organized W flow is apparent over the W basin through a depth of at least 300 m agl through 2200 PST

13-15 July 1987

Surface and upper-air wind monitoring sites for this intensive monitoring period are shown on pages A-5 and A-6 respectively Plots of the diagnostic wind analyses for 13-15 July are given in Figures B-37 through B-72

Airflow patterns on 13 and 14 July are generally consistent with the basic diurnal cycle described earlier However an unusual airflow pattern develops in the Coachella Valley on both days On 15 July strong SE forcing is associated with a delay in sea breeze development

The 13 July early morning surface airflow pattern is characterized by light winds and a weak cyclonic eddy over the Santa Monica Bay Winds aloft are light to moderate and primarily W The sea breeze develops rapidly on this day and by 1200 PST W flow overwhelms the S sea-breeze flow in the Long Beach Area W flow appears at Banning Pass by 0800 PST The surface afternoon airflow is characterized by the three-zone airflow pattern described earlier with strong upslope flow along the foothills ( gt 5 mls) and significant outflow through Cajon Pass Observations at Palm Spring (NW winds) and Thermal (SE winds) indicate a convergence zone in the Coachella Valley with a depth of at least 600 m W flow dominates at middot1000 m with S to SE flow over the Coachella Valley During the evening hours a cyclonic eddy redevelops over the Santa

9106102 12

rtMt1

Monica Bay winds are weak throughout the basin but airflow into the Coachella Valley is especially strong

Airflow patterns on 14 July are similar to 13 July with a few exceptions During the early morning hours the surface airflow is characterized by weak disorganized flow There is no eddy apparent over the Santa Monica Bay The overlying flow is weak and primarily S to SE at 300 m agl but W to NW at 1000 m agl Sea breeze development is approximately two hours slower on this day than on 13 July By 1000 PST weak S flow has developed over the Whittier-La Habra-Pico Rivera area and SE flow is apparent at Burbank AS component to the flow appears at 1000 m The afternoon surface airflow pattern is similar to that on 13 July but the S upslope flow at Glendora is weaker S flow develops at Elsinore and several coastal Orange County sites The Coachella Valley convergence zone reappears at the surface at 1600 PST two hours later than on the previous day At 300 and 1000 m agl W to SW flow dominates over the western twoshythirds of the domain SE flow is apparent over the Coachella Valley During the evening hours the surface airflow over the central basin is S to SW W flow components persist along the eastern foothills through 2200 PST

On the morning of 15 July surface winds are weak but maintain a S component Moderate SE flow is apparent offshore The overlying flow is generally E to SE By 1000 PST the surface airflow pattern is characterized by S flow over the central basin and along the foothills SE flow in the Coachella Valley and E flow through Banning Pass The depth of the S to SE flow is greater than 1000 m agl During the afternoon a weak sea breeze penetrates inland and winds along the foothills become W Winds shift from E to NW at Banning Pass at 1600 PST A weak S flow component persists in the Whittier-La Habra-Pico Rivera area throughout the afternoon A weak slopevalley circulation develops in the Coachella Valley resulting in SE flow there At 300 m agl winds are SW to W over the central basin and SE over the Burbank and the Coachella Valley At 1000 m S to SE flow dominates W winds persist along the foothills through 2200 PST and weak S to SE flow redevelops at the surface Remnants of the afternoon airflow pattern persist aloft

27-29 August 1987

The surface and upper-air wind monitoring site locations for this intensiv middot1onitoring period are indicated on pages A-7 and A-8 respectively Plots of the dia stic wind analyses for 27-29 August are given on pages B-73 through B-108

On the morning of 27 August surface winds are weak over most land areas a 1djacent coastal waters with moderate (5 ms) NW winds well offshore Winds aloft a Jrimarily N with weak NE flow at 100-300 m agl over the central basin By 1000 PST threeshy

IIzone airflow pattern has developed at the surface and is somewhat apparent ( hin the limits of the upper-air network) at 300 m agl SE flow has developed at 100( agl

9106102 13

This pattern is maintained throughout the afternoon Within the Coachella Valley a classic daytime slopevalley flow pattern develops with SE flow extending to a depth of 1000 m E flow develops at Banning Pass and persists through 1700 PST W flow over the basin develops upward throughout the afternoon By 1600 PST wind at 300 m agl are W to SW over the central basin and SE over Burbank and the Coachella Valley During the evening hours the features of the mesoscale airflow pattern over land weaken both at the surface and aloft There is no clearly developed offshore-directed land breeze

On the morning of 28 August the surface winds are weak and the overlying flow is primarily E Retardation of the sea breeze by the overlying E flow is apparent by 0900 PST S flow develops in the Long Beach area E flow at Banning Pass is substantially stronger than on 27 August During the afternoon of 28 August S flow persists at Long Beach and develops in the Whittier-La Habra-Pico Rivers area SE flow is observed along the Orange County coast E flow through Banning Pass persists throughout the day W wind components along the Santa Monica-Palos Verdes coastline are weaker than on the previous day and NW flow fails to develop at San Nicolas Island W flow over the central basin disrupts the SE flow aloft During the evening hours the airflow features weaken W flow along the foothills does not persist as long as on the previous day

The early morning airflow pattern on 29 August is characterized by SE flow both at the surface and aloft Sea breeze development on this day is slower than on either of the previous two days S flow again develops in the Long Beach area and appears to be stronger than on the previous day Although the sea breeze is weaker winds at Banning Pass shift from E to SW by 1300 PST This shift occurs at 1800 on 27 and 28 August SE flow persists aloft with limited upward development of the W sea breeze flow W flow persists in the western basin area through 2200 PST and SE flow persists aloft

2-3 September 1987

The surface and upper-air monitoring site locations for this intensive monitoring period are indicated on pages A-9 and A-10 respectively Plots of the diagnostic wind analyses for 2-3 September are given on pages B-109 through B-132

The first day of this period is probably the most anomalous of the summer SCAQS intensive measurement days Overlying easterly forcing during the morning hours prevents development of W flow along the foothills and inhibits upward development of the sea breeze over the western and central portions of the basin The easterly forcing appears to reverse rather abruptly on the afternoon of 2 September Unusual winds are also observed at Burbank on 2 September During the late morning and afternoon Burbank experiences an unusual wind shift from SE to W through a depth of 1000 m On 3 September the overlying airflow is W and the airflow patterns are more typical

9106102 14

rrn

On the morning of 2 September strong downslope flow results in N to NE winds at several sites along the foothills of the San Gabriel Mountains At 300 m strong NE winds are apparent over the central basin The overlying flow is E By 1000 PST the sea breeze appears as W flow along the Santa Monica-Palos Verdes coast and S flow in the Long Beach area The surface analysis indicates a band of S flow from Costa Mesa to Azusa W flow has not developed along the eastern foothills Winds are SE in the Coachella Valley and E through Banning Pass E flow aloft continues and intensifies During the early afternoon hours a relatively strong sea breeze penetrates inland to Azusa while winds in the Whittier-La Habra-Pico Rivera area remain weak The sea breeze weakens considerably after mid-afternoon Between 1200 and 1500 PST the wind at Burbank shifts from SE to W through a depth of 600-1000 m By 1600 PST the overlying flow has shifted from SE to W Onshore flow continues at the surface through 2200 PST while the winds weaken considerably Although the overlying W flow persists in general 300 m agl winds at Burbank become SE

The early morning airflow on 3 September is characterized by weak winds at the surface SE flow at 300 m agl and primarily W flow at 1000 m agl Although the major surface airflow features appear to develop as on previous days upward development of the pattern is limited Strong S flow is apparent by 1200 PST between 100 and 300 m agl over the central and western basin By 1600 PST the sea breeze has penetrated well inland Imbedded in the sea breeze is a persistent calm area in the vicinity of Lynwood S flow persists at 100-300 m agl over the central and western basin while flow at this level off shore remains NW At 1000 m agl W flow continues This general pattern persists through 2200 PST but weakens considerably especially at the surface

AUTUMN INTENSIVE MONITORING PERIODS

The mesoscale airflow patterns in the SOCAB during the SCAQS autumn intensive monitoring periods exhibit a weaker diurnal cycle than the summer airflow patterns Synoptic forcing also appears to be stronger

11-13 November 1987

The surface and upper-air wind monitoring site locations for this intensive monitoring period are plotted on pages A-11 and A-12 respectively Plots of the diagnostic wind analyses for 11-13 November are given on pages B-133 through B-168

During the early morning hours of 11 November NE surface winds are apparent over most of the region Surface wind speeds are very light over the basin and somewhat stronger along the foothills and the coast At 300 m agl winds are light and generally E At 1000 m agl winds are W to SW over the western half of the domain and SE over the eastern half of the domain Weak E to NE surface flow persists throughout most of the

9106102

15

morning in the first 300 m An apparent anticyclonic eddy (SE flow at Long Beach weak S flow at Burbank W flow at El Monte) develops between 600 and 1000 m agl on this morning A weak sea breeze forms around 1200 PST penetrating only to the central basin There is no apparent turning of the sea breeze into the San Fernando Valley W to NW flow develops offshore and is deflected around the Palos Verdes Hills This W flow is also apparent at 300 m agl Downslope flow components along the foothills are apparent by 1600 PST At this time the 1000 m agl winds are weak and N The sea breeze rapidly dissipates and NE flow develops at several coastal sites indicating a land breeze NW flow is maintained off shore The nighttime airflow pattern aloft is characterized by weak N winds at 300 m agl and weak W winds at 1000 m agl

The surface airflow pattern on the morning of 12 November is generally similar to that on 11 November E flow over land is apparent through a depth of 300 m while NW flow persists offshore The overlying flow is W The afternoon surface airflow pattern is more similar to a typical summer afternoon pattern than the previous day Turning of the sea breeze into the San Fernando Valley is apparent and W flow develops along the foothills of the San Gabriel and San Bernardino Mountains by 1400 PST Airflow at 300-600 m agl appears to veer continuously from E to W at most inland sites during the afternoon NW flow through a depth of 1000 mis apparent over the Coachella Valley Surface winds become light and disorganized during the evening hours Unlike the previous day NE flow does not develop at the coastal sites and NW flow weakens offshore W winds persist aloft

On 13 November surface winds are very light through the early morning hours with E flow components apparent immediately offshore The overlying flow is WNW but becomes S over the central basin by 1000 PST As on the previous two days a sea breeze becomes apparent at the surface by noon W flow components over the basin and foothill areas are stronger than on the previous two days both at the surface and aloft Significant W flow also develops in Banning Pass Moderate to strong W winds are apparent aloft During the afternoon and evening hours SE winds are apparent at Burbank between 300 and 600 m agl Intense W flow develops off shore and propagates inland during the evening hours W flow continues aloft with some S to SE flow between 100 and 600 m agl at Burbank and El Monte

3 December 1987

The surface and upper-air wind monitoring site locations for this intensive monitoring period are plotted on pages A-13 and A-14 respectively Plots of the diagnostic wind analyses for 3 December are given on pages B-169 through B-180

The early morning surface airflow pattern on 3 December is characterized by weak NE winds over the inland areas and a weak cyclonic eddy off shore The overlying flow is S to SE Surface winds remain light and variable through most of the morning Moderate

9106102 16

txi Iii ttii

E flow is apparent over the western and central basin between 300 and 600 m agl A sea breeze develops around 1200 PST reaching a depth of 300 m and penetrating only approximately 30 km inland S to SE flow persists above 300 m agl The sea breeze weakens during the evening hours and N flow through a depth of 300 m develops at Long Beach E flow components intensify at 600 m agl and above

10-11 December 1987

The surface and upper-air wind monitoring site locations for this intensive monitoring period are plotted on pages A-15 and A-16 respectively Plots o~ the diagnostic wind analyses for 10-11 December are given on pages B-181 through B-204

On 10 December the early morning surface airflow pattern is weak and disorganized Weak NE flow is apparent over much of the basin between 100 and 600 m agl The overlying flow at 1000 m is N The surface airflow over the basin is weak throughout the morning hours while NW flow develops offshore Winds aloft remain N A weak sea breeze is apparent by 1200 PST the sea breeze penetrates only about 30 km inland and is limited to a depth of approximately 300 m There is no apparent turning of the sea breeze into the San Fernando Valley Elsewhere in the basin the surface airflow remains weak By 1600 PST the sea breeze has weakened At this time winds aloft are predominantly W to NW at 300 m agl and N at 1000 m agl During the evening hours surface airflow over the basin becomes weak and disorganized while E flow develops at Palos Verdes Strong N winds appear aloft (300-600 m agl) at Burbank LMU and Long Beach however winds at this level further to the east remain light

On 11 December the early morning surface airflow pattern is similar to that on 10 December Relatively strong ( gt 10 ms) NNW winds persist at 600-1000 m agl at Burbank and LMU E wind in the 100-300 m agl appear at LMU and Long Beach Throughout the morning the surface winds remain light and N winds 9ver Bu~ank weaken considerably A sea breeze is apparent by 1200 PST but is weaker than on the previous day and reaches a depth of only 100 m or less Significant N winds (3-6 ms) develop between San Bernardino and Elsinore and in the western San Fernando Valley NE flow is observed in Ventura County Winds aloft continue to be primarily N however E flow is apparent over the Long Beach area at 1000 m agl Surface airflow over the central and western basin becomes very weak during the evening hours Strong N to NE flow develops at the coast west of Santa Monica while N flow persists in the western San Fernando Valley and in the San BernardinoRiverside area The overlying flow is N to NE

91061 02 17

3 PARTICLE PAm ANALYSIS

A series of forward and backward particle paths (trajectories) were calculated using the SCAQS DWM wind fields The particle paths will be used by other SCAQS investigators in their examination of pollutant transport within the SOCAB The forward particle paths can be used to estimate the transport of pollutants from known source locations The backward particle paths can be used to estimate potential source areas The particle paths can also be used to estimate the residence time of certain pollutants in the SOCAB as a whole or in subregions

CALCULATION OF PARTICLE PAIBS

Two-dimensional particle paths were computed using the DWM wind fields as follows

Starting ( ending) points for a given number of forward (backward) particle paths were specified

Using a time interval of 15 minutes the hourly gridded DWM wind fields were linearly interpolated in time and then interpolated in space to each particle position using an inverse-distance-squared weighting scheme

The particles were then advected horizontally for the specified time interval

The distance traveled by each particle during each time interval was integrated The new position of the particle was reported at hourly intervals

Forward and backward particle paths were calculated for the SCAQS intensive monitoring periods for several vertical levels and a variety of origination and destination points The origination (destination) locations and times for the summer and autumn particle paths are listed in Tables 3-1 and 3-2 respectively Most of the particle paths originated (ended) at one of the SCAQS wind monitoring sites listed in Tables 1-1 and 1-2 Additional sites are identified in Table 3-3 Note that for some sites in Tables 3-1 and 3-2 a new particle path was initiated at the particles 1000 PST location but at a higher level

Additional forward particle paths were calculated for comparison with the SCAQS tracer data (England et al 1989 Horrell et al 1989) The initiation times and locations correspond to the tracer releases and are given in Tables 3-4 and 3-5

9106lrl02

~~ll1~(I titW I~l~~~t~~

TABLE 3-la Summer particle paths forward particle paths

Start Time Origination Start Date (PST) Site Level(s)

624 0500 LBCC 13 CELA 13

624 0700 LBCC 13 CELA 13

624 1000 LBCC 13 CELA 13

624 1500 LBCC 13 CELA 13

624 2100 LBCC 13 CELA 13

625 0500 HHRA 5 PADA 45 FULA 5

625 0700 FULA 5

713 0500 LBCC 13 CELA 13

713 0700 LBCC 13 CELA 13

713 1000 LBCC 13 CELA 13 EMTA 24

713 1500 LBCC 13 CELA 13

713 2100 LBCC 13 CELA 13

714 0500 LBCC 13 CELA 13

714 0700 LBCC 13 CELA 13

714 1000 LBCC 13 CELA 13

714 1500 LBCC 13 CELA 13

714 2100 LBCC 13 CELA 13

Continued

19

91061 07

TABLE 3-la Concluded

Start Time Origination Start Date (PST) Site Level(s)

827 0500 LBCC 13 CELA 13

827 0700 LBCC 13 CELA 13

827 1000 LBCC 13 CELA 13

827 1500 LBCC 13 CELA 13

827 2100 LBCC 13 CELA 13

828 0500 LBCC 13 CELA 13

828 0700 LBCC 13 CELA 13

828 1000 LBCC 13 CELA 13

828 1500 LBCC 13 CELA 13

828 2100 LBCC 13 I CELA 13

92 0500 LBCC 13 CELA 13 HHRA 12

92 0700 LBCC 13 CELA 13 FULA 12

92 1000 LBCC 13 CELA 13

HHRA 45 FULA 45

92 1500 LBCC 13 CELA 13

92 2100 LBCC 13 CELA 13

93 0700 RIVA 12

93 1000 RIVA 45

A new particle path was initiated at the particles 1000 PST location but at a higher level

20

~(Ibull bull 11

41

~1~_11Lmiddot11~1~~tV t rt~~14_ II~~~h1 1r t

TABLE 3-lb Backward particle paths

End Time Destination End Date (PST) Site Level(s)

624 1500 CABA 23 EMTA 45 BURA 1234 HHRA 4 FULA 45

624 1800 RIVA 3

625 0500 CLAR 13 RIVR 13 HHRA 5 PADA 45 FULA 5

625 0700 CLAR 13 RIVR 13 FULA 5

625 1000 CLAR 13 RIVR 13

625 1500 CLAR 13 RIVR 13 CABA 23 EMTA 4 BURA 4 RIVA 45

625 1600 RIVA 45

625 2100 CLAR 13 RIVR 13

713 - 1000 EMTA 24

713 1500 CABA 23 EMTA 45 RIVA 24

713 1600 RIVA 24

714 0500 CLAR 13 RIVR 13

714 0700 CLAR 13 RIVR 13

714 1000 CLAR 13 RIVR 13 BUR 123

714 1500 CLAR 13 RIVR 13 CABA 23 EMTA 4 BURA 234 RIVA 2

714 1600 RIVA 2

Continued

21 nn1 Y1

TABLE 3-lb Continued

End Time Destination I End Date (PST) Site Level(s)

714 2100 CLAR 13 RIVR 13

715 0500 CLAR 13 RIVR 13

715 0700 CLAR 13 RIVR 13

715 1000 CLAR 13 RIVR 13

715 1500 CLAR 13 RIVR 13

715 2100 CLAR 13 RIVR 13

827 1000 CABA 2 EMTA 23 BURA 123

827 1500 CABA 2

828 0500 CLAR 13 RIVR 13

828 0700 CLAR 13( RIVR 13

828 1000 CLAR 13 RIVR 13

828 1500 CLAR 13 RIVR 13

828 2100 CLAR 13 RIVR 13

829 0500 CLAR 13 RIVR 13

829 0700 CLAR 13 RIVR 13

829 1000 CLAR 13 RIVR 13

829 1500 CLAR 13 RIVR 13

829 2100 CLAR 13 RIVR 13

92 1000 PADA 3

92 1100 PADA 3

92 1500 EMTA 2 RIVA 2

Continued

22

91061 07

I

1bullLI bullI I bull ~ii 1 1

1 cl1

[1i1bull~j~1 Iiii~ j t-~dI ~1 1ltl1111111 II r I l~bull~II~middot t1~i~n_11~~ ~middot -

TABLE 3-lb Concluded

End Time Destination End Date (PST) Site Level(s)

92 1600 RIVA 2

93 0500 CLAR 13 RIVR 13

93 0700 CLAR 13 RIVR 13

93 1000 CLAR 13 RIVR 13 CABA 2 BURA 1234

93 1500 CLAR 13 RIVR 13

93 2100 CLAR 13 RIVR 13

23 9106107

TABLE 3-2a Autumn particle paths forward particle paths

Start Time Origination Start Date (PST) Site Level(s)

1111 0300 LBCC 13 CELA 13

1111 0700 LBCC 13 CELA 13

1111 0900 FULA 12

1111 1200 LBCC 13 CELA 13

1111 1500 LBCC 13 CELA 13

1111 2100 LBCC 13 CELA 13

1112 0300 LBCC 13 CELA 13

1112 0700 LBCC 13 CELA 13 FULA 12

1112 1000 FULA 45

1112 1200 LBCC 13 CELA 13(

1112 1500 LBCC 13 CELA 13

1112 2100 LBCC 13 CELA 13

1113 0500 ONTA 123

1113 1000 ONTA 45

123 0300 LBCC 13 CELA 13

123 0700 LBCC 13 CELA 13 FULA 12

123 1000 FULA 45

123 1200 LBCC 13 CELA 13

123 1500 LBCC 13 CELA 13

123 2100 LBCC 13 CELA 13

1210 0300 LBCC 13 CELA 13

1210 0700 LBCC 13 CELA 13

Continued

24 9106108

TABLE 3-2a Concluded

Start Time Origination Start Date (PST) Site Level(s)

1210 1200 LBCC 13 CELA 13 FULA 123

1210 1500 LBCC 13 CELA 13

1210 2100 LBCC 13 CELA 13

1211 0500 ONTA 12

1211 0700 FULA 12

1211 1000 ONTA 45 FULA 45

A new particle path was initiated at the particles 1000 PST location but at a higher level

25 9106108

TABLE 3-2b Backward particle paths

End Time Destination End Date (PST) Site Level(s)

1111 1500 HHRA 34

1112 0300 LBCC 13 CELA 13 RIVR 13

1112 0700 LBCC 13 CELA 13 RIVR 13

1112 1200 LBCC 13 CELA 13 RIVR 13

1112 1500 LBCC 13 CELA 13 RIVR 13 HHRA 34 PADA 3 FULA 34

1112 2100 LBCC 13 CELA 13 RIVR 13

1113 0300 LBCC 13( CELA 13

RIVR 13

1113 0700 LBCC 13 CELA 13 RIVR 13

1113 ~ 1200 LBCC 13 CELA 13 RIVR 13 ONTA 34 EMTA 45

1113 1500 LBCC 13 CELA 13 RIVR 13

1113 2100 LBCC 13 CELA 13 RIVR 13

123 0300 LBCC 13 CELA 13 RIVR 13

123 0700 LBCC 13 CELA 13 RIVR 13

Continued

26 9106108

TABLE 3-2b Concluded

End Time Destination End Date (PSn Site Level(s)

123 1200 LBCC 13 CELA 13 RIVR 13

123 1500 LBCC 13 CELA 13 RIVR 13 PADA 3

123 2100 LBCC 13 CELA 13 RIVR 13

1211 0300 LBCC 13 CELA 13 RIVR 13

1211 0700 LBCC 13 CELA 13 RIVR 13

1211 1200 LBCC 13 CELA 13 RIVR 13

1211 1500 LBCC 13 CELA 13 RIVR 13 PADA 1234 BURA 123

11 13 2100 LBCC 13 CELA 13 RIVR 13

27 9106108

TABLE 3-3 Additional particle path initiation (destination) points

Site Identifier Location UTM Easting (km) UTM Northing (km)

BURA Burbank Airport 3749 37859

CABA Cable Airport 4370 37751

EMTA El Monte Airport 4047 37717

FULA Fullerton Airport 4091 37485

HHRA Hawthorne Airport 3768 37547

ONTA Ontario Airport 4435 37686

PADA PADDR Intersection 3810 37175

RIVA Riverside Airport 4584 37485

28

TABLE 3-4 Forward particle paths calculated for comparison with the SCAQS tracer data

Start Start Origination Date Time Site Levels

0300 LAGS 13 0600 13 0900 II 13 1200 II 13 1500 II 13

625

715 0500 VRNN 1

0800 VRNN 1

828 0600 LAGS 13 1000 II 13 1300 13 1500 13

93 0500 VRNN 1

0800 VRNN 1

1111 1600 LAGS 3 ESGS 3 VRNN 1

1900 LAGS 3 ESGS 3 VRNN 1

1112 0600 ESGS 3 VRNN 1

0900 ESGS 3 VRNN 1

1210 0600 LAGS 3 ESGS 3 VRNN 1

0900 LAGS 3 ESGS 3 VRNN 1

1600 VRNN 1

29

9106lrl09

TABLE 3-5 SCAQS tracer release sites

I_______________________

Site Identifier Location UTM Easting (km) UTM Northing (km)

ESGS El Segundo 3690 37536 LAGS Los Alamitos 3980 37370 VRNN VRNN 3874 37625

(

91061rl09

30

The particle paths were calculated for up to a three-day period In general forward particle paths were calculated through the end of the monitoring period or until the particle was advected out of the domain Backward particle paths were calculated through the beginning of the intensive monitoring period or until the particle left the domain

Selected plots of the forward and backward particle paths are given in Appendix C

SUMMER PARTICLE PATHS

Forward particle paths (levels 1 and 3) originating from Central Los Angeles (CELA) and Long Beach City College (LBCC) at 0700 PST on 24 June 13 and 14 July 27 and 28 August and 2 September are shown on pages C-1 through C-12

The surface-level particle paths originating at CELA indicate northward advection from this site on all days The particle path initiated on 27 August indicates that the initial northward advection is followed by westward advection on the following day the particle path initiated on 2 September indicates that the initial northward advection is followed by eastward advection on the following day In all cases the residence time in the central Los Angeles basin is less than 12 hours

The surface-level particle paths originating at LBCC are carried northward and eastward usually exiting the Los Angeles basin through Cajon Pass On 24 June and 14 July however the particles are carried across the San Gabriel Mountains (with the upslope flow) Considerable eastward transport is indicated by the particle paths initiated on 2 September after 1800 PST -Residence time in the Los Angeles basin varies from day to day and is especially long for the particle path initiated on 27 August (approximately 30 hours) Particle paths initiated on 13 July and 28 August also indicate some recirculation and a significant residence time within the Los Angeles basin

The level 3 particle paths also indicate northward transport from CELA on most days Advection into the San Fernando Valley which may be partly due to the SE flow produced by the turning of the sea breeze into the valley is more pronounced on certain days (14 July 28 August and 2 September) Level 3 particle paths originating at LBCC show mostly northwestward transport Recirculation over the Los Angeles basin is indicated for the 2 September particle path

Backward particle paths (levels 1 and 3) culminating at Claremont College (CLAR) and Riverside-Rubideaux (RIVR) at 1500 PST on 25 June 14 and 15 July 28 and 29 August and 2 September are shown on pages C-13 through C-24 -

_

9106lrl 02

31

The surface-level backward particle paths originate over water on all days the particles are carried eastward and northward into the Los Angeles basin On 14 July and 28 August the particle paths indicate primarily eastward transport There is some indication that particles arriving at the destination sites on 28 August may have originated in the South Central Coast Air Basin (SCCAB) On 25 June 15 July and 3 September the particle paths indicate primarily northeastward transport On 29 August northward transport is indicated

The level 3 backward particle paths also indicate transport from the W SW or SE on the intensive monitoring days The over-water segments of the particle paths indicate eastward advection on 14 and 15 July and 27 and 28 August and northward advection on 25 June and 3 September Again there is some indication that particles arriving at the destination sites on 28 August may have originated in the SCCAB Almost all of the particle paths indicate that the particles are carried onshore between Long Beach and Laguna Beach and advected northeastward to CLAR and RIVR An exception to this occurs on 28 August On this day the particles are carried onshore near Redondo Beach and are recirculated over the Los Angeles basin for approximately 24 hours before arriving at the destination sites

AUTUMN PARTICLE PATIIS

Forward particle paths (levels 1 and 3) originating at CELA and LBCC at 0700 PST on 11 and 12 November 3 and 10 December are presented on pages C-25 through C-32

The autumn particle paths exhibit more day-to-day variability than the summer particle paths indicating more variability in the autumn airflow patterns Because both the CELA and LBCC locations are affected by the land-breezesea breeze circulations all of the surface-level particle paths show some recirculation in the western basin Particle paths initiated on 11 and 12 November eventually indicate eastward transport

The level 3 particle paths also differ among episodes but are all affected by the seashybreeze circulation Particle paths initiated on 11 November show eastward transport from CELA and southward transport from LBCC Northeastward transport at this level is indicated by the 12 November particle paths The particle paths initiated on 3 December illustrate local recirculation by the sea breeze On 10 December southward advection is indicated

Backward particle paths culminating at CELA LBCC and RIVR at 1500 PST on 12 and 13 November 3 and 11 December are presented on pages C-33 through C-40

The surface-level particle paths indicate that particles arriving at CELA at 1500 PST on all four days follow a southward then eastward course Particles arriving at LBCC are affected by some combination of onshore advection and local recirculation The particle

9106Irl02

32

paths culminating at Riverside indicate a variety of possible transport patterns eastward transport on 12 and 13 November northwestward transport on 3 December and southeastward transport on 11 December

The level 3 backward particle paths for 12 November illustrate recirculation aloft by the evolving airflow patterns while the particle paths for 13 November indicate primarily eastward advection The particle paths for 3 December are clearly affected by the SE that occurs on this day the resulting particle paths indicate northwestward transport The particle paths for 11 December indicate southward advection and recirculation by the sea breeze

COMPARISON WITH TRACER DATA

Forward particle paths originating from El Segundo (ESGS) Los Alamitos (LAGS) and Vernon (VRNN) at times corresponding to the SCAQS tracer release times are shown on

middot pages C-41 through C-76 For ground-level tracer releases the particle paths were calculated using level 1 (10 m agl winds) for stack releases the particle paths were calculated using level 3 (300 m agl) winds A qualitative comparison with the observed tracer data is provided here

Surface-level particle paths originating at LAGS on 25 June indicate northward transport during the morning and afternoon hours The level-3 particle paths indicate that material is transported out of the basin through Cajon and Banning Passes by the upper-level winds Both of these indicated transport patterns are supported by observed tracer data

Surface-level particle paths originating at VRNN on 15 July indicate northward transport and exhibit good qualitative agreement with the tracer data

Both the surface-level and level-3 particle paths originating at LAGS on 28 August indicate primarily northeastward transport Most of the particles are eventually advected through Cajon Pass This is consistent with observed tracer at Redlands San Bernardino and Crestline

Surface-level particle paths originating at VRNN on the morning of 3 September do not agree with the tracer data While the particle paths indicate northeastward transport the tracer data indicate northwestward transport

Surface-level particle paths originating at VRNN on the afternoon of 11 November indicate westward transport and a long residence time in the central basin The level-3 particle paths originating at LAGS and ESGS show southeastward transport and recirculationmiddot by the sea breeze Surface-level particle paths originating at VRNN on the following morning again show net westward transport and a long residence time in the

( central basin but the level-3 particle paths indicate northward transport with recirculation

91061rl 02

33

by the sea breeze The smface-level particle paths are consistent with the tracer data Tracer was observed over the north-central basin and along the foothills on the morning of 13 November

The surface-level particle paths originating at VRNN on the morning of 10 December indicate relatively stagnant conditions with a weak sea breeze circulation Some net transport toward the south is indicated Particle paths originating at VRNN on the afternoon of IO December show little movement throughout the following day The long residence time in the basin is in qualitative agreement with the tracer data Tracer was observed in the basin on the following day The dispersion indicated by the widespread tracer concentrations however cannot be represented by a single particle path The level 3 particle paths originating at LAGS and ESGS on the morning of 10 December show southward transport and recirculation by the sea breeze

UNCERTAINTY ANALYSIS

A simple analysis was perlormed in an attempt to quantify the degree of uncertainty inherent in the particle paths The uncertainty analysis was similar to an analysis described by Moore et al (1989)

Three major forms of error in the particle path calculations can be identified The first two result from errors in the wind fields The most fundamental of these is measurement error as measurements can only be regarded as approximations of the true winds Regardless of the accuracy of interpolation techniques measurement error will always affect the final wind field The second type of error results from the interpolation of these measurements and the parameterizations and approximations in the diagnostic wind model This error will be greatest in data-sparse areas The third type of error results from the use of two-dimensional wind fields The two-dimensional particle paths do not incorporate the effects of vertical motion which may be a significant source of error considering the mesoscale regimes present in the study area

The particle path uncertainty in this analysis is the result of all sources of error and is therefore very difficult to estimate A lower bound 11 on the uncertainty was assumed to result from measurement error alone Here we use a lower bound uncertainty estimate to illustrate the effects of measurement error on the particle path calculations Several assumptions were made in order to estimate this uncertainty First average bias for all instruments was assumed to be very small Second instrument precision was assumed to be constant over the region Third measurement error (speed and directional error) was assumed to be normally distributed around zero The standard deviation about the mean was based on observational data

For this uncertainty analysis 20 particle paths were initiated from a single site at a single time For each 15-minute particle path segment u and v were calculated as described in

9106lrl 02

34

(

the previous section Small random wind components (representing the measurement error) were then added to the interpolated wind The smaller components were determined by randomly selecting wind speed and direction error from two separate normal probability density functions (PDF) To do this a uniform random number generator was used to find two error probabilities Ps and Pd between 0 and 1 An inverse normal PDF routine was then used to find the speed or direction error that results in error probability Ps or Pd respectively Commercial statistical software from Th1SL was used to generate uniform random and inverse normal PDF values 1

The PDFs possess means of zero and standard deviations equal to the root mean square error (RMSE) of the measurements For simplicity RMSE values for speed and direction were taken from those specified by Moore et al (1989) namely 02 mis and 10 degrees respectively Random error components were determined for each 15-minute segment of every particle path The resulting divergence in the particle paths represents a lower limit to the uncertainty inherent in the particle-path calculations

Plots illustrating the effect of the lower-bound uncertainty on the particle path calculations are given for one summer and one winter episode in figures 3-1 and 3-2 respectively The summer particle-path bundles (Figure 3-1) were initiated at CELA and LBCC at 0700 PST on 14 July The winter particle paths (Figure 3-2) were initiated at CELA and LBCC at 0700 PST on 12 November The bundles were calculated for levels 1 and 3 In general the bundles indicate that the airflow patterns do not vary abruptly in space or time The winter particle paths are less divergent that the summer particle paths

While plots of the particle path bundles qualitatively indicate the degree of lower-limit uncertainty a quantitative summary of the uncertainty can be obtained via hourly estimates of RMSE of all particle positions relative to that with zero error The RMSE can be obtained from

1 1 M 2 2

RMSE = - ~ dj[ lM ]=l

where

1

dj = [(xj - X1)2 + (yj -y1)2]2

and where Mis the number of particles and ()1 represents the position of the actual particle as calculated in the previous section (ie the zero error particle path) The RMSE is used to determine the growth over time of the confidence interval about the

1 IMSL is the registered trademark of the Scientific Problem-Solving Software System developed by IMSL Inc Houston Texas

91061rl02

35

NORTH

425 31570

SOUTH (a) CELA Level 1I

20

(KM)

NORTH

425 31570

SOUTH (b) LBCC Level 1I

20

(KM)

le-path bundles initiated at 0700 PST 14 July 1987FIGURE 3- composedd par tic le paths1 Forwar of 20 particBundles are

35

NORTH

425 3570

SOUTH

(c) CELA Level 3

NORTH

425 3870

SOUTH

(d) LBCC Level 3

FIGURE 3-l Concluded

37 9106]

70

IlFil

NORTH

CEIA Level 1(a)

3(170

1-Ul j

NORTH

425 3(170

SOUTH

(b) LBCC Level 1

Forward le-path bundles initiated at 0700 12 November 1987FIGURE 3-2 composed par tic le pathsbullBundles are of 20 partic

3391061

425 3870

SOUTH

(c) CELA Level 3

J8

3870425

SOUTH

(d) LBCC Level 3 10 2

(KM)

FIGURE 3-2 Concluded

91061 39

1 1c

i I

trajectory calculated using the DWM winds Hourly RMSE values are given for the particle paths bundles shown in Figures 3-1 and 3-2 in Tables 3-6 and 3-7 respectively For level 1 the average RMSE after 12 hours is 567 km for 14 July and 167 km for 12 November For level 3 the average RMSE after 12 hours is 416 for 14 July and 260 for 12 November

9106lrl 02

40

TABLE 3-6 Hourly RMSEs for particle-path bundles initiated at 0700 PST 14 July 1987

Time LBCC RMSE CELA RMSE (PST) (km) (km)

Surface Level

0700 000 000

0800 042 042

0900 057 069

1000 063 100

1100 093 128

1200 091 143

1300 111 168

1400 136 217

1500 229 227

1600 265 219

1700 394 219

1800 620 265

1900 796 338

Level 3

0700 000 000

0800 018 049

0900 064 090

1000 068 140

1100 087 172

1200 089 162

1300 123 180

1400 231 224

1500 337 258

1600 419 278

1700 427 306

1800 449 347

1900 462 370(

9106104 41

TABLE 3-7 Hourly RMS Es for particle-path bundles initiated at 0700 PST 12 November 1987

Time LBCC RMSE CELA RMSE (PST) (km) (km)

Surface Level

0700 000 000

0800 047 049

0900 078 065

1000 077 066

1100 089 086

1200 109 094

1300 089 092

1400 118 125

1500 100 138

1600 129 150

1700 147 160

1800 161 164

1900 156 176

Level 3

0700 000 000

0800 045 076

0900 061 120

1000 069 139

1100 092 171

1200 098 163

1300 096 156

1400 125 182

1500 150 175

1600 231 171

1700 261 152

1800 308 156

1900 345 175

91061 04 42

References

Douglas S G R C Kessler and E L Carr 1989 Users Guide to the UAM Wind Preprocessor System Systems Applications International San Rafael California (SYSAPP-89079)

England W G and L H Teuscher 1989 Perfluorocarbon Tracer Experiments During the Southern California Air Quality Study Air amp Waste Management Association For presentation at the 82nd Annual Meeting amp Exhibition Anaheim California (June 25-30 1989)

Horrell R S M Deem P Wyckoff F Shair and N Crawford 1989 Ground Release SF6 Tracer Experiments Used to Characterize Transport and Dispersion of Atmospheric Pollutants During the Southern California Air Quality Study of 1987 For presentation

( at the 82nd Annual Meeting amp Exhibition Anaheim California (June 25-30 1989)

Moore G E G Z Whitten J P Killus and R D Stevens 1989 Analysis of 1985 Air Quality and Air Chemistry Data Collected Under the South Central Coast Cooperative Aerometric Monitoring Program Systems Applications International San Rafael California (SYSAPP-89058)

Ross D G and I Smith 1986 Diagnostic Wind Field Modelling for Complex Terrain-Testing and Evaluation Centre for Applied Mathematical Modelling (CAMM Report No 586)

9106105

43

rr T rr

Appendix A

SCAQS WIND MONITORING SITES

(

9106103

-

((--_ 770

-

NORTH CM~RS 42 575

5 I I j I I 1---L 525 middot 1J75 I I I I I I I I I r I I _--- I C2~middot----_J ~ ~-- 1 ( ~ ~J25 I I I I I I I I I I I I l__ ) -475 () I Li 1~)51 (

--~ltJ820f-_ ~------ ---

~- -cli( ol --9-Sl-l

lt ( ~)

CQ p llE RiDO ~ llE ANAH

I middot LAS-L

bull~ LANC ( _ Q - _J ) ) - _ ~ - ---- - ~ _ ____ middot clt G~ _----~____-=-- -___ ~PR __ - ---- --- VCTC ltgt

-- ------ f---- __ - ---_ -middot ------ --___ --~-----TEME --- _ f

-)(j _ _ middot --middot -------- - HESP f ----=----==~~~ l ----~~ -- middot l - --- __ -middotlt- CJ _ --- middot PIRs[- lt NfVL_ ---~ - C~lt --lt _ ~ ~- __ (~~

__ --- bull _ i - f c-_ _ I - )~__) - ---~poundS---_-

3770 t-()

LA llE PICO )Ct444 -w 3 ~~~ZUMA MALI VE VEN llE llE middot Jl~C - ( p

NN WOOHS ~- ~ m - middot - o - I () )IE 55I

1-- (lt - - PERI ) ~ S__~llE

BU25 bull y _ L ~~5o 13720

I ----~- - 515 3670 525

(KM)

~---

SNI

20

SCAQS SURFACE WIND MONITORING SITES

19 JUNE 1987

0

qj n

If) N ~

I

1S13

Ishy)

0 Vl

(f) w I-V)

l)

z a 0 1---

z 0 2

0 z 3 a ~ I r---

0 CX)Wm Q_ shyQ_ ) w

z (f) )

0 7 lt( um Vl ---

0

A-2

-

r~

NORTH CM~RS

I -middot_( lt - middotmiddot -~ ---lt - - - middotbulll- ) middotmiddot-middot - - -c ) 0 0 l__SG- ___ J1 bull_ -- VCTlt I

_ --middot ---middot llSeR - - __ - --middot----- J~__-- middot - - - -middot bull bullbull- HESP ~-_-middot- bull- ~- _~ - -___---middot - ~ -_ ) ME --- -middot - bullmiddot bull -_

38201-_ ~~_ _ TE _ C-bull_- - CJ - ~Jj __ -_

1

1 bull I bull __ (]

SI bull bull=-middot _ -~ ~~ ~_-__ middot _J lt(- j SIMI -M~S -~_-~It_ - - 1Ir- I w _ I B~~ AZ~~~1 AL SNBOC ~ (ELRO l~ Hf~~ ideg_=- --

)1__ CE~ wftcentrHIN RIVRM44 --- ~--- ---~ LA PICO __pound bull P

T ~NN WI-V C) D 2J~55I Wco - middot PERI Lv

R~O ~L ~AN~ TO~~~~ ~ ~ ~-MO

62

~ ~j~l)~gto ay 3670( 525

SCAQS SURFACE WIND MONITORING SITES 24-25 JUNE 1987

~ (

NORTH 275 325 375 425 475 OA~5 575

f_~ CJ ~ -middot--

_middot

middot1 Imiddot

)i

gt--o~0 (~_)r-) _ (~~3s20

--~- middot qlt ( ____ - ---- - lt__ ~ ~ -i~ J ) _ - - -

-~ -__ J V 38201-~--o- lt-

-----~~middot ---- __ - ~---- -_--- ~====- -=_---~ ~ _

~ -- middotbull ~gt ----_ _______ ) ~~~ l -- - - i - --- l

( _ (_-~ _-lt~~ - )

2middot1=~ (~gt lt_) -~~~~~(_~tJt-~~~~t~~~~-~) ~

uR--- -----Qi~ ~ 3770_ 3770 -middotmiddot--rmiddot- -7 ~ 1-

(J) llE ONT _ -middot __ w

Y-_ EMU c __- ~ Ul lt(1 w~

- -- - LMIIEUA sFtA ~

1

----_

~

_

t_~~ -bull _ middotgtI __

~- 0 ~~QgtJn~-~ ~II~

~ f-- -) -) ) ~ ~-

j (_1_j ~~TRM 3720 ( (__ -CcS l l 3720

~- ) -~ --7( ) __~---L_ ~~1-----~D~

1 ~) a --- ~middot 7 rt 0- NSI (

3670 I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I 1 I I I I I f I I I 1 I I I I I I I I I I I I I 36 70 275 325 375 425 475 525 575

SOUTH

I I I I I I 0 10 20 30 4-0 50

(KM)

SCAQS UPPER-AIR WIND MONITORING SITES

24-25 JUNE 1987

--=-

NORTH 25 575

CM6QRS C__j 475 -____

3 ---- 375 425I - L ---) - ~-

SNI

-_-~)---_ lt-____ ___3azor_~c~~ sl

VENt ELRO

BU25

275 ~ c--) ~LANC ~~-_ lt ~ 0 9-~

llE

3670

----~ - J Q ____ ~- lt) ~ 3820____ -- middot--- 0~__~- __ J S --- ---~- ---- -- -- v~ ~ ~ ===-~ - - - - ---- - - ---- - -- -middotv ------------ -~ l f----- _ -- -middot _ - --- __ HESP ~-----=- c~i - - _- --- - - gt - -bull TEME -- -middot - bull ----- -- - _ middot ( lt~ clt=~ ~i cJ~ c _

~I -~~le lt~NJWl--------~- -iHitgt~-=__~~ _I -~ J~~~ ~ 3770 r-1 - - -- -- - ltJ c__ ---middot ~ ( - ------ -c_ - - -~~~ ~ ()-~ ~ - -middotMiss ---~---=-~----r~-__ -middot _frac12 __ i5

j S ~R~~HE -7t$ llE llE ftALSNBO llE ~~ t __ -R~ B~~SA AZ~jl~r RD ~~_ ~ 1( )l___ llE CE~HAllE ~~ - RIVRM44 - llE ------___llE W~HIN -Jti )Ii ----------- __

~--- LA llE PICO l llE C -- r p

ZU VE NN Wt-laquoJHB 0 1~55WT IN - ---- ) llE CO P llE llE ( gt (____ PERI ~

IJl

~ 71t~P325 425

SOUTH

I I I I I I 0 1 0 20 30 40 50

(KM)

SCAQS SURFACE WIND MONITORING SITES 13-15 JULY 1987

clt(middotO -i ~Ill ~

()VL~t

~~) o2~ r

275

-- _~middot middotc-- ( ~ I - ___ ) --____ ~~~

---- ---bull-~ ( lt ) lt I ~ (J () - _ ~ ~ J ) bull middot ( - ~ ~- - --- middot - ~ - middot middot G--~_J lt)

cce- middot- __ V ___ -- l - _- bull middotbull - - _~---~ 3820r----=-~_~Jrlt - - - middot f ~l-~--~--~] I c___ -~c ~ -- ( _ 1middot--- 1___ _~

-I -- = lt -bull lt middotmiddotltmiddot~- middot - middot -L-

- ~-- middotbull ---_- --- J middot J ) ) -- bull- ~-bull _ --middotbullbull- middot middot _ j -- -)) 3770 -ii __gtc _ -- - - middot bull ltmiddot ~- I - _ltbull - -_j-- tn

BURbull-- - middot - - - ) ~~middotj- (~~ ) (middotIi lt(

GL U I ~ - - - w ---~ - -1 __ - ---------= ------___________--- ONT middot middot __ - --_ -

poundMUI - - ~ ____ middot----~~i -__ ~ I

--

--- ~ c) )_

deg ~

_- - (

_l

_ ~ )

C-

~ _middot

( T( f 1-

525

t j 30 50

(KM)

SCAQS UPPER-AIR WIND MONITORING SITES 13-15 JULY 1987

_==--

J ANORTH CM6sectARS

3s201-

~- ~ ~ ~ ~0A - --__ - -----~ ---~- --1(j - A ) __gt ---------_

-~~J TEMEa l_C ~r1

0

820

_--C~ = ~~~ltCH~~ J ~ S~I ----i4~58 ( J

tigt-1

-J 3 BU25

frac14~) 8 F1(5

- HA

APICO RN A A ~ N WVHB

AANAH

~IHIN J _CM44 ~-

A

CY PERI N ~ iJN

D A

HEM

770 ~ V1 lt( w

~ 3670

SCAQS SURFACE WIND MONITORING SITES 27-29 AUGUST 1987

) w l-1

C)

z-a 0 1-

z 0 ~

0 z - r---3 co a Ci)

- -ltI lshy

a )w ) Cl 0 Cl ) ) lt(

V) Ci)

0N ltI u r--- () N

A-8

NORTH CM~RS bull r (_J~

1

325 - - l L=~-) ( bull

1275 _ ( ~ --- -middotbull LANC 1 _ bull I( f LJ- ~ () ~-- 3820 bull- - J bull

- --__ _ -- )- bull bull - middotbull-~- _ I v----_J -- J middot-- - middot- - -middot I I J_______ ---==-------------- WSfgtR - -- VC _____- ltgt

-~--~-- fJ- -middot - - - --- --- _ - ----- --- ----- ) r bull---_ --- - - -- bull p -- --__-----_ - -----

38201-_ -------~- TEME --- --- - - bull -- middot- bull --- _----~ -~ II middot ) - ---- -- -- _ -- HES f I-----=-- ~ ------- ~ l _ -- - I

- bull middotbull-bullbull~ ll( middot bull - middotbullbull - 1 I ~----- middot-bull

9 -- ___ __ _ -------- _=- r _ -- )J -~~ ~~~ 3770 t--SJMImiddot MISS~~~--bull ~--~-- ll( -_ ~-VENt Cllfl58 bull I middot- - middot- - --JOE ~--bull bull ~ V)

ELRo __J 4Esc euRK ~Ej1 fAL sNeo I ~ _ J middotmiddot -~~ 1 i5 l - ~SA ___ I ROLD ~ ~ C~ ( _____~- -~ llE CE~ llE W~(HIN RIVRlK -- - 1 llE __~

3770 middot- ~LA VEN Pl llE _ _- JJ~C _CM44 - ~ p ---__-_

0 ANAC cubull~ - - v~wr LyenNN WHJHB --- -- Q~~W)( ___

- llE HA ~ -lE _ -- _ - -_

I 0

SAi middot-middot J) t450

3720 LA r TO~omiddotlt~lt~~ -~ ~ (~~

~ ~ r-~~~1~ o ~~l~

SNI 1 (l_ amp-~ 575 3670367g75 325 375 425 475 525

SOUTH

I I I I 0 10 20 50

(KM)

SCAOS SURFACE WIND MONITORING SITES 02-03 SEPTEMBER 1987

------J ------------------ ) I-- 38201--__--~~- i) ___

_-- ~--gt--

-__

_

NORTH 275 325 375 425 475 525 575

YI ~middotCJ~bull_bullrmiddot--- lt I __ (_______~ ~ - - I -- J ( - - - - - - - J i O l__ ______________ -~

~j ( lt- bull- ~ 0 C) ~ -- (-- _)) ) ----_--__ -- middot-- _ - --J ) J ---- - ------- ----- middot----- -( ~---_j

3820----==--=-- ( - -middot bull __ - ---~----= --- ---- -- -- ------------ _______ ltJ~~ A I --- - ---- - -_ - _ --_--~-- -_ - --~co___--_--___-__----- f middot l - --- - --- - __- ---_-- -- ~ middot -middot __ J L--~ cmiddot

---- -- middot--~-- -- -- - _ _-- - - ~

--- - middot- - -C-_--- - -~ rmiddot middot) _- ~middot~ I--- ----~deg- -- -- C _-_--_- __ __ _ ___ _--_--~ __---- ~---lt lt ltgt _~-__gt_ ~~-- i~ - UR ---- -------- - ----~ --lt I middot- B ~----- Qll __ ~----- _ CI____ ~ __ --- ---middotir ~ - 3770

1-I- 3770 () U)( - -- -- 0~ - j _j ______- ==--=--_ --___ - ---w lt(

w~

~gt middot1 r-

0

3720 3720

middotmiddotmiddot J ~ ) ~l - ~ ~

~ tmiddot~----_7~~ p__ D2)t~~

NSI I(--_ Imiddot- 3670 3670

275 325 375 425 475 525 575

SOUTH

I I I I I I O 1 0 20 JO 40 50

(KM)

SCAQS UPPER-AIR WIND MONITORING SITES

02-03 SEPTEMBER 1987

~ I

t

NORTH CM61yenRS

----- I uic middot I Ibull 0 z_ ~ p

-_- - - - _ - middot-~-_ ------- VCRV

820 --- -- -- I W-gtER --- _ ---- --- ~ ) - -_ - I _ _ - _ --- _ _ _ -_ bull _____ _ _ - -- -- -- _ --_ ----~ HESP 3 -- ME -- -middot bull - --- _ -- _ TE - -- __ _-- - c----~middot - r

PIRlb -_1 N bull--~ _ --lt~_- - _ _ ---------- - -MISS_ _--- ___ bull---=-- _llE ~ ~ j lt) hlt---- F-~~--_ ----1A-_c=_--middot llE ----_ ()

-middot SIM ~ICAN llE RIALSNBO llE ~J -------~~ tllE ------TmiddotllE~I ~ES BURR~ AZ~ ~-~r- RD ____-- -- ~ bull FIIISA l- bull -~~

( )l__ -middot middot c(~HA w~~N ~tfJ1 -- -- ~ ~ 1

_

375

~) middot middot ---lt -__ lt_ ___ ___ -i____) C-middotdeg - - -

- -- J_ _) lllt

_ =- ) - -

L- ~~- Iii - ~ _________

-~ 0 I -- (

SI lllt

E

NT CM58V

( j gtT__~_____)___ -- ~l- ) (

middotmiddot-- -_ bull _ ~- () ~

I --J vlt__ ltgt

--- --------- ~---------- C -

_

~(__ f - -- ~---middot)1 ~

t ~ I

I- I- ~

3720

ANAC Wo~ middot -~- lt_)

44

PERI ) ~ tlo

25 R~ ~~ANAH _i~~MN ~~-w--- ~ _ 00 )

T middot I BUllE I -eM62 7 llE

-- - ~

~ 425

SOUTH

20

(KM)

SCAQS SURFACE WIND MONITORING SITES 11 -13 NOVEMBER 1987

(_ (___JCcS ~~)

bull ------------~ - - ( ~ r-------------- Dbull ---

J

575 3670

1SV3 0 0 0 0 N r-- N r-- a) r-- r-- co I I) I) I)

I bull bull I I

I I f1 1 ~~ I- I I-)

0 l)

l)

w I-l)

L)

z Ct 0 I-

z 0 2

0 r-- z OJ

m3 Ct a lt( w0

l() mI Ct 2

~ ww Q_ gt

0 - Q_ 0 I) 2 ) z ~ ___0

N (I) n a

0 lt(- u ()

0

n 0 z I)

N +

lf) r-- I)

- I I I

i I

I 0

~ -L

w

i

~ LL

I)

C-1

+

l() r-- I)

1S3M

A-12

-~

igt I _

l)

CM~RS 275 325 375

NORTH 425 475 525 575

_J- I bullbullbullbullbullbull ~ I bullbullbullbullbullbullbull bull I middot bull -gt-----middot bullbullbull 3 )--- ____j lt c----- -_ -- gt _ ___ ----- t__ l___

-- ------- LANC l ~ ---------- __ ) -- __ ~ I ) ~ - -=~__ I -~middotmiddot- - bull middot bull bull bull lt lt Cl --- ------ ____ -~ -

38201-- ------_- ) ) -- _ ---- -- -- -- - () - --------- I --- -~-lt~~ (middot__ TEME ) --gt ~_ ----- - middot--- --- vamp c~ (~ 0~ ___- --- gtIpound - - - - ---- -- - - -- _ - - ~ ---- - - - ------------- 5SI -middot PIRltgt ----~ ( -middot _ - -- --- - --- ) HESP --------~ ltgt

___ __bull_rbull ~--------~-___ -- ___ ----gt--=- bull~ ~~ I - ---__-=---- ----

VENt CM58 _ sti --~~ ~ lt_ -~-- middot_~-~~ r-~- --middot) ~~) _J MISS-~~-- ___-_ __)~ -- ---( C

- --RESpound BUR~--==-=~----r~---_-__- ~- - ~ _- ~ -1 -

3770 I- ANAC

J I )l( ~- ~-- - i middot ----middot -X--Ret-----_~ -~

___ ( - -middot ~SA AZ~ ~ o j -------=--------~--gt~-- dampHA ~~~f __ SNBO ~~ -~

ZUMA MALI LA w~M -jmiddot I R~J ~-s ~__ )() w ~

3720

8U25

VE VERN PICO _ middotyHIN RIVRyen ( ~----- -~ CM44 -~ ~- ----- ~ C WT ~NN Wt-0HB -NQRC - middot- ~NN-a-~~ _ ~ co~ __ -- ( ~ ~

RVIJO ~ilff AN~ gt cmiddotbull yen 0 (~~ p LASAl I bull- - PERI ~ ) ~

rJ]~~_Y)~N ) (_ --

_T -cJ62~-~

~ 5j(bull 1) ~Jso

l -~

- 1 J) -~ ~7~~t~~

3820

3770 1-() lt( w

3720

I I I I I I I I I I I I I I I I I I I I I I367r I 367075

I 325 375 425 475 525 575

SOUTH

I 0

I 10

I 20

I 30

I 40

I 50

(KM)

SCAQS SURFACE WIND MONITORING SITES

03 DECEMBER 1987

NORTH 275 325 375 425 475 525 575

I I ) gt ~ _YC) ~ ~ I ( o c_ _------- (

___ middot i I 97 ~___ _ --1 cbull-- - - C -___J -- lt ( ) - - - - middotmiddot ~ l _ ----_J

I ---middot ___ __ middotmiddot-_ 1 -~ __J ) bull- middotbull_ -

3820 ------~- I -~middot --- _ middot--- -------~

C - ~ (___ _ 1 ) -- _ - - - gt _ bull f-_- --- r ------~__ -----I --- ) I ~ -~ gt ----- - --- -- ~-_]) c_middotI 38201-_~~_ l _ --- - (-- ~ f ~ I~_ - middot - middot -middotgt- -- -_ -- middot_ _- 1 L- l _- -

~----- l -- middot middot ~- middot-_ _- - middot middotmiddot--gt---~--t~~)-1 bull lt_ _ _ bull middot bull - middot- ~ ~0---~ (c ~ I ~

_ I - bull -~~~--gt~~~-~~ bullS- _~_ l ~~1t~~_~(~ t 3770 I -- -- middot __ - I S____ ( 3770

I- 1-() ()

gt w - I __~sect~- ---ONT lt(

w

tgt

f-- I

~

middot - middotI

-

L~i--

37203720 c_J - (_cS) l -~~

NSI

367~~51 3~5 13~51 14~5 I I I 14~51 is~s s~s 3670

SOUTH

I I I I I I 0 10 20 30 40 50

(KM)

fJ~

SCAOS UPPER-AIR WIND MONITORING SITES I 03 DECEMBER 1987 r~J

NORTH CM~RS 275 325 375 425 475 525 575

middot middot ___ I middot 1 I )l ___ QO --middot - v_ (-- - LANC middot ~ C) lt --bull_ I -- -- bull _ ~ - ~-- ) -------_ -- - _~-- V --I 1 J --- - bull I -J- ---middot - _ bull__ - vc i --- ltl

3820~-----=cc~ I middot -middot - middot - _ ___ -- - 1t ~~------- middot - ___) - - middot -

J-cgzot-- ~--- j 0 TEME _middot ---- --- -

-____ -- ---- _- j (

- -_ I -- --~ _JI( ---- bull bull-- llf -middotmiddot l - -- bull _middot_ middot I --- -- middot CM58

_- 1 -- middot - middot~-~ - -~__ ___ ---~-~_--__~----------D J-~J~bull A HESP

middot OJ11 r P1R1tc lt--~i_-_~-~- ~c~_r--~-~_--_~r-=-~~~~--~ _ --~ --lt__~~~~- CSI ~ -~ --- ---- middotmiddot - ---- - _ ~ r ) J

)gt SIMI -MIS5-X ~Cgt~---- middot-cemiddot middot ____~ ~ middot~ l~fu__ suRlfiI_middot- -tk~- flAf SNBO __ middot ~-~ l 3770 _ 377ob -- ~ PJIISA AZ ~JIily~ _- RDL ___ bull ( C t-shy-- -~ I ----- ~HA 71lt V)tn ANAC ~---- CE~ WALflHIN RIVR ----- ~ w

w ~ LA PICO - CM44 - T -~ ~ ZUMA MALI VEN middotbull _ -bulltRc __ ~ ~lt~~7-

N WuHB _~-- -middot bull ) _J~N ~ -- ~ 0 - ) ~ I ltgt -_middot PERI bull I- ( _

V 8U25~ 3720 3720

WJlt~ ( ~ ~ ) 1 i

~ I I I I I I I I I I I I I I I I I I I I I367r I bull I I 3670

75 325 375 425 475 525 575 SOUTH

I I I I I I 0 10 20 30 40 50

(KM)

-~ ~

SCAQS SURFACE WIND MONITORING SITES 10-11 DECEMBER 1987

NORTH 325 375 425 475 525 575275

-- ----_ lt_~- c--- - ~ ~ _ I I - ---~~c------ ) _ -middot - gt~-

3a2or ------__ lt- ) 1 middot--- -- __ - ~bull =-------------- - r---_ ___ - bull- ---- I I ~ ~-- jc- I bull - - (bull I --- middot middotmiddot - ~ -middot - -- ~ - 3820 -~- bull - middot - - ~-_ ~- _ middot- n

(

- 0 lt_( ~_lt- ~-~~- middotmiddot) ---- ()_ (---- --

--

____ middot

-middot

I

f----- (-J 1r---J~ --~ - middotlt ltbullI I ~__---__ ~-

l B~--- _c_ gt-- lt gt- (- - - j 1--_~--~--l~ -- -- --- )l

-- - --~---- middotc middot=-~-~- (~ L ----- -- --middot - -- - - -bull --- - - c-) ~ J _ -- - ---- - ) ) ltl

37703770 EMLgt middotorrmiddotbull __ ) ~~~~ofmiddot - -- __s=__I- - - ~__- ( ~ __ )---__ Ishy

V) ~ ~- lt(w ~ ---- --~ - w if)

-~2_~middot) ~~at~s t I

I-

deg

FUUA

i () ~--J)llC~lt I

3720 3720

~ltl__ (_)i~

~ NSI

367~~51 I I I I I I I 13~51 I I I I I I I 13~51 I I I I I I I 14~51 I I I I I I 14~51 I I I I I I r--- I5~51 1 I T I I I I I 5~51 I I I I 36 70

SOUTH

I I I I I I 0 1 0 20 30 40 50

(KM)

SCAQS UPPER-AIR WIND MONITORING SITES

10-11 DECEMBER 1987

Appendix B

SCAQS DIAGNOSTIC WIND ANALYSES (Six-hourly plots Levels 1 3 and S)

Summer Intensive Monitoring Periods

19 June 1987 24-25 June 1987 13-15 July 1987 27-29 August 1987 2-3 September 1987

Autumn Intensive Monitoring Periods

11-13 November 1987 3 December 1987 10-11 December 1987

Page

B-1 B-13 B-37 B-73 B-109

B-133 B-169 B-181

9106103

Summer Intensive Monitoring Periods

9106103

19 June 1987

9106103

1bullbull-lil

1SV3

I I lshy Ishyo )

0 0 z ()

IO N IO

I()

N -st-

1S3M

-- l1

l~ i --

0 z 3

---

2 0

_J w cjr----_J CD

0 l() z

I- =)lt( 7

f) 0)

0 -- i n 2 Ishy7

0 ~ ()N ____ gt a 0 20

3o 0 ~

0

B-1

1Sv3

( I l-et 0 z

(

lf) N st-

l() N ~

l()

N 0 t--

n

0 N_ n

U)

ON r-shy(0

n

1S3M

B-2

_

2 0 0 tlt)-__

tlt)

_j w 2jr-_j CX)

0 lf) I- z

lt( ~ IJ1 0)

0 _ 0 n 2 z 1-0 ~ N - 3 ~ 0 20

3o 0 Ov

-----

lSVJ

l)

----

l~3 O 0 w

w ll) (1

l)

0 0 z 3

I lshyet 0 z

--

2 0 0 0

-

LO

w ~

GJ r----~

u 0 z

OJ

I- gt lt( J

mif)

00 ---shyI) 2 z I-0 i l) N -- 3 (1

0 2 0 3 0 0 ~ 0

lSJM

B-3

1SV3

- V1 --

~5 O 0

E - w

w Ul_ 0

V1 0 0

z ~

I I lshy I-et =gt0 0Z V1

-

2 0

J wr--CJ OJ J z0

Ul I- =gt lt( ~ V1 -

0 - n 2 0 z 1-() 0 ~ N __ 3 0

0 2038 0

0

U)

l

lO N v

0 N agt n

0

r--n

0 N

0 N r-shyn

U)

U)

U) N U)

Ul

q--

Ill N q--

1S3M

B-4

td I

J1

~ ~~~~~ ~ -~~~~~ J - -~--Qf~J ~lf~ ~---~ ttt~~~~H~f~ ~ ~~lt~~~0 ~ - ltl-_t I~~~~~~-~~~~~ ~~ I _~1c j_~ L ~ (__1-T11__1 ~_-~_ ---~~~~~~ 11 - ~ +f--1~- ~-+--41-- 1-~- ~ ~ -rtt1-~--~~~~~~~ ~ ~ ~ ~ l t I J JI JI~- t _I i~~I~~~~~~

377itttttttt ~- - t I Jf --------_-- _ 70 ~ ttttttttttttti- fllJ~JI-~~_- ~~ _ =- ~~~- tn w - t t I I I_~- -V _ ~ -laquo___ _ - ltC 3 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ t t t t t I I I I JI~ JI JI ~~ I--~- ~ ~~~~~ w

H~HHHH~in+~l~Hnf5-I ~ ~~~~~~~~ ~ ~ ~ lliii it t I~t~ltt~rrrr~~~~ jl++it~~~t~

20-~~~~~~~~~J tttttttf ~~~~~~~~~~---~-~~~~~~~~~~~~~-amp~ ~ t t t t t t f f f I I I I ~ 1 J(-- _ --P ---~~~~~~~~ ~ ~ ~ ~ ~ ~ ~ ~ t t t t t t t t f f I I I I I ~ ~- j~J _ ~ ~ z~ ~ ~ ~ z l I+ nm~t ~ ~ ~ I I~Jt~-~- -~-__~~~ tr ti ~ ~ t t I t f f I I I I I I I - ~-r __ - ~~~~~~~ ~~~~ ~z11 ttt ffflllllIIII -~~---~~~~~~~~~~~ ~~~~ ~~ ttttft ttflltllllllll A~--~~~~~~~~ ~ ~ ~ ~ ~ ~ ~ t t t t t t t t t t t f I I I I I I I I I I I I I ---P~- ttttttttttttlllllllllllI -~--L~-~~~~~~~~~middot

367 70 ~75 325 375 425 475 525 575

SOUTH

1111111111111111I I I I I I 0 10 20 30 40 50 0 5 10 15

(KM) WIND SPEED (MS) i

NORTH 425 575

_ 414111fl-~bull __~) ff I -lt~i ~ + lJ Jmiddot-bull A fl t1 it bull- _I~--~---~----_---~_~~~~~~~11 t1

~~t 11 f + + diamsJ diams 1 )--t-_+ J~ I-(_ 1 1 ~t1 __

__ Lt l l t fL f_l - - +~~----~~---~___-+_~~~ J-t-t t---t-lt t t-t) LJ lt fl ~ -- t---f t tT~-- ~~ 1__t -t ti t_1 + l - -~-~-~-II~-- - ~~~-----~----t----~~~~~~_Efftt -- r1 ~J t l Lt t

fl

~ _ t_ - 11 _ _

Fi ru bulll=ti~ ~ ~ ~ ~1H1~~_~-~-~----~~~~~~~~~~

DWM WINOS AT LEVEL 3 (300M) 1000 PST 19JUN87

1Sv3

I I-shyCt 0 z

1S3M

B-6

0 II)

0 I)

-_2

0 ~ N -

0

0

-_

2 0 0 0 -

LO

_J

w r---CJ O) _J z I- gt ~~ if)

0 1--shyz V) ~ Q_

20 3 g0

NORTH 525 575

~~~__A -~___~~-

F- ~_--P~

~ ff~~-- - _ middot- ~~

_ bull bull bull bull bull

_ p

~L~k~tt ~ 1 t A middot1-t

~ r~ 1 11 1 __ bull bull --l t frac12Q2_

~ ~--r-J-+7L~

1--Ui

3770 _yen~AA- ---~ ~__~_ ~ K---r

eno tshylf)

w ~ ~ ~ lt( 3 I I_

- w

td I

-J

~~~~- ~ ~ ~~~ shy ~ ~ - shy

3720

~ ~~~ -~1~-nu~~~~-

~ -~ - ~_____A~~1~ ~ _~ ~~= ~~~_______2--- ~

720

~~~-~~~~~_ 9~tbullmiddot~qor~frac12

Y~poundpoundpoundpoundpoundpoundL1~~~~r~ ~ middot

375 425 475 525 575

SOUTH

I I I I I I 11 1111 1111 1 0 10 20 30 4-0 50 0 5 10 15

(KM) WIND SPEED (MS)

DWM WINDS AT LEVEL 1 ( 1 OM) 1600 PST 19JUN87

~

NORTH

Arlt~~~ ~L _ -rJ ll

_ I I I t

_t-z~~J ~i~ bull

i- ~~~ Ii ~~( trn

3770 I - bull bull bull bull bull bull bull iigtlaquo

--- bull bull bull _-

~fJ~ t-l-lltf[llJ- jf1 rr]I ~ ~~~ ~ss~810Ja2ot-~~1i lmiddot - 1 17- - -

-ltL

~ ~ 70 y ____~ tshy

l) ) _-y ____~w

w ~

~ -~--- - -- ~ 1 ~~~~ __ _ bull---bull laquo-___~ Y~~

___p~~__---A~_A 1 ~~td I ~----______A 14 1 ~

00 _-________________ ~ __~----~1~ -A________________--r__~~~ ~ ~ ~~~--~-~~~~-~---e--~ ____________~_________-~ h

3 7 20 t-_--~____- ~ _ _ ~~-_- _ _ _ _ ~___~~~r--~~___-K ~~ ~ -~-------~~~----~ ~ ~~__________~~~~~~~______-r_-A~-1--~~~ ~__________________----r~__~__~-Y~~-------__---A----r~ 1 ~ ~__~___________~ ~

367 tcrr~__~y--rrYlt-trltltltltltlaquo-ltltltltltlaquoltlt~~~ ---

9imiddot~75 325 375 -- -

1111 1111 11111 1 1 1

0 10 20 30 40 50 0 5 10 15 I I I I I I

(KM) WIND SPEED (MS)

DWM WINDS AT LEVEL 3 (300M)

1600 PST 19JUN87

NORTH

bl I

0

~________________A-4_gt~~~_____~~__________~A

A~altP_ ~~~_________--~_A 38 20 I--=-~~_~~___~~-_-~~_ -lt~ - ~_-~_A--1~ _

~~------ ~ gt-~ ti ~----~ ~ _~~~~ 0 ~ ~-i---~~411___ I~-~~ I~A-~~----~7A7~-

A A~---~~- ---~ ~ ~ -middot~~ 1-27 ~shyA_~ ~~~ Jl--__r-t~ ~ (K~_ - fl_

A ~I J111 I _ A - ~ _ T-~ v I 1 1 1 1 1 1 ~ 1 1 _ Ji J I~ f --_i__middot1(- ~ ~)( ~JJXZ - _ r ~ - _ )( _ II I 1 ~ 1 I - _~ _)~ ~~

= 1 II II 1 (~ ~--=-~ -7fJ~~~~tm~i I- 3770 Jir - I 11 I 71 (I) ~ ~111 ~

w ~--middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotbullbull bullbull ~~~11Zll~~11~ ~ ~~_~~~llllN~~ -~~ bull 11jh fi 1 1 II 1 1 1 1 1 1 1 1 1 1 1 1 1 I I 1 0i~~~ 1gtcJ~l~p~ ~~~ ~~~ ~rr1111

70 Ishy() lt( w

111111~~ 3720 i- 1 1 ~ ~

~1~I A-A~)I 1111AA _~l11~ 1

lllllll11IIIAII- ~II ~1~~__~~Ill~~~~~ l1_ 1~~~~~~lll~~~~1 llllflfAll-)lllllllll1~~~~~

A I I I I I 1 I I I I 3670

275 325 375 425 575

SOUTH

I I I I I I 1111111111111111 0 1 0 20 30 40 50 0 5 10 15

(KM) WIND SPEED (MS)

DWM WINDS AT LEVEL 5 ( 1 OOOM) 1600 PST 19JUN87

~

A A A

1Sv3

(

1S3M

B-10

()

l ~

---u) 2 __ O 0 ~ w

w It) Q_

()

0 0 z 3

0 It)

~

0 ---I) 2 ~0N _

0

0

---2 0 __

_J

w r--- GJ OJ _J z __ )

~~ () r-

0 __ z ()3 Q_

~o 3~ ON

NORTH

middot-~~) K~xJ~ middot_1~ ~ 71( I IJ ~JI

~A I 1 ~~

liii[i~~ Hf~-~~~=~T-- ----- --=~~g~g~bull11ft _ ~~~ -1-x~~~ ~~~~-~~~--~-~---~ --~ t ~t~ -~1~~ -- ----

-lt J 1middot~~ __---~__

3 770 ~ ~~ --_tn ---------~~ 1 ~____~ _ ___~ -w bull Y ___~~~ (Al _~ _ ~

-- bull _ _ _ bull bull bull bull~___1 1I J~ _~

~- YI J _L ~~ ~~ YJll~E~

td _____-___ ____ __ 1 ~xgtx2-I ____________~__-A (~~~~ _______~~2-1 y~~- ___~__________~ ~

3 7 20 I-___~~__~~ Y --~ ~__ I _ - - _

~_---A~ ~---__~~~~~--_____~ ~ ~_____A~ y ~ ~___-__________~~ ~ -

~__-_______-yen_2 ~ ~ ~~_______~ ~

1 367~ 75 325 375 425

SOUTH

1111 1111 1111I I I I I I 1 1 1 0 10 20 30 40 50 0 5 10 15

(KM) WIND SPEED (MS)

DWM WINDS AT LEVEL 3 (300M)

2200 PST 19JUN87

~-

~ - - ---

NORTH 275

___ -~-___

- ~ I o_ ltAbull~-P- bull bull -P diams bull~--~~~~--- --- ~ ~ ti ~ ~sbull3820 ~=-J~_~~middotmiddotmiddot~~~--_~_=- =~_~c s~ ~3~

~~- bullbull~~bull~~~~~~ - bull -~~bull ~ v i-_ --- __-_ ~----~

~- st-~~1 17-~__4 ~ _~ ~-~-raquo~~~ -f _ _ bull bull bull bull~ bull bull-__-v 4 t ~ ~v ~- Jl_~ ~--z~~=~s~~~~Mil

-- _ ~ frac12--~~- -=~~ ~~l~1~l~tzi9~J t~ 1 1 1 1 1 1 ~-bull ~~___- v q (If V pp p I l_77rtfl _

3770 ~ ~ ---- I h1yenzi 1V-r-() bull bull ~ ~~~~~ w ~ bull ~ _ I JI J(_ )-II101-1 3 ~~A~~~XI IIJ~~~

~ f A I~ I I I I~--L -

tl ~1111111 ~K11~~llll~i~~~~I ~rr ~~ ~xgt~~~t---

N ~I I II)(01~ ~ ~ ~~~ 1~Y~lt~~~~~~~~ ~~~~

3720 iYY11Alllll1lIA~~~~ ~~---Y~---_ _ _ - ~ bullbull - - _

~rrll1IIIIIIIAAAA__

___________~~~AAAA~_~ ______________~~~~KAKAA1~~ lllllllllll~AAA1f~~

_~~

3670 t1i11 i i 1 i i 11111 i i i i -i i [ 111111-111 ~ ~ 11 ~ i I t 1 bull rm r~ij e =~~ raquo-il3t ~ 275 325 375 425

SOUTH

1111 111111 11111 1I I I I I I 0 1 0 20 30 40 50 0 5 10 15

(KM) WIND SPEED (MS)

DWM WINDS AT LEVEL 5 ( 1 OOOM) 2200 PST 19JUN87

24-25 June 1987

9106103

1SV3

1S3M

0 w w Q_ (J1

0 z 3

I f-shy=J 0 (J1

-_

2 0

--

_J w CJ f- _J OC)

0 U) z

f-shy )lt

J q-

(J1 N0 -_ 0

rlt) z rshyl)

N0 _ 3 Q_

0 20 3o 0 q-

0

B-13

lf)_ lf)

If) N If)

lf) r-shy~

I I-o 0 z lf)

~

lO

~

lf) N If)

(

pound bull d ~ bull 4 4 c_ q

1 4 r9middot-

0 N IX)

middot- t--bull ~Igt~

O ~f 4 fT amp)o(oj

4 ltI I~ ~ ~

0

o

middot a

~- v t rgt ( tgtj (~V~-1 f4

3 44 ~-~a4 V VM q -~~-q_4 ~4

_ ~ )

p- ~~t1~1 middot V II J ~ ~ )I 1 11 f ir -~~1I ~

II P P P Igt 4 ~(Iigt ~~ 1) IA

deg deg 4 4 ~ A -1 r 1 1-Y]~t J rz ~

fl r ~ Igt I~y ~ -- -- - 4 ~r___amp V P11 iP Igt P Igt p ~ -0

~bull 7~tpmiddot~P Pf P Ptl middot~ ~ q p Igt 1gt p ~ t b (r 4 P - 4---f ~ ~ bV ltI

ltI ~ ~ I p 6(~ d-_j b d p (4- 4 ~ 1 p Igt 1gt Igt - b ti

)4- a 4_) q V Igt p Igt o

lt(___~ ~- V fgt ~ 111 t Igt -4

~ ~ Igt r p Igt

~ ~ 1 h1

V (I Ilt v middot

t y-

t

t

p

P t P t P ~

0 0N - IX) n

1SV3 0 0 0r-shy N r-shy co

lf) lf)

If) N If)

~ - t bull~--~11n ~ -~bullmiddot t~ lt middot___

o_ ~ ~ ~

0 bull t bull 4_4 4 4IIgt

c 0----~ u c Igt( o ~ c ~A ~ 0 - A 4 4 ~ 1 q

o bull o- -~ 1gt 1gt ~ y4 -~J middot)bullmiddot ~ ~ ~ p 0- 1---f t-~ 1 ~ 4 4 o co u gt)O- eyti ~ ~l 9 -Y P- - I a c 1 oM_il_q A p- p

4 ~ ~-M f p

I 4

~ rv ~--~middot

tJmiddot bull P II f t )I~ bull V ct_~ V V V t P- ~ Igt t middot f lft V VJi P- P- fgt IIgt ~ _ J1 bull bull bull

1 v II p _bull ( ( ir ti- f Igt bull

j ~ r f -~-1t __

_I ltC_t--q_) v -~-ampgt

Q middot--- ~ - t ~ b

II

bull ~

bull bull

diams

1 bull ~ ~~ ~ ~ b b b lgt bull

-- b bull bull bull~4q~ lgtPlgt-4-~_tbblgt

Jraquo P P ~ q 11- 11- b b b b b

P Igt P q bull b b b b b b b b bull

bull bull Igt 4 4 fl ~ b b b b b b b b b bull bull Igt Igt ~ 4 q ~ b _ b b b b b b bull

P bull Igt Igt -4 ltI 9 b b b b b b b b

p bull - Igt Igt 4 lt1 _ b b b b b bull t bull bull Igt ~ 4 b bull b b b b b b bull p Igt Igt Igt bull 9 b b b b b b b b bull P p ~ ~ A 4 q - _ b b b

1S3M

figt j)

~ ~ bull

bull bull bull bull bull bull bull bull bull bull

bull bull bull bull middot bull middot

bull bull ~ ~ 9 9bull bull bull bull bull bull bull bull bull

bull ~ bull bull _ bull bull _ bull bull

~

If) N t

lf) r--11

~

If)

~

0 ONN - co n ~

I fshy=i 0 V)

- 2 0 0 n -

n _j w cjf-

0 l()

0 ~

0N

0

0

---shy2 ~ _

_j OC)

I- z lt( =i

J Vgtv 0N z f-

3 ~ 20 3o 0-t

B-14

---

1S13 0 0 0 N N r--shyltIO r--shy co I) n I)

I() l1 r--shy -U

E~i0 z

U N I() 3

I fshy)

0 U) l1 N -t

--_

2 0 0 0

-

LO

_J w CJf----_J OJ

0 U) z

f- )lt( l1-r ON z f-

3 ~ 0 20

50 U) 0 -sr

0 ON r--shy r--shy

r--shy (0

n I)

1S3M

B-15

lSV3 0 0 0_ N - _ - ~ I)

_ ()

(~i

0 z

If) If)N NIf) 3It)

I Il- I-a =gt0 0z If) If)()

N Nst- st-

_

2 0

--

- w I--- OC)Cj z0 -

I) )I- Jlt( --t-

N() 0 I-z ()

3 o_

0 0 2 0

~ 0 00( 0 0 0-N N _111) r-- 1)

1S3M

B-16

lSVJ 0 0 0 0 N r-shy N r-shy_ _agt lO n n n n

() r-shyU)

u) l() N N u) l()

I I lshy Ishyo )

0 0 z U1 l) N

l() r--_ 2 0 0 n -

n _j

w I GJ OC)

0 _j z

lt) I- ) lt( ~ lf) N 0 1-z l)

3 Q_

0 Lo38 0

0 0 0 0 _N N _ _(() n n n

lSJM

B-17

1SV3 0 0 0 0- -N N- -crJ co I) I) I)

lO II)- - U) It)

U) II) N N lO lO

lO- st

I l-o 0 z U)

N

~

I I-=gt 0 l)

st st

--_ It) - ~ I) 0

0 0 ___

lf)

J w I-

It) N I)

0 II)

~ OC) J z I- =gt lt - lf) N 0 1-z l)

~ 0

0

0

~ 0

38 0

N IIJ I)

- - I)

1S3M

B-18

middot~ bullmiddot I

1Si3 0 0 0 0 N r-shy N r-shya) r-shy r-- co I) I) 1) I)

--_

E~i l)

0 z 3

I r-0 0 z

0 I(

0 --_ n 2 0 ~ N --

0

0

1S3M

B-19

---

_J

w r----2i OC) _J z I- lt( ~ V1 N 0 1-z V)

3n 20 3 iE 0

---- --_

NORTH

-_ t t t f t A +1 t lt-1--JJ-middot+J

r ft_f_frac14 fffftl middotmiddotbull f_ n- ~ tn

ttt1I1~ ~ ~ ~ ~f --H 1--- ~ -

rJj ----~ ~ ~--- ~ l j bull bull - bull bull Ir - ---_- --- --~~~~~I-~~~ ~ bull ~ ~ rt

- - ~rnlit ~~~~ ~~~~ ~~ ~~~~~~~ - _~-~~ ~~~~~-=~~~~~~~-gt

3820

bl I

N 0

tshy() w 3 fftfftlll

ffltlIJ11111~11- I I I J ~-- - ~~~~11J~ -~

3720 - I I JI J ~~~~~~~--------~~ diams bull + I J J _~ 4 bull I I I J ___ ~~~~-s---~~IJ-bullbullbullbullbullbull ~__middot~middotmiddotmiddotmiddotmiddot~~~~~E-e~~

4flA~~middot~middotmiddotmiddotmiddotmiddot~~~~~ ~--_---~- ~~ 1

367~7i51bull1bull11bull1 111 13251777JT7777~7777 I I I 14251

--~--~- ~~_-~-----~ ~~~J

--~-_--~- 1- I 1 I

~ 1lJ

I I I I I I 14751 I I I I I I I s~sl1 I I I 1575 I I

3770 tshy() lt( w

3720

13670

SOUTH

I 0

I 10

I I 20 30

(KM)

I 40

I 50

lllI 0 5 10 15

WIND SPEED (MS)

DWM WINDS AT LEVEL 3 1600 PST 24JUN87

(300M)

lSgt3 0 0 r--shy N r--shy r--shyt)

It r---1)

lO ---- N bull ~~ r lO ~ oe--- I

~~~~ t z~_-----~8 ~ ~~~2~-~----=---~~ t ~~----~~ -frac14~~~--

~v -~ 1 ~ - ~ ~~ ~~~-~~N~~~~~~~~~~~

tf~ ~ ~ -~~~~~imiddot~~~~~ ~~ ~~

_gt~~ middot1 ~ r2 l~ --~- I _Ct _ V I - ftV

0 ~ ~~- X

z~ HF bullIh IJ i It ti ~ 1 IJtl ~ ~ j t ~1

~ ~ 1~1

1 r ~

)

r r~P t t _r )r f

~ 1+ t t t f t ti ~ 1 lt ~ diams t f J t H ff 1 1I I I It diams diams Vf- 1 f f ~ f I 11

(____ t i(_ bullbull ~ bull ~ I r fr1)L_lt--~~vi 1t1J U1 -~- middot~ 1 t) ~ bull ~ bull ~ bull 1 1 f f f I t ~ - ( ~ ~(~ (_ ~ b ~ - ~ bull f 1 f f ~ bull

j ~r~--~ ~ _ ~ ~ ~ l 6 bull bull 4 t ft It _ - __ _ - J ~ ~ ~ t bullbullbullbull t - _ ~--~_____

__ I deg j ~ ~ b ~ _ Igt ~ _ _ ___ bull bull bull bull

~ ~ I ~ ~ ~ _ ~ _ _ _ __ - bull bull bullf

~ bull ~ ~ 4

I -- I bullbullbullbullbull

~~~ ~

1 bull ~

-- V)

LO lshy -----_ lf)

l- w w

=~ It) 0 l)

It)

2= )

0

~

l() 9 __~----- lf)r--- --------J______--L--J-~J-J-______~______~~~___________________________ r---N O O O ON

0 0 z 3

--

2 0 0 0 ----

LO

_j

w I--GJ Cl)

0 _j z lf) )I-

lt( ~ ~

lf) N 0 -- 0 I-n 2 Zlf) ~0 3 0

N ---

0 20 3 g0 -

0

N r- N I-~ I- I- ~ n n n n

1S3M

B-21

1Sv3

U) N U)

lJ) N n

0 N (0 I)

0 r-shyr-shyI)

0 N

I)

It) N It)

U1 r--1)

1S3M

B-22

0 w w (L Vgt

0 z ~

---2 0 __

_j

w _ ~ OC)

0 _j z U1 I- )

lt~ NVgt

0 --shy 0 1-t) 2 z () 0 ~ ~ (LN -middot -

0 20 ~~

0 ON

bull bull bull bull bull

1Sf3 0 0 0 0 N N CX) ID I) I) li li

~ n

~ n

tf) ~

A i -02middot a_ ~ r ____ Igt middotjmiddot i -1 ~ i r middot-~-----------------gt IJ IJ bull 1 j I ------~-----------------

_ IA_Jyen ~ ~ J ~ yen ----~---------------------

~ II --~_a IIgt 11gt Igt middot~ I bull ~ ~ ~ ~

1(1gt i i _JI J Iibull I - IJ Ji H j

bull bull I( --- j J t ~o ~- -- -J I I i J diams bull1bull bull bull i ~ _I I I I J 1 ~~- ~ 11 J l J diams -~ J) bull ~ I- t t ~ ( l f middott J bull 1_~1 ~ IJ II- I ( II ~ j t t bull)

bull t )bull ~) i ~bull bull __ __ I 1gt J I I I middot----- - ~ _ ~ Ji (Ji_ If ~ --~ bull i f l-Ji ~ p VIMyen I ~ middot1 bull I Ibull lt_~ ~ p1 )

I

__________________

~ 4 V ltI - - - -

~) i t --- -- yen 4 yen -- Iii 1yen yen JY yen II

I ~1 Ja a Igt- yen yen yen yen yen yen yenyenIiyen II II

a Igt bull ~ 111) (I J I JY yen tY yen yen II( ltf ~ I~) JY yen liY yen yen yen yen yen yen yen II II II ~ ~(II ~ yen yen yen r yen 1r yen yen yen It Ill

p cl

p 4 ampgt P JI r Igt bull

bull JJ Igt II

- ~ 11- bull

- -

+ _ _ _ __ __ +- ____

- - ----4

bull bull Igt Igt Igt

11 bull bull bull bull

bull bull It

IJ Igt bull t P

Igt bull t

- II Igt fl t middot~~-~~~t_yenyen yenyenyenyenyenyenyenyen

I ~J )Igt) 1 bull yen yen ~yen yen yen yen yen r - yen If II II Igt - I 1 J bull bullI _ _ 1 ~ ~ 1K )

bull -

bull bull II ~ Igt- J 6 bull I 11

fl) 1gt 11 Ill

bull t t fl

~

U1 r- n

~ n

_________o__JJ=---=-------oti~~e-~e11JEJEolELE-ILILLEJLlLu~uJ

l~

0 tf)

~ 0 n

0 N

0

0

- Vl ~ 2 ---

0 w w CL V1

0 z 3

-

2 y --

-

2 0 0 tlt) --

n _J w f-~ OC)

_J z gt

I- Jlt( q-

NVl bull) I-z Vl -~ CL

02 0 3 N 0 NIf)

ONN I N ro r- (0

n n n I)

1S3M

B-23

17z-g

WEST u u u ~ ~ ~ N ~ N

NO N~ 0~0

7J ~ () z -I 0 N (I)

~ )gt c_ -I C zr co ~ -J rT7

r (Jl

-- __ 0 0 0 s _

--_ 7 ~ --

~ z

~-0 0

--s (I) ___

0

0

N o (A 0

t ()1 0

oj(JI

-0

-()1

0 0 0 N -J

A I q bull if ~ ii ii ii I ii if 1 i J (JI

Ab4llltli ~~144

bull~~bull~1111111 11~1middot)1i~~~1 ~4gt~1111111~ II~ - bullbull~Agt~lll11 IIIAII tbull ~4-4~~~III IIll~ I ~14 4 - ~ bull i ~bull-ttt1 111111 I I 1-~ bullbullbullbullbull gt q bullbullbullbull I t I I I I I 4 I I I I I I I 1_ J~ I

4~ A - middot~~lll111I IIll 1 I 4 -1~~ l~ gt1llllllI 1l111 -~~ I N

tn()16 -1 Igt Igt I I l1I v I 7----(Yi ti mbull1-t

~Plgtlt111 VIII ii l middot~1111~~0~ I l~lll~310bullbull I i~W~ffi 1~~~~6~~~ I J~ 1~~~rw 11~~~1~ ~l~~t ~ i 11~~~~~~~ ~~f)~t~~I I~tl -1

~ --J ()1 l 111~1JV1 ~~~1~ I Ill tniz~i~~~~~~ ~~~~ 7 ~K -~~iii~~~~~~~~ il~~~~~~~ 1~~1~~~

middot1 middot1 middot1 middot1 middot1 middot1 middot1 middot1 middot middot1 middot1 middot1 I I I I vr )Igt(_ I II I I~~~~t~ 21~~~r~~~~~v111l I ~ II I -- I~ J(( I I II J l l l Cl ~ I ~ ~ ~ J J I I I yen - - bullbullJ_~ f yen ~ I IJ t I ti

diams J J J I I - ~ - ~ l1 yen -1) I I( t I ~ N J J J J 1- ur~ ~ - Jf1( -I) I I I ti I I j~

() UI diams Mi r)r yen fir_~~ bulll1t) JI 1 I middot i - (JI0 ~ nmiddotmiddotJ jmiddot-1 I I I f ~j--1J ~ __ middot gt C ~ J I f I 1 ltH I fl 1 ti I middotr- I I-I ~ f bull t t l )1j - _ I

t J4J-fbullt t ~ ii middotlfli ii~) - ~bullmiddotttM i f bull bull1 rI-Ku bull bull bull _ middot-~-J_J middot t +imiddot i t t ~ t ( ~ middot(~ I J bull Vf I r1- ~ j~fmiddot + r bull(~t t bullbull_t- J J ~) J ~ Igt

+ __ middot + V+ bull bull ti+ bull + -fi J i bull bull ~ f --- ~ ~ t Li bull bull t ++ diams + t bull +++ + bull ~ __Vbull ~ it 4 ~ i ()1 ~ 1 bullbull diams diams diams diams ++ ++ bull t 1 fA middot_ -----Y 4 ~ tn

~ ~bull t bull + diams + bull diams +++t + bull A VJ ~ bull bull ~ -o middot ~- bull t bull diams diams diams + ~i4_ ~ ~ ~

11 -~ 1 1 1 1 ~t t diams t t ft(middot-- f g a PA

--middott 4 -4 y 1 1 1 )f7~ V g n t A ~ ~bull a~ 4 1 1 ( V P q 1 bull A ~ V Y ~-- 4 I Cl oCl 4 A A ~tW --~- ~middot -)bull ~iliJ bull1bull

bull It t-- ti __ __ ~ (~w ~ ()1UI I bullbull bullrmiddot -~)fl l~~~ ) I A IIbull N~L~ r ~~~-ff~ --bull--1) 4 4 bull ()1

~ 14 ~ bull f 4 AA 4~ bull

44( )A - ~

- ti~ f 4 ~ 4 4 4 A bull ~ i

ti ti fl 1 4 tn llflfl44 4 -()1

~ ()1 ti ti fl 4 4 _ 4 bull fl _ 4 ~ ~

~ bull t~ - - I - 1 T T fJifrac12 1f 1~ fl t [ 1 4 bull bull ~ ltt ~4 ~~~11 l~~Nfl---~ ~~ bull ~t144

1 -middot I I f I ~ fl ti ti- Imiddot tJ 1-0 I 14

z o 0 -I

I

Y

)

u u u u 0) ~ ~ ~ ~ N ~ N 0 0 0 0

EAST

1S13

0 z 3

r r I-shy Ishyer gt 0 0 z ()

--_

2 0

--

___J

w CJ r----1 (lJ

0 l() z

Ishy gtlt J LO() N0

z Ishy()

3 0

0 20 3o 0 tj--

0

1S3M

0 w w 0 ()

B-25

------

~ --- _

NORTH 275 325 375 425 475 525 575

dJ 41 l ll~I tgtI I lo fA Itgt IA IA lo 1 IA IQ 1q lq If lq I ~I 4

~ ~ IIJ ~A ltI P Igt Igt Igt P V V V Q q l_-~- q ~ ~ ~ x- ~ ~ Y t~ --___q)11 4 ltI v v v v v v v 1raquo 4 -q q -~ q ~ 1 a

~ 4 ~~_gt~) ) ~~-4_~ A ltI fl v v v v p A V yjq ~ _ _ ~bullbull --shy~~~ ~ I Cl11 ~ 4 v v v v P- deg 4 ~ -V t V ( ~ a bull-

~ 1 ~~~ v ~sa- fl V P -iLpound_~A--4 q Igt P ~ 4 a~ 4 38203820

- _1 fa bull bull ~ II 11 4 4 ltf V P deg q 9 p Igt Igt Igt Igt P~~ _ _ _ bull -

- ~_R middot ~ gt- P-~-j---s--middotp-~~--- Igt p ~(

-~~ _ amp- 4 --v--J ~--~ -__~---- ~~ t f ---~middot bullbull ~ ~ ~ ~ ~~bull--- bull~bull~~ 4 ~-deg ~--~ ~_v -~ _~raquo Wh~

bull bull bull bull ___ol bull bull --___~ ~ _ A~~-~- f_~-~ bull 1 ~bull -~ Igt bull

a l -4 bull bull~ bull ~ ~ bull frac12~ P- __ _middotmiddot11-~~j)6-_ U bull _ JIgt~ bull I- bull ft ~ 4_~~~~ 9 P lgt--1gt~~~_-~_----~~~ ~ bull ~ ~ ~ ~ --~-~- ~~-_middot ~~~A~ ~ 1111 ~- ----~~ -~- IIgt _)-

1111 1111 -( _-middot 4 ~ Po Igt q lgtmiddotv11t_ Igt Igt II

3770 ~ P 0 ~ - bull k ~ 1- 1-

() pound 4 4 ~ q -44 - bull bull Igt ~- t Igt 1 Igt () w Igt 7 lt

3 - bull It It It bull bull ~--~ p ~ Igt ~ w ~~ It It It bull ~ -_t _ ~ bull bull bull bull --~ Igt

deg

td bull ft bull v ~lt~ Igt Ci~ 4gt I ~ It bull bull ~ 6 -It Igt ~

N bull bull It It ~ ~ _ ~_) ~ ~ lr It ft ft ft ft ft ft Igt -II-~ j ~ fil- _ _ _ _ bull 11r 1o 1o It 111- bull ft ft ft ft ft i i f - ~ 3720 bull It bull ft ft ft ltt q -e- ~ ~ ~j1

4

middot bull bull bull It It ft It bull ~ ~ ~ bullmiddot ft ft ft ft ltt ft ltt ltI 1 ~ - It bull It ft ft It bull -0 ~ JIgt ]~

middotmiddotmiddotmiddotbullbull1rt1rtft11- p-bull- ~1frac121 1tftftlttltltPt1t fgtbullbull ~~- bullbull ~

It bullbullbullbull It ltt It It ltt It lrt lrt tgt - ~

~~~ItIt ItItIt 1t11tft lttlttftlttltlt ltt lt11t ~ lgtbullJgtIbullbull bull~bull bull~bull ~ 1 bull bull 3670 367~75 325 375 425 475 525 575

SOUTH

1111111111111111I I I t--l 0 10 20 30 40 50 0 5 10 15

(KM) WIND SPEED (MS)

DWM WINDS AT LEVEL 3 (300M) 400 PST 25JUN87

0 0 0 0 N r-shy N r-shya) r-shy r-- (0 I) I) 1) I)

-

LO r--1) -

l~ i ()

0 z 3

I ~ n 0 z I)

N st-

0 If)

0 - I) 2 0 ~ N -

0

0

1S3M

B-27

---_

2 0 0 0

-

If)

_J

w Cj l-_J OC)

z_ ) lt( J () L()

ON z~ 3~ 20 3oo+

0 0 0 N N C0 (0 I) ~ I)

U)

U)

U) U) N N It) U)

I I-=gt 0

U) V1 N st-

lO N I)

0 lO

0 __ I) 2 0 ~ N _

0

0

__ 2 0

--

_J

w l--Gj OC) _J z I- =gt lt( ~ V1 N 0 1-z V) 3 CL

20 3 g0

1S3M

B-28

I fshyCt 0 z

0 r-shyr-shyI)

0 N r-shyn

0 r-shyl) I)

lO r-shylO

lO N It)

lO N ltt-

--

tlt)

_j

w r---fu o) _J z f- ) lt( ~ f) N 0 1-Z Vgt3 (L

2 03g0

I fshy)

0 l)

0 lO

0 -- n 2 0 ~ N ---

0

0

1S3M

B-29

1S13

-l)~ O 0 w

deg CL w

l)l ~

0 0 z 3

I lshya 0 z

--_

2 0 0 0

--

LO

_j

w__cj IJ)

0 _j z lf I- )

lt ~ ~ V) N

I) 20 - 0 Z(f)

I-

0 ~ 3 CLN -

2 00 3 gOr-

0

1S3M

B-30

Ht 11Sittl

lS13 0 0 0 0 N N II) (0 n I) n n

-- ()

LO t-shy ~ lO

(~i0 z

lO N LO

3

I Ishygt 0

lO () N +

--

2 0

--

_j

wr-----CJ OJ

0 _j z lt) I- )

lt ~ V) N

0 -- 0 1-shyI) 2 z () 0 i 3 ClN --- --

0 28 3 ltD

lf 0~_____________________________~_______________________--- t-- 0 0 0 0 ClCI N N t-shyII) t-shy io n n n n

1S3M

B-31

==- ~-_

NORTH

I bull bull - -f I I bull ~bull - ~__~~~~ ~~~

flt~11 $~~~t=- ~~ ~ 4Aligt~ ~~~ ~~

3820 1~~~- 4 t 11 ~ ~- --~_____-- ~ ~ ~~ 3820 ~~~

~~-~~~~

3770 3770

l1 ()w l-

lllizz tshy

~ ZlZZl ~ ~~~~~~

to I -IllIll

w -I IIIll~N llllll2~~

-II I I J I-~1~ r~~~~ 3720r ~ J J UL 1~A~~ 3720

~IIJJJJJ2~ ~~~ 1 ~ fl I JI JI2~~ 1~~~V fl fl ~ JI J J ~ y ~- 1-f4~) ~ fl fl fl I JI J _A2 1~ V~

~flflflflJIJIJl~2 ~~JIw~ ~ ~jlfljlflJIJIJI~ ~JIJIJflfl~~~ ~ ~~fljlfljlJI~~~~ -

J67 t-V1111111----(((((1i I~laquo rlt~1 I I I I I I I IM m I I I I I I I ~ MJ670 g75 325 375 425 475 525 575

SOUTH

11111 11111 11111 1I I I I I I 0 10 20 30 40 50 middot 0 5 10 15

(KM) WIND SPEED (MS)

DWM WINDS AT LEVEL 3 (300M) 1600 PST 25JUN87

1

NORTH

bj I

w w

i~ -tt--t ~ + ~frac14 diams diams diams diams diams f f f J-~~~l -ff~_x~ diams t diams ---t diams + diams ff f J1ff~t t

-=tl-U +---- ~ ~ t-t- diams diams __ diams~ diams diams ~ J I I 1 1 f ~ -y- ~I -~~-1t-~ diams +__+ diams + ++--J_f 1 ~JJ-11 I --

38201- ~~-- ~ ~--t_-( 1 ~ r 1t + middot~-t_ bull ~-~ bull bull bullmiddot bull r-r 1 ~IiI 1 I ~Ji~l _-=pound-~If~_ It It It bull bull bull bull bull ~ diams f f---bullmiddot+ --I __- _ I I~ 1 f1

( - ~~~~ II lit It It 1tt Iii Iii~ -r-middot -- ___- l_f--1-l -L ~~1 1 ~ ~_( _ -~~ ~------~ 1t(~ bull (t ft- ~ middotv -11-fI 1 - t~~1 1 41

~ - ~-~- lit 1t lk_i -- -~--- -_ -j rf-- l1 r111 1 I It It~ It 1t 11i bull-~ ~- ~ t_bullbull_~ (middot ~--middottY~i_(4Xtl~4j_ middot It It ~ -- ---~----~----_I~)-~-~ -

~-It It ltt middot~- ~ -~-middot ~-pound1[_~ -~- - middot - deg - - It It l diams diams 4 middotbull--bull ~ ~ ~ diams 7 1---~~ -L_- - ~ t( I diams -( bull diams ~ ~ bull ~ -- JI JI Jf JI JI j(_ ~II deg It_ -~ ~- I I I J JI JI JI JI 1

~ J- ~llj ~- diamsdiams +II IllJI_ h~ ~ ~ ~ bull bull ~ JI J J J ~ 1 x111 X7 -~ ~ diamsdiams 4111 JJJIJJ~~~~~~~~1t diamsdiamsdiams ~111 JJIJJIJllllb~ h~~~hh middot ~ - diams diams bull I I J J I I I I JI JI I l1-14~frac12-~~~ji_ ~ + f 1 J I 1 I I I 1 ~ x~ f1 11 middot -

bull JI I I I11~bullY1iz 1 41 ~ f I J J J JI J J J J J I I I lmiddot ~ t JI JI JI 1 JI 1 1 JI J I I I It~ if~_~

It_ ~ 1 JI JI JI JI J J I I l-~ 4 t J J J J J J J JI JI I I l l deg ~~ _ ~ 1111JJIJIJIJIJIJIJIJI t JIJIJIJI~I JIJJIJIJI_

~- I t I I JJJIJIJIJIJII~~~~ t JIJJIJIJIJIIII ~~ JJ JIJIJlllll ~ t IJJIJIJl1 1 1 ~ ~~I 1 t 1 A 11111111 II I I I

325 375 425 475

SOUTH

I I I I I I 0 10 20 30 40 50

(KM)

525 575

1111 111 1111 10 5 10 15

WIND SPEED (MS)

3820

3770 1-() lt( w

3720

3670

DWM WINDS AT LEVEL 1600 PST 25JUN87

5 (1000M)

0 w w CL ()

0

1S13 0 0 0 N r-shy N agt r-shy r--t) I) 1)

I() It)- r-shyU) U)

z U) N It) 3

( I I lshy Ishyo ) 0 0z It)

~lgtIgt~() st- b tgt ~ q st

lgtbbtgtb

b b t t 0 b

N

Igt b t b b b A 6 ~ b b t b C A 4 d 4

ttCt4lt1-it e Igt b tgt tgt V q ltl ltl ltI ltl

ti- deg 1 41 9 q I I ltl q q

i V q ltl q q q q I l() r-shy AlgtV ~ tlt) ~t) -~~~q

~ bull amp ~

0 ~ ~

-qa ~ ~ 1gt1 111111

b-a~-V ltillilI

bull lt bull bull a ~ Igt ~ V V V q 4 __J

It It lgt a -a~ Igt C tgt V w r---(J OC)

bull ~ Igt t 4 bull bull bull bull U) 0 __J z middot 1gt44lt14

U) ) t) rshy J - -N

lt( l() ~ ~~ CI() ~ ~

~

0 Ishy bull bull bull diams 1 z ()~ bull ~ bull diams diams 1 CL3bull ~ ~

i b y ~bullbullTT r I I 0

~ bull bulldiams ~ ~ b b b b ~ bullbull diams T r r I U)______-11____________________________ _ 0

0 O O ON N r- N r--agt r-- _ ~ I) I) I) I)

1S3M

B-34

I

_ _ 3820r- ttr- t f T Jf-Lt If t t 1l-- -~ 1~ t t

NORTH

~bull 1414

~~-_ ~ ~ r-- - --~ ~ - - _ r-- fT W - - r V-V ff f

- t t t t f I~ _AAjAA~-r bull(- -J It ~---1 t ~~~-1-- 1 ( ~~ - J ~ t t i f 1 ~ A_A-yen~_~_ ~ ~ 1 ~ t t ~ t t middotmiddotkt f ~-~-~~-----~~-- ~ ~ ~ ___ll_ bull ~

t -r- _______~~----- r ~bullbull _ ~ ~ tt-~J--~c-~~ ~ 1~--______ bull

~ -t lJ-- f t-J-- r---~~---middot _-- ~~-- ~ bull bull ll~iti~~sect~~~ ~ bullbull~bullbull bull~~n~ bull bull bull n~ bull bull

A)~lfifrac12~~ ~III I --1

3770 l l L l L - - ~ -- ~ - 1 ~ - 770 tshy~ ~~~~~~~~~11 1 ~~=1~~- Ul

W 1lllll~I ~~~~1111~~ lt( w ~1~~1~1~~j~~~m ~~~~ ~ - ~

11 1111 1111~I I 11111111 --- middotE~

tj IIIIIIIII_ ~tI l) llllll_~_p ~1l1 1~A~~~A~~rrr-v

3720t- I I I J J J A__ r r 0 11J)~~~----~_~ppmiddot-~~f Jl~~~~~---~--~~r~-~~q~q ~1

I ~JI I~ A A-_

~JIJl~~~~~A-----A rrbullbull~f~df~ ~~JIJl~~~~A~~--~- fffdfdff

~~JIJI~~~~~~---- bullfbulldbullfdf~

~IJIJl~~~AA~ --middotmiddotmiddotmiddotmiddot~middotmiddot~~~ ~l~JIJIJl~~~Al~pp~~~~bullbullffffffdff X ~~~~JI~- A(- f bullbull P ~ ~~bull1f1q1f1f1f1f1f1d1bull

3670275 325 375

1111 1111 11111 1 1 1

0 10 20 30 4-0 50 0 5 10 15 I I I I I I i(KM) WIND SPEED (MS)

iDWM w1tms AT LEVEL 3 (300M) ir 2200 PST 25JUN87

0 If)

0 __ I) 2 0 ~ (j __

0

0

__ 2 0 0 0

__

LO

_J

w f- GJ ll) _J z I- ) lt( ~ () N 0 1-z () ~ Cl

20 ~~ ON

1S3M

B-36

Page 12: Nind Observations Collected during the Southern California ...

-- ii gti kd

Our analysis consisted of (1) generation of hourly gridded wind fields for the 17 SCAQS intensive study days using the DWM (2) analysis of the mesoscale airflow patterns and (3) calculation of forward and backward particle trajectories to examine pollutant transport in the SOCAB

The results of the diagnostic analysis of SCAQS wind observations are presented in this report The generation of wind fields and the resulting airflow patterns are described in Section 2 The trajectory analysis is presented in Section 3 Plots of the wind fields are given in Appendix B The trajectory plots are included in Appendix C

9106102 7

2 GENERATION OF WIND FIELDS AND ANALYSIS OF AIRFLOW PATTERNS

DIAGNOSTIC WIND MODEL

Hourly gridded wind fields were generated for the 17 SCAQS intensive monitoring days using the Diagnostic Wind Model (DWM) (Douglas et al 1990) This model incorporates observations where they are available and provides some information on terrain-induced airflows in regions where local observations are absent The model is formulated in terrain-parallel coordinates Wind fields are generated using a two-step procedure

In step 1 a domain-scale mean wind is adjusted for terrain effects These include the kinematic effects of terrain (lifting and acceleration of the airflow over terrain obstacles) thermodynamically generated slope flows and blocking effects Step 1 produces a spatially varying gridded field of u and v for each vertical layer within the model domain

In step 2 observational information is added to the middot(uv) field calculated in step 1 using an objective analysis procedure observations are used within a user-specified radius of influence while the step 1 (uv) field is used in subregions where observations are unavailable The following modified inverse-distance-squared weighting scheme (Ross and Smith 1986) is used for the interpolation of data

where (u0

v0 )k denotes an observed wind at station k rk is the distance from station k to a

given grid point (u v)1 is the step 1 wind field at the grid point and (u v)i is the updated wind vector The parameter R controls the relative influence of the observations and the step 1 wind field

Following the interpolation a five point smoother of the form

9106102

Amiddot 1J

8

is applied to the horizontal wind field to reduce discontinuities that may result from the interpolation The vertical velocity is calculated by integrating the incompressible conservation of mass equation Zero-gradient lateral boundary conditions are used

GENERAL PROCEDURES

Generation of the SCAQS wind fields involved (1) preprocessing of the wind data for input into the DWM (2) plotting and quality control checking of the data (3) specification of the model input parameters (4) exercise of the DWM and (5) graphical display of the gridded wind fields Winds were analyzed at six vertical levels 10 100 300 600 1000 and 1500 meters (m) above ground level (agl)

In the preprocessing step the upper-air data were vertically interpolated to the model levels and temporally interpolated to enhance the temporal consistency of the wind fields and to provide hourly input for the DWM

Following the preprocessing step the data were plotted and examined for horizontal vertical and temporal consistency Data that failed the quality control checks were eliminated from the model input data set

The controlling parameters for the DWM include the maximum radius of influence (RMAX) at which a monitoring station can influence the interpolation at a grid point the weighting parameter for terrain effects (R) the number of stations to be used in the interpolation (NINTRP) and the number of smoothing passes (NSMTH) Note that the maximum radius of influence is specified independently for the surface level ( over land) upper levels (over land) and over-water portions of the domain The weighting parameter for terrain effects and the number of interpolating stations are specified separately for the surface level and upper levels In the diagnostic analysis of the SCAQS wind observations these parameters were specified as follows

RMAX (surface) 20km RMAX (aloft) 100 km RMAX (over water) 150 km R (surface) 10km R (aloft) 50 km NINTRP (surface) 4 NINTRP (aloft) 3 NSMTH 4

Tests were performed to examine the sensitivity of the DWM to the various contr ling parameters and to select the optimum values of these parameters for the SCAQS v nd analysis

9106102 9

The DWM also requires as input a domain-mean wind and stability information For this analysis the domain-mean wind was specified separately for each analysis level and was based upon the average of the level 6 (1500 m agl) wind observations To account for friction the speed of the domain-mean wind was reduced for the lower levels by multiplying the average wind speed for level 6 by the following scaling factors

Level Scaling Factor 1 048 2 072 3 083 4 090 5 096 6 100

The domain-scale lapse rate was the calculated average of four inland sites These varied according to data availability

Six-hourly plots of the level I (surface) level 3 (300 m agl) and level 5 (1000 m agl) wind fields for each episode are given in Appendix B

SUMMER INTENSIVE MONITORING PERIODS (

Mesoscale airflow in the SOCAB during the SCAQS summer intensive monitoring periods appears to have two components

A basic diurnal cycle driven by land-water temperature differences and complex terrain and

A perturbation associated with the overlying synoptic flow

19 June 1987

The surface and upper-air wind monitoring site locations for this intensive monitoring period are indicated on pages A-1 and A-2 respectively Plots of the diagnostic wind analyses for 19 June are given on pages B-1 through B-12

The surface early morning airflow pattern on this day is characterized by weak winds over much of the coastal and inland areas with moderate NW winds over the Coachella Valley and offshore At 300 m agl winds are S over the western half of the domain and W to NW over the eastern half of the domain The overlying flow at 1000 mis W

9106102 10

n1er

The sea breeze is somewhat slow to appear in the western basin on this day but has begun to develop by 1000 PST At this time winds at 300 m agl remain S over the western part of the domain and W to NW over the eastern part of the domain Some S flow is also apparent at 1000 m

During the afternoon hours three distinct features are apparent in the surface airflow pattern

A sea breeze (W flow) develops along the coast between Santa Monica and Palos Verdes and penetrates inland A branch of the sea breeze penetrates into the San Fernando Valley resulting in weak SE flow at Burbank and Reseda

An area of weak (SW) winds forms in the Whittier-La Habra-Pico Rivera area persists throughout the afternoon and fonns a convergence zone in the central basin with the penetrating westerly flow The S component of this flow is due to sea breeze development along the coast near Long Beach

Upslope flow develops along the foothills of the San Gabriel and San Bernardino Mountains (eg at Glendora and San Bernardino) Along the eastern foothills the upslope flow is supplanted during the afternoon by the penetrating W flow

By 1600 PST on 19 June the depth of the upslope flow near Glendora exceeds 600 m Strong outflow is apparent through the Cajon and Banning passes Aloft winds are generally SW with some SE flow near Burbank and NW flow over the Coachella Valley

Significant onshore flow (3 ms) persists along the Santa Monica-Palos Verdes coastline through 2200 PST Feature-s of the afternoon airflow persist aloft through this time

24-25 June 1987

Surface and upper-air wind monitoring site locations for this intensive monitoring period are indicated on pages A-3 and A-4 respectively Plots of the diagnostic wind analyses for 24-25 June are given on pages B-13 through B-36

The airflow patterns on these two days are similar to one another and to the ttern on 19 June The overlying flow is generally weak below 1000 m agl with moderak t5 ms) SE flow at 1500 m agl

On 24 June the early morning surface airflow patterns are characterized by ver middoteak winds At 300 m agl winds in the Coachella Valley are SE By 1000 PST a we1 organized zone of weak S flow extends from Long Beach to Pasadena this S flm

9106102 11

(

reaches a depth of 300 m agl Southeastern flow in the Coachella Valley and E flow through Banning Pass are apparent both at the surface and 300 m agl S to SE flow dominates at 1000 m agl The II three-zone II surface airflow pattern is apparent during the afternoon The wind shifts to Wat Banning Pass by 1500 PST At 300 m agl winds are SW over much of the basin with SE flow at Burbank and in the Coachella Valley At 1000 m winds are generally SW At 2200 PST the airflow pattern is characterized by weak unorganized flow at the surface and 300 m agl Winds at 1000 m are NW over much of the domain but SE over the Coachella Valley

The airflow on 25 June is similar to that on 24 June During the early morning hours winds at the surface are very light Weak SE flow is apParent at 300 m agl At 1000 m agl winds continue to veer toward N The sea breeze develops more quickly than on the previous day and winds at Banning Pass become westerly by 1300 PST Calm winds are observed at Pico Rivera throughout the afternoon As on 24 June the afternoon airflow at 300 m agl is characterized by SW flow over the basin and SE flow at Burbank and over the Coachella Valley Upward propagation of W flow is generally slower than on 24 June Winds at 1000 m agl are S to SE During the evening hours the surface winds become light while at 300 m agl winds over the Coachella Valley become NW Organized W flow is apparent over the W basin through a depth of at least 300 m agl through 2200 PST

13-15 July 1987

Surface and upper-air wind monitoring sites for this intensive monitoring period are shown on pages A-5 and A-6 respectively Plots of the diagnostic wind analyses for 13-15 July are given in Figures B-37 through B-72

Airflow patterns on 13 and 14 July are generally consistent with the basic diurnal cycle described earlier However an unusual airflow pattern develops in the Coachella Valley on both days On 15 July strong SE forcing is associated with a delay in sea breeze development

The 13 July early morning surface airflow pattern is characterized by light winds and a weak cyclonic eddy over the Santa Monica Bay Winds aloft are light to moderate and primarily W The sea breeze develops rapidly on this day and by 1200 PST W flow overwhelms the S sea-breeze flow in the Long Beach Area W flow appears at Banning Pass by 0800 PST The surface afternoon airflow is characterized by the three-zone airflow pattern described earlier with strong upslope flow along the foothills ( gt 5 mls) and significant outflow through Cajon Pass Observations at Palm Spring (NW winds) and Thermal (SE winds) indicate a convergence zone in the Coachella Valley with a depth of at least 600 m W flow dominates at middot1000 m with S to SE flow over the Coachella Valley During the evening hours a cyclonic eddy redevelops over the Santa

9106102 12

rtMt1

Monica Bay winds are weak throughout the basin but airflow into the Coachella Valley is especially strong

Airflow patterns on 14 July are similar to 13 July with a few exceptions During the early morning hours the surface airflow is characterized by weak disorganized flow There is no eddy apparent over the Santa Monica Bay The overlying flow is weak and primarily S to SE at 300 m agl but W to NW at 1000 m agl Sea breeze development is approximately two hours slower on this day than on 13 July By 1000 PST weak S flow has developed over the Whittier-La Habra-Pico Rivera area and SE flow is apparent at Burbank AS component to the flow appears at 1000 m The afternoon surface airflow pattern is similar to that on 13 July but the S upslope flow at Glendora is weaker S flow develops at Elsinore and several coastal Orange County sites The Coachella Valley convergence zone reappears at the surface at 1600 PST two hours later than on the previous day At 300 and 1000 m agl W to SW flow dominates over the western twoshythirds of the domain SE flow is apparent over the Coachella Valley During the evening hours the surface airflow over the central basin is S to SW W flow components persist along the eastern foothills through 2200 PST

On the morning of 15 July surface winds are weak but maintain a S component Moderate SE flow is apparent offshore The overlying flow is generally E to SE By 1000 PST the surface airflow pattern is characterized by S flow over the central basin and along the foothills SE flow in the Coachella Valley and E flow through Banning Pass The depth of the S to SE flow is greater than 1000 m agl During the afternoon a weak sea breeze penetrates inland and winds along the foothills become W Winds shift from E to NW at Banning Pass at 1600 PST A weak S flow component persists in the Whittier-La Habra-Pico Rivera area throughout the afternoon A weak slopevalley circulation develops in the Coachella Valley resulting in SE flow there At 300 m agl winds are SW to W over the central basin and SE over the Burbank and the Coachella Valley At 1000 m S to SE flow dominates W winds persist along the foothills through 2200 PST and weak S to SE flow redevelops at the surface Remnants of the afternoon airflow pattern persist aloft

27-29 August 1987

The surface and upper-air wind monitoring site locations for this intensiv middot1onitoring period are indicated on pages A-7 and A-8 respectively Plots of the dia stic wind analyses for 27-29 August are given on pages B-73 through B-108

On the morning of 27 August surface winds are weak over most land areas a 1djacent coastal waters with moderate (5 ms) NW winds well offshore Winds aloft a Jrimarily N with weak NE flow at 100-300 m agl over the central basin By 1000 PST threeshy

IIzone airflow pattern has developed at the surface and is somewhat apparent ( hin the limits of the upper-air network) at 300 m agl SE flow has developed at 100( agl

9106102 13

This pattern is maintained throughout the afternoon Within the Coachella Valley a classic daytime slopevalley flow pattern develops with SE flow extending to a depth of 1000 m E flow develops at Banning Pass and persists through 1700 PST W flow over the basin develops upward throughout the afternoon By 1600 PST wind at 300 m agl are W to SW over the central basin and SE over Burbank and the Coachella Valley During the evening hours the features of the mesoscale airflow pattern over land weaken both at the surface and aloft There is no clearly developed offshore-directed land breeze

On the morning of 28 August the surface winds are weak and the overlying flow is primarily E Retardation of the sea breeze by the overlying E flow is apparent by 0900 PST S flow develops in the Long Beach area E flow at Banning Pass is substantially stronger than on 27 August During the afternoon of 28 August S flow persists at Long Beach and develops in the Whittier-La Habra-Pico Rivers area SE flow is observed along the Orange County coast E flow through Banning Pass persists throughout the day W wind components along the Santa Monica-Palos Verdes coastline are weaker than on the previous day and NW flow fails to develop at San Nicolas Island W flow over the central basin disrupts the SE flow aloft During the evening hours the airflow features weaken W flow along the foothills does not persist as long as on the previous day

The early morning airflow pattern on 29 August is characterized by SE flow both at the surface and aloft Sea breeze development on this day is slower than on either of the previous two days S flow again develops in the Long Beach area and appears to be stronger than on the previous day Although the sea breeze is weaker winds at Banning Pass shift from E to SW by 1300 PST This shift occurs at 1800 on 27 and 28 August SE flow persists aloft with limited upward development of the W sea breeze flow W flow persists in the western basin area through 2200 PST and SE flow persists aloft

2-3 September 1987

The surface and upper-air monitoring site locations for this intensive monitoring period are indicated on pages A-9 and A-10 respectively Plots of the diagnostic wind analyses for 2-3 September are given on pages B-109 through B-132

The first day of this period is probably the most anomalous of the summer SCAQS intensive measurement days Overlying easterly forcing during the morning hours prevents development of W flow along the foothills and inhibits upward development of the sea breeze over the western and central portions of the basin The easterly forcing appears to reverse rather abruptly on the afternoon of 2 September Unusual winds are also observed at Burbank on 2 September During the late morning and afternoon Burbank experiences an unusual wind shift from SE to W through a depth of 1000 m On 3 September the overlying airflow is W and the airflow patterns are more typical

9106102 14

rrn

On the morning of 2 September strong downslope flow results in N to NE winds at several sites along the foothills of the San Gabriel Mountains At 300 m strong NE winds are apparent over the central basin The overlying flow is E By 1000 PST the sea breeze appears as W flow along the Santa Monica-Palos Verdes coast and S flow in the Long Beach area The surface analysis indicates a band of S flow from Costa Mesa to Azusa W flow has not developed along the eastern foothills Winds are SE in the Coachella Valley and E through Banning Pass E flow aloft continues and intensifies During the early afternoon hours a relatively strong sea breeze penetrates inland to Azusa while winds in the Whittier-La Habra-Pico Rivera area remain weak The sea breeze weakens considerably after mid-afternoon Between 1200 and 1500 PST the wind at Burbank shifts from SE to W through a depth of 600-1000 m By 1600 PST the overlying flow has shifted from SE to W Onshore flow continues at the surface through 2200 PST while the winds weaken considerably Although the overlying W flow persists in general 300 m agl winds at Burbank become SE

The early morning airflow on 3 September is characterized by weak winds at the surface SE flow at 300 m agl and primarily W flow at 1000 m agl Although the major surface airflow features appear to develop as on previous days upward development of the pattern is limited Strong S flow is apparent by 1200 PST between 100 and 300 m agl over the central and western basin By 1600 PST the sea breeze has penetrated well inland Imbedded in the sea breeze is a persistent calm area in the vicinity of Lynwood S flow persists at 100-300 m agl over the central and western basin while flow at this level off shore remains NW At 1000 m agl W flow continues This general pattern persists through 2200 PST but weakens considerably especially at the surface

AUTUMN INTENSIVE MONITORING PERIODS

The mesoscale airflow patterns in the SOCAB during the SCAQS autumn intensive monitoring periods exhibit a weaker diurnal cycle than the summer airflow patterns Synoptic forcing also appears to be stronger

11-13 November 1987

The surface and upper-air wind monitoring site locations for this intensive monitoring period are plotted on pages A-11 and A-12 respectively Plots of the diagnostic wind analyses for 11-13 November are given on pages B-133 through B-168

During the early morning hours of 11 November NE surface winds are apparent over most of the region Surface wind speeds are very light over the basin and somewhat stronger along the foothills and the coast At 300 m agl winds are light and generally E At 1000 m agl winds are W to SW over the western half of the domain and SE over the eastern half of the domain Weak E to NE surface flow persists throughout most of the

9106102

15

morning in the first 300 m An apparent anticyclonic eddy (SE flow at Long Beach weak S flow at Burbank W flow at El Monte) develops between 600 and 1000 m agl on this morning A weak sea breeze forms around 1200 PST penetrating only to the central basin There is no apparent turning of the sea breeze into the San Fernando Valley W to NW flow develops offshore and is deflected around the Palos Verdes Hills This W flow is also apparent at 300 m agl Downslope flow components along the foothills are apparent by 1600 PST At this time the 1000 m agl winds are weak and N The sea breeze rapidly dissipates and NE flow develops at several coastal sites indicating a land breeze NW flow is maintained off shore The nighttime airflow pattern aloft is characterized by weak N winds at 300 m agl and weak W winds at 1000 m agl

The surface airflow pattern on the morning of 12 November is generally similar to that on 11 November E flow over land is apparent through a depth of 300 m while NW flow persists offshore The overlying flow is W The afternoon surface airflow pattern is more similar to a typical summer afternoon pattern than the previous day Turning of the sea breeze into the San Fernando Valley is apparent and W flow develops along the foothills of the San Gabriel and San Bernardino Mountains by 1400 PST Airflow at 300-600 m agl appears to veer continuously from E to W at most inland sites during the afternoon NW flow through a depth of 1000 mis apparent over the Coachella Valley Surface winds become light and disorganized during the evening hours Unlike the previous day NE flow does not develop at the coastal sites and NW flow weakens offshore W winds persist aloft

On 13 November surface winds are very light through the early morning hours with E flow components apparent immediately offshore The overlying flow is WNW but becomes S over the central basin by 1000 PST As on the previous two days a sea breeze becomes apparent at the surface by noon W flow components over the basin and foothill areas are stronger than on the previous two days both at the surface and aloft Significant W flow also develops in Banning Pass Moderate to strong W winds are apparent aloft During the afternoon and evening hours SE winds are apparent at Burbank between 300 and 600 m agl Intense W flow develops off shore and propagates inland during the evening hours W flow continues aloft with some S to SE flow between 100 and 600 m agl at Burbank and El Monte

3 December 1987

The surface and upper-air wind monitoring site locations for this intensive monitoring period are plotted on pages A-13 and A-14 respectively Plots of the diagnostic wind analyses for 3 December are given on pages B-169 through B-180

The early morning surface airflow pattern on 3 December is characterized by weak NE winds over the inland areas and a weak cyclonic eddy off shore The overlying flow is S to SE Surface winds remain light and variable through most of the morning Moderate

9106102 16

txi Iii ttii

E flow is apparent over the western and central basin between 300 and 600 m agl A sea breeze develops around 1200 PST reaching a depth of 300 m and penetrating only approximately 30 km inland S to SE flow persists above 300 m agl The sea breeze weakens during the evening hours and N flow through a depth of 300 m develops at Long Beach E flow components intensify at 600 m agl and above

10-11 December 1987

The surface and upper-air wind monitoring site locations for this intensive monitoring period are plotted on pages A-15 and A-16 respectively Plots o~ the diagnostic wind analyses for 10-11 December are given on pages B-181 through B-204

On 10 December the early morning surface airflow pattern is weak and disorganized Weak NE flow is apparent over much of the basin between 100 and 600 m agl The overlying flow at 1000 m is N The surface airflow over the basin is weak throughout the morning hours while NW flow develops offshore Winds aloft remain N A weak sea breeze is apparent by 1200 PST the sea breeze penetrates only about 30 km inland and is limited to a depth of approximately 300 m There is no apparent turning of the sea breeze into the San Fernando Valley Elsewhere in the basin the surface airflow remains weak By 1600 PST the sea breeze has weakened At this time winds aloft are predominantly W to NW at 300 m agl and N at 1000 m agl During the evening hours surface airflow over the basin becomes weak and disorganized while E flow develops at Palos Verdes Strong N winds appear aloft (300-600 m agl) at Burbank LMU and Long Beach however winds at this level further to the east remain light

On 11 December the early morning surface airflow pattern is similar to that on 10 December Relatively strong ( gt 10 ms) NNW winds persist at 600-1000 m agl at Burbank and LMU E wind in the 100-300 m agl appear at LMU and Long Beach Throughout the morning the surface winds remain light and N winds 9ver Bu~ank weaken considerably A sea breeze is apparent by 1200 PST but is weaker than on the previous day and reaches a depth of only 100 m or less Significant N winds (3-6 ms) develop between San Bernardino and Elsinore and in the western San Fernando Valley NE flow is observed in Ventura County Winds aloft continue to be primarily N however E flow is apparent over the Long Beach area at 1000 m agl Surface airflow over the central and western basin becomes very weak during the evening hours Strong N to NE flow develops at the coast west of Santa Monica while N flow persists in the western San Fernando Valley and in the San BernardinoRiverside area The overlying flow is N to NE

91061 02 17

3 PARTICLE PAm ANALYSIS

A series of forward and backward particle paths (trajectories) were calculated using the SCAQS DWM wind fields The particle paths will be used by other SCAQS investigators in their examination of pollutant transport within the SOCAB The forward particle paths can be used to estimate the transport of pollutants from known source locations The backward particle paths can be used to estimate potential source areas The particle paths can also be used to estimate the residence time of certain pollutants in the SOCAB as a whole or in subregions

CALCULATION OF PARTICLE PAIBS

Two-dimensional particle paths were computed using the DWM wind fields as follows

Starting ( ending) points for a given number of forward (backward) particle paths were specified

Using a time interval of 15 minutes the hourly gridded DWM wind fields were linearly interpolated in time and then interpolated in space to each particle position using an inverse-distance-squared weighting scheme

The particles were then advected horizontally for the specified time interval

The distance traveled by each particle during each time interval was integrated The new position of the particle was reported at hourly intervals

Forward and backward particle paths were calculated for the SCAQS intensive monitoring periods for several vertical levels and a variety of origination and destination points The origination (destination) locations and times for the summer and autumn particle paths are listed in Tables 3-1 and 3-2 respectively Most of the particle paths originated (ended) at one of the SCAQS wind monitoring sites listed in Tables 1-1 and 1-2 Additional sites are identified in Table 3-3 Note that for some sites in Tables 3-1 and 3-2 a new particle path was initiated at the particles 1000 PST location but at a higher level

Additional forward particle paths were calculated for comparison with the SCAQS tracer data (England et al 1989 Horrell et al 1989) The initiation times and locations correspond to the tracer releases and are given in Tables 3-4 and 3-5

9106lrl02

~~ll1~(I titW I~l~~~t~~

TABLE 3-la Summer particle paths forward particle paths

Start Time Origination Start Date (PST) Site Level(s)

624 0500 LBCC 13 CELA 13

624 0700 LBCC 13 CELA 13

624 1000 LBCC 13 CELA 13

624 1500 LBCC 13 CELA 13

624 2100 LBCC 13 CELA 13

625 0500 HHRA 5 PADA 45 FULA 5

625 0700 FULA 5

713 0500 LBCC 13 CELA 13

713 0700 LBCC 13 CELA 13

713 1000 LBCC 13 CELA 13 EMTA 24

713 1500 LBCC 13 CELA 13

713 2100 LBCC 13 CELA 13

714 0500 LBCC 13 CELA 13

714 0700 LBCC 13 CELA 13

714 1000 LBCC 13 CELA 13

714 1500 LBCC 13 CELA 13

714 2100 LBCC 13 CELA 13

Continued

19

91061 07

TABLE 3-la Concluded

Start Time Origination Start Date (PST) Site Level(s)

827 0500 LBCC 13 CELA 13

827 0700 LBCC 13 CELA 13

827 1000 LBCC 13 CELA 13

827 1500 LBCC 13 CELA 13

827 2100 LBCC 13 CELA 13

828 0500 LBCC 13 CELA 13

828 0700 LBCC 13 CELA 13

828 1000 LBCC 13 CELA 13

828 1500 LBCC 13 CELA 13

828 2100 LBCC 13 I CELA 13

92 0500 LBCC 13 CELA 13 HHRA 12

92 0700 LBCC 13 CELA 13 FULA 12

92 1000 LBCC 13 CELA 13

HHRA 45 FULA 45

92 1500 LBCC 13 CELA 13

92 2100 LBCC 13 CELA 13

93 0700 RIVA 12

93 1000 RIVA 45

A new particle path was initiated at the particles 1000 PST location but at a higher level

20

~(Ibull bull 11

41

~1~_11Lmiddot11~1~~tV t rt~~14_ II~~~h1 1r t

TABLE 3-lb Backward particle paths

End Time Destination End Date (PST) Site Level(s)

624 1500 CABA 23 EMTA 45 BURA 1234 HHRA 4 FULA 45

624 1800 RIVA 3

625 0500 CLAR 13 RIVR 13 HHRA 5 PADA 45 FULA 5

625 0700 CLAR 13 RIVR 13 FULA 5

625 1000 CLAR 13 RIVR 13

625 1500 CLAR 13 RIVR 13 CABA 23 EMTA 4 BURA 4 RIVA 45

625 1600 RIVA 45

625 2100 CLAR 13 RIVR 13

713 - 1000 EMTA 24

713 1500 CABA 23 EMTA 45 RIVA 24

713 1600 RIVA 24

714 0500 CLAR 13 RIVR 13

714 0700 CLAR 13 RIVR 13

714 1000 CLAR 13 RIVR 13 BUR 123

714 1500 CLAR 13 RIVR 13 CABA 23 EMTA 4 BURA 234 RIVA 2

714 1600 RIVA 2

Continued

21 nn1 Y1

TABLE 3-lb Continued

End Time Destination I End Date (PST) Site Level(s)

714 2100 CLAR 13 RIVR 13

715 0500 CLAR 13 RIVR 13

715 0700 CLAR 13 RIVR 13

715 1000 CLAR 13 RIVR 13

715 1500 CLAR 13 RIVR 13

715 2100 CLAR 13 RIVR 13

827 1000 CABA 2 EMTA 23 BURA 123

827 1500 CABA 2

828 0500 CLAR 13 RIVR 13

828 0700 CLAR 13( RIVR 13

828 1000 CLAR 13 RIVR 13

828 1500 CLAR 13 RIVR 13

828 2100 CLAR 13 RIVR 13

829 0500 CLAR 13 RIVR 13

829 0700 CLAR 13 RIVR 13

829 1000 CLAR 13 RIVR 13

829 1500 CLAR 13 RIVR 13

829 2100 CLAR 13 RIVR 13

92 1000 PADA 3

92 1100 PADA 3

92 1500 EMTA 2 RIVA 2

Continued

22

91061 07

I

1bullLI bullI I bull ~ii 1 1

1 cl1

[1i1bull~j~1 Iiii~ j t-~dI ~1 1ltl1111111 II r I l~bull~II~middot t1~i~n_11~~ ~middot -

TABLE 3-lb Concluded

End Time Destination End Date (PST) Site Level(s)

92 1600 RIVA 2

93 0500 CLAR 13 RIVR 13

93 0700 CLAR 13 RIVR 13

93 1000 CLAR 13 RIVR 13 CABA 2 BURA 1234

93 1500 CLAR 13 RIVR 13

93 2100 CLAR 13 RIVR 13

23 9106107

TABLE 3-2a Autumn particle paths forward particle paths

Start Time Origination Start Date (PST) Site Level(s)

1111 0300 LBCC 13 CELA 13

1111 0700 LBCC 13 CELA 13

1111 0900 FULA 12

1111 1200 LBCC 13 CELA 13

1111 1500 LBCC 13 CELA 13

1111 2100 LBCC 13 CELA 13

1112 0300 LBCC 13 CELA 13

1112 0700 LBCC 13 CELA 13 FULA 12

1112 1000 FULA 45

1112 1200 LBCC 13 CELA 13(

1112 1500 LBCC 13 CELA 13

1112 2100 LBCC 13 CELA 13

1113 0500 ONTA 123

1113 1000 ONTA 45

123 0300 LBCC 13 CELA 13

123 0700 LBCC 13 CELA 13 FULA 12

123 1000 FULA 45

123 1200 LBCC 13 CELA 13

123 1500 LBCC 13 CELA 13

123 2100 LBCC 13 CELA 13

1210 0300 LBCC 13 CELA 13

1210 0700 LBCC 13 CELA 13

Continued

24 9106108

TABLE 3-2a Concluded

Start Time Origination Start Date (PST) Site Level(s)

1210 1200 LBCC 13 CELA 13 FULA 123

1210 1500 LBCC 13 CELA 13

1210 2100 LBCC 13 CELA 13

1211 0500 ONTA 12

1211 0700 FULA 12

1211 1000 ONTA 45 FULA 45

A new particle path was initiated at the particles 1000 PST location but at a higher level

25 9106108

TABLE 3-2b Backward particle paths

End Time Destination End Date (PST) Site Level(s)

1111 1500 HHRA 34

1112 0300 LBCC 13 CELA 13 RIVR 13

1112 0700 LBCC 13 CELA 13 RIVR 13

1112 1200 LBCC 13 CELA 13 RIVR 13

1112 1500 LBCC 13 CELA 13 RIVR 13 HHRA 34 PADA 3 FULA 34

1112 2100 LBCC 13 CELA 13 RIVR 13

1113 0300 LBCC 13( CELA 13

RIVR 13

1113 0700 LBCC 13 CELA 13 RIVR 13

1113 ~ 1200 LBCC 13 CELA 13 RIVR 13 ONTA 34 EMTA 45

1113 1500 LBCC 13 CELA 13 RIVR 13

1113 2100 LBCC 13 CELA 13 RIVR 13

123 0300 LBCC 13 CELA 13 RIVR 13

123 0700 LBCC 13 CELA 13 RIVR 13

Continued

26 9106108

TABLE 3-2b Concluded

End Time Destination End Date (PSn Site Level(s)

123 1200 LBCC 13 CELA 13 RIVR 13

123 1500 LBCC 13 CELA 13 RIVR 13 PADA 3

123 2100 LBCC 13 CELA 13 RIVR 13

1211 0300 LBCC 13 CELA 13 RIVR 13

1211 0700 LBCC 13 CELA 13 RIVR 13

1211 1200 LBCC 13 CELA 13 RIVR 13

1211 1500 LBCC 13 CELA 13 RIVR 13 PADA 1234 BURA 123

11 13 2100 LBCC 13 CELA 13 RIVR 13

27 9106108

TABLE 3-3 Additional particle path initiation (destination) points

Site Identifier Location UTM Easting (km) UTM Northing (km)

BURA Burbank Airport 3749 37859

CABA Cable Airport 4370 37751

EMTA El Monte Airport 4047 37717

FULA Fullerton Airport 4091 37485

HHRA Hawthorne Airport 3768 37547

ONTA Ontario Airport 4435 37686

PADA PADDR Intersection 3810 37175

RIVA Riverside Airport 4584 37485

28

TABLE 3-4 Forward particle paths calculated for comparison with the SCAQS tracer data

Start Start Origination Date Time Site Levels

0300 LAGS 13 0600 13 0900 II 13 1200 II 13 1500 II 13

625

715 0500 VRNN 1

0800 VRNN 1

828 0600 LAGS 13 1000 II 13 1300 13 1500 13

93 0500 VRNN 1

0800 VRNN 1

1111 1600 LAGS 3 ESGS 3 VRNN 1

1900 LAGS 3 ESGS 3 VRNN 1

1112 0600 ESGS 3 VRNN 1

0900 ESGS 3 VRNN 1

1210 0600 LAGS 3 ESGS 3 VRNN 1

0900 LAGS 3 ESGS 3 VRNN 1

1600 VRNN 1

29

9106lrl09

TABLE 3-5 SCAQS tracer release sites

I_______________________

Site Identifier Location UTM Easting (km) UTM Northing (km)

ESGS El Segundo 3690 37536 LAGS Los Alamitos 3980 37370 VRNN VRNN 3874 37625

(

91061rl09

30

The particle paths were calculated for up to a three-day period In general forward particle paths were calculated through the end of the monitoring period or until the particle was advected out of the domain Backward particle paths were calculated through the beginning of the intensive monitoring period or until the particle left the domain

Selected plots of the forward and backward particle paths are given in Appendix C

SUMMER PARTICLE PATHS

Forward particle paths (levels 1 and 3) originating from Central Los Angeles (CELA) and Long Beach City College (LBCC) at 0700 PST on 24 June 13 and 14 July 27 and 28 August and 2 September are shown on pages C-1 through C-12

The surface-level particle paths originating at CELA indicate northward advection from this site on all days The particle path initiated on 27 August indicates that the initial northward advection is followed by westward advection on the following day the particle path initiated on 2 September indicates that the initial northward advection is followed by eastward advection on the following day In all cases the residence time in the central Los Angeles basin is less than 12 hours

The surface-level particle paths originating at LBCC are carried northward and eastward usually exiting the Los Angeles basin through Cajon Pass On 24 June and 14 July however the particles are carried across the San Gabriel Mountains (with the upslope flow) Considerable eastward transport is indicated by the particle paths initiated on 2 September after 1800 PST -Residence time in the Los Angeles basin varies from day to day and is especially long for the particle path initiated on 27 August (approximately 30 hours) Particle paths initiated on 13 July and 28 August also indicate some recirculation and a significant residence time within the Los Angeles basin

The level 3 particle paths also indicate northward transport from CELA on most days Advection into the San Fernando Valley which may be partly due to the SE flow produced by the turning of the sea breeze into the valley is more pronounced on certain days (14 July 28 August and 2 September) Level 3 particle paths originating at LBCC show mostly northwestward transport Recirculation over the Los Angeles basin is indicated for the 2 September particle path

Backward particle paths (levels 1 and 3) culminating at Claremont College (CLAR) and Riverside-Rubideaux (RIVR) at 1500 PST on 25 June 14 and 15 July 28 and 29 August and 2 September are shown on pages C-13 through C-24 -

_

9106lrl 02

31

The surface-level backward particle paths originate over water on all days the particles are carried eastward and northward into the Los Angeles basin On 14 July and 28 August the particle paths indicate primarily eastward transport There is some indication that particles arriving at the destination sites on 28 August may have originated in the South Central Coast Air Basin (SCCAB) On 25 June 15 July and 3 September the particle paths indicate primarily northeastward transport On 29 August northward transport is indicated

The level 3 backward particle paths also indicate transport from the W SW or SE on the intensive monitoring days The over-water segments of the particle paths indicate eastward advection on 14 and 15 July and 27 and 28 August and northward advection on 25 June and 3 September Again there is some indication that particles arriving at the destination sites on 28 August may have originated in the SCCAB Almost all of the particle paths indicate that the particles are carried onshore between Long Beach and Laguna Beach and advected northeastward to CLAR and RIVR An exception to this occurs on 28 August On this day the particles are carried onshore near Redondo Beach and are recirculated over the Los Angeles basin for approximately 24 hours before arriving at the destination sites

AUTUMN PARTICLE PATIIS

Forward particle paths (levels 1 and 3) originating at CELA and LBCC at 0700 PST on 11 and 12 November 3 and 10 December are presented on pages C-25 through C-32

The autumn particle paths exhibit more day-to-day variability than the summer particle paths indicating more variability in the autumn airflow patterns Because both the CELA and LBCC locations are affected by the land-breezesea breeze circulations all of the surface-level particle paths show some recirculation in the western basin Particle paths initiated on 11 and 12 November eventually indicate eastward transport

The level 3 particle paths also differ among episodes but are all affected by the seashybreeze circulation Particle paths initiated on 11 November show eastward transport from CELA and southward transport from LBCC Northeastward transport at this level is indicated by the 12 November particle paths The particle paths initiated on 3 December illustrate local recirculation by the sea breeze On 10 December southward advection is indicated

Backward particle paths culminating at CELA LBCC and RIVR at 1500 PST on 12 and 13 November 3 and 11 December are presented on pages C-33 through C-40

The surface-level particle paths indicate that particles arriving at CELA at 1500 PST on all four days follow a southward then eastward course Particles arriving at LBCC are affected by some combination of onshore advection and local recirculation The particle

9106Irl02

32

paths culminating at Riverside indicate a variety of possible transport patterns eastward transport on 12 and 13 November northwestward transport on 3 December and southeastward transport on 11 December

The level 3 backward particle paths for 12 November illustrate recirculation aloft by the evolving airflow patterns while the particle paths for 13 November indicate primarily eastward advection The particle paths for 3 December are clearly affected by the SE that occurs on this day the resulting particle paths indicate northwestward transport The particle paths for 11 December indicate southward advection and recirculation by the sea breeze

COMPARISON WITH TRACER DATA

Forward particle paths originating from El Segundo (ESGS) Los Alamitos (LAGS) and Vernon (VRNN) at times corresponding to the SCAQS tracer release times are shown on

middot pages C-41 through C-76 For ground-level tracer releases the particle paths were calculated using level 1 (10 m agl winds) for stack releases the particle paths were calculated using level 3 (300 m agl) winds A qualitative comparison with the observed tracer data is provided here

Surface-level particle paths originating at LAGS on 25 June indicate northward transport during the morning and afternoon hours The level-3 particle paths indicate that material is transported out of the basin through Cajon and Banning Passes by the upper-level winds Both of these indicated transport patterns are supported by observed tracer data

Surface-level particle paths originating at VRNN on 15 July indicate northward transport and exhibit good qualitative agreement with the tracer data

Both the surface-level and level-3 particle paths originating at LAGS on 28 August indicate primarily northeastward transport Most of the particles are eventually advected through Cajon Pass This is consistent with observed tracer at Redlands San Bernardino and Crestline

Surface-level particle paths originating at VRNN on the morning of 3 September do not agree with the tracer data While the particle paths indicate northeastward transport the tracer data indicate northwestward transport

Surface-level particle paths originating at VRNN on the afternoon of 11 November indicate westward transport and a long residence time in the central basin The level-3 particle paths originating at LAGS and ESGS show southeastward transport and recirculationmiddot by the sea breeze Surface-level particle paths originating at VRNN on the following morning again show net westward transport and a long residence time in the

( central basin but the level-3 particle paths indicate northward transport with recirculation

91061rl 02

33

by the sea breeze The smface-level particle paths are consistent with the tracer data Tracer was observed over the north-central basin and along the foothills on the morning of 13 November

The surface-level particle paths originating at VRNN on the morning of 10 December indicate relatively stagnant conditions with a weak sea breeze circulation Some net transport toward the south is indicated Particle paths originating at VRNN on the afternoon of IO December show little movement throughout the following day The long residence time in the basin is in qualitative agreement with the tracer data Tracer was observed in the basin on the following day The dispersion indicated by the widespread tracer concentrations however cannot be represented by a single particle path The level 3 particle paths originating at LAGS and ESGS on the morning of 10 December show southward transport and recirculation by the sea breeze

UNCERTAINTY ANALYSIS

A simple analysis was perlormed in an attempt to quantify the degree of uncertainty inherent in the particle paths The uncertainty analysis was similar to an analysis described by Moore et al (1989)

Three major forms of error in the particle path calculations can be identified The first two result from errors in the wind fields The most fundamental of these is measurement error as measurements can only be regarded as approximations of the true winds Regardless of the accuracy of interpolation techniques measurement error will always affect the final wind field The second type of error results from the interpolation of these measurements and the parameterizations and approximations in the diagnostic wind model This error will be greatest in data-sparse areas The third type of error results from the use of two-dimensional wind fields The two-dimensional particle paths do not incorporate the effects of vertical motion which may be a significant source of error considering the mesoscale regimes present in the study area

The particle path uncertainty in this analysis is the result of all sources of error and is therefore very difficult to estimate A lower bound 11 on the uncertainty was assumed to result from measurement error alone Here we use a lower bound uncertainty estimate to illustrate the effects of measurement error on the particle path calculations Several assumptions were made in order to estimate this uncertainty First average bias for all instruments was assumed to be very small Second instrument precision was assumed to be constant over the region Third measurement error (speed and directional error) was assumed to be normally distributed around zero The standard deviation about the mean was based on observational data

For this uncertainty analysis 20 particle paths were initiated from a single site at a single time For each 15-minute particle path segment u and v were calculated as described in

9106lrl 02

34

(

the previous section Small random wind components (representing the measurement error) were then added to the interpolated wind The smaller components were determined by randomly selecting wind speed and direction error from two separate normal probability density functions (PDF) To do this a uniform random number generator was used to find two error probabilities Ps and Pd between 0 and 1 An inverse normal PDF routine was then used to find the speed or direction error that results in error probability Ps or Pd respectively Commercial statistical software from Th1SL was used to generate uniform random and inverse normal PDF values 1

The PDFs possess means of zero and standard deviations equal to the root mean square error (RMSE) of the measurements For simplicity RMSE values for speed and direction were taken from those specified by Moore et al (1989) namely 02 mis and 10 degrees respectively Random error components were determined for each 15-minute segment of every particle path The resulting divergence in the particle paths represents a lower limit to the uncertainty inherent in the particle-path calculations

Plots illustrating the effect of the lower-bound uncertainty on the particle path calculations are given for one summer and one winter episode in figures 3-1 and 3-2 respectively The summer particle-path bundles (Figure 3-1) were initiated at CELA and LBCC at 0700 PST on 14 July The winter particle paths (Figure 3-2) were initiated at CELA and LBCC at 0700 PST on 12 November The bundles were calculated for levels 1 and 3 In general the bundles indicate that the airflow patterns do not vary abruptly in space or time The winter particle paths are less divergent that the summer particle paths

While plots of the particle path bundles qualitatively indicate the degree of lower-limit uncertainty a quantitative summary of the uncertainty can be obtained via hourly estimates of RMSE of all particle positions relative to that with zero error The RMSE can be obtained from

1 1 M 2 2

RMSE = - ~ dj[ lM ]=l

where

1

dj = [(xj - X1)2 + (yj -y1)2]2

and where Mis the number of particles and ()1 represents the position of the actual particle as calculated in the previous section (ie the zero error particle path) The RMSE is used to determine the growth over time of the confidence interval about the

1 IMSL is the registered trademark of the Scientific Problem-Solving Software System developed by IMSL Inc Houston Texas

91061rl02

35

NORTH

425 31570

SOUTH (a) CELA Level 1I

20

(KM)

NORTH

425 31570

SOUTH (b) LBCC Level 1I

20

(KM)

le-path bundles initiated at 0700 PST 14 July 1987FIGURE 3- composedd par tic le paths1 Forwar of 20 particBundles are

35

NORTH

425 3570

SOUTH

(c) CELA Level 3

NORTH

425 3870

SOUTH

(d) LBCC Level 3

FIGURE 3-l Concluded

37 9106]

70

IlFil

NORTH

CEIA Level 1(a)

3(170

1-Ul j

NORTH

425 3(170

SOUTH

(b) LBCC Level 1

Forward le-path bundles initiated at 0700 12 November 1987FIGURE 3-2 composed par tic le pathsbullBundles are of 20 partic

3391061

425 3870

SOUTH

(c) CELA Level 3

J8

3870425

SOUTH

(d) LBCC Level 3 10 2

(KM)

FIGURE 3-2 Concluded

91061 39

1 1c

i I

trajectory calculated using the DWM winds Hourly RMSE values are given for the particle paths bundles shown in Figures 3-1 and 3-2 in Tables 3-6 and 3-7 respectively For level 1 the average RMSE after 12 hours is 567 km for 14 July and 167 km for 12 November For level 3 the average RMSE after 12 hours is 416 for 14 July and 260 for 12 November

9106lrl 02

40

TABLE 3-6 Hourly RMSEs for particle-path bundles initiated at 0700 PST 14 July 1987

Time LBCC RMSE CELA RMSE (PST) (km) (km)

Surface Level

0700 000 000

0800 042 042

0900 057 069

1000 063 100

1100 093 128

1200 091 143

1300 111 168

1400 136 217

1500 229 227

1600 265 219

1700 394 219

1800 620 265

1900 796 338

Level 3

0700 000 000

0800 018 049

0900 064 090

1000 068 140

1100 087 172

1200 089 162

1300 123 180

1400 231 224

1500 337 258

1600 419 278

1700 427 306

1800 449 347

1900 462 370(

9106104 41

TABLE 3-7 Hourly RMS Es for particle-path bundles initiated at 0700 PST 12 November 1987

Time LBCC RMSE CELA RMSE (PST) (km) (km)

Surface Level

0700 000 000

0800 047 049

0900 078 065

1000 077 066

1100 089 086

1200 109 094

1300 089 092

1400 118 125

1500 100 138

1600 129 150

1700 147 160

1800 161 164

1900 156 176

Level 3

0700 000 000

0800 045 076

0900 061 120

1000 069 139

1100 092 171

1200 098 163

1300 096 156

1400 125 182

1500 150 175

1600 231 171

1700 261 152

1800 308 156

1900 345 175

91061 04 42

References

Douglas S G R C Kessler and E L Carr 1989 Users Guide to the UAM Wind Preprocessor System Systems Applications International San Rafael California (SYSAPP-89079)

England W G and L H Teuscher 1989 Perfluorocarbon Tracer Experiments During the Southern California Air Quality Study Air amp Waste Management Association For presentation at the 82nd Annual Meeting amp Exhibition Anaheim California (June 25-30 1989)

Horrell R S M Deem P Wyckoff F Shair and N Crawford 1989 Ground Release SF6 Tracer Experiments Used to Characterize Transport and Dispersion of Atmospheric Pollutants During the Southern California Air Quality Study of 1987 For presentation

( at the 82nd Annual Meeting amp Exhibition Anaheim California (June 25-30 1989)

Moore G E G Z Whitten J P Killus and R D Stevens 1989 Analysis of 1985 Air Quality and Air Chemistry Data Collected Under the South Central Coast Cooperative Aerometric Monitoring Program Systems Applications International San Rafael California (SYSAPP-89058)

Ross D G and I Smith 1986 Diagnostic Wind Field Modelling for Complex Terrain-Testing and Evaluation Centre for Applied Mathematical Modelling (CAMM Report No 586)

9106105

43

rr T rr

Appendix A

SCAQS WIND MONITORING SITES

(

9106103

-

((--_ 770

-

NORTH CM~RS 42 575

5 I I j I I 1---L 525 middot 1J75 I I I I I I I I I r I I _--- I C2~middot----_J ~ ~-- 1 ( ~ ~J25 I I I I I I I I I I I I l__ ) -475 () I Li 1~)51 (

--~ltJ820f-_ ~------ ---

~- -cli( ol --9-Sl-l

lt ( ~)

CQ p llE RiDO ~ llE ANAH

I middot LAS-L

bull~ LANC ( _ Q - _J ) ) - _ ~ - ---- - ~ _ ____ middot clt G~ _----~____-=-- -___ ~PR __ - ---- --- VCTC ltgt

-- ------ f---- __ - ---_ -middot ------ --___ --~-----TEME --- _ f

-)(j _ _ middot --middot -------- - HESP f ----=----==~~~ l ----~~ -- middot l - --- __ -middotlt- CJ _ --- middot PIRs[- lt NfVL_ ---~ - C~lt --lt _ ~ ~- __ (~~

__ --- bull _ i - f c-_ _ I - )~__) - ---~poundS---_-

3770 t-()

LA llE PICO )Ct444 -w 3 ~~~ZUMA MALI VE VEN llE llE middot Jl~C - ( p

NN WOOHS ~- ~ m - middot - o - I () )IE 55I

1-- (lt - - PERI ) ~ S__~llE

BU25 bull y _ L ~~5o 13720

I ----~- - 515 3670 525

(KM)

~---

SNI

20

SCAQS SURFACE WIND MONITORING SITES

19 JUNE 1987

0

qj n

If) N ~

I

1S13

Ishy)

0 Vl

(f) w I-V)

l)

z a 0 1---

z 0 2

0 z 3 a ~ I r---

0 CX)Wm Q_ shyQ_ ) w

z (f) )

0 7 lt( um Vl ---

0

A-2

-

r~

NORTH CM~RS

I -middot_( lt - middotmiddot -~ ---lt - - - middotbulll- ) middotmiddot-middot - - -c ) 0 0 l__SG- ___ J1 bull_ -- VCTlt I

_ --middot ---middot llSeR - - __ - --middot----- J~__-- middot - - - -middot bull bullbull- HESP ~-_-middot- bull- ~- _~ - -___---middot - ~ -_ ) ME --- -middot - bullmiddot bull -_

38201-_ ~~_ _ TE _ C-bull_- - CJ - ~Jj __ -_

1

1 bull I bull __ (]

SI bull bull=-middot _ -~ ~~ ~_-__ middot _J lt(- j SIMI -M~S -~_-~It_ - - 1Ir- I w _ I B~~ AZ~~~1 AL SNBOC ~ (ELRO l~ Hf~~ ideg_=- --

)1__ CE~ wftcentrHIN RIVRM44 --- ~--- ---~ LA PICO __pound bull P

T ~NN WI-V C) D 2J~55I Wco - middot PERI Lv

R~O ~L ~AN~ TO~~~~ ~ ~ ~-MO

62

~ ~j~l)~gto ay 3670( 525

SCAQS SURFACE WIND MONITORING SITES 24-25 JUNE 1987

~ (

NORTH 275 325 375 425 475 OA~5 575

f_~ CJ ~ -middot--

_middot

middot1 Imiddot

)i

gt--o~0 (~_)r-) _ (~~3s20

--~- middot qlt ( ____ - ---- - lt__ ~ ~ -i~ J ) _ - - -

-~ -__ J V 38201-~--o- lt-

-----~~middot ---- __ - ~---- -_--- ~====- -=_---~ ~ _

~ -- middotbull ~gt ----_ _______ ) ~~~ l -- - - i - --- l

( _ (_-~ _-lt~~ - )

2middot1=~ (~gt lt_) -~~~~~(_~tJt-~~~~t~~~~-~) ~

uR--- -----Qi~ ~ 3770_ 3770 -middotmiddot--rmiddot- -7 ~ 1-

(J) llE ONT _ -middot __ w

Y-_ EMU c __- ~ Ul lt(1 w~

- -- - LMIIEUA sFtA ~

1

----_

~

_

t_~~ -bull _ middotgtI __

~- 0 ~~QgtJn~-~ ~II~

~ f-- -) -) ) ~ ~-

j (_1_j ~~TRM 3720 ( (__ -CcS l l 3720

~- ) -~ --7( ) __~---L_ ~~1-----~D~

1 ~) a --- ~middot 7 rt 0- NSI (

3670 I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I 1 I I I I I f I I I 1 I I I I I I I I I I I I I 36 70 275 325 375 425 475 525 575

SOUTH

I I I I I I 0 10 20 30 4-0 50

(KM)

SCAQS UPPER-AIR WIND MONITORING SITES

24-25 JUNE 1987

--=-

NORTH 25 575

CM6QRS C__j 475 -____

3 ---- 375 425I - L ---) - ~-

SNI

-_-~)---_ lt-____ ___3azor_~c~~ sl

VENt ELRO

BU25

275 ~ c--) ~LANC ~~-_ lt ~ 0 9-~

llE

3670

----~ - J Q ____ ~- lt) ~ 3820____ -- middot--- 0~__~- __ J S --- ---~- ---- -- -- v~ ~ ~ ===-~ - - - - ---- - - ---- - -- -middotv ------------ -~ l f----- _ -- -middot _ - --- __ HESP ~-----=- c~i - - _- --- - - gt - -bull TEME -- -middot - bull ----- -- - _ middot ( lt~ clt=~ ~i cJ~ c _

~I -~~le lt~NJWl--------~- -iHitgt~-=__~~ _I -~ J~~~ ~ 3770 r-1 - - -- -- - ltJ c__ ---middot ~ ( - ------ -c_ - - -~~~ ~ ()-~ ~ - -middotMiss ---~---=-~----r~-__ -middot _frac12 __ i5

j S ~R~~HE -7t$ llE llE ftALSNBO llE ~~ t __ -R~ B~~SA AZ~jl~r RD ~~_ ~ 1( )l___ llE CE~HAllE ~~ - RIVRM44 - llE ------___llE W~HIN -Jti )Ii ----------- __

~--- LA llE PICO l llE C -- r p

ZU VE NN Wt-laquoJHB 0 1~55WT IN - ---- ) llE CO P llE llE ( gt (____ PERI ~

IJl

~ 71t~P325 425

SOUTH

I I I I I I 0 1 0 20 30 40 50

(KM)

SCAQS SURFACE WIND MONITORING SITES 13-15 JULY 1987

clt(middotO -i ~Ill ~

()VL~t

~~) o2~ r

275

-- _~middot middotc-- ( ~ I - ___ ) --____ ~~~

---- ---bull-~ ( lt ) lt I ~ (J () - _ ~ ~ J ) bull middot ( - ~ ~- - --- middot - ~ - middot middot G--~_J lt)

cce- middot- __ V ___ -- l - _- bull middotbull - - _~---~ 3820r----=-~_~Jrlt - - - middot f ~l-~--~--~] I c___ -~c ~ -- ( _ 1middot--- 1___ _~

-I -- = lt -bull lt middotmiddotltmiddot~- middot - middot -L-

- ~-- middotbull ---_- --- J middot J ) ) -- bull- ~-bull _ --middotbullbull- middot middot _ j -- -)) 3770 -ii __gtc _ -- - - middot bull ltmiddot ~- I - _ltbull - -_j-- tn

BURbull-- - middot - - - ) ~~middotj- (~~ ) (middotIi lt(

GL U I ~ - - - w ---~ - -1 __ - ---------= ------___________--- ONT middot middot __ - --_ -

poundMUI - - ~ ____ middot----~~i -__ ~ I

--

--- ~ c) )_

deg ~

_- - (

_l

_ ~ )

C-

~ _middot

( T( f 1-

525

t j 30 50

(KM)

SCAQS UPPER-AIR WIND MONITORING SITES 13-15 JULY 1987

_==--

J ANORTH CM6sectARS

3s201-

~- ~ ~ ~ ~0A - --__ - -----~ ---~- --1(j - A ) __gt ---------_

-~~J TEMEa l_C ~r1

0

820

_--C~ = ~~~ltCH~~ J ~ S~I ----i4~58 ( J

tigt-1

-J 3 BU25

frac14~) 8 F1(5

- HA

APICO RN A A ~ N WVHB

AANAH

~IHIN J _CM44 ~-

A

CY PERI N ~ iJN

D A

HEM

770 ~ V1 lt( w

~ 3670

SCAQS SURFACE WIND MONITORING SITES 27-29 AUGUST 1987

) w l-1

C)

z-a 0 1-

z 0 ~

0 z - r---3 co a Ci)

- -ltI lshy

a )w ) Cl 0 Cl ) ) lt(

V) Ci)

0N ltI u r--- () N

A-8

NORTH CM~RS bull r (_J~

1

325 - - l L=~-) ( bull

1275 _ ( ~ --- -middotbull LANC 1 _ bull I( f LJ- ~ () ~-- 3820 bull- - J bull

- --__ _ -- )- bull bull - middotbull-~- _ I v----_J -- J middot-- - middot- - -middot I I J_______ ---==-------------- WSfgtR - -- VC _____- ltgt

-~--~-- fJ- -middot - - - --- --- _ - ----- --- ----- ) r bull---_ --- - - -- bull p -- --__-----_ - -----

38201-_ -------~- TEME --- --- - - bull -- middot- bull --- _----~ -~ II middot ) - ---- -- -- _ -- HES f I-----=-- ~ ------- ~ l _ -- - I

- bull middotbull-bullbull~ ll( middot bull - middotbullbull - 1 I ~----- middot-bull

9 -- ___ __ _ -------- _=- r _ -- )J -~~ ~~~ 3770 t--SJMImiddot MISS~~~--bull ~--~-- ll( -_ ~-VENt Cllfl58 bull I middot- - middot- - --JOE ~--bull bull ~ V)

ELRo __J 4Esc euRK ~Ej1 fAL sNeo I ~ _ J middotmiddot -~~ 1 i5 l - ~SA ___ I ROLD ~ ~ C~ ( _____~- -~ llE CE~ llE W~(HIN RIVRlK -- - 1 llE __~

3770 middot- ~LA VEN Pl llE _ _- JJ~C _CM44 - ~ p ---__-_

0 ANAC cubull~ - - v~wr LyenNN WHJHB --- -- Q~~W)( ___

- llE HA ~ -lE _ -- _ - -_

I 0

SAi middot-middot J) t450

3720 LA r TO~omiddotlt~lt~~ -~ ~ (~~

~ ~ r-~~~1~ o ~~l~

SNI 1 (l_ amp-~ 575 3670367g75 325 375 425 475 525

SOUTH

I I I I 0 10 20 50

(KM)

SCAOS SURFACE WIND MONITORING SITES 02-03 SEPTEMBER 1987

------J ------------------ ) I-- 38201--__--~~- i) ___

_-- ~--gt--

-__

_

NORTH 275 325 375 425 475 525 575

YI ~middotCJ~bull_bullrmiddot--- lt I __ (_______~ ~ - - I -- J ( - - - - - - - J i O l__ ______________ -~

~j ( lt- bull- ~ 0 C) ~ -- (-- _)) ) ----_--__ -- middot-- _ - --J ) J ---- - ------- ----- middot----- -( ~---_j

3820----==--=-- ( - -middot bull __ - ---~----= --- ---- -- -- ------------ _______ ltJ~~ A I --- - ---- - -_ - _ --_--~-- -_ - --~co___--_--___-__----- f middot l - --- - --- - __- ---_-- -- ~ middot -middot __ J L--~ cmiddot

---- -- middot--~-- -- -- - _ _-- - - ~

--- - middot- - -C-_--- - -~ rmiddot middot) _- ~middot~ I--- ----~deg- -- -- C _-_--_- __ __ _ ___ _--_--~ __---- ~---lt lt ltgt _~-__gt_ ~~-- i~ - UR ---- -------- - ----~ --lt I middot- B ~----- Qll __ ~----- _ CI____ ~ __ --- ---middotir ~ - 3770

1-I- 3770 () U)( - -- -- 0~ - j _j ______- ==--=--_ --___ - ---w lt(

w~

~gt middot1 r-

0

3720 3720

middotmiddotmiddot J ~ ) ~l - ~ ~

~ tmiddot~----_7~~ p__ D2)t~~

NSI I(--_ Imiddot- 3670 3670

275 325 375 425 475 525 575

SOUTH

I I I I I I O 1 0 20 JO 40 50

(KM)

SCAQS UPPER-AIR WIND MONITORING SITES

02-03 SEPTEMBER 1987

~ I

t

NORTH CM61yenRS

----- I uic middot I Ibull 0 z_ ~ p

-_- - - - _ - middot-~-_ ------- VCRV

820 --- -- -- I W-gtER --- _ ---- --- ~ ) - -_ - I _ _ - _ --- _ _ _ -_ bull _____ _ _ - -- -- -- _ --_ ----~ HESP 3 -- ME -- -middot bull - --- _ -- _ TE - -- __ _-- - c----~middot - r

PIRlb -_1 N bull--~ _ --lt~_- - _ _ ---------- - -MISS_ _--- ___ bull---=-- _llE ~ ~ j lt) hlt---- F-~~--_ ----1A-_c=_--middot llE ----_ ()

-middot SIM ~ICAN llE RIALSNBO llE ~J -------~~ tllE ------TmiddotllE~I ~ES BURR~ AZ~ ~-~r- RD ____-- -- ~ bull FIIISA l- bull -~~

( )l__ -middot middot c(~HA w~~N ~tfJ1 -- -- ~ ~ 1

_

375

~) middot middot ---lt -__ lt_ ___ ___ -i____) C-middotdeg - - -

- -- J_ _) lllt

_ =- ) - -

L- ~~- Iii - ~ _________

-~ 0 I -- (

SI lllt

E

NT CM58V

( j gtT__~_____)___ -- ~l- ) (

middotmiddot-- -_ bull _ ~- () ~

I --J vlt__ ltgt

--- --------- ~---------- C -

_

~(__ f - -- ~---middot)1 ~

t ~ I

I- I- ~

3720

ANAC Wo~ middot -~- lt_)

44

PERI ) ~ tlo

25 R~ ~~ANAH _i~~MN ~~-w--- ~ _ 00 )

T middot I BUllE I -eM62 7 llE

-- - ~

~ 425

SOUTH

20

(KM)

SCAQS SURFACE WIND MONITORING SITES 11 -13 NOVEMBER 1987

(_ (___JCcS ~~)

bull ------------~ - - ( ~ r-------------- Dbull ---

J

575 3670

1SV3 0 0 0 0 N r-- N r-- a) r-- r-- co I I) I) I)

I bull bull I I

I I f1 1 ~~ I- I I-)

0 l)

l)

w I-l)

L)

z Ct 0 I-

z 0 2

0 r-- z OJ

m3 Ct a lt( w0

l() mI Ct 2

~ ww Q_ gt

0 - Q_ 0 I) 2 ) z ~ ___0

N (I) n a

0 lt(- u ()

0

n 0 z I)

N +

lf) r-- I)

- I I I

i I

I 0

~ -L

w

i

~ LL

I)

C-1

+

l() r-- I)

1S3M

A-12

-~

igt I _

l)

CM~RS 275 325 375

NORTH 425 475 525 575

_J- I bullbullbullbullbullbull ~ I bullbullbullbullbullbullbull bull I middot bull -gt-----middot bullbullbull 3 )--- ____j lt c----- -_ -- gt _ ___ ----- t__ l___

-- ------- LANC l ~ ---------- __ ) -- __ ~ I ) ~ - -=~__ I -~middotmiddot- - bull middot bull bull bull lt lt Cl --- ------ ____ -~ -

38201-- ------_- ) ) -- _ ---- -- -- -- - () - --------- I --- -~-lt~~ (middot__ TEME ) --gt ~_ ----- - middot--- --- vamp c~ (~ 0~ ___- --- gtIpound - - - - ---- -- - - -- _ - - ~ ---- - - - ------------- 5SI -middot PIRltgt ----~ ( -middot _ - -- --- - --- ) HESP --------~ ltgt

___ __bull_rbull ~--------~-___ -- ___ ----gt--=- bull~ ~~ I - ---__-=---- ----

VENt CM58 _ sti --~~ ~ lt_ -~-- middot_~-~~ r-~- --middot) ~~) _J MISS-~~-- ___-_ __)~ -- ---( C

- --RESpound BUR~--==-=~----r~---_-__- ~- - ~ _- ~ -1 -

3770 I- ANAC

J I )l( ~- ~-- - i middot ----middot -X--Ret-----_~ -~

___ ( - -middot ~SA AZ~ ~ o j -------=--------~--gt~-- dampHA ~~~f __ SNBO ~~ -~

ZUMA MALI LA w~M -jmiddot I R~J ~-s ~__ )() w ~

3720

8U25

VE VERN PICO _ middotyHIN RIVRyen ( ~----- -~ CM44 -~ ~- ----- ~ C WT ~NN Wt-0HB -NQRC - middot- ~NN-a-~~ _ ~ co~ __ -- ( ~ ~

RVIJO ~ilff AN~ gt cmiddotbull yen 0 (~~ p LASAl I bull- - PERI ~ ) ~

rJ]~~_Y)~N ) (_ --

_T -cJ62~-~

~ 5j(bull 1) ~Jso

l -~

- 1 J) -~ ~7~~t~~

3820

3770 1-() lt( w

3720

I I I I I I I I I I I I I I I I I I I I I I367r I 367075

I 325 375 425 475 525 575

SOUTH

I 0

I 10

I 20

I 30

I 40

I 50

(KM)

SCAQS SURFACE WIND MONITORING SITES

03 DECEMBER 1987

NORTH 275 325 375 425 475 525 575

I I ) gt ~ _YC) ~ ~ I ( o c_ _------- (

___ middot i I 97 ~___ _ --1 cbull-- - - C -___J -- lt ( ) - - - - middotmiddot ~ l _ ----_J

I ---middot ___ __ middotmiddot-_ 1 -~ __J ) bull- middotbull_ -

3820 ------~- I -~middot --- _ middot--- -------~

C - ~ (___ _ 1 ) -- _ - - - gt _ bull f-_- --- r ------~__ -----I --- ) I ~ -~ gt ----- - --- -- ~-_]) c_middotI 38201-_~~_ l _ --- - (-- ~ f ~ I~_ - middot - middot -middotgt- -- -_ -- middot_ _- 1 L- l _- -

~----- l -- middot middot ~- middot-_ _- - middot middotmiddot--gt---~--t~~)-1 bull lt_ _ _ bull middot bull - middot- ~ ~0---~ (c ~ I ~

_ I - bull -~~~--gt~~~-~~ bullS- _~_ l ~~1t~~_~(~ t 3770 I -- -- middot __ - I S____ ( 3770

I- 1-() ()

gt w - I __~sect~- ---ONT lt(

w

tgt

f-- I

~

middot - middotI

-

L~i--

37203720 c_J - (_cS) l -~~

NSI

367~~51 3~5 13~51 14~5 I I I 14~51 is~s s~s 3670

SOUTH

I I I I I I 0 10 20 30 40 50

(KM)

fJ~

SCAOS UPPER-AIR WIND MONITORING SITES I 03 DECEMBER 1987 r~J

NORTH CM~RS 275 325 375 425 475 525 575

middot middot ___ I middot 1 I )l ___ QO --middot - v_ (-- - LANC middot ~ C) lt --bull_ I -- -- bull _ ~ - ~-- ) -------_ -- - _~-- V --I 1 J --- - bull I -J- ---middot - _ bull__ - vc i --- ltl

3820~-----=cc~ I middot -middot - middot - _ ___ -- - 1t ~~------- middot - ___) - - middot -

J-cgzot-- ~--- j 0 TEME _middot ---- --- -

-____ -- ---- _- j (

- -_ I -- --~ _JI( ---- bull bull-- llf -middotmiddot l - -- bull _middot_ middot I --- -- middot CM58

_- 1 -- middot - middot~-~ - -~__ ___ ---~-~_--__~----------D J-~J~bull A HESP

middot OJ11 r P1R1tc lt--~i_-_~-~- ~c~_r--~-~_--_~r-=-~~~~--~ _ --~ --lt__~~~~- CSI ~ -~ --- ---- middotmiddot - ---- - _ ~ r ) J

)gt SIMI -MIS5-X ~Cgt~---- middot-cemiddot middot ____~ ~ middot~ l~fu__ suRlfiI_middot- -tk~- flAf SNBO __ middot ~-~ l 3770 _ 377ob -- ~ PJIISA AZ ~JIily~ _- RDL ___ bull ( C t-shy-- -~ I ----- ~HA 71lt V)tn ANAC ~---- CE~ WALflHIN RIVR ----- ~ w

w ~ LA PICO - CM44 - T -~ ~ ZUMA MALI VEN middotbull _ -bulltRc __ ~ ~lt~~7-

N WuHB _~-- -middot bull ) _J~N ~ -- ~ 0 - ) ~ I ltgt -_middot PERI bull I- ( _

V 8U25~ 3720 3720

WJlt~ ( ~ ~ ) 1 i

~ I I I I I I I I I I I I I I I I I I I I I367r I bull I I 3670

75 325 375 425 475 525 575 SOUTH

I I I I I I 0 10 20 30 40 50

(KM)

-~ ~

SCAQS SURFACE WIND MONITORING SITES 10-11 DECEMBER 1987

NORTH 325 375 425 475 525 575275

-- ----_ lt_~- c--- - ~ ~ _ I I - ---~~c------ ) _ -middot - gt~-

3a2or ------__ lt- ) 1 middot--- -- __ - ~bull =-------------- - r---_ ___ - bull- ---- I I ~ ~-- jc- I bull - - (bull I --- middot middotmiddot - ~ -middot - -- ~ - 3820 -~- bull - middot - - ~-_ ~- _ middot- n

(

- 0 lt_( ~_lt- ~-~~- middotmiddot) ---- ()_ (---- --

--

____ middot

-middot

I

f----- (-J 1r---J~ --~ - middotlt ltbullI I ~__---__ ~-

l B~--- _c_ gt-- lt gt- (- - - j 1--_~--~--l~ -- -- --- )l

-- - --~---- middotc middot=-~-~- (~ L ----- -- --middot - -- - - -bull --- - - c-) ~ J _ -- - ---- - ) ) ltl

37703770 EMLgt middotorrmiddotbull __ ) ~~~~ofmiddot - -- __s=__I- - - ~__- ( ~ __ )---__ Ishy

V) ~ ~- lt(w ~ ---- --~ - w if)

-~2_~middot) ~~at~s t I

I-

deg

FUUA

i () ~--J)llC~lt I

3720 3720

~ltl__ (_)i~

~ NSI

367~~51 I I I I I I I 13~51 I I I I I I I 13~51 I I I I I I I 14~51 I I I I I I 14~51 I I I I I I r--- I5~51 1 I T I I I I I 5~51 I I I I 36 70

SOUTH

I I I I I I 0 1 0 20 30 40 50

(KM)

SCAQS UPPER-AIR WIND MONITORING SITES

10-11 DECEMBER 1987

Appendix B

SCAQS DIAGNOSTIC WIND ANALYSES (Six-hourly plots Levels 1 3 and S)

Summer Intensive Monitoring Periods

19 June 1987 24-25 June 1987 13-15 July 1987 27-29 August 1987 2-3 September 1987

Autumn Intensive Monitoring Periods

11-13 November 1987 3 December 1987 10-11 December 1987

Page

B-1 B-13 B-37 B-73 B-109

B-133 B-169 B-181

9106103

Summer Intensive Monitoring Periods

9106103

19 June 1987

9106103

1bullbull-lil

1SV3

I I lshy Ishyo )

0 0 z ()

IO N IO

I()

N -st-

1S3M

-- l1

l~ i --

0 z 3

---

2 0

_J w cjr----_J CD

0 l() z

I- =)lt( 7

f) 0)

0 -- i n 2 Ishy7

0 ~ ()N ____ gt a 0 20

3o 0 ~

0

B-1

1Sv3

( I l-et 0 z

(

lf) N st-

l() N ~

l()

N 0 t--

n

0 N_ n

U)

ON r-shy(0

n

1S3M

B-2

_

2 0 0 tlt)-__

tlt)

_j w 2jr-_j CX)

0 lf) I- z

lt( ~ IJ1 0)

0 _ 0 n 2 z 1-0 ~ N - 3 ~ 0 20

3o 0 Ov

-----

lSVJ

l)

----

l~3 O 0 w

w ll) (1

l)

0 0 z 3

I lshyet 0 z

--

2 0 0 0

-

LO

w ~

GJ r----~

u 0 z

OJ

I- gt lt( J

mif)

00 ---shyI) 2 z I-0 i l) N -- 3 (1

0 2 0 3 0 0 ~ 0

lSJM

B-3

1SV3

- V1 --

~5 O 0

E - w

w Ul_ 0

V1 0 0

z ~

I I lshy I-et =gt0 0Z V1

-

2 0

J wr--CJ OJ J z0

Ul I- =gt lt( ~ V1 -

0 - n 2 0 z 1-() 0 ~ N __ 3 0

0 2038 0

0

U)

l

lO N v

0 N agt n

0

r--n

0 N

0 N r-shyn

U)

U)

U) N U)

Ul

q--

Ill N q--

1S3M

B-4

td I

J1

~ ~~~~~ ~ -~~~~~ J - -~--Qf~J ~lf~ ~---~ ttt~~~~H~f~ ~ ~~lt~~~0 ~ - ltl-_t I~~~~~~-~~~~~ ~~ I _~1c j_~ L ~ (__1-T11__1 ~_-~_ ---~~~~~~ 11 - ~ +f--1~- ~-+--41-- 1-~- ~ ~ -rtt1-~--~~~~~~~ ~ ~ ~ ~ l t I J JI JI~- t _I i~~I~~~~~~

377itttttttt ~- - t I Jf --------_-- _ 70 ~ ttttttttttttti- fllJ~JI-~~_- ~~ _ =- ~~~- tn w - t t I I I_~- -V _ ~ -laquo___ _ - ltC 3 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ t t t t t I I I I JI~ JI JI ~~ I--~- ~ ~~~~~ w

H~HHHH~in+~l~Hnf5-I ~ ~~~~~~~~ ~ ~ ~ lliii it t I~t~ltt~rrrr~~~~ jl++it~~~t~

20-~~~~~~~~~J tttttttf ~~~~~~~~~~---~-~~~~~~~~~~~~~-amp~ ~ t t t t t t f f f I I I I ~ 1 J(-- _ --P ---~~~~~~~~ ~ ~ ~ ~ ~ ~ ~ ~ t t t t t t t t f f I I I I I ~ ~- j~J _ ~ ~ z~ ~ ~ ~ z l I+ nm~t ~ ~ ~ I I~Jt~-~- -~-__~~~ tr ti ~ ~ t t I t f f I I I I I I I - ~-r __ - ~~~~~~~ ~~~~ ~z11 ttt ffflllllIIII -~~---~~~~~~~~~~~ ~~~~ ~~ ttttft ttflltllllllll A~--~~~~~~~~ ~ ~ ~ ~ ~ ~ ~ t t t t t t t t t t t f I I I I I I I I I I I I I ---P~- ttttttttttttlllllllllllI -~--L~-~~~~~~~~~middot

367 70 ~75 325 375 425 475 525 575

SOUTH

1111111111111111I I I I I I 0 10 20 30 40 50 0 5 10 15

(KM) WIND SPEED (MS) i

NORTH 425 575

_ 414111fl-~bull __~) ff I -lt~i ~ + lJ Jmiddot-bull A fl t1 it bull- _I~--~---~----_---~_~~~~~~~11 t1

~~t 11 f + + diamsJ diams 1 )--t-_+ J~ I-(_ 1 1 ~t1 __

__ Lt l l t fL f_l - - +~~----~~---~___-+_~~~ J-t-t t---t-lt t t-t) LJ lt fl ~ -- t---f t tT~-- ~~ 1__t -t ti t_1 + l - -~-~-~-II~-- - ~~~-----~----t----~~~~~~_Efftt -- r1 ~J t l Lt t

fl

~ _ t_ - 11 _ _

Fi ru bulll=ti~ ~ ~ ~ ~1H1~~_~-~-~----~~~~~~~~~~

DWM WINOS AT LEVEL 3 (300M) 1000 PST 19JUN87

1Sv3

I I-shyCt 0 z

1S3M

B-6

0 II)

0 I)

-_2

0 ~ N -

0

0

-_

2 0 0 0 -

LO

_J

w r---CJ O) _J z I- gt ~~ if)

0 1--shyz V) ~ Q_

20 3 g0

NORTH 525 575

~~~__A -~___~~-

F- ~_--P~

~ ff~~-- - _ middot- ~~

_ bull bull bull bull bull

_ p

~L~k~tt ~ 1 t A middot1-t

~ r~ 1 11 1 __ bull bull --l t frac12Q2_

~ ~--r-J-+7L~

1--Ui

3770 _yen~AA- ---~ ~__~_ ~ K---r

eno tshylf)

w ~ ~ ~ lt( 3 I I_

- w

td I

-J

~~~~- ~ ~ ~~~ shy ~ ~ - shy

3720

~ ~~~ -~1~-nu~~~~-

~ -~ - ~_____A~~1~ ~ _~ ~~= ~~~_______2--- ~

720

~~~-~~~~~_ 9~tbullmiddot~qor~frac12

Y~poundpoundpoundpoundpoundpoundL1~~~~r~ ~ middot

375 425 475 525 575

SOUTH

I I I I I I 11 1111 1111 1 0 10 20 30 4-0 50 0 5 10 15

(KM) WIND SPEED (MS)

DWM WINDS AT LEVEL 1 ( 1 OM) 1600 PST 19JUN87

~

NORTH

Arlt~~~ ~L _ -rJ ll

_ I I I t

_t-z~~J ~i~ bull

i- ~~~ Ii ~~( trn

3770 I - bull bull bull bull bull bull bull iigtlaquo

--- bull bull bull _-

~fJ~ t-l-lltf[llJ- jf1 rr]I ~ ~~~ ~ss~810Ja2ot-~~1i lmiddot - 1 17- - -

-ltL

~ ~ 70 y ____~ tshy

l) ) _-y ____~w

w ~

~ -~--- - -- ~ 1 ~~~~ __ _ bull---bull laquo-___~ Y~~

___p~~__---A~_A 1 ~~td I ~----______A 14 1 ~

00 _-________________ ~ __~----~1~ -A________________--r__~~~ ~ ~ ~~~--~-~~~~-~---e--~ ____________~_________-~ h

3 7 20 t-_--~____- ~ _ _ ~~-_- _ _ _ _ ~___~~~r--~~___-K ~~ ~ -~-------~~~----~ ~ ~~__________~~~~~~~______-r_-A~-1--~~~ ~__________________----r~__~__~-Y~~-------__---A----r~ 1 ~ ~__~___________~ ~

367 tcrr~__~y--rrYlt-trltltltltltlaquo-ltltltltltlaquoltlt~~~ ---

9imiddot~75 325 375 -- -

1111 1111 11111 1 1 1

0 10 20 30 40 50 0 5 10 15 I I I I I I

(KM) WIND SPEED (MS)

DWM WINDS AT LEVEL 3 (300M)

1600 PST 19JUN87

NORTH

bl I

0

~________________A-4_gt~~~_____~~__________~A

A~altP_ ~~~_________--~_A 38 20 I--=-~~_~~___~~-_-~~_ -lt~ - ~_-~_A--1~ _

~~------ ~ gt-~ ti ~----~ ~ _~~~~ 0 ~ ~-i---~~411___ I~-~~ I~A-~~----~7A7~-

A A~---~~- ---~ ~ ~ -middot~~ 1-27 ~shyA_~ ~~~ Jl--__r-t~ ~ (K~_ - fl_

A ~I J111 I _ A - ~ _ T-~ v I 1 1 1 1 1 1 ~ 1 1 _ Ji J I~ f --_i__middot1(- ~ ~)( ~JJXZ - _ r ~ - _ )( _ II I 1 ~ 1 I - _~ _)~ ~~

= 1 II II 1 (~ ~--=-~ -7fJ~~~~tm~i I- 3770 Jir - I 11 I 71 (I) ~ ~111 ~

w ~--middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotbullbull bullbull ~~~11Zll~~11~ ~ ~~_~~~llllN~~ -~~ bull 11jh fi 1 1 II 1 1 1 1 1 1 1 1 1 1 1 1 1 I I 1 0i~~~ 1gtcJ~l~p~ ~~~ ~~~ ~rr1111

70 Ishy() lt( w

111111~~ 3720 i- 1 1 ~ ~

~1~I A-A~)I 1111AA _~l11~ 1

lllllll11IIIAII- ~II ~1~~__~~Ill~~~~~ l1_ 1~~~~~~lll~~~~1 llllflfAll-)lllllllll1~~~~~

A I I I I I 1 I I I I 3670

275 325 375 425 575

SOUTH

I I I I I I 1111111111111111 0 1 0 20 30 40 50 0 5 10 15

(KM) WIND SPEED (MS)

DWM WINDS AT LEVEL 5 ( 1 OOOM) 1600 PST 19JUN87

~

A A A

1Sv3

(

1S3M

B-10

()

l ~

---u) 2 __ O 0 ~ w

w It) Q_

()

0 0 z 3

0 It)

~

0 ---I) 2 ~0N _

0

0

---2 0 __

_J

w r--- GJ OJ _J z __ )

~~ () r-

0 __ z ()3 Q_

~o 3~ ON

NORTH

middot-~~) K~xJ~ middot_1~ ~ 71( I IJ ~JI

~A I 1 ~~

liii[i~~ Hf~-~~~=~T-- ----- --=~~g~g~bull11ft _ ~~~ -1-x~~~ ~~~~-~~~--~-~---~ --~ t ~t~ -~1~~ -- ----

-lt J 1middot~~ __---~__

3 770 ~ ~~ --_tn ---------~~ 1 ~____~ _ ___~ -w bull Y ___~~~ (Al _~ _ ~

-- bull _ _ _ bull bull bull bull~___1 1I J~ _~

~- YI J _L ~~ ~~ YJll~E~

td _____-___ ____ __ 1 ~xgtx2-I ____________~__-A (~~~~ _______~~2-1 y~~- ___~__________~ ~

3 7 20 I-___~~__~~ Y --~ ~__ I _ - - _

~_---A~ ~---__~~~~~--_____~ ~ ~_____A~ y ~ ~___-__________~~ ~ -

~__-_______-yen_2 ~ ~ ~~_______~ ~

1 367~ 75 325 375 425

SOUTH

1111 1111 1111I I I I I I 1 1 1 0 10 20 30 40 50 0 5 10 15

(KM) WIND SPEED (MS)

DWM WINDS AT LEVEL 3 (300M)

2200 PST 19JUN87

~-

~ - - ---

NORTH 275

___ -~-___

- ~ I o_ ltAbull~-P- bull bull -P diams bull~--~~~~--- --- ~ ~ ti ~ ~sbull3820 ~=-J~_~~middotmiddotmiddot~~~--_~_=- =~_~c s~ ~3~

~~- bullbull~~bull~~~~~~ - bull -~~bull ~ v i-_ --- __-_ ~----~

~- st-~~1 17-~__4 ~ _~ ~-~-raquo~~~ -f _ _ bull bull bull bull~ bull bull-__-v 4 t ~ ~v ~- Jl_~ ~--z~~=~s~~~~Mil

-- _ ~ frac12--~~- -=~~ ~~l~1~l~tzi9~J t~ 1 1 1 1 1 1 ~-bull ~~___- v q (If V pp p I l_77rtfl _

3770 ~ ~ ---- I h1yenzi 1V-r-() bull bull ~ ~~~~~ w ~ bull ~ _ I JI J(_ )-II101-1 3 ~~A~~~XI IIJ~~~

~ f A I~ I I I I~--L -

tl ~1111111 ~K11~~llll~i~~~~I ~rr ~~ ~xgt~~~t---

N ~I I II)(01~ ~ ~ ~~~ 1~Y~lt~~~~~~~~ ~~~~

3720 iYY11Alllll1lIA~~~~ ~~---Y~---_ _ _ - ~ bullbull - - _

~rrll1IIIIIIIAAAA__

___________~~~AAAA~_~ ______________~~~~KAKAA1~~ lllllllllll~AAA1f~~

_~~

3670 t1i11 i i 1 i i 11111 i i i i -i i [ 111111-111 ~ ~ 11 ~ i I t 1 bull rm r~ij e =~~ raquo-il3t ~ 275 325 375 425

SOUTH

1111 111111 11111 1I I I I I I 0 1 0 20 30 40 50 0 5 10 15

(KM) WIND SPEED (MS)

DWM WINDS AT LEVEL 5 ( 1 OOOM) 2200 PST 19JUN87

24-25 June 1987

9106103

1SV3

1S3M

0 w w Q_ (J1

0 z 3

I f-shy=J 0 (J1

-_

2 0

--

_J w CJ f- _J OC)

0 U) z

f-shy )lt

J q-

(J1 N0 -_ 0

rlt) z rshyl)

N0 _ 3 Q_

0 20 3o 0 q-

0

B-13

lf)_ lf)

If) N If)

lf) r-shy~

I I-o 0 z lf)

~

lO

~

lf) N If)

(

pound bull d ~ bull 4 4 c_ q

1 4 r9middot-

0 N IX)

middot- t--bull ~Igt~

O ~f 4 fT amp)o(oj

4 ltI I~ ~ ~

0

o

middot a

~- v t rgt ( tgtj (~V~-1 f4

3 44 ~-~a4 V VM q -~~-q_4 ~4

_ ~ )

p- ~~t1~1 middot V II J ~ ~ )I 1 11 f ir -~~1I ~

II P P P Igt 4 ~(Iigt ~~ 1) IA

deg deg 4 4 ~ A -1 r 1 1-Y]~t J rz ~

fl r ~ Igt I~y ~ -- -- - 4 ~r___amp V P11 iP Igt P Igt p ~ -0

~bull 7~tpmiddot~P Pf P Ptl middot~ ~ q p Igt 1gt p ~ t b (r 4 P - 4---f ~ ~ bV ltI

ltI ~ ~ I p 6(~ d-_j b d p (4- 4 ~ 1 p Igt 1gt Igt - b ti

)4- a 4_) q V Igt p Igt o

lt(___~ ~- V fgt ~ 111 t Igt -4

~ ~ Igt r p Igt

~ ~ 1 h1

V (I Ilt v middot

t y-

t

t

p

P t P t P ~

0 0N - IX) n

1SV3 0 0 0r-shy N r-shy co

lf) lf)

If) N If)

~ - t bull~--~11n ~ -~bullmiddot t~ lt middot___

o_ ~ ~ ~

0 bull t bull 4_4 4 4IIgt

c 0----~ u c Igt( o ~ c ~A ~ 0 - A 4 4 ~ 1 q

o bull o- -~ 1gt 1gt ~ y4 -~J middot)bullmiddot ~ ~ ~ p 0- 1---f t-~ 1 ~ 4 4 o co u gt)O- eyti ~ ~l 9 -Y P- - I a c 1 oM_il_q A p- p

4 ~ ~-M f p

I 4

~ rv ~--~middot

tJmiddot bull P II f t )I~ bull V ct_~ V V V t P- ~ Igt t middot f lft V VJi P- P- fgt IIgt ~ _ J1 bull bull bull

1 v II p _bull ( ( ir ti- f Igt bull

j ~ r f -~-1t __

_I ltC_t--q_) v -~-ampgt

Q middot--- ~ - t ~ b

II

bull ~

bull bull

diams

1 bull ~ ~~ ~ ~ b b b lgt bull

-- b bull bull bull~4q~ lgtPlgt-4-~_tbblgt

Jraquo P P ~ q 11- 11- b b b b b

P Igt P q bull b b b b b b b b bull

bull bull Igt 4 4 fl ~ b b b b b b b b b bull bull Igt Igt ~ 4 q ~ b _ b b b b b b bull

P bull Igt Igt -4 ltI 9 b b b b b b b b

p bull - Igt Igt 4 lt1 _ b b b b b bull t bull bull Igt ~ 4 b bull b b b b b b bull p Igt Igt Igt bull 9 b b b b b b b b bull P p ~ ~ A 4 q - _ b b b

1S3M

figt j)

~ ~ bull

bull bull bull bull bull bull bull bull bull bull

bull bull bull bull middot bull middot

bull bull ~ ~ 9 9bull bull bull bull bull bull bull bull bull

bull ~ bull bull _ bull bull _ bull bull

~

If) N t

lf) r--11

~

If)

~

0 ONN - co n ~

I fshy=i 0 V)

- 2 0 0 n -

n _j w cjf-

0 l()

0 ~

0N

0

0

---shy2 ~ _

_j OC)

I- z lt( =i

J Vgtv 0N z f-

3 ~ 20 3o 0-t

B-14

---

1S13 0 0 0 N N r--shyltIO r--shy co I) n I)

I() l1 r--shy -U

E~i0 z

U N I() 3

I fshy)

0 U) l1 N -t

--_

2 0 0 0

-

LO

_J w CJf----_J OJ

0 U) z

f- )lt( l1-r ON z f-

3 ~ 0 20

50 U) 0 -sr

0 ON r--shy r--shy

r--shy (0

n I)

1S3M

B-15

lSV3 0 0 0_ N - _ - ~ I)

_ ()

(~i

0 z

If) If)N NIf) 3It)

I Il- I-a =gt0 0z If) If)()

N Nst- st-

_

2 0

--

- w I--- OC)Cj z0 -

I) )I- Jlt( --t-

N() 0 I-z ()

3 o_

0 0 2 0

~ 0 00( 0 0 0-N N _111) r-- 1)

1S3M

B-16

lSVJ 0 0 0 0 N r-shy N r-shy_ _agt lO n n n n

() r-shyU)

u) l() N N u) l()

I I lshy Ishyo )

0 0 z U1 l) N

l() r--_ 2 0 0 n -

n _j

w I GJ OC)

0 _j z

lt) I- ) lt( ~ lf) N 0 1-z l)

3 Q_

0 Lo38 0

0 0 0 0 _N N _ _(() n n n

lSJM

B-17

1SV3 0 0 0 0- -N N- -crJ co I) I) I)

lO II)- - U) It)

U) II) N N lO lO

lO- st

I l-o 0 z U)

N

~

I I-=gt 0 l)

st st

--_ It) - ~ I) 0

0 0 ___

lf)

J w I-

It) N I)

0 II)

~ OC) J z I- =gt lt - lf) N 0 1-z l)

~ 0

0

0

~ 0

38 0

N IIJ I)

- - I)

1S3M

B-18

middot~ bullmiddot I

1Si3 0 0 0 0 N r-shy N r-shya) r-shy r-- co I) I) 1) I)

--_

E~i l)

0 z 3

I r-0 0 z

0 I(

0 --_ n 2 0 ~ N --

0

0

1S3M

B-19

---

_J

w r----2i OC) _J z I- lt( ~ V1 N 0 1-z V)

3n 20 3 iE 0

---- --_

NORTH

-_ t t t f t A +1 t lt-1--JJ-middot+J

r ft_f_frac14 fffftl middotmiddotbull f_ n- ~ tn

ttt1I1~ ~ ~ ~ ~f --H 1--- ~ -

rJj ----~ ~ ~--- ~ l j bull bull - bull bull Ir - ---_- --- --~~~~~I-~~~ ~ bull ~ ~ rt

- - ~rnlit ~~~~ ~~~~ ~~ ~~~~~~~ - _~-~~ ~~~~~-=~~~~~~~-gt

3820

bl I

N 0

tshy() w 3 fftfftlll

ffltlIJ11111~11- I I I J ~-- - ~~~~11J~ -~

3720 - I I JI J ~~~~~~~--------~~ diams bull + I J J _~ 4 bull I I I J ___ ~~~~-s---~~IJ-bullbullbullbullbullbull ~__middot~middotmiddotmiddotmiddotmiddot~~~~~E-e~~

4flA~~middot~middotmiddotmiddotmiddotmiddot~~~~~ ~--_---~- ~~ 1

367~7i51bull1bull11bull1 111 13251777JT7777~7777 I I I 14251

--~--~- ~~_-~-----~ ~~~J

--~-_--~- 1- I 1 I

~ 1lJ

I I I I I I 14751 I I I I I I I s~sl1 I I I 1575 I I

3770 tshy() lt( w

3720

13670

SOUTH

I 0

I 10

I I 20 30

(KM)

I 40

I 50

lllI 0 5 10 15

WIND SPEED (MS)

DWM WINDS AT LEVEL 3 1600 PST 24JUN87

(300M)

lSgt3 0 0 r--shy N r--shy r--shyt)

It r---1)

lO ---- N bull ~~ r lO ~ oe--- I

~~~~ t z~_-----~8 ~ ~~~2~-~----=---~~ t ~~----~~ -frac14~~~--

~v -~ 1 ~ - ~ ~~ ~~~-~~N~~~~~~~~~~~

tf~ ~ ~ -~~~~~imiddot~~~~~ ~~ ~~

_gt~~ middot1 ~ r2 l~ --~- I _Ct _ V I - ftV

0 ~ ~~- X

z~ HF bullIh IJ i It ti ~ 1 IJtl ~ ~ j t ~1

~ ~ 1~1

1 r ~

)

r r~P t t _r )r f

~ 1+ t t t f t ti ~ 1 lt ~ diams t f J t H ff 1 1I I I It diams diams Vf- 1 f f ~ f I 11

(____ t i(_ bullbull ~ bull ~ I r fr1)L_lt--~~vi 1t1J U1 -~- middot~ 1 t) ~ bull ~ bull ~ bull 1 1 f f f I t ~ - ( ~ ~(~ (_ ~ b ~ - ~ bull f 1 f f ~ bull

j ~r~--~ ~ _ ~ ~ ~ l 6 bull bull 4 t ft It _ - __ _ - J ~ ~ ~ t bullbullbullbull t - _ ~--~_____

__ I deg j ~ ~ b ~ _ Igt ~ _ _ ___ bull bull bull bull

~ ~ I ~ ~ ~ _ ~ _ _ _ __ - bull bull bullf

~ bull ~ ~ 4

I -- I bullbullbullbullbull

~~~ ~

1 bull ~

-- V)

LO lshy -----_ lf)

l- w w

=~ It) 0 l)

It)

2= )

0

~

l() 9 __~----- lf)r--- --------J______--L--J-~J-J-______~______~~~___________________________ r---N O O O ON

0 0 z 3

--

2 0 0 0 ----

LO

_j

w I--GJ Cl)

0 _j z lf) )I-

lt( ~ ~

lf) N 0 -- 0 I-n 2 Zlf) ~0 3 0

N ---

0 20 3 g0 -

0

N r- N I-~ I- I- ~ n n n n

1S3M

B-21

1Sv3

U) N U)

lJ) N n

0 N (0 I)

0 r-shyr-shyI)

0 N

I)

It) N It)

U1 r--1)

1S3M

B-22

0 w w (L Vgt

0 z ~

---2 0 __

_j

w _ ~ OC)

0 _j z U1 I- )

lt~ NVgt

0 --shy 0 1-t) 2 z () 0 ~ ~ (LN -middot -

0 20 ~~

0 ON

bull bull bull bull bull

1Sf3 0 0 0 0 N N CX) ID I) I) li li

~ n

~ n

tf) ~

A i -02middot a_ ~ r ____ Igt middotjmiddot i -1 ~ i r middot-~-----------------gt IJ IJ bull 1 j I ------~-----------------

_ IA_Jyen ~ ~ J ~ yen ----~---------------------

~ II --~_a IIgt 11gt Igt middot~ I bull ~ ~ ~ ~

1(1gt i i _JI J Iibull I - IJ Ji H j

bull bull I( --- j J t ~o ~- -- -J I I i J diams bull1bull bull bull i ~ _I I I I J 1 ~~- ~ 11 J l J diams -~ J) bull ~ I- t t ~ ( l f middott J bull 1_~1 ~ IJ II- I ( II ~ j t t bull)

bull t )bull ~) i ~bull bull __ __ I 1gt J I I I middot----- - ~ _ ~ Ji (Ji_ If ~ --~ bull i f l-Ji ~ p VIMyen I ~ middot1 bull I Ibull lt_~ ~ p1 )

I

__________________

~ 4 V ltI - - - -

~) i t --- -- yen 4 yen -- Iii 1yen yen JY yen II

I ~1 Ja a Igt- yen yen yen yen yen yen yenyenIiyen II II

a Igt bull ~ 111) (I J I JY yen tY yen yen II( ltf ~ I~) JY yen liY yen yen yen yen yen yen yen II II II ~ ~(II ~ yen yen yen r yen 1r yen yen yen It Ill

p cl

p 4 ampgt P JI r Igt bull

bull JJ Igt II

- ~ 11- bull

- -

+ _ _ _ __ __ +- ____

- - ----4

bull bull Igt Igt Igt

11 bull bull bull bull

bull bull It

IJ Igt bull t P

Igt bull t

- II Igt fl t middot~~-~~~t_yenyen yenyenyenyenyenyenyenyen

I ~J )Igt) 1 bull yen yen ~yen yen yen yen yen r - yen If II II Igt - I 1 J bull bullI _ _ 1 ~ ~ 1K )

bull -

bull bull II ~ Igt- J 6 bull I 11

fl) 1gt 11 Ill

bull t t fl

~

U1 r- n

~ n

_________o__JJ=---=-------oti~~e-~e11JEJEolELE-ILILLEJLlLu~uJ

l~

0 tf)

~ 0 n

0 N

0

0

- Vl ~ 2 ---

0 w w CL V1

0 z 3

-

2 y --

-

2 0 0 tlt) --

n _J w f-~ OC)

_J z gt

I- Jlt( q-

NVl bull) I-z Vl -~ CL

02 0 3 N 0 NIf)

ONN I N ro r- (0

n n n I)

1S3M

B-23

17z-g

WEST u u u ~ ~ ~ N ~ N

NO N~ 0~0

7J ~ () z -I 0 N (I)

~ )gt c_ -I C zr co ~ -J rT7

r (Jl

-- __ 0 0 0 s _

--_ 7 ~ --

~ z

~-0 0

--s (I) ___

0

0

N o (A 0

t ()1 0

oj(JI

-0

-()1

0 0 0 N -J

A I q bull if ~ ii ii ii I ii if 1 i J (JI

Ab4llltli ~~144

bull~~bull~1111111 11~1middot)1i~~~1 ~4gt~1111111~ II~ - bullbull~Agt~lll11 IIIAII tbull ~4-4~~~III IIll~ I ~14 4 - ~ bull i ~bull-ttt1 111111 I I 1-~ bullbullbullbullbull gt q bullbullbullbull I t I I I I I 4 I I I I I I I 1_ J~ I

4~ A - middot~~lll111I IIll 1 I 4 -1~~ l~ gt1llllllI 1l111 -~~ I N

tn()16 -1 Igt Igt I I l1I v I 7----(Yi ti mbull1-t

~Plgtlt111 VIII ii l middot~1111~~0~ I l~lll~310bullbull I i~W~ffi 1~~~~6~~~ I J~ 1~~~rw 11~~~1~ ~l~~t ~ i 11~~~~~~~ ~~f)~t~~I I~tl -1

~ --J ()1 l 111~1JV1 ~~~1~ I Ill tniz~i~~~~~~ ~~~~ 7 ~K -~~iii~~~~~~~~ il~~~~~~~ 1~~1~~~

middot1 middot1 middot1 middot1 middot1 middot1 middot1 middot1 middot middot1 middot1 middot1 I I I I vr )Igt(_ I II I I~~~~t~ 21~~~r~~~~~v111l I ~ II I -- I~ J(( I I II J l l l Cl ~ I ~ ~ ~ J J I I I yen - - bullbullJ_~ f yen ~ I IJ t I ti

diams J J J I I - ~ - ~ l1 yen -1) I I( t I ~ N J J J J 1- ur~ ~ - Jf1( -I) I I I ti I I j~

() UI diams Mi r)r yen fir_~~ bulll1t) JI 1 I middot i - (JI0 ~ nmiddotmiddotJ jmiddot-1 I I I f ~j--1J ~ __ middot gt C ~ J I f I 1 ltH I fl 1 ti I middotr- I I-I ~ f bull t t l )1j - _ I

t J4J-fbullt t ~ ii middotlfli ii~) - ~bullmiddotttM i f bull bull1 rI-Ku bull bull bull _ middot-~-J_J middot t +imiddot i t t ~ t ( ~ middot(~ I J bull Vf I r1- ~ j~fmiddot + r bull(~t t bullbull_t- J J ~) J ~ Igt

+ __ middot + V+ bull bull ti+ bull + -fi J i bull bull ~ f --- ~ ~ t Li bull bull t ++ diams + t bull +++ + bull ~ __Vbull ~ it 4 ~ i ()1 ~ 1 bullbull diams diams diams diams ++ ++ bull t 1 fA middot_ -----Y 4 ~ tn

~ ~bull t bull + diams + bull diams +++t + bull A VJ ~ bull bull ~ -o middot ~- bull t bull diams diams diams + ~i4_ ~ ~ ~

11 -~ 1 1 1 1 ~t t diams t t ft(middot-- f g a PA

--middott 4 -4 y 1 1 1 )f7~ V g n t A ~ ~bull a~ 4 1 1 ( V P q 1 bull A ~ V Y ~-- 4 I Cl oCl 4 A A ~tW --~- ~middot -)bull ~iliJ bull1bull

bull It t-- ti __ __ ~ (~w ~ ()1UI I bullbull bullrmiddot -~)fl l~~~ ) I A IIbull N~L~ r ~~~-ff~ --bull--1) 4 4 bull ()1

~ 14 ~ bull f 4 AA 4~ bull

44( )A - ~

- ti~ f 4 ~ 4 4 4 A bull ~ i

ti ti fl 1 4 tn llflfl44 4 -()1

~ ()1 ti ti fl 4 4 _ 4 bull fl _ 4 ~ ~

~ bull t~ - - I - 1 T T fJifrac12 1f 1~ fl t [ 1 4 bull bull ~ ltt ~4 ~~~11 l~~Nfl---~ ~~ bull ~t144

1 -middot I I f I ~ fl ti ti- Imiddot tJ 1-0 I 14

z o 0 -I

I

Y

)

u u u u 0) ~ ~ ~ ~ N ~ N 0 0 0 0

EAST

1S13

0 z 3

r r I-shy Ishyer gt 0 0 z ()

--_

2 0

--

___J

w CJ r----1 (lJ

0 l() z

Ishy gtlt J LO() N0

z Ishy()

3 0

0 20 3o 0 tj--

0

1S3M

0 w w 0 ()

B-25

------

~ --- _

NORTH 275 325 375 425 475 525 575

dJ 41 l ll~I tgtI I lo fA Itgt IA IA lo 1 IA IQ 1q lq If lq I ~I 4

~ ~ IIJ ~A ltI P Igt Igt Igt P V V V Q q l_-~- q ~ ~ ~ x- ~ ~ Y t~ --___q)11 4 ltI v v v v v v v 1raquo 4 -q q -~ q ~ 1 a

~ 4 ~~_gt~) ) ~~-4_~ A ltI fl v v v v p A V yjq ~ _ _ ~bullbull --shy~~~ ~ I Cl11 ~ 4 v v v v P- deg 4 ~ -V t V ( ~ a bull-

~ 1 ~~~ v ~sa- fl V P -iLpound_~A--4 q Igt P ~ 4 a~ 4 38203820

- _1 fa bull bull ~ II 11 4 4 ltf V P deg q 9 p Igt Igt Igt Igt P~~ _ _ _ bull -

- ~_R middot ~ gt- P-~-j---s--middotp-~~--- Igt p ~(

-~~ _ amp- 4 --v--J ~--~ -__~---- ~~ t f ---~middot bullbull ~ ~ ~ ~ ~~bull--- bull~bull~~ 4 ~-deg ~--~ ~_v -~ _~raquo Wh~

bull bull bull bull ___ol bull bull --___~ ~ _ A~~-~- f_~-~ bull 1 ~bull -~ Igt bull

a l -4 bull bull~ bull ~ ~ bull frac12~ P- __ _middotmiddot11-~~j)6-_ U bull _ JIgt~ bull I- bull ft ~ 4_~~~~ 9 P lgt--1gt~~~_-~_----~~~ ~ bull ~ ~ ~ ~ --~-~- ~~-_middot ~~~A~ ~ 1111 ~- ----~~ -~- IIgt _)-

1111 1111 -( _-middot 4 ~ Po Igt q lgtmiddotv11t_ Igt Igt II

3770 ~ P 0 ~ - bull k ~ 1- 1-

() pound 4 4 ~ q -44 - bull bull Igt ~- t Igt 1 Igt () w Igt 7 lt

3 - bull It It It bull bull ~--~ p ~ Igt ~ w ~~ It It It bull ~ -_t _ ~ bull bull bull bull --~ Igt

deg

td bull ft bull v ~lt~ Igt Ci~ 4gt I ~ It bull bull ~ 6 -It Igt ~

N bull bull It It ~ ~ _ ~_) ~ ~ lr It ft ft ft ft ft ft Igt -II-~ j ~ fil- _ _ _ _ bull 11r 1o 1o It 111- bull ft ft ft ft ft i i f - ~ 3720 bull It bull ft ft ft ltt q -e- ~ ~ ~j1

4

middot bull bull bull It It ft It bull ~ ~ ~ bullmiddot ft ft ft ft ltt ft ltt ltI 1 ~ - It bull It ft ft It bull -0 ~ JIgt ]~

middotmiddotmiddotmiddotbullbull1rt1rtft11- p-bull- ~1frac121 1tftftlttltltPt1t fgtbullbull ~~- bullbull ~

It bullbullbullbull It ltt It It ltt It lrt lrt tgt - ~

~~~ItIt ItItIt 1t11tft lttlttftlttltlt ltt lt11t ~ lgtbullJgtIbullbull bull~bull bull~bull ~ 1 bull bull 3670 367~75 325 375 425 475 525 575

SOUTH

1111111111111111I I I t--l 0 10 20 30 40 50 0 5 10 15

(KM) WIND SPEED (MS)

DWM WINDS AT LEVEL 3 (300M) 400 PST 25JUN87

0 0 0 0 N r-shy N r-shya) r-shy r-- (0 I) I) 1) I)

-

LO r--1) -

l~ i ()

0 z 3

I ~ n 0 z I)

N st-

0 If)

0 - I) 2 0 ~ N -

0

0

1S3M

B-27

---_

2 0 0 0

-

If)

_J

w Cj l-_J OC)

z_ ) lt( J () L()

ON z~ 3~ 20 3oo+

0 0 0 N N C0 (0 I) ~ I)

U)

U)

U) U) N N It) U)

I I-=gt 0

U) V1 N st-

lO N I)

0 lO

0 __ I) 2 0 ~ N _

0

0

__ 2 0

--

_J

w l--Gj OC) _J z I- =gt lt( ~ V1 N 0 1-z V) 3 CL

20 3 g0

1S3M

B-28

I fshyCt 0 z

0 r-shyr-shyI)

0 N r-shyn

0 r-shyl) I)

lO r-shylO

lO N It)

lO N ltt-

--

tlt)

_j

w r---fu o) _J z f- ) lt( ~ f) N 0 1-Z Vgt3 (L

2 03g0

I fshy)

0 l)

0 lO

0 -- n 2 0 ~ N ---

0

0

1S3M

B-29

1S13

-l)~ O 0 w

deg CL w

l)l ~

0 0 z 3

I lshya 0 z

--_

2 0 0 0

--

LO

_j

w__cj IJ)

0 _j z lf I- )

lt ~ ~ V) N

I) 20 - 0 Z(f)

I-

0 ~ 3 CLN -

2 00 3 gOr-

0

1S3M

B-30

Ht 11Sittl

lS13 0 0 0 0 N N II) (0 n I) n n

-- ()

LO t-shy ~ lO

(~i0 z

lO N LO

3

I Ishygt 0

lO () N +

--

2 0

--

_j

wr-----CJ OJ

0 _j z lt) I- )

lt ~ V) N

0 -- 0 1-shyI) 2 z () 0 i 3 ClN --- --

0 28 3 ltD

lf 0~_____________________________~_______________________--- t-- 0 0 0 0 ClCI N N t-shyII) t-shy io n n n n

1S3M

B-31

==- ~-_

NORTH

I bull bull - -f I I bull ~bull - ~__~~~~ ~~~

flt~11 $~~~t=- ~~ ~ 4Aligt~ ~~~ ~~

3820 1~~~- 4 t 11 ~ ~- --~_____-- ~ ~ ~~ 3820 ~~~

~~-~~~~

3770 3770

l1 ()w l-

lllizz tshy

~ ZlZZl ~ ~~~~~~

to I -IllIll

w -I IIIll~N llllll2~~

-II I I J I-~1~ r~~~~ 3720r ~ J J UL 1~A~~ 3720

~IIJJJJJ2~ ~~~ 1 ~ fl I JI JI2~~ 1~~~V fl fl ~ JI J J ~ y ~- 1-f4~) ~ fl fl fl I JI J _A2 1~ V~

~flflflflJIJIJl~2 ~~JIw~ ~ ~jlfljlflJIJIJI~ ~JIJIJflfl~~~ ~ ~~fljlfljlJI~~~~ -

J67 t-V1111111----(((((1i I~laquo rlt~1 I I I I I I I IM m I I I I I I I ~ MJ670 g75 325 375 425 475 525 575

SOUTH

11111 11111 11111 1I I I I I I 0 10 20 30 40 50 middot 0 5 10 15

(KM) WIND SPEED (MS)

DWM WINDS AT LEVEL 3 (300M) 1600 PST 25JUN87

1

NORTH

bj I

w w

i~ -tt--t ~ + ~frac14 diams diams diams diams diams f f f J-~~~l -ff~_x~ diams t diams ---t diams + diams ff f J1ff~t t

-=tl-U +---- ~ ~ t-t- diams diams __ diams~ diams diams ~ J I I 1 1 f ~ -y- ~I -~~-1t-~ diams +__+ diams + ++--J_f 1 ~JJ-11 I --

38201- ~~-- ~ ~--t_-( 1 ~ r 1t + middot~-t_ bull ~-~ bull bull bullmiddot bull r-r 1 ~IiI 1 I ~Ji~l _-=pound-~If~_ It It It bull bull bull bull bull ~ diams f f---bullmiddot+ --I __- _ I I~ 1 f1

( - ~~~~ II lit It It 1tt Iii Iii~ -r-middot -- ___- l_f--1-l -L ~~1 1 ~ ~_( _ -~~ ~------~ 1t(~ bull (t ft- ~ middotv -11-fI 1 - t~~1 1 41

~ - ~-~- lit 1t lk_i -- -~--- -_ -j rf-- l1 r111 1 I It It~ It 1t 11i bull-~ ~- ~ t_bullbull_~ (middot ~--middottY~i_(4Xtl~4j_ middot It It ~ -- ---~----~----_I~)-~-~ -

~-It It ltt middot~- ~ -~-middot ~-pound1[_~ -~- - middot - deg - - It It l diams diams 4 middotbull--bull ~ ~ ~ diams 7 1---~~ -L_- - ~ t( I diams -( bull diams ~ ~ bull ~ -- JI JI Jf JI JI j(_ ~II deg It_ -~ ~- I I I J JI JI JI JI 1

~ J- ~llj ~- diamsdiams +II IllJI_ h~ ~ ~ ~ bull bull ~ JI J J J ~ 1 x111 X7 -~ ~ diamsdiams 4111 JJJIJJ~~~~~~~~1t diamsdiamsdiams ~111 JJIJJIJllllb~ h~~~hh middot ~ - diams diams bull I I J J I I I I JI JI I l1-14~frac12-~~~ji_ ~ + f 1 J I 1 I I I 1 ~ x~ f1 11 middot -

bull JI I I I11~bullY1iz 1 41 ~ f I J J J JI J J J J J I I I lmiddot ~ t JI JI JI 1 JI 1 1 JI J I I I It~ if~_~

It_ ~ 1 JI JI JI JI J J I I l-~ 4 t J J J J J J J JI JI I I l l deg ~~ _ ~ 1111JJIJIJIJIJIJIJIJI t JIJIJIJI~I JIJJIJIJI_

~- I t I I JJJIJIJIJIJII~~~~ t JIJJIJIJIJIIII ~~ JJ JIJIJlllll ~ t IJJIJIJl1 1 1 ~ ~~I 1 t 1 A 11111111 II I I I

325 375 425 475

SOUTH

I I I I I I 0 10 20 30 40 50

(KM)

525 575

1111 111 1111 10 5 10 15

WIND SPEED (MS)

3820

3770 1-() lt( w

3720

3670

DWM WINDS AT LEVEL 1600 PST 25JUN87

5 (1000M)

0 w w CL ()

0

1S13 0 0 0 N r-shy N agt r-shy r--t) I) 1)

I() It)- r-shyU) U)

z U) N It) 3

( I I lshy Ishyo ) 0 0z It)

~lgtIgt~() st- b tgt ~ q st

lgtbbtgtb

b b t t 0 b

N

Igt b t b b b A 6 ~ b b t b C A 4 d 4

ttCt4lt1-it e Igt b tgt tgt V q ltl ltl ltI ltl

ti- deg 1 41 9 q I I ltl q q

i V q ltl q q q q I l() r-shy AlgtV ~ tlt) ~t) -~~~q

~ bull amp ~

0 ~ ~

-qa ~ ~ 1gt1 111111

b-a~-V ltillilI

bull lt bull bull a ~ Igt ~ V V V q 4 __J

It It lgt a -a~ Igt C tgt V w r---(J OC)

bull ~ Igt t 4 bull bull bull bull U) 0 __J z middot 1gt44lt14

U) ) t) rshy J - -N

lt( l() ~ ~~ CI() ~ ~

~

0 Ishy bull bull bull diams 1 z ()~ bull ~ bull diams diams 1 CL3bull ~ ~

i b y ~bullbullTT r I I 0

~ bull bulldiams ~ ~ b b b b ~ bullbull diams T r r I U)______-11____________________________ _ 0

0 O O ON N r- N r--agt r-- _ ~ I) I) I) I)

1S3M

B-34

I

_ _ 3820r- ttr- t f T Jf-Lt If t t 1l-- -~ 1~ t t

NORTH

~bull 1414

~~-_ ~ ~ r-- - --~ ~ - - _ r-- fT W - - r V-V ff f

- t t t t f I~ _AAjAA~-r bull(- -J It ~---1 t ~~~-1-- 1 ( ~~ - J ~ t t i f 1 ~ A_A-yen~_~_ ~ ~ 1 ~ t t ~ t t middotmiddotkt f ~-~-~~-----~~-- ~ ~ ~ ___ll_ bull ~

t -r- _______~~----- r ~bullbull _ ~ ~ tt-~J--~c-~~ ~ 1~--______ bull

~ -t lJ-- f t-J-- r---~~---middot _-- ~~-- ~ bull bull ll~iti~~sect~~~ ~ bullbull~bullbull bull~~n~ bull bull bull n~ bull bull

A)~lfifrac12~~ ~III I --1

3770 l l L l L - - ~ -- ~ - 1 ~ - 770 tshy~ ~~~~~~~~~11 1 ~~=1~~- Ul

W 1lllll~I ~~~~1111~~ lt( w ~1~~1~1~~j~~~m ~~~~ ~ - ~

11 1111 1111~I I 11111111 --- middotE~

tj IIIIIIIII_ ~tI l) llllll_~_p ~1l1 1~A~~~A~~rrr-v

3720t- I I I J J J A__ r r 0 11J)~~~----~_~ppmiddot-~~f Jl~~~~~---~--~~r~-~~q~q ~1

I ~JI I~ A A-_

~JIJl~~~~~A-----A rrbullbull~f~df~ ~~JIJl~~~~A~~--~- fffdfdff

~~JIJI~~~~~~---- bullfbulldbullfdf~

~IJIJl~~~AA~ --middotmiddotmiddotmiddotmiddot~middotmiddot~~~ ~l~JIJIJl~~~Al~pp~~~~bullbullffffffdff X ~~~~JI~- A(- f bullbull P ~ ~~bull1f1q1f1f1f1f1f1d1bull

3670275 325 375

1111 1111 11111 1 1 1

0 10 20 30 4-0 50 0 5 10 15 I I I I I I i(KM) WIND SPEED (MS)

iDWM w1tms AT LEVEL 3 (300M) ir 2200 PST 25JUN87

0 If)

0 __ I) 2 0 ~ (j __

0

0

__ 2 0 0 0

__

LO

_J

w f- GJ ll) _J z I- ) lt( ~ () N 0 1-z () ~ Cl

20 ~~ ON

1S3M

B-36

Page 13: Nind Observations Collected during the Southern California ...

2 GENERATION OF WIND FIELDS AND ANALYSIS OF AIRFLOW PATTERNS

DIAGNOSTIC WIND MODEL

Hourly gridded wind fields were generated for the 17 SCAQS intensive monitoring days using the Diagnostic Wind Model (DWM) (Douglas et al 1990) This model incorporates observations where they are available and provides some information on terrain-induced airflows in regions where local observations are absent The model is formulated in terrain-parallel coordinates Wind fields are generated using a two-step procedure

In step 1 a domain-scale mean wind is adjusted for terrain effects These include the kinematic effects of terrain (lifting and acceleration of the airflow over terrain obstacles) thermodynamically generated slope flows and blocking effects Step 1 produces a spatially varying gridded field of u and v for each vertical layer within the model domain

In step 2 observational information is added to the middot(uv) field calculated in step 1 using an objective analysis procedure observations are used within a user-specified radius of influence while the step 1 (uv) field is used in subregions where observations are unavailable The following modified inverse-distance-squared weighting scheme (Ross and Smith 1986) is used for the interpolation of data

where (u0

v0 )k denotes an observed wind at station k rk is the distance from station k to a

given grid point (u v)1 is the step 1 wind field at the grid point and (u v)i is the updated wind vector The parameter R controls the relative influence of the observations and the step 1 wind field

Following the interpolation a five point smoother of the form

9106102

Amiddot 1J

8

is applied to the horizontal wind field to reduce discontinuities that may result from the interpolation The vertical velocity is calculated by integrating the incompressible conservation of mass equation Zero-gradient lateral boundary conditions are used

GENERAL PROCEDURES

Generation of the SCAQS wind fields involved (1) preprocessing of the wind data for input into the DWM (2) plotting and quality control checking of the data (3) specification of the model input parameters (4) exercise of the DWM and (5) graphical display of the gridded wind fields Winds were analyzed at six vertical levels 10 100 300 600 1000 and 1500 meters (m) above ground level (agl)

In the preprocessing step the upper-air data were vertically interpolated to the model levels and temporally interpolated to enhance the temporal consistency of the wind fields and to provide hourly input for the DWM

Following the preprocessing step the data were plotted and examined for horizontal vertical and temporal consistency Data that failed the quality control checks were eliminated from the model input data set

The controlling parameters for the DWM include the maximum radius of influence (RMAX) at which a monitoring station can influence the interpolation at a grid point the weighting parameter for terrain effects (R) the number of stations to be used in the interpolation (NINTRP) and the number of smoothing passes (NSMTH) Note that the maximum radius of influence is specified independently for the surface level ( over land) upper levels (over land) and over-water portions of the domain The weighting parameter for terrain effects and the number of interpolating stations are specified separately for the surface level and upper levels In the diagnostic analysis of the SCAQS wind observations these parameters were specified as follows

RMAX (surface) 20km RMAX (aloft) 100 km RMAX (over water) 150 km R (surface) 10km R (aloft) 50 km NINTRP (surface) 4 NINTRP (aloft) 3 NSMTH 4

Tests were performed to examine the sensitivity of the DWM to the various contr ling parameters and to select the optimum values of these parameters for the SCAQS v nd analysis

9106102 9

The DWM also requires as input a domain-mean wind and stability information For this analysis the domain-mean wind was specified separately for each analysis level and was based upon the average of the level 6 (1500 m agl) wind observations To account for friction the speed of the domain-mean wind was reduced for the lower levels by multiplying the average wind speed for level 6 by the following scaling factors

Level Scaling Factor 1 048 2 072 3 083 4 090 5 096 6 100

The domain-scale lapse rate was the calculated average of four inland sites These varied according to data availability

Six-hourly plots of the level I (surface) level 3 (300 m agl) and level 5 (1000 m agl) wind fields for each episode are given in Appendix B

SUMMER INTENSIVE MONITORING PERIODS (

Mesoscale airflow in the SOCAB during the SCAQS summer intensive monitoring periods appears to have two components

A basic diurnal cycle driven by land-water temperature differences and complex terrain and

A perturbation associated with the overlying synoptic flow

19 June 1987

The surface and upper-air wind monitoring site locations for this intensive monitoring period are indicated on pages A-1 and A-2 respectively Plots of the diagnostic wind analyses for 19 June are given on pages B-1 through B-12

The surface early morning airflow pattern on this day is characterized by weak winds over much of the coastal and inland areas with moderate NW winds over the Coachella Valley and offshore At 300 m agl winds are S over the western half of the domain and W to NW over the eastern half of the domain The overlying flow at 1000 mis W

9106102 10

n1er

The sea breeze is somewhat slow to appear in the western basin on this day but has begun to develop by 1000 PST At this time winds at 300 m agl remain S over the western part of the domain and W to NW over the eastern part of the domain Some S flow is also apparent at 1000 m

During the afternoon hours three distinct features are apparent in the surface airflow pattern

A sea breeze (W flow) develops along the coast between Santa Monica and Palos Verdes and penetrates inland A branch of the sea breeze penetrates into the San Fernando Valley resulting in weak SE flow at Burbank and Reseda

An area of weak (SW) winds forms in the Whittier-La Habra-Pico Rivera area persists throughout the afternoon and fonns a convergence zone in the central basin with the penetrating westerly flow The S component of this flow is due to sea breeze development along the coast near Long Beach

Upslope flow develops along the foothills of the San Gabriel and San Bernardino Mountains (eg at Glendora and San Bernardino) Along the eastern foothills the upslope flow is supplanted during the afternoon by the penetrating W flow

By 1600 PST on 19 June the depth of the upslope flow near Glendora exceeds 600 m Strong outflow is apparent through the Cajon and Banning passes Aloft winds are generally SW with some SE flow near Burbank and NW flow over the Coachella Valley

Significant onshore flow (3 ms) persists along the Santa Monica-Palos Verdes coastline through 2200 PST Feature-s of the afternoon airflow persist aloft through this time

24-25 June 1987

Surface and upper-air wind monitoring site locations for this intensive monitoring period are indicated on pages A-3 and A-4 respectively Plots of the diagnostic wind analyses for 24-25 June are given on pages B-13 through B-36

The airflow patterns on these two days are similar to one another and to the ttern on 19 June The overlying flow is generally weak below 1000 m agl with moderak t5 ms) SE flow at 1500 m agl

On 24 June the early morning surface airflow patterns are characterized by ver middoteak winds At 300 m agl winds in the Coachella Valley are SE By 1000 PST a we1 organized zone of weak S flow extends from Long Beach to Pasadena this S flm

9106102 11

(

reaches a depth of 300 m agl Southeastern flow in the Coachella Valley and E flow through Banning Pass are apparent both at the surface and 300 m agl S to SE flow dominates at 1000 m agl The II three-zone II surface airflow pattern is apparent during the afternoon The wind shifts to Wat Banning Pass by 1500 PST At 300 m agl winds are SW over much of the basin with SE flow at Burbank and in the Coachella Valley At 1000 m winds are generally SW At 2200 PST the airflow pattern is characterized by weak unorganized flow at the surface and 300 m agl Winds at 1000 m are NW over much of the domain but SE over the Coachella Valley

The airflow on 25 June is similar to that on 24 June During the early morning hours winds at the surface are very light Weak SE flow is apParent at 300 m agl At 1000 m agl winds continue to veer toward N The sea breeze develops more quickly than on the previous day and winds at Banning Pass become westerly by 1300 PST Calm winds are observed at Pico Rivera throughout the afternoon As on 24 June the afternoon airflow at 300 m agl is characterized by SW flow over the basin and SE flow at Burbank and over the Coachella Valley Upward propagation of W flow is generally slower than on 24 June Winds at 1000 m agl are S to SE During the evening hours the surface winds become light while at 300 m agl winds over the Coachella Valley become NW Organized W flow is apparent over the W basin through a depth of at least 300 m agl through 2200 PST

13-15 July 1987

Surface and upper-air wind monitoring sites for this intensive monitoring period are shown on pages A-5 and A-6 respectively Plots of the diagnostic wind analyses for 13-15 July are given in Figures B-37 through B-72

Airflow patterns on 13 and 14 July are generally consistent with the basic diurnal cycle described earlier However an unusual airflow pattern develops in the Coachella Valley on both days On 15 July strong SE forcing is associated with a delay in sea breeze development

The 13 July early morning surface airflow pattern is characterized by light winds and a weak cyclonic eddy over the Santa Monica Bay Winds aloft are light to moderate and primarily W The sea breeze develops rapidly on this day and by 1200 PST W flow overwhelms the S sea-breeze flow in the Long Beach Area W flow appears at Banning Pass by 0800 PST The surface afternoon airflow is characterized by the three-zone airflow pattern described earlier with strong upslope flow along the foothills ( gt 5 mls) and significant outflow through Cajon Pass Observations at Palm Spring (NW winds) and Thermal (SE winds) indicate a convergence zone in the Coachella Valley with a depth of at least 600 m W flow dominates at middot1000 m with S to SE flow over the Coachella Valley During the evening hours a cyclonic eddy redevelops over the Santa

9106102 12

rtMt1

Monica Bay winds are weak throughout the basin but airflow into the Coachella Valley is especially strong

Airflow patterns on 14 July are similar to 13 July with a few exceptions During the early morning hours the surface airflow is characterized by weak disorganized flow There is no eddy apparent over the Santa Monica Bay The overlying flow is weak and primarily S to SE at 300 m agl but W to NW at 1000 m agl Sea breeze development is approximately two hours slower on this day than on 13 July By 1000 PST weak S flow has developed over the Whittier-La Habra-Pico Rivera area and SE flow is apparent at Burbank AS component to the flow appears at 1000 m The afternoon surface airflow pattern is similar to that on 13 July but the S upslope flow at Glendora is weaker S flow develops at Elsinore and several coastal Orange County sites The Coachella Valley convergence zone reappears at the surface at 1600 PST two hours later than on the previous day At 300 and 1000 m agl W to SW flow dominates over the western twoshythirds of the domain SE flow is apparent over the Coachella Valley During the evening hours the surface airflow over the central basin is S to SW W flow components persist along the eastern foothills through 2200 PST

On the morning of 15 July surface winds are weak but maintain a S component Moderate SE flow is apparent offshore The overlying flow is generally E to SE By 1000 PST the surface airflow pattern is characterized by S flow over the central basin and along the foothills SE flow in the Coachella Valley and E flow through Banning Pass The depth of the S to SE flow is greater than 1000 m agl During the afternoon a weak sea breeze penetrates inland and winds along the foothills become W Winds shift from E to NW at Banning Pass at 1600 PST A weak S flow component persists in the Whittier-La Habra-Pico Rivera area throughout the afternoon A weak slopevalley circulation develops in the Coachella Valley resulting in SE flow there At 300 m agl winds are SW to W over the central basin and SE over the Burbank and the Coachella Valley At 1000 m S to SE flow dominates W winds persist along the foothills through 2200 PST and weak S to SE flow redevelops at the surface Remnants of the afternoon airflow pattern persist aloft

27-29 August 1987

The surface and upper-air wind monitoring site locations for this intensiv middot1onitoring period are indicated on pages A-7 and A-8 respectively Plots of the dia stic wind analyses for 27-29 August are given on pages B-73 through B-108

On the morning of 27 August surface winds are weak over most land areas a 1djacent coastal waters with moderate (5 ms) NW winds well offshore Winds aloft a Jrimarily N with weak NE flow at 100-300 m agl over the central basin By 1000 PST threeshy

IIzone airflow pattern has developed at the surface and is somewhat apparent ( hin the limits of the upper-air network) at 300 m agl SE flow has developed at 100( agl

9106102 13

This pattern is maintained throughout the afternoon Within the Coachella Valley a classic daytime slopevalley flow pattern develops with SE flow extending to a depth of 1000 m E flow develops at Banning Pass and persists through 1700 PST W flow over the basin develops upward throughout the afternoon By 1600 PST wind at 300 m agl are W to SW over the central basin and SE over Burbank and the Coachella Valley During the evening hours the features of the mesoscale airflow pattern over land weaken both at the surface and aloft There is no clearly developed offshore-directed land breeze

On the morning of 28 August the surface winds are weak and the overlying flow is primarily E Retardation of the sea breeze by the overlying E flow is apparent by 0900 PST S flow develops in the Long Beach area E flow at Banning Pass is substantially stronger than on 27 August During the afternoon of 28 August S flow persists at Long Beach and develops in the Whittier-La Habra-Pico Rivers area SE flow is observed along the Orange County coast E flow through Banning Pass persists throughout the day W wind components along the Santa Monica-Palos Verdes coastline are weaker than on the previous day and NW flow fails to develop at San Nicolas Island W flow over the central basin disrupts the SE flow aloft During the evening hours the airflow features weaken W flow along the foothills does not persist as long as on the previous day

The early morning airflow pattern on 29 August is characterized by SE flow both at the surface and aloft Sea breeze development on this day is slower than on either of the previous two days S flow again develops in the Long Beach area and appears to be stronger than on the previous day Although the sea breeze is weaker winds at Banning Pass shift from E to SW by 1300 PST This shift occurs at 1800 on 27 and 28 August SE flow persists aloft with limited upward development of the W sea breeze flow W flow persists in the western basin area through 2200 PST and SE flow persists aloft

2-3 September 1987

The surface and upper-air monitoring site locations for this intensive monitoring period are indicated on pages A-9 and A-10 respectively Plots of the diagnostic wind analyses for 2-3 September are given on pages B-109 through B-132

The first day of this period is probably the most anomalous of the summer SCAQS intensive measurement days Overlying easterly forcing during the morning hours prevents development of W flow along the foothills and inhibits upward development of the sea breeze over the western and central portions of the basin The easterly forcing appears to reverse rather abruptly on the afternoon of 2 September Unusual winds are also observed at Burbank on 2 September During the late morning and afternoon Burbank experiences an unusual wind shift from SE to W through a depth of 1000 m On 3 September the overlying airflow is W and the airflow patterns are more typical

9106102 14

rrn

On the morning of 2 September strong downslope flow results in N to NE winds at several sites along the foothills of the San Gabriel Mountains At 300 m strong NE winds are apparent over the central basin The overlying flow is E By 1000 PST the sea breeze appears as W flow along the Santa Monica-Palos Verdes coast and S flow in the Long Beach area The surface analysis indicates a band of S flow from Costa Mesa to Azusa W flow has not developed along the eastern foothills Winds are SE in the Coachella Valley and E through Banning Pass E flow aloft continues and intensifies During the early afternoon hours a relatively strong sea breeze penetrates inland to Azusa while winds in the Whittier-La Habra-Pico Rivera area remain weak The sea breeze weakens considerably after mid-afternoon Between 1200 and 1500 PST the wind at Burbank shifts from SE to W through a depth of 600-1000 m By 1600 PST the overlying flow has shifted from SE to W Onshore flow continues at the surface through 2200 PST while the winds weaken considerably Although the overlying W flow persists in general 300 m agl winds at Burbank become SE

The early morning airflow on 3 September is characterized by weak winds at the surface SE flow at 300 m agl and primarily W flow at 1000 m agl Although the major surface airflow features appear to develop as on previous days upward development of the pattern is limited Strong S flow is apparent by 1200 PST between 100 and 300 m agl over the central and western basin By 1600 PST the sea breeze has penetrated well inland Imbedded in the sea breeze is a persistent calm area in the vicinity of Lynwood S flow persists at 100-300 m agl over the central and western basin while flow at this level off shore remains NW At 1000 m agl W flow continues This general pattern persists through 2200 PST but weakens considerably especially at the surface

AUTUMN INTENSIVE MONITORING PERIODS

The mesoscale airflow patterns in the SOCAB during the SCAQS autumn intensive monitoring periods exhibit a weaker diurnal cycle than the summer airflow patterns Synoptic forcing also appears to be stronger

11-13 November 1987

The surface and upper-air wind monitoring site locations for this intensive monitoring period are plotted on pages A-11 and A-12 respectively Plots of the diagnostic wind analyses for 11-13 November are given on pages B-133 through B-168

During the early morning hours of 11 November NE surface winds are apparent over most of the region Surface wind speeds are very light over the basin and somewhat stronger along the foothills and the coast At 300 m agl winds are light and generally E At 1000 m agl winds are W to SW over the western half of the domain and SE over the eastern half of the domain Weak E to NE surface flow persists throughout most of the

9106102

15

morning in the first 300 m An apparent anticyclonic eddy (SE flow at Long Beach weak S flow at Burbank W flow at El Monte) develops between 600 and 1000 m agl on this morning A weak sea breeze forms around 1200 PST penetrating only to the central basin There is no apparent turning of the sea breeze into the San Fernando Valley W to NW flow develops offshore and is deflected around the Palos Verdes Hills This W flow is also apparent at 300 m agl Downslope flow components along the foothills are apparent by 1600 PST At this time the 1000 m agl winds are weak and N The sea breeze rapidly dissipates and NE flow develops at several coastal sites indicating a land breeze NW flow is maintained off shore The nighttime airflow pattern aloft is characterized by weak N winds at 300 m agl and weak W winds at 1000 m agl

The surface airflow pattern on the morning of 12 November is generally similar to that on 11 November E flow over land is apparent through a depth of 300 m while NW flow persists offshore The overlying flow is W The afternoon surface airflow pattern is more similar to a typical summer afternoon pattern than the previous day Turning of the sea breeze into the San Fernando Valley is apparent and W flow develops along the foothills of the San Gabriel and San Bernardino Mountains by 1400 PST Airflow at 300-600 m agl appears to veer continuously from E to W at most inland sites during the afternoon NW flow through a depth of 1000 mis apparent over the Coachella Valley Surface winds become light and disorganized during the evening hours Unlike the previous day NE flow does not develop at the coastal sites and NW flow weakens offshore W winds persist aloft

On 13 November surface winds are very light through the early morning hours with E flow components apparent immediately offshore The overlying flow is WNW but becomes S over the central basin by 1000 PST As on the previous two days a sea breeze becomes apparent at the surface by noon W flow components over the basin and foothill areas are stronger than on the previous two days both at the surface and aloft Significant W flow also develops in Banning Pass Moderate to strong W winds are apparent aloft During the afternoon and evening hours SE winds are apparent at Burbank between 300 and 600 m agl Intense W flow develops off shore and propagates inland during the evening hours W flow continues aloft with some S to SE flow between 100 and 600 m agl at Burbank and El Monte

3 December 1987

The surface and upper-air wind monitoring site locations for this intensive monitoring period are plotted on pages A-13 and A-14 respectively Plots of the diagnostic wind analyses for 3 December are given on pages B-169 through B-180

The early morning surface airflow pattern on 3 December is characterized by weak NE winds over the inland areas and a weak cyclonic eddy off shore The overlying flow is S to SE Surface winds remain light and variable through most of the morning Moderate

9106102 16

txi Iii ttii

E flow is apparent over the western and central basin between 300 and 600 m agl A sea breeze develops around 1200 PST reaching a depth of 300 m and penetrating only approximately 30 km inland S to SE flow persists above 300 m agl The sea breeze weakens during the evening hours and N flow through a depth of 300 m develops at Long Beach E flow components intensify at 600 m agl and above

10-11 December 1987

The surface and upper-air wind monitoring site locations for this intensive monitoring period are plotted on pages A-15 and A-16 respectively Plots o~ the diagnostic wind analyses for 10-11 December are given on pages B-181 through B-204

On 10 December the early morning surface airflow pattern is weak and disorganized Weak NE flow is apparent over much of the basin between 100 and 600 m agl The overlying flow at 1000 m is N The surface airflow over the basin is weak throughout the morning hours while NW flow develops offshore Winds aloft remain N A weak sea breeze is apparent by 1200 PST the sea breeze penetrates only about 30 km inland and is limited to a depth of approximately 300 m There is no apparent turning of the sea breeze into the San Fernando Valley Elsewhere in the basin the surface airflow remains weak By 1600 PST the sea breeze has weakened At this time winds aloft are predominantly W to NW at 300 m agl and N at 1000 m agl During the evening hours surface airflow over the basin becomes weak and disorganized while E flow develops at Palos Verdes Strong N winds appear aloft (300-600 m agl) at Burbank LMU and Long Beach however winds at this level further to the east remain light

On 11 December the early morning surface airflow pattern is similar to that on 10 December Relatively strong ( gt 10 ms) NNW winds persist at 600-1000 m agl at Burbank and LMU E wind in the 100-300 m agl appear at LMU and Long Beach Throughout the morning the surface winds remain light and N winds 9ver Bu~ank weaken considerably A sea breeze is apparent by 1200 PST but is weaker than on the previous day and reaches a depth of only 100 m or less Significant N winds (3-6 ms) develop between San Bernardino and Elsinore and in the western San Fernando Valley NE flow is observed in Ventura County Winds aloft continue to be primarily N however E flow is apparent over the Long Beach area at 1000 m agl Surface airflow over the central and western basin becomes very weak during the evening hours Strong N to NE flow develops at the coast west of Santa Monica while N flow persists in the western San Fernando Valley and in the San BernardinoRiverside area The overlying flow is N to NE

91061 02 17

3 PARTICLE PAm ANALYSIS

A series of forward and backward particle paths (trajectories) were calculated using the SCAQS DWM wind fields The particle paths will be used by other SCAQS investigators in their examination of pollutant transport within the SOCAB The forward particle paths can be used to estimate the transport of pollutants from known source locations The backward particle paths can be used to estimate potential source areas The particle paths can also be used to estimate the residence time of certain pollutants in the SOCAB as a whole or in subregions

CALCULATION OF PARTICLE PAIBS

Two-dimensional particle paths were computed using the DWM wind fields as follows

Starting ( ending) points for a given number of forward (backward) particle paths were specified

Using a time interval of 15 minutes the hourly gridded DWM wind fields were linearly interpolated in time and then interpolated in space to each particle position using an inverse-distance-squared weighting scheme

The particles were then advected horizontally for the specified time interval

The distance traveled by each particle during each time interval was integrated The new position of the particle was reported at hourly intervals

Forward and backward particle paths were calculated for the SCAQS intensive monitoring periods for several vertical levels and a variety of origination and destination points The origination (destination) locations and times for the summer and autumn particle paths are listed in Tables 3-1 and 3-2 respectively Most of the particle paths originated (ended) at one of the SCAQS wind monitoring sites listed in Tables 1-1 and 1-2 Additional sites are identified in Table 3-3 Note that for some sites in Tables 3-1 and 3-2 a new particle path was initiated at the particles 1000 PST location but at a higher level

Additional forward particle paths were calculated for comparison with the SCAQS tracer data (England et al 1989 Horrell et al 1989) The initiation times and locations correspond to the tracer releases and are given in Tables 3-4 and 3-5

9106lrl02

~~ll1~(I titW I~l~~~t~~

TABLE 3-la Summer particle paths forward particle paths

Start Time Origination Start Date (PST) Site Level(s)

624 0500 LBCC 13 CELA 13

624 0700 LBCC 13 CELA 13

624 1000 LBCC 13 CELA 13

624 1500 LBCC 13 CELA 13

624 2100 LBCC 13 CELA 13

625 0500 HHRA 5 PADA 45 FULA 5

625 0700 FULA 5

713 0500 LBCC 13 CELA 13

713 0700 LBCC 13 CELA 13

713 1000 LBCC 13 CELA 13 EMTA 24

713 1500 LBCC 13 CELA 13

713 2100 LBCC 13 CELA 13

714 0500 LBCC 13 CELA 13

714 0700 LBCC 13 CELA 13

714 1000 LBCC 13 CELA 13

714 1500 LBCC 13 CELA 13

714 2100 LBCC 13 CELA 13

Continued

19

91061 07

TABLE 3-la Concluded

Start Time Origination Start Date (PST) Site Level(s)

827 0500 LBCC 13 CELA 13

827 0700 LBCC 13 CELA 13

827 1000 LBCC 13 CELA 13

827 1500 LBCC 13 CELA 13

827 2100 LBCC 13 CELA 13

828 0500 LBCC 13 CELA 13

828 0700 LBCC 13 CELA 13

828 1000 LBCC 13 CELA 13

828 1500 LBCC 13 CELA 13

828 2100 LBCC 13 I CELA 13

92 0500 LBCC 13 CELA 13 HHRA 12

92 0700 LBCC 13 CELA 13 FULA 12

92 1000 LBCC 13 CELA 13

HHRA 45 FULA 45

92 1500 LBCC 13 CELA 13

92 2100 LBCC 13 CELA 13

93 0700 RIVA 12

93 1000 RIVA 45

A new particle path was initiated at the particles 1000 PST location but at a higher level

20

~(Ibull bull 11

41

~1~_11Lmiddot11~1~~tV t rt~~14_ II~~~h1 1r t

TABLE 3-lb Backward particle paths

End Time Destination End Date (PST) Site Level(s)

624 1500 CABA 23 EMTA 45 BURA 1234 HHRA 4 FULA 45

624 1800 RIVA 3

625 0500 CLAR 13 RIVR 13 HHRA 5 PADA 45 FULA 5

625 0700 CLAR 13 RIVR 13 FULA 5

625 1000 CLAR 13 RIVR 13

625 1500 CLAR 13 RIVR 13 CABA 23 EMTA 4 BURA 4 RIVA 45

625 1600 RIVA 45

625 2100 CLAR 13 RIVR 13

713 - 1000 EMTA 24

713 1500 CABA 23 EMTA 45 RIVA 24

713 1600 RIVA 24

714 0500 CLAR 13 RIVR 13

714 0700 CLAR 13 RIVR 13

714 1000 CLAR 13 RIVR 13 BUR 123

714 1500 CLAR 13 RIVR 13 CABA 23 EMTA 4 BURA 234 RIVA 2

714 1600 RIVA 2

Continued

21 nn1 Y1

TABLE 3-lb Continued

End Time Destination I End Date (PST) Site Level(s)

714 2100 CLAR 13 RIVR 13

715 0500 CLAR 13 RIVR 13

715 0700 CLAR 13 RIVR 13

715 1000 CLAR 13 RIVR 13

715 1500 CLAR 13 RIVR 13

715 2100 CLAR 13 RIVR 13

827 1000 CABA 2 EMTA 23 BURA 123

827 1500 CABA 2

828 0500 CLAR 13 RIVR 13

828 0700 CLAR 13( RIVR 13

828 1000 CLAR 13 RIVR 13

828 1500 CLAR 13 RIVR 13

828 2100 CLAR 13 RIVR 13

829 0500 CLAR 13 RIVR 13

829 0700 CLAR 13 RIVR 13

829 1000 CLAR 13 RIVR 13

829 1500 CLAR 13 RIVR 13

829 2100 CLAR 13 RIVR 13

92 1000 PADA 3

92 1100 PADA 3

92 1500 EMTA 2 RIVA 2

Continued

22

91061 07

I

1bullLI bullI I bull ~ii 1 1

1 cl1

[1i1bull~j~1 Iiii~ j t-~dI ~1 1ltl1111111 II r I l~bull~II~middot t1~i~n_11~~ ~middot -

TABLE 3-lb Concluded

End Time Destination End Date (PST) Site Level(s)

92 1600 RIVA 2

93 0500 CLAR 13 RIVR 13

93 0700 CLAR 13 RIVR 13

93 1000 CLAR 13 RIVR 13 CABA 2 BURA 1234

93 1500 CLAR 13 RIVR 13

93 2100 CLAR 13 RIVR 13

23 9106107

TABLE 3-2a Autumn particle paths forward particle paths

Start Time Origination Start Date (PST) Site Level(s)

1111 0300 LBCC 13 CELA 13

1111 0700 LBCC 13 CELA 13

1111 0900 FULA 12

1111 1200 LBCC 13 CELA 13

1111 1500 LBCC 13 CELA 13

1111 2100 LBCC 13 CELA 13

1112 0300 LBCC 13 CELA 13

1112 0700 LBCC 13 CELA 13 FULA 12

1112 1000 FULA 45

1112 1200 LBCC 13 CELA 13(

1112 1500 LBCC 13 CELA 13

1112 2100 LBCC 13 CELA 13

1113 0500 ONTA 123

1113 1000 ONTA 45

123 0300 LBCC 13 CELA 13

123 0700 LBCC 13 CELA 13 FULA 12

123 1000 FULA 45

123 1200 LBCC 13 CELA 13

123 1500 LBCC 13 CELA 13

123 2100 LBCC 13 CELA 13

1210 0300 LBCC 13 CELA 13

1210 0700 LBCC 13 CELA 13

Continued

24 9106108

TABLE 3-2a Concluded

Start Time Origination Start Date (PST) Site Level(s)

1210 1200 LBCC 13 CELA 13 FULA 123

1210 1500 LBCC 13 CELA 13

1210 2100 LBCC 13 CELA 13

1211 0500 ONTA 12

1211 0700 FULA 12

1211 1000 ONTA 45 FULA 45

A new particle path was initiated at the particles 1000 PST location but at a higher level

25 9106108

TABLE 3-2b Backward particle paths

End Time Destination End Date (PST) Site Level(s)

1111 1500 HHRA 34

1112 0300 LBCC 13 CELA 13 RIVR 13

1112 0700 LBCC 13 CELA 13 RIVR 13

1112 1200 LBCC 13 CELA 13 RIVR 13

1112 1500 LBCC 13 CELA 13 RIVR 13 HHRA 34 PADA 3 FULA 34

1112 2100 LBCC 13 CELA 13 RIVR 13

1113 0300 LBCC 13( CELA 13

RIVR 13

1113 0700 LBCC 13 CELA 13 RIVR 13

1113 ~ 1200 LBCC 13 CELA 13 RIVR 13 ONTA 34 EMTA 45

1113 1500 LBCC 13 CELA 13 RIVR 13

1113 2100 LBCC 13 CELA 13 RIVR 13

123 0300 LBCC 13 CELA 13 RIVR 13

123 0700 LBCC 13 CELA 13 RIVR 13

Continued

26 9106108

TABLE 3-2b Concluded

End Time Destination End Date (PSn Site Level(s)

123 1200 LBCC 13 CELA 13 RIVR 13

123 1500 LBCC 13 CELA 13 RIVR 13 PADA 3

123 2100 LBCC 13 CELA 13 RIVR 13

1211 0300 LBCC 13 CELA 13 RIVR 13

1211 0700 LBCC 13 CELA 13 RIVR 13

1211 1200 LBCC 13 CELA 13 RIVR 13

1211 1500 LBCC 13 CELA 13 RIVR 13 PADA 1234 BURA 123

11 13 2100 LBCC 13 CELA 13 RIVR 13

27 9106108

TABLE 3-3 Additional particle path initiation (destination) points

Site Identifier Location UTM Easting (km) UTM Northing (km)

BURA Burbank Airport 3749 37859

CABA Cable Airport 4370 37751

EMTA El Monte Airport 4047 37717

FULA Fullerton Airport 4091 37485

HHRA Hawthorne Airport 3768 37547

ONTA Ontario Airport 4435 37686

PADA PADDR Intersection 3810 37175

RIVA Riverside Airport 4584 37485

28

TABLE 3-4 Forward particle paths calculated for comparison with the SCAQS tracer data

Start Start Origination Date Time Site Levels

0300 LAGS 13 0600 13 0900 II 13 1200 II 13 1500 II 13

625

715 0500 VRNN 1

0800 VRNN 1

828 0600 LAGS 13 1000 II 13 1300 13 1500 13

93 0500 VRNN 1

0800 VRNN 1

1111 1600 LAGS 3 ESGS 3 VRNN 1

1900 LAGS 3 ESGS 3 VRNN 1

1112 0600 ESGS 3 VRNN 1

0900 ESGS 3 VRNN 1

1210 0600 LAGS 3 ESGS 3 VRNN 1

0900 LAGS 3 ESGS 3 VRNN 1

1600 VRNN 1

29

9106lrl09

TABLE 3-5 SCAQS tracer release sites

I_______________________

Site Identifier Location UTM Easting (km) UTM Northing (km)

ESGS El Segundo 3690 37536 LAGS Los Alamitos 3980 37370 VRNN VRNN 3874 37625

(

91061rl09

30

The particle paths were calculated for up to a three-day period In general forward particle paths were calculated through the end of the monitoring period or until the particle was advected out of the domain Backward particle paths were calculated through the beginning of the intensive monitoring period or until the particle left the domain

Selected plots of the forward and backward particle paths are given in Appendix C

SUMMER PARTICLE PATHS

Forward particle paths (levels 1 and 3) originating from Central Los Angeles (CELA) and Long Beach City College (LBCC) at 0700 PST on 24 June 13 and 14 July 27 and 28 August and 2 September are shown on pages C-1 through C-12

The surface-level particle paths originating at CELA indicate northward advection from this site on all days The particle path initiated on 27 August indicates that the initial northward advection is followed by westward advection on the following day the particle path initiated on 2 September indicates that the initial northward advection is followed by eastward advection on the following day In all cases the residence time in the central Los Angeles basin is less than 12 hours

The surface-level particle paths originating at LBCC are carried northward and eastward usually exiting the Los Angeles basin through Cajon Pass On 24 June and 14 July however the particles are carried across the San Gabriel Mountains (with the upslope flow) Considerable eastward transport is indicated by the particle paths initiated on 2 September after 1800 PST -Residence time in the Los Angeles basin varies from day to day and is especially long for the particle path initiated on 27 August (approximately 30 hours) Particle paths initiated on 13 July and 28 August also indicate some recirculation and a significant residence time within the Los Angeles basin

The level 3 particle paths also indicate northward transport from CELA on most days Advection into the San Fernando Valley which may be partly due to the SE flow produced by the turning of the sea breeze into the valley is more pronounced on certain days (14 July 28 August and 2 September) Level 3 particle paths originating at LBCC show mostly northwestward transport Recirculation over the Los Angeles basin is indicated for the 2 September particle path

Backward particle paths (levels 1 and 3) culminating at Claremont College (CLAR) and Riverside-Rubideaux (RIVR) at 1500 PST on 25 June 14 and 15 July 28 and 29 August and 2 September are shown on pages C-13 through C-24 -

_

9106lrl 02

31

The surface-level backward particle paths originate over water on all days the particles are carried eastward and northward into the Los Angeles basin On 14 July and 28 August the particle paths indicate primarily eastward transport There is some indication that particles arriving at the destination sites on 28 August may have originated in the South Central Coast Air Basin (SCCAB) On 25 June 15 July and 3 September the particle paths indicate primarily northeastward transport On 29 August northward transport is indicated

The level 3 backward particle paths also indicate transport from the W SW or SE on the intensive monitoring days The over-water segments of the particle paths indicate eastward advection on 14 and 15 July and 27 and 28 August and northward advection on 25 June and 3 September Again there is some indication that particles arriving at the destination sites on 28 August may have originated in the SCCAB Almost all of the particle paths indicate that the particles are carried onshore between Long Beach and Laguna Beach and advected northeastward to CLAR and RIVR An exception to this occurs on 28 August On this day the particles are carried onshore near Redondo Beach and are recirculated over the Los Angeles basin for approximately 24 hours before arriving at the destination sites

AUTUMN PARTICLE PATIIS

Forward particle paths (levels 1 and 3) originating at CELA and LBCC at 0700 PST on 11 and 12 November 3 and 10 December are presented on pages C-25 through C-32

The autumn particle paths exhibit more day-to-day variability than the summer particle paths indicating more variability in the autumn airflow patterns Because both the CELA and LBCC locations are affected by the land-breezesea breeze circulations all of the surface-level particle paths show some recirculation in the western basin Particle paths initiated on 11 and 12 November eventually indicate eastward transport

The level 3 particle paths also differ among episodes but are all affected by the seashybreeze circulation Particle paths initiated on 11 November show eastward transport from CELA and southward transport from LBCC Northeastward transport at this level is indicated by the 12 November particle paths The particle paths initiated on 3 December illustrate local recirculation by the sea breeze On 10 December southward advection is indicated

Backward particle paths culminating at CELA LBCC and RIVR at 1500 PST on 12 and 13 November 3 and 11 December are presented on pages C-33 through C-40

The surface-level particle paths indicate that particles arriving at CELA at 1500 PST on all four days follow a southward then eastward course Particles arriving at LBCC are affected by some combination of onshore advection and local recirculation The particle

9106Irl02

32

paths culminating at Riverside indicate a variety of possible transport patterns eastward transport on 12 and 13 November northwestward transport on 3 December and southeastward transport on 11 December

The level 3 backward particle paths for 12 November illustrate recirculation aloft by the evolving airflow patterns while the particle paths for 13 November indicate primarily eastward advection The particle paths for 3 December are clearly affected by the SE that occurs on this day the resulting particle paths indicate northwestward transport The particle paths for 11 December indicate southward advection and recirculation by the sea breeze

COMPARISON WITH TRACER DATA

Forward particle paths originating from El Segundo (ESGS) Los Alamitos (LAGS) and Vernon (VRNN) at times corresponding to the SCAQS tracer release times are shown on

middot pages C-41 through C-76 For ground-level tracer releases the particle paths were calculated using level 1 (10 m agl winds) for stack releases the particle paths were calculated using level 3 (300 m agl) winds A qualitative comparison with the observed tracer data is provided here

Surface-level particle paths originating at LAGS on 25 June indicate northward transport during the morning and afternoon hours The level-3 particle paths indicate that material is transported out of the basin through Cajon and Banning Passes by the upper-level winds Both of these indicated transport patterns are supported by observed tracer data

Surface-level particle paths originating at VRNN on 15 July indicate northward transport and exhibit good qualitative agreement with the tracer data

Both the surface-level and level-3 particle paths originating at LAGS on 28 August indicate primarily northeastward transport Most of the particles are eventually advected through Cajon Pass This is consistent with observed tracer at Redlands San Bernardino and Crestline

Surface-level particle paths originating at VRNN on the morning of 3 September do not agree with the tracer data While the particle paths indicate northeastward transport the tracer data indicate northwestward transport

Surface-level particle paths originating at VRNN on the afternoon of 11 November indicate westward transport and a long residence time in the central basin The level-3 particle paths originating at LAGS and ESGS show southeastward transport and recirculationmiddot by the sea breeze Surface-level particle paths originating at VRNN on the following morning again show net westward transport and a long residence time in the

( central basin but the level-3 particle paths indicate northward transport with recirculation

91061rl 02

33

by the sea breeze The smface-level particle paths are consistent with the tracer data Tracer was observed over the north-central basin and along the foothills on the morning of 13 November

The surface-level particle paths originating at VRNN on the morning of 10 December indicate relatively stagnant conditions with a weak sea breeze circulation Some net transport toward the south is indicated Particle paths originating at VRNN on the afternoon of IO December show little movement throughout the following day The long residence time in the basin is in qualitative agreement with the tracer data Tracer was observed in the basin on the following day The dispersion indicated by the widespread tracer concentrations however cannot be represented by a single particle path The level 3 particle paths originating at LAGS and ESGS on the morning of 10 December show southward transport and recirculation by the sea breeze

UNCERTAINTY ANALYSIS

A simple analysis was perlormed in an attempt to quantify the degree of uncertainty inherent in the particle paths The uncertainty analysis was similar to an analysis described by Moore et al (1989)

Three major forms of error in the particle path calculations can be identified The first two result from errors in the wind fields The most fundamental of these is measurement error as measurements can only be regarded as approximations of the true winds Regardless of the accuracy of interpolation techniques measurement error will always affect the final wind field The second type of error results from the interpolation of these measurements and the parameterizations and approximations in the diagnostic wind model This error will be greatest in data-sparse areas The third type of error results from the use of two-dimensional wind fields The two-dimensional particle paths do not incorporate the effects of vertical motion which may be a significant source of error considering the mesoscale regimes present in the study area

The particle path uncertainty in this analysis is the result of all sources of error and is therefore very difficult to estimate A lower bound 11 on the uncertainty was assumed to result from measurement error alone Here we use a lower bound uncertainty estimate to illustrate the effects of measurement error on the particle path calculations Several assumptions were made in order to estimate this uncertainty First average bias for all instruments was assumed to be very small Second instrument precision was assumed to be constant over the region Third measurement error (speed and directional error) was assumed to be normally distributed around zero The standard deviation about the mean was based on observational data

For this uncertainty analysis 20 particle paths were initiated from a single site at a single time For each 15-minute particle path segment u and v were calculated as described in

9106lrl 02

34

(

the previous section Small random wind components (representing the measurement error) were then added to the interpolated wind The smaller components were determined by randomly selecting wind speed and direction error from two separate normal probability density functions (PDF) To do this a uniform random number generator was used to find two error probabilities Ps and Pd between 0 and 1 An inverse normal PDF routine was then used to find the speed or direction error that results in error probability Ps or Pd respectively Commercial statistical software from Th1SL was used to generate uniform random and inverse normal PDF values 1

The PDFs possess means of zero and standard deviations equal to the root mean square error (RMSE) of the measurements For simplicity RMSE values for speed and direction were taken from those specified by Moore et al (1989) namely 02 mis and 10 degrees respectively Random error components were determined for each 15-minute segment of every particle path The resulting divergence in the particle paths represents a lower limit to the uncertainty inherent in the particle-path calculations

Plots illustrating the effect of the lower-bound uncertainty on the particle path calculations are given for one summer and one winter episode in figures 3-1 and 3-2 respectively The summer particle-path bundles (Figure 3-1) were initiated at CELA and LBCC at 0700 PST on 14 July The winter particle paths (Figure 3-2) were initiated at CELA and LBCC at 0700 PST on 12 November The bundles were calculated for levels 1 and 3 In general the bundles indicate that the airflow patterns do not vary abruptly in space or time The winter particle paths are less divergent that the summer particle paths

While plots of the particle path bundles qualitatively indicate the degree of lower-limit uncertainty a quantitative summary of the uncertainty can be obtained via hourly estimates of RMSE of all particle positions relative to that with zero error The RMSE can be obtained from

1 1 M 2 2

RMSE = - ~ dj[ lM ]=l

where

1

dj = [(xj - X1)2 + (yj -y1)2]2

and where Mis the number of particles and ()1 represents the position of the actual particle as calculated in the previous section (ie the zero error particle path) The RMSE is used to determine the growth over time of the confidence interval about the

1 IMSL is the registered trademark of the Scientific Problem-Solving Software System developed by IMSL Inc Houston Texas

91061rl02

35

NORTH

425 31570

SOUTH (a) CELA Level 1I

20

(KM)

NORTH

425 31570

SOUTH (b) LBCC Level 1I

20

(KM)

le-path bundles initiated at 0700 PST 14 July 1987FIGURE 3- composedd par tic le paths1 Forwar of 20 particBundles are

35

NORTH

425 3570

SOUTH

(c) CELA Level 3

NORTH

425 3870

SOUTH

(d) LBCC Level 3

FIGURE 3-l Concluded

37 9106]

70

IlFil

NORTH

CEIA Level 1(a)

3(170

1-Ul j

NORTH

425 3(170

SOUTH

(b) LBCC Level 1

Forward le-path bundles initiated at 0700 12 November 1987FIGURE 3-2 composed par tic le pathsbullBundles are of 20 partic

3391061

425 3870

SOUTH

(c) CELA Level 3

J8

3870425

SOUTH

(d) LBCC Level 3 10 2

(KM)

FIGURE 3-2 Concluded

91061 39

1 1c

i I

trajectory calculated using the DWM winds Hourly RMSE values are given for the particle paths bundles shown in Figures 3-1 and 3-2 in Tables 3-6 and 3-7 respectively For level 1 the average RMSE after 12 hours is 567 km for 14 July and 167 km for 12 November For level 3 the average RMSE after 12 hours is 416 for 14 July and 260 for 12 November

9106lrl 02

40

TABLE 3-6 Hourly RMSEs for particle-path bundles initiated at 0700 PST 14 July 1987

Time LBCC RMSE CELA RMSE (PST) (km) (km)

Surface Level

0700 000 000

0800 042 042

0900 057 069

1000 063 100

1100 093 128

1200 091 143

1300 111 168

1400 136 217

1500 229 227

1600 265 219

1700 394 219

1800 620 265

1900 796 338

Level 3

0700 000 000

0800 018 049

0900 064 090

1000 068 140

1100 087 172

1200 089 162

1300 123 180

1400 231 224

1500 337 258

1600 419 278

1700 427 306

1800 449 347

1900 462 370(

9106104 41

TABLE 3-7 Hourly RMS Es for particle-path bundles initiated at 0700 PST 12 November 1987

Time LBCC RMSE CELA RMSE (PST) (km) (km)

Surface Level

0700 000 000

0800 047 049

0900 078 065

1000 077 066

1100 089 086

1200 109 094

1300 089 092

1400 118 125

1500 100 138

1600 129 150

1700 147 160

1800 161 164

1900 156 176

Level 3

0700 000 000

0800 045 076

0900 061 120

1000 069 139

1100 092 171

1200 098 163

1300 096 156

1400 125 182

1500 150 175

1600 231 171

1700 261 152

1800 308 156

1900 345 175

91061 04 42

References

Douglas S G R C Kessler and E L Carr 1989 Users Guide to the UAM Wind Preprocessor System Systems Applications International San Rafael California (SYSAPP-89079)

England W G and L H Teuscher 1989 Perfluorocarbon Tracer Experiments During the Southern California Air Quality Study Air amp Waste Management Association For presentation at the 82nd Annual Meeting amp Exhibition Anaheim California (June 25-30 1989)

Horrell R S M Deem P Wyckoff F Shair and N Crawford 1989 Ground Release SF6 Tracer Experiments Used to Characterize Transport and Dispersion of Atmospheric Pollutants During the Southern California Air Quality Study of 1987 For presentation

( at the 82nd Annual Meeting amp Exhibition Anaheim California (June 25-30 1989)

Moore G E G Z Whitten J P Killus and R D Stevens 1989 Analysis of 1985 Air Quality and Air Chemistry Data Collected Under the South Central Coast Cooperative Aerometric Monitoring Program Systems Applications International San Rafael California (SYSAPP-89058)

Ross D G and I Smith 1986 Diagnostic Wind Field Modelling for Complex Terrain-Testing and Evaluation Centre for Applied Mathematical Modelling (CAMM Report No 586)

9106105

43

rr T rr

Appendix A

SCAQS WIND MONITORING SITES

(

9106103

-

((--_ 770

-

NORTH CM~RS 42 575

5 I I j I I 1---L 525 middot 1J75 I I I I I I I I I r I I _--- I C2~middot----_J ~ ~-- 1 ( ~ ~J25 I I I I I I I I I I I I l__ ) -475 () I Li 1~)51 (

--~ltJ820f-_ ~------ ---

~- -cli( ol --9-Sl-l

lt ( ~)

CQ p llE RiDO ~ llE ANAH

I middot LAS-L

bull~ LANC ( _ Q - _J ) ) - _ ~ - ---- - ~ _ ____ middot clt G~ _----~____-=-- -___ ~PR __ - ---- --- VCTC ltgt

-- ------ f---- __ - ---_ -middot ------ --___ --~-----TEME --- _ f

-)(j _ _ middot --middot -------- - HESP f ----=----==~~~ l ----~~ -- middot l - --- __ -middotlt- CJ _ --- middot PIRs[- lt NfVL_ ---~ - C~lt --lt _ ~ ~- __ (~~

__ --- bull _ i - f c-_ _ I - )~__) - ---~poundS---_-

3770 t-()

LA llE PICO )Ct444 -w 3 ~~~ZUMA MALI VE VEN llE llE middot Jl~C - ( p

NN WOOHS ~- ~ m - middot - o - I () )IE 55I

1-- (lt - - PERI ) ~ S__~llE

BU25 bull y _ L ~~5o 13720

I ----~- - 515 3670 525

(KM)

~---

SNI

20

SCAQS SURFACE WIND MONITORING SITES

19 JUNE 1987

0

qj n

If) N ~

I

1S13

Ishy)

0 Vl

(f) w I-V)

l)

z a 0 1---

z 0 2

0 z 3 a ~ I r---

0 CX)Wm Q_ shyQ_ ) w

z (f) )

0 7 lt( um Vl ---

0

A-2

-

r~

NORTH CM~RS

I -middot_( lt - middotmiddot -~ ---lt - - - middotbulll- ) middotmiddot-middot - - -c ) 0 0 l__SG- ___ J1 bull_ -- VCTlt I

_ --middot ---middot llSeR - - __ - --middot----- J~__-- middot - - - -middot bull bullbull- HESP ~-_-middot- bull- ~- _~ - -___---middot - ~ -_ ) ME --- -middot - bullmiddot bull -_

38201-_ ~~_ _ TE _ C-bull_- - CJ - ~Jj __ -_

1

1 bull I bull __ (]

SI bull bull=-middot _ -~ ~~ ~_-__ middot _J lt(- j SIMI -M~S -~_-~It_ - - 1Ir- I w _ I B~~ AZ~~~1 AL SNBOC ~ (ELRO l~ Hf~~ ideg_=- --

)1__ CE~ wftcentrHIN RIVRM44 --- ~--- ---~ LA PICO __pound bull P

T ~NN WI-V C) D 2J~55I Wco - middot PERI Lv

R~O ~L ~AN~ TO~~~~ ~ ~ ~-MO

62

~ ~j~l)~gto ay 3670( 525

SCAQS SURFACE WIND MONITORING SITES 24-25 JUNE 1987

~ (

NORTH 275 325 375 425 475 OA~5 575

f_~ CJ ~ -middot--

_middot

middot1 Imiddot

)i

gt--o~0 (~_)r-) _ (~~3s20

--~- middot qlt ( ____ - ---- - lt__ ~ ~ -i~ J ) _ - - -

-~ -__ J V 38201-~--o- lt-

-----~~middot ---- __ - ~---- -_--- ~====- -=_---~ ~ _

~ -- middotbull ~gt ----_ _______ ) ~~~ l -- - - i - --- l

( _ (_-~ _-lt~~ - )

2middot1=~ (~gt lt_) -~~~~~(_~tJt-~~~~t~~~~-~) ~

uR--- -----Qi~ ~ 3770_ 3770 -middotmiddot--rmiddot- -7 ~ 1-

(J) llE ONT _ -middot __ w

Y-_ EMU c __- ~ Ul lt(1 w~

- -- - LMIIEUA sFtA ~

1

----_

~

_

t_~~ -bull _ middotgtI __

~- 0 ~~QgtJn~-~ ~II~

~ f-- -) -) ) ~ ~-

j (_1_j ~~TRM 3720 ( (__ -CcS l l 3720

~- ) -~ --7( ) __~---L_ ~~1-----~D~

1 ~) a --- ~middot 7 rt 0- NSI (

3670 I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I 1 I I I I I f I I I 1 I I I I I I I I I I I I I 36 70 275 325 375 425 475 525 575

SOUTH

I I I I I I 0 10 20 30 4-0 50

(KM)

SCAQS UPPER-AIR WIND MONITORING SITES

24-25 JUNE 1987

--=-

NORTH 25 575

CM6QRS C__j 475 -____

3 ---- 375 425I - L ---) - ~-

SNI

-_-~)---_ lt-____ ___3azor_~c~~ sl

VENt ELRO

BU25

275 ~ c--) ~LANC ~~-_ lt ~ 0 9-~

llE

3670

----~ - J Q ____ ~- lt) ~ 3820____ -- middot--- 0~__~- __ J S --- ---~- ---- -- -- v~ ~ ~ ===-~ - - - - ---- - - ---- - -- -middotv ------------ -~ l f----- _ -- -middot _ - --- __ HESP ~-----=- c~i - - _- --- - - gt - -bull TEME -- -middot - bull ----- -- - _ middot ( lt~ clt=~ ~i cJ~ c _

~I -~~le lt~NJWl--------~- -iHitgt~-=__~~ _I -~ J~~~ ~ 3770 r-1 - - -- -- - ltJ c__ ---middot ~ ( - ------ -c_ - - -~~~ ~ ()-~ ~ - -middotMiss ---~---=-~----r~-__ -middot _frac12 __ i5

j S ~R~~HE -7t$ llE llE ftALSNBO llE ~~ t __ -R~ B~~SA AZ~jl~r RD ~~_ ~ 1( )l___ llE CE~HAllE ~~ - RIVRM44 - llE ------___llE W~HIN -Jti )Ii ----------- __

~--- LA llE PICO l llE C -- r p

ZU VE NN Wt-laquoJHB 0 1~55WT IN - ---- ) llE CO P llE llE ( gt (____ PERI ~

IJl

~ 71t~P325 425

SOUTH

I I I I I I 0 1 0 20 30 40 50

(KM)

SCAQS SURFACE WIND MONITORING SITES 13-15 JULY 1987

clt(middotO -i ~Ill ~

()VL~t

~~) o2~ r

275

-- _~middot middotc-- ( ~ I - ___ ) --____ ~~~

---- ---bull-~ ( lt ) lt I ~ (J () - _ ~ ~ J ) bull middot ( - ~ ~- - --- middot - ~ - middot middot G--~_J lt)

cce- middot- __ V ___ -- l - _- bull middotbull - - _~---~ 3820r----=-~_~Jrlt - - - middot f ~l-~--~--~] I c___ -~c ~ -- ( _ 1middot--- 1___ _~

-I -- = lt -bull lt middotmiddotltmiddot~- middot - middot -L-

- ~-- middotbull ---_- --- J middot J ) ) -- bull- ~-bull _ --middotbullbull- middot middot _ j -- -)) 3770 -ii __gtc _ -- - - middot bull ltmiddot ~- I - _ltbull - -_j-- tn

BURbull-- - middot - - - ) ~~middotj- (~~ ) (middotIi lt(

GL U I ~ - - - w ---~ - -1 __ - ---------= ------___________--- ONT middot middot __ - --_ -

poundMUI - - ~ ____ middot----~~i -__ ~ I

--

--- ~ c) )_

deg ~

_- - (

_l

_ ~ )

C-

~ _middot

( T( f 1-

525

t j 30 50

(KM)

SCAQS UPPER-AIR WIND MONITORING SITES 13-15 JULY 1987

_==--

J ANORTH CM6sectARS

3s201-

~- ~ ~ ~ ~0A - --__ - -----~ ---~- --1(j - A ) __gt ---------_

-~~J TEMEa l_C ~r1

0

820

_--C~ = ~~~ltCH~~ J ~ S~I ----i4~58 ( J

tigt-1

-J 3 BU25

frac14~) 8 F1(5

- HA

APICO RN A A ~ N WVHB

AANAH

~IHIN J _CM44 ~-

A

CY PERI N ~ iJN

D A

HEM

770 ~ V1 lt( w

~ 3670

SCAQS SURFACE WIND MONITORING SITES 27-29 AUGUST 1987

) w l-1

C)

z-a 0 1-

z 0 ~

0 z - r---3 co a Ci)

- -ltI lshy

a )w ) Cl 0 Cl ) ) lt(

V) Ci)

0N ltI u r--- () N

A-8

NORTH CM~RS bull r (_J~

1

325 - - l L=~-) ( bull

1275 _ ( ~ --- -middotbull LANC 1 _ bull I( f LJ- ~ () ~-- 3820 bull- - J bull

- --__ _ -- )- bull bull - middotbull-~- _ I v----_J -- J middot-- - middot- - -middot I I J_______ ---==-------------- WSfgtR - -- VC _____- ltgt

-~--~-- fJ- -middot - - - --- --- _ - ----- --- ----- ) r bull---_ --- - - -- bull p -- --__-----_ - -----

38201-_ -------~- TEME --- --- - - bull -- middot- bull --- _----~ -~ II middot ) - ---- -- -- _ -- HES f I-----=-- ~ ------- ~ l _ -- - I

- bull middotbull-bullbull~ ll( middot bull - middotbullbull - 1 I ~----- middot-bull

9 -- ___ __ _ -------- _=- r _ -- )J -~~ ~~~ 3770 t--SJMImiddot MISS~~~--bull ~--~-- ll( -_ ~-VENt Cllfl58 bull I middot- - middot- - --JOE ~--bull bull ~ V)

ELRo __J 4Esc euRK ~Ej1 fAL sNeo I ~ _ J middotmiddot -~~ 1 i5 l - ~SA ___ I ROLD ~ ~ C~ ( _____~- -~ llE CE~ llE W~(HIN RIVRlK -- - 1 llE __~

3770 middot- ~LA VEN Pl llE _ _- JJ~C _CM44 - ~ p ---__-_

0 ANAC cubull~ - - v~wr LyenNN WHJHB --- -- Q~~W)( ___

- llE HA ~ -lE _ -- _ - -_

I 0

SAi middot-middot J) t450

3720 LA r TO~omiddotlt~lt~~ -~ ~ (~~

~ ~ r-~~~1~ o ~~l~

SNI 1 (l_ amp-~ 575 3670367g75 325 375 425 475 525

SOUTH

I I I I 0 10 20 50

(KM)

SCAOS SURFACE WIND MONITORING SITES 02-03 SEPTEMBER 1987

------J ------------------ ) I-- 38201--__--~~- i) ___

_-- ~--gt--

-__

_

NORTH 275 325 375 425 475 525 575

YI ~middotCJ~bull_bullrmiddot--- lt I __ (_______~ ~ - - I -- J ( - - - - - - - J i O l__ ______________ -~

~j ( lt- bull- ~ 0 C) ~ -- (-- _)) ) ----_--__ -- middot-- _ - --J ) J ---- - ------- ----- middot----- -( ~---_j

3820----==--=-- ( - -middot bull __ - ---~----= --- ---- -- -- ------------ _______ ltJ~~ A I --- - ---- - -_ - _ --_--~-- -_ - --~co___--_--___-__----- f middot l - --- - --- - __- ---_-- -- ~ middot -middot __ J L--~ cmiddot

---- -- middot--~-- -- -- - _ _-- - - ~

--- - middot- - -C-_--- - -~ rmiddot middot) _- ~middot~ I--- ----~deg- -- -- C _-_--_- __ __ _ ___ _--_--~ __---- ~---lt lt ltgt _~-__gt_ ~~-- i~ - UR ---- -------- - ----~ --lt I middot- B ~----- Qll __ ~----- _ CI____ ~ __ --- ---middotir ~ - 3770

1-I- 3770 () U)( - -- -- 0~ - j _j ______- ==--=--_ --___ - ---w lt(

w~

~gt middot1 r-

0

3720 3720

middotmiddotmiddot J ~ ) ~l - ~ ~

~ tmiddot~----_7~~ p__ D2)t~~

NSI I(--_ Imiddot- 3670 3670

275 325 375 425 475 525 575

SOUTH

I I I I I I O 1 0 20 JO 40 50

(KM)

SCAQS UPPER-AIR WIND MONITORING SITES

02-03 SEPTEMBER 1987

~ I

t

NORTH CM61yenRS

----- I uic middot I Ibull 0 z_ ~ p

-_- - - - _ - middot-~-_ ------- VCRV

820 --- -- -- I W-gtER --- _ ---- --- ~ ) - -_ - I _ _ - _ --- _ _ _ -_ bull _____ _ _ - -- -- -- _ --_ ----~ HESP 3 -- ME -- -middot bull - --- _ -- _ TE - -- __ _-- - c----~middot - r

PIRlb -_1 N bull--~ _ --lt~_- - _ _ ---------- - -MISS_ _--- ___ bull---=-- _llE ~ ~ j lt) hlt---- F-~~--_ ----1A-_c=_--middot llE ----_ ()

-middot SIM ~ICAN llE RIALSNBO llE ~J -------~~ tllE ------TmiddotllE~I ~ES BURR~ AZ~ ~-~r- RD ____-- -- ~ bull FIIISA l- bull -~~

( )l__ -middot middot c(~HA w~~N ~tfJ1 -- -- ~ ~ 1

_

375

~) middot middot ---lt -__ lt_ ___ ___ -i____) C-middotdeg - - -

- -- J_ _) lllt

_ =- ) - -

L- ~~- Iii - ~ _________

-~ 0 I -- (

SI lllt

E

NT CM58V

( j gtT__~_____)___ -- ~l- ) (

middotmiddot-- -_ bull _ ~- () ~

I --J vlt__ ltgt

--- --------- ~---------- C -

_

~(__ f - -- ~---middot)1 ~

t ~ I

I- I- ~

3720

ANAC Wo~ middot -~- lt_)

44

PERI ) ~ tlo

25 R~ ~~ANAH _i~~MN ~~-w--- ~ _ 00 )

T middot I BUllE I -eM62 7 llE

-- - ~

~ 425

SOUTH

20

(KM)

SCAQS SURFACE WIND MONITORING SITES 11 -13 NOVEMBER 1987

(_ (___JCcS ~~)

bull ------------~ - - ( ~ r-------------- Dbull ---

J

575 3670

1SV3 0 0 0 0 N r-- N r-- a) r-- r-- co I I) I) I)

I bull bull I I

I I f1 1 ~~ I- I I-)

0 l)

l)

w I-l)

L)

z Ct 0 I-

z 0 2

0 r-- z OJ

m3 Ct a lt( w0

l() mI Ct 2

~ ww Q_ gt

0 - Q_ 0 I) 2 ) z ~ ___0

N (I) n a

0 lt(- u ()

0

n 0 z I)

N +

lf) r-- I)

- I I I

i I

I 0

~ -L

w

i

~ LL

I)

C-1

+

l() r-- I)

1S3M

A-12

-~

igt I _

l)

CM~RS 275 325 375

NORTH 425 475 525 575

_J- I bullbullbullbullbullbull ~ I bullbullbullbullbullbullbull bull I middot bull -gt-----middot bullbullbull 3 )--- ____j lt c----- -_ -- gt _ ___ ----- t__ l___

-- ------- LANC l ~ ---------- __ ) -- __ ~ I ) ~ - -=~__ I -~middotmiddot- - bull middot bull bull bull lt lt Cl --- ------ ____ -~ -

38201-- ------_- ) ) -- _ ---- -- -- -- - () - --------- I --- -~-lt~~ (middot__ TEME ) --gt ~_ ----- - middot--- --- vamp c~ (~ 0~ ___- --- gtIpound - - - - ---- -- - - -- _ - - ~ ---- - - - ------------- 5SI -middot PIRltgt ----~ ( -middot _ - -- --- - --- ) HESP --------~ ltgt

___ __bull_rbull ~--------~-___ -- ___ ----gt--=- bull~ ~~ I - ---__-=---- ----

VENt CM58 _ sti --~~ ~ lt_ -~-- middot_~-~~ r-~- --middot) ~~) _J MISS-~~-- ___-_ __)~ -- ---( C

- --RESpound BUR~--==-=~----r~---_-__- ~- - ~ _- ~ -1 -

3770 I- ANAC

J I )l( ~- ~-- - i middot ----middot -X--Ret-----_~ -~

___ ( - -middot ~SA AZ~ ~ o j -------=--------~--gt~-- dampHA ~~~f __ SNBO ~~ -~

ZUMA MALI LA w~M -jmiddot I R~J ~-s ~__ )() w ~

3720

8U25

VE VERN PICO _ middotyHIN RIVRyen ( ~----- -~ CM44 -~ ~- ----- ~ C WT ~NN Wt-0HB -NQRC - middot- ~NN-a-~~ _ ~ co~ __ -- ( ~ ~

RVIJO ~ilff AN~ gt cmiddotbull yen 0 (~~ p LASAl I bull- - PERI ~ ) ~

rJ]~~_Y)~N ) (_ --

_T -cJ62~-~

~ 5j(bull 1) ~Jso

l -~

- 1 J) -~ ~7~~t~~

3820

3770 1-() lt( w

3720

I I I I I I I I I I I I I I I I I I I I I I367r I 367075

I 325 375 425 475 525 575

SOUTH

I 0

I 10

I 20

I 30

I 40

I 50

(KM)

SCAQS SURFACE WIND MONITORING SITES

03 DECEMBER 1987

NORTH 275 325 375 425 475 525 575

I I ) gt ~ _YC) ~ ~ I ( o c_ _------- (

___ middot i I 97 ~___ _ --1 cbull-- - - C -___J -- lt ( ) - - - - middotmiddot ~ l _ ----_J

I ---middot ___ __ middotmiddot-_ 1 -~ __J ) bull- middotbull_ -

3820 ------~- I -~middot --- _ middot--- -------~

C - ~ (___ _ 1 ) -- _ - - - gt _ bull f-_- --- r ------~__ -----I --- ) I ~ -~ gt ----- - --- -- ~-_]) c_middotI 38201-_~~_ l _ --- - (-- ~ f ~ I~_ - middot - middot -middotgt- -- -_ -- middot_ _- 1 L- l _- -

~----- l -- middot middot ~- middot-_ _- - middot middotmiddot--gt---~--t~~)-1 bull lt_ _ _ bull middot bull - middot- ~ ~0---~ (c ~ I ~

_ I - bull -~~~--gt~~~-~~ bullS- _~_ l ~~1t~~_~(~ t 3770 I -- -- middot __ - I S____ ( 3770

I- 1-() ()

gt w - I __~sect~- ---ONT lt(

w

tgt

f-- I

~

middot - middotI

-

L~i--

37203720 c_J - (_cS) l -~~

NSI

367~~51 3~5 13~51 14~5 I I I 14~51 is~s s~s 3670

SOUTH

I I I I I I 0 10 20 30 40 50

(KM)

fJ~

SCAOS UPPER-AIR WIND MONITORING SITES I 03 DECEMBER 1987 r~J

NORTH CM~RS 275 325 375 425 475 525 575

middot middot ___ I middot 1 I )l ___ QO --middot - v_ (-- - LANC middot ~ C) lt --bull_ I -- -- bull _ ~ - ~-- ) -------_ -- - _~-- V --I 1 J --- - bull I -J- ---middot - _ bull__ - vc i --- ltl

3820~-----=cc~ I middot -middot - middot - _ ___ -- - 1t ~~------- middot - ___) - - middot -

J-cgzot-- ~--- j 0 TEME _middot ---- --- -

-____ -- ---- _- j (

- -_ I -- --~ _JI( ---- bull bull-- llf -middotmiddot l - -- bull _middot_ middot I --- -- middot CM58

_- 1 -- middot - middot~-~ - -~__ ___ ---~-~_--__~----------D J-~J~bull A HESP

middot OJ11 r P1R1tc lt--~i_-_~-~- ~c~_r--~-~_--_~r-=-~~~~--~ _ --~ --lt__~~~~- CSI ~ -~ --- ---- middotmiddot - ---- - _ ~ r ) J

)gt SIMI -MIS5-X ~Cgt~---- middot-cemiddot middot ____~ ~ middot~ l~fu__ suRlfiI_middot- -tk~- flAf SNBO __ middot ~-~ l 3770 _ 377ob -- ~ PJIISA AZ ~JIily~ _- RDL ___ bull ( C t-shy-- -~ I ----- ~HA 71lt V)tn ANAC ~---- CE~ WALflHIN RIVR ----- ~ w

w ~ LA PICO - CM44 - T -~ ~ ZUMA MALI VEN middotbull _ -bulltRc __ ~ ~lt~~7-

N WuHB _~-- -middot bull ) _J~N ~ -- ~ 0 - ) ~ I ltgt -_middot PERI bull I- ( _

V 8U25~ 3720 3720

WJlt~ ( ~ ~ ) 1 i

~ I I I I I I I I I I I I I I I I I I I I I367r I bull I I 3670

75 325 375 425 475 525 575 SOUTH

I I I I I I 0 10 20 30 40 50

(KM)

-~ ~

SCAQS SURFACE WIND MONITORING SITES 10-11 DECEMBER 1987

NORTH 325 375 425 475 525 575275

-- ----_ lt_~- c--- - ~ ~ _ I I - ---~~c------ ) _ -middot - gt~-

3a2or ------__ lt- ) 1 middot--- -- __ - ~bull =-------------- - r---_ ___ - bull- ---- I I ~ ~-- jc- I bull - - (bull I --- middot middotmiddot - ~ -middot - -- ~ - 3820 -~- bull - middot - - ~-_ ~- _ middot- n

(

- 0 lt_( ~_lt- ~-~~- middotmiddot) ---- ()_ (---- --

--

____ middot

-middot

I

f----- (-J 1r---J~ --~ - middotlt ltbullI I ~__---__ ~-

l B~--- _c_ gt-- lt gt- (- - - j 1--_~--~--l~ -- -- --- )l

-- - --~---- middotc middot=-~-~- (~ L ----- -- --middot - -- - - -bull --- - - c-) ~ J _ -- - ---- - ) ) ltl

37703770 EMLgt middotorrmiddotbull __ ) ~~~~ofmiddot - -- __s=__I- - - ~__- ( ~ __ )---__ Ishy

V) ~ ~- lt(w ~ ---- --~ - w if)

-~2_~middot) ~~at~s t I

I-

deg

FUUA

i () ~--J)llC~lt I

3720 3720

~ltl__ (_)i~

~ NSI

367~~51 I I I I I I I 13~51 I I I I I I I 13~51 I I I I I I I 14~51 I I I I I I 14~51 I I I I I I r--- I5~51 1 I T I I I I I 5~51 I I I I 36 70

SOUTH

I I I I I I 0 1 0 20 30 40 50

(KM)

SCAQS UPPER-AIR WIND MONITORING SITES

10-11 DECEMBER 1987

Appendix B

SCAQS DIAGNOSTIC WIND ANALYSES (Six-hourly plots Levels 1 3 and S)

Summer Intensive Monitoring Periods

19 June 1987 24-25 June 1987 13-15 July 1987 27-29 August 1987 2-3 September 1987

Autumn Intensive Monitoring Periods

11-13 November 1987 3 December 1987 10-11 December 1987

Page

B-1 B-13 B-37 B-73 B-109

B-133 B-169 B-181

9106103

Summer Intensive Monitoring Periods

9106103

19 June 1987

9106103

1bullbull-lil

1SV3

I I lshy Ishyo )

0 0 z ()

IO N IO

I()

N -st-

1S3M

-- l1

l~ i --

0 z 3

---

2 0

_J w cjr----_J CD

0 l() z

I- =)lt( 7

f) 0)

0 -- i n 2 Ishy7

0 ~ ()N ____ gt a 0 20

3o 0 ~

0

B-1

1Sv3

( I l-et 0 z

(

lf) N st-

l() N ~

l()

N 0 t--

n

0 N_ n

U)

ON r-shy(0

n

1S3M

B-2

_

2 0 0 tlt)-__

tlt)

_j w 2jr-_j CX)

0 lf) I- z

lt( ~ IJ1 0)

0 _ 0 n 2 z 1-0 ~ N - 3 ~ 0 20

3o 0 Ov

-----

lSVJ

l)

----

l~3 O 0 w

w ll) (1

l)

0 0 z 3

I lshyet 0 z

--

2 0 0 0

-

LO

w ~

GJ r----~

u 0 z

OJ

I- gt lt( J

mif)

00 ---shyI) 2 z I-0 i l) N -- 3 (1

0 2 0 3 0 0 ~ 0

lSJM

B-3

1SV3

- V1 --

~5 O 0

E - w

w Ul_ 0

V1 0 0

z ~

I I lshy I-et =gt0 0Z V1

-

2 0

J wr--CJ OJ J z0

Ul I- =gt lt( ~ V1 -

0 - n 2 0 z 1-() 0 ~ N __ 3 0

0 2038 0

0

U)

l

lO N v

0 N agt n

0

r--n

0 N

0 N r-shyn

U)

U)

U) N U)

Ul

q--

Ill N q--

1S3M

B-4

td I

J1

~ ~~~~~ ~ -~~~~~ J - -~--Qf~J ~lf~ ~---~ ttt~~~~H~f~ ~ ~~lt~~~0 ~ - ltl-_t I~~~~~~-~~~~~ ~~ I _~1c j_~ L ~ (__1-T11__1 ~_-~_ ---~~~~~~ 11 - ~ +f--1~- ~-+--41-- 1-~- ~ ~ -rtt1-~--~~~~~~~ ~ ~ ~ ~ l t I J JI JI~- t _I i~~I~~~~~~

377itttttttt ~- - t I Jf --------_-- _ 70 ~ ttttttttttttti- fllJ~JI-~~_- ~~ _ =- ~~~- tn w - t t I I I_~- -V _ ~ -laquo___ _ - ltC 3 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ t t t t t I I I I JI~ JI JI ~~ I--~- ~ ~~~~~ w

H~HHHH~in+~l~Hnf5-I ~ ~~~~~~~~ ~ ~ ~ lliii it t I~t~ltt~rrrr~~~~ jl++it~~~t~

20-~~~~~~~~~J tttttttf ~~~~~~~~~~---~-~~~~~~~~~~~~~-amp~ ~ t t t t t t f f f I I I I ~ 1 J(-- _ --P ---~~~~~~~~ ~ ~ ~ ~ ~ ~ ~ ~ t t t t t t t t f f I I I I I ~ ~- j~J _ ~ ~ z~ ~ ~ ~ z l I+ nm~t ~ ~ ~ I I~Jt~-~- -~-__~~~ tr ti ~ ~ t t I t f f I I I I I I I - ~-r __ - ~~~~~~~ ~~~~ ~z11 ttt ffflllllIIII -~~---~~~~~~~~~~~ ~~~~ ~~ ttttft ttflltllllllll A~--~~~~~~~~ ~ ~ ~ ~ ~ ~ ~ t t t t t t t t t t t f I I I I I I I I I I I I I ---P~- ttttttttttttlllllllllllI -~--L~-~~~~~~~~~middot

367 70 ~75 325 375 425 475 525 575

SOUTH

1111111111111111I I I I I I 0 10 20 30 40 50 0 5 10 15

(KM) WIND SPEED (MS) i

NORTH 425 575

_ 414111fl-~bull __~) ff I -lt~i ~ + lJ Jmiddot-bull A fl t1 it bull- _I~--~---~----_---~_~~~~~~~11 t1

~~t 11 f + + diamsJ diams 1 )--t-_+ J~ I-(_ 1 1 ~t1 __

__ Lt l l t fL f_l - - +~~----~~---~___-+_~~~ J-t-t t---t-lt t t-t) LJ lt fl ~ -- t---f t tT~-- ~~ 1__t -t ti t_1 + l - -~-~-~-II~-- - ~~~-----~----t----~~~~~~_Efftt -- r1 ~J t l Lt t

fl

~ _ t_ - 11 _ _

Fi ru bulll=ti~ ~ ~ ~ ~1H1~~_~-~-~----~~~~~~~~~~

DWM WINOS AT LEVEL 3 (300M) 1000 PST 19JUN87

1Sv3

I I-shyCt 0 z

1S3M

B-6

0 II)

0 I)

-_2

0 ~ N -

0

0

-_

2 0 0 0 -

LO

_J

w r---CJ O) _J z I- gt ~~ if)

0 1--shyz V) ~ Q_

20 3 g0

NORTH 525 575

~~~__A -~___~~-

F- ~_--P~

~ ff~~-- - _ middot- ~~

_ bull bull bull bull bull

_ p

~L~k~tt ~ 1 t A middot1-t

~ r~ 1 11 1 __ bull bull --l t frac12Q2_

~ ~--r-J-+7L~

1--Ui

3770 _yen~AA- ---~ ~__~_ ~ K---r

eno tshylf)

w ~ ~ ~ lt( 3 I I_

- w

td I

-J

~~~~- ~ ~ ~~~ shy ~ ~ - shy

3720

~ ~~~ -~1~-nu~~~~-

~ -~ - ~_____A~~1~ ~ _~ ~~= ~~~_______2--- ~

720

~~~-~~~~~_ 9~tbullmiddot~qor~frac12

Y~poundpoundpoundpoundpoundpoundL1~~~~r~ ~ middot

375 425 475 525 575

SOUTH

I I I I I I 11 1111 1111 1 0 10 20 30 4-0 50 0 5 10 15

(KM) WIND SPEED (MS)

DWM WINDS AT LEVEL 1 ( 1 OM) 1600 PST 19JUN87

~

NORTH

Arlt~~~ ~L _ -rJ ll

_ I I I t

_t-z~~J ~i~ bull

i- ~~~ Ii ~~( trn

3770 I - bull bull bull bull bull bull bull iigtlaquo

--- bull bull bull _-

~fJ~ t-l-lltf[llJ- jf1 rr]I ~ ~~~ ~ss~810Ja2ot-~~1i lmiddot - 1 17- - -

-ltL

~ ~ 70 y ____~ tshy

l) ) _-y ____~w

w ~

~ -~--- - -- ~ 1 ~~~~ __ _ bull---bull laquo-___~ Y~~

___p~~__---A~_A 1 ~~td I ~----______A 14 1 ~

00 _-________________ ~ __~----~1~ -A________________--r__~~~ ~ ~ ~~~--~-~~~~-~---e--~ ____________~_________-~ h

3 7 20 t-_--~____- ~ _ _ ~~-_- _ _ _ _ ~___~~~r--~~___-K ~~ ~ -~-------~~~----~ ~ ~~__________~~~~~~~______-r_-A~-1--~~~ ~__________________----r~__~__~-Y~~-------__---A----r~ 1 ~ ~__~___________~ ~

367 tcrr~__~y--rrYlt-trltltltltltlaquo-ltltltltltlaquoltlt~~~ ---

9imiddot~75 325 375 -- -

1111 1111 11111 1 1 1

0 10 20 30 40 50 0 5 10 15 I I I I I I

(KM) WIND SPEED (MS)

DWM WINDS AT LEVEL 3 (300M)

1600 PST 19JUN87

NORTH

bl I

0

~________________A-4_gt~~~_____~~__________~A

A~altP_ ~~~_________--~_A 38 20 I--=-~~_~~___~~-_-~~_ -lt~ - ~_-~_A--1~ _

~~------ ~ gt-~ ti ~----~ ~ _~~~~ 0 ~ ~-i---~~411___ I~-~~ I~A-~~----~7A7~-

A A~---~~- ---~ ~ ~ -middot~~ 1-27 ~shyA_~ ~~~ Jl--__r-t~ ~ (K~_ - fl_

A ~I J111 I _ A - ~ _ T-~ v I 1 1 1 1 1 1 ~ 1 1 _ Ji J I~ f --_i__middot1(- ~ ~)( ~JJXZ - _ r ~ - _ )( _ II I 1 ~ 1 I - _~ _)~ ~~

= 1 II II 1 (~ ~--=-~ -7fJ~~~~tm~i I- 3770 Jir - I 11 I 71 (I) ~ ~111 ~

w ~--middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotbullbull bullbull ~~~11Zll~~11~ ~ ~~_~~~llllN~~ -~~ bull 11jh fi 1 1 II 1 1 1 1 1 1 1 1 1 1 1 1 1 I I 1 0i~~~ 1gtcJ~l~p~ ~~~ ~~~ ~rr1111

70 Ishy() lt( w

111111~~ 3720 i- 1 1 ~ ~

~1~I A-A~)I 1111AA _~l11~ 1

lllllll11IIIAII- ~II ~1~~__~~Ill~~~~~ l1_ 1~~~~~~lll~~~~1 llllflfAll-)lllllllll1~~~~~

A I I I I I 1 I I I I 3670

275 325 375 425 575

SOUTH

I I I I I I 1111111111111111 0 1 0 20 30 40 50 0 5 10 15

(KM) WIND SPEED (MS)

DWM WINDS AT LEVEL 5 ( 1 OOOM) 1600 PST 19JUN87

~

A A A

1Sv3

(

1S3M

B-10

()

l ~

---u) 2 __ O 0 ~ w

w It) Q_

()

0 0 z 3

0 It)

~

0 ---I) 2 ~0N _

0

0

---2 0 __

_J

w r--- GJ OJ _J z __ )

~~ () r-

0 __ z ()3 Q_

~o 3~ ON

NORTH

middot-~~) K~xJ~ middot_1~ ~ 71( I IJ ~JI

~A I 1 ~~

liii[i~~ Hf~-~~~=~T-- ----- --=~~g~g~bull11ft _ ~~~ -1-x~~~ ~~~~-~~~--~-~---~ --~ t ~t~ -~1~~ -- ----

-lt J 1middot~~ __---~__

3 770 ~ ~~ --_tn ---------~~ 1 ~____~ _ ___~ -w bull Y ___~~~ (Al _~ _ ~

-- bull _ _ _ bull bull bull bull~___1 1I J~ _~

~- YI J _L ~~ ~~ YJll~E~

td _____-___ ____ __ 1 ~xgtx2-I ____________~__-A (~~~~ _______~~2-1 y~~- ___~__________~ ~

3 7 20 I-___~~__~~ Y --~ ~__ I _ - - _

~_---A~ ~---__~~~~~--_____~ ~ ~_____A~ y ~ ~___-__________~~ ~ -

~__-_______-yen_2 ~ ~ ~~_______~ ~

1 367~ 75 325 375 425

SOUTH

1111 1111 1111I I I I I I 1 1 1 0 10 20 30 40 50 0 5 10 15

(KM) WIND SPEED (MS)

DWM WINDS AT LEVEL 3 (300M)

2200 PST 19JUN87

~-

~ - - ---

NORTH 275

___ -~-___

- ~ I o_ ltAbull~-P- bull bull -P diams bull~--~~~~--- --- ~ ~ ti ~ ~sbull3820 ~=-J~_~~middotmiddotmiddot~~~--_~_=- =~_~c s~ ~3~

~~- bullbull~~bull~~~~~~ - bull -~~bull ~ v i-_ --- __-_ ~----~

~- st-~~1 17-~__4 ~ _~ ~-~-raquo~~~ -f _ _ bull bull bull bull~ bull bull-__-v 4 t ~ ~v ~- Jl_~ ~--z~~=~s~~~~Mil

-- _ ~ frac12--~~- -=~~ ~~l~1~l~tzi9~J t~ 1 1 1 1 1 1 ~-bull ~~___- v q (If V pp p I l_77rtfl _

3770 ~ ~ ---- I h1yenzi 1V-r-() bull bull ~ ~~~~~ w ~ bull ~ _ I JI J(_ )-II101-1 3 ~~A~~~XI IIJ~~~

~ f A I~ I I I I~--L -

tl ~1111111 ~K11~~llll~i~~~~I ~rr ~~ ~xgt~~~t---

N ~I I II)(01~ ~ ~ ~~~ 1~Y~lt~~~~~~~~ ~~~~

3720 iYY11Alllll1lIA~~~~ ~~---Y~---_ _ _ - ~ bullbull - - _

~rrll1IIIIIIIAAAA__

___________~~~AAAA~_~ ______________~~~~KAKAA1~~ lllllllllll~AAA1f~~

_~~

3670 t1i11 i i 1 i i 11111 i i i i -i i [ 111111-111 ~ ~ 11 ~ i I t 1 bull rm r~ij e =~~ raquo-il3t ~ 275 325 375 425

SOUTH

1111 111111 11111 1I I I I I I 0 1 0 20 30 40 50 0 5 10 15

(KM) WIND SPEED (MS)

DWM WINDS AT LEVEL 5 ( 1 OOOM) 2200 PST 19JUN87

24-25 June 1987

9106103

1SV3

1S3M

0 w w Q_ (J1

0 z 3

I f-shy=J 0 (J1

-_

2 0

--

_J w CJ f- _J OC)

0 U) z

f-shy )lt

J q-

(J1 N0 -_ 0

rlt) z rshyl)

N0 _ 3 Q_

0 20 3o 0 q-

0

B-13

lf)_ lf)

If) N If)

lf) r-shy~

I I-o 0 z lf)

~

lO

~

lf) N If)

(

pound bull d ~ bull 4 4 c_ q

1 4 r9middot-

0 N IX)

middot- t--bull ~Igt~

O ~f 4 fT amp)o(oj

4 ltI I~ ~ ~

0

o

middot a

~- v t rgt ( tgtj (~V~-1 f4

3 44 ~-~a4 V VM q -~~-q_4 ~4

_ ~ )

p- ~~t1~1 middot V II J ~ ~ )I 1 11 f ir -~~1I ~

II P P P Igt 4 ~(Iigt ~~ 1) IA

deg deg 4 4 ~ A -1 r 1 1-Y]~t J rz ~

fl r ~ Igt I~y ~ -- -- - 4 ~r___amp V P11 iP Igt P Igt p ~ -0

~bull 7~tpmiddot~P Pf P Ptl middot~ ~ q p Igt 1gt p ~ t b (r 4 P - 4---f ~ ~ bV ltI

ltI ~ ~ I p 6(~ d-_j b d p (4- 4 ~ 1 p Igt 1gt Igt - b ti

)4- a 4_) q V Igt p Igt o

lt(___~ ~- V fgt ~ 111 t Igt -4

~ ~ Igt r p Igt

~ ~ 1 h1

V (I Ilt v middot

t y-

t

t

p

P t P t P ~

0 0N - IX) n

1SV3 0 0 0r-shy N r-shy co

lf) lf)

If) N If)

~ - t bull~--~11n ~ -~bullmiddot t~ lt middot___

o_ ~ ~ ~

0 bull t bull 4_4 4 4IIgt

c 0----~ u c Igt( o ~ c ~A ~ 0 - A 4 4 ~ 1 q

o bull o- -~ 1gt 1gt ~ y4 -~J middot)bullmiddot ~ ~ ~ p 0- 1---f t-~ 1 ~ 4 4 o co u gt)O- eyti ~ ~l 9 -Y P- - I a c 1 oM_il_q A p- p

4 ~ ~-M f p

I 4

~ rv ~--~middot

tJmiddot bull P II f t )I~ bull V ct_~ V V V t P- ~ Igt t middot f lft V VJi P- P- fgt IIgt ~ _ J1 bull bull bull

1 v II p _bull ( ( ir ti- f Igt bull

j ~ r f -~-1t __

_I ltC_t--q_) v -~-ampgt

Q middot--- ~ - t ~ b

II

bull ~

bull bull

diams

1 bull ~ ~~ ~ ~ b b b lgt bull

-- b bull bull bull~4q~ lgtPlgt-4-~_tbblgt

Jraquo P P ~ q 11- 11- b b b b b

P Igt P q bull b b b b b b b b bull

bull bull Igt 4 4 fl ~ b b b b b b b b b bull bull Igt Igt ~ 4 q ~ b _ b b b b b b bull

P bull Igt Igt -4 ltI 9 b b b b b b b b

p bull - Igt Igt 4 lt1 _ b b b b b bull t bull bull Igt ~ 4 b bull b b b b b b bull p Igt Igt Igt bull 9 b b b b b b b b bull P p ~ ~ A 4 q - _ b b b

1S3M

figt j)

~ ~ bull

bull bull bull bull bull bull bull bull bull bull

bull bull bull bull middot bull middot

bull bull ~ ~ 9 9bull bull bull bull bull bull bull bull bull

bull ~ bull bull _ bull bull _ bull bull

~

If) N t

lf) r--11

~

If)

~

0 ONN - co n ~

I fshy=i 0 V)

- 2 0 0 n -

n _j w cjf-

0 l()

0 ~

0N

0

0

---shy2 ~ _

_j OC)

I- z lt( =i

J Vgtv 0N z f-

3 ~ 20 3o 0-t

B-14

---

1S13 0 0 0 N N r--shyltIO r--shy co I) n I)

I() l1 r--shy -U

E~i0 z

U N I() 3

I fshy)

0 U) l1 N -t

--_

2 0 0 0

-

LO

_J w CJf----_J OJ

0 U) z

f- )lt( l1-r ON z f-

3 ~ 0 20

50 U) 0 -sr

0 ON r--shy r--shy

r--shy (0

n I)

1S3M

B-15

lSV3 0 0 0_ N - _ - ~ I)

_ ()

(~i

0 z

If) If)N NIf) 3It)

I Il- I-a =gt0 0z If) If)()

N Nst- st-

_

2 0

--

- w I--- OC)Cj z0 -

I) )I- Jlt( --t-

N() 0 I-z ()

3 o_

0 0 2 0

~ 0 00( 0 0 0-N N _111) r-- 1)

1S3M

B-16

lSVJ 0 0 0 0 N r-shy N r-shy_ _agt lO n n n n

() r-shyU)

u) l() N N u) l()

I I lshy Ishyo )

0 0 z U1 l) N

l() r--_ 2 0 0 n -

n _j

w I GJ OC)

0 _j z

lt) I- ) lt( ~ lf) N 0 1-z l)

3 Q_

0 Lo38 0

0 0 0 0 _N N _ _(() n n n

lSJM

B-17

1SV3 0 0 0 0- -N N- -crJ co I) I) I)

lO II)- - U) It)

U) II) N N lO lO

lO- st

I l-o 0 z U)

N

~

I I-=gt 0 l)

st st

--_ It) - ~ I) 0

0 0 ___

lf)

J w I-

It) N I)

0 II)

~ OC) J z I- =gt lt - lf) N 0 1-z l)

~ 0

0

0

~ 0

38 0

N IIJ I)

- - I)

1S3M

B-18

middot~ bullmiddot I

1Si3 0 0 0 0 N r-shy N r-shya) r-shy r-- co I) I) 1) I)

--_

E~i l)

0 z 3

I r-0 0 z

0 I(

0 --_ n 2 0 ~ N --

0

0

1S3M

B-19

---

_J

w r----2i OC) _J z I- lt( ~ V1 N 0 1-z V)

3n 20 3 iE 0

---- --_

NORTH

-_ t t t f t A +1 t lt-1--JJ-middot+J

r ft_f_frac14 fffftl middotmiddotbull f_ n- ~ tn

ttt1I1~ ~ ~ ~ ~f --H 1--- ~ -

rJj ----~ ~ ~--- ~ l j bull bull - bull bull Ir - ---_- --- --~~~~~I-~~~ ~ bull ~ ~ rt

- - ~rnlit ~~~~ ~~~~ ~~ ~~~~~~~ - _~-~~ ~~~~~-=~~~~~~~-gt

3820

bl I

N 0

tshy() w 3 fftfftlll

ffltlIJ11111~11- I I I J ~-- - ~~~~11J~ -~

3720 - I I JI J ~~~~~~~--------~~ diams bull + I J J _~ 4 bull I I I J ___ ~~~~-s---~~IJ-bullbullbullbullbullbull ~__middot~middotmiddotmiddotmiddotmiddot~~~~~E-e~~

4flA~~middot~middotmiddotmiddotmiddotmiddot~~~~~ ~--_---~- ~~ 1

367~7i51bull1bull11bull1 111 13251777JT7777~7777 I I I 14251

--~--~- ~~_-~-----~ ~~~J

--~-_--~- 1- I 1 I

~ 1lJ

I I I I I I 14751 I I I I I I I s~sl1 I I I 1575 I I

3770 tshy() lt( w

3720

13670

SOUTH

I 0

I 10

I I 20 30

(KM)

I 40

I 50

lllI 0 5 10 15

WIND SPEED (MS)

DWM WINDS AT LEVEL 3 1600 PST 24JUN87

(300M)

lSgt3 0 0 r--shy N r--shy r--shyt)

It r---1)

lO ---- N bull ~~ r lO ~ oe--- I

~~~~ t z~_-----~8 ~ ~~~2~-~----=---~~ t ~~----~~ -frac14~~~--

~v -~ 1 ~ - ~ ~~ ~~~-~~N~~~~~~~~~~~

tf~ ~ ~ -~~~~~imiddot~~~~~ ~~ ~~

_gt~~ middot1 ~ r2 l~ --~- I _Ct _ V I - ftV

0 ~ ~~- X

z~ HF bullIh IJ i It ti ~ 1 IJtl ~ ~ j t ~1

~ ~ 1~1

1 r ~

)

r r~P t t _r )r f

~ 1+ t t t f t ti ~ 1 lt ~ diams t f J t H ff 1 1I I I It diams diams Vf- 1 f f ~ f I 11

(____ t i(_ bullbull ~ bull ~ I r fr1)L_lt--~~vi 1t1J U1 -~- middot~ 1 t) ~ bull ~ bull ~ bull 1 1 f f f I t ~ - ( ~ ~(~ (_ ~ b ~ - ~ bull f 1 f f ~ bull

j ~r~--~ ~ _ ~ ~ ~ l 6 bull bull 4 t ft It _ - __ _ - J ~ ~ ~ t bullbullbullbull t - _ ~--~_____

__ I deg j ~ ~ b ~ _ Igt ~ _ _ ___ bull bull bull bull

~ ~ I ~ ~ ~ _ ~ _ _ _ __ - bull bull bullf

~ bull ~ ~ 4

I -- I bullbullbullbullbull

~~~ ~

1 bull ~

-- V)

LO lshy -----_ lf)

l- w w

=~ It) 0 l)

It)

2= )

0

~

l() 9 __~----- lf)r--- --------J______--L--J-~J-J-______~______~~~___________________________ r---N O O O ON

0 0 z 3

--

2 0 0 0 ----

LO

_j

w I--GJ Cl)

0 _j z lf) )I-

lt( ~ ~

lf) N 0 -- 0 I-n 2 Zlf) ~0 3 0

N ---

0 20 3 g0 -

0

N r- N I-~ I- I- ~ n n n n

1S3M

B-21

1Sv3

U) N U)

lJ) N n

0 N (0 I)

0 r-shyr-shyI)

0 N

I)

It) N It)

U1 r--1)

1S3M

B-22

0 w w (L Vgt

0 z ~

---2 0 __

_j

w _ ~ OC)

0 _j z U1 I- )

lt~ NVgt

0 --shy 0 1-t) 2 z () 0 ~ ~ (LN -middot -

0 20 ~~

0 ON

bull bull bull bull bull

1Sf3 0 0 0 0 N N CX) ID I) I) li li

~ n

~ n

tf) ~

A i -02middot a_ ~ r ____ Igt middotjmiddot i -1 ~ i r middot-~-----------------gt IJ IJ bull 1 j I ------~-----------------

_ IA_Jyen ~ ~ J ~ yen ----~---------------------

~ II --~_a IIgt 11gt Igt middot~ I bull ~ ~ ~ ~

1(1gt i i _JI J Iibull I - IJ Ji H j

bull bull I( --- j J t ~o ~- -- -J I I i J diams bull1bull bull bull i ~ _I I I I J 1 ~~- ~ 11 J l J diams -~ J) bull ~ I- t t ~ ( l f middott J bull 1_~1 ~ IJ II- I ( II ~ j t t bull)

bull t )bull ~) i ~bull bull __ __ I 1gt J I I I middot----- - ~ _ ~ Ji (Ji_ If ~ --~ bull i f l-Ji ~ p VIMyen I ~ middot1 bull I Ibull lt_~ ~ p1 )

I

__________________

~ 4 V ltI - - - -

~) i t --- -- yen 4 yen -- Iii 1yen yen JY yen II

I ~1 Ja a Igt- yen yen yen yen yen yen yenyenIiyen II II

a Igt bull ~ 111) (I J I JY yen tY yen yen II( ltf ~ I~) JY yen liY yen yen yen yen yen yen yen II II II ~ ~(II ~ yen yen yen r yen 1r yen yen yen It Ill

p cl

p 4 ampgt P JI r Igt bull

bull JJ Igt II

- ~ 11- bull

- -

+ _ _ _ __ __ +- ____

- - ----4

bull bull Igt Igt Igt

11 bull bull bull bull

bull bull It

IJ Igt bull t P

Igt bull t

- II Igt fl t middot~~-~~~t_yenyen yenyenyenyenyenyenyenyen

I ~J )Igt) 1 bull yen yen ~yen yen yen yen yen r - yen If II II Igt - I 1 J bull bullI _ _ 1 ~ ~ 1K )

bull -

bull bull II ~ Igt- J 6 bull I 11

fl) 1gt 11 Ill

bull t t fl

~

U1 r- n

~ n

_________o__JJ=---=-------oti~~e-~e11JEJEolELE-ILILLEJLlLu~uJ

l~

0 tf)

~ 0 n

0 N

0

0

- Vl ~ 2 ---

0 w w CL V1

0 z 3

-

2 y --

-

2 0 0 tlt) --

n _J w f-~ OC)

_J z gt

I- Jlt( q-

NVl bull) I-z Vl -~ CL

02 0 3 N 0 NIf)

ONN I N ro r- (0

n n n I)

1S3M

B-23

17z-g

WEST u u u ~ ~ ~ N ~ N

NO N~ 0~0

7J ~ () z -I 0 N (I)

~ )gt c_ -I C zr co ~ -J rT7

r (Jl

-- __ 0 0 0 s _

--_ 7 ~ --

~ z

~-0 0

--s (I) ___

0

0

N o (A 0

t ()1 0

oj(JI

-0

-()1

0 0 0 N -J

A I q bull if ~ ii ii ii I ii if 1 i J (JI

Ab4llltli ~~144

bull~~bull~1111111 11~1middot)1i~~~1 ~4gt~1111111~ II~ - bullbull~Agt~lll11 IIIAII tbull ~4-4~~~III IIll~ I ~14 4 - ~ bull i ~bull-ttt1 111111 I I 1-~ bullbullbullbullbull gt q bullbullbullbull I t I I I I I 4 I I I I I I I 1_ J~ I

4~ A - middot~~lll111I IIll 1 I 4 -1~~ l~ gt1llllllI 1l111 -~~ I N

tn()16 -1 Igt Igt I I l1I v I 7----(Yi ti mbull1-t

~Plgtlt111 VIII ii l middot~1111~~0~ I l~lll~310bullbull I i~W~ffi 1~~~~6~~~ I J~ 1~~~rw 11~~~1~ ~l~~t ~ i 11~~~~~~~ ~~f)~t~~I I~tl -1

~ --J ()1 l 111~1JV1 ~~~1~ I Ill tniz~i~~~~~~ ~~~~ 7 ~K -~~iii~~~~~~~~ il~~~~~~~ 1~~1~~~

middot1 middot1 middot1 middot1 middot1 middot1 middot1 middot1 middot middot1 middot1 middot1 I I I I vr )Igt(_ I II I I~~~~t~ 21~~~r~~~~~v111l I ~ II I -- I~ J(( I I II J l l l Cl ~ I ~ ~ ~ J J I I I yen - - bullbullJ_~ f yen ~ I IJ t I ti

diams J J J I I - ~ - ~ l1 yen -1) I I( t I ~ N J J J J 1- ur~ ~ - Jf1( -I) I I I ti I I j~

() UI diams Mi r)r yen fir_~~ bulll1t) JI 1 I middot i - (JI0 ~ nmiddotmiddotJ jmiddot-1 I I I f ~j--1J ~ __ middot gt C ~ J I f I 1 ltH I fl 1 ti I middotr- I I-I ~ f bull t t l )1j - _ I

t J4J-fbullt t ~ ii middotlfli ii~) - ~bullmiddotttM i f bull bull1 rI-Ku bull bull bull _ middot-~-J_J middot t +imiddot i t t ~ t ( ~ middot(~ I J bull Vf I r1- ~ j~fmiddot + r bull(~t t bullbull_t- J J ~) J ~ Igt

+ __ middot + V+ bull bull ti+ bull + -fi J i bull bull ~ f --- ~ ~ t Li bull bull t ++ diams + t bull +++ + bull ~ __Vbull ~ it 4 ~ i ()1 ~ 1 bullbull diams diams diams diams ++ ++ bull t 1 fA middot_ -----Y 4 ~ tn

~ ~bull t bull + diams + bull diams +++t + bull A VJ ~ bull bull ~ -o middot ~- bull t bull diams diams diams + ~i4_ ~ ~ ~

11 -~ 1 1 1 1 ~t t diams t t ft(middot-- f g a PA

--middott 4 -4 y 1 1 1 )f7~ V g n t A ~ ~bull a~ 4 1 1 ( V P q 1 bull A ~ V Y ~-- 4 I Cl oCl 4 A A ~tW --~- ~middot -)bull ~iliJ bull1bull

bull It t-- ti __ __ ~ (~w ~ ()1UI I bullbull bullrmiddot -~)fl l~~~ ) I A IIbull N~L~ r ~~~-ff~ --bull--1) 4 4 bull ()1

~ 14 ~ bull f 4 AA 4~ bull

44( )A - ~

- ti~ f 4 ~ 4 4 4 A bull ~ i

ti ti fl 1 4 tn llflfl44 4 -()1

~ ()1 ti ti fl 4 4 _ 4 bull fl _ 4 ~ ~

~ bull t~ - - I - 1 T T fJifrac12 1f 1~ fl t [ 1 4 bull bull ~ ltt ~4 ~~~11 l~~Nfl---~ ~~ bull ~t144

1 -middot I I f I ~ fl ti ti- Imiddot tJ 1-0 I 14

z o 0 -I

I

Y

)

u u u u 0) ~ ~ ~ ~ N ~ N 0 0 0 0

EAST

1S13

0 z 3

r r I-shy Ishyer gt 0 0 z ()

--_

2 0

--

___J

w CJ r----1 (lJ

0 l() z

Ishy gtlt J LO() N0

z Ishy()

3 0

0 20 3o 0 tj--

0

1S3M

0 w w 0 ()

B-25

------

~ --- _

NORTH 275 325 375 425 475 525 575

dJ 41 l ll~I tgtI I lo fA Itgt IA IA lo 1 IA IQ 1q lq If lq I ~I 4

~ ~ IIJ ~A ltI P Igt Igt Igt P V V V Q q l_-~- q ~ ~ ~ x- ~ ~ Y t~ --___q)11 4 ltI v v v v v v v 1raquo 4 -q q -~ q ~ 1 a

~ 4 ~~_gt~) ) ~~-4_~ A ltI fl v v v v p A V yjq ~ _ _ ~bullbull --shy~~~ ~ I Cl11 ~ 4 v v v v P- deg 4 ~ -V t V ( ~ a bull-

~ 1 ~~~ v ~sa- fl V P -iLpound_~A--4 q Igt P ~ 4 a~ 4 38203820

- _1 fa bull bull ~ II 11 4 4 ltf V P deg q 9 p Igt Igt Igt Igt P~~ _ _ _ bull -

- ~_R middot ~ gt- P-~-j---s--middotp-~~--- Igt p ~(

-~~ _ amp- 4 --v--J ~--~ -__~---- ~~ t f ---~middot bullbull ~ ~ ~ ~ ~~bull--- bull~bull~~ 4 ~-deg ~--~ ~_v -~ _~raquo Wh~

bull bull bull bull ___ol bull bull --___~ ~ _ A~~-~- f_~-~ bull 1 ~bull -~ Igt bull

a l -4 bull bull~ bull ~ ~ bull frac12~ P- __ _middotmiddot11-~~j)6-_ U bull _ JIgt~ bull I- bull ft ~ 4_~~~~ 9 P lgt--1gt~~~_-~_----~~~ ~ bull ~ ~ ~ ~ --~-~- ~~-_middot ~~~A~ ~ 1111 ~- ----~~ -~- IIgt _)-

1111 1111 -( _-middot 4 ~ Po Igt q lgtmiddotv11t_ Igt Igt II

3770 ~ P 0 ~ - bull k ~ 1- 1-

() pound 4 4 ~ q -44 - bull bull Igt ~- t Igt 1 Igt () w Igt 7 lt

3 - bull It It It bull bull ~--~ p ~ Igt ~ w ~~ It It It bull ~ -_t _ ~ bull bull bull bull --~ Igt

deg

td bull ft bull v ~lt~ Igt Ci~ 4gt I ~ It bull bull ~ 6 -It Igt ~

N bull bull It It ~ ~ _ ~_) ~ ~ lr It ft ft ft ft ft ft Igt -II-~ j ~ fil- _ _ _ _ bull 11r 1o 1o It 111- bull ft ft ft ft ft i i f - ~ 3720 bull It bull ft ft ft ltt q -e- ~ ~ ~j1

4

middot bull bull bull It It ft It bull ~ ~ ~ bullmiddot ft ft ft ft ltt ft ltt ltI 1 ~ - It bull It ft ft It bull -0 ~ JIgt ]~

middotmiddotmiddotmiddotbullbull1rt1rtft11- p-bull- ~1frac121 1tftftlttltltPt1t fgtbullbull ~~- bullbull ~

It bullbullbullbull It ltt It It ltt It lrt lrt tgt - ~

~~~ItIt ItItIt 1t11tft lttlttftlttltlt ltt lt11t ~ lgtbullJgtIbullbull bull~bull bull~bull ~ 1 bull bull 3670 367~75 325 375 425 475 525 575

SOUTH

1111111111111111I I I t--l 0 10 20 30 40 50 0 5 10 15

(KM) WIND SPEED (MS)

DWM WINDS AT LEVEL 3 (300M) 400 PST 25JUN87

0 0 0 0 N r-shy N r-shya) r-shy r-- (0 I) I) 1) I)

-

LO r--1) -

l~ i ()

0 z 3

I ~ n 0 z I)

N st-

0 If)

0 - I) 2 0 ~ N -

0

0

1S3M

B-27

---_

2 0 0 0

-

If)

_J

w Cj l-_J OC)

z_ ) lt( J () L()

ON z~ 3~ 20 3oo+

0 0 0 N N C0 (0 I) ~ I)

U)

U)

U) U) N N It) U)

I I-=gt 0

U) V1 N st-

lO N I)

0 lO

0 __ I) 2 0 ~ N _

0

0

__ 2 0

--

_J

w l--Gj OC) _J z I- =gt lt( ~ V1 N 0 1-z V) 3 CL

20 3 g0

1S3M

B-28

I fshyCt 0 z

0 r-shyr-shyI)

0 N r-shyn

0 r-shyl) I)

lO r-shylO

lO N It)

lO N ltt-

--

tlt)

_j

w r---fu o) _J z f- ) lt( ~ f) N 0 1-Z Vgt3 (L

2 03g0

I fshy)

0 l)

0 lO

0 -- n 2 0 ~ N ---

0

0

1S3M

B-29

1S13

-l)~ O 0 w

deg CL w

l)l ~

0 0 z 3

I lshya 0 z

--_

2 0 0 0

--

LO

_j

w__cj IJ)

0 _j z lf I- )

lt ~ ~ V) N

I) 20 - 0 Z(f)

I-

0 ~ 3 CLN -

2 00 3 gOr-

0

1S3M

B-30

Ht 11Sittl

lS13 0 0 0 0 N N II) (0 n I) n n

-- ()

LO t-shy ~ lO

(~i0 z

lO N LO

3

I Ishygt 0

lO () N +

--

2 0

--

_j

wr-----CJ OJ

0 _j z lt) I- )

lt ~ V) N

0 -- 0 1-shyI) 2 z () 0 i 3 ClN --- --

0 28 3 ltD

lf 0~_____________________________~_______________________--- t-- 0 0 0 0 ClCI N N t-shyII) t-shy io n n n n

1S3M

B-31

==- ~-_

NORTH

I bull bull - -f I I bull ~bull - ~__~~~~ ~~~

flt~11 $~~~t=- ~~ ~ 4Aligt~ ~~~ ~~

3820 1~~~- 4 t 11 ~ ~- --~_____-- ~ ~ ~~ 3820 ~~~

~~-~~~~

3770 3770

l1 ()w l-

lllizz tshy

~ ZlZZl ~ ~~~~~~

to I -IllIll

w -I IIIll~N llllll2~~

-II I I J I-~1~ r~~~~ 3720r ~ J J UL 1~A~~ 3720

~IIJJJJJ2~ ~~~ 1 ~ fl I JI JI2~~ 1~~~V fl fl ~ JI J J ~ y ~- 1-f4~) ~ fl fl fl I JI J _A2 1~ V~

~flflflflJIJIJl~2 ~~JIw~ ~ ~jlfljlflJIJIJI~ ~JIJIJflfl~~~ ~ ~~fljlfljlJI~~~~ -

J67 t-V1111111----(((((1i I~laquo rlt~1 I I I I I I I IM m I I I I I I I ~ MJ670 g75 325 375 425 475 525 575

SOUTH

11111 11111 11111 1I I I I I I 0 10 20 30 40 50 middot 0 5 10 15

(KM) WIND SPEED (MS)

DWM WINDS AT LEVEL 3 (300M) 1600 PST 25JUN87

1

NORTH

bj I

w w

i~ -tt--t ~ + ~frac14 diams diams diams diams diams f f f J-~~~l -ff~_x~ diams t diams ---t diams + diams ff f J1ff~t t

-=tl-U +---- ~ ~ t-t- diams diams __ diams~ diams diams ~ J I I 1 1 f ~ -y- ~I -~~-1t-~ diams +__+ diams + ++--J_f 1 ~JJ-11 I --

38201- ~~-- ~ ~--t_-( 1 ~ r 1t + middot~-t_ bull ~-~ bull bull bullmiddot bull r-r 1 ~IiI 1 I ~Ji~l _-=pound-~If~_ It It It bull bull bull bull bull ~ diams f f---bullmiddot+ --I __- _ I I~ 1 f1

( - ~~~~ II lit It It 1tt Iii Iii~ -r-middot -- ___- l_f--1-l -L ~~1 1 ~ ~_( _ -~~ ~------~ 1t(~ bull (t ft- ~ middotv -11-fI 1 - t~~1 1 41

~ - ~-~- lit 1t lk_i -- -~--- -_ -j rf-- l1 r111 1 I It It~ It 1t 11i bull-~ ~- ~ t_bullbull_~ (middot ~--middottY~i_(4Xtl~4j_ middot It It ~ -- ---~----~----_I~)-~-~ -

~-It It ltt middot~- ~ -~-middot ~-pound1[_~ -~- - middot - deg - - It It l diams diams 4 middotbull--bull ~ ~ ~ diams 7 1---~~ -L_- - ~ t( I diams -( bull diams ~ ~ bull ~ -- JI JI Jf JI JI j(_ ~II deg It_ -~ ~- I I I J JI JI JI JI 1

~ J- ~llj ~- diamsdiams +II IllJI_ h~ ~ ~ ~ bull bull ~ JI J J J ~ 1 x111 X7 -~ ~ diamsdiams 4111 JJJIJJ~~~~~~~~1t diamsdiamsdiams ~111 JJIJJIJllllb~ h~~~hh middot ~ - diams diams bull I I J J I I I I JI JI I l1-14~frac12-~~~ji_ ~ + f 1 J I 1 I I I 1 ~ x~ f1 11 middot -

bull JI I I I11~bullY1iz 1 41 ~ f I J J J JI J J J J J I I I lmiddot ~ t JI JI JI 1 JI 1 1 JI J I I I It~ if~_~

It_ ~ 1 JI JI JI JI J J I I l-~ 4 t J J J J J J J JI JI I I l l deg ~~ _ ~ 1111JJIJIJIJIJIJIJIJI t JIJIJIJI~I JIJJIJIJI_

~- I t I I JJJIJIJIJIJII~~~~ t JIJJIJIJIJIIII ~~ JJ JIJIJlllll ~ t IJJIJIJl1 1 1 ~ ~~I 1 t 1 A 11111111 II I I I

325 375 425 475

SOUTH

I I I I I I 0 10 20 30 40 50

(KM)

525 575

1111 111 1111 10 5 10 15

WIND SPEED (MS)

3820

3770 1-() lt( w

3720

3670

DWM WINDS AT LEVEL 1600 PST 25JUN87

5 (1000M)

0 w w CL ()

0

1S13 0 0 0 N r-shy N agt r-shy r--t) I) 1)

I() It)- r-shyU) U)

z U) N It) 3

( I I lshy Ishyo ) 0 0z It)

~lgtIgt~() st- b tgt ~ q st

lgtbbtgtb

b b t t 0 b

N

Igt b t b b b A 6 ~ b b t b C A 4 d 4

ttCt4lt1-it e Igt b tgt tgt V q ltl ltl ltI ltl

ti- deg 1 41 9 q I I ltl q q

i V q ltl q q q q I l() r-shy AlgtV ~ tlt) ~t) -~~~q

~ bull amp ~

0 ~ ~

-qa ~ ~ 1gt1 111111

b-a~-V ltillilI

bull lt bull bull a ~ Igt ~ V V V q 4 __J

It It lgt a -a~ Igt C tgt V w r---(J OC)

bull ~ Igt t 4 bull bull bull bull U) 0 __J z middot 1gt44lt14

U) ) t) rshy J - -N

lt( l() ~ ~~ CI() ~ ~

~

0 Ishy bull bull bull diams 1 z ()~ bull ~ bull diams diams 1 CL3bull ~ ~

i b y ~bullbullTT r I I 0

~ bull bulldiams ~ ~ b b b b ~ bullbull diams T r r I U)______-11____________________________ _ 0

0 O O ON N r- N r--agt r-- _ ~ I) I) I) I)

1S3M

B-34

I

_ _ 3820r- ttr- t f T Jf-Lt If t t 1l-- -~ 1~ t t

NORTH

~bull 1414

~~-_ ~ ~ r-- - --~ ~ - - _ r-- fT W - - r V-V ff f

- t t t t f I~ _AAjAA~-r bull(- -J It ~---1 t ~~~-1-- 1 ( ~~ - J ~ t t i f 1 ~ A_A-yen~_~_ ~ ~ 1 ~ t t ~ t t middotmiddotkt f ~-~-~~-----~~-- ~ ~ ~ ___ll_ bull ~

t -r- _______~~----- r ~bullbull _ ~ ~ tt-~J--~c-~~ ~ 1~--______ bull

~ -t lJ-- f t-J-- r---~~---middot _-- ~~-- ~ bull bull ll~iti~~sect~~~ ~ bullbull~bullbull bull~~n~ bull bull bull n~ bull bull

A)~lfifrac12~~ ~III I --1

3770 l l L l L - - ~ -- ~ - 1 ~ - 770 tshy~ ~~~~~~~~~11 1 ~~=1~~- Ul

W 1lllll~I ~~~~1111~~ lt( w ~1~~1~1~~j~~~m ~~~~ ~ - ~

11 1111 1111~I I 11111111 --- middotE~

tj IIIIIIIII_ ~tI l) llllll_~_p ~1l1 1~A~~~A~~rrr-v

3720t- I I I J J J A__ r r 0 11J)~~~----~_~ppmiddot-~~f Jl~~~~~---~--~~r~-~~q~q ~1

I ~JI I~ A A-_

~JIJl~~~~~A-----A rrbullbull~f~df~ ~~JIJl~~~~A~~--~- fffdfdff

~~JIJI~~~~~~---- bullfbulldbullfdf~

~IJIJl~~~AA~ --middotmiddotmiddotmiddotmiddot~middotmiddot~~~ ~l~JIJIJl~~~Al~pp~~~~bullbullffffffdff X ~~~~JI~- A(- f bullbull P ~ ~~bull1f1q1f1f1f1f1f1d1bull

3670275 325 375

1111 1111 11111 1 1 1

0 10 20 30 4-0 50 0 5 10 15 I I I I I I i(KM) WIND SPEED (MS)

iDWM w1tms AT LEVEL 3 (300M) ir 2200 PST 25JUN87

0 If)

0 __ I) 2 0 ~ (j __

0

0

__ 2 0 0 0

__

LO

_J

w f- GJ ll) _J z I- ) lt( ~ () N 0 1-z () ~ Cl

20 ~~ ON

1S3M

B-36

Page 14: Nind Observations Collected during the Southern California ...

is applied to the horizontal wind field to reduce discontinuities that may result from the interpolation The vertical velocity is calculated by integrating the incompressible conservation of mass equation Zero-gradient lateral boundary conditions are used

GENERAL PROCEDURES

Generation of the SCAQS wind fields involved (1) preprocessing of the wind data for input into the DWM (2) plotting and quality control checking of the data (3) specification of the model input parameters (4) exercise of the DWM and (5) graphical display of the gridded wind fields Winds were analyzed at six vertical levels 10 100 300 600 1000 and 1500 meters (m) above ground level (agl)

In the preprocessing step the upper-air data were vertically interpolated to the model levels and temporally interpolated to enhance the temporal consistency of the wind fields and to provide hourly input for the DWM

Following the preprocessing step the data were plotted and examined for horizontal vertical and temporal consistency Data that failed the quality control checks were eliminated from the model input data set

The controlling parameters for the DWM include the maximum radius of influence (RMAX) at which a monitoring station can influence the interpolation at a grid point the weighting parameter for terrain effects (R) the number of stations to be used in the interpolation (NINTRP) and the number of smoothing passes (NSMTH) Note that the maximum radius of influence is specified independently for the surface level ( over land) upper levels (over land) and over-water portions of the domain The weighting parameter for terrain effects and the number of interpolating stations are specified separately for the surface level and upper levels In the diagnostic analysis of the SCAQS wind observations these parameters were specified as follows

RMAX (surface) 20km RMAX (aloft) 100 km RMAX (over water) 150 km R (surface) 10km R (aloft) 50 km NINTRP (surface) 4 NINTRP (aloft) 3 NSMTH 4

Tests were performed to examine the sensitivity of the DWM to the various contr ling parameters and to select the optimum values of these parameters for the SCAQS v nd analysis

9106102 9

The DWM also requires as input a domain-mean wind and stability information For this analysis the domain-mean wind was specified separately for each analysis level and was based upon the average of the level 6 (1500 m agl) wind observations To account for friction the speed of the domain-mean wind was reduced for the lower levels by multiplying the average wind speed for level 6 by the following scaling factors

Level Scaling Factor 1 048 2 072 3 083 4 090 5 096 6 100

The domain-scale lapse rate was the calculated average of four inland sites These varied according to data availability

Six-hourly plots of the level I (surface) level 3 (300 m agl) and level 5 (1000 m agl) wind fields for each episode are given in Appendix B

SUMMER INTENSIVE MONITORING PERIODS (

Mesoscale airflow in the SOCAB during the SCAQS summer intensive monitoring periods appears to have two components

A basic diurnal cycle driven by land-water temperature differences and complex terrain and

A perturbation associated with the overlying synoptic flow

19 June 1987

The surface and upper-air wind monitoring site locations for this intensive monitoring period are indicated on pages A-1 and A-2 respectively Plots of the diagnostic wind analyses for 19 June are given on pages B-1 through B-12

The surface early morning airflow pattern on this day is characterized by weak winds over much of the coastal and inland areas with moderate NW winds over the Coachella Valley and offshore At 300 m agl winds are S over the western half of the domain and W to NW over the eastern half of the domain The overlying flow at 1000 mis W

9106102 10

n1er

The sea breeze is somewhat slow to appear in the western basin on this day but has begun to develop by 1000 PST At this time winds at 300 m agl remain S over the western part of the domain and W to NW over the eastern part of the domain Some S flow is also apparent at 1000 m

During the afternoon hours three distinct features are apparent in the surface airflow pattern

A sea breeze (W flow) develops along the coast between Santa Monica and Palos Verdes and penetrates inland A branch of the sea breeze penetrates into the San Fernando Valley resulting in weak SE flow at Burbank and Reseda

An area of weak (SW) winds forms in the Whittier-La Habra-Pico Rivera area persists throughout the afternoon and fonns a convergence zone in the central basin with the penetrating westerly flow The S component of this flow is due to sea breeze development along the coast near Long Beach

Upslope flow develops along the foothills of the San Gabriel and San Bernardino Mountains (eg at Glendora and San Bernardino) Along the eastern foothills the upslope flow is supplanted during the afternoon by the penetrating W flow

By 1600 PST on 19 June the depth of the upslope flow near Glendora exceeds 600 m Strong outflow is apparent through the Cajon and Banning passes Aloft winds are generally SW with some SE flow near Burbank and NW flow over the Coachella Valley

Significant onshore flow (3 ms) persists along the Santa Monica-Palos Verdes coastline through 2200 PST Feature-s of the afternoon airflow persist aloft through this time

24-25 June 1987

Surface and upper-air wind monitoring site locations for this intensive monitoring period are indicated on pages A-3 and A-4 respectively Plots of the diagnostic wind analyses for 24-25 June are given on pages B-13 through B-36

The airflow patterns on these two days are similar to one another and to the ttern on 19 June The overlying flow is generally weak below 1000 m agl with moderak t5 ms) SE flow at 1500 m agl

On 24 June the early morning surface airflow patterns are characterized by ver middoteak winds At 300 m agl winds in the Coachella Valley are SE By 1000 PST a we1 organized zone of weak S flow extends from Long Beach to Pasadena this S flm

9106102 11

(

reaches a depth of 300 m agl Southeastern flow in the Coachella Valley and E flow through Banning Pass are apparent both at the surface and 300 m agl S to SE flow dominates at 1000 m agl The II three-zone II surface airflow pattern is apparent during the afternoon The wind shifts to Wat Banning Pass by 1500 PST At 300 m agl winds are SW over much of the basin with SE flow at Burbank and in the Coachella Valley At 1000 m winds are generally SW At 2200 PST the airflow pattern is characterized by weak unorganized flow at the surface and 300 m agl Winds at 1000 m are NW over much of the domain but SE over the Coachella Valley

The airflow on 25 June is similar to that on 24 June During the early morning hours winds at the surface are very light Weak SE flow is apParent at 300 m agl At 1000 m agl winds continue to veer toward N The sea breeze develops more quickly than on the previous day and winds at Banning Pass become westerly by 1300 PST Calm winds are observed at Pico Rivera throughout the afternoon As on 24 June the afternoon airflow at 300 m agl is characterized by SW flow over the basin and SE flow at Burbank and over the Coachella Valley Upward propagation of W flow is generally slower than on 24 June Winds at 1000 m agl are S to SE During the evening hours the surface winds become light while at 300 m agl winds over the Coachella Valley become NW Organized W flow is apparent over the W basin through a depth of at least 300 m agl through 2200 PST

13-15 July 1987

Surface and upper-air wind monitoring sites for this intensive monitoring period are shown on pages A-5 and A-6 respectively Plots of the diagnostic wind analyses for 13-15 July are given in Figures B-37 through B-72

Airflow patterns on 13 and 14 July are generally consistent with the basic diurnal cycle described earlier However an unusual airflow pattern develops in the Coachella Valley on both days On 15 July strong SE forcing is associated with a delay in sea breeze development

The 13 July early morning surface airflow pattern is characterized by light winds and a weak cyclonic eddy over the Santa Monica Bay Winds aloft are light to moderate and primarily W The sea breeze develops rapidly on this day and by 1200 PST W flow overwhelms the S sea-breeze flow in the Long Beach Area W flow appears at Banning Pass by 0800 PST The surface afternoon airflow is characterized by the three-zone airflow pattern described earlier with strong upslope flow along the foothills ( gt 5 mls) and significant outflow through Cajon Pass Observations at Palm Spring (NW winds) and Thermal (SE winds) indicate a convergence zone in the Coachella Valley with a depth of at least 600 m W flow dominates at middot1000 m with S to SE flow over the Coachella Valley During the evening hours a cyclonic eddy redevelops over the Santa

9106102 12

rtMt1

Monica Bay winds are weak throughout the basin but airflow into the Coachella Valley is especially strong

Airflow patterns on 14 July are similar to 13 July with a few exceptions During the early morning hours the surface airflow is characterized by weak disorganized flow There is no eddy apparent over the Santa Monica Bay The overlying flow is weak and primarily S to SE at 300 m agl but W to NW at 1000 m agl Sea breeze development is approximately two hours slower on this day than on 13 July By 1000 PST weak S flow has developed over the Whittier-La Habra-Pico Rivera area and SE flow is apparent at Burbank AS component to the flow appears at 1000 m The afternoon surface airflow pattern is similar to that on 13 July but the S upslope flow at Glendora is weaker S flow develops at Elsinore and several coastal Orange County sites The Coachella Valley convergence zone reappears at the surface at 1600 PST two hours later than on the previous day At 300 and 1000 m agl W to SW flow dominates over the western twoshythirds of the domain SE flow is apparent over the Coachella Valley During the evening hours the surface airflow over the central basin is S to SW W flow components persist along the eastern foothills through 2200 PST

On the morning of 15 July surface winds are weak but maintain a S component Moderate SE flow is apparent offshore The overlying flow is generally E to SE By 1000 PST the surface airflow pattern is characterized by S flow over the central basin and along the foothills SE flow in the Coachella Valley and E flow through Banning Pass The depth of the S to SE flow is greater than 1000 m agl During the afternoon a weak sea breeze penetrates inland and winds along the foothills become W Winds shift from E to NW at Banning Pass at 1600 PST A weak S flow component persists in the Whittier-La Habra-Pico Rivera area throughout the afternoon A weak slopevalley circulation develops in the Coachella Valley resulting in SE flow there At 300 m agl winds are SW to W over the central basin and SE over the Burbank and the Coachella Valley At 1000 m S to SE flow dominates W winds persist along the foothills through 2200 PST and weak S to SE flow redevelops at the surface Remnants of the afternoon airflow pattern persist aloft

27-29 August 1987

The surface and upper-air wind monitoring site locations for this intensiv middot1onitoring period are indicated on pages A-7 and A-8 respectively Plots of the dia stic wind analyses for 27-29 August are given on pages B-73 through B-108

On the morning of 27 August surface winds are weak over most land areas a 1djacent coastal waters with moderate (5 ms) NW winds well offshore Winds aloft a Jrimarily N with weak NE flow at 100-300 m agl over the central basin By 1000 PST threeshy

IIzone airflow pattern has developed at the surface and is somewhat apparent ( hin the limits of the upper-air network) at 300 m agl SE flow has developed at 100( agl

9106102 13

This pattern is maintained throughout the afternoon Within the Coachella Valley a classic daytime slopevalley flow pattern develops with SE flow extending to a depth of 1000 m E flow develops at Banning Pass and persists through 1700 PST W flow over the basin develops upward throughout the afternoon By 1600 PST wind at 300 m agl are W to SW over the central basin and SE over Burbank and the Coachella Valley During the evening hours the features of the mesoscale airflow pattern over land weaken both at the surface and aloft There is no clearly developed offshore-directed land breeze

On the morning of 28 August the surface winds are weak and the overlying flow is primarily E Retardation of the sea breeze by the overlying E flow is apparent by 0900 PST S flow develops in the Long Beach area E flow at Banning Pass is substantially stronger than on 27 August During the afternoon of 28 August S flow persists at Long Beach and develops in the Whittier-La Habra-Pico Rivers area SE flow is observed along the Orange County coast E flow through Banning Pass persists throughout the day W wind components along the Santa Monica-Palos Verdes coastline are weaker than on the previous day and NW flow fails to develop at San Nicolas Island W flow over the central basin disrupts the SE flow aloft During the evening hours the airflow features weaken W flow along the foothills does not persist as long as on the previous day

The early morning airflow pattern on 29 August is characterized by SE flow both at the surface and aloft Sea breeze development on this day is slower than on either of the previous two days S flow again develops in the Long Beach area and appears to be stronger than on the previous day Although the sea breeze is weaker winds at Banning Pass shift from E to SW by 1300 PST This shift occurs at 1800 on 27 and 28 August SE flow persists aloft with limited upward development of the W sea breeze flow W flow persists in the western basin area through 2200 PST and SE flow persists aloft

2-3 September 1987

The surface and upper-air monitoring site locations for this intensive monitoring period are indicated on pages A-9 and A-10 respectively Plots of the diagnostic wind analyses for 2-3 September are given on pages B-109 through B-132

The first day of this period is probably the most anomalous of the summer SCAQS intensive measurement days Overlying easterly forcing during the morning hours prevents development of W flow along the foothills and inhibits upward development of the sea breeze over the western and central portions of the basin The easterly forcing appears to reverse rather abruptly on the afternoon of 2 September Unusual winds are also observed at Burbank on 2 September During the late morning and afternoon Burbank experiences an unusual wind shift from SE to W through a depth of 1000 m On 3 September the overlying airflow is W and the airflow patterns are more typical

9106102 14

rrn

On the morning of 2 September strong downslope flow results in N to NE winds at several sites along the foothills of the San Gabriel Mountains At 300 m strong NE winds are apparent over the central basin The overlying flow is E By 1000 PST the sea breeze appears as W flow along the Santa Monica-Palos Verdes coast and S flow in the Long Beach area The surface analysis indicates a band of S flow from Costa Mesa to Azusa W flow has not developed along the eastern foothills Winds are SE in the Coachella Valley and E through Banning Pass E flow aloft continues and intensifies During the early afternoon hours a relatively strong sea breeze penetrates inland to Azusa while winds in the Whittier-La Habra-Pico Rivera area remain weak The sea breeze weakens considerably after mid-afternoon Between 1200 and 1500 PST the wind at Burbank shifts from SE to W through a depth of 600-1000 m By 1600 PST the overlying flow has shifted from SE to W Onshore flow continues at the surface through 2200 PST while the winds weaken considerably Although the overlying W flow persists in general 300 m agl winds at Burbank become SE

The early morning airflow on 3 September is characterized by weak winds at the surface SE flow at 300 m agl and primarily W flow at 1000 m agl Although the major surface airflow features appear to develop as on previous days upward development of the pattern is limited Strong S flow is apparent by 1200 PST between 100 and 300 m agl over the central and western basin By 1600 PST the sea breeze has penetrated well inland Imbedded in the sea breeze is a persistent calm area in the vicinity of Lynwood S flow persists at 100-300 m agl over the central and western basin while flow at this level off shore remains NW At 1000 m agl W flow continues This general pattern persists through 2200 PST but weakens considerably especially at the surface

AUTUMN INTENSIVE MONITORING PERIODS

The mesoscale airflow patterns in the SOCAB during the SCAQS autumn intensive monitoring periods exhibit a weaker diurnal cycle than the summer airflow patterns Synoptic forcing also appears to be stronger

11-13 November 1987

The surface and upper-air wind monitoring site locations for this intensive monitoring period are plotted on pages A-11 and A-12 respectively Plots of the diagnostic wind analyses for 11-13 November are given on pages B-133 through B-168

During the early morning hours of 11 November NE surface winds are apparent over most of the region Surface wind speeds are very light over the basin and somewhat stronger along the foothills and the coast At 300 m agl winds are light and generally E At 1000 m agl winds are W to SW over the western half of the domain and SE over the eastern half of the domain Weak E to NE surface flow persists throughout most of the

9106102

15

morning in the first 300 m An apparent anticyclonic eddy (SE flow at Long Beach weak S flow at Burbank W flow at El Monte) develops between 600 and 1000 m agl on this morning A weak sea breeze forms around 1200 PST penetrating only to the central basin There is no apparent turning of the sea breeze into the San Fernando Valley W to NW flow develops offshore and is deflected around the Palos Verdes Hills This W flow is also apparent at 300 m agl Downslope flow components along the foothills are apparent by 1600 PST At this time the 1000 m agl winds are weak and N The sea breeze rapidly dissipates and NE flow develops at several coastal sites indicating a land breeze NW flow is maintained off shore The nighttime airflow pattern aloft is characterized by weak N winds at 300 m agl and weak W winds at 1000 m agl

The surface airflow pattern on the morning of 12 November is generally similar to that on 11 November E flow over land is apparent through a depth of 300 m while NW flow persists offshore The overlying flow is W The afternoon surface airflow pattern is more similar to a typical summer afternoon pattern than the previous day Turning of the sea breeze into the San Fernando Valley is apparent and W flow develops along the foothills of the San Gabriel and San Bernardino Mountains by 1400 PST Airflow at 300-600 m agl appears to veer continuously from E to W at most inland sites during the afternoon NW flow through a depth of 1000 mis apparent over the Coachella Valley Surface winds become light and disorganized during the evening hours Unlike the previous day NE flow does not develop at the coastal sites and NW flow weakens offshore W winds persist aloft

On 13 November surface winds are very light through the early morning hours with E flow components apparent immediately offshore The overlying flow is WNW but becomes S over the central basin by 1000 PST As on the previous two days a sea breeze becomes apparent at the surface by noon W flow components over the basin and foothill areas are stronger than on the previous two days both at the surface and aloft Significant W flow also develops in Banning Pass Moderate to strong W winds are apparent aloft During the afternoon and evening hours SE winds are apparent at Burbank between 300 and 600 m agl Intense W flow develops off shore and propagates inland during the evening hours W flow continues aloft with some S to SE flow between 100 and 600 m agl at Burbank and El Monte

3 December 1987

The surface and upper-air wind monitoring site locations for this intensive monitoring period are plotted on pages A-13 and A-14 respectively Plots of the diagnostic wind analyses for 3 December are given on pages B-169 through B-180

The early morning surface airflow pattern on 3 December is characterized by weak NE winds over the inland areas and a weak cyclonic eddy off shore The overlying flow is S to SE Surface winds remain light and variable through most of the morning Moderate

9106102 16

txi Iii ttii

E flow is apparent over the western and central basin between 300 and 600 m agl A sea breeze develops around 1200 PST reaching a depth of 300 m and penetrating only approximately 30 km inland S to SE flow persists above 300 m agl The sea breeze weakens during the evening hours and N flow through a depth of 300 m develops at Long Beach E flow components intensify at 600 m agl and above

10-11 December 1987

The surface and upper-air wind monitoring site locations for this intensive monitoring period are plotted on pages A-15 and A-16 respectively Plots o~ the diagnostic wind analyses for 10-11 December are given on pages B-181 through B-204

On 10 December the early morning surface airflow pattern is weak and disorganized Weak NE flow is apparent over much of the basin between 100 and 600 m agl The overlying flow at 1000 m is N The surface airflow over the basin is weak throughout the morning hours while NW flow develops offshore Winds aloft remain N A weak sea breeze is apparent by 1200 PST the sea breeze penetrates only about 30 km inland and is limited to a depth of approximately 300 m There is no apparent turning of the sea breeze into the San Fernando Valley Elsewhere in the basin the surface airflow remains weak By 1600 PST the sea breeze has weakened At this time winds aloft are predominantly W to NW at 300 m agl and N at 1000 m agl During the evening hours surface airflow over the basin becomes weak and disorganized while E flow develops at Palos Verdes Strong N winds appear aloft (300-600 m agl) at Burbank LMU and Long Beach however winds at this level further to the east remain light

On 11 December the early morning surface airflow pattern is similar to that on 10 December Relatively strong ( gt 10 ms) NNW winds persist at 600-1000 m agl at Burbank and LMU E wind in the 100-300 m agl appear at LMU and Long Beach Throughout the morning the surface winds remain light and N winds 9ver Bu~ank weaken considerably A sea breeze is apparent by 1200 PST but is weaker than on the previous day and reaches a depth of only 100 m or less Significant N winds (3-6 ms) develop between San Bernardino and Elsinore and in the western San Fernando Valley NE flow is observed in Ventura County Winds aloft continue to be primarily N however E flow is apparent over the Long Beach area at 1000 m agl Surface airflow over the central and western basin becomes very weak during the evening hours Strong N to NE flow develops at the coast west of Santa Monica while N flow persists in the western San Fernando Valley and in the San BernardinoRiverside area The overlying flow is N to NE

91061 02 17

3 PARTICLE PAm ANALYSIS

A series of forward and backward particle paths (trajectories) were calculated using the SCAQS DWM wind fields The particle paths will be used by other SCAQS investigators in their examination of pollutant transport within the SOCAB The forward particle paths can be used to estimate the transport of pollutants from known source locations The backward particle paths can be used to estimate potential source areas The particle paths can also be used to estimate the residence time of certain pollutants in the SOCAB as a whole or in subregions

CALCULATION OF PARTICLE PAIBS

Two-dimensional particle paths were computed using the DWM wind fields as follows

Starting ( ending) points for a given number of forward (backward) particle paths were specified

Using a time interval of 15 minutes the hourly gridded DWM wind fields were linearly interpolated in time and then interpolated in space to each particle position using an inverse-distance-squared weighting scheme

The particles were then advected horizontally for the specified time interval

The distance traveled by each particle during each time interval was integrated The new position of the particle was reported at hourly intervals

Forward and backward particle paths were calculated for the SCAQS intensive monitoring periods for several vertical levels and a variety of origination and destination points The origination (destination) locations and times for the summer and autumn particle paths are listed in Tables 3-1 and 3-2 respectively Most of the particle paths originated (ended) at one of the SCAQS wind monitoring sites listed in Tables 1-1 and 1-2 Additional sites are identified in Table 3-3 Note that for some sites in Tables 3-1 and 3-2 a new particle path was initiated at the particles 1000 PST location but at a higher level

Additional forward particle paths were calculated for comparison with the SCAQS tracer data (England et al 1989 Horrell et al 1989) The initiation times and locations correspond to the tracer releases and are given in Tables 3-4 and 3-5

9106lrl02

~~ll1~(I titW I~l~~~t~~

TABLE 3-la Summer particle paths forward particle paths

Start Time Origination Start Date (PST) Site Level(s)

624 0500 LBCC 13 CELA 13

624 0700 LBCC 13 CELA 13

624 1000 LBCC 13 CELA 13

624 1500 LBCC 13 CELA 13

624 2100 LBCC 13 CELA 13

625 0500 HHRA 5 PADA 45 FULA 5

625 0700 FULA 5

713 0500 LBCC 13 CELA 13

713 0700 LBCC 13 CELA 13

713 1000 LBCC 13 CELA 13 EMTA 24

713 1500 LBCC 13 CELA 13

713 2100 LBCC 13 CELA 13

714 0500 LBCC 13 CELA 13

714 0700 LBCC 13 CELA 13

714 1000 LBCC 13 CELA 13

714 1500 LBCC 13 CELA 13

714 2100 LBCC 13 CELA 13

Continued

19

91061 07

TABLE 3-la Concluded

Start Time Origination Start Date (PST) Site Level(s)

827 0500 LBCC 13 CELA 13

827 0700 LBCC 13 CELA 13

827 1000 LBCC 13 CELA 13

827 1500 LBCC 13 CELA 13

827 2100 LBCC 13 CELA 13

828 0500 LBCC 13 CELA 13

828 0700 LBCC 13 CELA 13

828 1000 LBCC 13 CELA 13

828 1500 LBCC 13 CELA 13

828 2100 LBCC 13 I CELA 13

92 0500 LBCC 13 CELA 13 HHRA 12

92 0700 LBCC 13 CELA 13 FULA 12

92 1000 LBCC 13 CELA 13

HHRA 45 FULA 45

92 1500 LBCC 13 CELA 13

92 2100 LBCC 13 CELA 13

93 0700 RIVA 12

93 1000 RIVA 45

A new particle path was initiated at the particles 1000 PST location but at a higher level

20

~(Ibull bull 11

41

~1~_11Lmiddot11~1~~tV t rt~~14_ II~~~h1 1r t

TABLE 3-lb Backward particle paths

End Time Destination End Date (PST) Site Level(s)

624 1500 CABA 23 EMTA 45 BURA 1234 HHRA 4 FULA 45

624 1800 RIVA 3

625 0500 CLAR 13 RIVR 13 HHRA 5 PADA 45 FULA 5

625 0700 CLAR 13 RIVR 13 FULA 5

625 1000 CLAR 13 RIVR 13

625 1500 CLAR 13 RIVR 13 CABA 23 EMTA 4 BURA 4 RIVA 45

625 1600 RIVA 45

625 2100 CLAR 13 RIVR 13

713 - 1000 EMTA 24

713 1500 CABA 23 EMTA 45 RIVA 24

713 1600 RIVA 24

714 0500 CLAR 13 RIVR 13

714 0700 CLAR 13 RIVR 13

714 1000 CLAR 13 RIVR 13 BUR 123

714 1500 CLAR 13 RIVR 13 CABA 23 EMTA 4 BURA 234 RIVA 2

714 1600 RIVA 2

Continued

21 nn1 Y1

TABLE 3-lb Continued

End Time Destination I End Date (PST) Site Level(s)

714 2100 CLAR 13 RIVR 13

715 0500 CLAR 13 RIVR 13

715 0700 CLAR 13 RIVR 13

715 1000 CLAR 13 RIVR 13

715 1500 CLAR 13 RIVR 13

715 2100 CLAR 13 RIVR 13

827 1000 CABA 2 EMTA 23 BURA 123

827 1500 CABA 2

828 0500 CLAR 13 RIVR 13

828 0700 CLAR 13( RIVR 13

828 1000 CLAR 13 RIVR 13

828 1500 CLAR 13 RIVR 13

828 2100 CLAR 13 RIVR 13

829 0500 CLAR 13 RIVR 13

829 0700 CLAR 13 RIVR 13

829 1000 CLAR 13 RIVR 13

829 1500 CLAR 13 RIVR 13

829 2100 CLAR 13 RIVR 13

92 1000 PADA 3

92 1100 PADA 3

92 1500 EMTA 2 RIVA 2

Continued

22

91061 07

I

1bullLI bullI I bull ~ii 1 1

1 cl1

[1i1bull~j~1 Iiii~ j t-~dI ~1 1ltl1111111 II r I l~bull~II~middot t1~i~n_11~~ ~middot -

TABLE 3-lb Concluded

End Time Destination End Date (PST) Site Level(s)

92 1600 RIVA 2

93 0500 CLAR 13 RIVR 13

93 0700 CLAR 13 RIVR 13

93 1000 CLAR 13 RIVR 13 CABA 2 BURA 1234

93 1500 CLAR 13 RIVR 13

93 2100 CLAR 13 RIVR 13

23 9106107

TABLE 3-2a Autumn particle paths forward particle paths

Start Time Origination Start Date (PST) Site Level(s)

1111 0300 LBCC 13 CELA 13

1111 0700 LBCC 13 CELA 13

1111 0900 FULA 12

1111 1200 LBCC 13 CELA 13

1111 1500 LBCC 13 CELA 13

1111 2100 LBCC 13 CELA 13

1112 0300 LBCC 13 CELA 13

1112 0700 LBCC 13 CELA 13 FULA 12

1112 1000 FULA 45

1112 1200 LBCC 13 CELA 13(

1112 1500 LBCC 13 CELA 13

1112 2100 LBCC 13 CELA 13

1113 0500 ONTA 123

1113 1000 ONTA 45

123 0300 LBCC 13 CELA 13

123 0700 LBCC 13 CELA 13 FULA 12

123 1000 FULA 45

123 1200 LBCC 13 CELA 13

123 1500 LBCC 13 CELA 13

123 2100 LBCC 13 CELA 13

1210 0300 LBCC 13 CELA 13

1210 0700 LBCC 13 CELA 13

Continued

24 9106108

TABLE 3-2a Concluded

Start Time Origination Start Date (PST) Site Level(s)

1210 1200 LBCC 13 CELA 13 FULA 123

1210 1500 LBCC 13 CELA 13

1210 2100 LBCC 13 CELA 13

1211 0500 ONTA 12

1211 0700 FULA 12

1211 1000 ONTA 45 FULA 45

A new particle path was initiated at the particles 1000 PST location but at a higher level

25 9106108

TABLE 3-2b Backward particle paths

End Time Destination End Date (PST) Site Level(s)

1111 1500 HHRA 34

1112 0300 LBCC 13 CELA 13 RIVR 13

1112 0700 LBCC 13 CELA 13 RIVR 13

1112 1200 LBCC 13 CELA 13 RIVR 13

1112 1500 LBCC 13 CELA 13 RIVR 13 HHRA 34 PADA 3 FULA 34

1112 2100 LBCC 13 CELA 13 RIVR 13

1113 0300 LBCC 13( CELA 13

RIVR 13

1113 0700 LBCC 13 CELA 13 RIVR 13

1113 ~ 1200 LBCC 13 CELA 13 RIVR 13 ONTA 34 EMTA 45

1113 1500 LBCC 13 CELA 13 RIVR 13

1113 2100 LBCC 13 CELA 13 RIVR 13

123 0300 LBCC 13 CELA 13 RIVR 13

123 0700 LBCC 13 CELA 13 RIVR 13

Continued

26 9106108

TABLE 3-2b Concluded

End Time Destination End Date (PSn Site Level(s)

123 1200 LBCC 13 CELA 13 RIVR 13

123 1500 LBCC 13 CELA 13 RIVR 13 PADA 3

123 2100 LBCC 13 CELA 13 RIVR 13

1211 0300 LBCC 13 CELA 13 RIVR 13

1211 0700 LBCC 13 CELA 13 RIVR 13

1211 1200 LBCC 13 CELA 13 RIVR 13

1211 1500 LBCC 13 CELA 13 RIVR 13 PADA 1234 BURA 123

11 13 2100 LBCC 13 CELA 13 RIVR 13

27 9106108

TABLE 3-3 Additional particle path initiation (destination) points

Site Identifier Location UTM Easting (km) UTM Northing (km)

BURA Burbank Airport 3749 37859

CABA Cable Airport 4370 37751

EMTA El Monte Airport 4047 37717

FULA Fullerton Airport 4091 37485

HHRA Hawthorne Airport 3768 37547

ONTA Ontario Airport 4435 37686

PADA PADDR Intersection 3810 37175

RIVA Riverside Airport 4584 37485

28

TABLE 3-4 Forward particle paths calculated for comparison with the SCAQS tracer data

Start Start Origination Date Time Site Levels

0300 LAGS 13 0600 13 0900 II 13 1200 II 13 1500 II 13

625

715 0500 VRNN 1

0800 VRNN 1

828 0600 LAGS 13 1000 II 13 1300 13 1500 13

93 0500 VRNN 1

0800 VRNN 1

1111 1600 LAGS 3 ESGS 3 VRNN 1

1900 LAGS 3 ESGS 3 VRNN 1

1112 0600 ESGS 3 VRNN 1

0900 ESGS 3 VRNN 1

1210 0600 LAGS 3 ESGS 3 VRNN 1

0900 LAGS 3 ESGS 3 VRNN 1

1600 VRNN 1

29

9106lrl09

TABLE 3-5 SCAQS tracer release sites

I_______________________

Site Identifier Location UTM Easting (km) UTM Northing (km)

ESGS El Segundo 3690 37536 LAGS Los Alamitos 3980 37370 VRNN VRNN 3874 37625

(

91061rl09

30

The particle paths were calculated for up to a three-day period In general forward particle paths were calculated through the end of the monitoring period or until the particle was advected out of the domain Backward particle paths were calculated through the beginning of the intensive monitoring period or until the particle left the domain

Selected plots of the forward and backward particle paths are given in Appendix C

SUMMER PARTICLE PATHS

Forward particle paths (levels 1 and 3) originating from Central Los Angeles (CELA) and Long Beach City College (LBCC) at 0700 PST on 24 June 13 and 14 July 27 and 28 August and 2 September are shown on pages C-1 through C-12

The surface-level particle paths originating at CELA indicate northward advection from this site on all days The particle path initiated on 27 August indicates that the initial northward advection is followed by westward advection on the following day the particle path initiated on 2 September indicates that the initial northward advection is followed by eastward advection on the following day In all cases the residence time in the central Los Angeles basin is less than 12 hours

The surface-level particle paths originating at LBCC are carried northward and eastward usually exiting the Los Angeles basin through Cajon Pass On 24 June and 14 July however the particles are carried across the San Gabriel Mountains (with the upslope flow) Considerable eastward transport is indicated by the particle paths initiated on 2 September after 1800 PST -Residence time in the Los Angeles basin varies from day to day and is especially long for the particle path initiated on 27 August (approximately 30 hours) Particle paths initiated on 13 July and 28 August also indicate some recirculation and a significant residence time within the Los Angeles basin

The level 3 particle paths also indicate northward transport from CELA on most days Advection into the San Fernando Valley which may be partly due to the SE flow produced by the turning of the sea breeze into the valley is more pronounced on certain days (14 July 28 August and 2 September) Level 3 particle paths originating at LBCC show mostly northwestward transport Recirculation over the Los Angeles basin is indicated for the 2 September particle path

Backward particle paths (levels 1 and 3) culminating at Claremont College (CLAR) and Riverside-Rubideaux (RIVR) at 1500 PST on 25 June 14 and 15 July 28 and 29 August and 2 September are shown on pages C-13 through C-24 -

_

9106lrl 02

31

The surface-level backward particle paths originate over water on all days the particles are carried eastward and northward into the Los Angeles basin On 14 July and 28 August the particle paths indicate primarily eastward transport There is some indication that particles arriving at the destination sites on 28 August may have originated in the South Central Coast Air Basin (SCCAB) On 25 June 15 July and 3 September the particle paths indicate primarily northeastward transport On 29 August northward transport is indicated

The level 3 backward particle paths also indicate transport from the W SW or SE on the intensive monitoring days The over-water segments of the particle paths indicate eastward advection on 14 and 15 July and 27 and 28 August and northward advection on 25 June and 3 September Again there is some indication that particles arriving at the destination sites on 28 August may have originated in the SCCAB Almost all of the particle paths indicate that the particles are carried onshore between Long Beach and Laguna Beach and advected northeastward to CLAR and RIVR An exception to this occurs on 28 August On this day the particles are carried onshore near Redondo Beach and are recirculated over the Los Angeles basin for approximately 24 hours before arriving at the destination sites

AUTUMN PARTICLE PATIIS

Forward particle paths (levels 1 and 3) originating at CELA and LBCC at 0700 PST on 11 and 12 November 3 and 10 December are presented on pages C-25 through C-32

The autumn particle paths exhibit more day-to-day variability than the summer particle paths indicating more variability in the autumn airflow patterns Because both the CELA and LBCC locations are affected by the land-breezesea breeze circulations all of the surface-level particle paths show some recirculation in the western basin Particle paths initiated on 11 and 12 November eventually indicate eastward transport

The level 3 particle paths also differ among episodes but are all affected by the seashybreeze circulation Particle paths initiated on 11 November show eastward transport from CELA and southward transport from LBCC Northeastward transport at this level is indicated by the 12 November particle paths The particle paths initiated on 3 December illustrate local recirculation by the sea breeze On 10 December southward advection is indicated

Backward particle paths culminating at CELA LBCC and RIVR at 1500 PST on 12 and 13 November 3 and 11 December are presented on pages C-33 through C-40

The surface-level particle paths indicate that particles arriving at CELA at 1500 PST on all four days follow a southward then eastward course Particles arriving at LBCC are affected by some combination of onshore advection and local recirculation The particle

9106Irl02

32

paths culminating at Riverside indicate a variety of possible transport patterns eastward transport on 12 and 13 November northwestward transport on 3 December and southeastward transport on 11 December

The level 3 backward particle paths for 12 November illustrate recirculation aloft by the evolving airflow patterns while the particle paths for 13 November indicate primarily eastward advection The particle paths for 3 December are clearly affected by the SE that occurs on this day the resulting particle paths indicate northwestward transport The particle paths for 11 December indicate southward advection and recirculation by the sea breeze

COMPARISON WITH TRACER DATA

Forward particle paths originating from El Segundo (ESGS) Los Alamitos (LAGS) and Vernon (VRNN) at times corresponding to the SCAQS tracer release times are shown on

middot pages C-41 through C-76 For ground-level tracer releases the particle paths were calculated using level 1 (10 m agl winds) for stack releases the particle paths were calculated using level 3 (300 m agl) winds A qualitative comparison with the observed tracer data is provided here

Surface-level particle paths originating at LAGS on 25 June indicate northward transport during the morning and afternoon hours The level-3 particle paths indicate that material is transported out of the basin through Cajon and Banning Passes by the upper-level winds Both of these indicated transport patterns are supported by observed tracer data

Surface-level particle paths originating at VRNN on 15 July indicate northward transport and exhibit good qualitative agreement with the tracer data

Both the surface-level and level-3 particle paths originating at LAGS on 28 August indicate primarily northeastward transport Most of the particles are eventually advected through Cajon Pass This is consistent with observed tracer at Redlands San Bernardino and Crestline

Surface-level particle paths originating at VRNN on the morning of 3 September do not agree with the tracer data While the particle paths indicate northeastward transport the tracer data indicate northwestward transport

Surface-level particle paths originating at VRNN on the afternoon of 11 November indicate westward transport and a long residence time in the central basin The level-3 particle paths originating at LAGS and ESGS show southeastward transport and recirculationmiddot by the sea breeze Surface-level particle paths originating at VRNN on the following morning again show net westward transport and a long residence time in the

( central basin but the level-3 particle paths indicate northward transport with recirculation

91061rl 02

33

by the sea breeze The smface-level particle paths are consistent with the tracer data Tracer was observed over the north-central basin and along the foothills on the morning of 13 November

The surface-level particle paths originating at VRNN on the morning of 10 December indicate relatively stagnant conditions with a weak sea breeze circulation Some net transport toward the south is indicated Particle paths originating at VRNN on the afternoon of IO December show little movement throughout the following day The long residence time in the basin is in qualitative agreement with the tracer data Tracer was observed in the basin on the following day The dispersion indicated by the widespread tracer concentrations however cannot be represented by a single particle path The level 3 particle paths originating at LAGS and ESGS on the morning of 10 December show southward transport and recirculation by the sea breeze

UNCERTAINTY ANALYSIS

A simple analysis was perlormed in an attempt to quantify the degree of uncertainty inherent in the particle paths The uncertainty analysis was similar to an analysis described by Moore et al (1989)

Three major forms of error in the particle path calculations can be identified The first two result from errors in the wind fields The most fundamental of these is measurement error as measurements can only be regarded as approximations of the true winds Regardless of the accuracy of interpolation techniques measurement error will always affect the final wind field The second type of error results from the interpolation of these measurements and the parameterizations and approximations in the diagnostic wind model This error will be greatest in data-sparse areas The third type of error results from the use of two-dimensional wind fields The two-dimensional particle paths do not incorporate the effects of vertical motion which may be a significant source of error considering the mesoscale regimes present in the study area

The particle path uncertainty in this analysis is the result of all sources of error and is therefore very difficult to estimate A lower bound 11 on the uncertainty was assumed to result from measurement error alone Here we use a lower bound uncertainty estimate to illustrate the effects of measurement error on the particle path calculations Several assumptions were made in order to estimate this uncertainty First average bias for all instruments was assumed to be very small Second instrument precision was assumed to be constant over the region Third measurement error (speed and directional error) was assumed to be normally distributed around zero The standard deviation about the mean was based on observational data

For this uncertainty analysis 20 particle paths were initiated from a single site at a single time For each 15-minute particle path segment u and v were calculated as described in

9106lrl 02

34

(

the previous section Small random wind components (representing the measurement error) were then added to the interpolated wind The smaller components were determined by randomly selecting wind speed and direction error from two separate normal probability density functions (PDF) To do this a uniform random number generator was used to find two error probabilities Ps and Pd between 0 and 1 An inverse normal PDF routine was then used to find the speed or direction error that results in error probability Ps or Pd respectively Commercial statistical software from Th1SL was used to generate uniform random and inverse normal PDF values 1

The PDFs possess means of zero and standard deviations equal to the root mean square error (RMSE) of the measurements For simplicity RMSE values for speed and direction were taken from those specified by Moore et al (1989) namely 02 mis and 10 degrees respectively Random error components were determined for each 15-minute segment of every particle path The resulting divergence in the particle paths represents a lower limit to the uncertainty inherent in the particle-path calculations

Plots illustrating the effect of the lower-bound uncertainty on the particle path calculations are given for one summer and one winter episode in figures 3-1 and 3-2 respectively The summer particle-path bundles (Figure 3-1) were initiated at CELA and LBCC at 0700 PST on 14 July The winter particle paths (Figure 3-2) were initiated at CELA and LBCC at 0700 PST on 12 November The bundles were calculated for levels 1 and 3 In general the bundles indicate that the airflow patterns do not vary abruptly in space or time The winter particle paths are less divergent that the summer particle paths

While plots of the particle path bundles qualitatively indicate the degree of lower-limit uncertainty a quantitative summary of the uncertainty can be obtained via hourly estimates of RMSE of all particle positions relative to that with zero error The RMSE can be obtained from

1 1 M 2 2

RMSE = - ~ dj[ lM ]=l

where

1

dj = [(xj - X1)2 + (yj -y1)2]2

and where Mis the number of particles and ()1 represents the position of the actual particle as calculated in the previous section (ie the zero error particle path) The RMSE is used to determine the growth over time of the confidence interval about the

1 IMSL is the registered trademark of the Scientific Problem-Solving Software System developed by IMSL Inc Houston Texas

91061rl02

35

NORTH

425 31570

SOUTH (a) CELA Level 1I

20

(KM)

NORTH

425 31570

SOUTH (b) LBCC Level 1I

20

(KM)

le-path bundles initiated at 0700 PST 14 July 1987FIGURE 3- composedd par tic le paths1 Forwar of 20 particBundles are

35

NORTH

425 3570

SOUTH

(c) CELA Level 3

NORTH

425 3870

SOUTH

(d) LBCC Level 3

FIGURE 3-l Concluded

37 9106]

70

IlFil

NORTH

CEIA Level 1(a)

3(170

1-Ul j

NORTH

425 3(170

SOUTH

(b) LBCC Level 1

Forward le-path bundles initiated at 0700 12 November 1987FIGURE 3-2 composed par tic le pathsbullBundles are of 20 partic

3391061

425 3870

SOUTH

(c) CELA Level 3

J8

3870425

SOUTH

(d) LBCC Level 3 10 2

(KM)

FIGURE 3-2 Concluded

91061 39

1 1c

i I

trajectory calculated using the DWM winds Hourly RMSE values are given for the particle paths bundles shown in Figures 3-1 and 3-2 in Tables 3-6 and 3-7 respectively For level 1 the average RMSE after 12 hours is 567 km for 14 July and 167 km for 12 November For level 3 the average RMSE after 12 hours is 416 for 14 July and 260 for 12 November

9106lrl 02

40

TABLE 3-6 Hourly RMSEs for particle-path bundles initiated at 0700 PST 14 July 1987

Time LBCC RMSE CELA RMSE (PST) (km) (km)

Surface Level

0700 000 000

0800 042 042

0900 057 069

1000 063 100

1100 093 128

1200 091 143

1300 111 168

1400 136 217

1500 229 227

1600 265 219

1700 394 219

1800 620 265

1900 796 338

Level 3

0700 000 000

0800 018 049

0900 064 090

1000 068 140

1100 087 172

1200 089 162

1300 123 180

1400 231 224

1500 337 258

1600 419 278

1700 427 306

1800 449 347

1900 462 370(

9106104 41

TABLE 3-7 Hourly RMS Es for particle-path bundles initiated at 0700 PST 12 November 1987

Time LBCC RMSE CELA RMSE (PST) (km) (km)

Surface Level

0700 000 000

0800 047 049

0900 078 065

1000 077 066

1100 089 086

1200 109 094

1300 089 092

1400 118 125

1500 100 138

1600 129 150

1700 147 160

1800 161 164

1900 156 176

Level 3

0700 000 000

0800 045 076

0900 061 120

1000 069 139

1100 092 171

1200 098 163

1300 096 156

1400 125 182

1500 150 175

1600 231 171

1700 261 152

1800 308 156

1900 345 175

91061 04 42

References

Douglas S G R C Kessler and E L Carr 1989 Users Guide to the UAM Wind Preprocessor System Systems Applications International San Rafael California (SYSAPP-89079)

England W G and L H Teuscher 1989 Perfluorocarbon Tracer Experiments During the Southern California Air Quality Study Air amp Waste Management Association For presentation at the 82nd Annual Meeting amp Exhibition Anaheim California (June 25-30 1989)

Horrell R S M Deem P Wyckoff F Shair and N Crawford 1989 Ground Release SF6 Tracer Experiments Used to Characterize Transport and Dispersion of Atmospheric Pollutants During the Southern California Air Quality Study of 1987 For presentation

( at the 82nd Annual Meeting amp Exhibition Anaheim California (June 25-30 1989)

Moore G E G Z Whitten J P Killus and R D Stevens 1989 Analysis of 1985 Air Quality and Air Chemistry Data Collected Under the South Central Coast Cooperative Aerometric Monitoring Program Systems Applications International San Rafael California (SYSAPP-89058)

Ross D G and I Smith 1986 Diagnostic Wind Field Modelling for Complex Terrain-Testing and Evaluation Centre for Applied Mathematical Modelling (CAMM Report No 586)

9106105

43

rr T rr

Appendix A

SCAQS WIND MONITORING SITES

(

9106103

-

((--_ 770

-

NORTH CM~RS 42 575

5 I I j I I 1---L 525 middot 1J75 I I I I I I I I I r I I _--- I C2~middot----_J ~ ~-- 1 ( ~ ~J25 I I I I I I I I I I I I l__ ) -475 () I Li 1~)51 (

--~ltJ820f-_ ~------ ---

~- -cli( ol --9-Sl-l

lt ( ~)

CQ p llE RiDO ~ llE ANAH

I middot LAS-L

bull~ LANC ( _ Q - _J ) ) - _ ~ - ---- - ~ _ ____ middot clt G~ _----~____-=-- -___ ~PR __ - ---- --- VCTC ltgt

-- ------ f---- __ - ---_ -middot ------ --___ --~-----TEME --- _ f

-)(j _ _ middot --middot -------- - HESP f ----=----==~~~ l ----~~ -- middot l - --- __ -middotlt- CJ _ --- middot PIRs[- lt NfVL_ ---~ - C~lt --lt _ ~ ~- __ (~~

__ --- bull _ i - f c-_ _ I - )~__) - ---~poundS---_-

3770 t-()

LA llE PICO )Ct444 -w 3 ~~~ZUMA MALI VE VEN llE llE middot Jl~C - ( p

NN WOOHS ~- ~ m - middot - o - I () )IE 55I

1-- (lt - - PERI ) ~ S__~llE

BU25 bull y _ L ~~5o 13720

I ----~- - 515 3670 525

(KM)

~---

SNI

20

SCAQS SURFACE WIND MONITORING SITES

19 JUNE 1987

0

qj n

If) N ~

I

1S13

Ishy)

0 Vl

(f) w I-V)

l)

z a 0 1---

z 0 2

0 z 3 a ~ I r---

0 CX)Wm Q_ shyQ_ ) w

z (f) )

0 7 lt( um Vl ---

0

A-2

-

r~

NORTH CM~RS

I -middot_( lt - middotmiddot -~ ---lt - - - middotbulll- ) middotmiddot-middot - - -c ) 0 0 l__SG- ___ J1 bull_ -- VCTlt I

_ --middot ---middot llSeR - - __ - --middot----- J~__-- middot - - - -middot bull bullbull- HESP ~-_-middot- bull- ~- _~ - -___---middot - ~ -_ ) ME --- -middot - bullmiddot bull -_

38201-_ ~~_ _ TE _ C-bull_- - CJ - ~Jj __ -_

1

1 bull I bull __ (]

SI bull bull=-middot _ -~ ~~ ~_-__ middot _J lt(- j SIMI -M~S -~_-~It_ - - 1Ir- I w _ I B~~ AZ~~~1 AL SNBOC ~ (ELRO l~ Hf~~ ideg_=- --

)1__ CE~ wftcentrHIN RIVRM44 --- ~--- ---~ LA PICO __pound bull P

T ~NN WI-V C) D 2J~55I Wco - middot PERI Lv

R~O ~L ~AN~ TO~~~~ ~ ~ ~-MO

62

~ ~j~l)~gto ay 3670( 525

SCAQS SURFACE WIND MONITORING SITES 24-25 JUNE 1987

~ (

NORTH 275 325 375 425 475 OA~5 575

f_~ CJ ~ -middot--

_middot

middot1 Imiddot

)i

gt--o~0 (~_)r-) _ (~~3s20

--~- middot qlt ( ____ - ---- - lt__ ~ ~ -i~ J ) _ - - -

-~ -__ J V 38201-~--o- lt-

-----~~middot ---- __ - ~---- -_--- ~====- -=_---~ ~ _

~ -- middotbull ~gt ----_ _______ ) ~~~ l -- - - i - --- l

( _ (_-~ _-lt~~ - )

2middot1=~ (~gt lt_) -~~~~~(_~tJt-~~~~t~~~~-~) ~

uR--- -----Qi~ ~ 3770_ 3770 -middotmiddot--rmiddot- -7 ~ 1-

(J) llE ONT _ -middot __ w

Y-_ EMU c __- ~ Ul lt(1 w~

- -- - LMIIEUA sFtA ~

1

----_

~

_

t_~~ -bull _ middotgtI __

~- 0 ~~QgtJn~-~ ~II~

~ f-- -) -) ) ~ ~-

j (_1_j ~~TRM 3720 ( (__ -CcS l l 3720

~- ) -~ --7( ) __~---L_ ~~1-----~D~

1 ~) a --- ~middot 7 rt 0- NSI (

3670 I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I 1 I I I I I f I I I 1 I I I I I I I I I I I I I 36 70 275 325 375 425 475 525 575

SOUTH

I I I I I I 0 10 20 30 4-0 50

(KM)

SCAQS UPPER-AIR WIND MONITORING SITES

24-25 JUNE 1987

--=-

NORTH 25 575

CM6QRS C__j 475 -____

3 ---- 375 425I - L ---) - ~-

SNI

-_-~)---_ lt-____ ___3azor_~c~~ sl

VENt ELRO

BU25

275 ~ c--) ~LANC ~~-_ lt ~ 0 9-~

llE

3670

----~ - J Q ____ ~- lt) ~ 3820____ -- middot--- 0~__~- __ J S --- ---~- ---- -- -- v~ ~ ~ ===-~ - - - - ---- - - ---- - -- -middotv ------------ -~ l f----- _ -- -middot _ - --- __ HESP ~-----=- c~i - - _- --- - - gt - -bull TEME -- -middot - bull ----- -- - _ middot ( lt~ clt=~ ~i cJ~ c _

~I -~~le lt~NJWl--------~- -iHitgt~-=__~~ _I -~ J~~~ ~ 3770 r-1 - - -- -- - ltJ c__ ---middot ~ ( - ------ -c_ - - -~~~ ~ ()-~ ~ - -middotMiss ---~---=-~----r~-__ -middot _frac12 __ i5

j S ~R~~HE -7t$ llE llE ftALSNBO llE ~~ t __ -R~ B~~SA AZ~jl~r RD ~~_ ~ 1( )l___ llE CE~HAllE ~~ - RIVRM44 - llE ------___llE W~HIN -Jti )Ii ----------- __

~--- LA llE PICO l llE C -- r p

ZU VE NN Wt-laquoJHB 0 1~55WT IN - ---- ) llE CO P llE llE ( gt (____ PERI ~

IJl

~ 71t~P325 425

SOUTH

I I I I I I 0 1 0 20 30 40 50

(KM)

SCAQS SURFACE WIND MONITORING SITES 13-15 JULY 1987

clt(middotO -i ~Ill ~

()VL~t

~~) o2~ r

275

-- _~middot middotc-- ( ~ I - ___ ) --____ ~~~

---- ---bull-~ ( lt ) lt I ~ (J () - _ ~ ~ J ) bull middot ( - ~ ~- - --- middot - ~ - middot middot G--~_J lt)

cce- middot- __ V ___ -- l - _- bull middotbull - - _~---~ 3820r----=-~_~Jrlt - - - middot f ~l-~--~--~] I c___ -~c ~ -- ( _ 1middot--- 1___ _~

-I -- = lt -bull lt middotmiddotltmiddot~- middot - middot -L-

- ~-- middotbull ---_- --- J middot J ) ) -- bull- ~-bull _ --middotbullbull- middot middot _ j -- -)) 3770 -ii __gtc _ -- - - middot bull ltmiddot ~- I - _ltbull - -_j-- tn

BURbull-- - middot - - - ) ~~middotj- (~~ ) (middotIi lt(

GL U I ~ - - - w ---~ - -1 __ - ---------= ------___________--- ONT middot middot __ - --_ -

poundMUI - - ~ ____ middot----~~i -__ ~ I

--

--- ~ c) )_

deg ~

_- - (

_l

_ ~ )

C-

~ _middot

( T( f 1-

525

t j 30 50

(KM)

SCAQS UPPER-AIR WIND MONITORING SITES 13-15 JULY 1987

_==--

J ANORTH CM6sectARS

3s201-

~- ~ ~ ~ ~0A - --__ - -----~ ---~- --1(j - A ) __gt ---------_

-~~J TEMEa l_C ~r1

0

820

_--C~ = ~~~ltCH~~ J ~ S~I ----i4~58 ( J

tigt-1

-J 3 BU25

frac14~) 8 F1(5

- HA

APICO RN A A ~ N WVHB

AANAH

~IHIN J _CM44 ~-

A

CY PERI N ~ iJN

D A

HEM

770 ~ V1 lt( w

~ 3670

SCAQS SURFACE WIND MONITORING SITES 27-29 AUGUST 1987

) w l-1

C)

z-a 0 1-

z 0 ~

0 z - r---3 co a Ci)

- -ltI lshy

a )w ) Cl 0 Cl ) ) lt(

V) Ci)

0N ltI u r--- () N

A-8

NORTH CM~RS bull r (_J~

1

325 - - l L=~-) ( bull

1275 _ ( ~ --- -middotbull LANC 1 _ bull I( f LJ- ~ () ~-- 3820 bull- - J bull

- --__ _ -- )- bull bull - middotbull-~- _ I v----_J -- J middot-- - middot- - -middot I I J_______ ---==-------------- WSfgtR - -- VC _____- ltgt

-~--~-- fJ- -middot - - - --- --- _ - ----- --- ----- ) r bull---_ --- - - -- bull p -- --__-----_ - -----

38201-_ -------~- TEME --- --- - - bull -- middot- bull --- _----~ -~ II middot ) - ---- -- -- _ -- HES f I-----=-- ~ ------- ~ l _ -- - I

- bull middotbull-bullbull~ ll( middot bull - middotbullbull - 1 I ~----- middot-bull

9 -- ___ __ _ -------- _=- r _ -- )J -~~ ~~~ 3770 t--SJMImiddot MISS~~~--bull ~--~-- ll( -_ ~-VENt Cllfl58 bull I middot- - middot- - --JOE ~--bull bull ~ V)

ELRo __J 4Esc euRK ~Ej1 fAL sNeo I ~ _ J middotmiddot -~~ 1 i5 l - ~SA ___ I ROLD ~ ~ C~ ( _____~- -~ llE CE~ llE W~(HIN RIVRlK -- - 1 llE __~

3770 middot- ~LA VEN Pl llE _ _- JJ~C _CM44 - ~ p ---__-_

0 ANAC cubull~ - - v~wr LyenNN WHJHB --- -- Q~~W)( ___

- llE HA ~ -lE _ -- _ - -_

I 0

SAi middot-middot J) t450

3720 LA r TO~omiddotlt~lt~~ -~ ~ (~~

~ ~ r-~~~1~ o ~~l~

SNI 1 (l_ amp-~ 575 3670367g75 325 375 425 475 525

SOUTH

I I I I 0 10 20 50

(KM)

SCAOS SURFACE WIND MONITORING SITES 02-03 SEPTEMBER 1987

------J ------------------ ) I-- 38201--__--~~- i) ___

_-- ~--gt--

-__

_

NORTH 275 325 375 425 475 525 575

YI ~middotCJ~bull_bullrmiddot--- lt I __ (_______~ ~ - - I -- J ( - - - - - - - J i O l__ ______________ -~

~j ( lt- bull- ~ 0 C) ~ -- (-- _)) ) ----_--__ -- middot-- _ - --J ) J ---- - ------- ----- middot----- -( ~---_j

3820----==--=-- ( - -middot bull __ - ---~----= --- ---- -- -- ------------ _______ ltJ~~ A I --- - ---- - -_ - _ --_--~-- -_ - --~co___--_--___-__----- f middot l - --- - --- - __- ---_-- -- ~ middot -middot __ J L--~ cmiddot

---- -- middot--~-- -- -- - _ _-- - - ~

--- - middot- - -C-_--- - -~ rmiddot middot) _- ~middot~ I--- ----~deg- -- -- C _-_--_- __ __ _ ___ _--_--~ __---- ~---lt lt ltgt _~-__gt_ ~~-- i~ - UR ---- -------- - ----~ --lt I middot- B ~----- Qll __ ~----- _ CI____ ~ __ --- ---middotir ~ - 3770

1-I- 3770 () U)( - -- -- 0~ - j _j ______- ==--=--_ --___ - ---w lt(

w~

~gt middot1 r-

0

3720 3720

middotmiddotmiddot J ~ ) ~l - ~ ~

~ tmiddot~----_7~~ p__ D2)t~~

NSI I(--_ Imiddot- 3670 3670

275 325 375 425 475 525 575

SOUTH

I I I I I I O 1 0 20 JO 40 50

(KM)

SCAQS UPPER-AIR WIND MONITORING SITES

02-03 SEPTEMBER 1987

~ I

t

NORTH CM61yenRS

----- I uic middot I Ibull 0 z_ ~ p

-_- - - - _ - middot-~-_ ------- VCRV

820 --- -- -- I W-gtER --- _ ---- --- ~ ) - -_ - I _ _ - _ --- _ _ _ -_ bull _____ _ _ - -- -- -- _ --_ ----~ HESP 3 -- ME -- -middot bull - --- _ -- _ TE - -- __ _-- - c----~middot - r

PIRlb -_1 N bull--~ _ --lt~_- - _ _ ---------- - -MISS_ _--- ___ bull---=-- _llE ~ ~ j lt) hlt---- F-~~--_ ----1A-_c=_--middot llE ----_ ()

-middot SIM ~ICAN llE RIALSNBO llE ~J -------~~ tllE ------TmiddotllE~I ~ES BURR~ AZ~ ~-~r- RD ____-- -- ~ bull FIIISA l- bull -~~

( )l__ -middot middot c(~HA w~~N ~tfJ1 -- -- ~ ~ 1

_

375

~) middot middot ---lt -__ lt_ ___ ___ -i____) C-middotdeg - - -

- -- J_ _) lllt

_ =- ) - -

L- ~~- Iii - ~ _________

-~ 0 I -- (

SI lllt

E

NT CM58V

( j gtT__~_____)___ -- ~l- ) (

middotmiddot-- -_ bull _ ~- () ~

I --J vlt__ ltgt

--- --------- ~---------- C -

_

~(__ f - -- ~---middot)1 ~

t ~ I

I- I- ~

3720

ANAC Wo~ middot -~- lt_)

44

PERI ) ~ tlo

25 R~ ~~ANAH _i~~MN ~~-w--- ~ _ 00 )

T middot I BUllE I -eM62 7 llE

-- - ~

~ 425

SOUTH

20

(KM)

SCAQS SURFACE WIND MONITORING SITES 11 -13 NOVEMBER 1987

(_ (___JCcS ~~)

bull ------------~ - - ( ~ r-------------- Dbull ---

J

575 3670

1SV3 0 0 0 0 N r-- N r-- a) r-- r-- co I I) I) I)

I bull bull I I

I I f1 1 ~~ I- I I-)

0 l)

l)

w I-l)

L)

z Ct 0 I-

z 0 2

0 r-- z OJ

m3 Ct a lt( w0

l() mI Ct 2

~ ww Q_ gt

0 - Q_ 0 I) 2 ) z ~ ___0

N (I) n a

0 lt(- u ()

0

n 0 z I)

N +

lf) r-- I)

- I I I

i I

I 0

~ -L

w

i

~ LL

I)

C-1

+

l() r-- I)

1S3M

A-12

-~

igt I _

l)

CM~RS 275 325 375

NORTH 425 475 525 575

_J- I bullbullbullbullbullbull ~ I bullbullbullbullbullbullbull bull I middot bull -gt-----middot bullbullbull 3 )--- ____j lt c----- -_ -- gt _ ___ ----- t__ l___

-- ------- LANC l ~ ---------- __ ) -- __ ~ I ) ~ - -=~__ I -~middotmiddot- - bull middot bull bull bull lt lt Cl --- ------ ____ -~ -

38201-- ------_- ) ) -- _ ---- -- -- -- - () - --------- I --- -~-lt~~ (middot__ TEME ) --gt ~_ ----- - middot--- --- vamp c~ (~ 0~ ___- --- gtIpound - - - - ---- -- - - -- _ - - ~ ---- - - - ------------- 5SI -middot PIRltgt ----~ ( -middot _ - -- --- - --- ) HESP --------~ ltgt

___ __bull_rbull ~--------~-___ -- ___ ----gt--=- bull~ ~~ I - ---__-=---- ----

VENt CM58 _ sti --~~ ~ lt_ -~-- middot_~-~~ r-~- --middot) ~~) _J MISS-~~-- ___-_ __)~ -- ---( C

- --RESpound BUR~--==-=~----r~---_-__- ~- - ~ _- ~ -1 -

3770 I- ANAC

J I )l( ~- ~-- - i middot ----middot -X--Ret-----_~ -~

___ ( - -middot ~SA AZ~ ~ o j -------=--------~--gt~-- dampHA ~~~f __ SNBO ~~ -~

ZUMA MALI LA w~M -jmiddot I R~J ~-s ~__ )() w ~

3720

8U25

VE VERN PICO _ middotyHIN RIVRyen ( ~----- -~ CM44 -~ ~- ----- ~ C WT ~NN Wt-0HB -NQRC - middot- ~NN-a-~~ _ ~ co~ __ -- ( ~ ~

RVIJO ~ilff AN~ gt cmiddotbull yen 0 (~~ p LASAl I bull- - PERI ~ ) ~

rJ]~~_Y)~N ) (_ --

_T -cJ62~-~

~ 5j(bull 1) ~Jso

l -~

- 1 J) -~ ~7~~t~~

3820

3770 1-() lt( w

3720

I I I I I I I I I I I I I I I I I I I I I I367r I 367075

I 325 375 425 475 525 575

SOUTH

I 0

I 10

I 20

I 30

I 40

I 50

(KM)

SCAQS SURFACE WIND MONITORING SITES

03 DECEMBER 1987

NORTH 275 325 375 425 475 525 575

I I ) gt ~ _YC) ~ ~ I ( o c_ _------- (

___ middot i I 97 ~___ _ --1 cbull-- - - C -___J -- lt ( ) - - - - middotmiddot ~ l _ ----_J

I ---middot ___ __ middotmiddot-_ 1 -~ __J ) bull- middotbull_ -

3820 ------~- I -~middot --- _ middot--- -------~

C - ~ (___ _ 1 ) -- _ - - - gt _ bull f-_- --- r ------~__ -----I --- ) I ~ -~ gt ----- - --- -- ~-_]) c_middotI 38201-_~~_ l _ --- - (-- ~ f ~ I~_ - middot - middot -middotgt- -- -_ -- middot_ _- 1 L- l _- -

~----- l -- middot middot ~- middot-_ _- - middot middotmiddot--gt---~--t~~)-1 bull lt_ _ _ bull middot bull - middot- ~ ~0---~ (c ~ I ~

_ I - bull -~~~--gt~~~-~~ bullS- _~_ l ~~1t~~_~(~ t 3770 I -- -- middot __ - I S____ ( 3770

I- 1-() ()

gt w - I __~sect~- ---ONT lt(

w

tgt

f-- I

~

middot - middotI

-

L~i--

37203720 c_J - (_cS) l -~~

NSI

367~~51 3~5 13~51 14~5 I I I 14~51 is~s s~s 3670

SOUTH

I I I I I I 0 10 20 30 40 50

(KM)

fJ~

SCAOS UPPER-AIR WIND MONITORING SITES I 03 DECEMBER 1987 r~J

NORTH CM~RS 275 325 375 425 475 525 575

middot middot ___ I middot 1 I )l ___ QO --middot - v_ (-- - LANC middot ~ C) lt --bull_ I -- -- bull _ ~ - ~-- ) -------_ -- - _~-- V --I 1 J --- - bull I -J- ---middot - _ bull__ - vc i --- ltl

3820~-----=cc~ I middot -middot - middot - _ ___ -- - 1t ~~------- middot - ___) - - middot -

J-cgzot-- ~--- j 0 TEME _middot ---- --- -

-____ -- ---- _- j (

- -_ I -- --~ _JI( ---- bull bull-- llf -middotmiddot l - -- bull _middot_ middot I --- -- middot CM58

_- 1 -- middot - middot~-~ - -~__ ___ ---~-~_--__~----------D J-~J~bull A HESP

middot OJ11 r P1R1tc lt--~i_-_~-~- ~c~_r--~-~_--_~r-=-~~~~--~ _ --~ --lt__~~~~- CSI ~ -~ --- ---- middotmiddot - ---- - _ ~ r ) J

)gt SIMI -MIS5-X ~Cgt~---- middot-cemiddot middot ____~ ~ middot~ l~fu__ suRlfiI_middot- -tk~- flAf SNBO __ middot ~-~ l 3770 _ 377ob -- ~ PJIISA AZ ~JIily~ _- RDL ___ bull ( C t-shy-- -~ I ----- ~HA 71lt V)tn ANAC ~---- CE~ WALflHIN RIVR ----- ~ w

w ~ LA PICO - CM44 - T -~ ~ ZUMA MALI VEN middotbull _ -bulltRc __ ~ ~lt~~7-

N WuHB _~-- -middot bull ) _J~N ~ -- ~ 0 - ) ~ I ltgt -_middot PERI bull I- ( _

V 8U25~ 3720 3720

WJlt~ ( ~ ~ ) 1 i

~ I I I I I I I I I I I I I I I I I I I I I367r I bull I I 3670

75 325 375 425 475 525 575 SOUTH

I I I I I I 0 10 20 30 40 50

(KM)

-~ ~

SCAQS SURFACE WIND MONITORING SITES 10-11 DECEMBER 1987

NORTH 325 375 425 475 525 575275

-- ----_ lt_~- c--- - ~ ~ _ I I - ---~~c------ ) _ -middot - gt~-

3a2or ------__ lt- ) 1 middot--- -- __ - ~bull =-------------- - r---_ ___ - bull- ---- I I ~ ~-- jc- I bull - - (bull I --- middot middotmiddot - ~ -middot - -- ~ - 3820 -~- bull - middot - - ~-_ ~- _ middot- n

(

- 0 lt_( ~_lt- ~-~~- middotmiddot) ---- ()_ (---- --

--

____ middot

-middot

I

f----- (-J 1r---J~ --~ - middotlt ltbullI I ~__---__ ~-

l B~--- _c_ gt-- lt gt- (- - - j 1--_~--~--l~ -- -- --- )l

-- - --~---- middotc middot=-~-~- (~ L ----- -- --middot - -- - - -bull --- - - c-) ~ J _ -- - ---- - ) ) ltl

37703770 EMLgt middotorrmiddotbull __ ) ~~~~ofmiddot - -- __s=__I- - - ~__- ( ~ __ )---__ Ishy

V) ~ ~- lt(w ~ ---- --~ - w if)

-~2_~middot) ~~at~s t I

I-

deg

FUUA

i () ~--J)llC~lt I

3720 3720

~ltl__ (_)i~

~ NSI

367~~51 I I I I I I I 13~51 I I I I I I I 13~51 I I I I I I I 14~51 I I I I I I 14~51 I I I I I I r--- I5~51 1 I T I I I I I 5~51 I I I I 36 70

SOUTH

I I I I I I 0 1 0 20 30 40 50

(KM)

SCAQS UPPER-AIR WIND MONITORING SITES

10-11 DECEMBER 1987

Appendix B

SCAQS DIAGNOSTIC WIND ANALYSES (Six-hourly plots Levels 1 3 and S)

Summer Intensive Monitoring Periods

19 June 1987 24-25 June 1987 13-15 July 1987 27-29 August 1987 2-3 September 1987

Autumn Intensive Monitoring Periods

11-13 November 1987 3 December 1987 10-11 December 1987

Page

B-1 B-13 B-37 B-73 B-109

B-133 B-169 B-181

9106103

Summer Intensive Monitoring Periods

9106103

19 June 1987

9106103

1bullbull-lil

1SV3

I I lshy Ishyo )

0 0 z ()

IO N IO

I()

N -st-

1S3M

-- l1

l~ i --

0 z 3

---

2 0

_J w cjr----_J CD

0 l() z

I- =)lt( 7

f) 0)

0 -- i n 2 Ishy7

0 ~ ()N ____ gt a 0 20

3o 0 ~

0

B-1

1Sv3

( I l-et 0 z

(

lf) N st-

l() N ~

l()

N 0 t--

n

0 N_ n

U)

ON r-shy(0

n

1S3M

B-2

_

2 0 0 tlt)-__

tlt)

_j w 2jr-_j CX)

0 lf) I- z

lt( ~ IJ1 0)

0 _ 0 n 2 z 1-0 ~ N - 3 ~ 0 20

3o 0 Ov

-----

lSVJ

l)

----

l~3 O 0 w

w ll) (1

l)

0 0 z 3

I lshyet 0 z

--

2 0 0 0

-

LO

w ~

GJ r----~

u 0 z

OJ

I- gt lt( J

mif)

00 ---shyI) 2 z I-0 i l) N -- 3 (1

0 2 0 3 0 0 ~ 0

lSJM

B-3

1SV3

- V1 --

~5 O 0

E - w

w Ul_ 0

V1 0 0

z ~

I I lshy I-et =gt0 0Z V1

-

2 0

J wr--CJ OJ J z0

Ul I- =gt lt( ~ V1 -

0 - n 2 0 z 1-() 0 ~ N __ 3 0

0 2038 0

0

U)

l

lO N v

0 N agt n

0

r--n

0 N

0 N r-shyn

U)

U)

U) N U)

Ul

q--

Ill N q--

1S3M

B-4

td I

J1

~ ~~~~~ ~ -~~~~~ J - -~--Qf~J ~lf~ ~---~ ttt~~~~H~f~ ~ ~~lt~~~0 ~ - ltl-_t I~~~~~~-~~~~~ ~~ I _~1c j_~ L ~ (__1-T11__1 ~_-~_ ---~~~~~~ 11 - ~ +f--1~- ~-+--41-- 1-~- ~ ~ -rtt1-~--~~~~~~~ ~ ~ ~ ~ l t I J JI JI~- t _I i~~I~~~~~~

377itttttttt ~- - t I Jf --------_-- _ 70 ~ ttttttttttttti- fllJ~JI-~~_- ~~ _ =- ~~~- tn w - t t I I I_~- -V _ ~ -laquo___ _ - ltC 3 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ t t t t t I I I I JI~ JI JI ~~ I--~- ~ ~~~~~ w

H~HHHH~in+~l~Hnf5-I ~ ~~~~~~~~ ~ ~ ~ lliii it t I~t~ltt~rrrr~~~~ jl++it~~~t~

20-~~~~~~~~~J tttttttf ~~~~~~~~~~---~-~~~~~~~~~~~~~-amp~ ~ t t t t t t f f f I I I I ~ 1 J(-- _ --P ---~~~~~~~~ ~ ~ ~ ~ ~ ~ ~ ~ t t t t t t t t f f I I I I I ~ ~- j~J _ ~ ~ z~ ~ ~ ~ z l I+ nm~t ~ ~ ~ I I~Jt~-~- -~-__~~~ tr ti ~ ~ t t I t f f I I I I I I I - ~-r __ - ~~~~~~~ ~~~~ ~z11 ttt ffflllllIIII -~~---~~~~~~~~~~~ ~~~~ ~~ ttttft ttflltllllllll A~--~~~~~~~~ ~ ~ ~ ~ ~ ~ ~ t t t t t t t t t t t f I I I I I I I I I I I I I ---P~- ttttttttttttlllllllllllI -~--L~-~~~~~~~~~middot

367 70 ~75 325 375 425 475 525 575

SOUTH

1111111111111111I I I I I I 0 10 20 30 40 50 0 5 10 15

(KM) WIND SPEED (MS) i

NORTH 425 575

_ 414111fl-~bull __~) ff I -lt~i ~ + lJ Jmiddot-bull A fl t1 it bull- _I~--~---~----_---~_~~~~~~~11 t1

~~t 11 f + + diamsJ diams 1 )--t-_+ J~ I-(_ 1 1 ~t1 __

__ Lt l l t fL f_l - - +~~----~~---~___-+_~~~ J-t-t t---t-lt t t-t) LJ lt fl ~ -- t---f t tT~-- ~~ 1__t -t ti t_1 + l - -~-~-~-II~-- - ~~~-----~----t----~~~~~~_Efftt -- r1 ~J t l Lt t

fl

~ _ t_ - 11 _ _

Fi ru bulll=ti~ ~ ~ ~ ~1H1~~_~-~-~----~~~~~~~~~~

DWM WINOS AT LEVEL 3 (300M) 1000 PST 19JUN87

1Sv3

I I-shyCt 0 z

1S3M

B-6

0 II)

0 I)

-_2

0 ~ N -

0

0

-_

2 0 0 0 -

LO

_J

w r---CJ O) _J z I- gt ~~ if)

0 1--shyz V) ~ Q_

20 3 g0

NORTH 525 575

~~~__A -~___~~-

F- ~_--P~

~ ff~~-- - _ middot- ~~

_ bull bull bull bull bull

_ p

~L~k~tt ~ 1 t A middot1-t

~ r~ 1 11 1 __ bull bull --l t frac12Q2_

~ ~--r-J-+7L~

1--Ui

3770 _yen~AA- ---~ ~__~_ ~ K---r

eno tshylf)

w ~ ~ ~ lt( 3 I I_

- w

td I

-J

~~~~- ~ ~ ~~~ shy ~ ~ - shy

3720

~ ~~~ -~1~-nu~~~~-

~ -~ - ~_____A~~1~ ~ _~ ~~= ~~~_______2--- ~

720

~~~-~~~~~_ 9~tbullmiddot~qor~frac12

Y~poundpoundpoundpoundpoundpoundL1~~~~r~ ~ middot

375 425 475 525 575

SOUTH

I I I I I I 11 1111 1111 1 0 10 20 30 4-0 50 0 5 10 15

(KM) WIND SPEED (MS)

DWM WINDS AT LEVEL 1 ( 1 OM) 1600 PST 19JUN87

~

NORTH

Arlt~~~ ~L _ -rJ ll

_ I I I t

_t-z~~J ~i~ bull

i- ~~~ Ii ~~( trn

3770 I - bull bull bull bull bull bull bull iigtlaquo

--- bull bull bull _-

~fJ~ t-l-lltf[llJ- jf1 rr]I ~ ~~~ ~ss~810Ja2ot-~~1i lmiddot - 1 17- - -

-ltL

~ ~ 70 y ____~ tshy

l) ) _-y ____~w

w ~

~ -~--- - -- ~ 1 ~~~~ __ _ bull---bull laquo-___~ Y~~

___p~~__---A~_A 1 ~~td I ~----______A 14 1 ~

00 _-________________ ~ __~----~1~ -A________________--r__~~~ ~ ~ ~~~--~-~~~~-~---e--~ ____________~_________-~ h

3 7 20 t-_--~____- ~ _ _ ~~-_- _ _ _ _ ~___~~~r--~~___-K ~~ ~ -~-------~~~----~ ~ ~~__________~~~~~~~______-r_-A~-1--~~~ ~__________________----r~__~__~-Y~~-------__---A----r~ 1 ~ ~__~___________~ ~

367 tcrr~__~y--rrYlt-trltltltltltlaquo-ltltltltltlaquoltlt~~~ ---

9imiddot~75 325 375 -- -

1111 1111 11111 1 1 1

0 10 20 30 40 50 0 5 10 15 I I I I I I

(KM) WIND SPEED (MS)

DWM WINDS AT LEVEL 3 (300M)

1600 PST 19JUN87

NORTH

bl I

0

~________________A-4_gt~~~_____~~__________~A

A~altP_ ~~~_________--~_A 38 20 I--=-~~_~~___~~-_-~~_ -lt~ - ~_-~_A--1~ _

~~------ ~ gt-~ ti ~----~ ~ _~~~~ 0 ~ ~-i---~~411___ I~-~~ I~A-~~----~7A7~-

A A~---~~- ---~ ~ ~ -middot~~ 1-27 ~shyA_~ ~~~ Jl--__r-t~ ~ (K~_ - fl_

A ~I J111 I _ A - ~ _ T-~ v I 1 1 1 1 1 1 ~ 1 1 _ Ji J I~ f --_i__middot1(- ~ ~)( ~JJXZ - _ r ~ - _ )( _ II I 1 ~ 1 I - _~ _)~ ~~

= 1 II II 1 (~ ~--=-~ -7fJ~~~~tm~i I- 3770 Jir - I 11 I 71 (I) ~ ~111 ~

w ~--middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotbullbull bullbull ~~~11Zll~~11~ ~ ~~_~~~llllN~~ -~~ bull 11jh fi 1 1 II 1 1 1 1 1 1 1 1 1 1 1 1 1 I I 1 0i~~~ 1gtcJ~l~p~ ~~~ ~~~ ~rr1111

70 Ishy() lt( w

111111~~ 3720 i- 1 1 ~ ~

~1~I A-A~)I 1111AA _~l11~ 1

lllllll11IIIAII- ~II ~1~~__~~Ill~~~~~ l1_ 1~~~~~~lll~~~~1 llllflfAll-)lllllllll1~~~~~

A I I I I I 1 I I I I 3670

275 325 375 425 575

SOUTH

I I I I I I 1111111111111111 0 1 0 20 30 40 50 0 5 10 15

(KM) WIND SPEED (MS)

DWM WINDS AT LEVEL 5 ( 1 OOOM) 1600 PST 19JUN87

~

A A A

1Sv3

(

1S3M

B-10

()

l ~

---u) 2 __ O 0 ~ w

w It) Q_

()

0 0 z 3

0 It)

~

0 ---I) 2 ~0N _

0

0

---2 0 __

_J

w r--- GJ OJ _J z __ )

~~ () r-

0 __ z ()3 Q_

~o 3~ ON

NORTH

middot-~~) K~xJ~ middot_1~ ~ 71( I IJ ~JI

~A I 1 ~~

liii[i~~ Hf~-~~~=~T-- ----- --=~~g~g~bull11ft _ ~~~ -1-x~~~ ~~~~-~~~--~-~---~ --~ t ~t~ -~1~~ -- ----

-lt J 1middot~~ __---~__

3 770 ~ ~~ --_tn ---------~~ 1 ~____~ _ ___~ -w bull Y ___~~~ (Al _~ _ ~

-- bull _ _ _ bull bull bull bull~___1 1I J~ _~

~- YI J _L ~~ ~~ YJll~E~

td _____-___ ____ __ 1 ~xgtx2-I ____________~__-A (~~~~ _______~~2-1 y~~- ___~__________~ ~

3 7 20 I-___~~__~~ Y --~ ~__ I _ - - _

~_---A~ ~---__~~~~~--_____~ ~ ~_____A~ y ~ ~___-__________~~ ~ -

~__-_______-yen_2 ~ ~ ~~_______~ ~

1 367~ 75 325 375 425

SOUTH

1111 1111 1111I I I I I I 1 1 1 0 10 20 30 40 50 0 5 10 15

(KM) WIND SPEED (MS)

DWM WINDS AT LEVEL 3 (300M)

2200 PST 19JUN87

~-

~ - - ---

NORTH 275

___ -~-___

- ~ I o_ ltAbull~-P- bull bull -P diams bull~--~~~~--- --- ~ ~ ti ~ ~sbull3820 ~=-J~_~~middotmiddotmiddot~~~--_~_=- =~_~c s~ ~3~

~~- bullbull~~bull~~~~~~ - bull -~~bull ~ v i-_ --- __-_ ~----~

~- st-~~1 17-~__4 ~ _~ ~-~-raquo~~~ -f _ _ bull bull bull bull~ bull bull-__-v 4 t ~ ~v ~- Jl_~ ~--z~~=~s~~~~Mil

-- _ ~ frac12--~~- -=~~ ~~l~1~l~tzi9~J t~ 1 1 1 1 1 1 ~-bull ~~___- v q (If V pp p I l_77rtfl _

3770 ~ ~ ---- I h1yenzi 1V-r-() bull bull ~ ~~~~~ w ~ bull ~ _ I JI J(_ )-II101-1 3 ~~A~~~XI IIJ~~~

~ f A I~ I I I I~--L -

tl ~1111111 ~K11~~llll~i~~~~I ~rr ~~ ~xgt~~~t---

N ~I I II)(01~ ~ ~ ~~~ 1~Y~lt~~~~~~~~ ~~~~

3720 iYY11Alllll1lIA~~~~ ~~---Y~---_ _ _ - ~ bullbull - - _

~rrll1IIIIIIIAAAA__

___________~~~AAAA~_~ ______________~~~~KAKAA1~~ lllllllllll~AAA1f~~

_~~

3670 t1i11 i i 1 i i 11111 i i i i -i i [ 111111-111 ~ ~ 11 ~ i I t 1 bull rm r~ij e =~~ raquo-il3t ~ 275 325 375 425

SOUTH

1111 111111 11111 1I I I I I I 0 1 0 20 30 40 50 0 5 10 15

(KM) WIND SPEED (MS)

DWM WINDS AT LEVEL 5 ( 1 OOOM) 2200 PST 19JUN87

24-25 June 1987

9106103

1SV3

1S3M

0 w w Q_ (J1

0 z 3

I f-shy=J 0 (J1

-_

2 0

--

_J w CJ f- _J OC)

0 U) z

f-shy )lt

J q-

(J1 N0 -_ 0

rlt) z rshyl)

N0 _ 3 Q_

0 20 3o 0 q-

0

B-13

lf)_ lf)

If) N If)

lf) r-shy~

I I-o 0 z lf)

~

lO

~

lf) N If)

(

pound bull d ~ bull 4 4 c_ q

1 4 r9middot-

0 N IX)

middot- t--bull ~Igt~

O ~f 4 fT amp)o(oj

4 ltI I~ ~ ~

0

o

middot a

~- v t rgt ( tgtj (~V~-1 f4

3 44 ~-~a4 V VM q -~~-q_4 ~4

_ ~ )

p- ~~t1~1 middot V II J ~ ~ )I 1 11 f ir -~~1I ~

II P P P Igt 4 ~(Iigt ~~ 1) IA

deg deg 4 4 ~ A -1 r 1 1-Y]~t J rz ~

fl r ~ Igt I~y ~ -- -- - 4 ~r___amp V P11 iP Igt P Igt p ~ -0

~bull 7~tpmiddot~P Pf P Ptl middot~ ~ q p Igt 1gt p ~ t b (r 4 P - 4---f ~ ~ bV ltI

ltI ~ ~ I p 6(~ d-_j b d p (4- 4 ~ 1 p Igt 1gt Igt - b ti

)4- a 4_) q V Igt p Igt o

lt(___~ ~- V fgt ~ 111 t Igt -4

~ ~ Igt r p Igt

~ ~ 1 h1

V (I Ilt v middot

t y-

t

t

p

P t P t P ~

0 0N - IX) n

1SV3 0 0 0r-shy N r-shy co

lf) lf)

If) N If)

~ - t bull~--~11n ~ -~bullmiddot t~ lt middot___

o_ ~ ~ ~

0 bull t bull 4_4 4 4IIgt

c 0----~ u c Igt( o ~ c ~A ~ 0 - A 4 4 ~ 1 q

o bull o- -~ 1gt 1gt ~ y4 -~J middot)bullmiddot ~ ~ ~ p 0- 1---f t-~ 1 ~ 4 4 o co u gt)O- eyti ~ ~l 9 -Y P- - I a c 1 oM_il_q A p- p

4 ~ ~-M f p

I 4

~ rv ~--~middot

tJmiddot bull P II f t )I~ bull V ct_~ V V V t P- ~ Igt t middot f lft V VJi P- P- fgt IIgt ~ _ J1 bull bull bull

1 v II p _bull ( ( ir ti- f Igt bull

j ~ r f -~-1t __

_I ltC_t--q_) v -~-ampgt

Q middot--- ~ - t ~ b

II

bull ~

bull bull

diams

1 bull ~ ~~ ~ ~ b b b lgt bull

-- b bull bull bull~4q~ lgtPlgt-4-~_tbblgt

Jraquo P P ~ q 11- 11- b b b b b

P Igt P q bull b b b b b b b b bull

bull bull Igt 4 4 fl ~ b b b b b b b b b bull bull Igt Igt ~ 4 q ~ b _ b b b b b b bull

P bull Igt Igt -4 ltI 9 b b b b b b b b

p bull - Igt Igt 4 lt1 _ b b b b b bull t bull bull Igt ~ 4 b bull b b b b b b bull p Igt Igt Igt bull 9 b b b b b b b b bull P p ~ ~ A 4 q - _ b b b

1S3M

figt j)

~ ~ bull

bull bull bull bull bull bull bull bull bull bull

bull bull bull bull middot bull middot

bull bull ~ ~ 9 9bull bull bull bull bull bull bull bull bull

bull ~ bull bull _ bull bull _ bull bull

~

If) N t

lf) r--11

~

If)

~

0 ONN - co n ~

I fshy=i 0 V)

- 2 0 0 n -

n _j w cjf-

0 l()

0 ~

0N

0

0

---shy2 ~ _

_j OC)

I- z lt( =i

J Vgtv 0N z f-

3 ~ 20 3o 0-t

B-14

---

1S13 0 0 0 N N r--shyltIO r--shy co I) n I)

I() l1 r--shy -U

E~i0 z

U N I() 3

I fshy)

0 U) l1 N -t

--_

2 0 0 0

-

LO

_J w CJf----_J OJ

0 U) z

f- )lt( l1-r ON z f-

3 ~ 0 20

50 U) 0 -sr

0 ON r--shy r--shy

r--shy (0

n I)

1S3M

B-15

lSV3 0 0 0_ N - _ - ~ I)

_ ()

(~i

0 z

If) If)N NIf) 3It)

I Il- I-a =gt0 0z If) If)()

N Nst- st-

_

2 0

--

- w I--- OC)Cj z0 -

I) )I- Jlt( --t-

N() 0 I-z ()

3 o_

0 0 2 0

~ 0 00( 0 0 0-N N _111) r-- 1)

1S3M

B-16

lSVJ 0 0 0 0 N r-shy N r-shy_ _agt lO n n n n

() r-shyU)

u) l() N N u) l()

I I lshy Ishyo )

0 0 z U1 l) N

l() r--_ 2 0 0 n -

n _j

w I GJ OC)

0 _j z

lt) I- ) lt( ~ lf) N 0 1-z l)

3 Q_

0 Lo38 0

0 0 0 0 _N N _ _(() n n n

lSJM

B-17

1SV3 0 0 0 0- -N N- -crJ co I) I) I)

lO II)- - U) It)

U) II) N N lO lO

lO- st

I l-o 0 z U)

N

~

I I-=gt 0 l)

st st

--_ It) - ~ I) 0

0 0 ___

lf)

J w I-

It) N I)

0 II)

~ OC) J z I- =gt lt - lf) N 0 1-z l)

~ 0

0

0

~ 0

38 0

N IIJ I)

- - I)

1S3M

B-18

middot~ bullmiddot I

1Si3 0 0 0 0 N r-shy N r-shya) r-shy r-- co I) I) 1) I)

--_

E~i l)

0 z 3

I r-0 0 z

0 I(

0 --_ n 2 0 ~ N --

0

0

1S3M

B-19

---

_J

w r----2i OC) _J z I- lt( ~ V1 N 0 1-z V)

3n 20 3 iE 0

---- --_

NORTH

-_ t t t f t A +1 t lt-1--JJ-middot+J

r ft_f_frac14 fffftl middotmiddotbull f_ n- ~ tn

ttt1I1~ ~ ~ ~ ~f --H 1--- ~ -

rJj ----~ ~ ~--- ~ l j bull bull - bull bull Ir - ---_- --- --~~~~~I-~~~ ~ bull ~ ~ rt

- - ~rnlit ~~~~ ~~~~ ~~ ~~~~~~~ - _~-~~ ~~~~~-=~~~~~~~-gt

3820

bl I

N 0

tshy() w 3 fftfftlll

ffltlIJ11111~11- I I I J ~-- - ~~~~11J~ -~

3720 - I I JI J ~~~~~~~--------~~ diams bull + I J J _~ 4 bull I I I J ___ ~~~~-s---~~IJ-bullbullbullbullbullbull ~__middot~middotmiddotmiddotmiddotmiddot~~~~~E-e~~

4flA~~middot~middotmiddotmiddotmiddotmiddot~~~~~ ~--_---~- ~~ 1

367~7i51bull1bull11bull1 111 13251777JT7777~7777 I I I 14251

--~--~- ~~_-~-----~ ~~~J

--~-_--~- 1- I 1 I

~ 1lJ

I I I I I I 14751 I I I I I I I s~sl1 I I I 1575 I I

3770 tshy() lt( w

3720

13670

SOUTH

I 0

I 10

I I 20 30

(KM)

I 40

I 50

lllI 0 5 10 15

WIND SPEED (MS)

DWM WINDS AT LEVEL 3 1600 PST 24JUN87

(300M)

lSgt3 0 0 r--shy N r--shy r--shyt)

It r---1)

lO ---- N bull ~~ r lO ~ oe--- I

~~~~ t z~_-----~8 ~ ~~~2~-~----=---~~ t ~~----~~ -frac14~~~--

~v -~ 1 ~ - ~ ~~ ~~~-~~N~~~~~~~~~~~

tf~ ~ ~ -~~~~~imiddot~~~~~ ~~ ~~

_gt~~ middot1 ~ r2 l~ --~- I _Ct _ V I - ftV

0 ~ ~~- X

z~ HF bullIh IJ i It ti ~ 1 IJtl ~ ~ j t ~1

~ ~ 1~1

1 r ~

)

r r~P t t _r )r f

~ 1+ t t t f t ti ~ 1 lt ~ diams t f J t H ff 1 1I I I It diams diams Vf- 1 f f ~ f I 11

(____ t i(_ bullbull ~ bull ~ I r fr1)L_lt--~~vi 1t1J U1 -~- middot~ 1 t) ~ bull ~ bull ~ bull 1 1 f f f I t ~ - ( ~ ~(~ (_ ~ b ~ - ~ bull f 1 f f ~ bull

j ~r~--~ ~ _ ~ ~ ~ l 6 bull bull 4 t ft It _ - __ _ - J ~ ~ ~ t bullbullbullbull t - _ ~--~_____

__ I deg j ~ ~ b ~ _ Igt ~ _ _ ___ bull bull bull bull

~ ~ I ~ ~ ~ _ ~ _ _ _ __ - bull bull bullf

~ bull ~ ~ 4

I -- I bullbullbullbullbull

~~~ ~

1 bull ~

-- V)

LO lshy -----_ lf)

l- w w

=~ It) 0 l)

It)

2= )

0

~

l() 9 __~----- lf)r--- --------J______--L--J-~J-J-______~______~~~___________________________ r---N O O O ON

0 0 z 3

--

2 0 0 0 ----

LO

_j

w I--GJ Cl)

0 _j z lf) )I-

lt( ~ ~

lf) N 0 -- 0 I-n 2 Zlf) ~0 3 0

N ---

0 20 3 g0 -

0

N r- N I-~ I- I- ~ n n n n

1S3M

B-21

1Sv3

U) N U)

lJ) N n

0 N (0 I)

0 r-shyr-shyI)

0 N

I)

It) N It)

U1 r--1)

1S3M

B-22

0 w w (L Vgt

0 z ~

---2 0 __

_j

w _ ~ OC)

0 _j z U1 I- )

lt~ NVgt

0 --shy 0 1-t) 2 z () 0 ~ ~ (LN -middot -

0 20 ~~

0 ON

bull bull bull bull bull

1Sf3 0 0 0 0 N N CX) ID I) I) li li

~ n

~ n

tf) ~

A i -02middot a_ ~ r ____ Igt middotjmiddot i -1 ~ i r middot-~-----------------gt IJ IJ bull 1 j I ------~-----------------

_ IA_Jyen ~ ~ J ~ yen ----~---------------------

~ II --~_a IIgt 11gt Igt middot~ I bull ~ ~ ~ ~

1(1gt i i _JI J Iibull I - IJ Ji H j

bull bull I( --- j J t ~o ~- -- -J I I i J diams bull1bull bull bull i ~ _I I I I J 1 ~~- ~ 11 J l J diams -~ J) bull ~ I- t t ~ ( l f middott J bull 1_~1 ~ IJ II- I ( II ~ j t t bull)

bull t )bull ~) i ~bull bull __ __ I 1gt J I I I middot----- - ~ _ ~ Ji (Ji_ If ~ --~ bull i f l-Ji ~ p VIMyen I ~ middot1 bull I Ibull lt_~ ~ p1 )

I

__________________

~ 4 V ltI - - - -

~) i t --- -- yen 4 yen -- Iii 1yen yen JY yen II

I ~1 Ja a Igt- yen yen yen yen yen yen yenyenIiyen II II

a Igt bull ~ 111) (I J I JY yen tY yen yen II( ltf ~ I~) JY yen liY yen yen yen yen yen yen yen II II II ~ ~(II ~ yen yen yen r yen 1r yen yen yen It Ill

p cl

p 4 ampgt P JI r Igt bull

bull JJ Igt II

- ~ 11- bull

- -

+ _ _ _ __ __ +- ____

- - ----4

bull bull Igt Igt Igt

11 bull bull bull bull

bull bull It

IJ Igt bull t P

Igt bull t

- II Igt fl t middot~~-~~~t_yenyen yenyenyenyenyenyenyenyen

I ~J )Igt) 1 bull yen yen ~yen yen yen yen yen r - yen If II II Igt - I 1 J bull bullI _ _ 1 ~ ~ 1K )

bull -

bull bull II ~ Igt- J 6 bull I 11

fl) 1gt 11 Ill

bull t t fl

~

U1 r- n

~ n

_________o__JJ=---=-------oti~~e-~e11JEJEolELE-ILILLEJLlLu~uJ

l~

0 tf)

~ 0 n

0 N

0

0

- Vl ~ 2 ---

0 w w CL V1

0 z 3

-

2 y --

-

2 0 0 tlt) --

n _J w f-~ OC)

_J z gt

I- Jlt( q-

NVl bull) I-z Vl -~ CL

02 0 3 N 0 NIf)

ONN I N ro r- (0

n n n I)

1S3M

B-23

17z-g

WEST u u u ~ ~ ~ N ~ N

NO N~ 0~0

7J ~ () z -I 0 N (I)

~ )gt c_ -I C zr co ~ -J rT7

r (Jl

-- __ 0 0 0 s _

--_ 7 ~ --

~ z

~-0 0

--s (I) ___

0

0

N o (A 0

t ()1 0

oj(JI

-0

-()1

0 0 0 N -J

A I q bull if ~ ii ii ii I ii if 1 i J (JI

Ab4llltli ~~144

bull~~bull~1111111 11~1middot)1i~~~1 ~4gt~1111111~ II~ - bullbull~Agt~lll11 IIIAII tbull ~4-4~~~III IIll~ I ~14 4 - ~ bull i ~bull-ttt1 111111 I I 1-~ bullbullbullbullbull gt q bullbullbullbull I t I I I I I 4 I I I I I I I 1_ J~ I

4~ A - middot~~lll111I IIll 1 I 4 -1~~ l~ gt1llllllI 1l111 -~~ I N

tn()16 -1 Igt Igt I I l1I v I 7----(Yi ti mbull1-t

~Plgtlt111 VIII ii l middot~1111~~0~ I l~lll~310bullbull I i~W~ffi 1~~~~6~~~ I J~ 1~~~rw 11~~~1~ ~l~~t ~ i 11~~~~~~~ ~~f)~t~~I I~tl -1

~ --J ()1 l 111~1JV1 ~~~1~ I Ill tniz~i~~~~~~ ~~~~ 7 ~K -~~iii~~~~~~~~ il~~~~~~~ 1~~1~~~

middot1 middot1 middot1 middot1 middot1 middot1 middot1 middot1 middot middot1 middot1 middot1 I I I I vr )Igt(_ I II I I~~~~t~ 21~~~r~~~~~v111l I ~ II I -- I~ J(( I I II J l l l Cl ~ I ~ ~ ~ J J I I I yen - - bullbullJ_~ f yen ~ I IJ t I ti

diams J J J I I - ~ - ~ l1 yen -1) I I( t I ~ N J J J J 1- ur~ ~ - Jf1( -I) I I I ti I I j~

() UI diams Mi r)r yen fir_~~ bulll1t) JI 1 I middot i - (JI0 ~ nmiddotmiddotJ jmiddot-1 I I I f ~j--1J ~ __ middot gt C ~ J I f I 1 ltH I fl 1 ti I middotr- I I-I ~ f bull t t l )1j - _ I

t J4J-fbullt t ~ ii middotlfli ii~) - ~bullmiddotttM i f bull bull1 rI-Ku bull bull bull _ middot-~-J_J middot t +imiddot i t t ~ t ( ~ middot(~ I J bull Vf I r1- ~ j~fmiddot + r bull(~t t bullbull_t- J J ~) J ~ Igt

+ __ middot + V+ bull bull ti+ bull + -fi J i bull bull ~ f --- ~ ~ t Li bull bull t ++ diams + t bull +++ + bull ~ __Vbull ~ it 4 ~ i ()1 ~ 1 bullbull diams diams diams diams ++ ++ bull t 1 fA middot_ -----Y 4 ~ tn

~ ~bull t bull + diams + bull diams +++t + bull A VJ ~ bull bull ~ -o middot ~- bull t bull diams diams diams + ~i4_ ~ ~ ~

11 -~ 1 1 1 1 ~t t diams t t ft(middot-- f g a PA

--middott 4 -4 y 1 1 1 )f7~ V g n t A ~ ~bull a~ 4 1 1 ( V P q 1 bull A ~ V Y ~-- 4 I Cl oCl 4 A A ~tW --~- ~middot -)bull ~iliJ bull1bull

bull It t-- ti __ __ ~ (~w ~ ()1UI I bullbull bullrmiddot -~)fl l~~~ ) I A IIbull N~L~ r ~~~-ff~ --bull--1) 4 4 bull ()1

~ 14 ~ bull f 4 AA 4~ bull

44( )A - ~

- ti~ f 4 ~ 4 4 4 A bull ~ i

ti ti fl 1 4 tn llflfl44 4 -()1

~ ()1 ti ti fl 4 4 _ 4 bull fl _ 4 ~ ~

~ bull t~ - - I - 1 T T fJifrac12 1f 1~ fl t [ 1 4 bull bull ~ ltt ~4 ~~~11 l~~Nfl---~ ~~ bull ~t144

1 -middot I I f I ~ fl ti ti- Imiddot tJ 1-0 I 14

z o 0 -I

I

Y

)

u u u u 0) ~ ~ ~ ~ N ~ N 0 0 0 0

EAST

1S13

0 z 3

r r I-shy Ishyer gt 0 0 z ()

--_

2 0

--

___J

w CJ r----1 (lJ

0 l() z

Ishy gtlt J LO() N0

z Ishy()

3 0

0 20 3o 0 tj--

0

1S3M

0 w w 0 ()

B-25

------

~ --- _

NORTH 275 325 375 425 475 525 575

dJ 41 l ll~I tgtI I lo fA Itgt IA IA lo 1 IA IQ 1q lq If lq I ~I 4

~ ~ IIJ ~A ltI P Igt Igt Igt P V V V Q q l_-~- q ~ ~ ~ x- ~ ~ Y t~ --___q)11 4 ltI v v v v v v v 1raquo 4 -q q -~ q ~ 1 a

~ 4 ~~_gt~) ) ~~-4_~ A ltI fl v v v v p A V yjq ~ _ _ ~bullbull --shy~~~ ~ I Cl11 ~ 4 v v v v P- deg 4 ~ -V t V ( ~ a bull-

~ 1 ~~~ v ~sa- fl V P -iLpound_~A--4 q Igt P ~ 4 a~ 4 38203820

- _1 fa bull bull ~ II 11 4 4 ltf V P deg q 9 p Igt Igt Igt Igt P~~ _ _ _ bull -

- ~_R middot ~ gt- P-~-j---s--middotp-~~--- Igt p ~(

-~~ _ amp- 4 --v--J ~--~ -__~---- ~~ t f ---~middot bullbull ~ ~ ~ ~ ~~bull--- bull~bull~~ 4 ~-deg ~--~ ~_v -~ _~raquo Wh~

bull bull bull bull ___ol bull bull --___~ ~ _ A~~-~- f_~-~ bull 1 ~bull -~ Igt bull

a l -4 bull bull~ bull ~ ~ bull frac12~ P- __ _middotmiddot11-~~j)6-_ U bull _ JIgt~ bull I- bull ft ~ 4_~~~~ 9 P lgt--1gt~~~_-~_----~~~ ~ bull ~ ~ ~ ~ --~-~- ~~-_middot ~~~A~ ~ 1111 ~- ----~~ -~- IIgt _)-

1111 1111 -( _-middot 4 ~ Po Igt q lgtmiddotv11t_ Igt Igt II

3770 ~ P 0 ~ - bull k ~ 1- 1-

() pound 4 4 ~ q -44 - bull bull Igt ~- t Igt 1 Igt () w Igt 7 lt

3 - bull It It It bull bull ~--~ p ~ Igt ~ w ~~ It It It bull ~ -_t _ ~ bull bull bull bull --~ Igt

deg

td bull ft bull v ~lt~ Igt Ci~ 4gt I ~ It bull bull ~ 6 -It Igt ~

N bull bull It It ~ ~ _ ~_) ~ ~ lr It ft ft ft ft ft ft Igt -II-~ j ~ fil- _ _ _ _ bull 11r 1o 1o It 111- bull ft ft ft ft ft i i f - ~ 3720 bull It bull ft ft ft ltt q -e- ~ ~ ~j1

4

middot bull bull bull It It ft It bull ~ ~ ~ bullmiddot ft ft ft ft ltt ft ltt ltI 1 ~ - It bull It ft ft It bull -0 ~ JIgt ]~

middotmiddotmiddotmiddotbullbull1rt1rtft11- p-bull- ~1frac121 1tftftlttltltPt1t fgtbullbull ~~- bullbull ~

It bullbullbullbull It ltt It It ltt It lrt lrt tgt - ~

~~~ItIt ItItIt 1t11tft lttlttftlttltlt ltt lt11t ~ lgtbullJgtIbullbull bull~bull bull~bull ~ 1 bull bull 3670 367~75 325 375 425 475 525 575

SOUTH

1111111111111111I I I t--l 0 10 20 30 40 50 0 5 10 15

(KM) WIND SPEED (MS)

DWM WINDS AT LEVEL 3 (300M) 400 PST 25JUN87

0 0 0 0 N r-shy N r-shya) r-shy r-- (0 I) I) 1) I)

-

LO r--1) -

l~ i ()

0 z 3

I ~ n 0 z I)

N st-

0 If)

0 - I) 2 0 ~ N -

0

0

1S3M

B-27

---_

2 0 0 0

-

If)

_J

w Cj l-_J OC)

z_ ) lt( J () L()

ON z~ 3~ 20 3oo+

0 0 0 N N C0 (0 I) ~ I)

U)

U)

U) U) N N It) U)

I I-=gt 0

U) V1 N st-

lO N I)

0 lO

0 __ I) 2 0 ~ N _

0

0

__ 2 0

--

_J

w l--Gj OC) _J z I- =gt lt( ~ V1 N 0 1-z V) 3 CL

20 3 g0

1S3M

B-28

I fshyCt 0 z

0 r-shyr-shyI)

0 N r-shyn

0 r-shyl) I)

lO r-shylO

lO N It)

lO N ltt-

--

tlt)

_j

w r---fu o) _J z f- ) lt( ~ f) N 0 1-Z Vgt3 (L

2 03g0

I fshy)

0 l)

0 lO

0 -- n 2 0 ~ N ---

0

0

1S3M

B-29

1S13

-l)~ O 0 w

deg CL w

l)l ~

0 0 z 3

I lshya 0 z

--_

2 0 0 0

--

LO

_j

w__cj IJ)

0 _j z lf I- )

lt ~ ~ V) N

I) 20 - 0 Z(f)

I-

0 ~ 3 CLN -

2 00 3 gOr-

0

1S3M

B-30

Ht 11Sittl

lS13 0 0 0 0 N N II) (0 n I) n n

-- ()

LO t-shy ~ lO

(~i0 z

lO N LO

3

I Ishygt 0

lO () N +

--

2 0

--

_j

wr-----CJ OJ

0 _j z lt) I- )

lt ~ V) N

0 -- 0 1-shyI) 2 z () 0 i 3 ClN --- --

0 28 3 ltD

lf 0~_____________________________~_______________________--- t-- 0 0 0 0 ClCI N N t-shyII) t-shy io n n n n

1S3M

B-31

==- ~-_

NORTH

I bull bull - -f I I bull ~bull - ~__~~~~ ~~~

flt~11 $~~~t=- ~~ ~ 4Aligt~ ~~~ ~~

3820 1~~~- 4 t 11 ~ ~- --~_____-- ~ ~ ~~ 3820 ~~~

~~-~~~~

3770 3770

l1 ()w l-

lllizz tshy

~ ZlZZl ~ ~~~~~~

to I -IllIll

w -I IIIll~N llllll2~~

-II I I J I-~1~ r~~~~ 3720r ~ J J UL 1~A~~ 3720

~IIJJJJJ2~ ~~~ 1 ~ fl I JI JI2~~ 1~~~V fl fl ~ JI J J ~ y ~- 1-f4~) ~ fl fl fl I JI J _A2 1~ V~

~flflflflJIJIJl~2 ~~JIw~ ~ ~jlfljlflJIJIJI~ ~JIJIJflfl~~~ ~ ~~fljlfljlJI~~~~ -

J67 t-V1111111----(((((1i I~laquo rlt~1 I I I I I I I IM m I I I I I I I ~ MJ670 g75 325 375 425 475 525 575

SOUTH

11111 11111 11111 1I I I I I I 0 10 20 30 40 50 middot 0 5 10 15

(KM) WIND SPEED (MS)

DWM WINDS AT LEVEL 3 (300M) 1600 PST 25JUN87

1

NORTH

bj I

w w

i~ -tt--t ~ + ~frac14 diams diams diams diams diams f f f J-~~~l -ff~_x~ diams t diams ---t diams + diams ff f J1ff~t t

-=tl-U +---- ~ ~ t-t- diams diams __ diams~ diams diams ~ J I I 1 1 f ~ -y- ~I -~~-1t-~ diams +__+ diams + ++--J_f 1 ~JJ-11 I --

38201- ~~-- ~ ~--t_-( 1 ~ r 1t + middot~-t_ bull ~-~ bull bull bullmiddot bull r-r 1 ~IiI 1 I ~Ji~l _-=pound-~If~_ It It It bull bull bull bull bull ~ diams f f---bullmiddot+ --I __- _ I I~ 1 f1

( - ~~~~ II lit It It 1tt Iii Iii~ -r-middot -- ___- l_f--1-l -L ~~1 1 ~ ~_( _ -~~ ~------~ 1t(~ bull (t ft- ~ middotv -11-fI 1 - t~~1 1 41

~ - ~-~- lit 1t lk_i -- -~--- -_ -j rf-- l1 r111 1 I It It~ It 1t 11i bull-~ ~- ~ t_bullbull_~ (middot ~--middottY~i_(4Xtl~4j_ middot It It ~ -- ---~----~----_I~)-~-~ -

~-It It ltt middot~- ~ -~-middot ~-pound1[_~ -~- - middot - deg - - It It l diams diams 4 middotbull--bull ~ ~ ~ diams 7 1---~~ -L_- - ~ t( I diams -( bull diams ~ ~ bull ~ -- JI JI Jf JI JI j(_ ~II deg It_ -~ ~- I I I J JI JI JI JI 1

~ J- ~llj ~- diamsdiams +II IllJI_ h~ ~ ~ ~ bull bull ~ JI J J J ~ 1 x111 X7 -~ ~ diamsdiams 4111 JJJIJJ~~~~~~~~1t diamsdiamsdiams ~111 JJIJJIJllllb~ h~~~hh middot ~ - diams diams bull I I J J I I I I JI JI I l1-14~frac12-~~~ji_ ~ + f 1 J I 1 I I I 1 ~ x~ f1 11 middot -

bull JI I I I11~bullY1iz 1 41 ~ f I J J J JI J J J J J I I I lmiddot ~ t JI JI JI 1 JI 1 1 JI J I I I It~ if~_~

It_ ~ 1 JI JI JI JI J J I I l-~ 4 t J J J J J J J JI JI I I l l deg ~~ _ ~ 1111JJIJIJIJIJIJIJIJI t JIJIJIJI~I JIJJIJIJI_

~- I t I I JJJIJIJIJIJII~~~~ t JIJJIJIJIJIIII ~~ JJ JIJIJlllll ~ t IJJIJIJl1 1 1 ~ ~~I 1 t 1 A 11111111 II I I I

325 375 425 475

SOUTH

I I I I I I 0 10 20 30 40 50

(KM)

525 575

1111 111 1111 10 5 10 15

WIND SPEED (MS)

3820

3770 1-() lt( w

3720

3670

DWM WINDS AT LEVEL 1600 PST 25JUN87

5 (1000M)

0 w w CL ()

0

1S13 0 0 0 N r-shy N agt r-shy r--t) I) 1)

I() It)- r-shyU) U)

z U) N It) 3

( I I lshy Ishyo ) 0 0z It)

~lgtIgt~() st- b tgt ~ q st

lgtbbtgtb

b b t t 0 b

N

Igt b t b b b A 6 ~ b b t b C A 4 d 4

ttCt4lt1-it e Igt b tgt tgt V q ltl ltl ltI ltl

ti- deg 1 41 9 q I I ltl q q

i V q ltl q q q q I l() r-shy AlgtV ~ tlt) ~t) -~~~q

~ bull amp ~

0 ~ ~

-qa ~ ~ 1gt1 111111

b-a~-V ltillilI

bull lt bull bull a ~ Igt ~ V V V q 4 __J

It It lgt a -a~ Igt C tgt V w r---(J OC)

bull ~ Igt t 4 bull bull bull bull U) 0 __J z middot 1gt44lt14

U) ) t) rshy J - -N

lt( l() ~ ~~ CI() ~ ~

~

0 Ishy bull bull bull diams 1 z ()~ bull ~ bull diams diams 1 CL3bull ~ ~

i b y ~bullbullTT r I I 0

~ bull bulldiams ~ ~ b b b b ~ bullbull diams T r r I U)______-11____________________________ _ 0

0 O O ON N r- N r--agt r-- _ ~ I) I) I) I)

1S3M

B-34

I

_ _ 3820r- ttr- t f T Jf-Lt If t t 1l-- -~ 1~ t t

NORTH

~bull 1414

~~-_ ~ ~ r-- - --~ ~ - - _ r-- fT W - - r V-V ff f

- t t t t f I~ _AAjAA~-r bull(- -J It ~---1 t ~~~-1-- 1 ( ~~ - J ~ t t i f 1 ~ A_A-yen~_~_ ~ ~ 1 ~ t t ~ t t middotmiddotkt f ~-~-~~-----~~-- ~ ~ ~ ___ll_ bull ~

t -r- _______~~----- r ~bullbull _ ~ ~ tt-~J--~c-~~ ~ 1~--______ bull

~ -t lJ-- f t-J-- r---~~---middot _-- ~~-- ~ bull bull ll~iti~~sect~~~ ~ bullbull~bullbull bull~~n~ bull bull bull n~ bull bull

A)~lfifrac12~~ ~III I --1

3770 l l L l L - - ~ -- ~ - 1 ~ - 770 tshy~ ~~~~~~~~~11 1 ~~=1~~- Ul

W 1lllll~I ~~~~1111~~ lt( w ~1~~1~1~~j~~~m ~~~~ ~ - ~

11 1111 1111~I I 11111111 --- middotE~

tj IIIIIIIII_ ~tI l) llllll_~_p ~1l1 1~A~~~A~~rrr-v

3720t- I I I J J J A__ r r 0 11J)~~~----~_~ppmiddot-~~f Jl~~~~~---~--~~r~-~~q~q ~1

I ~JI I~ A A-_

~JIJl~~~~~A-----A rrbullbull~f~df~ ~~JIJl~~~~A~~--~- fffdfdff

~~JIJI~~~~~~---- bullfbulldbullfdf~

~IJIJl~~~AA~ --middotmiddotmiddotmiddotmiddot~middotmiddot~~~ ~l~JIJIJl~~~Al~pp~~~~bullbullffffffdff X ~~~~JI~- A(- f bullbull P ~ ~~bull1f1q1f1f1f1f1f1d1bull

3670275 325 375

1111 1111 11111 1 1 1

0 10 20 30 4-0 50 0 5 10 15 I I I I I I i(KM) WIND SPEED (MS)

iDWM w1tms AT LEVEL 3 (300M) ir 2200 PST 25JUN87

0 If)

0 __ I) 2 0 ~ (j __

0

0

__ 2 0 0 0

__

LO

_J

w f- GJ ll) _J z I- ) lt( ~ () N 0 1-z () ~ Cl

20 ~~ ON

1S3M

B-36

Page 15: Nind Observations Collected during the Southern California ...

The DWM also requires as input a domain-mean wind and stability information For this analysis the domain-mean wind was specified separately for each analysis level and was based upon the average of the level 6 (1500 m agl) wind observations To account for friction the speed of the domain-mean wind was reduced for the lower levels by multiplying the average wind speed for level 6 by the following scaling factors

Level Scaling Factor 1 048 2 072 3 083 4 090 5 096 6 100

The domain-scale lapse rate was the calculated average of four inland sites These varied according to data availability

Six-hourly plots of the level I (surface) level 3 (300 m agl) and level 5 (1000 m agl) wind fields for each episode are given in Appendix B

SUMMER INTENSIVE MONITORING PERIODS (

Mesoscale airflow in the SOCAB during the SCAQS summer intensive monitoring periods appears to have two components

A basic diurnal cycle driven by land-water temperature differences and complex terrain and

A perturbation associated with the overlying synoptic flow

19 June 1987

The surface and upper-air wind monitoring site locations for this intensive monitoring period are indicated on pages A-1 and A-2 respectively Plots of the diagnostic wind analyses for 19 June are given on pages B-1 through B-12

The surface early morning airflow pattern on this day is characterized by weak winds over much of the coastal and inland areas with moderate NW winds over the Coachella Valley and offshore At 300 m agl winds are S over the western half of the domain and W to NW over the eastern half of the domain The overlying flow at 1000 mis W

9106102 10

n1er

The sea breeze is somewhat slow to appear in the western basin on this day but has begun to develop by 1000 PST At this time winds at 300 m agl remain S over the western part of the domain and W to NW over the eastern part of the domain Some S flow is also apparent at 1000 m

During the afternoon hours three distinct features are apparent in the surface airflow pattern

A sea breeze (W flow) develops along the coast between Santa Monica and Palos Verdes and penetrates inland A branch of the sea breeze penetrates into the San Fernando Valley resulting in weak SE flow at Burbank and Reseda

An area of weak (SW) winds forms in the Whittier-La Habra-Pico Rivera area persists throughout the afternoon and fonns a convergence zone in the central basin with the penetrating westerly flow The S component of this flow is due to sea breeze development along the coast near Long Beach

Upslope flow develops along the foothills of the San Gabriel and San Bernardino Mountains (eg at Glendora and San Bernardino) Along the eastern foothills the upslope flow is supplanted during the afternoon by the penetrating W flow

By 1600 PST on 19 June the depth of the upslope flow near Glendora exceeds 600 m Strong outflow is apparent through the Cajon and Banning passes Aloft winds are generally SW with some SE flow near Burbank and NW flow over the Coachella Valley

Significant onshore flow (3 ms) persists along the Santa Monica-Palos Verdes coastline through 2200 PST Feature-s of the afternoon airflow persist aloft through this time

24-25 June 1987

Surface and upper-air wind monitoring site locations for this intensive monitoring period are indicated on pages A-3 and A-4 respectively Plots of the diagnostic wind analyses for 24-25 June are given on pages B-13 through B-36

The airflow patterns on these two days are similar to one another and to the ttern on 19 June The overlying flow is generally weak below 1000 m agl with moderak t5 ms) SE flow at 1500 m agl

On 24 June the early morning surface airflow patterns are characterized by ver middoteak winds At 300 m agl winds in the Coachella Valley are SE By 1000 PST a we1 organized zone of weak S flow extends from Long Beach to Pasadena this S flm

9106102 11

(

reaches a depth of 300 m agl Southeastern flow in the Coachella Valley and E flow through Banning Pass are apparent both at the surface and 300 m agl S to SE flow dominates at 1000 m agl The II three-zone II surface airflow pattern is apparent during the afternoon The wind shifts to Wat Banning Pass by 1500 PST At 300 m agl winds are SW over much of the basin with SE flow at Burbank and in the Coachella Valley At 1000 m winds are generally SW At 2200 PST the airflow pattern is characterized by weak unorganized flow at the surface and 300 m agl Winds at 1000 m are NW over much of the domain but SE over the Coachella Valley

The airflow on 25 June is similar to that on 24 June During the early morning hours winds at the surface are very light Weak SE flow is apParent at 300 m agl At 1000 m agl winds continue to veer toward N The sea breeze develops more quickly than on the previous day and winds at Banning Pass become westerly by 1300 PST Calm winds are observed at Pico Rivera throughout the afternoon As on 24 June the afternoon airflow at 300 m agl is characterized by SW flow over the basin and SE flow at Burbank and over the Coachella Valley Upward propagation of W flow is generally slower than on 24 June Winds at 1000 m agl are S to SE During the evening hours the surface winds become light while at 300 m agl winds over the Coachella Valley become NW Organized W flow is apparent over the W basin through a depth of at least 300 m agl through 2200 PST

13-15 July 1987

Surface and upper-air wind monitoring sites for this intensive monitoring period are shown on pages A-5 and A-6 respectively Plots of the diagnostic wind analyses for 13-15 July are given in Figures B-37 through B-72

Airflow patterns on 13 and 14 July are generally consistent with the basic diurnal cycle described earlier However an unusual airflow pattern develops in the Coachella Valley on both days On 15 July strong SE forcing is associated with a delay in sea breeze development

The 13 July early morning surface airflow pattern is characterized by light winds and a weak cyclonic eddy over the Santa Monica Bay Winds aloft are light to moderate and primarily W The sea breeze develops rapidly on this day and by 1200 PST W flow overwhelms the S sea-breeze flow in the Long Beach Area W flow appears at Banning Pass by 0800 PST The surface afternoon airflow is characterized by the three-zone airflow pattern described earlier with strong upslope flow along the foothills ( gt 5 mls) and significant outflow through Cajon Pass Observations at Palm Spring (NW winds) and Thermal (SE winds) indicate a convergence zone in the Coachella Valley with a depth of at least 600 m W flow dominates at middot1000 m with S to SE flow over the Coachella Valley During the evening hours a cyclonic eddy redevelops over the Santa

9106102 12

rtMt1

Monica Bay winds are weak throughout the basin but airflow into the Coachella Valley is especially strong

Airflow patterns on 14 July are similar to 13 July with a few exceptions During the early morning hours the surface airflow is characterized by weak disorganized flow There is no eddy apparent over the Santa Monica Bay The overlying flow is weak and primarily S to SE at 300 m agl but W to NW at 1000 m agl Sea breeze development is approximately two hours slower on this day than on 13 July By 1000 PST weak S flow has developed over the Whittier-La Habra-Pico Rivera area and SE flow is apparent at Burbank AS component to the flow appears at 1000 m The afternoon surface airflow pattern is similar to that on 13 July but the S upslope flow at Glendora is weaker S flow develops at Elsinore and several coastal Orange County sites The Coachella Valley convergence zone reappears at the surface at 1600 PST two hours later than on the previous day At 300 and 1000 m agl W to SW flow dominates over the western twoshythirds of the domain SE flow is apparent over the Coachella Valley During the evening hours the surface airflow over the central basin is S to SW W flow components persist along the eastern foothills through 2200 PST

On the morning of 15 July surface winds are weak but maintain a S component Moderate SE flow is apparent offshore The overlying flow is generally E to SE By 1000 PST the surface airflow pattern is characterized by S flow over the central basin and along the foothills SE flow in the Coachella Valley and E flow through Banning Pass The depth of the S to SE flow is greater than 1000 m agl During the afternoon a weak sea breeze penetrates inland and winds along the foothills become W Winds shift from E to NW at Banning Pass at 1600 PST A weak S flow component persists in the Whittier-La Habra-Pico Rivera area throughout the afternoon A weak slopevalley circulation develops in the Coachella Valley resulting in SE flow there At 300 m agl winds are SW to W over the central basin and SE over the Burbank and the Coachella Valley At 1000 m S to SE flow dominates W winds persist along the foothills through 2200 PST and weak S to SE flow redevelops at the surface Remnants of the afternoon airflow pattern persist aloft

27-29 August 1987

The surface and upper-air wind monitoring site locations for this intensiv middot1onitoring period are indicated on pages A-7 and A-8 respectively Plots of the dia stic wind analyses for 27-29 August are given on pages B-73 through B-108

On the morning of 27 August surface winds are weak over most land areas a 1djacent coastal waters with moderate (5 ms) NW winds well offshore Winds aloft a Jrimarily N with weak NE flow at 100-300 m agl over the central basin By 1000 PST threeshy

IIzone airflow pattern has developed at the surface and is somewhat apparent ( hin the limits of the upper-air network) at 300 m agl SE flow has developed at 100( agl

9106102 13

This pattern is maintained throughout the afternoon Within the Coachella Valley a classic daytime slopevalley flow pattern develops with SE flow extending to a depth of 1000 m E flow develops at Banning Pass and persists through 1700 PST W flow over the basin develops upward throughout the afternoon By 1600 PST wind at 300 m agl are W to SW over the central basin and SE over Burbank and the Coachella Valley During the evening hours the features of the mesoscale airflow pattern over land weaken both at the surface and aloft There is no clearly developed offshore-directed land breeze

On the morning of 28 August the surface winds are weak and the overlying flow is primarily E Retardation of the sea breeze by the overlying E flow is apparent by 0900 PST S flow develops in the Long Beach area E flow at Banning Pass is substantially stronger than on 27 August During the afternoon of 28 August S flow persists at Long Beach and develops in the Whittier-La Habra-Pico Rivers area SE flow is observed along the Orange County coast E flow through Banning Pass persists throughout the day W wind components along the Santa Monica-Palos Verdes coastline are weaker than on the previous day and NW flow fails to develop at San Nicolas Island W flow over the central basin disrupts the SE flow aloft During the evening hours the airflow features weaken W flow along the foothills does not persist as long as on the previous day

The early morning airflow pattern on 29 August is characterized by SE flow both at the surface and aloft Sea breeze development on this day is slower than on either of the previous two days S flow again develops in the Long Beach area and appears to be stronger than on the previous day Although the sea breeze is weaker winds at Banning Pass shift from E to SW by 1300 PST This shift occurs at 1800 on 27 and 28 August SE flow persists aloft with limited upward development of the W sea breeze flow W flow persists in the western basin area through 2200 PST and SE flow persists aloft

2-3 September 1987

The surface and upper-air monitoring site locations for this intensive monitoring period are indicated on pages A-9 and A-10 respectively Plots of the diagnostic wind analyses for 2-3 September are given on pages B-109 through B-132

The first day of this period is probably the most anomalous of the summer SCAQS intensive measurement days Overlying easterly forcing during the morning hours prevents development of W flow along the foothills and inhibits upward development of the sea breeze over the western and central portions of the basin The easterly forcing appears to reverse rather abruptly on the afternoon of 2 September Unusual winds are also observed at Burbank on 2 September During the late morning and afternoon Burbank experiences an unusual wind shift from SE to W through a depth of 1000 m On 3 September the overlying airflow is W and the airflow patterns are more typical

9106102 14

rrn

On the morning of 2 September strong downslope flow results in N to NE winds at several sites along the foothills of the San Gabriel Mountains At 300 m strong NE winds are apparent over the central basin The overlying flow is E By 1000 PST the sea breeze appears as W flow along the Santa Monica-Palos Verdes coast and S flow in the Long Beach area The surface analysis indicates a band of S flow from Costa Mesa to Azusa W flow has not developed along the eastern foothills Winds are SE in the Coachella Valley and E through Banning Pass E flow aloft continues and intensifies During the early afternoon hours a relatively strong sea breeze penetrates inland to Azusa while winds in the Whittier-La Habra-Pico Rivera area remain weak The sea breeze weakens considerably after mid-afternoon Between 1200 and 1500 PST the wind at Burbank shifts from SE to W through a depth of 600-1000 m By 1600 PST the overlying flow has shifted from SE to W Onshore flow continues at the surface through 2200 PST while the winds weaken considerably Although the overlying W flow persists in general 300 m agl winds at Burbank become SE

The early morning airflow on 3 September is characterized by weak winds at the surface SE flow at 300 m agl and primarily W flow at 1000 m agl Although the major surface airflow features appear to develop as on previous days upward development of the pattern is limited Strong S flow is apparent by 1200 PST between 100 and 300 m agl over the central and western basin By 1600 PST the sea breeze has penetrated well inland Imbedded in the sea breeze is a persistent calm area in the vicinity of Lynwood S flow persists at 100-300 m agl over the central and western basin while flow at this level off shore remains NW At 1000 m agl W flow continues This general pattern persists through 2200 PST but weakens considerably especially at the surface

AUTUMN INTENSIVE MONITORING PERIODS

The mesoscale airflow patterns in the SOCAB during the SCAQS autumn intensive monitoring periods exhibit a weaker diurnal cycle than the summer airflow patterns Synoptic forcing also appears to be stronger

11-13 November 1987

The surface and upper-air wind monitoring site locations for this intensive monitoring period are plotted on pages A-11 and A-12 respectively Plots of the diagnostic wind analyses for 11-13 November are given on pages B-133 through B-168

During the early morning hours of 11 November NE surface winds are apparent over most of the region Surface wind speeds are very light over the basin and somewhat stronger along the foothills and the coast At 300 m agl winds are light and generally E At 1000 m agl winds are W to SW over the western half of the domain and SE over the eastern half of the domain Weak E to NE surface flow persists throughout most of the

9106102

15

morning in the first 300 m An apparent anticyclonic eddy (SE flow at Long Beach weak S flow at Burbank W flow at El Monte) develops between 600 and 1000 m agl on this morning A weak sea breeze forms around 1200 PST penetrating only to the central basin There is no apparent turning of the sea breeze into the San Fernando Valley W to NW flow develops offshore and is deflected around the Palos Verdes Hills This W flow is also apparent at 300 m agl Downslope flow components along the foothills are apparent by 1600 PST At this time the 1000 m agl winds are weak and N The sea breeze rapidly dissipates and NE flow develops at several coastal sites indicating a land breeze NW flow is maintained off shore The nighttime airflow pattern aloft is characterized by weak N winds at 300 m agl and weak W winds at 1000 m agl

The surface airflow pattern on the morning of 12 November is generally similar to that on 11 November E flow over land is apparent through a depth of 300 m while NW flow persists offshore The overlying flow is W The afternoon surface airflow pattern is more similar to a typical summer afternoon pattern than the previous day Turning of the sea breeze into the San Fernando Valley is apparent and W flow develops along the foothills of the San Gabriel and San Bernardino Mountains by 1400 PST Airflow at 300-600 m agl appears to veer continuously from E to W at most inland sites during the afternoon NW flow through a depth of 1000 mis apparent over the Coachella Valley Surface winds become light and disorganized during the evening hours Unlike the previous day NE flow does not develop at the coastal sites and NW flow weakens offshore W winds persist aloft

On 13 November surface winds are very light through the early morning hours with E flow components apparent immediately offshore The overlying flow is WNW but becomes S over the central basin by 1000 PST As on the previous two days a sea breeze becomes apparent at the surface by noon W flow components over the basin and foothill areas are stronger than on the previous two days both at the surface and aloft Significant W flow also develops in Banning Pass Moderate to strong W winds are apparent aloft During the afternoon and evening hours SE winds are apparent at Burbank between 300 and 600 m agl Intense W flow develops off shore and propagates inland during the evening hours W flow continues aloft with some S to SE flow between 100 and 600 m agl at Burbank and El Monte

3 December 1987

The surface and upper-air wind monitoring site locations for this intensive monitoring period are plotted on pages A-13 and A-14 respectively Plots of the diagnostic wind analyses for 3 December are given on pages B-169 through B-180

The early morning surface airflow pattern on 3 December is characterized by weak NE winds over the inland areas and a weak cyclonic eddy off shore The overlying flow is S to SE Surface winds remain light and variable through most of the morning Moderate

9106102 16

txi Iii ttii

E flow is apparent over the western and central basin between 300 and 600 m agl A sea breeze develops around 1200 PST reaching a depth of 300 m and penetrating only approximately 30 km inland S to SE flow persists above 300 m agl The sea breeze weakens during the evening hours and N flow through a depth of 300 m develops at Long Beach E flow components intensify at 600 m agl and above

10-11 December 1987

The surface and upper-air wind monitoring site locations for this intensive monitoring period are plotted on pages A-15 and A-16 respectively Plots o~ the diagnostic wind analyses for 10-11 December are given on pages B-181 through B-204

On 10 December the early morning surface airflow pattern is weak and disorganized Weak NE flow is apparent over much of the basin between 100 and 600 m agl The overlying flow at 1000 m is N The surface airflow over the basin is weak throughout the morning hours while NW flow develops offshore Winds aloft remain N A weak sea breeze is apparent by 1200 PST the sea breeze penetrates only about 30 km inland and is limited to a depth of approximately 300 m There is no apparent turning of the sea breeze into the San Fernando Valley Elsewhere in the basin the surface airflow remains weak By 1600 PST the sea breeze has weakened At this time winds aloft are predominantly W to NW at 300 m agl and N at 1000 m agl During the evening hours surface airflow over the basin becomes weak and disorganized while E flow develops at Palos Verdes Strong N winds appear aloft (300-600 m agl) at Burbank LMU and Long Beach however winds at this level further to the east remain light

On 11 December the early morning surface airflow pattern is similar to that on 10 December Relatively strong ( gt 10 ms) NNW winds persist at 600-1000 m agl at Burbank and LMU E wind in the 100-300 m agl appear at LMU and Long Beach Throughout the morning the surface winds remain light and N winds 9ver Bu~ank weaken considerably A sea breeze is apparent by 1200 PST but is weaker than on the previous day and reaches a depth of only 100 m or less Significant N winds (3-6 ms) develop between San Bernardino and Elsinore and in the western San Fernando Valley NE flow is observed in Ventura County Winds aloft continue to be primarily N however E flow is apparent over the Long Beach area at 1000 m agl Surface airflow over the central and western basin becomes very weak during the evening hours Strong N to NE flow develops at the coast west of Santa Monica while N flow persists in the western San Fernando Valley and in the San BernardinoRiverside area The overlying flow is N to NE

91061 02 17

3 PARTICLE PAm ANALYSIS

A series of forward and backward particle paths (trajectories) were calculated using the SCAQS DWM wind fields The particle paths will be used by other SCAQS investigators in their examination of pollutant transport within the SOCAB The forward particle paths can be used to estimate the transport of pollutants from known source locations The backward particle paths can be used to estimate potential source areas The particle paths can also be used to estimate the residence time of certain pollutants in the SOCAB as a whole or in subregions

CALCULATION OF PARTICLE PAIBS

Two-dimensional particle paths were computed using the DWM wind fields as follows

Starting ( ending) points for a given number of forward (backward) particle paths were specified

Using a time interval of 15 minutes the hourly gridded DWM wind fields were linearly interpolated in time and then interpolated in space to each particle position using an inverse-distance-squared weighting scheme

The particles were then advected horizontally for the specified time interval

The distance traveled by each particle during each time interval was integrated The new position of the particle was reported at hourly intervals

Forward and backward particle paths were calculated for the SCAQS intensive monitoring periods for several vertical levels and a variety of origination and destination points The origination (destination) locations and times for the summer and autumn particle paths are listed in Tables 3-1 and 3-2 respectively Most of the particle paths originated (ended) at one of the SCAQS wind monitoring sites listed in Tables 1-1 and 1-2 Additional sites are identified in Table 3-3 Note that for some sites in Tables 3-1 and 3-2 a new particle path was initiated at the particles 1000 PST location but at a higher level

Additional forward particle paths were calculated for comparison with the SCAQS tracer data (England et al 1989 Horrell et al 1989) The initiation times and locations correspond to the tracer releases and are given in Tables 3-4 and 3-5

9106lrl02

~~ll1~(I titW I~l~~~t~~

TABLE 3-la Summer particle paths forward particle paths

Start Time Origination Start Date (PST) Site Level(s)

624 0500 LBCC 13 CELA 13

624 0700 LBCC 13 CELA 13

624 1000 LBCC 13 CELA 13

624 1500 LBCC 13 CELA 13

624 2100 LBCC 13 CELA 13

625 0500 HHRA 5 PADA 45 FULA 5

625 0700 FULA 5

713 0500 LBCC 13 CELA 13

713 0700 LBCC 13 CELA 13

713 1000 LBCC 13 CELA 13 EMTA 24

713 1500 LBCC 13 CELA 13

713 2100 LBCC 13 CELA 13

714 0500 LBCC 13 CELA 13

714 0700 LBCC 13 CELA 13

714 1000 LBCC 13 CELA 13

714 1500 LBCC 13 CELA 13

714 2100 LBCC 13 CELA 13

Continued

19

91061 07

TABLE 3-la Concluded

Start Time Origination Start Date (PST) Site Level(s)

827 0500 LBCC 13 CELA 13

827 0700 LBCC 13 CELA 13

827 1000 LBCC 13 CELA 13

827 1500 LBCC 13 CELA 13

827 2100 LBCC 13 CELA 13

828 0500 LBCC 13 CELA 13

828 0700 LBCC 13 CELA 13

828 1000 LBCC 13 CELA 13

828 1500 LBCC 13 CELA 13

828 2100 LBCC 13 I CELA 13

92 0500 LBCC 13 CELA 13 HHRA 12

92 0700 LBCC 13 CELA 13 FULA 12

92 1000 LBCC 13 CELA 13

HHRA 45 FULA 45

92 1500 LBCC 13 CELA 13

92 2100 LBCC 13 CELA 13

93 0700 RIVA 12

93 1000 RIVA 45

A new particle path was initiated at the particles 1000 PST location but at a higher level

20

~(Ibull bull 11

41

~1~_11Lmiddot11~1~~tV t rt~~14_ II~~~h1 1r t

TABLE 3-lb Backward particle paths

End Time Destination End Date (PST) Site Level(s)

624 1500 CABA 23 EMTA 45 BURA 1234 HHRA 4 FULA 45

624 1800 RIVA 3

625 0500 CLAR 13 RIVR 13 HHRA 5 PADA 45 FULA 5

625 0700 CLAR 13 RIVR 13 FULA 5

625 1000 CLAR 13 RIVR 13

625 1500 CLAR 13 RIVR 13 CABA 23 EMTA 4 BURA 4 RIVA 45

625 1600 RIVA 45

625 2100 CLAR 13 RIVR 13

713 - 1000 EMTA 24

713 1500 CABA 23 EMTA 45 RIVA 24

713 1600 RIVA 24

714 0500 CLAR 13 RIVR 13

714 0700 CLAR 13 RIVR 13

714 1000 CLAR 13 RIVR 13 BUR 123

714 1500 CLAR 13 RIVR 13 CABA 23 EMTA 4 BURA 234 RIVA 2

714 1600 RIVA 2

Continued

21 nn1 Y1

TABLE 3-lb Continued

End Time Destination I End Date (PST) Site Level(s)

714 2100 CLAR 13 RIVR 13

715 0500 CLAR 13 RIVR 13

715 0700 CLAR 13 RIVR 13

715 1000 CLAR 13 RIVR 13

715 1500 CLAR 13 RIVR 13

715 2100 CLAR 13 RIVR 13

827 1000 CABA 2 EMTA 23 BURA 123

827 1500 CABA 2

828 0500 CLAR 13 RIVR 13

828 0700 CLAR 13( RIVR 13

828 1000 CLAR 13 RIVR 13

828 1500 CLAR 13 RIVR 13

828 2100 CLAR 13 RIVR 13

829 0500 CLAR 13 RIVR 13

829 0700 CLAR 13 RIVR 13

829 1000 CLAR 13 RIVR 13

829 1500 CLAR 13 RIVR 13

829 2100 CLAR 13 RIVR 13

92 1000 PADA 3

92 1100 PADA 3

92 1500 EMTA 2 RIVA 2

Continued

22

91061 07

I

1bullLI bullI I bull ~ii 1 1

1 cl1

[1i1bull~j~1 Iiii~ j t-~dI ~1 1ltl1111111 II r I l~bull~II~middot t1~i~n_11~~ ~middot -

TABLE 3-lb Concluded

End Time Destination End Date (PST) Site Level(s)

92 1600 RIVA 2

93 0500 CLAR 13 RIVR 13

93 0700 CLAR 13 RIVR 13

93 1000 CLAR 13 RIVR 13 CABA 2 BURA 1234

93 1500 CLAR 13 RIVR 13

93 2100 CLAR 13 RIVR 13

23 9106107

TABLE 3-2a Autumn particle paths forward particle paths

Start Time Origination Start Date (PST) Site Level(s)

1111 0300 LBCC 13 CELA 13

1111 0700 LBCC 13 CELA 13

1111 0900 FULA 12

1111 1200 LBCC 13 CELA 13

1111 1500 LBCC 13 CELA 13

1111 2100 LBCC 13 CELA 13

1112 0300 LBCC 13 CELA 13

1112 0700 LBCC 13 CELA 13 FULA 12

1112 1000 FULA 45

1112 1200 LBCC 13 CELA 13(

1112 1500 LBCC 13 CELA 13

1112 2100 LBCC 13 CELA 13

1113 0500 ONTA 123

1113 1000 ONTA 45

123 0300 LBCC 13 CELA 13

123 0700 LBCC 13 CELA 13 FULA 12

123 1000 FULA 45

123 1200 LBCC 13 CELA 13

123 1500 LBCC 13 CELA 13

123 2100 LBCC 13 CELA 13

1210 0300 LBCC 13 CELA 13

1210 0700 LBCC 13 CELA 13

Continued

24 9106108

TABLE 3-2a Concluded

Start Time Origination Start Date (PST) Site Level(s)

1210 1200 LBCC 13 CELA 13 FULA 123

1210 1500 LBCC 13 CELA 13

1210 2100 LBCC 13 CELA 13

1211 0500 ONTA 12

1211 0700 FULA 12

1211 1000 ONTA 45 FULA 45

A new particle path was initiated at the particles 1000 PST location but at a higher level

25 9106108

TABLE 3-2b Backward particle paths

End Time Destination End Date (PST) Site Level(s)

1111 1500 HHRA 34

1112 0300 LBCC 13 CELA 13 RIVR 13

1112 0700 LBCC 13 CELA 13 RIVR 13

1112 1200 LBCC 13 CELA 13 RIVR 13

1112 1500 LBCC 13 CELA 13 RIVR 13 HHRA 34 PADA 3 FULA 34

1112 2100 LBCC 13 CELA 13 RIVR 13

1113 0300 LBCC 13( CELA 13

RIVR 13

1113 0700 LBCC 13 CELA 13 RIVR 13

1113 ~ 1200 LBCC 13 CELA 13 RIVR 13 ONTA 34 EMTA 45

1113 1500 LBCC 13 CELA 13 RIVR 13

1113 2100 LBCC 13 CELA 13 RIVR 13

123 0300 LBCC 13 CELA 13 RIVR 13

123 0700 LBCC 13 CELA 13 RIVR 13

Continued

26 9106108

TABLE 3-2b Concluded

End Time Destination End Date (PSn Site Level(s)

123 1200 LBCC 13 CELA 13 RIVR 13

123 1500 LBCC 13 CELA 13 RIVR 13 PADA 3

123 2100 LBCC 13 CELA 13 RIVR 13

1211 0300 LBCC 13 CELA 13 RIVR 13

1211 0700 LBCC 13 CELA 13 RIVR 13

1211 1200 LBCC 13 CELA 13 RIVR 13

1211 1500 LBCC 13 CELA 13 RIVR 13 PADA 1234 BURA 123

11 13 2100 LBCC 13 CELA 13 RIVR 13

27 9106108

TABLE 3-3 Additional particle path initiation (destination) points

Site Identifier Location UTM Easting (km) UTM Northing (km)

BURA Burbank Airport 3749 37859

CABA Cable Airport 4370 37751

EMTA El Monte Airport 4047 37717

FULA Fullerton Airport 4091 37485

HHRA Hawthorne Airport 3768 37547

ONTA Ontario Airport 4435 37686

PADA PADDR Intersection 3810 37175

RIVA Riverside Airport 4584 37485

28

TABLE 3-4 Forward particle paths calculated for comparison with the SCAQS tracer data

Start Start Origination Date Time Site Levels

0300 LAGS 13 0600 13 0900 II 13 1200 II 13 1500 II 13

625

715 0500 VRNN 1

0800 VRNN 1

828 0600 LAGS 13 1000 II 13 1300 13 1500 13

93 0500 VRNN 1

0800 VRNN 1

1111 1600 LAGS 3 ESGS 3 VRNN 1

1900 LAGS 3 ESGS 3 VRNN 1

1112 0600 ESGS 3 VRNN 1

0900 ESGS 3 VRNN 1

1210 0600 LAGS 3 ESGS 3 VRNN 1

0900 LAGS 3 ESGS 3 VRNN 1

1600 VRNN 1

29

9106lrl09

TABLE 3-5 SCAQS tracer release sites

I_______________________

Site Identifier Location UTM Easting (km) UTM Northing (km)

ESGS El Segundo 3690 37536 LAGS Los Alamitos 3980 37370 VRNN VRNN 3874 37625

(

91061rl09

30

The particle paths were calculated for up to a three-day period In general forward particle paths were calculated through the end of the monitoring period or until the particle was advected out of the domain Backward particle paths were calculated through the beginning of the intensive monitoring period or until the particle left the domain

Selected plots of the forward and backward particle paths are given in Appendix C

SUMMER PARTICLE PATHS

Forward particle paths (levels 1 and 3) originating from Central Los Angeles (CELA) and Long Beach City College (LBCC) at 0700 PST on 24 June 13 and 14 July 27 and 28 August and 2 September are shown on pages C-1 through C-12

The surface-level particle paths originating at CELA indicate northward advection from this site on all days The particle path initiated on 27 August indicates that the initial northward advection is followed by westward advection on the following day the particle path initiated on 2 September indicates that the initial northward advection is followed by eastward advection on the following day In all cases the residence time in the central Los Angeles basin is less than 12 hours

The surface-level particle paths originating at LBCC are carried northward and eastward usually exiting the Los Angeles basin through Cajon Pass On 24 June and 14 July however the particles are carried across the San Gabriel Mountains (with the upslope flow) Considerable eastward transport is indicated by the particle paths initiated on 2 September after 1800 PST -Residence time in the Los Angeles basin varies from day to day and is especially long for the particle path initiated on 27 August (approximately 30 hours) Particle paths initiated on 13 July and 28 August also indicate some recirculation and a significant residence time within the Los Angeles basin

The level 3 particle paths also indicate northward transport from CELA on most days Advection into the San Fernando Valley which may be partly due to the SE flow produced by the turning of the sea breeze into the valley is more pronounced on certain days (14 July 28 August and 2 September) Level 3 particle paths originating at LBCC show mostly northwestward transport Recirculation over the Los Angeles basin is indicated for the 2 September particle path

Backward particle paths (levels 1 and 3) culminating at Claremont College (CLAR) and Riverside-Rubideaux (RIVR) at 1500 PST on 25 June 14 and 15 July 28 and 29 August and 2 September are shown on pages C-13 through C-24 -

_

9106lrl 02

31

The surface-level backward particle paths originate over water on all days the particles are carried eastward and northward into the Los Angeles basin On 14 July and 28 August the particle paths indicate primarily eastward transport There is some indication that particles arriving at the destination sites on 28 August may have originated in the South Central Coast Air Basin (SCCAB) On 25 June 15 July and 3 September the particle paths indicate primarily northeastward transport On 29 August northward transport is indicated

The level 3 backward particle paths also indicate transport from the W SW or SE on the intensive monitoring days The over-water segments of the particle paths indicate eastward advection on 14 and 15 July and 27 and 28 August and northward advection on 25 June and 3 September Again there is some indication that particles arriving at the destination sites on 28 August may have originated in the SCCAB Almost all of the particle paths indicate that the particles are carried onshore between Long Beach and Laguna Beach and advected northeastward to CLAR and RIVR An exception to this occurs on 28 August On this day the particles are carried onshore near Redondo Beach and are recirculated over the Los Angeles basin for approximately 24 hours before arriving at the destination sites

AUTUMN PARTICLE PATIIS

Forward particle paths (levels 1 and 3) originating at CELA and LBCC at 0700 PST on 11 and 12 November 3 and 10 December are presented on pages C-25 through C-32

The autumn particle paths exhibit more day-to-day variability than the summer particle paths indicating more variability in the autumn airflow patterns Because both the CELA and LBCC locations are affected by the land-breezesea breeze circulations all of the surface-level particle paths show some recirculation in the western basin Particle paths initiated on 11 and 12 November eventually indicate eastward transport

The level 3 particle paths also differ among episodes but are all affected by the seashybreeze circulation Particle paths initiated on 11 November show eastward transport from CELA and southward transport from LBCC Northeastward transport at this level is indicated by the 12 November particle paths The particle paths initiated on 3 December illustrate local recirculation by the sea breeze On 10 December southward advection is indicated

Backward particle paths culminating at CELA LBCC and RIVR at 1500 PST on 12 and 13 November 3 and 11 December are presented on pages C-33 through C-40

The surface-level particle paths indicate that particles arriving at CELA at 1500 PST on all four days follow a southward then eastward course Particles arriving at LBCC are affected by some combination of onshore advection and local recirculation The particle

9106Irl02

32

paths culminating at Riverside indicate a variety of possible transport patterns eastward transport on 12 and 13 November northwestward transport on 3 December and southeastward transport on 11 December

The level 3 backward particle paths for 12 November illustrate recirculation aloft by the evolving airflow patterns while the particle paths for 13 November indicate primarily eastward advection The particle paths for 3 December are clearly affected by the SE that occurs on this day the resulting particle paths indicate northwestward transport The particle paths for 11 December indicate southward advection and recirculation by the sea breeze

COMPARISON WITH TRACER DATA

Forward particle paths originating from El Segundo (ESGS) Los Alamitos (LAGS) and Vernon (VRNN) at times corresponding to the SCAQS tracer release times are shown on

middot pages C-41 through C-76 For ground-level tracer releases the particle paths were calculated using level 1 (10 m agl winds) for stack releases the particle paths were calculated using level 3 (300 m agl) winds A qualitative comparison with the observed tracer data is provided here

Surface-level particle paths originating at LAGS on 25 June indicate northward transport during the morning and afternoon hours The level-3 particle paths indicate that material is transported out of the basin through Cajon and Banning Passes by the upper-level winds Both of these indicated transport patterns are supported by observed tracer data

Surface-level particle paths originating at VRNN on 15 July indicate northward transport and exhibit good qualitative agreement with the tracer data

Both the surface-level and level-3 particle paths originating at LAGS on 28 August indicate primarily northeastward transport Most of the particles are eventually advected through Cajon Pass This is consistent with observed tracer at Redlands San Bernardino and Crestline

Surface-level particle paths originating at VRNN on the morning of 3 September do not agree with the tracer data While the particle paths indicate northeastward transport the tracer data indicate northwestward transport

Surface-level particle paths originating at VRNN on the afternoon of 11 November indicate westward transport and a long residence time in the central basin The level-3 particle paths originating at LAGS and ESGS show southeastward transport and recirculationmiddot by the sea breeze Surface-level particle paths originating at VRNN on the following morning again show net westward transport and a long residence time in the

( central basin but the level-3 particle paths indicate northward transport with recirculation

91061rl 02

33

by the sea breeze The smface-level particle paths are consistent with the tracer data Tracer was observed over the north-central basin and along the foothills on the morning of 13 November

The surface-level particle paths originating at VRNN on the morning of 10 December indicate relatively stagnant conditions with a weak sea breeze circulation Some net transport toward the south is indicated Particle paths originating at VRNN on the afternoon of IO December show little movement throughout the following day The long residence time in the basin is in qualitative agreement with the tracer data Tracer was observed in the basin on the following day The dispersion indicated by the widespread tracer concentrations however cannot be represented by a single particle path The level 3 particle paths originating at LAGS and ESGS on the morning of 10 December show southward transport and recirculation by the sea breeze

UNCERTAINTY ANALYSIS

A simple analysis was perlormed in an attempt to quantify the degree of uncertainty inherent in the particle paths The uncertainty analysis was similar to an analysis described by Moore et al (1989)

Three major forms of error in the particle path calculations can be identified The first two result from errors in the wind fields The most fundamental of these is measurement error as measurements can only be regarded as approximations of the true winds Regardless of the accuracy of interpolation techniques measurement error will always affect the final wind field The second type of error results from the interpolation of these measurements and the parameterizations and approximations in the diagnostic wind model This error will be greatest in data-sparse areas The third type of error results from the use of two-dimensional wind fields The two-dimensional particle paths do not incorporate the effects of vertical motion which may be a significant source of error considering the mesoscale regimes present in the study area

The particle path uncertainty in this analysis is the result of all sources of error and is therefore very difficult to estimate A lower bound 11 on the uncertainty was assumed to result from measurement error alone Here we use a lower bound uncertainty estimate to illustrate the effects of measurement error on the particle path calculations Several assumptions were made in order to estimate this uncertainty First average bias for all instruments was assumed to be very small Second instrument precision was assumed to be constant over the region Third measurement error (speed and directional error) was assumed to be normally distributed around zero The standard deviation about the mean was based on observational data

For this uncertainty analysis 20 particle paths were initiated from a single site at a single time For each 15-minute particle path segment u and v were calculated as described in

9106lrl 02

34

(

the previous section Small random wind components (representing the measurement error) were then added to the interpolated wind The smaller components were determined by randomly selecting wind speed and direction error from two separate normal probability density functions (PDF) To do this a uniform random number generator was used to find two error probabilities Ps and Pd between 0 and 1 An inverse normal PDF routine was then used to find the speed or direction error that results in error probability Ps or Pd respectively Commercial statistical software from Th1SL was used to generate uniform random and inverse normal PDF values 1

The PDFs possess means of zero and standard deviations equal to the root mean square error (RMSE) of the measurements For simplicity RMSE values for speed and direction were taken from those specified by Moore et al (1989) namely 02 mis and 10 degrees respectively Random error components were determined for each 15-minute segment of every particle path The resulting divergence in the particle paths represents a lower limit to the uncertainty inherent in the particle-path calculations

Plots illustrating the effect of the lower-bound uncertainty on the particle path calculations are given for one summer and one winter episode in figures 3-1 and 3-2 respectively The summer particle-path bundles (Figure 3-1) were initiated at CELA and LBCC at 0700 PST on 14 July The winter particle paths (Figure 3-2) were initiated at CELA and LBCC at 0700 PST on 12 November The bundles were calculated for levels 1 and 3 In general the bundles indicate that the airflow patterns do not vary abruptly in space or time The winter particle paths are less divergent that the summer particle paths

While plots of the particle path bundles qualitatively indicate the degree of lower-limit uncertainty a quantitative summary of the uncertainty can be obtained via hourly estimates of RMSE of all particle positions relative to that with zero error The RMSE can be obtained from

1 1 M 2 2

RMSE = - ~ dj[ lM ]=l

where

1

dj = [(xj - X1)2 + (yj -y1)2]2

and where Mis the number of particles and ()1 represents the position of the actual particle as calculated in the previous section (ie the zero error particle path) The RMSE is used to determine the growth over time of the confidence interval about the

1 IMSL is the registered trademark of the Scientific Problem-Solving Software System developed by IMSL Inc Houston Texas

91061rl02

35

NORTH

425 31570

SOUTH (a) CELA Level 1I

20

(KM)

NORTH

425 31570

SOUTH (b) LBCC Level 1I

20

(KM)

le-path bundles initiated at 0700 PST 14 July 1987FIGURE 3- composedd par tic le paths1 Forwar of 20 particBundles are

35

NORTH

425 3570

SOUTH

(c) CELA Level 3

NORTH

425 3870

SOUTH

(d) LBCC Level 3

FIGURE 3-l Concluded

37 9106]

70

IlFil

NORTH

CEIA Level 1(a)

3(170

1-Ul j

NORTH

425 3(170

SOUTH

(b) LBCC Level 1

Forward le-path bundles initiated at 0700 12 November 1987FIGURE 3-2 composed par tic le pathsbullBundles are of 20 partic

3391061

425 3870

SOUTH

(c) CELA Level 3

J8

3870425

SOUTH

(d) LBCC Level 3 10 2

(KM)

FIGURE 3-2 Concluded

91061 39

1 1c

i I

trajectory calculated using the DWM winds Hourly RMSE values are given for the particle paths bundles shown in Figures 3-1 and 3-2 in Tables 3-6 and 3-7 respectively For level 1 the average RMSE after 12 hours is 567 km for 14 July and 167 km for 12 November For level 3 the average RMSE after 12 hours is 416 for 14 July and 260 for 12 November

9106lrl 02

40

TABLE 3-6 Hourly RMSEs for particle-path bundles initiated at 0700 PST 14 July 1987

Time LBCC RMSE CELA RMSE (PST) (km) (km)

Surface Level

0700 000 000

0800 042 042

0900 057 069

1000 063 100

1100 093 128

1200 091 143

1300 111 168

1400 136 217

1500 229 227

1600 265 219

1700 394 219

1800 620 265

1900 796 338

Level 3

0700 000 000

0800 018 049

0900 064 090

1000 068 140

1100 087 172

1200 089 162

1300 123 180

1400 231 224

1500 337 258

1600 419 278

1700 427 306

1800 449 347

1900 462 370(

9106104 41

TABLE 3-7 Hourly RMS Es for particle-path bundles initiated at 0700 PST 12 November 1987

Time LBCC RMSE CELA RMSE (PST) (km) (km)

Surface Level

0700 000 000

0800 047 049

0900 078 065

1000 077 066

1100 089 086

1200 109 094

1300 089 092

1400 118 125

1500 100 138

1600 129 150

1700 147 160

1800 161 164

1900 156 176

Level 3

0700 000 000

0800 045 076

0900 061 120

1000 069 139

1100 092 171

1200 098 163

1300 096 156

1400 125 182

1500 150 175

1600 231 171

1700 261 152

1800 308 156

1900 345 175

91061 04 42

References

Douglas S G R C Kessler and E L Carr 1989 Users Guide to the UAM Wind Preprocessor System Systems Applications International San Rafael California (SYSAPP-89079)

England W G and L H Teuscher 1989 Perfluorocarbon Tracer Experiments During the Southern California Air Quality Study Air amp Waste Management Association For presentation at the 82nd Annual Meeting amp Exhibition Anaheim California (June 25-30 1989)

Horrell R S M Deem P Wyckoff F Shair and N Crawford 1989 Ground Release SF6 Tracer Experiments Used to Characterize Transport and Dispersion of Atmospheric Pollutants During the Southern California Air Quality Study of 1987 For presentation

( at the 82nd Annual Meeting amp Exhibition Anaheim California (June 25-30 1989)

Moore G E G Z Whitten J P Killus and R D Stevens 1989 Analysis of 1985 Air Quality and Air Chemistry Data Collected Under the South Central Coast Cooperative Aerometric Monitoring Program Systems Applications International San Rafael California (SYSAPP-89058)

Ross D G and I Smith 1986 Diagnostic Wind Field Modelling for Complex Terrain-Testing and Evaluation Centre for Applied Mathematical Modelling (CAMM Report No 586)

9106105

43

rr T rr

Appendix A

SCAQS WIND MONITORING SITES

(

9106103

-

((--_ 770

-

NORTH CM~RS 42 575

5 I I j I I 1---L 525 middot 1J75 I I I I I I I I I r I I _--- I C2~middot----_J ~ ~-- 1 ( ~ ~J25 I I I I I I I I I I I I l__ ) -475 () I Li 1~)51 (

--~ltJ820f-_ ~------ ---

~- -cli( ol --9-Sl-l

lt ( ~)

CQ p llE RiDO ~ llE ANAH

I middot LAS-L

bull~ LANC ( _ Q - _J ) ) - _ ~ - ---- - ~ _ ____ middot clt G~ _----~____-=-- -___ ~PR __ - ---- --- VCTC ltgt

-- ------ f---- __ - ---_ -middot ------ --___ --~-----TEME --- _ f

-)(j _ _ middot --middot -------- - HESP f ----=----==~~~ l ----~~ -- middot l - --- __ -middotlt- CJ _ --- middot PIRs[- lt NfVL_ ---~ - C~lt --lt _ ~ ~- __ (~~

__ --- bull _ i - f c-_ _ I - )~__) - ---~poundS---_-

3770 t-()

LA llE PICO )Ct444 -w 3 ~~~ZUMA MALI VE VEN llE llE middot Jl~C - ( p

NN WOOHS ~- ~ m - middot - o - I () )IE 55I

1-- (lt - - PERI ) ~ S__~llE

BU25 bull y _ L ~~5o 13720

I ----~- - 515 3670 525

(KM)

~---

SNI

20

SCAQS SURFACE WIND MONITORING SITES

19 JUNE 1987

0

qj n

If) N ~

I

1S13

Ishy)

0 Vl

(f) w I-V)

l)

z a 0 1---

z 0 2

0 z 3 a ~ I r---

0 CX)Wm Q_ shyQ_ ) w

z (f) )

0 7 lt( um Vl ---

0

A-2

-

r~

NORTH CM~RS

I -middot_( lt - middotmiddot -~ ---lt - - - middotbulll- ) middotmiddot-middot - - -c ) 0 0 l__SG- ___ J1 bull_ -- VCTlt I

_ --middot ---middot llSeR - - __ - --middot----- J~__-- middot - - - -middot bull bullbull- HESP ~-_-middot- bull- ~- _~ - -___---middot - ~ -_ ) ME --- -middot - bullmiddot bull -_

38201-_ ~~_ _ TE _ C-bull_- - CJ - ~Jj __ -_

1

1 bull I bull __ (]

SI bull bull=-middot _ -~ ~~ ~_-__ middot _J lt(- j SIMI -M~S -~_-~It_ - - 1Ir- I w _ I B~~ AZ~~~1 AL SNBOC ~ (ELRO l~ Hf~~ ideg_=- --

)1__ CE~ wftcentrHIN RIVRM44 --- ~--- ---~ LA PICO __pound bull P

T ~NN WI-V C) D 2J~55I Wco - middot PERI Lv

R~O ~L ~AN~ TO~~~~ ~ ~ ~-MO

62

~ ~j~l)~gto ay 3670( 525

SCAQS SURFACE WIND MONITORING SITES 24-25 JUNE 1987

~ (

NORTH 275 325 375 425 475 OA~5 575

f_~ CJ ~ -middot--

_middot

middot1 Imiddot

)i

gt--o~0 (~_)r-) _ (~~3s20

--~- middot qlt ( ____ - ---- - lt__ ~ ~ -i~ J ) _ - - -

-~ -__ J V 38201-~--o- lt-

-----~~middot ---- __ - ~---- -_--- ~====- -=_---~ ~ _

~ -- middotbull ~gt ----_ _______ ) ~~~ l -- - - i - --- l

( _ (_-~ _-lt~~ - )

2middot1=~ (~gt lt_) -~~~~~(_~tJt-~~~~t~~~~-~) ~

uR--- -----Qi~ ~ 3770_ 3770 -middotmiddot--rmiddot- -7 ~ 1-

(J) llE ONT _ -middot __ w

Y-_ EMU c __- ~ Ul lt(1 w~

- -- - LMIIEUA sFtA ~

1

----_

~

_

t_~~ -bull _ middotgtI __

~- 0 ~~QgtJn~-~ ~II~

~ f-- -) -) ) ~ ~-

j (_1_j ~~TRM 3720 ( (__ -CcS l l 3720

~- ) -~ --7( ) __~---L_ ~~1-----~D~

1 ~) a --- ~middot 7 rt 0- NSI (

3670 I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I 1 I I I I I f I I I 1 I I I I I I I I I I I I I 36 70 275 325 375 425 475 525 575

SOUTH

I I I I I I 0 10 20 30 4-0 50

(KM)

SCAQS UPPER-AIR WIND MONITORING SITES

24-25 JUNE 1987

--=-

NORTH 25 575

CM6QRS C__j 475 -____

3 ---- 375 425I - L ---) - ~-

SNI

-_-~)---_ lt-____ ___3azor_~c~~ sl

VENt ELRO

BU25

275 ~ c--) ~LANC ~~-_ lt ~ 0 9-~

llE

3670

----~ - J Q ____ ~- lt) ~ 3820____ -- middot--- 0~__~- __ J S --- ---~- ---- -- -- v~ ~ ~ ===-~ - - - - ---- - - ---- - -- -middotv ------------ -~ l f----- _ -- -middot _ - --- __ HESP ~-----=- c~i - - _- --- - - gt - -bull TEME -- -middot - bull ----- -- - _ middot ( lt~ clt=~ ~i cJ~ c _

~I -~~le lt~NJWl--------~- -iHitgt~-=__~~ _I -~ J~~~ ~ 3770 r-1 - - -- -- - ltJ c__ ---middot ~ ( - ------ -c_ - - -~~~ ~ ()-~ ~ - -middotMiss ---~---=-~----r~-__ -middot _frac12 __ i5

j S ~R~~HE -7t$ llE llE ftALSNBO llE ~~ t __ -R~ B~~SA AZ~jl~r RD ~~_ ~ 1( )l___ llE CE~HAllE ~~ - RIVRM44 - llE ------___llE W~HIN -Jti )Ii ----------- __

~--- LA llE PICO l llE C -- r p

ZU VE NN Wt-laquoJHB 0 1~55WT IN - ---- ) llE CO P llE llE ( gt (____ PERI ~

IJl

~ 71t~P325 425

SOUTH

I I I I I I 0 1 0 20 30 40 50

(KM)

SCAQS SURFACE WIND MONITORING SITES 13-15 JULY 1987

clt(middotO -i ~Ill ~

()VL~t

~~) o2~ r

275

-- _~middot middotc-- ( ~ I - ___ ) --____ ~~~

---- ---bull-~ ( lt ) lt I ~ (J () - _ ~ ~ J ) bull middot ( - ~ ~- - --- middot - ~ - middot middot G--~_J lt)

cce- middot- __ V ___ -- l - _- bull middotbull - - _~---~ 3820r----=-~_~Jrlt - - - middot f ~l-~--~--~] I c___ -~c ~ -- ( _ 1middot--- 1___ _~

-I -- = lt -bull lt middotmiddotltmiddot~- middot - middot -L-

- ~-- middotbull ---_- --- J middot J ) ) -- bull- ~-bull _ --middotbullbull- middot middot _ j -- -)) 3770 -ii __gtc _ -- - - middot bull ltmiddot ~- I - _ltbull - -_j-- tn

BURbull-- - middot - - - ) ~~middotj- (~~ ) (middotIi lt(

GL U I ~ - - - w ---~ - -1 __ - ---------= ------___________--- ONT middot middot __ - --_ -

poundMUI - - ~ ____ middot----~~i -__ ~ I

--

--- ~ c) )_

deg ~

_- - (

_l

_ ~ )

C-

~ _middot

( T( f 1-

525

t j 30 50

(KM)

SCAQS UPPER-AIR WIND MONITORING SITES 13-15 JULY 1987

_==--

J ANORTH CM6sectARS

3s201-

~- ~ ~ ~ ~0A - --__ - -----~ ---~- --1(j - A ) __gt ---------_

-~~J TEMEa l_C ~r1

0

820

_--C~ = ~~~ltCH~~ J ~ S~I ----i4~58 ( J

tigt-1

-J 3 BU25

frac14~) 8 F1(5

- HA

APICO RN A A ~ N WVHB

AANAH

~IHIN J _CM44 ~-

A

CY PERI N ~ iJN

D A

HEM

770 ~ V1 lt( w

~ 3670

SCAQS SURFACE WIND MONITORING SITES 27-29 AUGUST 1987

) w l-1

C)

z-a 0 1-

z 0 ~

0 z - r---3 co a Ci)

- -ltI lshy

a )w ) Cl 0 Cl ) ) lt(

V) Ci)

0N ltI u r--- () N

A-8

NORTH CM~RS bull r (_J~

1

325 - - l L=~-) ( bull

1275 _ ( ~ --- -middotbull LANC 1 _ bull I( f LJ- ~ () ~-- 3820 bull- - J bull

- --__ _ -- )- bull bull - middotbull-~- _ I v----_J -- J middot-- - middot- - -middot I I J_______ ---==-------------- WSfgtR - -- VC _____- ltgt

-~--~-- fJ- -middot - - - --- --- _ - ----- --- ----- ) r bull---_ --- - - -- bull p -- --__-----_ - -----

38201-_ -------~- TEME --- --- - - bull -- middot- bull --- _----~ -~ II middot ) - ---- -- -- _ -- HES f I-----=-- ~ ------- ~ l _ -- - I

- bull middotbull-bullbull~ ll( middot bull - middotbullbull - 1 I ~----- middot-bull

9 -- ___ __ _ -------- _=- r _ -- )J -~~ ~~~ 3770 t--SJMImiddot MISS~~~--bull ~--~-- ll( -_ ~-VENt Cllfl58 bull I middot- - middot- - --JOE ~--bull bull ~ V)

ELRo __J 4Esc euRK ~Ej1 fAL sNeo I ~ _ J middotmiddot -~~ 1 i5 l - ~SA ___ I ROLD ~ ~ C~ ( _____~- -~ llE CE~ llE W~(HIN RIVRlK -- - 1 llE __~

3770 middot- ~LA VEN Pl llE _ _- JJ~C _CM44 - ~ p ---__-_

0 ANAC cubull~ - - v~wr LyenNN WHJHB --- -- Q~~W)( ___

- llE HA ~ -lE _ -- _ - -_

I 0

SAi middot-middot J) t450

3720 LA r TO~omiddotlt~lt~~ -~ ~ (~~

~ ~ r-~~~1~ o ~~l~

SNI 1 (l_ amp-~ 575 3670367g75 325 375 425 475 525

SOUTH

I I I I 0 10 20 50

(KM)

SCAOS SURFACE WIND MONITORING SITES 02-03 SEPTEMBER 1987

------J ------------------ ) I-- 38201--__--~~- i) ___

_-- ~--gt--

-__

_

NORTH 275 325 375 425 475 525 575

YI ~middotCJ~bull_bullrmiddot--- lt I __ (_______~ ~ - - I -- J ( - - - - - - - J i O l__ ______________ -~

~j ( lt- bull- ~ 0 C) ~ -- (-- _)) ) ----_--__ -- middot-- _ - --J ) J ---- - ------- ----- middot----- -( ~---_j

3820----==--=-- ( - -middot bull __ - ---~----= --- ---- -- -- ------------ _______ ltJ~~ A I --- - ---- - -_ - _ --_--~-- -_ - --~co___--_--___-__----- f middot l - --- - --- - __- ---_-- -- ~ middot -middot __ J L--~ cmiddot

---- -- middot--~-- -- -- - _ _-- - - ~

--- - middot- - -C-_--- - -~ rmiddot middot) _- ~middot~ I--- ----~deg- -- -- C _-_--_- __ __ _ ___ _--_--~ __---- ~---lt lt ltgt _~-__gt_ ~~-- i~ - UR ---- -------- - ----~ --lt I middot- B ~----- Qll __ ~----- _ CI____ ~ __ --- ---middotir ~ - 3770

1-I- 3770 () U)( - -- -- 0~ - j _j ______- ==--=--_ --___ - ---w lt(

w~

~gt middot1 r-

0

3720 3720

middotmiddotmiddot J ~ ) ~l - ~ ~

~ tmiddot~----_7~~ p__ D2)t~~

NSI I(--_ Imiddot- 3670 3670

275 325 375 425 475 525 575

SOUTH

I I I I I I O 1 0 20 JO 40 50

(KM)

SCAQS UPPER-AIR WIND MONITORING SITES

02-03 SEPTEMBER 1987

~ I

t

NORTH CM61yenRS

----- I uic middot I Ibull 0 z_ ~ p

-_- - - - _ - middot-~-_ ------- VCRV

820 --- -- -- I W-gtER --- _ ---- --- ~ ) - -_ - I _ _ - _ --- _ _ _ -_ bull _____ _ _ - -- -- -- _ --_ ----~ HESP 3 -- ME -- -middot bull - --- _ -- _ TE - -- __ _-- - c----~middot - r

PIRlb -_1 N bull--~ _ --lt~_- - _ _ ---------- - -MISS_ _--- ___ bull---=-- _llE ~ ~ j lt) hlt---- F-~~--_ ----1A-_c=_--middot llE ----_ ()

-middot SIM ~ICAN llE RIALSNBO llE ~J -------~~ tllE ------TmiddotllE~I ~ES BURR~ AZ~ ~-~r- RD ____-- -- ~ bull FIIISA l- bull -~~

( )l__ -middot middot c(~HA w~~N ~tfJ1 -- -- ~ ~ 1

_

375

~) middot middot ---lt -__ lt_ ___ ___ -i____) C-middotdeg - - -

- -- J_ _) lllt

_ =- ) - -

L- ~~- Iii - ~ _________

-~ 0 I -- (

SI lllt

E

NT CM58V

( j gtT__~_____)___ -- ~l- ) (

middotmiddot-- -_ bull _ ~- () ~

I --J vlt__ ltgt

--- --------- ~---------- C -

_

~(__ f - -- ~---middot)1 ~

t ~ I

I- I- ~

3720

ANAC Wo~ middot -~- lt_)

44

PERI ) ~ tlo

25 R~ ~~ANAH _i~~MN ~~-w--- ~ _ 00 )

T middot I BUllE I -eM62 7 llE

-- - ~

~ 425

SOUTH

20

(KM)

SCAQS SURFACE WIND MONITORING SITES 11 -13 NOVEMBER 1987

(_ (___JCcS ~~)

bull ------------~ - - ( ~ r-------------- Dbull ---

J

575 3670

1SV3 0 0 0 0 N r-- N r-- a) r-- r-- co I I) I) I)

I bull bull I I

I I f1 1 ~~ I- I I-)

0 l)

l)

w I-l)

L)

z Ct 0 I-

z 0 2

0 r-- z OJ

m3 Ct a lt( w0

l() mI Ct 2

~ ww Q_ gt

0 - Q_ 0 I) 2 ) z ~ ___0

N (I) n a

0 lt(- u ()

0

n 0 z I)

N +

lf) r-- I)

- I I I

i I

I 0

~ -L

w

i

~ LL

I)

C-1

+

l() r-- I)

1S3M

A-12

-~

igt I _

l)

CM~RS 275 325 375

NORTH 425 475 525 575

_J- I bullbullbullbullbullbull ~ I bullbullbullbullbullbullbull bull I middot bull -gt-----middot bullbullbull 3 )--- ____j lt c----- -_ -- gt _ ___ ----- t__ l___

-- ------- LANC l ~ ---------- __ ) -- __ ~ I ) ~ - -=~__ I -~middotmiddot- - bull middot bull bull bull lt lt Cl --- ------ ____ -~ -

38201-- ------_- ) ) -- _ ---- -- -- -- - () - --------- I --- -~-lt~~ (middot__ TEME ) --gt ~_ ----- - middot--- --- vamp c~ (~ 0~ ___- --- gtIpound - - - - ---- -- - - -- _ - - ~ ---- - - - ------------- 5SI -middot PIRltgt ----~ ( -middot _ - -- --- - --- ) HESP --------~ ltgt

___ __bull_rbull ~--------~-___ -- ___ ----gt--=- bull~ ~~ I - ---__-=---- ----

VENt CM58 _ sti --~~ ~ lt_ -~-- middot_~-~~ r-~- --middot) ~~) _J MISS-~~-- ___-_ __)~ -- ---( C

- --RESpound BUR~--==-=~----r~---_-__- ~- - ~ _- ~ -1 -

3770 I- ANAC

J I )l( ~- ~-- - i middot ----middot -X--Ret-----_~ -~

___ ( - -middot ~SA AZ~ ~ o j -------=--------~--gt~-- dampHA ~~~f __ SNBO ~~ -~

ZUMA MALI LA w~M -jmiddot I R~J ~-s ~__ )() w ~

3720

8U25

VE VERN PICO _ middotyHIN RIVRyen ( ~----- -~ CM44 -~ ~- ----- ~ C WT ~NN Wt-0HB -NQRC - middot- ~NN-a-~~ _ ~ co~ __ -- ( ~ ~

RVIJO ~ilff AN~ gt cmiddotbull yen 0 (~~ p LASAl I bull- - PERI ~ ) ~

rJ]~~_Y)~N ) (_ --

_T -cJ62~-~

~ 5j(bull 1) ~Jso

l -~

- 1 J) -~ ~7~~t~~

3820

3770 1-() lt( w

3720

I I I I I I I I I I I I I I I I I I I I I I367r I 367075

I 325 375 425 475 525 575

SOUTH

I 0

I 10

I 20

I 30

I 40

I 50

(KM)

SCAQS SURFACE WIND MONITORING SITES

03 DECEMBER 1987

NORTH 275 325 375 425 475 525 575

I I ) gt ~ _YC) ~ ~ I ( o c_ _------- (

___ middot i I 97 ~___ _ --1 cbull-- - - C -___J -- lt ( ) - - - - middotmiddot ~ l _ ----_J

I ---middot ___ __ middotmiddot-_ 1 -~ __J ) bull- middotbull_ -

3820 ------~- I -~middot --- _ middot--- -------~

C - ~ (___ _ 1 ) -- _ - - - gt _ bull f-_- --- r ------~__ -----I --- ) I ~ -~ gt ----- - --- -- ~-_]) c_middotI 38201-_~~_ l _ --- - (-- ~ f ~ I~_ - middot - middot -middotgt- -- -_ -- middot_ _- 1 L- l _- -

~----- l -- middot middot ~- middot-_ _- - middot middotmiddot--gt---~--t~~)-1 bull lt_ _ _ bull middot bull - middot- ~ ~0---~ (c ~ I ~

_ I - bull -~~~--gt~~~-~~ bullS- _~_ l ~~1t~~_~(~ t 3770 I -- -- middot __ - I S____ ( 3770

I- 1-() ()

gt w - I __~sect~- ---ONT lt(

w

tgt

f-- I

~

middot - middotI

-

L~i--

37203720 c_J - (_cS) l -~~

NSI

367~~51 3~5 13~51 14~5 I I I 14~51 is~s s~s 3670

SOUTH

I I I I I I 0 10 20 30 40 50

(KM)

fJ~

SCAOS UPPER-AIR WIND MONITORING SITES I 03 DECEMBER 1987 r~J

NORTH CM~RS 275 325 375 425 475 525 575

middot middot ___ I middot 1 I )l ___ QO --middot - v_ (-- - LANC middot ~ C) lt --bull_ I -- -- bull _ ~ - ~-- ) -------_ -- - _~-- V --I 1 J --- - bull I -J- ---middot - _ bull__ - vc i --- ltl

3820~-----=cc~ I middot -middot - middot - _ ___ -- - 1t ~~------- middot - ___) - - middot -

J-cgzot-- ~--- j 0 TEME _middot ---- --- -

-____ -- ---- _- j (

- -_ I -- --~ _JI( ---- bull bull-- llf -middotmiddot l - -- bull _middot_ middot I --- -- middot CM58

_- 1 -- middot - middot~-~ - -~__ ___ ---~-~_--__~----------D J-~J~bull A HESP

middot OJ11 r P1R1tc lt--~i_-_~-~- ~c~_r--~-~_--_~r-=-~~~~--~ _ --~ --lt__~~~~- CSI ~ -~ --- ---- middotmiddot - ---- - _ ~ r ) J

)gt SIMI -MIS5-X ~Cgt~---- middot-cemiddot middot ____~ ~ middot~ l~fu__ suRlfiI_middot- -tk~- flAf SNBO __ middot ~-~ l 3770 _ 377ob -- ~ PJIISA AZ ~JIily~ _- RDL ___ bull ( C t-shy-- -~ I ----- ~HA 71lt V)tn ANAC ~---- CE~ WALflHIN RIVR ----- ~ w

w ~ LA PICO - CM44 - T -~ ~ ZUMA MALI VEN middotbull _ -bulltRc __ ~ ~lt~~7-

N WuHB _~-- -middot bull ) _J~N ~ -- ~ 0 - ) ~ I ltgt -_middot PERI bull I- ( _

V 8U25~ 3720 3720

WJlt~ ( ~ ~ ) 1 i

~ I I I I I I I I I I I I I I I I I I I I I367r I bull I I 3670

75 325 375 425 475 525 575 SOUTH

I I I I I I 0 10 20 30 40 50

(KM)

-~ ~

SCAQS SURFACE WIND MONITORING SITES 10-11 DECEMBER 1987

NORTH 325 375 425 475 525 575275

-- ----_ lt_~- c--- - ~ ~ _ I I - ---~~c------ ) _ -middot - gt~-

3a2or ------__ lt- ) 1 middot--- -- __ - ~bull =-------------- - r---_ ___ - bull- ---- I I ~ ~-- jc- I bull - - (bull I --- middot middotmiddot - ~ -middot - -- ~ - 3820 -~- bull - middot - - ~-_ ~- _ middot- n

(

- 0 lt_( ~_lt- ~-~~- middotmiddot) ---- ()_ (---- --

--

____ middot

-middot

I

f----- (-J 1r---J~ --~ - middotlt ltbullI I ~__---__ ~-

l B~--- _c_ gt-- lt gt- (- - - j 1--_~--~--l~ -- -- --- )l

-- - --~---- middotc middot=-~-~- (~ L ----- -- --middot - -- - - -bull --- - - c-) ~ J _ -- - ---- - ) ) ltl

37703770 EMLgt middotorrmiddotbull __ ) ~~~~ofmiddot - -- __s=__I- - - ~__- ( ~ __ )---__ Ishy

V) ~ ~- lt(w ~ ---- --~ - w if)

-~2_~middot) ~~at~s t I

I-

deg

FUUA

i () ~--J)llC~lt I

3720 3720

~ltl__ (_)i~

~ NSI

367~~51 I I I I I I I 13~51 I I I I I I I 13~51 I I I I I I I 14~51 I I I I I I 14~51 I I I I I I r--- I5~51 1 I T I I I I I 5~51 I I I I 36 70

SOUTH

I I I I I I 0 1 0 20 30 40 50

(KM)

SCAQS UPPER-AIR WIND MONITORING SITES

10-11 DECEMBER 1987

Appendix B

SCAQS DIAGNOSTIC WIND ANALYSES (Six-hourly plots Levels 1 3 and S)

Summer Intensive Monitoring Periods

19 June 1987 24-25 June 1987 13-15 July 1987 27-29 August 1987 2-3 September 1987

Autumn Intensive Monitoring Periods

11-13 November 1987 3 December 1987 10-11 December 1987

Page

B-1 B-13 B-37 B-73 B-109

B-133 B-169 B-181

9106103

Summer Intensive Monitoring Periods

9106103

19 June 1987

9106103

1bullbull-lil

1SV3

I I lshy Ishyo )

0 0 z ()

IO N IO

I()

N -st-

1S3M

-- l1

l~ i --

0 z 3

---

2 0

_J w cjr----_J CD

0 l() z

I- =)lt( 7

f) 0)

0 -- i n 2 Ishy7

0 ~ ()N ____ gt a 0 20

3o 0 ~

0

B-1

1Sv3

( I l-et 0 z

(

lf) N st-

l() N ~

l()

N 0 t--

n

0 N_ n

U)

ON r-shy(0

n

1S3M

B-2

_

2 0 0 tlt)-__

tlt)

_j w 2jr-_j CX)

0 lf) I- z

lt( ~ IJ1 0)

0 _ 0 n 2 z 1-0 ~ N - 3 ~ 0 20

3o 0 Ov

-----

lSVJ

l)

----

l~3 O 0 w

w ll) (1

l)

0 0 z 3

I lshyet 0 z

--

2 0 0 0

-

LO

w ~

GJ r----~

u 0 z

OJ

I- gt lt( J

mif)

00 ---shyI) 2 z I-0 i l) N -- 3 (1

0 2 0 3 0 0 ~ 0

lSJM

B-3

1SV3

- V1 --

~5 O 0

E - w

w Ul_ 0

V1 0 0

z ~

I I lshy I-et =gt0 0Z V1

-

2 0

J wr--CJ OJ J z0

Ul I- =gt lt( ~ V1 -

0 - n 2 0 z 1-() 0 ~ N __ 3 0

0 2038 0

0

U)

l

lO N v

0 N agt n

0

r--n

0 N

0 N r-shyn

U)

U)

U) N U)

Ul

q--

Ill N q--

1S3M

B-4

td I

J1

~ ~~~~~ ~ -~~~~~ J - -~--Qf~J ~lf~ ~---~ ttt~~~~H~f~ ~ ~~lt~~~0 ~ - ltl-_t I~~~~~~-~~~~~ ~~ I _~1c j_~ L ~ (__1-T11__1 ~_-~_ ---~~~~~~ 11 - ~ +f--1~- ~-+--41-- 1-~- ~ ~ -rtt1-~--~~~~~~~ ~ ~ ~ ~ l t I J JI JI~- t _I i~~I~~~~~~

377itttttttt ~- - t I Jf --------_-- _ 70 ~ ttttttttttttti- fllJ~JI-~~_- ~~ _ =- ~~~- tn w - t t I I I_~- -V _ ~ -laquo___ _ - ltC 3 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ t t t t t I I I I JI~ JI JI ~~ I--~- ~ ~~~~~ w

H~HHHH~in+~l~Hnf5-I ~ ~~~~~~~~ ~ ~ ~ lliii it t I~t~ltt~rrrr~~~~ jl++it~~~t~

20-~~~~~~~~~J tttttttf ~~~~~~~~~~---~-~~~~~~~~~~~~~-amp~ ~ t t t t t t f f f I I I I ~ 1 J(-- _ --P ---~~~~~~~~ ~ ~ ~ ~ ~ ~ ~ ~ t t t t t t t t f f I I I I I ~ ~- j~J _ ~ ~ z~ ~ ~ ~ z l I+ nm~t ~ ~ ~ I I~Jt~-~- -~-__~~~ tr ti ~ ~ t t I t f f I I I I I I I - ~-r __ - ~~~~~~~ ~~~~ ~z11 ttt ffflllllIIII -~~---~~~~~~~~~~~ ~~~~ ~~ ttttft ttflltllllllll A~--~~~~~~~~ ~ ~ ~ ~ ~ ~ ~ t t t t t t t t t t t f I I I I I I I I I I I I I ---P~- ttttttttttttlllllllllllI -~--L~-~~~~~~~~~middot

367 70 ~75 325 375 425 475 525 575

SOUTH

1111111111111111I I I I I I 0 10 20 30 40 50 0 5 10 15

(KM) WIND SPEED (MS) i

NORTH 425 575

_ 414111fl-~bull __~) ff I -lt~i ~ + lJ Jmiddot-bull A fl t1 it bull- _I~--~---~----_---~_~~~~~~~11 t1

~~t 11 f + + diamsJ diams 1 )--t-_+ J~ I-(_ 1 1 ~t1 __

__ Lt l l t fL f_l - - +~~----~~---~___-+_~~~ J-t-t t---t-lt t t-t) LJ lt fl ~ -- t---f t tT~-- ~~ 1__t -t ti t_1 + l - -~-~-~-II~-- - ~~~-----~----t----~~~~~~_Efftt -- r1 ~J t l Lt t

fl

~ _ t_ - 11 _ _

Fi ru bulll=ti~ ~ ~ ~ ~1H1~~_~-~-~----~~~~~~~~~~

DWM WINOS AT LEVEL 3 (300M) 1000 PST 19JUN87

1Sv3

I I-shyCt 0 z

1S3M

B-6

0 II)

0 I)

-_2

0 ~ N -

0

0

-_

2 0 0 0 -

LO

_J

w r---CJ O) _J z I- gt ~~ if)

0 1--shyz V) ~ Q_

20 3 g0

NORTH 525 575

~~~__A -~___~~-

F- ~_--P~

~ ff~~-- - _ middot- ~~

_ bull bull bull bull bull

_ p

~L~k~tt ~ 1 t A middot1-t

~ r~ 1 11 1 __ bull bull --l t frac12Q2_

~ ~--r-J-+7L~

1--Ui

3770 _yen~AA- ---~ ~__~_ ~ K---r

eno tshylf)

w ~ ~ ~ lt( 3 I I_

- w

td I

-J

~~~~- ~ ~ ~~~ shy ~ ~ - shy

3720

~ ~~~ -~1~-nu~~~~-

~ -~ - ~_____A~~1~ ~ _~ ~~= ~~~_______2--- ~

720

~~~-~~~~~_ 9~tbullmiddot~qor~frac12

Y~poundpoundpoundpoundpoundpoundL1~~~~r~ ~ middot

375 425 475 525 575

SOUTH

I I I I I I 11 1111 1111 1 0 10 20 30 4-0 50 0 5 10 15

(KM) WIND SPEED (MS)

DWM WINDS AT LEVEL 1 ( 1 OM) 1600 PST 19JUN87

~

NORTH

Arlt~~~ ~L _ -rJ ll

_ I I I t

_t-z~~J ~i~ bull

i- ~~~ Ii ~~( trn

3770 I - bull bull bull bull bull bull bull iigtlaquo

--- bull bull bull _-

~fJ~ t-l-lltf[llJ- jf1 rr]I ~ ~~~ ~ss~810Ja2ot-~~1i lmiddot - 1 17- - -

-ltL

~ ~ 70 y ____~ tshy

l) ) _-y ____~w

w ~

~ -~--- - -- ~ 1 ~~~~ __ _ bull---bull laquo-___~ Y~~

___p~~__---A~_A 1 ~~td I ~----______A 14 1 ~

00 _-________________ ~ __~----~1~ -A________________--r__~~~ ~ ~ ~~~--~-~~~~-~---e--~ ____________~_________-~ h

3 7 20 t-_--~____- ~ _ _ ~~-_- _ _ _ _ ~___~~~r--~~___-K ~~ ~ -~-------~~~----~ ~ ~~__________~~~~~~~______-r_-A~-1--~~~ ~__________________----r~__~__~-Y~~-------__---A----r~ 1 ~ ~__~___________~ ~

367 tcrr~__~y--rrYlt-trltltltltltlaquo-ltltltltltlaquoltlt~~~ ---

9imiddot~75 325 375 -- -

1111 1111 11111 1 1 1

0 10 20 30 40 50 0 5 10 15 I I I I I I

(KM) WIND SPEED (MS)

DWM WINDS AT LEVEL 3 (300M)

1600 PST 19JUN87

NORTH

bl I

0

~________________A-4_gt~~~_____~~__________~A

A~altP_ ~~~_________--~_A 38 20 I--=-~~_~~___~~-_-~~_ -lt~ - ~_-~_A--1~ _

~~------ ~ gt-~ ti ~----~ ~ _~~~~ 0 ~ ~-i---~~411___ I~-~~ I~A-~~----~7A7~-

A A~---~~- ---~ ~ ~ -middot~~ 1-27 ~shyA_~ ~~~ Jl--__r-t~ ~ (K~_ - fl_

A ~I J111 I _ A - ~ _ T-~ v I 1 1 1 1 1 1 ~ 1 1 _ Ji J I~ f --_i__middot1(- ~ ~)( ~JJXZ - _ r ~ - _ )( _ II I 1 ~ 1 I - _~ _)~ ~~

= 1 II II 1 (~ ~--=-~ -7fJ~~~~tm~i I- 3770 Jir - I 11 I 71 (I) ~ ~111 ~

w ~--middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotbullbull bullbull ~~~11Zll~~11~ ~ ~~_~~~llllN~~ -~~ bull 11jh fi 1 1 II 1 1 1 1 1 1 1 1 1 1 1 1 1 I I 1 0i~~~ 1gtcJ~l~p~ ~~~ ~~~ ~rr1111

70 Ishy() lt( w

111111~~ 3720 i- 1 1 ~ ~

~1~I A-A~)I 1111AA _~l11~ 1

lllllll11IIIAII- ~II ~1~~__~~Ill~~~~~ l1_ 1~~~~~~lll~~~~1 llllflfAll-)lllllllll1~~~~~

A I I I I I 1 I I I I 3670

275 325 375 425 575

SOUTH

I I I I I I 1111111111111111 0 1 0 20 30 40 50 0 5 10 15

(KM) WIND SPEED (MS)

DWM WINDS AT LEVEL 5 ( 1 OOOM) 1600 PST 19JUN87

~

A A A

1Sv3

(

1S3M

B-10

()

l ~

---u) 2 __ O 0 ~ w

w It) Q_

()

0 0 z 3

0 It)

~

0 ---I) 2 ~0N _

0

0

---2 0 __

_J

w r--- GJ OJ _J z __ )

~~ () r-

0 __ z ()3 Q_

~o 3~ ON

NORTH

middot-~~) K~xJ~ middot_1~ ~ 71( I IJ ~JI

~A I 1 ~~

liii[i~~ Hf~-~~~=~T-- ----- --=~~g~g~bull11ft _ ~~~ -1-x~~~ ~~~~-~~~--~-~---~ --~ t ~t~ -~1~~ -- ----

-lt J 1middot~~ __---~__

3 770 ~ ~~ --_tn ---------~~ 1 ~____~ _ ___~ -w bull Y ___~~~ (Al _~ _ ~

-- bull _ _ _ bull bull bull bull~___1 1I J~ _~

~- YI J _L ~~ ~~ YJll~E~

td _____-___ ____ __ 1 ~xgtx2-I ____________~__-A (~~~~ _______~~2-1 y~~- ___~__________~ ~

3 7 20 I-___~~__~~ Y --~ ~__ I _ - - _

~_---A~ ~---__~~~~~--_____~ ~ ~_____A~ y ~ ~___-__________~~ ~ -

~__-_______-yen_2 ~ ~ ~~_______~ ~

1 367~ 75 325 375 425

SOUTH

1111 1111 1111I I I I I I 1 1 1 0 10 20 30 40 50 0 5 10 15

(KM) WIND SPEED (MS)

DWM WINDS AT LEVEL 3 (300M)

2200 PST 19JUN87

~-

~ - - ---

NORTH 275

___ -~-___

- ~ I o_ ltAbull~-P- bull bull -P diams bull~--~~~~--- --- ~ ~ ti ~ ~sbull3820 ~=-J~_~~middotmiddotmiddot~~~--_~_=- =~_~c s~ ~3~

~~- bullbull~~bull~~~~~~ - bull -~~bull ~ v i-_ --- __-_ ~----~

~- st-~~1 17-~__4 ~ _~ ~-~-raquo~~~ -f _ _ bull bull bull bull~ bull bull-__-v 4 t ~ ~v ~- Jl_~ ~--z~~=~s~~~~Mil

-- _ ~ frac12--~~- -=~~ ~~l~1~l~tzi9~J t~ 1 1 1 1 1 1 ~-bull ~~___- v q (If V pp p I l_77rtfl _

3770 ~ ~ ---- I h1yenzi 1V-r-() bull bull ~ ~~~~~ w ~ bull ~ _ I JI J(_ )-II101-1 3 ~~A~~~XI IIJ~~~

~ f A I~ I I I I~--L -

tl ~1111111 ~K11~~llll~i~~~~I ~rr ~~ ~xgt~~~t---

N ~I I II)(01~ ~ ~ ~~~ 1~Y~lt~~~~~~~~ ~~~~

3720 iYY11Alllll1lIA~~~~ ~~---Y~---_ _ _ - ~ bullbull - - _

~rrll1IIIIIIIAAAA__

___________~~~AAAA~_~ ______________~~~~KAKAA1~~ lllllllllll~AAA1f~~

_~~

3670 t1i11 i i 1 i i 11111 i i i i -i i [ 111111-111 ~ ~ 11 ~ i I t 1 bull rm r~ij e =~~ raquo-il3t ~ 275 325 375 425

SOUTH

1111 111111 11111 1I I I I I I 0 1 0 20 30 40 50 0 5 10 15

(KM) WIND SPEED (MS)

DWM WINDS AT LEVEL 5 ( 1 OOOM) 2200 PST 19JUN87

24-25 June 1987

9106103

1SV3

1S3M

0 w w Q_ (J1

0 z 3

I f-shy=J 0 (J1

-_

2 0

--

_J w CJ f- _J OC)

0 U) z

f-shy )lt

J q-

(J1 N0 -_ 0

rlt) z rshyl)

N0 _ 3 Q_

0 20 3o 0 q-

0

B-13

lf)_ lf)

If) N If)

lf) r-shy~

I I-o 0 z lf)

~

lO

~

lf) N If)

(

pound bull d ~ bull 4 4 c_ q

1 4 r9middot-

0 N IX)

middot- t--bull ~Igt~

O ~f 4 fT amp)o(oj

4 ltI I~ ~ ~

0

o

middot a

~- v t rgt ( tgtj (~V~-1 f4

3 44 ~-~a4 V VM q -~~-q_4 ~4

_ ~ )

p- ~~t1~1 middot V II J ~ ~ )I 1 11 f ir -~~1I ~

II P P P Igt 4 ~(Iigt ~~ 1) IA

deg deg 4 4 ~ A -1 r 1 1-Y]~t J rz ~

fl r ~ Igt I~y ~ -- -- - 4 ~r___amp V P11 iP Igt P Igt p ~ -0

~bull 7~tpmiddot~P Pf P Ptl middot~ ~ q p Igt 1gt p ~ t b (r 4 P - 4---f ~ ~ bV ltI

ltI ~ ~ I p 6(~ d-_j b d p (4- 4 ~ 1 p Igt 1gt Igt - b ti

)4- a 4_) q V Igt p Igt o

lt(___~ ~- V fgt ~ 111 t Igt -4

~ ~ Igt r p Igt

~ ~ 1 h1

V (I Ilt v middot

t y-

t

t

p

P t P t P ~

0 0N - IX) n

1SV3 0 0 0r-shy N r-shy co

lf) lf)

If) N If)

~ - t bull~--~11n ~ -~bullmiddot t~ lt middot___

o_ ~ ~ ~

0 bull t bull 4_4 4 4IIgt

c 0----~ u c Igt( o ~ c ~A ~ 0 - A 4 4 ~ 1 q

o bull o- -~ 1gt 1gt ~ y4 -~J middot)bullmiddot ~ ~ ~ p 0- 1---f t-~ 1 ~ 4 4 o co u gt)O- eyti ~ ~l 9 -Y P- - I a c 1 oM_il_q A p- p

4 ~ ~-M f p

I 4

~ rv ~--~middot

tJmiddot bull P II f t )I~ bull V ct_~ V V V t P- ~ Igt t middot f lft V VJi P- P- fgt IIgt ~ _ J1 bull bull bull

1 v II p _bull ( ( ir ti- f Igt bull

j ~ r f -~-1t __

_I ltC_t--q_) v -~-ampgt

Q middot--- ~ - t ~ b

II

bull ~

bull bull

diams

1 bull ~ ~~ ~ ~ b b b lgt bull

-- b bull bull bull~4q~ lgtPlgt-4-~_tbblgt

Jraquo P P ~ q 11- 11- b b b b b

P Igt P q bull b b b b b b b b bull

bull bull Igt 4 4 fl ~ b b b b b b b b b bull bull Igt Igt ~ 4 q ~ b _ b b b b b b bull

P bull Igt Igt -4 ltI 9 b b b b b b b b

p bull - Igt Igt 4 lt1 _ b b b b b bull t bull bull Igt ~ 4 b bull b b b b b b bull p Igt Igt Igt bull 9 b b b b b b b b bull P p ~ ~ A 4 q - _ b b b

1S3M

figt j)

~ ~ bull

bull bull bull bull bull bull bull bull bull bull

bull bull bull bull middot bull middot

bull bull ~ ~ 9 9bull bull bull bull bull bull bull bull bull

bull ~ bull bull _ bull bull _ bull bull

~

If) N t

lf) r--11

~

If)

~

0 ONN - co n ~

I fshy=i 0 V)

- 2 0 0 n -

n _j w cjf-

0 l()

0 ~

0N

0

0

---shy2 ~ _

_j OC)

I- z lt( =i

J Vgtv 0N z f-

3 ~ 20 3o 0-t

B-14

---

1S13 0 0 0 N N r--shyltIO r--shy co I) n I)

I() l1 r--shy -U

E~i0 z

U N I() 3

I fshy)

0 U) l1 N -t

--_

2 0 0 0

-

LO

_J w CJf----_J OJ

0 U) z

f- )lt( l1-r ON z f-

3 ~ 0 20

50 U) 0 -sr

0 ON r--shy r--shy

r--shy (0

n I)

1S3M

B-15

lSV3 0 0 0_ N - _ - ~ I)

_ ()

(~i

0 z

If) If)N NIf) 3It)

I Il- I-a =gt0 0z If) If)()

N Nst- st-

_

2 0

--

- w I--- OC)Cj z0 -

I) )I- Jlt( --t-

N() 0 I-z ()

3 o_

0 0 2 0

~ 0 00( 0 0 0-N N _111) r-- 1)

1S3M

B-16

lSVJ 0 0 0 0 N r-shy N r-shy_ _agt lO n n n n

() r-shyU)

u) l() N N u) l()

I I lshy Ishyo )

0 0 z U1 l) N

l() r--_ 2 0 0 n -

n _j

w I GJ OC)

0 _j z

lt) I- ) lt( ~ lf) N 0 1-z l)

3 Q_

0 Lo38 0

0 0 0 0 _N N _ _(() n n n

lSJM

B-17

1SV3 0 0 0 0- -N N- -crJ co I) I) I)

lO II)- - U) It)

U) II) N N lO lO

lO- st

I l-o 0 z U)

N

~

I I-=gt 0 l)

st st

--_ It) - ~ I) 0

0 0 ___

lf)

J w I-

It) N I)

0 II)

~ OC) J z I- =gt lt - lf) N 0 1-z l)

~ 0

0

0

~ 0

38 0

N IIJ I)

- - I)

1S3M

B-18

middot~ bullmiddot I

1Si3 0 0 0 0 N r-shy N r-shya) r-shy r-- co I) I) 1) I)

--_

E~i l)

0 z 3

I r-0 0 z

0 I(

0 --_ n 2 0 ~ N --

0

0

1S3M

B-19

---

_J

w r----2i OC) _J z I- lt( ~ V1 N 0 1-z V)

3n 20 3 iE 0

---- --_

NORTH

-_ t t t f t A +1 t lt-1--JJ-middot+J

r ft_f_frac14 fffftl middotmiddotbull f_ n- ~ tn

ttt1I1~ ~ ~ ~ ~f --H 1--- ~ -

rJj ----~ ~ ~--- ~ l j bull bull - bull bull Ir - ---_- --- --~~~~~I-~~~ ~ bull ~ ~ rt

- - ~rnlit ~~~~ ~~~~ ~~ ~~~~~~~ - _~-~~ ~~~~~-=~~~~~~~-gt

3820

bl I

N 0

tshy() w 3 fftfftlll

ffltlIJ11111~11- I I I J ~-- - ~~~~11J~ -~

3720 - I I JI J ~~~~~~~--------~~ diams bull + I J J _~ 4 bull I I I J ___ ~~~~-s---~~IJ-bullbullbullbullbullbull ~__middot~middotmiddotmiddotmiddotmiddot~~~~~E-e~~

4flA~~middot~middotmiddotmiddotmiddotmiddot~~~~~ ~--_---~- ~~ 1

367~7i51bull1bull11bull1 111 13251777JT7777~7777 I I I 14251

--~--~- ~~_-~-----~ ~~~J

--~-_--~- 1- I 1 I

~ 1lJ

I I I I I I 14751 I I I I I I I s~sl1 I I I 1575 I I

3770 tshy() lt( w

3720

13670

SOUTH

I 0

I 10

I I 20 30

(KM)

I 40

I 50

lllI 0 5 10 15

WIND SPEED (MS)

DWM WINDS AT LEVEL 3 1600 PST 24JUN87

(300M)

lSgt3 0 0 r--shy N r--shy r--shyt)

It r---1)

lO ---- N bull ~~ r lO ~ oe--- I

~~~~ t z~_-----~8 ~ ~~~2~-~----=---~~ t ~~----~~ -frac14~~~--

~v -~ 1 ~ - ~ ~~ ~~~-~~N~~~~~~~~~~~

tf~ ~ ~ -~~~~~imiddot~~~~~ ~~ ~~

_gt~~ middot1 ~ r2 l~ --~- I _Ct _ V I - ftV

0 ~ ~~- X

z~ HF bullIh IJ i It ti ~ 1 IJtl ~ ~ j t ~1

~ ~ 1~1

1 r ~

)

r r~P t t _r )r f

~ 1+ t t t f t ti ~ 1 lt ~ diams t f J t H ff 1 1I I I It diams diams Vf- 1 f f ~ f I 11

(____ t i(_ bullbull ~ bull ~ I r fr1)L_lt--~~vi 1t1J U1 -~- middot~ 1 t) ~ bull ~ bull ~ bull 1 1 f f f I t ~ - ( ~ ~(~ (_ ~ b ~ - ~ bull f 1 f f ~ bull

j ~r~--~ ~ _ ~ ~ ~ l 6 bull bull 4 t ft It _ - __ _ - J ~ ~ ~ t bullbullbullbull t - _ ~--~_____

__ I deg j ~ ~ b ~ _ Igt ~ _ _ ___ bull bull bull bull

~ ~ I ~ ~ ~ _ ~ _ _ _ __ - bull bull bullf

~ bull ~ ~ 4

I -- I bullbullbullbullbull

~~~ ~

1 bull ~

-- V)

LO lshy -----_ lf)

l- w w

=~ It) 0 l)

It)

2= )

0

~

l() 9 __~----- lf)r--- --------J______--L--J-~J-J-______~______~~~___________________________ r---N O O O ON

0 0 z 3

--

2 0 0 0 ----

LO

_j

w I--GJ Cl)

0 _j z lf) )I-

lt( ~ ~

lf) N 0 -- 0 I-n 2 Zlf) ~0 3 0

N ---

0 20 3 g0 -

0

N r- N I-~ I- I- ~ n n n n

1S3M

B-21

1Sv3

U) N U)

lJ) N n

0 N (0 I)

0 r-shyr-shyI)

0 N

I)

It) N It)

U1 r--1)

1S3M

B-22

0 w w (L Vgt

0 z ~

---2 0 __

_j

w _ ~ OC)

0 _j z U1 I- )

lt~ NVgt

0 --shy 0 1-t) 2 z () 0 ~ ~ (LN -middot -

0 20 ~~

0 ON

bull bull bull bull bull

1Sf3 0 0 0 0 N N CX) ID I) I) li li

~ n

~ n

tf) ~

A i -02middot a_ ~ r ____ Igt middotjmiddot i -1 ~ i r middot-~-----------------gt IJ IJ bull 1 j I ------~-----------------

_ IA_Jyen ~ ~ J ~ yen ----~---------------------

~ II --~_a IIgt 11gt Igt middot~ I bull ~ ~ ~ ~

1(1gt i i _JI J Iibull I - IJ Ji H j

bull bull I( --- j J t ~o ~- -- -J I I i J diams bull1bull bull bull i ~ _I I I I J 1 ~~- ~ 11 J l J diams -~ J) bull ~ I- t t ~ ( l f middott J bull 1_~1 ~ IJ II- I ( II ~ j t t bull)

bull t )bull ~) i ~bull bull __ __ I 1gt J I I I middot----- - ~ _ ~ Ji (Ji_ If ~ --~ bull i f l-Ji ~ p VIMyen I ~ middot1 bull I Ibull lt_~ ~ p1 )

I

__________________

~ 4 V ltI - - - -

~) i t --- -- yen 4 yen -- Iii 1yen yen JY yen II

I ~1 Ja a Igt- yen yen yen yen yen yen yenyenIiyen II II

a Igt bull ~ 111) (I J I JY yen tY yen yen II( ltf ~ I~) JY yen liY yen yen yen yen yen yen yen II II II ~ ~(II ~ yen yen yen r yen 1r yen yen yen It Ill

p cl

p 4 ampgt P JI r Igt bull

bull JJ Igt II

- ~ 11- bull

- -

+ _ _ _ __ __ +- ____

- - ----4

bull bull Igt Igt Igt

11 bull bull bull bull

bull bull It

IJ Igt bull t P

Igt bull t

- II Igt fl t middot~~-~~~t_yenyen yenyenyenyenyenyenyenyen

I ~J )Igt) 1 bull yen yen ~yen yen yen yen yen r - yen If II II Igt - I 1 J bull bullI _ _ 1 ~ ~ 1K )

bull -

bull bull II ~ Igt- J 6 bull I 11

fl) 1gt 11 Ill

bull t t fl

~

U1 r- n

~ n

_________o__JJ=---=-------oti~~e-~e11JEJEolELE-ILILLEJLlLu~uJ

l~

0 tf)

~ 0 n

0 N

0

0

- Vl ~ 2 ---

0 w w CL V1

0 z 3

-

2 y --

-

2 0 0 tlt) --

n _J w f-~ OC)

_J z gt

I- Jlt( q-

NVl bull) I-z Vl -~ CL

02 0 3 N 0 NIf)

ONN I N ro r- (0

n n n I)

1S3M

B-23

17z-g

WEST u u u ~ ~ ~ N ~ N

NO N~ 0~0

7J ~ () z -I 0 N (I)

~ )gt c_ -I C zr co ~ -J rT7

r (Jl

-- __ 0 0 0 s _

--_ 7 ~ --

~ z

~-0 0

--s (I) ___

0

0

N o (A 0

t ()1 0

oj(JI

-0

-()1

0 0 0 N -J

A I q bull if ~ ii ii ii I ii if 1 i J (JI

Ab4llltli ~~144

bull~~bull~1111111 11~1middot)1i~~~1 ~4gt~1111111~ II~ - bullbull~Agt~lll11 IIIAII tbull ~4-4~~~III IIll~ I ~14 4 - ~ bull i ~bull-ttt1 111111 I I 1-~ bullbullbullbullbull gt q bullbullbullbull I t I I I I I 4 I I I I I I I 1_ J~ I

4~ A - middot~~lll111I IIll 1 I 4 -1~~ l~ gt1llllllI 1l111 -~~ I N

tn()16 -1 Igt Igt I I l1I v I 7----(Yi ti mbull1-t

~Plgtlt111 VIII ii l middot~1111~~0~ I l~lll~310bullbull I i~W~ffi 1~~~~6~~~ I J~ 1~~~rw 11~~~1~ ~l~~t ~ i 11~~~~~~~ ~~f)~t~~I I~tl -1

~ --J ()1 l 111~1JV1 ~~~1~ I Ill tniz~i~~~~~~ ~~~~ 7 ~K -~~iii~~~~~~~~ il~~~~~~~ 1~~1~~~

middot1 middot1 middot1 middot1 middot1 middot1 middot1 middot1 middot middot1 middot1 middot1 I I I I vr )Igt(_ I II I I~~~~t~ 21~~~r~~~~~v111l I ~ II I -- I~ J(( I I II J l l l Cl ~ I ~ ~ ~ J J I I I yen - - bullbullJ_~ f yen ~ I IJ t I ti

diams J J J I I - ~ - ~ l1 yen -1) I I( t I ~ N J J J J 1- ur~ ~ - Jf1( -I) I I I ti I I j~

() UI diams Mi r)r yen fir_~~ bulll1t) JI 1 I middot i - (JI0 ~ nmiddotmiddotJ jmiddot-1 I I I f ~j--1J ~ __ middot gt C ~ J I f I 1 ltH I fl 1 ti I middotr- I I-I ~ f bull t t l )1j - _ I

t J4J-fbullt t ~ ii middotlfli ii~) - ~bullmiddotttM i f bull bull1 rI-Ku bull bull bull _ middot-~-J_J middot t +imiddot i t t ~ t ( ~ middot(~ I J bull Vf I r1- ~ j~fmiddot + r bull(~t t bullbull_t- J J ~) J ~ Igt

+ __ middot + V+ bull bull ti+ bull + -fi J i bull bull ~ f --- ~ ~ t Li bull bull t ++ diams + t bull +++ + bull ~ __Vbull ~ it 4 ~ i ()1 ~ 1 bullbull diams diams diams diams ++ ++ bull t 1 fA middot_ -----Y 4 ~ tn

~ ~bull t bull + diams + bull diams +++t + bull A VJ ~ bull bull ~ -o middot ~- bull t bull diams diams diams + ~i4_ ~ ~ ~

11 -~ 1 1 1 1 ~t t diams t t ft(middot-- f g a PA

--middott 4 -4 y 1 1 1 )f7~ V g n t A ~ ~bull a~ 4 1 1 ( V P q 1 bull A ~ V Y ~-- 4 I Cl oCl 4 A A ~tW --~- ~middot -)bull ~iliJ bull1bull

bull It t-- ti __ __ ~ (~w ~ ()1UI I bullbull bullrmiddot -~)fl l~~~ ) I A IIbull N~L~ r ~~~-ff~ --bull--1) 4 4 bull ()1

~ 14 ~ bull f 4 AA 4~ bull

44( )A - ~

- ti~ f 4 ~ 4 4 4 A bull ~ i

ti ti fl 1 4 tn llflfl44 4 -()1

~ ()1 ti ti fl 4 4 _ 4 bull fl _ 4 ~ ~

~ bull t~ - - I - 1 T T fJifrac12 1f 1~ fl t [ 1 4 bull bull ~ ltt ~4 ~~~11 l~~Nfl---~ ~~ bull ~t144

1 -middot I I f I ~ fl ti ti- Imiddot tJ 1-0 I 14

z o 0 -I

I

Y

)

u u u u 0) ~ ~ ~ ~ N ~ N 0 0 0 0

EAST

1S13

0 z 3

r r I-shy Ishyer gt 0 0 z ()

--_

2 0

--

___J

w CJ r----1 (lJ

0 l() z

Ishy gtlt J LO() N0

z Ishy()

3 0

0 20 3o 0 tj--

0

1S3M

0 w w 0 ()

B-25

------

~ --- _

NORTH 275 325 375 425 475 525 575

dJ 41 l ll~I tgtI I lo fA Itgt IA IA lo 1 IA IQ 1q lq If lq I ~I 4

~ ~ IIJ ~A ltI P Igt Igt Igt P V V V Q q l_-~- q ~ ~ ~ x- ~ ~ Y t~ --___q)11 4 ltI v v v v v v v 1raquo 4 -q q -~ q ~ 1 a

~ 4 ~~_gt~) ) ~~-4_~ A ltI fl v v v v p A V yjq ~ _ _ ~bullbull --shy~~~ ~ I Cl11 ~ 4 v v v v P- deg 4 ~ -V t V ( ~ a bull-

~ 1 ~~~ v ~sa- fl V P -iLpound_~A--4 q Igt P ~ 4 a~ 4 38203820

- _1 fa bull bull ~ II 11 4 4 ltf V P deg q 9 p Igt Igt Igt Igt P~~ _ _ _ bull -

- ~_R middot ~ gt- P-~-j---s--middotp-~~--- Igt p ~(

-~~ _ amp- 4 --v--J ~--~ -__~---- ~~ t f ---~middot bullbull ~ ~ ~ ~ ~~bull--- bull~bull~~ 4 ~-deg ~--~ ~_v -~ _~raquo Wh~

bull bull bull bull ___ol bull bull --___~ ~ _ A~~-~- f_~-~ bull 1 ~bull -~ Igt bull

a l -4 bull bull~ bull ~ ~ bull frac12~ P- __ _middotmiddot11-~~j)6-_ U bull _ JIgt~ bull I- bull ft ~ 4_~~~~ 9 P lgt--1gt~~~_-~_----~~~ ~ bull ~ ~ ~ ~ --~-~- ~~-_middot ~~~A~ ~ 1111 ~- ----~~ -~- IIgt _)-

1111 1111 -( _-middot 4 ~ Po Igt q lgtmiddotv11t_ Igt Igt II

3770 ~ P 0 ~ - bull k ~ 1- 1-

() pound 4 4 ~ q -44 - bull bull Igt ~- t Igt 1 Igt () w Igt 7 lt

3 - bull It It It bull bull ~--~ p ~ Igt ~ w ~~ It It It bull ~ -_t _ ~ bull bull bull bull --~ Igt

deg

td bull ft bull v ~lt~ Igt Ci~ 4gt I ~ It bull bull ~ 6 -It Igt ~

N bull bull It It ~ ~ _ ~_) ~ ~ lr It ft ft ft ft ft ft Igt -II-~ j ~ fil- _ _ _ _ bull 11r 1o 1o It 111- bull ft ft ft ft ft i i f - ~ 3720 bull It bull ft ft ft ltt q -e- ~ ~ ~j1

4

middot bull bull bull It It ft It bull ~ ~ ~ bullmiddot ft ft ft ft ltt ft ltt ltI 1 ~ - It bull It ft ft It bull -0 ~ JIgt ]~

middotmiddotmiddotmiddotbullbull1rt1rtft11- p-bull- ~1frac121 1tftftlttltltPt1t fgtbullbull ~~- bullbull ~

It bullbullbullbull It ltt It It ltt It lrt lrt tgt - ~

~~~ItIt ItItIt 1t11tft lttlttftlttltlt ltt lt11t ~ lgtbullJgtIbullbull bull~bull bull~bull ~ 1 bull bull 3670 367~75 325 375 425 475 525 575

SOUTH

1111111111111111I I I t--l 0 10 20 30 40 50 0 5 10 15

(KM) WIND SPEED (MS)

DWM WINDS AT LEVEL 3 (300M) 400 PST 25JUN87

0 0 0 0 N r-shy N r-shya) r-shy r-- (0 I) I) 1) I)

-

LO r--1) -

l~ i ()

0 z 3

I ~ n 0 z I)

N st-

0 If)

0 - I) 2 0 ~ N -

0

0

1S3M

B-27

---_

2 0 0 0

-

If)

_J

w Cj l-_J OC)

z_ ) lt( J () L()

ON z~ 3~ 20 3oo+

0 0 0 N N C0 (0 I) ~ I)

U)

U)

U) U) N N It) U)

I I-=gt 0

U) V1 N st-

lO N I)

0 lO

0 __ I) 2 0 ~ N _

0

0

__ 2 0

--

_J

w l--Gj OC) _J z I- =gt lt( ~ V1 N 0 1-z V) 3 CL

20 3 g0

1S3M

B-28

I fshyCt 0 z

0 r-shyr-shyI)

0 N r-shyn

0 r-shyl) I)

lO r-shylO

lO N It)

lO N ltt-

--

tlt)

_j

w r---fu o) _J z f- ) lt( ~ f) N 0 1-Z Vgt3 (L

2 03g0

I fshy)

0 l)

0 lO

0 -- n 2 0 ~ N ---

0

0

1S3M

B-29

1S13

-l)~ O 0 w

deg CL w

l)l ~

0 0 z 3

I lshya 0 z

--_

2 0 0 0

--

LO

_j

w__cj IJ)

0 _j z lf I- )

lt ~ ~ V) N

I) 20 - 0 Z(f)

I-

0 ~ 3 CLN -

2 00 3 gOr-

0

1S3M

B-30

Ht 11Sittl

lS13 0 0 0 0 N N II) (0 n I) n n

-- ()

LO t-shy ~ lO

(~i0 z

lO N LO

3

I Ishygt 0

lO () N +

--

2 0

--

_j

wr-----CJ OJ

0 _j z lt) I- )

lt ~ V) N

0 -- 0 1-shyI) 2 z () 0 i 3 ClN --- --

0 28 3 ltD

lf 0~_____________________________~_______________________--- t-- 0 0 0 0 ClCI N N t-shyII) t-shy io n n n n

1S3M

B-31

==- ~-_

NORTH

I bull bull - -f I I bull ~bull - ~__~~~~ ~~~

flt~11 $~~~t=- ~~ ~ 4Aligt~ ~~~ ~~

3820 1~~~- 4 t 11 ~ ~- --~_____-- ~ ~ ~~ 3820 ~~~

~~-~~~~

3770 3770

l1 ()w l-

lllizz tshy

~ ZlZZl ~ ~~~~~~

to I -IllIll

w -I IIIll~N llllll2~~

-II I I J I-~1~ r~~~~ 3720r ~ J J UL 1~A~~ 3720

~IIJJJJJ2~ ~~~ 1 ~ fl I JI JI2~~ 1~~~V fl fl ~ JI J J ~ y ~- 1-f4~) ~ fl fl fl I JI J _A2 1~ V~

~flflflflJIJIJl~2 ~~JIw~ ~ ~jlfljlflJIJIJI~ ~JIJIJflfl~~~ ~ ~~fljlfljlJI~~~~ -

J67 t-V1111111----(((((1i I~laquo rlt~1 I I I I I I I IM m I I I I I I I ~ MJ670 g75 325 375 425 475 525 575

SOUTH

11111 11111 11111 1I I I I I I 0 10 20 30 40 50 middot 0 5 10 15

(KM) WIND SPEED (MS)

DWM WINDS AT LEVEL 3 (300M) 1600 PST 25JUN87

1

NORTH

bj I

w w

i~ -tt--t ~ + ~frac14 diams diams diams diams diams f f f J-~~~l -ff~_x~ diams t diams ---t diams + diams ff f J1ff~t t

-=tl-U +---- ~ ~ t-t- diams diams __ diams~ diams diams ~ J I I 1 1 f ~ -y- ~I -~~-1t-~ diams +__+ diams + ++--J_f 1 ~JJ-11 I --

38201- ~~-- ~ ~--t_-( 1 ~ r 1t + middot~-t_ bull ~-~ bull bull bullmiddot bull r-r 1 ~IiI 1 I ~Ji~l _-=pound-~If~_ It It It bull bull bull bull bull ~ diams f f---bullmiddot+ --I __- _ I I~ 1 f1

( - ~~~~ II lit It It 1tt Iii Iii~ -r-middot -- ___- l_f--1-l -L ~~1 1 ~ ~_( _ -~~ ~------~ 1t(~ bull (t ft- ~ middotv -11-fI 1 - t~~1 1 41

~ - ~-~- lit 1t lk_i -- -~--- -_ -j rf-- l1 r111 1 I It It~ It 1t 11i bull-~ ~- ~ t_bullbull_~ (middot ~--middottY~i_(4Xtl~4j_ middot It It ~ -- ---~----~----_I~)-~-~ -

~-It It ltt middot~- ~ -~-middot ~-pound1[_~ -~- - middot - deg - - It It l diams diams 4 middotbull--bull ~ ~ ~ diams 7 1---~~ -L_- - ~ t( I diams -( bull diams ~ ~ bull ~ -- JI JI Jf JI JI j(_ ~II deg It_ -~ ~- I I I J JI JI JI JI 1

~ J- ~llj ~- diamsdiams +II IllJI_ h~ ~ ~ ~ bull bull ~ JI J J J ~ 1 x111 X7 -~ ~ diamsdiams 4111 JJJIJJ~~~~~~~~1t diamsdiamsdiams ~111 JJIJJIJllllb~ h~~~hh middot ~ - diams diams bull I I J J I I I I JI JI I l1-14~frac12-~~~ji_ ~ + f 1 J I 1 I I I 1 ~ x~ f1 11 middot -

bull JI I I I11~bullY1iz 1 41 ~ f I J J J JI J J J J J I I I lmiddot ~ t JI JI JI 1 JI 1 1 JI J I I I It~ if~_~

It_ ~ 1 JI JI JI JI J J I I l-~ 4 t J J J J J J J JI JI I I l l deg ~~ _ ~ 1111JJIJIJIJIJIJIJIJI t JIJIJIJI~I JIJJIJIJI_

~- I t I I JJJIJIJIJIJII~~~~ t JIJJIJIJIJIIII ~~ JJ JIJIJlllll ~ t IJJIJIJl1 1 1 ~ ~~I 1 t 1 A 11111111 II I I I

325 375 425 475

SOUTH

I I I I I I 0 10 20 30 40 50

(KM)

525 575

1111 111 1111 10 5 10 15

WIND SPEED (MS)

3820

3770 1-() lt( w

3720

3670

DWM WINDS AT LEVEL 1600 PST 25JUN87

5 (1000M)

0 w w CL ()

0

1S13 0 0 0 N r-shy N agt r-shy r--t) I) 1)

I() It)- r-shyU) U)

z U) N It) 3

( I I lshy Ishyo ) 0 0z It)

~lgtIgt~() st- b tgt ~ q st

lgtbbtgtb

b b t t 0 b

N

Igt b t b b b A 6 ~ b b t b C A 4 d 4

ttCt4lt1-it e Igt b tgt tgt V q ltl ltl ltI ltl

ti- deg 1 41 9 q I I ltl q q

i V q ltl q q q q I l() r-shy AlgtV ~ tlt) ~t) -~~~q

~ bull amp ~

0 ~ ~

-qa ~ ~ 1gt1 111111

b-a~-V ltillilI

bull lt bull bull a ~ Igt ~ V V V q 4 __J

It It lgt a -a~ Igt C tgt V w r---(J OC)

bull ~ Igt t 4 bull bull bull bull U) 0 __J z middot 1gt44lt14

U) ) t) rshy J - -N

lt( l() ~ ~~ CI() ~ ~

~

0 Ishy bull bull bull diams 1 z ()~ bull ~ bull diams diams 1 CL3bull ~ ~

i b y ~bullbullTT r I I 0

~ bull bulldiams ~ ~ b b b b ~ bullbull diams T r r I U)______-11____________________________ _ 0

0 O O ON N r- N r--agt r-- _ ~ I) I) I) I)

1S3M

B-34

I

_ _ 3820r- ttr- t f T Jf-Lt If t t 1l-- -~ 1~ t t

NORTH

~bull 1414

~~-_ ~ ~ r-- - --~ ~ - - _ r-- fT W - - r V-V ff f

- t t t t f I~ _AAjAA~-r bull(- -J It ~---1 t ~~~-1-- 1 ( ~~ - J ~ t t i f 1 ~ A_A-yen~_~_ ~ ~ 1 ~ t t ~ t t middotmiddotkt f ~-~-~~-----~~-- ~ ~ ~ ___ll_ bull ~

t -r- _______~~----- r ~bullbull _ ~ ~ tt-~J--~c-~~ ~ 1~--______ bull

~ -t lJ-- f t-J-- r---~~---middot _-- ~~-- ~ bull bull ll~iti~~sect~~~ ~ bullbull~bullbull bull~~n~ bull bull bull n~ bull bull

A)~lfifrac12~~ ~III I --1

3770 l l L l L - - ~ -- ~ - 1 ~ - 770 tshy~ ~~~~~~~~~11 1 ~~=1~~- Ul

W 1lllll~I ~~~~1111~~ lt( w ~1~~1~1~~j~~~m ~~~~ ~ - ~

11 1111 1111~I I 11111111 --- middotE~

tj IIIIIIIII_ ~tI l) llllll_~_p ~1l1 1~A~~~A~~rrr-v

3720t- I I I J J J A__ r r 0 11J)~~~----~_~ppmiddot-~~f Jl~~~~~---~--~~r~-~~q~q ~1

I ~JI I~ A A-_

~JIJl~~~~~A-----A rrbullbull~f~df~ ~~JIJl~~~~A~~--~- fffdfdff

~~JIJI~~~~~~---- bullfbulldbullfdf~

~IJIJl~~~AA~ --middotmiddotmiddotmiddotmiddot~middotmiddot~~~ ~l~JIJIJl~~~Al~pp~~~~bullbullffffffdff X ~~~~JI~- A(- f bullbull P ~ ~~bull1f1q1f1f1f1f1f1d1bull

3670275 325 375

1111 1111 11111 1 1 1

0 10 20 30 4-0 50 0 5 10 15 I I I I I I i(KM) WIND SPEED (MS)

iDWM w1tms AT LEVEL 3 (300M) ir 2200 PST 25JUN87

0 If)

0 __ I) 2 0 ~ (j __

0

0

__ 2 0 0 0

__

LO

_J

w f- GJ ll) _J z I- ) lt( ~ () N 0 1-z () ~ Cl

20 ~~ ON

1S3M

B-36

Page 16: Nind Observations Collected during the Southern California ...

n1er

The sea breeze is somewhat slow to appear in the western basin on this day but has begun to develop by 1000 PST At this time winds at 300 m agl remain S over the western part of the domain and W to NW over the eastern part of the domain Some S flow is also apparent at 1000 m

During the afternoon hours three distinct features are apparent in the surface airflow pattern

A sea breeze (W flow) develops along the coast between Santa Monica and Palos Verdes and penetrates inland A branch of the sea breeze penetrates into the San Fernando Valley resulting in weak SE flow at Burbank and Reseda

An area of weak (SW) winds forms in the Whittier-La Habra-Pico Rivera area persists throughout the afternoon and fonns a convergence zone in the central basin with the penetrating westerly flow The S component of this flow is due to sea breeze development along the coast near Long Beach

Upslope flow develops along the foothills of the San Gabriel and San Bernardino Mountains (eg at Glendora and San Bernardino) Along the eastern foothills the upslope flow is supplanted during the afternoon by the penetrating W flow

By 1600 PST on 19 June the depth of the upslope flow near Glendora exceeds 600 m Strong outflow is apparent through the Cajon and Banning passes Aloft winds are generally SW with some SE flow near Burbank and NW flow over the Coachella Valley

Significant onshore flow (3 ms) persists along the Santa Monica-Palos Verdes coastline through 2200 PST Feature-s of the afternoon airflow persist aloft through this time

24-25 June 1987

Surface and upper-air wind monitoring site locations for this intensive monitoring period are indicated on pages A-3 and A-4 respectively Plots of the diagnostic wind analyses for 24-25 June are given on pages B-13 through B-36

The airflow patterns on these two days are similar to one another and to the ttern on 19 June The overlying flow is generally weak below 1000 m agl with moderak t5 ms) SE flow at 1500 m agl

On 24 June the early morning surface airflow patterns are characterized by ver middoteak winds At 300 m agl winds in the Coachella Valley are SE By 1000 PST a we1 organized zone of weak S flow extends from Long Beach to Pasadena this S flm

9106102 11

(

reaches a depth of 300 m agl Southeastern flow in the Coachella Valley and E flow through Banning Pass are apparent both at the surface and 300 m agl S to SE flow dominates at 1000 m agl The II three-zone II surface airflow pattern is apparent during the afternoon The wind shifts to Wat Banning Pass by 1500 PST At 300 m agl winds are SW over much of the basin with SE flow at Burbank and in the Coachella Valley At 1000 m winds are generally SW At 2200 PST the airflow pattern is characterized by weak unorganized flow at the surface and 300 m agl Winds at 1000 m are NW over much of the domain but SE over the Coachella Valley

The airflow on 25 June is similar to that on 24 June During the early morning hours winds at the surface are very light Weak SE flow is apParent at 300 m agl At 1000 m agl winds continue to veer toward N The sea breeze develops more quickly than on the previous day and winds at Banning Pass become westerly by 1300 PST Calm winds are observed at Pico Rivera throughout the afternoon As on 24 June the afternoon airflow at 300 m agl is characterized by SW flow over the basin and SE flow at Burbank and over the Coachella Valley Upward propagation of W flow is generally slower than on 24 June Winds at 1000 m agl are S to SE During the evening hours the surface winds become light while at 300 m agl winds over the Coachella Valley become NW Organized W flow is apparent over the W basin through a depth of at least 300 m agl through 2200 PST

13-15 July 1987

Surface and upper-air wind monitoring sites for this intensive monitoring period are shown on pages A-5 and A-6 respectively Plots of the diagnostic wind analyses for 13-15 July are given in Figures B-37 through B-72

Airflow patterns on 13 and 14 July are generally consistent with the basic diurnal cycle described earlier However an unusual airflow pattern develops in the Coachella Valley on both days On 15 July strong SE forcing is associated with a delay in sea breeze development

The 13 July early morning surface airflow pattern is characterized by light winds and a weak cyclonic eddy over the Santa Monica Bay Winds aloft are light to moderate and primarily W The sea breeze develops rapidly on this day and by 1200 PST W flow overwhelms the S sea-breeze flow in the Long Beach Area W flow appears at Banning Pass by 0800 PST The surface afternoon airflow is characterized by the three-zone airflow pattern described earlier with strong upslope flow along the foothills ( gt 5 mls) and significant outflow through Cajon Pass Observations at Palm Spring (NW winds) and Thermal (SE winds) indicate a convergence zone in the Coachella Valley with a depth of at least 600 m W flow dominates at middot1000 m with S to SE flow over the Coachella Valley During the evening hours a cyclonic eddy redevelops over the Santa

9106102 12

rtMt1

Monica Bay winds are weak throughout the basin but airflow into the Coachella Valley is especially strong

Airflow patterns on 14 July are similar to 13 July with a few exceptions During the early morning hours the surface airflow is characterized by weak disorganized flow There is no eddy apparent over the Santa Monica Bay The overlying flow is weak and primarily S to SE at 300 m agl but W to NW at 1000 m agl Sea breeze development is approximately two hours slower on this day than on 13 July By 1000 PST weak S flow has developed over the Whittier-La Habra-Pico Rivera area and SE flow is apparent at Burbank AS component to the flow appears at 1000 m The afternoon surface airflow pattern is similar to that on 13 July but the S upslope flow at Glendora is weaker S flow develops at Elsinore and several coastal Orange County sites The Coachella Valley convergence zone reappears at the surface at 1600 PST two hours later than on the previous day At 300 and 1000 m agl W to SW flow dominates over the western twoshythirds of the domain SE flow is apparent over the Coachella Valley During the evening hours the surface airflow over the central basin is S to SW W flow components persist along the eastern foothills through 2200 PST

On the morning of 15 July surface winds are weak but maintain a S component Moderate SE flow is apparent offshore The overlying flow is generally E to SE By 1000 PST the surface airflow pattern is characterized by S flow over the central basin and along the foothills SE flow in the Coachella Valley and E flow through Banning Pass The depth of the S to SE flow is greater than 1000 m agl During the afternoon a weak sea breeze penetrates inland and winds along the foothills become W Winds shift from E to NW at Banning Pass at 1600 PST A weak S flow component persists in the Whittier-La Habra-Pico Rivera area throughout the afternoon A weak slopevalley circulation develops in the Coachella Valley resulting in SE flow there At 300 m agl winds are SW to W over the central basin and SE over the Burbank and the Coachella Valley At 1000 m S to SE flow dominates W winds persist along the foothills through 2200 PST and weak S to SE flow redevelops at the surface Remnants of the afternoon airflow pattern persist aloft

27-29 August 1987

The surface and upper-air wind monitoring site locations for this intensiv middot1onitoring period are indicated on pages A-7 and A-8 respectively Plots of the dia stic wind analyses for 27-29 August are given on pages B-73 through B-108

On the morning of 27 August surface winds are weak over most land areas a 1djacent coastal waters with moderate (5 ms) NW winds well offshore Winds aloft a Jrimarily N with weak NE flow at 100-300 m agl over the central basin By 1000 PST threeshy

IIzone airflow pattern has developed at the surface and is somewhat apparent ( hin the limits of the upper-air network) at 300 m agl SE flow has developed at 100( agl

9106102 13

This pattern is maintained throughout the afternoon Within the Coachella Valley a classic daytime slopevalley flow pattern develops with SE flow extending to a depth of 1000 m E flow develops at Banning Pass and persists through 1700 PST W flow over the basin develops upward throughout the afternoon By 1600 PST wind at 300 m agl are W to SW over the central basin and SE over Burbank and the Coachella Valley During the evening hours the features of the mesoscale airflow pattern over land weaken both at the surface and aloft There is no clearly developed offshore-directed land breeze

On the morning of 28 August the surface winds are weak and the overlying flow is primarily E Retardation of the sea breeze by the overlying E flow is apparent by 0900 PST S flow develops in the Long Beach area E flow at Banning Pass is substantially stronger than on 27 August During the afternoon of 28 August S flow persists at Long Beach and develops in the Whittier-La Habra-Pico Rivers area SE flow is observed along the Orange County coast E flow through Banning Pass persists throughout the day W wind components along the Santa Monica-Palos Verdes coastline are weaker than on the previous day and NW flow fails to develop at San Nicolas Island W flow over the central basin disrupts the SE flow aloft During the evening hours the airflow features weaken W flow along the foothills does not persist as long as on the previous day

The early morning airflow pattern on 29 August is characterized by SE flow both at the surface and aloft Sea breeze development on this day is slower than on either of the previous two days S flow again develops in the Long Beach area and appears to be stronger than on the previous day Although the sea breeze is weaker winds at Banning Pass shift from E to SW by 1300 PST This shift occurs at 1800 on 27 and 28 August SE flow persists aloft with limited upward development of the W sea breeze flow W flow persists in the western basin area through 2200 PST and SE flow persists aloft

2-3 September 1987

The surface and upper-air monitoring site locations for this intensive monitoring period are indicated on pages A-9 and A-10 respectively Plots of the diagnostic wind analyses for 2-3 September are given on pages B-109 through B-132

The first day of this period is probably the most anomalous of the summer SCAQS intensive measurement days Overlying easterly forcing during the morning hours prevents development of W flow along the foothills and inhibits upward development of the sea breeze over the western and central portions of the basin The easterly forcing appears to reverse rather abruptly on the afternoon of 2 September Unusual winds are also observed at Burbank on 2 September During the late morning and afternoon Burbank experiences an unusual wind shift from SE to W through a depth of 1000 m On 3 September the overlying airflow is W and the airflow patterns are more typical

9106102 14

rrn

On the morning of 2 September strong downslope flow results in N to NE winds at several sites along the foothills of the San Gabriel Mountains At 300 m strong NE winds are apparent over the central basin The overlying flow is E By 1000 PST the sea breeze appears as W flow along the Santa Monica-Palos Verdes coast and S flow in the Long Beach area The surface analysis indicates a band of S flow from Costa Mesa to Azusa W flow has not developed along the eastern foothills Winds are SE in the Coachella Valley and E through Banning Pass E flow aloft continues and intensifies During the early afternoon hours a relatively strong sea breeze penetrates inland to Azusa while winds in the Whittier-La Habra-Pico Rivera area remain weak The sea breeze weakens considerably after mid-afternoon Between 1200 and 1500 PST the wind at Burbank shifts from SE to W through a depth of 600-1000 m By 1600 PST the overlying flow has shifted from SE to W Onshore flow continues at the surface through 2200 PST while the winds weaken considerably Although the overlying W flow persists in general 300 m agl winds at Burbank become SE

The early morning airflow on 3 September is characterized by weak winds at the surface SE flow at 300 m agl and primarily W flow at 1000 m agl Although the major surface airflow features appear to develop as on previous days upward development of the pattern is limited Strong S flow is apparent by 1200 PST between 100 and 300 m agl over the central and western basin By 1600 PST the sea breeze has penetrated well inland Imbedded in the sea breeze is a persistent calm area in the vicinity of Lynwood S flow persists at 100-300 m agl over the central and western basin while flow at this level off shore remains NW At 1000 m agl W flow continues This general pattern persists through 2200 PST but weakens considerably especially at the surface

AUTUMN INTENSIVE MONITORING PERIODS

The mesoscale airflow patterns in the SOCAB during the SCAQS autumn intensive monitoring periods exhibit a weaker diurnal cycle than the summer airflow patterns Synoptic forcing also appears to be stronger

11-13 November 1987

The surface and upper-air wind monitoring site locations for this intensive monitoring period are plotted on pages A-11 and A-12 respectively Plots of the diagnostic wind analyses for 11-13 November are given on pages B-133 through B-168

During the early morning hours of 11 November NE surface winds are apparent over most of the region Surface wind speeds are very light over the basin and somewhat stronger along the foothills and the coast At 300 m agl winds are light and generally E At 1000 m agl winds are W to SW over the western half of the domain and SE over the eastern half of the domain Weak E to NE surface flow persists throughout most of the

9106102

15

morning in the first 300 m An apparent anticyclonic eddy (SE flow at Long Beach weak S flow at Burbank W flow at El Monte) develops between 600 and 1000 m agl on this morning A weak sea breeze forms around 1200 PST penetrating only to the central basin There is no apparent turning of the sea breeze into the San Fernando Valley W to NW flow develops offshore and is deflected around the Palos Verdes Hills This W flow is also apparent at 300 m agl Downslope flow components along the foothills are apparent by 1600 PST At this time the 1000 m agl winds are weak and N The sea breeze rapidly dissipates and NE flow develops at several coastal sites indicating a land breeze NW flow is maintained off shore The nighttime airflow pattern aloft is characterized by weak N winds at 300 m agl and weak W winds at 1000 m agl

The surface airflow pattern on the morning of 12 November is generally similar to that on 11 November E flow over land is apparent through a depth of 300 m while NW flow persists offshore The overlying flow is W The afternoon surface airflow pattern is more similar to a typical summer afternoon pattern than the previous day Turning of the sea breeze into the San Fernando Valley is apparent and W flow develops along the foothills of the San Gabriel and San Bernardino Mountains by 1400 PST Airflow at 300-600 m agl appears to veer continuously from E to W at most inland sites during the afternoon NW flow through a depth of 1000 mis apparent over the Coachella Valley Surface winds become light and disorganized during the evening hours Unlike the previous day NE flow does not develop at the coastal sites and NW flow weakens offshore W winds persist aloft

On 13 November surface winds are very light through the early morning hours with E flow components apparent immediately offshore The overlying flow is WNW but becomes S over the central basin by 1000 PST As on the previous two days a sea breeze becomes apparent at the surface by noon W flow components over the basin and foothill areas are stronger than on the previous two days both at the surface and aloft Significant W flow also develops in Banning Pass Moderate to strong W winds are apparent aloft During the afternoon and evening hours SE winds are apparent at Burbank between 300 and 600 m agl Intense W flow develops off shore and propagates inland during the evening hours W flow continues aloft with some S to SE flow between 100 and 600 m agl at Burbank and El Monte

3 December 1987

The surface and upper-air wind monitoring site locations for this intensive monitoring period are plotted on pages A-13 and A-14 respectively Plots of the diagnostic wind analyses for 3 December are given on pages B-169 through B-180

The early morning surface airflow pattern on 3 December is characterized by weak NE winds over the inland areas and a weak cyclonic eddy off shore The overlying flow is S to SE Surface winds remain light and variable through most of the morning Moderate

9106102 16

txi Iii ttii

E flow is apparent over the western and central basin between 300 and 600 m agl A sea breeze develops around 1200 PST reaching a depth of 300 m and penetrating only approximately 30 km inland S to SE flow persists above 300 m agl The sea breeze weakens during the evening hours and N flow through a depth of 300 m develops at Long Beach E flow components intensify at 600 m agl and above

10-11 December 1987

The surface and upper-air wind monitoring site locations for this intensive monitoring period are plotted on pages A-15 and A-16 respectively Plots o~ the diagnostic wind analyses for 10-11 December are given on pages B-181 through B-204

On 10 December the early morning surface airflow pattern is weak and disorganized Weak NE flow is apparent over much of the basin between 100 and 600 m agl The overlying flow at 1000 m is N The surface airflow over the basin is weak throughout the morning hours while NW flow develops offshore Winds aloft remain N A weak sea breeze is apparent by 1200 PST the sea breeze penetrates only about 30 km inland and is limited to a depth of approximately 300 m There is no apparent turning of the sea breeze into the San Fernando Valley Elsewhere in the basin the surface airflow remains weak By 1600 PST the sea breeze has weakened At this time winds aloft are predominantly W to NW at 300 m agl and N at 1000 m agl During the evening hours surface airflow over the basin becomes weak and disorganized while E flow develops at Palos Verdes Strong N winds appear aloft (300-600 m agl) at Burbank LMU and Long Beach however winds at this level further to the east remain light

On 11 December the early morning surface airflow pattern is similar to that on 10 December Relatively strong ( gt 10 ms) NNW winds persist at 600-1000 m agl at Burbank and LMU E wind in the 100-300 m agl appear at LMU and Long Beach Throughout the morning the surface winds remain light and N winds 9ver Bu~ank weaken considerably A sea breeze is apparent by 1200 PST but is weaker than on the previous day and reaches a depth of only 100 m or less Significant N winds (3-6 ms) develop between San Bernardino and Elsinore and in the western San Fernando Valley NE flow is observed in Ventura County Winds aloft continue to be primarily N however E flow is apparent over the Long Beach area at 1000 m agl Surface airflow over the central and western basin becomes very weak during the evening hours Strong N to NE flow develops at the coast west of Santa Monica while N flow persists in the western San Fernando Valley and in the San BernardinoRiverside area The overlying flow is N to NE

91061 02 17

3 PARTICLE PAm ANALYSIS

A series of forward and backward particle paths (trajectories) were calculated using the SCAQS DWM wind fields The particle paths will be used by other SCAQS investigators in their examination of pollutant transport within the SOCAB The forward particle paths can be used to estimate the transport of pollutants from known source locations The backward particle paths can be used to estimate potential source areas The particle paths can also be used to estimate the residence time of certain pollutants in the SOCAB as a whole or in subregions

CALCULATION OF PARTICLE PAIBS

Two-dimensional particle paths were computed using the DWM wind fields as follows

Starting ( ending) points for a given number of forward (backward) particle paths were specified

Using a time interval of 15 minutes the hourly gridded DWM wind fields were linearly interpolated in time and then interpolated in space to each particle position using an inverse-distance-squared weighting scheme

The particles were then advected horizontally for the specified time interval

The distance traveled by each particle during each time interval was integrated The new position of the particle was reported at hourly intervals

Forward and backward particle paths were calculated for the SCAQS intensive monitoring periods for several vertical levels and a variety of origination and destination points The origination (destination) locations and times for the summer and autumn particle paths are listed in Tables 3-1 and 3-2 respectively Most of the particle paths originated (ended) at one of the SCAQS wind monitoring sites listed in Tables 1-1 and 1-2 Additional sites are identified in Table 3-3 Note that for some sites in Tables 3-1 and 3-2 a new particle path was initiated at the particles 1000 PST location but at a higher level

Additional forward particle paths were calculated for comparison with the SCAQS tracer data (England et al 1989 Horrell et al 1989) The initiation times and locations correspond to the tracer releases and are given in Tables 3-4 and 3-5

9106lrl02

~~ll1~(I titW I~l~~~t~~

TABLE 3-la Summer particle paths forward particle paths

Start Time Origination Start Date (PST) Site Level(s)

624 0500 LBCC 13 CELA 13

624 0700 LBCC 13 CELA 13

624 1000 LBCC 13 CELA 13

624 1500 LBCC 13 CELA 13

624 2100 LBCC 13 CELA 13

625 0500 HHRA 5 PADA 45 FULA 5

625 0700 FULA 5

713 0500 LBCC 13 CELA 13

713 0700 LBCC 13 CELA 13

713 1000 LBCC 13 CELA 13 EMTA 24

713 1500 LBCC 13 CELA 13

713 2100 LBCC 13 CELA 13

714 0500 LBCC 13 CELA 13

714 0700 LBCC 13 CELA 13

714 1000 LBCC 13 CELA 13

714 1500 LBCC 13 CELA 13

714 2100 LBCC 13 CELA 13

Continued

19

91061 07

TABLE 3-la Concluded

Start Time Origination Start Date (PST) Site Level(s)

827 0500 LBCC 13 CELA 13

827 0700 LBCC 13 CELA 13

827 1000 LBCC 13 CELA 13

827 1500 LBCC 13 CELA 13

827 2100 LBCC 13 CELA 13

828 0500 LBCC 13 CELA 13

828 0700 LBCC 13 CELA 13

828 1000 LBCC 13 CELA 13

828 1500 LBCC 13 CELA 13

828 2100 LBCC 13 I CELA 13

92 0500 LBCC 13 CELA 13 HHRA 12

92 0700 LBCC 13 CELA 13 FULA 12

92 1000 LBCC 13 CELA 13

HHRA 45 FULA 45

92 1500 LBCC 13 CELA 13

92 2100 LBCC 13 CELA 13

93 0700 RIVA 12

93 1000 RIVA 45

A new particle path was initiated at the particles 1000 PST location but at a higher level

20

~(Ibull bull 11

41

~1~_11Lmiddot11~1~~tV t rt~~14_ II~~~h1 1r t

TABLE 3-lb Backward particle paths

End Time Destination End Date (PST) Site Level(s)

624 1500 CABA 23 EMTA 45 BURA 1234 HHRA 4 FULA 45

624 1800 RIVA 3

625 0500 CLAR 13 RIVR 13 HHRA 5 PADA 45 FULA 5

625 0700 CLAR 13 RIVR 13 FULA 5

625 1000 CLAR 13 RIVR 13

625 1500 CLAR 13 RIVR 13 CABA 23 EMTA 4 BURA 4 RIVA 45

625 1600 RIVA 45

625 2100 CLAR 13 RIVR 13

713 - 1000 EMTA 24

713 1500 CABA 23 EMTA 45 RIVA 24

713 1600 RIVA 24

714 0500 CLAR 13 RIVR 13

714 0700 CLAR 13 RIVR 13

714 1000 CLAR 13 RIVR 13 BUR 123

714 1500 CLAR 13 RIVR 13 CABA 23 EMTA 4 BURA 234 RIVA 2

714 1600 RIVA 2

Continued

21 nn1 Y1

TABLE 3-lb Continued

End Time Destination I End Date (PST) Site Level(s)

714 2100 CLAR 13 RIVR 13

715 0500 CLAR 13 RIVR 13

715 0700 CLAR 13 RIVR 13

715 1000 CLAR 13 RIVR 13

715 1500 CLAR 13 RIVR 13

715 2100 CLAR 13 RIVR 13

827 1000 CABA 2 EMTA 23 BURA 123

827 1500 CABA 2

828 0500 CLAR 13 RIVR 13

828 0700 CLAR 13( RIVR 13

828 1000 CLAR 13 RIVR 13

828 1500 CLAR 13 RIVR 13

828 2100 CLAR 13 RIVR 13

829 0500 CLAR 13 RIVR 13

829 0700 CLAR 13 RIVR 13

829 1000 CLAR 13 RIVR 13

829 1500 CLAR 13 RIVR 13

829 2100 CLAR 13 RIVR 13

92 1000 PADA 3

92 1100 PADA 3

92 1500 EMTA 2 RIVA 2

Continued

22

91061 07

I

1bullLI bullI I bull ~ii 1 1

1 cl1

[1i1bull~j~1 Iiii~ j t-~dI ~1 1ltl1111111 II r I l~bull~II~middot t1~i~n_11~~ ~middot -

TABLE 3-lb Concluded

End Time Destination End Date (PST) Site Level(s)

92 1600 RIVA 2

93 0500 CLAR 13 RIVR 13

93 0700 CLAR 13 RIVR 13

93 1000 CLAR 13 RIVR 13 CABA 2 BURA 1234

93 1500 CLAR 13 RIVR 13

93 2100 CLAR 13 RIVR 13

23 9106107

TABLE 3-2a Autumn particle paths forward particle paths

Start Time Origination Start Date (PST) Site Level(s)

1111 0300 LBCC 13 CELA 13

1111 0700 LBCC 13 CELA 13

1111 0900 FULA 12

1111 1200 LBCC 13 CELA 13

1111 1500 LBCC 13 CELA 13

1111 2100 LBCC 13 CELA 13

1112 0300 LBCC 13 CELA 13

1112 0700 LBCC 13 CELA 13 FULA 12

1112 1000 FULA 45

1112 1200 LBCC 13 CELA 13(

1112 1500 LBCC 13 CELA 13

1112 2100 LBCC 13 CELA 13

1113 0500 ONTA 123

1113 1000 ONTA 45

123 0300 LBCC 13 CELA 13

123 0700 LBCC 13 CELA 13 FULA 12

123 1000 FULA 45

123 1200 LBCC 13 CELA 13

123 1500 LBCC 13 CELA 13

123 2100 LBCC 13 CELA 13

1210 0300 LBCC 13 CELA 13

1210 0700 LBCC 13 CELA 13

Continued

24 9106108

TABLE 3-2a Concluded

Start Time Origination Start Date (PST) Site Level(s)

1210 1200 LBCC 13 CELA 13 FULA 123

1210 1500 LBCC 13 CELA 13

1210 2100 LBCC 13 CELA 13

1211 0500 ONTA 12

1211 0700 FULA 12

1211 1000 ONTA 45 FULA 45

A new particle path was initiated at the particles 1000 PST location but at a higher level

25 9106108

TABLE 3-2b Backward particle paths

End Time Destination End Date (PST) Site Level(s)

1111 1500 HHRA 34

1112 0300 LBCC 13 CELA 13 RIVR 13

1112 0700 LBCC 13 CELA 13 RIVR 13

1112 1200 LBCC 13 CELA 13 RIVR 13

1112 1500 LBCC 13 CELA 13 RIVR 13 HHRA 34 PADA 3 FULA 34

1112 2100 LBCC 13 CELA 13 RIVR 13

1113 0300 LBCC 13( CELA 13

RIVR 13

1113 0700 LBCC 13 CELA 13 RIVR 13

1113 ~ 1200 LBCC 13 CELA 13 RIVR 13 ONTA 34 EMTA 45

1113 1500 LBCC 13 CELA 13 RIVR 13

1113 2100 LBCC 13 CELA 13 RIVR 13

123 0300 LBCC 13 CELA 13 RIVR 13

123 0700 LBCC 13 CELA 13 RIVR 13

Continued

26 9106108

TABLE 3-2b Concluded

End Time Destination End Date (PSn Site Level(s)

123 1200 LBCC 13 CELA 13 RIVR 13

123 1500 LBCC 13 CELA 13 RIVR 13 PADA 3

123 2100 LBCC 13 CELA 13 RIVR 13

1211 0300 LBCC 13 CELA 13 RIVR 13

1211 0700 LBCC 13 CELA 13 RIVR 13

1211 1200 LBCC 13 CELA 13 RIVR 13

1211 1500 LBCC 13 CELA 13 RIVR 13 PADA 1234 BURA 123

11 13 2100 LBCC 13 CELA 13 RIVR 13

27 9106108

TABLE 3-3 Additional particle path initiation (destination) points

Site Identifier Location UTM Easting (km) UTM Northing (km)

BURA Burbank Airport 3749 37859

CABA Cable Airport 4370 37751

EMTA El Monte Airport 4047 37717

FULA Fullerton Airport 4091 37485

HHRA Hawthorne Airport 3768 37547

ONTA Ontario Airport 4435 37686

PADA PADDR Intersection 3810 37175

RIVA Riverside Airport 4584 37485

28

TABLE 3-4 Forward particle paths calculated for comparison with the SCAQS tracer data

Start Start Origination Date Time Site Levels

0300 LAGS 13 0600 13 0900 II 13 1200 II 13 1500 II 13

625

715 0500 VRNN 1

0800 VRNN 1

828 0600 LAGS 13 1000 II 13 1300 13 1500 13

93 0500 VRNN 1

0800 VRNN 1

1111 1600 LAGS 3 ESGS 3 VRNN 1

1900 LAGS 3 ESGS 3 VRNN 1

1112 0600 ESGS 3 VRNN 1

0900 ESGS 3 VRNN 1

1210 0600 LAGS 3 ESGS 3 VRNN 1

0900 LAGS 3 ESGS 3 VRNN 1

1600 VRNN 1

29

9106lrl09

TABLE 3-5 SCAQS tracer release sites

I_______________________

Site Identifier Location UTM Easting (km) UTM Northing (km)

ESGS El Segundo 3690 37536 LAGS Los Alamitos 3980 37370 VRNN VRNN 3874 37625

(

91061rl09

30

The particle paths were calculated for up to a three-day period In general forward particle paths were calculated through the end of the monitoring period or until the particle was advected out of the domain Backward particle paths were calculated through the beginning of the intensive monitoring period or until the particle left the domain

Selected plots of the forward and backward particle paths are given in Appendix C

SUMMER PARTICLE PATHS

Forward particle paths (levels 1 and 3) originating from Central Los Angeles (CELA) and Long Beach City College (LBCC) at 0700 PST on 24 June 13 and 14 July 27 and 28 August and 2 September are shown on pages C-1 through C-12

The surface-level particle paths originating at CELA indicate northward advection from this site on all days The particle path initiated on 27 August indicates that the initial northward advection is followed by westward advection on the following day the particle path initiated on 2 September indicates that the initial northward advection is followed by eastward advection on the following day In all cases the residence time in the central Los Angeles basin is less than 12 hours

The surface-level particle paths originating at LBCC are carried northward and eastward usually exiting the Los Angeles basin through Cajon Pass On 24 June and 14 July however the particles are carried across the San Gabriel Mountains (with the upslope flow) Considerable eastward transport is indicated by the particle paths initiated on 2 September after 1800 PST -Residence time in the Los Angeles basin varies from day to day and is especially long for the particle path initiated on 27 August (approximately 30 hours) Particle paths initiated on 13 July and 28 August also indicate some recirculation and a significant residence time within the Los Angeles basin

The level 3 particle paths also indicate northward transport from CELA on most days Advection into the San Fernando Valley which may be partly due to the SE flow produced by the turning of the sea breeze into the valley is more pronounced on certain days (14 July 28 August and 2 September) Level 3 particle paths originating at LBCC show mostly northwestward transport Recirculation over the Los Angeles basin is indicated for the 2 September particle path

Backward particle paths (levels 1 and 3) culminating at Claremont College (CLAR) and Riverside-Rubideaux (RIVR) at 1500 PST on 25 June 14 and 15 July 28 and 29 August and 2 September are shown on pages C-13 through C-24 -

_

9106lrl 02

31

The surface-level backward particle paths originate over water on all days the particles are carried eastward and northward into the Los Angeles basin On 14 July and 28 August the particle paths indicate primarily eastward transport There is some indication that particles arriving at the destination sites on 28 August may have originated in the South Central Coast Air Basin (SCCAB) On 25 June 15 July and 3 September the particle paths indicate primarily northeastward transport On 29 August northward transport is indicated

The level 3 backward particle paths also indicate transport from the W SW or SE on the intensive monitoring days The over-water segments of the particle paths indicate eastward advection on 14 and 15 July and 27 and 28 August and northward advection on 25 June and 3 September Again there is some indication that particles arriving at the destination sites on 28 August may have originated in the SCCAB Almost all of the particle paths indicate that the particles are carried onshore between Long Beach and Laguna Beach and advected northeastward to CLAR and RIVR An exception to this occurs on 28 August On this day the particles are carried onshore near Redondo Beach and are recirculated over the Los Angeles basin for approximately 24 hours before arriving at the destination sites

AUTUMN PARTICLE PATIIS

Forward particle paths (levels 1 and 3) originating at CELA and LBCC at 0700 PST on 11 and 12 November 3 and 10 December are presented on pages C-25 through C-32

The autumn particle paths exhibit more day-to-day variability than the summer particle paths indicating more variability in the autumn airflow patterns Because both the CELA and LBCC locations are affected by the land-breezesea breeze circulations all of the surface-level particle paths show some recirculation in the western basin Particle paths initiated on 11 and 12 November eventually indicate eastward transport

The level 3 particle paths also differ among episodes but are all affected by the seashybreeze circulation Particle paths initiated on 11 November show eastward transport from CELA and southward transport from LBCC Northeastward transport at this level is indicated by the 12 November particle paths The particle paths initiated on 3 December illustrate local recirculation by the sea breeze On 10 December southward advection is indicated

Backward particle paths culminating at CELA LBCC and RIVR at 1500 PST on 12 and 13 November 3 and 11 December are presented on pages C-33 through C-40

The surface-level particle paths indicate that particles arriving at CELA at 1500 PST on all four days follow a southward then eastward course Particles arriving at LBCC are affected by some combination of onshore advection and local recirculation The particle

9106Irl02

32

paths culminating at Riverside indicate a variety of possible transport patterns eastward transport on 12 and 13 November northwestward transport on 3 December and southeastward transport on 11 December

The level 3 backward particle paths for 12 November illustrate recirculation aloft by the evolving airflow patterns while the particle paths for 13 November indicate primarily eastward advection The particle paths for 3 December are clearly affected by the SE that occurs on this day the resulting particle paths indicate northwestward transport The particle paths for 11 December indicate southward advection and recirculation by the sea breeze

COMPARISON WITH TRACER DATA

Forward particle paths originating from El Segundo (ESGS) Los Alamitos (LAGS) and Vernon (VRNN) at times corresponding to the SCAQS tracer release times are shown on

middot pages C-41 through C-76 For ground-level tracer releases the particle paths were calculated using level 1 (10 m agl winds) for stack releases the particle paths were calculated using level 3 (300 m agl) winds A qualitative comparison with the observed tracer data is provided here

Surface-level particle paths originating at LAGS on 25 June indicate northward transport during the morning and afternoon hours The level-3 particle paths indicate that material is transported out of the basin through Cajon and Banning Passes by the upper-level winds Both of these indicated transport patterns are supported by observed tracer data

Surface-level particle paths originating at VRNN on 15 July indicate northward transport and exhibit good qualitative agreement with the tracer data

Both the surface-level and level-3 particle paths originating at LAGS on 28 August indicate primarily northeastward transport Most of the particles are eventually advected through Cajon Pass This is consistent with observed tracer at Redlands San Bernardino and Crestline

Surface-level particle paths originating at VRNN on the morning of 3 September do not agree with the tracer data While the particle paths indicate northeastward transport the tracer data indicate northwestward transport

Surface-level particle paths originating at VRNN on the afternoon of 11 November indicate westward transport and a long residence time in the central basin The level-3 particle paths originating at LAGS and ESGS show southeastward transport and recirculationmiddot by the sea breeze Surface-level particle paths originating at VRNN on the following morning again show net westward transport and a long residence time in the

( central basin but the level-3 particle paths indicate northward transport with recirculation

91061rl 02

33

by the sea breeze The smface-level particle paths are consistent with the tracer data Tracer was observed over the north-central basin and along the foothills on the morning of 13 November

The surface-level particle paths originating at VRNN on the morning of 10 December indicate relatively stagnant conditions with a weak sea breeze circulation Some net transport toward the south is indicated Particle paths originating at VRNN on the afternoon of IO December show little movement throughout the following day The long residence time in the basin is in qualitative agreement with the tracer data Tracer was observed in the basin on the following day The dispersion indicated by the widespread tracer concentrations however cannot be represented by a single particle path The level 3 particle paths originating at LAGS and ESGS on the morning of 10 December show southward transport and recirculation by the sea breeze

UNCERTAINTY ANALYSIS

A simple analysis was perlormed in an attempt to quantify the degree of uncertainty inherent in the particle paths The uncertainty analysis was similar to an analysis described by Moore et al (1989)

Three major forms of error in the particle path calculations can be identified The first two result from errors in the wind fields The most fundamental of these is measurement error as measurements can only be regarded as approximations of the true winds Regardless of the accuracy of interpolation techniques measurement error will always affect the final wind field The second type of error results from the interpolation of these measurements and the parameterizations and approximations in the diagnostic wind model This error will be greatest in data-sparse areas The third type of error results from the use of two-dimensional wind fields The two-dimensional particle paths do not incorporate the effects of vertical motion which may be a significant source of error considering the mesoscale regimes present in the study area

The particle path uncertainty in this analysis is the result of all sources of error and is therefore very difficult to estimate A lower bound 11 on the uncertainty was assumed to result from measurement error alone Here we use a lower bound uncertainty estimate to illustrate the effects of measurement error on the particle path calculations Several assumptions were made in order to estimate this uncertainty First average bias for all instruments was assumed to be very small Second instrument precision was assumed to be constant over the region Third measurement error (speed and directional error) was assumed to be normally distributed around zero The standard deviation about the mean was based on observational data

For this uncertainty analysis 20 particle paths were initiated from a single site at a single time For each 15-minute particle path segment u and v were calculated as described in

9106lrl 02

34

(

the previous section Small random wind components (representing the measurement error) were then added to the interpolated wind The smaller components were determined by randomly selecting wind speed and direction error from two separate normal probability density functions (PDF) To do this a uniform random number generator was used to find two error probabilities Ps and Pd between 0 and 1 An inverse normal PDF routine was then used to find the speed or direction error that results in error probability Ps or Pd respectively Commercial statistical software from Th1SL was used to generate uniform random and inverse normal PDF values 1

The PDFs possess means of zero and standard deviations equal to the root mean square error (RMSE) of the measurements For simplicity RMSE values for speed and direction were taken from those specified by Moore et al (1989) namely 02 mis and 10 degrees respectively Random error components were determined for each 15-minute segment of every particle path The resulting divergence in the particle paths represents a lower limit to the uncertainty inherent in the particle-path calculations

Plots illustrating the effect of the lower-bound uncertainty on the particle path calculations are given for one summer and one winter episode in figures 3-1 and 3-2 respectively The summer particle-path bundles (Figure 3-1) were initiated at CELA and LBCC at 0700 PST on 14 July The winter particle paths (Figure 3-2) were initiated at CELA and LBCC at 0700 PST on 12 November The bundles were calculated for levels 1 and 3 In general the bundles indicate that the airflow patterns do not vary abruptly in space or time The winter particle paths are less divergent that the summer particle paths

While plots of the particle path bundles qualitatively indicate the degree of lower-limit uncertainty a quantitative summary of the uncertainty can be obtained via hourly estimates of RMSE of all particle positions relative to that with zero error The RMSE can be obtained from

1 1 M 2 2

RMSE = - ~ dj[ lM ]=l

where

1

dj = [(xj - X1)2 + (yj -y1)2]2

and where Mis the number of particles and ()1 represents the position of the actual particle as calculated in the previous section (ie the zero error particle path) The RMSE is used to determine the growth over time of the confidence interval about the

1 IMSL is the registered trademark of the Scientific Problem-Solving Software System developed by IMSL Inc Houston Texas

91061rl02

35

NORTH

425 31570

SOUTH (a) CELA Level 1I

20

(KM)

NORTH

425 31570

SOUTH (b) LBCC Level 1I

20

(KM)

le-path bundles initiated at 0700 PST 14 July 1987FIGURE 3- composedd par tic le paths1 Forwar of 20 particBundles are

35

NORTH

425 3570

SOUTH

(c) CELA Level 3

NORTH

425 3870

SOUTH

(d) LBCC Level 3

FIGURE 3-l Concluded

37 9106]

70

IlFil

NORTH

CEIA Level 1(a)

3(170

1-Ul j

NORTH

425 3(170

SOUTH

(b) LBCC Level 1

Forward le-path bundles initiated at 0700 12 November 1987FIGURE 3-2 composed par tic le pathsbullBundles are of 20 partic

3391061

425 3870

SOUTH

(c) CELA Level 3

J8

3870425

SOUTH

(d) LBCC Level 3 10 2

(KM)

FIGURE 3-2 Concluded

91061 39

1 1c

i I

trajectory calculated using the DWM winds Hourly RMSE values are given for the particle paths bundles shown in Figures 3-1 and 3-2 in Tables 3-6 and 3-7 respectively For level 1 the average RMSE after 12 hours is 567 km for 14 July and 167 km for 12 November For level 3 the average RMSE after 12 hours is 416 for 14 July and 260 for 12 November

9106lrl 02

40

TABLE 3-6 Hourly RMSEs for particle-path bundles initiated at 0700 PST 14 July 1987

Time LBCC RMSE CELA RMSE (PST) (km) (km)

Surface Level

0700 000 000

0800 042 042

0900 057 069

1000 063 100

1100 093 128

1200 091 143

1300 111 168

1400 136 217

1500 229 227

1600 265 219

1700 394 219

1800 620 265

1900 796 338

Level 3

0700 000 000

0800 018 049

0900 064 090

1000 068 140

1100 087 172

1200 089 162

1300 123 180

1400 231 224

1500 337 258

1600 419 278

1700 427 306

1800 449 347

1900 462 370(

9106104 41

TABLE 3-7 Hourly RMS Es for particle-path bundles initiated at 0700 PST 12 November 1987

Time LBCC RMSE CELA RMSE (PST) (km) (km)

Surface Level

0700 000 000

0800 047 049

0900 078 065

1000 077 066

1100 089 086

1200 109 094

1300 089 092

1400 118 125

1500 100 138

1600 129 150

1700 147 160

1800 161 164

1900 156 176

Level 3

0700 000 000

0800 045 076

0900 061 120

1000 069 139

1100 092 171

1200 098 163

1300 096 156

1400 125 182

1500 150 175

1600 231 171

1700 261 152

1800 308 156

1900 345 175

91061 04 42

References

Douglas S G R C Kessler and E L Carr 1989 Users Guide to the UAM Wind Preprocessor System Systems Applications International San Rafael California (SYSAPP-89079)

England W G and L H Teuscher 1989 Perfluorocarbon Tracer Experiments During the Southern California Air Quality Study Air amp Waste Management Association For presentation at the 82nd Annual Meeting amp Exhibition Anaheim California (June 25-30 1989)

Horrell R S M Deem P Wyckoff F Shair and N Crawford 1989 Ground Release SF6 Tracer Experiments Used to Characterize Transport and Dispersion of Atmospheric Pollutants During the Southern California Air Quality Study of 1987 For presentation

( at the 82nd Annual Meeting amp Exhibition Anaheim California (June 25-30 1989)

Moore G E G Z Whitten J P Killus and R D Stevens 1989 Analysis of 1985 Air Quality and Air Chemistry Data Collected Under the South Central Coast Cooperative Aerometric Monitoring Program Systems Applications International San Rafael California (SYSAPP-89058)

Ross D G and I Smith 1986 Diagnostic Wind Field Modelling for Complex Terrain-Testing and Evaluation Centre for Applied Mathematical Modelling (CAMM Report No 586)

9106105

43

rr T rr

Appendix A

SCAQS WIND MONITORING SITES

(

9106103

-

((--_ 770

-

NORTH CM~RS 42 575

5 I I j I I 1---L 525 middot 1J75 I I I I I I I I I r I I _--- I C2~middot----_J ~ ~-- 1 ( ~ ~J25 I I I I I I I I I I I I l__ ) -475 () I Li 1~)51 (

--~ltJ820f-_ ~------ ---

~- -cli( ol --9-Sl-l

lt ( ~)

CQ p llE RiDO ~ llE ANAH

I middot LAS-L

bull~ LANC ( _ Q - _J ) ) - _ ~ - ---- - ~ _ ____ middot clt G~ _----~____-=-- -___ ~PR __ - ---- --- VCTC ltgt

-- ------ f---- __ - ---_ -middot ------ --___ --~-----TEME --- _ f

-)(j _ _ middot --middot -------- - HESP f ----=----==~~~ l ----~~ -- middot l - --- __ -middotlt- CJ _ --- middot PIRs[- lt NfVL_ ---~ - C~lt --lt _ ~ ~- __ (~~

__ --- bull _ i - f c-_ _ I - )~__) - ---~poundS---_-

3770 t-()

LA llE PICO )Ct444 -w 3 ~~~ZUMA MALI VE VEN llE llE middot Jl~C - ( p

NN WOOHS ~- ~ m - middot - o - I () )IE 55I

1-- (lt - - PERI ) ~ S__~llE

BU25 bull y _ L ~~5o 13720

I ----~- - 515 3670 525

(KM)

~---

SNI

20

SCAQS SURFACE WIND MONITORING SITES

19 JUNE 1987

0

qj n

If) N ~

I

1S13

Ishy)

0 Vl

(f) w I-V)

l)

z a 0 1---

z 0 2

0 z 3 a ~ I r---

0 CX)Wm Q_ shyQ_ ) w

z (f) )

0 7 lt( um Vl ---

0

A-2

-

r~

NORTH CM~RS

I -middot_( lt - middotmiddot -~ ---lt - - - middotbulll- ) middotmiddot-middot - - -c ) 0 0 l__SG- ___ J1 bull_ -- VCTlt I

_ --middot ---middot llSeR - - __ - --middot----- J~__-- middot - - - -middot bull bullbull- HESP ~-_-middot- bull- ~- _~ - -___---middot - ~ -_ ) ME --- -middot - bullmiddot bull -_

38201-_ ~~_ _ TE _ C-bull_- - CJ - ~Jj __ -_

1

1 bull I bull __ (]

SI bull bull=-middot _ -~ ~~ ~_-__ middot _J lt(- j SIMI -M~S -~_-~It_ - - 1Ir- I w _ I B~~ AZ~~~1 AL SNBOC ~ (ELRO l~ Hf~~ ideg_=- --

)1__ CE~ wftcentrHIN RIVRM44 --- ~--- ---~ LA PICO __pound bull P

T ~NN WI-V C) D 2J~55I Wco - middot PERI Lv

R~O ~L ~AN~ TO~~~~ ~ ~ ~-MO

62

~ ~j~l)~gto ay 3670( 525

SCAQS SURFACE WIND MONITORING SITES 24-25 JUNE 1987

~ (

NORTH 275 325 375 425 475 OA~5 575

f_~ CJ ~ -middot--

_middot

middot1 Imiddot

)i

gt--o~0 (~_)r-) _ (~~3s20

--~- middot qlt ( ____ - ---- - lt__ ~ ~ -i~ J ) _ - - -

-~ -__ J V 38201-~--o- lt-

-----~~middot ---- __ - ~---- -_--- ~====- -=_---~ ~ _

~ -- middotbull ~gt ----_ _______ ) ~~~ l -- - - i - --- l

( _ (_-~ _-lt~~ - )

2middot1=~ (~gt lt_) -~~~~~(_~tJt-~~~~t~~~~-~) ~

uR--- -----Qi~ ~ 3770_ 3770 -middotmiddot--rmiddot- -7 ~ 1-

(J) llE ONT _ -middot __ w

Y-_ EMU c __- ~ Ul lt(1 w~

- -- - LMIIEUA sFtA ~

1

----_

~

_

t_~~ -bull _ middotgtI __

~- 0 ~~QgtJn~-~ ~II~

~ f-- -) -) ) ~ ~-

j (_1_j ~~TRM 3720 ( (__ -CcS l l 3720

~- ) -~ --7( ) __~---L_ ~~1-----~D~

1 ~) a --- ~middot 7 rt 0- NSI (

3670 I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I 1 I I I I I f I I I 1 I I I I I I I I I I I I I 36 70 275 325 375 425 475 525 575

SOUTH

I I I I I I 0 10 20 30 4-0 50

(KM)

SCAQS UPPER-AIR WIND MONITORING SITES

24-25 JUNE 1987

--=-

NORTH 25 575

CM6QRS C__j 475 -____

3 ---- 375 425I - L ---) - ~-

SNI

-_-~)---_ lt-____ ___3azor_~c~~ sl

VENt ELRO

BU25

275 ~ c--) ~LANC ~~-_ lt ~ 0 9-~

llE

3670

----~ - J Q ____ ~- lt) ~ 3820____ -- middot--- 0~__~- __ J S --- ---~- ---- -- -- v~ ~ ~ ===-~ - - - - ---- - - ---- - -- -middotv ------------ -~ l f----- _ -- -middot _ - --- __ HESP ~-----=- c~i - - _- --- - - gt - -bull TEME -- -middot - bull ----- -- - _ middot ( lt~ clt=~ ~i cJ~ c _

~I -~~le lt~NJWl--------~- -iHitgt~-=__~~ _I -~ J~~~ ~ 3770 r-1 - - -- -- - ltJ c__ ---middot ~ ( - ------ -c_ - - -~~~ ~ ()-~ ~ - -middotMiss ---~---=-~----r~-__ -middot _frac12 __ i5

j S ~R~~HE -7t$ llE llE ftALSNBO llE ~~ t __ -R~ B~~SA AZ~jl~r RD ~~_ ~ 1( )l___ llE CE~HAllE ~~ - RIVRM44 - llE ------___llE W~HIN -Jti )Ii ----------- __

~--- LA llE PICO l llE C -- r p

ZU VE NN Wt-laquoJHB 0 1~55WT IN - ---- ) llE CO P llE llE ( gt (____ PERI ~

IJl

~ 71t~P325 425

SOUTH

I I I I I I 0 1 0 20 30 40 50

(KM)

SCAQS SURFACE WIND MONITORING SITES 13-15 JULY 1987

clt(middotO -i ~Ill ~

()VL~t

~~) o2~ r

275

-- _~middot middotc-- ( ~ I - ___ ) --____ ~~~

---- ---bull-~ ( lt ) lt I ~ (J () - _ ~ ~ J ) bull middot ( - ~ ~- - --- middot - ~ - middot middot G--~_J lt)

cce- middot- __ V ___ -- l - _- bull middotbull - - _~---~ 3820r----=-~_~Jrlt - - - middot f ~l-~--~--~] I c___ -~c ~ -- ( _ 1middot--- 1___ _~

-I -- = lt -bull lt middotmiddotltmiddot~- middot - middot -L-

- ~-- middotbull ---_- --- J middot J ) ) -- bull- ~-bull _ --middotbullbull- middot middot _ j -- -)) 3770 -ii __gtc _ -- - - middot bull ltmiddot ~- I - _ltbull - -_j-- tn

BURbull-- - middot - - - ) ~~middotj- (~~ ) (middotIi lt(

GL U I ~ - - - w ---~ - -1 __ - ---------= ------___________--- ONT middot middot __ - --_ -

poundMUI - - ~ ____ middot----~~i -__ ~ I

--

--- ~ c) )_

deg ~

_- - (

_l

_ ~ )

C-

~ _middot

( T( f 1-

525

t j 30 50

(KM)

SCAQS UPPER-AIR WIND MONITORING SITES 13-15 JULY 1987

_==--

J ANORTH CM6sectARS

3s201-

~- ~ ~ ~ ~0A - --__ - -----~ ---~- --1(j - A ) __gt ---------_

-~~J TEMEa l_C ~r1

0

820

_--C~ = ~~~ltCH~~ J ~ S~I ----i4~58 ( J

tigt-1

-J 3 BU25

frac14~) 8 F1(5

- HA

APICO RN A A ~ N WVHB

AANAH

~IHIN J _CM44 ~-

A

CY PERI N ~ iJN

D A

HEM

770 ~ V1 lt( w

~ 3670

SCAQS SURFACE WIND MONITORING SITES 27-29 AUGUST 1987

) w l-1

C)

z-a 0 1-

z 0 ~

0 z - r---3 co a Ci)

- -ltI lshy

a )w ) Cl 0 Cl ) ) lt(

V) Ci)

0N ltI u r--- () N

A-8

NORTH CM~RS bull r (_J~

1

325 - - l L=~-) ( bull

1275 _ ( ~ --- -middotbull LANC 1 _ bull I( f LJ- ~ () ~-- 3820 bull- - J bull

- --__ _ -- )- bull bull - middotbull-~- _ I v----_J -- J middot-- - middot- - -middot I I J_______ ---==-------------- WSfgtR - -- VC _____- ltgt

-~--~-- fJ- -middot - - - --- --- _ - ----- --- ----- ) r bull---_ --- - - -- bull p -- --__-----_ - -----

38201-_ -------~- TEME --- --- - - bull -- middot- bull --- _----~ -~ II middot ) - ---- -- -- _ -- HES f I-----=-- ~ ------- ~ l _ -- - I

- bull middotbull-bullbull~ ll( middot bull - middotbullbull - 1 I ~----- middot-bull

9 -- ___ __ _ -------- _=- r _ -- )J -~~ ~~~ 3770 t--SJMImiddot MISS~~~--bull ~--~-- ll( -_ ~-VENt Cllfl58 bull I middot- - middot- - --JOE ~--bull bull ~ V)

ELRo __J 4Esc euRK ~Ej1 fAL sNeo I ~ _ J middotmiddot -~~ 1 i5 l - ~SA ___ I ROLD ~ ~ C~ ( _____~- -~ llE CE~ llE W~(HIN RIVRlK -- - 1 llE __~

3770 middot- ~LA VEN Pl llE _ _- JJ~C _CM44 - ~ p ---__-_

0 ANAC cubull~ - - v~wr LyenNN WHJHB --- -- Q~~W)( ___

- llE HA ~ -lE _ -- _ - -_

I 0

SAi middot-middot J) t450

3720 LA r TO~omiddotlt~lt~~ -~ ~ (~~

~ ~ r-~~~1~ o ~~l~

SNI 1 (l_ amp-~ 575 3670367g75 325 375 425 475 525

SOUTH

I I I I 0 10 20 50

(KM)

SCAOS SURFACE WIND MONITORING SITES 02-03 SEPTEMBER 1987

------J ------------------ ) I-- 38201--__--~~- i) ___

_-- ~--gt--

-__

_

NORTH 275 325 375 425 475 525 575

YI ~middotCJ~bull_bullrmiddot--- lt I __ (_______~ ~ - - I -- J ( - - - - - - - J i O l__ ______________ -~

~j ( lt- bull- ~ 0 C) ~ -- (-- _)) ) ----_--__ -- middot-- _ - --J ) J ---- - ------- ----- middot----- -( ~---_j

3820----==--=-- ( - -middot bull __ - ---~----= --- ---- -- -- ------------ _______ ltJ~~ A I --- - ---- - -_ - _ --_--~-- -_ - --~co___--_--___-__----- f middot l - --- - --- - __- ---_-- -- ~ middot -middot __ J L--~ cmiddot

---- -- middot--~-- -- -- - _ _-- - - ~

--- - middot- - -C-_--- - -~ rmiddot middot) _- ~middot~ I--- ----~deg- -- -- C _-_--_- __ __ _ ___ _--_--~ __---- ~---lt lt ltgt _~-__gt_ ~~-- i~ - UR ---- -------- - ----~ --lt I middot- B ~----- Qll __ ~----- _ CI____ ~ __ --- ---middotir ~ - 3770

1-I- 3770 () U)( - -- -- 0~ - j _j ______- ==--=--_ --___ - ---w lt(

w~

~gt middot1 r-

0

3720 3720

middotmiddotmiddot J ~ ) ~l - ~ ~

~ tmiddot~----_7~~ p__ D2)t~~

NSI I(--_ Imiddot- 3670 3670

275 325 375 425 475 525 575

SOUTH

I I I I I I O 1 0 20 JO 40 50

(KM)

SCAQS UPPER-AIR WIND MONITORING SITES

02-03 SEPTEMBER 1987

~ I

t

NORTH CM61yenRS

----- I uic middot I Ibull 0 z_ ~ p

-_- - - - _ - middot-~-_ ------- VCRV

820 --- -- -- I W-gtER --- _ ---- --- ~ ) - -_ - I _ _ - _ --- _ _ _ -_ bull _____ _ _ - -- -- -- _ --_ ----~ HESP 3 -- ME -- -middot bull - --- _ -- _ TE - -- __ _-- - c----~middot - r

PIRlb -_1 N bull--~ _ --lt~_- - _ _ ---------- - -MISS_ _--- ___ bull---=-- _llE ~ ~ j lt) hlt---- F-~~--_ ----1A-_c=_--middot llE ----_ ()

-middot SIM ~ICAN llE RIALSNBO llE ~J -------~~ tllE ------TmiddotllE~I ~ES BURR~ AZ~ ~-~r- RD ____-- -- ~ bull FIIISA l- bull -~~

( )l__ -middot middot c(~HA w~~N ~tfJ1 -- -- ~ ~ 1

_

375

~) middot middot ---lt -__ lt_ ___ ___ -i____) C-middotdeg - - -

- -- J_ _) lllt

_ =- ) - -

L- ~~- Iii - ~ _________

-~ 0 I -- (

SI lllt

E

NT CM58V

( j gtT__~_____)___ -- ~l- ) (

middotmiddot-- -_ bull _ ~- () ~

I --J vlt__ ltgt

--- --------- ~---------- C -

_

~(__ f - -- ~---middot)1 ~

t ~ I

I- I- ~

3720

ANAC Wo~ middot -~- lt_)

44

PERI ) ~ tlo

25 R~ ~~ANAH _i~~MN ~~-w--- ~ _ 00 )

T middot I BUllE I -eM62 7 llE

-- - ~

~ 425

SOUTH

20

(KM)

SCAQS SURFACE WIND MONITORING SITES 11 -13 NOVEMBER 1987

(_ (___JCcS ~~)

bull ------------~ - - ( ~ r-------------- Dbull ---

J

575 3670

1SV3 0 0 0 0 N r-- N r-- a) r-- r-- co I I) I) I)

I bull bull I I

I I f1 1 ~~ I- I I-)

0 l)

l)

w I-l)

L)

z Ct 0 I-

z 0 2

0 r-- z OJ

m3 Ct a lt( w0

l() mI Ct 2

~ ww Q_ gt

0 - Q_ 0 I) 2 ) z ~ ___0

N (I) n a

0 lt(- u ()

0

n 0 z I)

N +

lf) r-- I)

- I I I

i I

I 0

~ -L

w

i

~ LL

I)

C-1

+

l() r-- I)

1S3M

A-12

-~

igt I _

l)

CM~RS 275 325 375

NORTH 425 475 525 575

_J- I bullbullbullbullbullbull ~ I bullbullbullbullbullbullbull bull I middot bull -gt-----middot bullbullbull 3 )--- ____j lt c----- -_ -- gt _ ___ ----- t__ l___

-- ------- LANC l ~ ---------- __ ) -- __ ~ I ) ~ - -=~__ I -~middotmiddot- - bull middot bull bull bull lt lt Cl --- ------ ____ -~ -

38201-- ------_- ) ) -- _ ---- -- -- -- - () - --------- I --- -~-lt~~ (middot__ TEME ) --gt ~_ ----- - middot--- --- vamp c~ (~ 0~ ___- --- gtIpound - - - - ---- -- - - -- _ - - ~ ---- - - - ------------- 5SI -middot PIRltgt ----~ ( -middot _ - -- --- - --- ) HESP --------~ ltgt

___ __bull_rbull ~--------~-___ -- ___ ----gt--=- bull~ ~~ I - ---__-=---- ----

VENt CM58 _ sti --~~ ~ lt_ -~-- middot_~-~~ r-~- --middot) ~~) _J MISS-~~-- ___-_ __)~ -- ---( C

- --RESpound BUR~--==-=~----r~---_-__- ~- - ~ _- ~ -1 -

3770 I- ANAC

J I )l( ~- ~-- - i middot ----middot -X--Ret-----_~ -~

___ ( - -middot ~SA AZ~ ~ o j -------=--------~--gt~-- dampHA ~~~f __ SNBO ~~ -~

ZUMA MALI LA w~M -jmiddot I R~J ~-s ~__ )() w ~

3720

8U25

VE VERN PICO _ middotyHIN RIVRyen ( ~----- -~ CM44 -~ ~- ----- ~ C WT ~NN Wt-0HB -NQRC - middot- ~NN-a-~~ _ ~ co~ __ -- ( ~ ~

RVIJO ~ilff AN~ gt cmiddotbull yen 0 (~~ p LASAl I bull- - PERI ~ ) ~

rJ]~~_Y)~N ) (_ --

_T -cJ62~-~

~ 5j(bull 1) ~Jso

l -~

- 1 J) -~ ~7~~t~~

3820

3770 1-() lt( w

3720

I I I I I I I I I I I I I I I I I I I I I I367r I 367075

I 325 375 425 475 525 575

SOUTH

I 0

I 10

I 20

I 30

I 40

I 50

(KM)

SCAQS SURFACE WIND MONITORING SITES

03 DECEMBER 1987

NORTH 275 325 375 425 475 525 575

I I ) gt ~ _YC) ~ ~ I ( o c_ _------- (

___ middot i I 97 ~___ _ --1 cbull-- - - C -___J -- lt ( ) - - - - middotmiddot ~ l _ ----_J

I ---middot ___ __ middotmiddot-_ 1 -~ __J ) bull- middotbull_ -

3820 ------~- I -~middot --- _ middot--- -------~

C - ~ (___ _ 1 ) -- _ - - - gt _ bull f-_- --- r ------~__ -----I --- ) I ~ -~ gt ----- - --- -- ~-_]) c_middotI 38201-_~~_ l _ --- - (-- ~ f ~ I~_ - middot - middot -middotgt- -- -_ -- middot_ _- 1 L- l _- -

~----- l -- middot middot ~- middot-_ _- - middot middotmiddot--gt---~--t~~)-1 bull lt_ _ _ bull middot bull - middot- ~ ~0---~ (c ~ I ~

_ I - bull -~~~--gt~~~-~~ bullS- _~_ l ~~1t~~_~(~ t 3770 I -- -- middot __ - I S____ ( 3770

I- 1-() ()

gt w - I __~sect~- ---ONT lt(

w

tgt

f-- I

~

middot - middotI

-

L~i--

37203720 c_J - (_cS) l -~~

NSI

367~~51 3~5 13~51 14~5 I I I 14~51 is~s s~s 3670

SOUTH

I I I I I I 0 10 20 30 40 50

(KM)

fJ~

SCAOS UPPER-AIR WIND MONITORING SITES I 03 DECEMBER 1987 r~J

NORTH CM~RS 275 325 375 425 475 525 575

middot middot ___ I middot 1 I )l ___ QO --middot - v_ (-- - LANC middot ~ C) lt --bull_ I -- -- bull _ ~ - ~-- ) -------_ -- - _~-- V --I 1 J --- - bull I -J- ---middot - _ bull__ - vc i --- ltl

3820~-----=cc~ I middot -middot - middot - _ ___ -- - 1t ~~------- middot - ___) - - middot -

J-cgzot-- ~--- j 0 TEME _middot ---- --- -

-____ -- ---- _- j (

- -_ I -- --~ _JI( ---- bull bull-- llf -middotmiddot l - -- bull _middot_ middot I --- -- middot CM58

_- 1 -- middot - middot~-~ - -~__ ___ ---~-~_--__~----------D J-~J~bull A HESP

middot OJ11 r P1R1tc lt--~i_-_~-~- ~c~_r--~-~_--_~r-=-~~~~--~ _ --~ --lt__~~~~- CSI ~ -~ --- ---- middotmiddot - ---- - _ ~ r ) J

)gt SIMI -MIS5-X ~Cgt~---- middot-cemiddot middot ____~ ~ middot~ l~fu__ suRlfiI_middot- -tk~- flAf SNBO __ middot ~-~ l 3770 _ 377ob -- ~ PJIISA AZ ~JIily~ _- RDL ___ bull ( C t-shy-- -~ I ----- ~HA 71lt V)tn ANAC ~---- CE~ WALflHIN RIVR ----- ~ w

w ~ LA PICO - CM44 - T -~ ~ ZUMA MALI VEN middotbull _ -bulltRc __ ~ ~lt~~7-

N WuHB _~-- -middot bull ) _J~N ~ -- ~ 0 - ) ~ I ltgt -_middot PERI bull I- ( _

V 8U25~ 3720 3720

WJlt~ ( ~ ~ ) 1 i

~ I I I I I I I I I I I I I I I I I I I I I367r I bull I I 3670

75 325 375 425 475 525 575 SOUTH

I I I I I I 0 10 20 30 40 50

(KM)

-~ ~

SCAQS SURFACE WIND MONITORING SITES 10-11 DECEMBER 1987

NORTH 325 375 425 475 525 575275

-- ----_ lt_~- c--- - ~ ~ _ I I - ---~~c------ ) _ -middot - gt~-

3a2or ------__ lt- ) 1 middot--- -- __ - ~bull =-------------- - r---_ ___ - bull- ---- I I ~ ~-- jc- I bull - - (bull I --- middot middotmiddot - ~ -middot - -- ~ - 3820 -~- bull - middot - - ~-_ ~- _ middot- n

(

- 0 lt_( ~_lt- ~-~~- middotmiddot) ---- ()_ (---- --

--

____ middot

-middot

I

f----- (-J 1r---J~ --~ - middotlt ltbullI I ~__---__ ~-

l B~--- _c_ gt-- lt gt- (- - - j 1--_~--~--l~ -- -- --- )l

-- - --~---- middotc middot=-~-~- (~ L ----- -- --middot - -- - - -bull --- - - c-) ~ J _ -- - ---- - ) ) ltl

37703770 EMLgt middotorrmiddotbull __ ) ~~~~ofmiddot - -- __s=__I- - - ~__- ( ~ __ )---__ Ishy

V) ~ ~- lt(w ~ ---- --~ - w if)

-~2_~middot) ~~at~s t I

I-

deg

FUUA

i () ~--J)llC~lt I

3720 3720

~ltl__ (_)i~

~ NSI

367~~51 I I I I I I I 13~51 I I I I I I I 13~51 I I I I I I I 14~51 I I I I I I 14~51 I I I I I I r--- I5~51 1 I T I I I I I 5~51 I I I I 36 70

SOUTH

I I I I I I 0 1 0 20 30 40 50

(KM)

SCAQS UPPER-AIR WIND MONITORING SITES

10-11 DECEMBER 1987

Appendix B

SCAQS DIAGNOSTIC WIND ANALYSES (Six-hourly plots Levels 1 3 and S)

Summer Intensive Monitoring Periods

19 June 1987 24-25 June 1987 13-15 July 1987 27-29 August 1987 2-3 September 1987

Autumn Intensive Monitoring Periods

11-13 November 1987 3 December 1987 10-11 December 1987

Page

B-1 B-13 B-37 B-73 B-109

B-133 B-169 B-181

9106103

Summer Intensive Monitoring Periods

9106103

19 June 1987

9106103

1bullbull-lil

1SV3

I I lshy Ishyo )

0 0 z ()

IO N IO

I()

N -st-

1S3M

-- l1

l~ i --

0 z 3

---

2 0

_J w cjr----_J CD

0 l() z

I- =)lt( 7

f) 0)

0 -- i n 2 Ishy7

0 ~ ()N ____ gt a 0 20

3o 0 ~

0

B-1

1Sv3

( I l-et 0 z

(

lf) N st-

l() N ~

l()

N 0 t--

n

0 N_ n

U)

ON r-shy(0

n

1S3M

B-2

_

2 0 0 tlt)-__

tlt)

_j w 2jr-_j CX)

0 lf) I- z

lt( ~ IJ1 0)

0 _ 0 n 2 z 1-0 ~ N - 3 ~ 0 20

3o 0 Ov

-----

lSVJ

l)

----

l~3 O 0 w

w ll) (1

l)

0 0 z 3

I lshyet 0 z

--

2 0 0 0

-

LO

w ~

GJ r----~

u 0 z

OJ

I- gt lt( J

mif)

00 ---shyI) 2 z I-0 i l) N -- 3 (1

0 2 0 3 0 0 ~ 0

lSJM

B-3

1SV3

- V1 --

~5 O 0

E - w

w Ul_ 0

V1 0 0

z ~

I I lshy I-et =gt0 0Z V1

-

2 0

J wr--CJ OJ J z0

Ul I- =gt lt( ~ V1 -

0 - n 2 0 z 1-() 0 ~ N __ 3 0

0 2038 0

0

U)

l

lO N v

0 N agt n

0

r--n

0 N

0 N r-shyn

U)

U)

U) N U)

Ul

q--

Ill N q--

1S3M

B-4

td I

J1

~ ~~~~~ ~ -~~~~~ J - -~--Qf~J ~lf~ ~---~ ttt~~~~H~f~ ~ ~~lt~~~0 ~ - ltl-_t I~~~~~~-~~~~~ ~~ I _~1c j_~ L ~ (__1-T11__1 ~_-~_ ---~~~~~~ 11 - ~ +f--1~- ~-+--41-- 1-~- ~ ~ -rtt1-~--~~~~~~~ ~ ~ ~ ~ l t I J JI JI~- t _I i~~I~~~~~~

377itttttttt ~- - t I Jf --------_-- _ 70 ~ ttttttttttttti- fllJ~JI-~~_- ~~ _ =- ~~~- tn w - t t I I I_~- -V _ ~ -laquo___ _ - ltC 3 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ t t t t t I I I I JI~ JI JI ~~ I--~- ~ ~~~~~ w

H~HHHH~in+~l~Hnf5-I ~ ~~~~~~~~ ~ ~ ~ lliii it t I~t~ltt~rrrr~~~~ jl++it~~~t~

20-~~~~~~~~~J tttttttf ~~~~~~~~~~---~-~~~~~~~~~~~~~-amp~ ~ t t t t t t f f f I I I I ~ 1 J(-- _ --P ---~~~~~~~~ ~ ~ ~ ~ ~ ~ ~ ~ t t t t t t t t f f I I I I I ~ ~- j~J _ ~ ~ z~ ~ ~ ~ z l I+ nm~t ~ ~ ~ I I~Jt~-~- -~-__~~~ tr ti ~ ~ t t I t f f I I I I I I I - ~-r __ - ~~~~~~~ ~~~~ ~z11 ttt ffflllllIIII -~~---~~~~~~~~~~~ ~~~~ ~~ ttttft ttflltllllllll A~--~~~~~~~~ ~ ~ ~ ~ ~ ~ ~ t t t t t t t t t t t f I I I I I I I I I I I I I ---P~- ttttttttttttlllllllllllI -~--L~-~~~~~~~~~middot

367 70 ~75 325 375 425 475 525 575

SOUTH

1111111111111111I I I I I I 0 10 20 30 40 50 0 5 10 15

(KM) WIND SPEED (MS) i

NORTH 425 575

_ 414111fl-~bull __~) ff I -lt~i ~ + lJ Jmiddot-bull A fl t1 it bull- _I~--~---~----_---~_~~~~~~~11 t1

~~t 11 f + + diamsJ diams 1 )--t-_+ J~ I-(_ 1 1 ~t1 __

__ Lt l l t fL f_l - - +~~----~~---~___-+_~~~ J-t-t t---t-lt t t-t) LJ lt fl ~ -- t---f t tT~-- ~~ 1__t -t ti t_1 + l - -~-~-~-II~-- - ~~~-----~----t----~~~~~~_Efftt -- r1 ~J t l Lt t

fl

~ _ t_ - 11 _ _

Fi ru bulll=ti~ ~ ~ ~ ~1H1~~_~-~-~----~~~~~~~~~~

DWM WINOS AT LEVEL 3 (300M) 1000 PST 19JUN87

1Sv3

I I-shyCt 0 z

1S3M

B-6

0 II)

0 I)

-_2

0 ~ N -

0

0

-_

2 0 0 0 -

LO

_J

w r---CJ O) _J z I- gt ~~ if)

0 1--shyz V) ~ Q_

20 3 g0

NORTH 525 575

~~~__A -~___~~-

F- ~_--P~

~ ff~~-- - _ middot- ~~

_ bull bull bull bull bull

_ p

~L~k~tt ~ 1 t A middot1-t

~ r~ 1 11 1 __ bull bull --l t frac12Q2_

~ ~--r-J-+7L~

1--Ui

3770 _yen~AA- ---~ ~__~_ ~ K---r

eno tshylf)

w ~ ~ ~ lt( 3 I I_

- w

td I

-J

~~~~- ~ ~ ~~~ shy ~ ~ - shy

3720

~ ~~~ -~1~-nu~~~~-

~ -~ - ~_____A~~1~ ~ _~ ~~= ~~~_______2--- ~

720

~~~-~~~~~_ 9~tbullmiddot~qor~frac12

Y~poundpoundpoundpoundpoundpoundL1~~~~r~ ~ middot

375 425 475 525 575

SOUTH

I I I I I I 11 1111 1111 1 0 10 20 30 4-0 50 0 5 10 15

(KM) WIND SPEED (MS)

DWM WINDS AT LEVEL 1 ( 1 OM) 1600 PST 19JUN87

~

NORTH

Arlt~~~ ~L _ -rJ ll

_ I I I t

_t-z~~J ~i~ bull

i- ~~~ Ii ~~( trn

3770 I - bull bull bull bull bull bull bull iigtlaquo

--- bull bull bull _-

~fJ~ t-l-lltf[llJ- jf1 rr]I ~ ~~~ ~ss~810Ja2ot-~~1i lmiddot - 1 17- - -

-ltL

~ ~ 70 y ____~ tshy

l) ) _-y ____~w

w ~

~ -~--- - -- ~ 1 ~~~~ __ _ bull---bull laquo-___~ Y~~

___p~~__---A~_A 1 ~~td I ~----______A 14 1 ~

00 _-________________ ~ __~----~1~ -A________________--r__~~~ ~ ~ ~~~--~-~~~~-~---e--~ ____________~_________-~ h

3 7 20 t-_--~____- ~ _ _ ~~-_- _ _ _ _ ~___~~~r--~~___-K ~~ ~ -~-------~~~----~ ~ ~~__________~~~~~~~______-r_-A~-1--~~~ ~__________________----r~__~__~-Y~~-------__---A----r~ 1 ~ ~__~___________~ ~

367 tcrr~__~y--rrYlt-trltltltltltlaquo-ltltltltltlaquoltlt~~~ ---

9imiddot~75 325 375 -- -

1111 1111 11111 1 1 1

0 10 20 30 40 50 0 5 10 15 I I I I I I

(KM) WIND SPEED (MS)

DWM WINDS AT LEVEL 3 (300M)

1600 PST 19JUN87

NORTH

bl I

0

~________________A-4_gt~~~_____~~__________~A

A~altP_ ~~~_________--~_A 38 20 I--=-~~_~~___~~-_-~~_ -lt~ - ~_-~_A--1~ _

~~------ ~ gt-~ ti ~----~ ~ _~~~~ 0 ~ ~-i---~~411___ I~-~~ I~A-~~----~7A7~-

A A~---~~- ---~ ~ ~ -middot~~ 1-27 ~shyA_~ ~~~ Jl--__r-t~ ~ (K~_ - fl_

A ~I J111 I _ A - ~ _ T-~ v I 1 1 1 1 1 1 ~ 1 1 _ Ji J I~ f --_i__middot1(- ~ ~)( ~JJXZ - _ r ~ - _ )( _ II I 1 ~ 1 I - _~ _)~ ~~

= 1 II II 1 (~ ~--=-~ -7fJ~~~~tm~i I- 3770 Jir - I 11 I 71 (I) ~ ~111 ~

w ~--middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotbullbull bullbull ~~~11Zll~~11~ ~ ~~_~~~llllN~~ -~~ bull 11jh fi 1 1 II 1 1 1 1 1 1 1 1 1 1 1 1 1 I I 1 0i~~~ 1gtcJ~l~p~ ~~~ ~~~ ~rr1111

70 Ishy() lt( w

111111~~ 3720 i- 1 1 ~ ~

~1~I A-A~)I 1111AA _~l11~ 1

lllllll11IIIAII- ~II ~1~~__~~Ill~~~~~ l1_ 1~~~~~~lll~~~~1 llllflfAll-)lllllllll1~~~~~

A I I I I I 1 I I I I 3670

275 325 375 425 575

SOUTH

I I I I I I 1111111111111111 0 1 0 20 30 40 50 0 5 10 15

(KM) WIND SPEED (MS)

DWM WINDS AT LEVEL 5 ( 1 OOOM) 1600 PST 19JUN87

~

A A A

1Sv3

(

1S3M

B-10

()

l ~

---u) 2 __ O 0 ~ w

w It) Q_

()

0 0 z 3

0 It)

~

0 ---I) 2 ~0N _

0

0

---2 0 __

_J

w r--- GJ OJ _J z __ )

~~ () r-

0 __ z ()3 Q_

~o 3~ ON

NORTH

middot-~~) K~xJ~ middot_1~ ~ 71( I IJ ~JI

~A I 1 ~~

liii[i~~ Hf~-~~~=~T-- ----- --=~~g~g~bull11ft _ ~~~ -1-x~~~ ~~~~-~~~--~-~---~ --~ t ~t~ -~1~~ -- ----

-lt J 1middot~~ __---~__

3 770 ~ ~~ --_tn ---------~~ 1 ~____~ _ ___~ -w bull Y ___~~~ (Al _~ _ ~

-- bull _ _ _ bull bull bull bull~___1 1I J~ _~

~- YI J _L ~~ ~~ YJll~E~

td _____-___ ____ __ 1 ~xgtx2-I ____________~__-A (~~~~ _______~~2-1 y~~- ___~__________~ ~

3 7 20 I-___~~__~~ Y --~ ~__ I _ - - _

~_---A~ ~---__~~~~~--_____~ ~ ~_____A~ y ~ ~___-__________~~ ~ -

~__-_______-yen_2 ~ ~ ~~_______~ ~

1 367~ 75 325 375 425

SOUTH

1111 1111 1111I I I I I I 1 1 1 0 10 20 30 40 50 0 5 10 15

(KM) WIND SPEED (MS)

DWM WINDS AT LEVEL 3 (300M)

2200 PST 19JUN87

~-

~ - - ---

NORTH 275

___ -~-___

- ~ I o_ ltAbull~-P- bull bull -P diams bull~--~~~~--- --- ~ ~ ti ~ ~sbull3820 ~=-J~_~~middotmiddotmiddot~~~--_~_=- =~_~c s~ ~3~

~~- bullbull~~bull~~~~~~ - bull -~~bull ~ v i-_ --- __-_ ~----~

~- st-~~1 17-~__4 ~ _~ ~-~-raquo~~~ -f _ _ bull bull bull bull~ bull bull-__-v 4 t ~ ~v ~- Jl_~ ~--z~~=~s~~~~Mil

-- _ ~ frac12--~~- -=~~ ~~l~1~l~tzi9~J t~ 1 1 1 1 1 1 ~-bull ~~___- v q (If V pp p I l_77rtfl _

3770 ~ ~ ---- I h1yenzi 1V-r-() bull bull ~ ~~~~~ w ~ bull ~ _ I JI J(_ )-II101-1 3 ~~A~~~XI IIJ~~~

~ f A I~ I I I I~--L -

tl ~1111111 ~K11~~llll~i~~~~I ~rr ~~ ~xgt~~~t---

N ~I I II)(01~ ~ ~ ~~~ 1~Y~lt~~~~~~~~ ~~~~

3720 iYY11Alllll1lIA~~~~ ~~---Y~---_ _ _ - ~ bullbull - - _

~rrll1IIIIIIIAAAA__

___________~~~AAAA~_~ ______________~~~~KAKAA1~~ lllllllllll~AAA1f~~

_~~

3670 t1i11 i i 1 i i 11111 i i i i -i i [ 111111-111 ~ ~ 11 ~ i I t 1 bull rm r~ij e =~~ raquo-il3t ~ 275 325 375 425

SOUTH

1111 111111 11111 1I I I I I I 0 1 0 20 30 40 50 0 5 10 15

(KM) WIND SPEED (MS)

DWM WINDS AT LEVEL 5 ( 1 OOOM) 2200 PST 19JUN87

24-25 June 1987

9106103

1SV3

1S3M

0 w w Q_ (J1

0 z 3

I f-shy=J 0 (J1

-_

2 0

--

_J w CJ f- _J OC)

0 U) z

f-shy )lt

J q-

(J1 N0 -_ 0

rlt) z rshyl)

N0 _ 3 Q_

0 20 3o 0 q-

0

B-13

lf)_ lf)

If) N If)

lf) r-shy~

I I-o 0 z lf)

~

lO

~

lf) N If)

(

pound bull d ~ bull 4 4 c_ q

1 4 r9middot-

0 N IX)

middot- t--bull ~Igt~

O ~f 4 fT amp)o(oj

4 ltI I~ ~ ~

0

o

middot a

~- v t rgt ( tgtj (~V~-1 f4

3 44 ~-~a4 V VM q -~~-q_4 ~4

_ ~ )

p- ~~t1~1 middot V II J ~ ~ )I 1 11 f ir -~~1I ~

II P P P Igt 4 ~(Iigt ~~ 1) IA

deg deg 4 4 ~ A -1 r 1 1-Y]~t J rz ~

fl r ~ Igt I~y ~ -- -- - 4 ~r___amp V P11 iP Igt P Igt p ~ -0

~bull 7~tpmiddot~P Pf P Ptl middot~ ~ q p Igt 1gt p ~ t b (r 4 P - 4---f ~ ~ bV ltI

ltI ~ ~ I p 6(~ d-_j b d p (4- 4 ~ 1 p Igt 1gt Igt - b ti

)4- a 4_) q V Igt p Igt o

lt(___~ ~- V fgt ~ 111 t Igt -4

~ ~ Igt r p Igt

~ ~ 1 h1

V (I Ilt v middot

t y-

t

t

p

P t P t P ~

0 0N - IX) n

1SV3 0 0 0r-shy N r-shy co

lf) lf)

If) N If)

~ - t bull~--~11n ~ -~bullmiddot t~ lt middot___

o_ ~ ~ ~

0 bull t bull 4_4 4 4IIgt

c 0----~ u c Igt( o ~ c ~A ~ 0 - A 4 4 ~ 1 q

o bull o- -~ 1gt 1gt ~ y4 -~J middot)bullmiddot ~ ~ ~ p 0- 1---f t-~ 1 ~ 4 4 o co u gt)O- eyti ~ ~l 9 -Y P- - I a c 1 oM_il_q A p- p

4 ~ ~-M f p

I 4

~ rv ~--~middot

tJmiddot bull P II f t )I~ bull V ct_~ V V V t P- ~ Igt t middot f lft V VJi P- P- fgt IIgt ~ _ J1 bull bull bull

1 v II p _bull ( ( ir ti- f Igt bull

j ~ r f -~-1t __

_I ltC_t--q_) v -~-ampgt

Q middot--- ~ - t ~ b

II

bull ~

bull bull

diams

1 bull ~ ~~ ~ ~ b b b lgt bull

-- b bull bull bull~4q~ lgtPlgt-4-~_tbblgt

Jraquo P P ~ q 11- 11- b b b b b

P Igt P q bull b b b b b b b b bull

bull bull Igt 4 4 fl ~ b b b b b b b b b bull bull Igt Igt ~ 4 q ~ b _ b b b b b b bull

P bull Igt Igt -4 ltI 9 b b b b b b b b

p bull - Igt Igt 4 lt1 _ b b b b b bull t bull bull Igt ~ 4 b bull b b b b b b bull p Igt Igt Igt bull 9 b b b b b b b b bull P p ~ ~ A 4 q - _ b b b

1S3M

figt j)

~ ~ bull

bull bull bull bull bull bull bull bull bull bull

bull bull bull bull middot bull middot

bull bull ~ ~ 9 9bull bull bull bull bull bull bull bull bull

bull ~ bull bull _ bull bull _ bull bull

~

If) N t

lf) r--11

~

If)

~

0 ONN - co n ~

I fshy=i 0 V)

- 2 0 0 n -

n _j w cjf-

0 l()

0 ~

0N

0

0

---shy2 ~ _

_j OC)

I- z lt( =i

J Vgtv 0N z f-

3 ~ 20 3o 0-t

B-14

---

1S13 0 0 0 N N r--shyltIO r--shy co I) n I)

I() l1 r--shy -U

E~i0 z

U N I() 3

I fshy)

0 U) l1 N -t

--_

2 0 0 0

-

LO

_J w CJf----_J OJ

0 U) z

f- )lt( l1-r ON z f-

3 ~ 0 20

50 U) 0 -sr

0 ON r--shy r--shy

r--shy (0

n I)

1S3M

B-15

lSV3 0 0 0_ N - _ - ~ I)

_ ()

(~i

0 z

If) If)N NIf) 3It)

I Il- I-a =gt0 0z If) If)()

N Nst- st-

_

2 0

--

- w I--- OC)Cj z0 -

I) )I- Jlt( --t-

N() 0 I-z ()

3 o_

0 0 2 0

~ 0 00( 0 0 0-N N _111) r-- 1)

1S3M

B-16

lSVJ 0 0 0 0 N r-shy N r-shy_ _agt lO n n n n

() r-shyU)

u) l() N N u) l()

I I lshy Ishyo )

0 0 z U1 l) N

l() r--_ 2 0 0 n -

n _j

w I GJ OC)

0 _j z

lt) I- ) lt( ~ lf) N 0 1-z l)

3 Q_

0 Lo38 0

0 0 0 0 _N N _ _(() n n n

lSJM

B-17

1SV3 0 0 0 0- -N N- -crJ co I) I) I)

lO II)- - U) It)

U) II) N N lO lO

lO- st

I l-o 0 z U)

N

~

I I-=gt 0 l)

st st

--_ It) - ~ I) 0

0 0 ___

lf)

J w I-

It) N I)

0 II)

~ OC) J z I- =gt lt - lf) N 0 1-z l)

~ 0

0

0

~ 0

38 0

N IIJ I)

- - I)

1S3M

B-18

middot~ bullmiddot I

1Si3 0 0 0 0 N r-shy N r-shya) r-shy r-- co I) I) 1) I)

--_

E~i l)

0 z 3

I r-0 0 z

0 I(

0 --_ n 2 0 ~ N --

0

0

1S3M

B-19

---

_J

w r----2i OC) _J z I- lt( ~ V1 N 0 1-z V)

3n 20 3 iE 0

---- --_

NORTH

-_ t t t f t A +1 t lt-1--JJ-middot+J

r ft_f_frac14 fffftl middotmiddotbull f_ n- ~ tn

ttt1I1~ ~ ~ ~ ~f --H 1--- ~ -

rJj ----~ ~ ~--- ~ l j bull bull - bull bull Ir - ---_- --- --~~~~~I-~~~ ~ bull ~ ~ rt

- - ~rnlit ~~~~ ~~~~ ~~ ~~~~~~~ - _~-~~ ~~~~~-=~~~~~~~-gt

3820

bl I

N 0

tshy() w 3 fftfftlll

ffltlIJ11111~11- I I I J ~-- - ~~~~11J~ -~

3720 - I I JI J ~~~~~~~--------~~ diams bull + I J J _~ 4 bull I I I J ___ ~~~~-s---~~IJ-bullbullbullbullbullbull ~__middot~middotmiddotmiddotmiddotmiddot~~~~~E-e~~

4flA~~middot~middotmiddotmiddotmiddotmiddot~~~~~ ~--_---~- ~~ 1

367~7i51bull1bull11bull1 111 13251777JT7777~7777 I I I 14251

--~--~- ~~_-~-----~ ~~~J

--~-_--~- 1- I 1 I

~ 1lJ

I I I I I I 14751 I I I I I I I s~sl1 I I I 1575 I I

3770 tshy() lt( w

3720

13670

SOUTH

I 0

I 10

I I 20 30

(KM)

I 40

I 50

lllI 0 5 10 15

WIND SPEED (MS)

DWM WINDS AT LEVEL 3 1600 PST 24JUN87

(300M)

lSgt3 0 0 r--shy N r--shy r--shyt)

It r---1)

lO ---- N bull ~~ r lO ~ oe--- I

~~~~ t z~_-----~8 ~ ~~~2~-~----=---~~ t ~~----~~ -frac14~~~--

~v -~ 1 ~ - ~ ~~ ~~~-~~N~~~~~~~~~~~

tf~ ~ ~ -~~~~~imiddot~~~~~ ~~ ~~

_gt~~ middot1 ~ r2 l~ --~- I _Ct _ V I - ftV

0 ~ ~~- X

z~ HF bullIh IJ i It ti ~ 1 IJtl ~ ~ j t ~1

~ ~ 1~1

1 r ~

)

r r~P t t _r )r f

~ 1+ t t t f t ti ~ 1 lt ~ diams t f J t H ff 1 1I I I It diams diams Vf- 1 f f ~ f I 11

(____ t i(_ bullbull ~ bull ~ I r fr1)L_lt--~~vi 1t1J U1 -~- middot~ 1 t) ~ bull ~ bull ~ bull 1 1 f f f I t ~ - ( ~ ~(~ (_ ~ b ~ - ~ bull f 1 f f ~ bull

j ~r~--~ ~ _ ~ ~ ~ l 6 bull bull 4 t ft It _ - __ _ - J ~ ~ ~ t bullbullbullbull t - _ ~--~_____

__ I deg j ~ ~ b ~ _ Igt ~ _ _ ___ bull bull bull bull

~ ~ I ~ ~ ~ _ ~ _ _ _ __ - bull bull bullf

~ bull ~ ~ 4

I -- I bullbullbullbullbull

~~~ ~

1 bull ~

-- V)

LO lshy -----_ lf)

l- w w

=~ It) 0 l)

It)

2= )

0

~

l() 9 __~----- lf)r--- --------J______--L--J-~J-J-______~______~~~___________________________ r---N O O O ON

0 0 z 3

--

2 0 0 0 ----

LO

_j

w I--GJ Cl)

0 _j z lf) )I-

lt( ~ ~

lf) N 0 -- 0 I-n 2 Zlf) ~0 3 0

N ---

0 20 3 g0 -

0

N r- N I-~ I- I- ~ n n n n

1S3M

B-21

1Sv3

U) N U)

lJ) N n

0 N (0 I)

0 r-shyr-shyI)

0 N

I)

It) N It)

U1 r--1)

1S3M

B-22

0 w w (L Vgt

0 z ~

---2 0 __

_j

w _ ~ OC)

0 _j z U1 I- )

lt~ NVgt

0 --shy 0 1-t) 2 z () 0 ~ ~ (LN -middot -

0 20 ~~

0 ON

bull bull bull bull bull

1Sf3 0 0 0 0 N N CX) ID I) I) li li

~ n

~ n

tf) ~

A i -02middot a_ ~ r ____ Igt middotjmiddot i -1 ~ i r middot-~-----------------gt IJ IJ bull 1 j I ------~-----------------

_ IA_Jyen ~ ~ J ~ yen ----~---------------------

~ II --~_a IIgt 11gt Igt middot~ I bull ~ ~ ~ ~

1(1gt i i _JI J Iibull I - IJ Ji H j

bull bull I( --- j J t ~o ~- -- -J I I i J diams bull1bull bull bull i ~ _I I I I J 1 ~~- ~ 11 J l J diams -~ J) bull ~ I- t t ~ ( l f middott J bull 1_~1 ~ IJ II- I ( II ~ j t t bull)

bull t )bull ~) i ~bull bull __ __ I 1gt J I I I middot----- - ~ _ ~ Ji (Ji_ If ~ --~ bull i f l-Ji ~ p VIMyen I ~ middot1 bull I Ibull lt_~ ~ p1 )

I

__________________

~ 4 V ltI - - - -

~) i t --- -- yen 4 yen -- Iii 1yen yen JY yen II

I ~1 Ja a Igt- yen yen yen yen yen yen yenyenIiyen II II

a Igt bull ~ 111) (I J I JY yen tY yen yen II( ltf ~ I~) JY yen liY yen yen yen yen yen yen yen II II II ~ ~(II ~ yen yen yen r yen 1r yen yen yen It Ill

p cl

p 4 ampgt P JI r Igt bull

bull JJ Igt II

- ~ 11- bull

- -

+ _ _ _ __ __ +- ____

- - ----4

bull bull Igt Igt Igt

11 bull bull bull bull

bull bull It

IJ Igt bull t P

Igt bull t

- II Igt fl t middot~~-~~~t_yenyen yenyenyenyenyenyenyenyen

I ~J )Igt) 1 bull yen yen ~yen yen yen yen yen r - yen If II II Igt - I 1 J bull bullI _ _ 1 ~ ~ 1K )

bull -

bull bull II ~ Igt- J 6 bull I 11

fl) 1gt 11 Ill

bull t t fl

~

U1 r- n

~ n

_________o__JJ=---=-------oti~~e-~e11JEJEolELE-ILILLEJLlLu~uJ

l~

0 tf)

~ 0 n

0 N

0

0

- Vl ~ 2 ---

0 w w CL V1

0 z 3

-

2 y --

-

2 0 0 tlt) --

n _J w f-~ OC)

_J z gt

I- Jlt( q-

NVl bull) I-z Vl -~ CL

02 0 3 N 0 NIf)

ONN I N ro r- (0

n n n I)

1S3M

B-23

17z-g

WEST u u u ~ ~ ~ N ~ N

NO N~ 0~0

7J ~ () z -I 0 N (I)

~ )gt c_ -I C zr co ~ -J rT7

r (Jl

-- __ 0 0 0 s _

--_ 7 ~ --

~ z

~-0 0

--s (I) ___

0

0

N o (A 0

t ()1 0

oj(JI

-0

-()1

0 0 0 N -J

A I q bull if ~ ii ii ii I ii if 1 i J (JI

Ab4llltli ~~144

bull~~bull~1111111 11~1middot)1i~~~1 ~4gt~1111111~ II~ - bullbull~Agt~lll11 IIIAII tbull ~4-4~~~III IIll~ I ~14 4 - ~ bull i ~bull-ttt1 111111 I I 1-~ bullbullbullbullbull gt q bullbullbullbull I t I I I I I 4 I I I I I I I 1_ J~ I

4~ A - middot~~lll111I IIll 1 I 4 -1~~ l~ gt1llllllI 1l111 -~~ I N

tn()16 -1 Igt Igt I I l1I v I 7----(Yi ti mbull1-t

~Plgtlt111 VIII ii l middot~1111~~0~ I l~lll~310bullbull I i~W~ffi 1~~~~6~~~ I J~ 1~~~rw 11~~~1~ ~l~~t ~ i 11~~~~~~~ ~~f)~t~~I I~tl -1

~ --J ()1 l 111~1JV1 ~~~1~ I Ill tniz~i~~~~~~ ~~~~ 7 ~K -~~iii~~~~~~~~ il~~~~~~~ 1~~1~~~

middot1 middot1 middot1 middot1 middot1 middot1 middot1 middot1 middot middot1 middot1 middot1 I I I I vr )Igt(_ I II I I~~~~t~ 21~~~r~~~~~v111l I ~ II I -- I~ J(( I I II J l l l Cl ~ I ~ ~ ~ J J I I I yen - - bullbullJ_~ f yen ~ I IJ t I ti

diams J J J I I - ~ - ~ l1 yen -1) I I( t I ~ N J J J J 1- ur~ ~ - Jf1( -I) I I I ti I I j~

() UI diams Mi r)r yen fir_~~ bulll1t) JI 1 I middot i - (JI0 ~ nmiddotmiddotJ jmiddot-1 I I I f ~j--1J ~ __ middot gt C ~ J I f I 1 ltH I fl 1 ti I middotr- I I-I ~ f bull t t l )1j - _ I

t J4J-fbullt t ~ ii middotlfli ii~) - ~bullmiddotttM i f bull bull1 rI-Ku bull bull bull _ middot-~-J_J middot t +imiddot i t t ~ t ( ~ middot(~ I J bull Vf I r1- ~ j~fmiddot + r bull(~t t bullbull_t- J J ~) J ~ Igt

+ __ middot + V+ bull bull ti+ bull + -fi J i bull bull ~ f --- ~ ~ t Li bull bull t ++ diams + t bull +++ + bull ~ __Vbull ~ it 4 ~ i ()1 ~ 1 bullbull diams diams diams diams ++ ++ bull t 1 fA middot_ -----Y 4 ~ tn

~ ~bull t bull + diams + bull diams +++t + bull A VJ ~ bull bull ~ -o middot ~- bull t bull diams diams diams + ~i4_ ~ ~ ~

11 -~ 1 1 1 1 ~t t diams t t ft(middot-- f g a PA

--middott 4 -4 y 1 1 1 )f7~ V g n t A ~ ~bull a~ 4 1 1 ( V P q 1 bull A ~ V Y ~-- 4 I Cl oCl 4 A A ~tW --~- ~middot -)bull ~iliJ bull1bull

bull It t-- ti __ __ ~ (~w ~ ()1UI I bullbull bullrmiddot -~)fl l~~~ ) I A IIbull N~L~ r ~~~-ff~ --bull--1) 4 4 bull ()1

~ 14 ~ bull f 4 AA 4~ bull

44( )A - ~

- ti~ f 4 ~ 4 4 4 A bull ~ i

ti ti fl 1 4 tn llflfl44 4 -()1

~ ()1 ti ti fl 4 4 _ 4 bull fl _ 4 ~ ~

~ bull t~ - - I - 1 T T fJifrac12 1f 1~ fl t [ 1 4 bull bull ~ ltt ~4 ~~~11 l~~Nfl---~ ~~ bull ~t144

1 -middot I I f I ~ fl ti ti- Imiddot tJ 1-0 I 14

z o 0 -I

I

Y

)

u u u u 0) ~ ~ ~ ~ N ~ N 0 0 0 0

EAST

1S13

0 z 3

r r I-shy Ishyer gt 0 0 z ()

--_

2 0

--

___J

w CJ r----1 (lJ

0 l() z

Ishy gtlt J LO() N0

z Ishy()

3 0

0 20 3o 0 tj--

0

1S3M

0 w w 0 ()

B-25

------

~ --- _

NORTH 275 325 375 425 475 525 575

dJ 41 l ll~I tgtI I lo fA Itgt IA IA lo 1 IA IQ 1q lq If lq I ~I 4

~ ~ IIJ ~A ltI P Igt Igt Igt P V V V Q q l_-~- q ~ ~ ~ x- ~ ~ Y t~ --___q)11 4 ltI v v v v v v v 1raquo 4 -q q -~ q ~ 1 a

~ 4 ~~_gt~) ) ~~-4_~ A ltI fl v v v v p A V yjq ~ _ _ ~bullbull --shy~~~ ~ I Cl11 ~ 4 v v v v P- deg 4 ~ -V t V ( ~ a bull-

~ 1 ~~~ v ~sa- fl V P -iLpound_~A--4 q Igt P ~ 4 a~ 4 38203820

- _1 fa bull bull ~ II 11 4 4 ltf V P deg q 9 p Igt Igt Igt Igt P~~ _ _ _ bull -

- ~_R middot ~ gt- P-~-j---s--middotp-~~--- Igt p ~(

-~~ _ amp- 4 --v--J ~--~ -__~---- ~~ t f ---~middot bullbull ~ ~ ~ ~ ~~bull--- bull~bull~~ 4 ~-deg ~--~ ~_v -~ _~raquo Wh~

bull bull bull bull ___ol bull bull --___~ ~ _ A~~-~- f_~-~ bull 1 ~bull -~ Igt bull

a l -4 bull bull~ bull ~ ~ bull frac12~ P- __ _middotmiddot11-~~j)6-_ U bull _ JIgt~ bull I- bull ft ~ 4_~~~~ 9 P lgt--1gt~~~_-~_----~~~ ~ bull ~ ~ ~ ~ --~-~- ~~-_middot ~~~A~ ~ 1111 ~- ----~~ -~- IIgt _)-

1111 1111 -( _-middot 4 ~ Po Igt q lgtmiddotv11t_ Igt Igt II

3770 ~ P 0 ~ - bull k ~ 1- 1-

() pound 4 4 ~ q -44 - bull bull Igt ~- t Igt 1 Igt () w Igt 7 lt

3 - bull It It It bull bull ~--~ p ~ Igt ~ w ~~ It It It bull ~ -_t _ ~ bull bull bull bull --~ Igt

deg

td bull ft bull v ~lt~ Igt Ci~ 4gt I ~ It bull bull ~ 6 -It Igt ~

N bull bull It It ~ ~ _ ~_) ~ ~ lr It ft ft ft ft ft ft Igt -II-~ j ~ fil- _ _ _ _ bull 11r 1o 1o It 111- bull ft ft ft ft ft i i f - ~ 3720 bull It bull ft ft ft ltt q -e- ~ ~ ~j1

4

middot bull bull bull It It ft It bull ~ ~ ~ bullmiddot ft ft ft ft ltt ft ltt ltI 1 ~ - It bull It ft ft It bull -0 ~ JIgt ]~

middotmiddotmiddotmiddotbullbull1rt1rtft11- p-bull- ~1frac121 1tftftlttltltPt1t fgtbullbull ~~- bullbull ~

It bullbullbullbull It ltt It It ltt It lrt lrt tgt - ~

~~~ItIt ItItIt 1t11tft lttlttftlttltlt ltt lt11t ~ lgtbullJgtIbullbull bull~bull bull~bull ~ 1 bull bull 3670 367~75 325 375 425 475 525 575

SOUTH

1111111111111111I I I t--l 0 10 20 30 40 50 0 5 10 15

(KM) WIND SPEED (MS)

DWM WINDS AT LEVEL 3 (300M) 400 PST 25JUN87

0 0 0 0 N r-shy N r-shya) r-shy r-- (0 I) I) 1) I)

-

LO r--1) -

l~ i ()

0 z 3

I ~ n 0 z I)

N st-

0 If)

0 - I) 2 0 ~ N -

0

0

1S3M

B-27

---_

2 0 0 0

-

If)

_J

w Cj l-_J OC)

z_ ) lt( J () L()

ON z~ 3~ 20 3oo+

0 0 0 N N C0 (0 I) ~ I)

U)

U)

U) U) N N It) U)

I I-=gt 0

U) V1 N st-

lO N I)

0 lO

0 __ I) 2 0 ~ N _

0

0

__ 2 0

--

_J

w l--Gj OC) _J z I- =gt lt( ~ V1 N 0 1-z V) 3 CL

20 3 g0

1S3M

B-28

I fshyCt 0 z

0 r-shyr-shyI)

0 N r-shyn

0 r-shyl) I)

lO r-shylO

lO N It)

lO N ltt-

--

tlt)

_j

w r---fu o) _J z f- ) lt( ~ f) N 0 1-Z Vgt3 (L

2 03g0

I fshy)

0 l)

0 lO

0 -- n 2 0 ~ N ---

0

0

1S3M

B-29

1S13

-l)~ O 0 w

deg CL w

l)l ~

0 0 z 3

I lshya 0 z

--_

2 0 0 0

--

LO

_j

w__cj IJ)

0 _j z lf I- )

lt ~ ~ V) N

I) 20 - 0 Z(f)

I-

0 ~ 3 CLN -

2 00 3 gOr-

0

1S3M

B-30

Ht 11Sittl

lS13 0 0 0 0 N N II) (0 n I) n n

-- ()

LO t-shy ~ lO

(~i0 z

lO N LO

3

I Ishygt 0

lO () N +

--

2 0

--

_j

wr-----CJ OJ

0 _j z lt) I- )

lt ~ V) N

0 -- 0 1-shyI) 2 z () 0 i 3 ClN --- --

0 28 3 ltD

lf 0~_____________________________~_______________________--- t-- 0 0 0 0 ClCI N N t-shyII) t-shy io n n n n

1S3M

B-31

==- ~-_

NORTH

I bull bull - -f I I bull ~bull - ~__~~~~ ~~~

flt~11 $~~~t=- ~~ ~ 4Aligt~ ~~~ ~~

3820 1~~~- 4 t 11 ~ ~- --~_____-- ~ ~ ~~ 3820 ~~~

~~-~~~~

3770 3770

l1 ()w l-

lllizz tshy

~ ZlZZl ~ ~~~~~~

to I -IllIll

w -I IIIll~N llllll2~~

-II I I J I-~1~ r~~~~ 3720r ~ J J UL 1~A~~ 3720

~IIJJJJJ2~ ~~~ 1 ~ fl I JI JI2~~ 1~~~V fl fl ~ JI J J ~ y ~- 1-f4~) ~ fl fl fl I JI J _A2 1~ V~

~flflflflJIJIJl~2 ~~JIw~ ~ ~jlfljlflJIJIJI~ ~JIJIJflfl~~~ ~ ~~fljlfljlJI~~~~ -

J67 t-V1111111----(((((1i I~laquo rlt~1 I I I I I I I IM m I I I I I I I ~ MJ670 g75 325 375 425 475 525 575

SOUTH

11111 11111 11111 1I I I I I I 0 10 20 30 40 50 middot 0 5 10 15

(KM) WIND SPEED (MS)

DWM WINDS AT LEVEL 3 (300M) 1600 PST 25JUN87

1

NORTH

bj I

w w

i~ -tt--t ~ + ~frac14 diams diams diams diams diams f f f J-~~~l -ff~_x~ diams t diams ---t diams + diams ff f J1ff~t t

-=tl-U +---- ~ ~ t-t- diams diams __ diams~ diams diams ~ J I I 1 1 f ~ -y- ~I -~~-1t-~ diams +__+ diams + ++--J_f 1 ~JJ-11 I --

38201- ~~-- ~ ~--t_-( 1 ~ r 1t + middot~-t_ bull ~-~ bull bull bullmiddot bull r-r 1 ~IiI 1 I ~Ji~l _-=pound-~If~_ It It It bull bull bull bull bull ~ diams f f---bullmiddot+ --I __- _ I I~ 1 f1

( - ~~~~ II lit It It 1tt Iii Iii~ -r-middot -- ___- l_f--1-l -L ~~1 1 ~ ~_( _ -~~ ~------~ 1t(~ bull (t ft- ~ middotv -11-fI 1 - t~~1 1 41

~ - ~-~- lit 1t lk_i -- -~--- -_ -j rf-- l1 r111 1 I It It~ It 1t 11i bull-~ ~- ~ t_bullbull_~ (middot ~--middottY~i_(4Xtl~4j_ middot It It ~ -- ---~----~----_I~)-~-~ -

~-It It ltt middot~- ~ -~-middot ~-pound1[_~ -~- - middot - deg - - It It l diams diams 4 middotbull--bull ~ ~ ~ diams 7 1---~~ -L_- - ~ t( I diams -( bull diams ~ ~ bull ~ -- JI JI Jf JI JI j(_ ~II deg It_ -~ ~- I I I J JI JI JI JI 1

~ J- ~llj ~- diamsdiams +II IllJI_ h~ ~ ~ ~ bull bull ~ JI J J J ~ 1 x111 X7 -~ ~ diamsdiams 4111 JJJIJJ~~~~~~~~1t diamsdiamsdiams ~111 JJIJJIJllllb~ h~~~hh middot ~ - diams diams bull I I J J I I I I JI JI I l1-14~frac12-~~~ji_ ~ + f 1 J I 1 I I I 1 ~ x~ f1 11 middot -

bull JI I I I11~bullY1iz 1 41 ~ f I J J J JI J J J J J I I I lmiddot ~ t JI JI JI 1 JI 1 1 JI J I I I It~ if~_~

It_ ~ 1 JI JI JI JI J J I I l-~ 4 t J J J J J J J JI JI I I l l deg ~~ _ ~ 1111JJIJIJIJIJIJIJIJI t JIJIJIJI~I JIJJIJIJI_

~- I t I I JJJIJIJIJIJII~~~~ t JIJJIJIJIJIIII ~~ JJ JIJIJlllll ~ t IJJIJIJl1 1 1 ~ ~~I 1 t 1 A 11111111 II I I I

325 375 425 475

SOUTH

I I I I I I 0 10 20 30 40 50

(KM)

525 575

1111 111 1111 10 5 10 15

WIND SPEED (MS)

3820

3770 1-() lt( w

3720

3670

DWM WINDS AT LEVEL 1600 PST 25JUN87

5 (1000M)

0 w w CL ()

0

1S13 0 0 0 N r-shy N agt r-shy r--t) I) 1)

I() It)- r-shyU) U)

z U) N It) 3

( I I lshy Ishyo ) 0 0z It)

~lgtIgt~() st- b tgt ~ q st

lgtbbtgtb

b b t t 0 b

N

Igt b t b b b A 6 ~ b b t b C A 4 d 4

ttCt4lt1-it e Igt b tgt tgt V q ltl ltl ltI ltl

ti- deg 1 41 9 q I I ltl q q

i V q ltl q q q q I l() r-shy AlgtV ~ tlt) ~t) -~~~q

~ bull amp ~

0 ~ ~

-qa ~ ~ 1gt1 111111

b-a~-V ltillilI

bull lt bull bull a ~ Igt ~ V V V q 4 __J

It It lgt a -a~ Igt C tgt V w r---(J OC)

bull ~ Igt t 4 bull bull bull bull U) 0 __J z middot 1gt44lt14

U) ) t) rshy J - -N

lt( l() ~ ~~ CI() ~ ~

~

0 Ishy bull bull bull diams 1 z ()~ bull ~ bull diams diams 1 CL3bull ~ ~

i b y ~bullbullTT r I I 0

~ bull bulldiams ~ ~ b b b b ~ bullbull diams T r r I U)______-11____________________________ _ 0

0 O O ON N r- N r--agt r-- _ ~ I) I) I) I)

1S3M

B-34

I

_ _ 3820r- ttr- t f T Jf-Lt If t t 1l-- -~ 1~ t t

NORTH

~bull 1414

~~-_ ~ ~ r-- - --~ ~ - - _ r-- fT W - - r V-V ff f

- t t t t f I~ _AAjAA~-r bull(- -J It ~---1 t ~~~-1-- 1 ( ~~ - J ~ t t i f 1 ~ A_A-yen~_~_ ~ ~ 1 ~ t t ~ t t middotmiddotkt f ~-~-~~-----~~-- ~ ~ ~ ___ll_ bull ~

t -r- _______~~----- r ~bullbull _ ~ ~ tt-~J--~c-~~ ~ 1~--______ bull

~ -t lJ-- f t-J-- r---~~---middot _-- ~~-- ~ bull bull ll~iti~~sect~~~ ~ bullbull~bullbull bull~~n~ bull bull bull n~ bull bull

A)~lfifrac12~~ ~III I --1

3770 l l L l L - - ~ -- ~ - 1 ~ - 770 tshy~ ~~~~~~~~~11 1 ~~=1~~- Ul

W 1lllll~I ~~~~1111~~ lt( w ~1~~1~1~~j~~~m ~~~~ ~ - ~

11 1111 1111~I I 11111111 --- middotE~

tj IIIIIIIII_ ~tI l) llllll_~_p ~1l1 1~A~~~A~~rrr-v

3720t- I I I J J J A__ r r 0 11J)~~~----~_~ppmiddot-~~f Jl~~~~~---~--~~r~-~~q~q ~1

I ~JI I~ A A-_

~JIJl~~~~~A-----A rrbullbull~f~df~ ~~JIJl~~~~A~~--~- fffdfdff

~~JIJI~~~~~~---- bullfbulldbullfdf~

~IJIJl~~~AA~ --middotmiddotmiddotmiddotmiddot~middotmiddot~~~ ~l~JIJIJl~~~Al~pp~~~~bullbullffffffdff X ~~~~JI~- A(- f bullbull P ~ ~~bull1f1q1f1f1f1f1f1d1bull

3670275 325 375

1111 1111 11111 1 1 1

0 10 20 30 4-0 50 0 5 10 15 I I I I I I i(KM) WIND SPEED (MS)

iDWM w1tms AT LEVEL 3 (300M) ir 2200 PST 25JUN87

0 If)

0 __ I) 2 0 ~ (j __

0

0

__ 2 0 0 0

__

LO

_J

w f- GJ ll) _J z I- ) lt( ~ () N 0 1-z () ~ Cl

20 ~~ ON

1S3M

B-36

Page 17: Nind Observations Collected during the Southern California ...

(

reaches a depth of 300 m agl Southeastern flow in the Coachella Valley and E flow through Banning Pass are apparent both at the surface and 300 m agl S to SE flow dominates at 1000 m agl The II three-zone II surface airflow pattern is apparent during the afternoon The wind shifts to Wat Banning Pass by 1500 PST At 300 m agl winds are SW over much of the basin with SE flow at Burbank and in the Coachella Valley At 1000 m winds are generally SW At 2200 PST the airflow pattern is characterized by weak unorganized flow at the surface and 300 m agl Winds at 1000 m are NW over much of the domain but SE over the Coachella Valley

The airflow on 25 June is similar to that on 24 June During the early morning hours winds at the surface are very light Weak SE flow is apParent at 300 m agl At 1000 m agl winds continue to veer toward N The sea breeze develops more quickly than on the previous day and winds at Banning Pass become westerly by 1300 PST Calm winds are observed at Pico Rivera throughout the afternoon As on 24 June the afternoon airflow at 300 m agl is characterized by SW flow over the basin and SE flow at Burbank and over the Coachella Valley Upward propagation of W flow is generally slower than on 24 June Winds at 1000 m agl are S to SE During the evening hours the surface winds become light while at 300 m agl winds over the Coachella Valley become NW Organized W flow is apparent over the W basin through a depth of at least 300 m agl through 2200 PST

13-15 July 1987

Surface and upper-air wind monitoring sites for this intensive monitoring period are shown on pages A-5 and A-6 respectively Plots of the diagnostic wind analyses for 13-15 July are given in Figures B-37 through B-72

Airflow patterns on 13 and 14 July are generally consistent with the basic diurnal cycle described earlier However an unusual airflow pattern develops in the Coachella Valley on both days On 15 July strong SE forcing is associated with a delay in sea breeze development

The 13 July early morning surface airflow pattern is characterized by light winds and a weak cyclonic eddy over the Santa Monica Bay Winds aloft are light to moderate and primarily W The sea breeze develops rapidly on this day and by 1200 PST W flow overwhelms the S sea-breeze flow in the Long Beach Area W flow appears at Banning Pass by 0800 PST The surface afternoon airflow is characterized by the three-zone airflow pattern described earlier with strong upslope flow along the foothills ( gt 5 mls) and significant outflow through Cajon Pass Observations at Palm Spring (NW winds) and Thermal (SE winds) indicate a convergence zone in the Coachella Valley with a depth of at least 600 m W flow dominates at middot1000 m with S to SE flow over the Coachella Valley During the evening hours a cyclonic eddy redevelops over the Santa

9106102 12

rtMt1

Monica Bay winds are weak throughout the basin but airflow into the Coachella Valley is especially strong

Airflow patterns on 14 July are similar to 13 July with a few exceptions During the early morning hours the surface airflow is characterized by weak disorganized flow There is no eddy apparent over the Santa Monica Bay The overlying flow is weak and primarily S to SE at 300 m agl but W to NW at 1000 m agl Sea breeze development is approximately two hours slower on this day than on 13 July By 1000 PST weak S flow has developed over the Whittier-La Habra-Pico Rivera area and SE flow is apparent at Burbank AS component to the flow appears at 1000 m The afternoon surface airflow pattern is similar to that on 13 July but the S upslope flow at Glendora is weaker S flow develops at Elsinore and several coastal Orange County sites The Coachella Valley convergence zone reappears at the surface at 1600 PST two hours later than on the previous day At 300 and 1000 m agl W to SW flow dominates over the western twoshythirds of the domain SE flow is apparent over the Coachella Valley During the evening hours the surface airflow over the central basin is S to SW W flow components persist along the eastern foothills through 2200 PST

On the morning of 15 July surface winds are weak but maintain a S component Moderate SE flow is apparent offshore The overlying flow is generally E to SE By 1000 PST the surface airflow pattern is characterized by S flow over the central basin and along the foothills SE flow in the Coachella Valley and E flow through Banning Pass The depth of the S to SE flow is greater than 1000 m agl During the afternoon a weak sea breeze penetrates inland and winds along the foothills become W Winds shift from E to NW at Banning Pass at 1600 PST A weak S flow component persists in the Whittier-La Habra-Pico Rivera area throughout the afternoon A weak slopevalley circulation develops in the Coachella Valley resulting in SE flow there At 300 m agl winds are SW to W over the central basin and SE over the Burbank and the Coachella Valley At 1000 m S to SE flow dominates W winds persist along the foothills through 2200 PST and weak S to SE flow redevelops at the surface Remnants of the afternoon airflow pattern persist aloft

27-29 August 1987

The surface and upper-air wind monitoring site locations for this intensiv middot1onitoring period are indicated on pages A-7 and A-8 respectively Plots of the dia stic wind analyses for 27-29 August are given on pages B-73 through B-108

On the morning of 27 August surface winds are weak over most land areas a 1djacent coastal waters with moderate (5 ms) NW winds well offshore Winds aloft a Jrimarily N with weak NE flow at 100-300 m agl over the central basin By 1000 PST threeshy

IIzone airflow pattern has developed at the surface and is somewhat apparent ( hin the limits of the upper-air network) at 300 m agl SE flow has developed at 100( agl

9106102 13

This pattern is maintained throughout the afternoon Within the Coachella Valley a classic daytime slopevalley flow pattern develops with SE flow extending to a depth of 1000 m E flow develops at Banning Pass and persists through 1700 PST W flow over the basin develops upward throughout the afternoon By 1600 PST wind at 300 m agl are W to SW over the central basin and SE over Burbank and the Coachella Valley During the evening hours the features of the mesoscale airflow pattern over land weaken both at the surface and aloft There is no clearly developed offshore-directed land breeze

On the morning of 28 August the surface winds are weak and the overlying flow is primarily E Retardation of the sea breeze by the overlying E flow is apparent by 0900 PST S flow develops in the Long Beach area E flow at Banning Pass is substantially stronger than on 27 August During the afternoon of 28 August S flow persists at Long Beach and develops in the Whittier-La Habra-Pico Rivers area SE flow is observed along the Orange County coast E flow through Banning Pass persists throughout the day W wind components along the Santa Monica-Palos Verdes coastline are weaker than on the previous day and NW flow fails to develop at San Nicolas Island W flow over the central basin disrupts the SE flow aloft During the evening hours the airflow features weaken W flow along the foothills does not persist as long as on the previous day

The early morning airflow pattern on 29 August is characterized by SE flow both at the surface and aloft Sea breeze development on this day is slower than on either of the previous two days S flow again develops in the Long Beach area and appears to be stronger than on the previous day Although the sea breeze is weaker winds at Banning Pass shift from E to SW by 1300 PST This shift occurs at 1800 on 27 and 28 August SE flow persists aloft with limited upward development of the W sea breeze flow W flow persists in the western basin area through 2200 PST and SE flow persists aloft

2-3 September 1987

The surface and upper-air monitoring site locations for this intensive monitoring period are indicated on pages A-9 and A-10 respectively Plots of the diagnostic wind analyses for 2-3 September are given on pages B-109 through B-132

The first day of this period is probably the most anomalous of the summer SCAQS intensive measurement days Overlying easterly forcing during the morning hours prevents development of W flow along the foothills and inhibits upward development of the sea breeze over the western and central portions of the basin The easterly forcing appears to reverse rather abruptly on the afternoon of 2 September Unusual winds are also observed at Burbank on 2 September During the late morning and afternoon Burbank experiences an unusual wind shift from SE to W through a depth of 1000 m On 3 September the overlying airflow is W and the airflow patterns are more typical

9106102 14

rrn

On the morning of 2 September strong downslope flow results in N to NE winds at several sites along the foothills of the San Gabriel Mountains At 300 m strong NE winds are apparent over the central basin The overlying flow is E By 1000 PST the sea breeze appears as W flow along the Santa Monica-Palos Verdes coast and S flow in the Long Beach area The surface analysis indicates a band of S flow from Costa Mesa to Azusa W flow has not developed along the eastern foothills Winds are SE in the Coachella Valley and E through Banning Pass E flow aloft continues and intensifies During the early afternoon hours a relatively strong sea breeze penetrates inland to Azusa while winds in the Whittier-La Habra-Pico Rivera area remain weak The sea breeze weakens considerably after mid-afternoon Between 1200 and 1500 PST the wind at Burbank shifts from SE to W through a depth of 600-1000 m By 1600 PST the overlying flow has shifted from SE to W Onshore flow continues at the surface through 2200 PST while the winds weaken considerably Although the overlying W flow persists in general 300 m agl winds at Burbank become SE

The early morning airflow on 3 September is characterized by weak winds at the surface SE flow at 300 m agl and primarily W flow at 1000 m agl Although the major surface airflow features appear to develop as on previous days upward development of the pattern is limited Strong S flow is apparent by 1200 PST between 100 and 300 m agl over the central and western basin By 1600 PST the sea breeze has penetrated well inland Imbedded in the sea breeze is a persistent calm area in the vicinity of Lynwood S flow persists at 100-300 m agl over the central and western basin while flow at this level off shore remains NW At 1000 m agl W flow continues This general pattern persists through 2200 PST but weakens considerably especially at the surface

AUTUMN INTENSIVE MONITORING PERIODS

The mesoscale airflow patterns in the SOCAB during the SCAQS autumn intensive monitoring periods exhibit a weaker diurnal cycle than the summer airflow patterns Synoptic forcing also appears to be stronger

11-13 November 1987

The surface and upper-air wind monitoring site locations for this intensive monitoring period are plotted on pages A-11 and A-12 respectively Plots of the diagnostic wind analyses for 11-13 November are given on pages B-133 through B-168

During the early morning hours of 11 November NE surface winds are apparent over most of the region Surface wind speeds are very light over the basin and somewhat stronger along the foothills and the coast At 300 m agl winds are light and generally E At 1000 m agl winds are W to SW over the western half of the domain and SE over the eastern half of the domain Weak E to NE surface flow persists throughout most of the

9106102

15

morning in the first 300 m An apparent anticyclonic eddy (SE flow at Long Beach weak S flow at Burbank W flow at El Monte) develops between 600 and 1000 m agl on this morning A weak sea breeze forms around 1200 PST penetrating only to the central basin There is no apparent turning of the sea breeze into the San Fernando Valley W to NW flow develops offshore and is deflected around the Palos Verdes Hills This W flow is also apparent at 300 m agl Downslope flow components along the foothills are apparent by 1600 PST At this time the 1000 m agl winds are weak and N The sea breeze rapidly dissipates and NE flow develops at several coastal sites indicating a land breeze NW flow is maintained off shore The nighttime airflow pattern aloft is characterized by weak N winds at 300 m agl and weak W winds at 1000 m agl

The surface airflow pattern on the morning of 12 November is generally similar to that on 11 November E flow over land is apparent through a depth of 300 m while NW flow persists offshore The overlying flow is W The afternoon surface airflow pattern is more similar to a typical summer afternoon pattern than the previous day Turning of the sea breeze into the San Fernando Valley is apparent and W flow develops along the foothills of the San Gabriel and San Bernardino Mountains by 1400 PST Airflow at 300-600 m agl appears to veer continuously from E to W at most inland sites during the afternoon NW flow through a depth of 1000 mis apparent over the Coachella Valley Surface winds become light and disorganized during the evening hours Unlike the previous day NE flow does not develop at the coastal sites and NW flow weakens offshore W winds persist aloft

On 13 November surface winds are very light through the early morning hours with E flow components apparent immediately offshore The overlying flow is WNW but becomes S over the central basin by 1000 PST As on the previous two days a sea breeze becomes apparent at the surface by noon W flow components over the basin and foothill areas are stronger than on the previous two days both at the surface and aloft Significant W flow also develops in Banning Pass Moderate to strong W winds are apparent aloft During the afternoon and evening hours SE winds are apparent at Burbank between 300 and 600 m agl Intense W flow develops off shore and propagates inland during the evening hours W flow continues aloft with some S to SE flow between 100 and 600 m agl at Burbank and El Monte

3 December 1987

The surface and upper-air wind monitoring site locations for this intensive monitoring period are plotted on pages A-13 and A-14 respectively Plots of the diagnostic wind analyses for 3 December are given on pages B-169 through B-180

The early morning surface airflow pattern on 3 December is characterized by weak NE winds over the inland areas and a weak cyclonic eddy off shore The overlying flow is S to SE Surface winds remain light and variable through most of the morning Moderate

9106102 16

txi Iii ttii

E flow is apparent over the western and central basin between 300 and 600 m agl A sea breeze develops around 1200 PST reaching a depth of 300 m and penetrating only approximately 30 km inland S to SE flow persists above 300 m agl The sea breeze weakens during the evening hours and N flow through a depth of 300 m develops at Long Beach E flow components intensify at 600 m agl and above

10-11 December 1987

The surface and upper-air wind monitoring site locations for this intensive monitoring period are plotted on pages A-15 and A-16 respectively Plots o~ the diagnostic wind analyses for 10-11 December are given on pages B-181 through B-204

On 10 December the early morning surface airflow pattern is weak and disorganized Weak NE flow is apparent over much of the basin between 100 and 600 m agl The overlying flow at 1000 m is N The surface airflow over the basin is weak throughout the morning hours while NW flow develops offshore Winds aloft remain N A weak sea breeze is apparent by 1200 PST the sea breeze penetrates only about 30 km inland and is limited to a depth of approximately 300 m There is no apparent turning of the sea breeze into the San Fernando Valley Elsewhere in the basin the surface airflow remains weak By 1600 PST the sea breeze has weakened At this time winds aloft are predominantly W to NW at 300 m agl and N at 1000 m agl During the evening hours surface airflow over the basin becomes weak and disorganized while E flow develops at Palos Verdes Strong N winds appear aloft (300-600 m agl) at Burbank LMU and Long Beach however winds at this level further to the east remain light

On 11 December the early morning surface airflow pattern is similar to that on 10 December Relatively strong ( gt 10 ms) NNW winds persist at 600-1000 m agl at Burbank and LMU E wind in the 100-300 m agl appear at LMU and Long Beach Throughout the morning the surface winds remain light and N winds 9ver Bu~ank weaken considerably A sea breeze is apparent by 1200 PST but is weaker than on the previous day and reaches a depth of only 100 m or less Significant N winds (3-6 ms) develop between San Bernardino and Elsinore and in the western San Fernando Valley NE flow is observed in Ventura County Winds aloft continue to be primarily N however E flow is apparent over the Long Beach area at 1000 m agl Surface airflow over the central and western basin becomes very weak during the evening hours Strong N to NE flow develops at the coast west of Santa Monica while N flow persists in the western San Fernando Valley and in the San BernardinoRiverside area The overlying flow is N to NE

91061 02 17

3 PARTICLE PAm ANALYSIS

A series of forward and backward particle paths (trajectories) were calculated using the SCAQS DWM wind fields The particle paths will be used by other SCAQS investigators in their examination of pollutant transport within the SOCAB The forward particle paths can be used to estimate the transport of pollutants from known source locations The backward particle paths can be used to estimate potential source areas The particle paths can also be used to estimate the residence time of certain pollutants in the SOCAB as a whole or in subregions

CALCULATION OF PARTICLE PAIBS

Two-dimensional particle paths were computed using the DWM wind fields as follows

Starting ( ending) points for a given number of forward (backward) particle paths were specified

Using a time interval of 15 minutes the hourly gridded DWM wind fields were linearly interpolated in time and then interpolated in space to each particle position using an inverse-distance-squared weighting scheme

The particles were then advected horizontally for the specified time interval

The distance traveled by each particle during each time interval was integrated The new position of the particle was reported at hourly intervals

Forward and backward particle paths were calculated for the SCAQS intensive monitoring periods for several vertical levels and a variety of origination and destination points The origination (destination) locations and times for the summer and autumn particle paths are listed in Tables 3-1 and 3-2 respectively Most of the particle paths originated (ended) at one of the SCAQS wind monitoring sites listed in Tables 1-1 and 1-2 Additional sites are identified in Table 3-3 Note that for some sites in Tables 3-1 and 3-2 a new particle path was initiated at the particles 1000 PST location but at a higher level

Additional forward particle paths were calculated for comparison with the SCAQS tracer data (England et al 1989 Horrell et al 1989) The initiation times and locations correspond to the tracer releases and are given in Tables 3-4 and 3-5

9106lrl02

~~ll1~(I titW I~l~~~t~~

TABLE 3-la Summer particle paths forward particle paths

Start Time Origination Start Date (PST) Site Level(s)

624 0500 LBCC 13 CELA 13

624 0700 LBCC 13 CELA 13

624 1000 LBCC 13 CELA 13

624 1500 LBCC 13 CELA 13

624 2100 LBCC 13 CELA 13

625 0500 HHRA 5 PADA 45 FULA 5

625 0700 FULA 5

713 0500 LBCC 13 CELA 13

713 0700 LBCC 13 CELA 13

713 1000 LBCC 13 CELA 13 EMTA 24

713 1500 LBCC 13 CELA 13

713 2100 LBCC 13 CELA 13

714 0500 LBCC 13 CELA 13

714 0700 LBCC 13 CELA 13

714 1000 LBCC 13 CELA 13

714 1500 LBCC 13 CELA 13

714 2100 LBCC 13 CELA 13

Continued

19

91061 07

TABLE 3-la Concluded

Start Time Origination Start Date (PST) Site Level(s)

827 0500 LBCC 13 CELA 13

827 0700 LBCC 13 CELA 13

827 1000 LBCC 13 CELA 13

827 1500 LBCC 13 CELA 13

827 2100 LBCC 13 CELA 13

828 0500 LBCC 13 CELA 13

828 0700 LBCC 13 CELA 13

828 1000 LBCC 13 CELA 13

828 1500 LBCC 13 CELA 13

828 2100 LBCC 13 I CELA 13

92 0500 LBCC 13 CELA 13 HHRA 12

92 0700 LBCC 13 CELA 13 FULA 12

92 1000 LBCC 13 CELA 13

HHRA 45 FULA 45

92 1500 LBCC 13 CELA 13

92 2100 LBCC 13 CELA 13

93 0700 RIVA 12

93 1000 RIVA 45

A new particle path was initiated at the particles 1000 PST location but at a higher level

20

~(Ibull bull 11

41

~1~_11Lmiddot11~1~~tV t rt~~14_ II~~~h1 1r t

TABLE 3-lb Backward particle paths

End Time Destination End Date (PST) Site Level(s)

624 1500 CABA 23 EMTA 45 BURA 1234 HHRA 4 FULA 45

624 1800 RIVA 3

625 0500 CLAR 13 RIVR 13 HHRA 5 PADA 45 FULA 5

625 0700 CLAR 13 RIVR 13 FULA 5

625 1000 CLAR 13 RIVR 13

625 1500 CLAR 13 RIVR 13 CABA 23 EMTA 4 BURA 4 RIVA 45

625 1600 RIVA 45

625 2100 CLAR 13 RIVR 13

713 - 1000 EMTA 24

713 1500 CABA 23 EMTA 45 RIVA 24

713 1600 RIVA 24

714 0500 CLAR 13 RIVR 13

714 0700 CLAR 13 RIVR 13

714 1000 CLAR 13 RIVR 13 BUR 123

714 1500 CLAR 13 RIVR 13 CABA 23 EMTA 4 BURA 234 RIVA 2

714 1600 RIVA 2

Continued

21 nn1 Y1

TABLE 3-lb Continued

End Time Destination I End Date (PST) Site Level(s)

714 2100 CLAR 13 RIVR 13

715 0500 CLAR 13 RIVR 13

715 0700 CLAR 13 RIVR 13

715 1000 CLAR 13 RIVR 13

715 1500 CLAR 13 RIVR 13

715 2100 CLAR 13 RIVR 13

827 1000 CABA 2 EMTA 23 BURA 123

827 1500 CABA 2

828 0500 CLAR 13 RIVR 13

828 0700 CLAR 13( RIVR 13

828 1000 CLAR 13 RIVR 13

828 1500 CLAR 13 RIVR 13

828 2100 CLAR 13 RIVR 13

829 0500 CLAR 13 RIVR 13

829 0700 CLAR 13 RIVR 13

829 1000 CLAR 13 RIVR 13

829 1500 CLAR 13 RIVR 13

829 2100 CLAR 13 RIVR 13

92 1000 PADA 3

92 1100 PADA 3

92 1500 EMTA 2 RIVA 2

Continued

22

91061 07

I

1bullLI bullI I bull ~ii 1 1

1 cl1

[1i1bull~j~1 Iiii~ j t-~dI ~1 1ltl1111111 II r I l~bull~II~middot t1~i~n_11~~ ~middot -

TABLE 3-lb Concluded

End Time Destination End Date (PST) Site Level(s)

92 1600 RIVA 2

93 0500 CLAR 13 RIVR 13

93 0700 CLAR 13 RIVR 13

93 1000 CLAR 13 RIVR 13 CABA 2 BURA 1234

93 1500 CLAR 13 RIVR 13

93 2100 CLAR 13 RIVR 13

23 9106107

TABLE 3-2a Autumn particle paths forward particle paths

Start Time Origination Start Date (PST) Site Level(s)

1111 0300 LBCC 13 CELA 13

1111 0700 LBCC 13 CELA 13

1111 0900 FULA 12

1111 1200 LBCC 13 CELA 13

1111 1500 LBCC 13 CELA 13

1111 2100 LBCC 13 CELA 13

1112 0300 LBCC 13 CELA 13

1112 0700 LBCC 13 CELA 13 FULA 12

1112 1000 FULA 45

1112 1200 LBCC 13 CELA 13(

1112 1500 LBCC 13 CELA 13

1112 2100 LBCC 13 CELA 13

1113 0500 ONTA 123

1113 1000 ONTA 45

123 0300 LBCC 13 CELA 13

123 0700 LBCC 13 CELA 13 FULA 12

123 1000 FULA 45

123 1200 LBCC 13 CELA 13

123 1500 LBCC 13 CELA 13

123 2100 LBCC 13 CELA 13

1210 0300 LBCC 13 CELA 13

1210 0700 LBCC 13 CELA 13

Continued

24 9106108

TABLE 3-2a Concluded

Start Time Origination Start Date (PST) Site Level(s)

1210 1200 LBCC 13 CELA 13 FULA 123

1210 1500 LBCC 13 CELA 13

1210 2100 LBCC 13 CELA 13

1211 0500 ONTA 12

1211 0700 FULA 12

1211 1000 ONTA 45 FULA 45

A new particle path was initiated at the particles 1000 PST location but at a higher level

25 9106108

TABLE 3-2b Backward particle paths

End Time Destination End Date (PST) Site Level(s)

1111 1500 HHRA 34

1112 0300 LBCC 13 CELA 13 RIVR 13

1112 0700 LBCC 13 CELA 13 RIVR 13

1112 1200 LBCC 13 CELA 13 RIVR 13

1112 1500 LBCC 13 CELA 13 RIVR 13 HHRA 34 PADA 3 FULA 34

1112 2100 LBCC 13 CELA 13 RIVR 13

1113 0300 LBCC 13( CELA 13

RIVR 13

1113 0700 LBCC 13 CELA 13 RIVR 13

1113 ~ 1200 LBCC 13 CELA 13 RIVR 13 ONTA 34 EMTA 45

1113 1500 LBCC 13 CELA 13 RIVR 13

1113 2100 LBCC 13 CELA 13 RIVR 13

123 0300 LBCC 13 CELA 13 RIVR 13

123 0700 LBCC 13 CELA 13 RIVR 13

Continued

26 9106108

TABLE 3-2b Concluded

End Time Destination End Date (PSn Site Level(s)

123 1200 LBCC 13 CELA 13 RIVR 13

123 1500 LBCC 13 CELA 13 RIVR 13 PADA 3

123 2100 LBCC 13 CELA 13 RIVR 13

1211 0300 LBCC 13 CELA 13 RIVR 13

1211 0700 LBCC 13 CELA 13 RIVR 13

1211 1200 LBCC 13 CELA 13 RIVR 13

1211 1500 LBCC 13 CELA 13 RIVR 13 PADA 1234 BURA 123

11 13 2100 LBCC 13 CELA 13 RIVR 13

27 9106108

TABLE 3-3 Additional particle path initiation (destination) points

Site Identifier Location UTM Easting (km) UTM Northing (km)

BURA Burbank Airport 3749 37859

CABA Cable Airport 4370 37751

EMTA El Monte Airport 4047 37717

FULA Fullerton Airport 4091 37485

HHRA Hawthorne Airport 3768 37547

ONTA Ontario Airport 4435 37686

PADA PADDR Intersection 3810 37175

RIVA Riverside Airport 4584 37485

28

TABLE 3-4 Forward particle paths calculated for comparison with the SCAQS tracer data

Start Start Origination Date Time Site Levels

0300 LAGS 13 0600 13 0900 II 13 1200 II 13 1500 II 13

625

715 0500 VRNN 1

0800 VRNN 1

828 0600 LAGS 13 1000 II 13 1300 13 1500 13

93 0500 VRNN 1

0800 VRNN 1

1111 1600 LAGS 3 ESGS 3 VRNN 1

1900 LAGS 3 ESGS 3 VRNN 1

1112 0600 ESGS 3 VRNN 1

0900 ESGS 3 VRNN 1

1210 0600 LAGS 3 ESGS 3 VRNN 1

0900 LAGS 3 ESGS 3 VRNN 1

1600 VRNN 1

29

9106lrl09

TABLE 3-5 SCAQS tracer release sites

I_______________________

Site Identifier Location UTM Easting (km) UTM Northing (km)

ESGS El Segundo 3690 37536 LAGS Los Alamitos 3980 37370 VRNN VRNN 3874 37625

(

91061rl09

30

The particle paths were calculated for up to a three-day period In general forward particle paths were calculated through the end of the monitoring period or until the particle was advected out of the domain Backward particle paths were calculated through the beginning of the intensive monitoring period or until the particle left the domain

Selected plots of the forward and backward particle paths are given in Appendix C

SUMMER PARTICLE PATHS

Forward particle paths (levels 1 and 3) originating from Central Los Angeles (CELA) and Long Beach City College (LBCC) at 0700 PST on 24 June 13 and 14 July 27 and 28 August and 2 September are shown on pages C-1 through C-12

The surface-level particle paths originating at CELA indicate northward advection from this site on all days The particle path initiated on 27 August indicates that the initial northward advection is followed by westward advection on the following day the particle path initiated on 2 September indicates that the initial northward advection is followed by eastward advection on the following day In all cases the residence time in the central Los Angeles basin is less than 12 hours

The surface-level particle paths originating at LBCC are carried northward and eastward usually exiting the Los Angeles basin through Cajon Pass On 24 June and 14 July however the particles are carried across the San Gabriel Mountains (with the upslope flow) Considerable eastward transport is indicated by the particle paths initiated on 2 September after 1800 PST -Residence time in the Los Angeles basin varies from day to day and is especially long for the particle path initiated on 27 August (approximately 30 hours) Particle paths initiated on 13 July and 28 August also indicate some recirculation and a significant residence time within the Los Angeles basin

The level 3 particle paths also indicate northward transport from CELA on most days Advection into the San Fernando Valley which may be partly due to the SE flow produced by the turning of the sea breeze into the valley is more pronounced on certain days (14 July 28 August and 2 September) Level 3 particle paths originating at LBCC show mostly northwestward transport Recirculation over the Los Angeles basin is indicated for the 2 September particle path

Backward particle paths (levels 1 and 3) culminating at Claremont College (CLAR) and Riverside-Rubideaux (RIVR) at 1500 PST on 25 June 14 and 15 July 28 and 29 August and 2 September are shown on pages C-13 through C-24 -

_

9106lrl 02

31

The surface-level backward particle paths originate over water on all days the particles are carried eastward and northward into the Los Angeles basin On 14 July and 28 August the particle paths indicate primarily eastward transport There is some indication that particles arriving at the destination sites on 28 August may have originated in the South Central Coast Air Basin (SCCAB) On 25 June 15 July and 3 September the particle paths indicate primarily northeastward transport On 29 August northward transport is indicated

The level 3 backward particle paths also indicate transport from the W SW or SE on the intensive monitoring days The over-water segments of the particle paths indicate eastward advection on 14 and 15 July and 27 and 28 August and northward advection on 25 June and 3 September Again there is some indication that particles arriving at the destination sites on 28 August may have originated in the SCCAB Almost all of the particle paths indicate that the particles are carried onshore between Long Beach and Laguna Beach and advected northeastward to CLAR and RIVR An exception to this occurs on 28 August On this day the particles are carried onshore near Redondo Beach and are recirculated over the Los Angeles basin for approximately 24 hours before arriving at the destination sites

AUTUMN PARTICLE PATIIS

Forward particle paths (levels 1 and 3) originating at CELA and LBCC at 0700 PST on 11 and 12 November 3 and 10 December are presented on pages C-25 through C-32

The autumn particle paths exhibit more day-to-day variability than the summer particle paths indicating more variability in the autumn airflow patterns Because both the CELA and LBCC locations are affected by the land-breezesea breeze circulations all of the surface-level particle paths show some recirculation in the western basin Particle paths initiated on 11 and 12 November eventually indicate eastward transport

The level 3 particle paths also differ among episodes but are all affected by the seashybreeze circulation Particle paths initiated on 11 November show eastward transport from CELA and southward transport from LBCC Northeastward transport at this level is indicated by the 12 November particle paths The particle paths initiated on 3 December illustrate local recirculation by the sea breeze On 10 December southward advection is indicated

Backward particle paths culminating at CELA LBCC and RIVR at 1500 PST on 12 and 13 November 3 and 11 December are presented on pages C-33 through C-40

The surface-level particle paths indicate that particles arriving at CELA at 1500 PST on all four days follow a southward then eastward course Particles arriving at LBCC are affected by some combination of onshore advection and local recirculation The particle

9106Irl02

32

paths culminating at Riverside indicate a variety of possible transport patterns eastward transport on 12 and 13 November northwestward transport on 3 December and southeastward transport on 11 December

The level 3 backward particle paths for 12 November illustrate recirculation aloft by the evolving airflow patterns while the particle paths for 13 November indicate primarily eastward advection The particle paths for 3 December are clearly affected by the SE that occurs on this day the resulting particle paths indicate northwestward transport The particle paths for 11 December indicate southward advection and recirculation by the sea breeze

COMPARISON WITH TRACER DATA

Forward particle paths originating from El Segundo (ESGS) Los Alamitos (LAGS) and Vernon (VRNN) at times corresponding to the SCAQS tracer release times are shown on

middot pages C-41 through C-76 For ground-level tracer releases the particle paths were calculated using level 1 (10 m agl winds) for stack releases the particle paths were calculated using level 3 (300 m agl) winds A qualitative comparison with the observed tracer data is provided here

Surface-level particle paths originating at LAGS on 25 June indicate northward transport during the morning and afternoon hours The level-3 particle paths indicate that material is transported out of the basin through Cajon and Banning Passes by the upper-level winds Both of these indicated transport patterns are supported by observed tracer data

Surface-level particle paths originating at VRNN on 15 July indicate northward transport and exhibit good qualitative agreement with the tracer data

Both the surface-level and level-3 particle paths originating at LAGS on 28 August indicate primarily northeastward transport Most of the particles are eventually advected through Cajon Pass This is consistent with observed tracer at Redlands San Bernardino and Crestline

Surface-level particle paths originating at VRNN on the morning of 3 September do not agree with the tracer data While the particle paths indicate northeastward transport the tracer data indicate northwestward transport

Surface-level particle paths originating at VRNN on the afternoon of 11 November indicate westward transport and a long residence time in the central basin The level-3 particle paths originating at LAGS and ESGS show southeastward transport and recirculationmiddot by the sea breeze Surface-level particle paths originating at VRNN on the following morning again show net westward transport and a long residence time in the

( central basin but the level-3 particle paths indicate northward transport with recirculation

91061rl 02

33

by the sea breeze The smface-level particle paths are consistent with the tracer data Tracer was observed over the north-central basin and along the foothills on the morning of 13 November

The surface-level particle paths originating at VRNN on the morning of 10 December indicate relatively stagnant conditions with a weak sea breeze circulation Some net transport toward the south is indicated Particle paths originating at VRNN on the afternoon of IO December show little movement throughout the following day The long residence time in the basin is in qualitative agreement with the tracer data Tracer was observed in the basin on the following day The dispersion indicated by the widespread tracer concentrations however cannot be represented by a single particle path The level 3 particle paths originating at LAGS and ESGS on the morning of 10 December show southward transport and recirculation by the sea breeze

UNCERTAINTY ANALYSIS

A simple analysis was perlormed in an attempt to quantify the degree of uncertainty inherent in the particle paths The uncertainty analysis was similar to an analysis described by Moore et al (1989)

Three major forms of error in the particle path calculations can be identified The first two result from errors in the wind fields The most fundamental of these is measurement error as measurements can only be regarded as approximations of the true winds Regardless of the accuracy of interpolation techniques measurement error will always affect the final wind field The second type of error results from the interpolation of these measurements and the parameterizations and approximations in the diagnostic wind model This error will be greatest in data-sparse areas The third type of error results from the use of two-dimensional wind fields The two-dimensional particle paths do not incorporate the effects of vertical motion which may be a significant source of error considering the mesoscale regimes present in the study area

The particle path uncertainty in this analysis is the result of all sources of error and is therefore very difficult to estimate A lower bound 11 on the uncertainty was assumed to result from measurement error alone Here we use a lower bound uncertainty estimate to illustrate the effects of measurement error on the particle path calculations Several assumptions were made in order to estimate this uncertainty First average bias for all instruments was assumed to be very small Second instrument precision was assumed to be constant over the region Third measurement error (speed and directional error) was assumed to be normally distributed around zero The standard deviation about the mean was based on observational data

For this uncertainty analysis 20 particle paths were initiated from a single site at a single time For each 15-minute particle path segment u and v were calculated as described in

9106lrl 02

34

(

the previous section Small random wind components (representing the measurement error) were then added to the interpolated wind The smaller components were determined by randomly selecting wind speed and direction error from two separate normal probability density functions (PDF) To do this a uniform random number generator was used to find two error probabilities Ps and Pd between 0 and 1 An inverse normal PDF routine was then used to find the speed or direction error that results in error probability Ps or Pd respectively Commercial statistical software from Th1SL was used to generate uniform random and inverse normal PDF values 1

The PDFs possess means of zero and standard deviations equal to the root mean square error (RMSE) of the measurements For simplicity RMSE values for speed and direction were taken from those specified by Moore et al (1989) namely 02 mis and 10 degrees respectively Random error components were determined for each 15-minute segment of every particle path The resulting divergence in the particle paths represents a lower limit to the uncertainty inherent in the particle-path calculations

Plots illustrating the effect of the lower-bound uncertainty on the particle path calculations are given for one summer and one winter episode in figures 3-1 and 3-2 respectively The summer particle-path bundles (Figure 3-1) were initiated at CELA and LBCC at 0700 PST on 14 July The winter particle paths (Figure 3-2) were initiated at CELA and LBCC at 0700 PST on 12 November The bundles were calculated for levels 1 and 3 In general the bundles indicate that the airflow patterns do not vary abruptly in space or time The winter particle paths are less divergent that the summer particle paths

While plots of the particle path bundles qualitatively indicate the degree of lower-limit uncertainty a quantitative summary of the uncertainty can be obtained via hourly estimates of RMSE of all particle positions relative to that with zero error The RMSE can be obtained from

1 1 M 2 2

RMSE = - ~ dj[ lM ]=l

where

1

dj = [(xj - X1)2 + (yj -y1)2]2

and where Mis the number of particles and ()1 represents the position of the actual particle as calculated in the previous section (ie the zero error particle path) The RMSE is used to determine the growth over time of the confidence interval about the

1 IMSL is the registered trademark of the Scientific Problem-Solving Software System developed by IMSL Inc Houston Texas

91061rl02

35

NORTH

425 31570

SOUTH (a) CELA Level 1I

20

(KM)

NORTH

425 31570

SOUTH (b) LBCC Level 1I

20

(KM)

le-path bundles initiated at 0700 PST 14 July 1987FIGURE 3- composedd par tic le paths1 Forwar of 20 particBundles are

35

NORTH

425 3570

SOUTH

(c) CELA Level 3

NORTH

425 3870

SOUTH

(d) LBCC Level 3

FIGURE 3-l Concluded

37 9106]

70

IlFil

NORTH

CEIA Level 1(a)

3(170

1-Ul j

NORTH

425 3(170

SOUTH

(b) LBCC Level 1

Forward le-path bundles initiated at 0700 12 November 1987FIGURE 3-2 composed par tic le pathsbullBundles are of 20 partic

3391061

425 3870

SOUTH

(c) CELA Level 3

J8

3870425

SOUTH

(d) LBCC Level 3 10 2

(KM)

FIGURE 3-2 Concluded

91061 39

1 1c

i I

trajectory calculated using the DWM winds Hourly RMSE values are given for the particle paths bundles shown in Figures 3-1 and 3-2 in Tables 3-6 and 3-7 respectively For level 1 the average RMSE after 12 hours is 567 km for 14 July and 167 km for 12 November For level 3 the average RMSE after 12 hours is 416 for 14 July and 260 for 12 November

9106lrl 02

40

TABLE 3-6 Hourly RMSEs for particle-path bundles initiated at 0700 PST 14 July 1987

Time LBCC RMSE CELA RMSE (PST) (km) (km)

Surface Level

0700 000 000

0800 042 042

0900 057 069

1000 063 100

1100 093 128

1200 091 143

1300 111 168

1400 136 217

1500 229 227

1600 265 219

1700 394 219

1800 620 265

1900 796 338

Level 3

0700 000 000

0800 018 049

0900 064 090

1000 068 140

1100 087 172

1200 089 162

1300 123 180

1400 231 224

1500 337 258

1600 419 278

1700 427 306

1800 449 347

1900 462 370(

9106104 41

TABLE 3-7 Hourly RMS Es for particle-path bundles initiated at 0700 PST 12 November 1987

Time LBCC RMSE CELA RMSE (PST) (km) (km)

Surface Level

0700 000 000

0800 047 049

0900 078 065

1000 077 066

1100 089 086

1200 109 094

1300 089 092

1400 118 125

1500 100 138

1600 129 150

1700 147 160

1800 161 164

1900 156 176

Level 3

0700 000 000

0800 045 076

0900 061 120

1000 069 139

1100 092 171

1200 098 163

1300 096 156

1400 125 182

1500 150 175

1600 231 171

1700 261 152

1800 308 156

1900 345 175

91061 04 42

References

Douglas S G R C Kessler and E L Carr 1989 Users Guide to the UAM Wind Preprocessor System Systems Applications International San Rafael California (SYSAPP-89079)

England W G and L H Teuscher 1989 Perfluorocarbon Tracer Experiments During the Southern California Air Quality Study Air amp Waste Management Association For presentation at the 82nd Annual Meeting amp Exhibition Anaheim California (June 25-30 1989)

Horrell R S M Deem P Wyckoff F Shair and N Crawford 1989 Ground Release SF6 Tracer Experiments Used to Characterize Transport and Dispersion of Atmospheric Pollutants During the Southern California Air Quality Study of 1987 For presentation

( at the 82nd Annual Meeting amp Exhibition Anaheim California (June 25-30 1989)

Moore G E G Z Whitten J P Killus and R D Stevens 1989 Analysis of 1985 Air Quality and Air Chemistry Data Collected Under the South Central Coast Cooperative Aerometric Monitoring Program Systems Applications International San Rafael California (SYSAPP-89058)

Ross D G and I Smith 1986 Diagnostic Wind Field Modelling for Complex Terrain-Testing and Evaluation Centre for Applied Mathematical Modelling (CAMM Report No 586)

9106105

43

rr T rr

Appendix A

SCAQS WIND MONITORING SITES

(

9106103

-

((--_ 770

-

NORTH CM~RS 42 575

5 I I j I I 1---L 525 middot 1J75 I I I I I I I I I r I I _--- I C2~middot----_J ~ ~-- 1 ( ~ ~J25 I I I I I I I I I I I I l__ ) -475 () I Li 1~)51 (

--~ltJ820f-_ ~------ ---

~- -cli( ol --9-Sl-l

lt ( ~)

CQ p llE RiDO ~ llE ANAH

I middot LAS-L

bull~ LANC ( _ Q - _J ) ) - _ ~ - ---- - ~ _ ____ middot clt G~ _----~____-=-- -___ ~PR __ - ---- --- VCTC ltgt

-- ------ f---- __ - ---_ -middot ------ --___ --~-----TEME --- _ f

-)(j _ _ middot --middot -------- - HESP f ----=----==~~~ l ----~~ -- middot l - --- __ -middotlt- CJ _ --- middot PIRs[- lt NfVL_ ---~ - C~lt --lt _ ~ ~- __ (~~

__ --- bull _ i - f c-_ _ I - )~__) - ---~poundS---_-

3770 t-()

LA llE PICO )Ct444 -w 3 ~~~ZUMA MALI VE VEN llE llE middot Jl~C - ( p

NN WOOHS ~- ~ m - middot - o - I () )IE 55I

1-- (lt - - PERI ) ~ S__~llE

BU25 bull y _ L ~~5o 13720

I ----~- - 515 3670 525

(KM)

~---

SNI

20

SCAQS SURFACE WIND MONITORING SITES

19 JUNE 1987

0

qj n

If) N ~

I

1S13

Ishy)

0 Vl

(f) w I-V)

l)

z a 0 1---

z 0 2

0 z 3 a ~ I r---

0 CX)Wm Q_ shyQ_ ) w

z (f) )

0 7 lt( um Vl ---

0

A-2

-

r~

NORTH CM~RS

I -middot_( lt - middotmiddot -~ ---lt - - - middotbulll- ) middotmiddot-middot - - -c ) 0 0 l__SG- ___ J1 bull_ -- VCTlt I

_ --middot ---middot llSeR - - __ - --middot----- J~__-- middot - - - -middot bull bullbull- HESP ~-_-middot- bull- ~- _~ - -___---middot - ~ -_ ) ME --- -middot - bullmiddot bull -_

38201-_ ~~_ _ TE _ C-bull_- - CJ - ~Jj __ -_

1

1 bull I bull __ (]

SI bull bull=-middot _ -~ ~~ ~_-__ middot _J lt(- j SIMI -M~S -~_-~It_ - - 1Ir- I w _ I B~~ AZ~~~1 AL SNBOC ~ (ELRO l~ Hf~~ ideg_=- --

)1__ CE~ wftcentrHIN RIVRM44 --- ~--- ---~ LA PICO __pound bull P

T ~NN WI-V C) D 2J~55I Wco - middot PERI Lv

R~O ~L ~AN~ TO~~~~ ~ ~ ~-MO

62

~ ~j~l)~gto ay 3670( 525

SCAQS SURFACE WIND MONITORING SITES 24-25 JUNE 1987

~ (

NORTH 275 325 375 425 475 OA~5 575

f_~ CJ ~ -middot--

_middot

middot1 Imiddot

)i

gt--o~0 (~_)r-) _ (~~3s20

--~- middot qlt ( ____ - ---- - lt__ ~ ~ -i~ J ) _ - - -

-~ -__ J V 38201-~--o- lt-

-----~~middot ---- __ - ~---- -_--- ~====- -=_---~ ~ _

~ -- middotbull ~gt ----_ _______ ) ~~~ l -- - - i - --- l

( _ (_-~ _-lt~~ - )

2middot1=~ (~gt lt_) -~~~~~(_~tJt-~~~~t~~~~-~) ~

uR--- -----Qi~ ~ 3770_ 3770 -middotmiddot--rmiddot- -7 ~ 1-

(J) llE ONT _ -middot __ w

Y-_ EMU c __- ~ Ul lt(1 w~

- -- - LMIIEUA sFtA ~

1

----_

~

_

t_~~ -bull _ middotgtI __

~- 0 ~~QgtJn~-~ ~II~

~ f-- -) -) ) ~ ~-

j (_1_j ~~TRM 3720 ( (__ -CcS l l 3720

~- ) -~ --7( ) __~---L_ ~~1-----~D~

1 ~) a --- ~middot 7 rt 0- NSI (

3670 I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I 1 I I I I I f I I I 1 I I I I I I I I I I I I I 36 70 275 325 375 425 475 525 575

SOUTH

I I I I I I 0 10 20 30 4-0 50

(KM)

SCAQS UPPER-AIR WIND MONITORING SITES

24-25 JUNE 1987

--=-

NORTH 25 575

CM6QRS C__j 475 -____

3 ---- 375 425I - L ---) - ~-

SNI

-_-~)---_ lt-____ ___3azor_~c~~ sl

VENt ELRO

BU25

275 ~ c--) ~LANC ~~-_ lt ~ 0 9-~

llE

3670

----~ - J Q ____ ~- lt) ~ 3820____ -- middot--- 0~__~- __ J S --- ---~- ---- -- -- v~ ~ ~ ===-~ - - - - ---- - - ---- - -- -middotv ------------ -~ l f----- _ -- -middot _ - --- __ HESP ~-----=- c~i - - _- --- - - gt - -bull TEME -- -middot - bull ----- -- - _ middot ( lt~ clt=~ ~i cJ~ c _

~I -~~le lt~NJWl--------~- -iHitgt~-=__~~ _I -~ J~~~ ~ 3770 r-1 - - -- -- - ltJ c__ ---middot ~ ( - ------ -c_ - - -~~~ ~ ()-~ ~ - -middotMiss ---~---=-~----r~-__ -middot _frac12 __ i5

j S ~R~~HE -7t$ llE llE ftALSNBO llE ~~ t __ -R~ B~~SA AZ~jl~r RD ~~_ ~ 1( )l___ llE CE~HAllE ~~ - RIVRM44 - llE ------___llE W~HIN -Jti )Ii ----------- __

~--- LA llE PICO l llE C -- r p

ZU VE NN Wt-laquoJHB 0 1~55WT IN - ---- ) llE CO P llE llE ( gt (____ PERI ~

IJl

~ 71t~P325 425

SOUTH

I I I I I I 0 1 0 20 30 40 50

(KM)

SCAQS SURFACE WIND MONITORING SITES 13-15 JULY 1987

clt(middotO -i ~Ill ~

()VL~t

~~) o2~ r

275

-- _~middot middotc-- ( ~ I - ___ ) --____ ~~~

---- ---bull-~ ( lt ) lt I ~ (J () - _ ~ ~ J ) bull middot ( - ~ ~- - --- middot - ~ - middot middot G--~_J lt)

cce- middot- __ V ___ -- l - _- bull middotbull - - _~---~ 3820r----=-~_~Jrlt - - - middot f ~l-~--~--~] I c___ -~c ~ -- ( _ 1middot--- 1___ _~

-I -- = lt -bull lt middotmiddotltmiddot~- middot - middot -L-

- ~-- middotbull ---_- --- J middot J ) ) -- bull- ~-bull _ --middotbullbull- middot middot _ j -- -)) 3770 -ii __gtc _ -- - - middot bull ltmiddot ~- I - _ltbull - -_j-- tn

BURbull-- - middot - - - ) ~~middotj- (~~ ) (middotIi lt(

GL U I ~ - - - w ---~ - -1 __ - ---------= ------___________--- ONT middot middot __ - --_ -

poundMUI - - ~ ____ middot----~~i -__ ~ I

--

--- ~ c) )_

deg ~

_- - (

_l

_ ~ )

C-

~ _middot

( T( f 1-

525

t j 30 50

(KM)

SCAQS UPPER-AIR WIND MONITORING SITES 13-15 JULY 1987

_==--

J ANORTH CM6sectARS

3s201-

~- ~ ~ ~ ~0A - --__ - -----~ ---~- --1(j - A ) __gt ---------_

-~~J TEMEa l_C ~r1

0

820

_--C~ = ~~~ltCH~~ J ~ S~I ----i4~58 ( J

tigt-1

-J 3 BU25

frac14~) 8 F1(5

- HA

APICO RN A A ~ N WVHB

AANAH

~IHIN J _CM44 ~-

A

CY PERI N ~ iJN

D A

HEM

770 ~ V1 lt( w

~ 3670

SCAQS SURFACE WIND MONITORING SITES 27-29 AUGUST 1987

) w l-1

C)

z-a 0 1-

z 0 ~

0 z - r---3 co a Ci)

- -ltI lshy

a )w ) Cl 0 Cl ) ) lt(

V) Ci)

0N ltI u r--- () N

A-8

NORTH CM~RS bull r (_J~

1

325 - - l L=~-) ( bull

1275 _ ( ~ --- -middotbull LANC 1 _ bull I( f LJ- ~ () ~-- 3820 bull- - J bull

- --__ _ -- )- bull bull - middotbull-~- _ I v----_J -- J middot-- - middot- - -middot I I J_______ ---==-------------- WSfgtR - -- VC _____- ltgt

-~--~-- fJ- -middot - - - --- --- _ - ----- --- ----- ) r bull---_ --- - - -- bull p -- --__-----_ - -----

38201-_ -------~- TEME --- --- - - bull -- middot- bull --- _----~ -~ II middot ) - ---- -- -- _ -- HES f I-----=-- ~ ------- ~ l _ -- - I

- bull middotbull-bullbull~ ll( middot bull - middotbullbull - 1 I ~----- middot-bull

9 -- ___ __ _ -------- _=- r _ -- )J -~~ ~~~ 3770 t--SJMImiddot MISS~~~--bull ~--~-- ll( -_ ~-VENt Cllfl58 bull I middot- - middot- - --JOE ~--bull bull ~ V)

ELRo __J 4Esc euRK ~Ej1 fAL sNeo I ~ _ J middotmiddot -~~ 1 i5 l - ~SA ___ I ROLD ~ ~ C~ ( _____~- -~ llE CE~ llE W~(HIN RIVRlK -- - 1 llE __~

3770 middot- ~LA VEN Pl llE _ _- JJ~C _CM44 - ~ p ---__-_

0 ANAC cubull~ - - v~wr LyenNN WHJHB --- -- Q~~W)( ___

- llE HA ~ -lE _ -- _ - -_

I 0

SAi middot-middot J) t450

3720 LA r TO~omiddotlt~lt~~ -~ ~ (~~

~ ~ r-~~~1~ o ~~l~

SNI 1 (l_ amp-~ 575 3670367g75 325 375 425 475 525

SOUTH

I I I I 0 10 20 50

(KM)

SCAOS SURFACE WIND MONITORING SITES 02-03 SEPTEMBER 1987

------J ------------------ ) I-- 38201--__--~~- i) ___

_-- ~--gt--

-__

_

NORTH 275 325 375 425 475 525 575

YI ~middotCJ~bull_bullrmiddot--- lt I __ (_______~ ~ - - I -- J ( - - - - - - - J i O l__ ______________ -~

~j ( lt- bull- ~ 0 C) ~ -- (-- _)) ) ----_--__ -- middot-- _ - --J ) J ---- - ------- ----- middot----- -( ~---_j

3820----==--=-- ( - -middot bull __ - ---~----= --- ---- -- -- ------------ _______ ltJ~~ A I --- - ---- - -_ - _ --_--~-- -_ - --~co___--_--___-__----- f middot l - --- - --- - __- ---_-- -- ~ middot -middot __ J L--~ cmiddot

---- -- middot--~-- -- -- - _ _-- - - ~

--- - middot- - -C-_--- - -~ rmiddot middot) _- ~middot~ I--- ----~deg- -- -- C _-_--_- __ __ _ ___ _--_--~ __---- ~---lt lt ltgt _~-__gt_ ~~-- i~ - UR ---- -------- - ----~ --lt I middot- B ~----- Qll __ ~----- _ CI____ ~ __ --- ---middotir ~ - 3770

1-I- 3770 () U)( - -- -- 0~ - j _j ______- ==--=--_ --___ - ---w lt(

w~

~gt middot1 r-

0

3720 3720

middotmiddotmiddot J ~ ) ~l - ~ ~

~ tmiddot~----_7~~ p__ D2)t~~

NSI I(--_ Imiddot- 3670 3670

275 325 375 425 475 525 575

SOUTH

I I I I I I O 1 0 20 JO 40 50

(KM)

SCAQS UPPER-AIR WIND MONITORING SITES

02-03 SEPTEMBER 1987

~ I

t

NORTH CM61yenRS

----- I uic middot I Ibull 0 z_ ~ p

-_- - - - _ - middot-~-_ ------- VCRV

820 --- -- -- I W-gtER --- _ ---- --- ~ ) - -_ - I _ _ - _ --- _ _ _ -_ bull _____ _ _ - -- -- -- _ --_ ----~ HESP 3 -- ME -- -middot bull - --- _ -- _ TE - -- __ _-- - c----~middot - r

PIRlb -_1 N bull--~ _ --lt~_- - _ _ ---------- - -MISS_ _--- ___ bull---=-- _llE ~ ~ j lt) hlt---- F-~~--_ ----1A-_c=_--middot llE ----_ ()

-middot SIM ~ICAN llE RIALSNBO llE ~J -------~~ tllE ------TmiddotllE~I ~ES BURR~ AZ~ ~-~r- RD ____-- -- ~ bull FIIISA l- bull -~~

( )l__ -middot middot c(~HA w~~N ~tfJ1 -- -- ~ ~ 1

_

375

~) middot middot ---lt -__ lt_ ___ ___ -i____) C-middotdeg - - -

- -- J_ _) lllt

_ =- ) - -

L- ~~- Iii - ~ _________

-~ 0 I -- (

SI lllt

E

NT CM58V

( j gtT__~_____)___ -- ~l- ) (

middotmiddot-- -_ bull _ ~- () ~

I --J vlt__ ltgt

--- --------- ~---------- C -

_

~(__ f - -- ~---middot)1 ~

t ~ I

I- I- ~

3720

ANAC Wo~ middot -~- lt_)

44

PERI ) ~ tlo

25 R~ ~~ANAH _i~~MN ~~-w--- ~ _ 00 )

T middot I BUllE I -eM62 7 llE

-- - ~

~ 425

SOUTH

20

(KM)

SCAQS SURFACE WIND MONITORING SITES 11 -13 NOVEMBER 1987

(_ (___JCcS ~~)

bull ------------~ - - ( ~ r-------------- Dbull ---

J

575 3670

1SV3 0 0 0 0 N r-- N r-- a) r-- r-- co I I) I) I)

I bull bull I I

I I f1 1 ~~ I- I I-)

0 l)

l)

w I-l)

L)

z Ct 0 I-

z 0 2

0 r-- z OJ

m3 Ct a lt( w0

l() mI Ct 2

~ ww Q_ gt

0 - Q_ 0 I) 2 ) z ~ ___0

N (I) n a

0 lt(- u ()

0

n 0 z I)

N +

lf) r-- I)

- I I I

i I

I 0

~ -L

w

i

~ LL

I)

C-1

+

l() r-- I)

1S3M

A-12

-~

igt I _

l)

CM~RS 275 325 375

NORTH 425 475 525 575

_J- I bullbullbullbullbullbull ~ I bullbullbullbullbullbullbull bull I middot bull -gt-----middot bullbullbull 3 )--- ____j lt c----- -_ -- gt _ ___ ----- t__ l___

-- ------- LANC l ~ ---------- __ ) -- __ ~ I ) ~ - -=~__ I -~middotmiddot- - bull middot bull bull bull lt lt Cl --- ------ ____ -~ -

38201-- ------_- ) ) -- _ ---- -- -- -- - () - --------- I --- -~-lt~~ (middot__ TEME ) --gt ~_ ----- - middot--- --- vamp c~ (~ 0~ ___- --- gtIpound - - - - ---- -- - - -- _ - - ~ ---- - - - ------------- 5SI -middot PIRltgt ----~ ( -middot _ - -- --- - --- ) HESP --------~ ltgt

___ __bull_rbull ~--------~-___ -- ___ ----gt--=- bull~ ~~ I - ---__-=---- ----

VENt CM58 _ sti --~~ ~ lt_ -~-- middot_~-~~ r-~- --middot) ~~) _J MISS-~~-- ___-_ __)~ -- ---( C

- --RESpound BUR~--==-=~----r~---_-__- ~- - ~ _- ~ -1 -

3770 I- ANAC

J I )l( ~- ~-- - i middot ----middot -X--Ret-----_~ -~

___ ( - -middot ~SA AZ~ ~ o j -------=--------~--gt~-- dampHA ~~~f __ SNBO ~~ -~

ZUMA MALI LA w~M -jmiddot I R~J ~-s ~__ )() w ~

3720

8U25

VE VERN PICO _ middotyHIN RIVRyen ( ~----- -~ CM44 -~ ~- ----- ~ C WT ~NN Wt-0HB -NQRC - middot- ~NN-a-~~ _ ~ co~ __ -- ( ~ ~

RVIJO ~ilff AN~ gt cmiddotbull yen 0 (~~ p LASAl I bull- - PERI ~ ) ~

rJ]~~_Y)~N ) (_ --

_T -cJ62~-~

~ 5j(bull 1) ~Jso

l -~

- 1 J) -~ ~7~~t~~

3820

3770 1-() lt( w

3720

I I I I I I I I I I I I I I I I I I I I I I367r I 367075

I 325 375 425 475 525 575

SOUTH

I 0

I 10

I 20

I 30

I 40

I 50

(KM)

SCAQS SURFACE WIND MONITORING SITES

03 DECEMBER 1987

NORTH 275 325 375 425 475 525 575

I I ) gt ~ _YC) ~ ~ I ( o c_ _------- (

___ middot i I 97 ~___ _ --1 cbull-- - - C -___J -- lt ( ) - - - - middotmiddot ~ l _ ----_J

I ---middot ___ __ middotmiddot-_ 1 -~ __J ) bull- middotbull_ -

3820 ------~- I -~middot --- _ middot--- -------~

C - ~ (___ _ 1 ) -- _ - - - gt _ bull f-_- --- r ------~__ -----I --- ) I ~ -~ gt ----- - --- -- ~-_]) c_middotI 38201-_~~_ l _ --- - (-- ~ f ~ I~_ - middot - middot -middotgt- -- -_ -- middot_ _- 1 L- l _- -

~----- l -- middot middot ~- middot-_ _- - middot middotmiddot--gt---~--t~~)-1 bull lt_ _ _ bull middot bull - middot- ~ ~0---~ (c ~ I ~

_ I - bull -~~~--gt~~~-~~ bullS- _~_ l ~~1t~~_~(~ t 3770 I -- -- middot __ - I S____ ( 3770

I- 1-() ()

gt w - I __~sect~- ---ONT lt(

w

tgt

f-- I

~

middot - middotI

-

L~i--

37203720 c_J - (_cS) l -~~

NSI

367~~51 3~5 13~51 14~5 I I I 14~51 is~s s~s 3670

SOUTH

I I I I I I 0 10 20 30 40 50

(KM)

fJ~

SCAOS UPPER-AIR WIND MONITORING SITES I 03 DECEMBER 1987 r~J

NORTH CM~RS 275 325 375 425 475 525 575

middot middot ___ I middot 1 I )l ___ QO --middot - v_ (-- - LANC middot ~ C) lt --bull_ I -- -- bull _ ~ - ~-- ) -------_ -- - _~-- V --I 1 J --- - bull I -J- ---middot - _ bull__ - vc i --- ltl

3820~-----=cc~ I middot -middot - middot - _ ___ -- - 1t ~~------- middot - ___) - - middot -

J-cgzot-- ~--- j 0 TEME _middot ---- --- -

-____ -- ---- _- j (

- -_ I -- --~ _JI( ---- bull bull-- llf -middotmiddot l - -- bull _middot_ middot I --- -- middot CM58

_- 1 -- middot - middot~-~ - -~__ ___ ---~-~_--__~----------D J-~J~bull A HESP

middot OJ11 r P1R1tc lt--~i_-_~-~- ~c~_r--~-~_--_~r-=-~~~~--~ _ --~ --lt__~~~~- CSI ~ -~ --- ---- middotmiddot - ---- - _ ~ r ) J

)gt SIMI -MIS5-X ~Cgt~---- middot-cemiddot middot ____~ ~ middot~ l~fu__ suRlfiI_middot- -tk~- flAf SNBO __ middot ~-~ l 3770 _ 377ob -- ~ PJIISA AZ ~JIily~ _- RDL ___ bull ( C t-shy-- -~ I ----- ~HA 71lt V)tn ANAC ~---- CE~ WALflHIN RIVR ----- ~ w

w ~ LA PICO - CM44 - T -~ ~ ZUMA MALI VEN middotbull _ -bulltRc __ ~ ~lt~~7-

N WuHB _~-- -middot bull ) _J~N ~ -- ~ 0 - ) ~ I ltgt -_middot PERI bull I- ( _

V 8U25~ 3720 3720

WJlt~ ( ~ ~ ) 1 i

~ I I I I I I I I I I I I I I I I I I I I I367r I bull I I 3670

75 325 375 425 475 525 575 SOUTH

I I I I I I 0 10 20 30 40 50

(KM)

-~ ~

SCAQS SURFACE WIND MONITORING SITES 10-11 DECEMBER 1987

NORTH 325 375 425 475 525 575275

-- ----_ lt_~- c--- - ~ ~ _ I I - ---~~c------ ) _ -middot - gt~-

3a2or ------__ lt- ) 1 middot--- -- __ - ~bull =-------------- - r---_ ___ - bull- ---- I I ~ ~-- jc- I bull - - (bull I --- middot middotmiddot - ~ -middot - -- ~ - 3820 -~- bull - middot - - ~-_ ~- _ middot- n

(

- 0 lt_( ~_lt- ~-~~- middotmiddot) ---- ()_ (---- --

--

____ middot

-middot

I

f----- (-J 1r---J~ --~ - middotlt ltbullI I ~__---__ ~-

l B~--- _c_ gt-- lt gt- (- - - j 1--_~--~--l~ -- -- --- )l

-- - --~---- middotc middot=-~-~- (~ L ----- -- --middot - -- - - -bull --- - - c-) ~ J _ -- - ---- - ) ) ltl

37703770 EMLgt middotorrmiddotbull __ ) ~~~~ofmiddot - -- __s=__I- - - ~__- ( ~ __ )---__ Ishy

V) ~ ~- lt(w ~ ---- --~ - w if)

-~2_~middot) ~~at~s t I

I-

deg

FUUA

i () ~--J)llC~lt I

3720 3720

~ltl__ (_)i~

~ NSI

367~~51 I I I I I I I 13~51 I I I I I I I 13~51 I I I I I I I 14~51 I I I I I I 14~51 I I I I I I r--- I5~51 1 I T I I I I I 5~51 I I I I 36 70

SOUTH

I I I I I I 0 1 0 20 30 40 50

(KM)

SCAQS UPPER-AIR WIND MONITORING SITES

10-11 DECEMBER 1987

Appendix B

SCAQS DIAGNOSTIC WIND ANALYSES (Six-hourly plots Levels 1 3 and S)

Summer Intensive Monitoring Periods

19 June 1987 24-25 June 1987 13-15 July 1987 27-29 August 1987 2-3 September 1987

Autumn Intensive Monitoring Periods

11-13 November 1987 3 December 1987 10-11 December 1987

Page

B-1 B-13 B-37 B-73 B-109

B-133 B-169 B-181

9106103

Summer Intensive Monitoring Periods

9106103

19 June 1987

9106103

1bullbull-lil

1SV3

I I lshy Ishyo )

0 0 z ()

IO N IO

I()

N -st-

1S3M

-- l1

l~ i --

0 z 3

---

2 0

_J w cjr----_J CD

0 l() z

I- =)lt( 7

f) 0)

0 -- i n 2 Ishy7

0 ~ ()N ____ gt a 0 20

3o 0 ~

0

B-1

1Sv3

( I l-et 0 z

(

lf) N st-

l() N ~

l()

N 0 t--

n

0 N_ n

U)

ON r-shy(0

n

1S3M

B-2

_

2 0 0 tlt)-__

tlt)

_j w 2jr-_j CX)

0 lf) I- z

lt( ~ IJ1 0)

0 _ 0 n 2 z 1-0 ~ N - 3 ~ 0 20

3o 0 Ov

-----

lSVJ

l)

----

l~3 O 0 w

w ll) (1

l)

0 0 z 3

I lshyet 0 z

--

2 0 0 0

-

LO

w ~

GJ r----~

u 0 z

OJ

I- gt lt( J

mif)

00 ---shyI) 2 z I-0 i l) N -- 3 (1

0 2 0 3 0 0 ~ 0

lSJM

B-3

1SV3

- V1 --

~5 O 0

E - w

w Ul_ 0

V1 0 0

z ~

I I lshy I-et =gt0 0Z V1

-

2 0

J wr--CJ OJ J z0

Ul I- =gt lt( ~ V1 -

0 - n 2 0 z 1-() 0 ~ N __ 3 0

0 2038 0

0

U)

l

lO N v

0 N agt n

0

r--n

0 N

0 N r-shyn

U)

U)

U) N U)

Ul

q--

Ill N q--

1S3M

B-4

td I

J1

~ ~~~~~ ~ -~~~~~ J - -~--Qf~J ~lf~ ~---~ ttt~~~~H~f~ ~ ~~lt~~~0 ~ - ltl-_t I~~~~~~-~~~~~ ~~ I _~1c j_~ L ~ (__1-T11__1 ~_-~_ ---~~~~~~ 11 - ~ +f--1~- ~-+--41-- 1-~- ~ ~ -rtt1-~--~~~~~~~ ~ ~ ~ ~ l t I J JI JI~- t _I i~~I~~~~~~

377itttttttt ~- - t I Jf --------_-- _ 70 ~ ttttttttttttti- fllJ~JI-~~_- ~~ _ =- ~~~- tn w - t t I I I_~- -V _ ~ -laquo___ _ - ltC 3 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ t t t t t I I I I JI~ JI JI ~~ I--~- ~ ~~~~~ w

H~HHHH~in+~l~Hnf5-I ~ ~~~~~~~~ ~ ~ ~ lliii it t I~t~ltt~rrrr~~~~ jl++it~~~t~

20-~~~~~~~~~J tttttttf ~~~~~~~~~~---~-~~~~~~~~~~~~~-amp~ ~ t t t t t t f f f I I I I ~ 1 J(-- _ --P ---~~~~~~~~ ~ ~ ~ ~ ~ ~ ~ ~ t t t t t t t t f f I I I I I ~ ~- j~J _ ~ ~ z~ ~ ~ ~ z l I+ nm~t ~ ~ ~ I I~Jt~-~- -~-__~~~ tr ti ~ ~ t t I t f f I I I I I I I - ~-r __ - ~~~~~~~ ~~~~ ~z11 ttt ffflllllIIII -~~---~~~~~~~~~~~ ~~~~ ~~ ttttft ttflltllllllll A~--~~~~~~~~ ~ ~ ~ ~ ~ ~ ~ t t t t t t t t t t t f I I I I I I I I I I I I I ---P~- ttttttttttttlllllllllllI -~--L~-~~~~~~~~~middot

367 70 ~75 325 375 425 475 525 575

SOUTH

1111111111111111I I I I I I 0 10 20 30 40 50 0 5 10 15

(KM) WIND SPEED (MS) i

NORTH 425 575

_ 414111fl-~bull __~) ff I -lt~i ~ + lJ Jmiddot-bull A fl t1 it bull- _I~--~---~----_---~_~~~~~~~11 t1

~~t 11 f + + diamsJ diams 1 )--t-_+ J~ I-(_ 1 1 ~t1 __

__ Lt l l t fL f_l - - +~~----~~---~___-+_~~~ J-t-t t---t-lt t t-t) LJ lt fl ~ -- t---f t tT~-- ~~ 1__t -t ti t_1 + l - -~-~-~-II~-- - ~~~-----~----t----~~~~~~_Efftt -- r1 ~J t l Lt t

fl

~ _ t_ - 11 _ _

Fi ru bulll=ti~ ~ ~ ~ ~1H1~~_~-~-~----~~~~~~~~~~

DWM WINOS AT LEVEL 3 (300M) 1000 PST 19JUN87

1Sv3

I I-shyCt 0 z

1S3M

B-6

0 II)

0 I)

-_2

0 ~ N -

0

0

-_

2 0 0 0 -

LO

_J

w r---CJ O) _J z I- gt ~~ if)

0 1--shyz V) ~ Q_

20 3 g0

NORTH 525 575

~~~__A -~___~~-

F- ~_--P~

~ ff~~-- - _ middot- ~~

_ bull bull bull bull bull

_ p

~L~k~tt ~ 1 t A middot1-t

~ r~ 1 11 1 __ bull bull --l t frac12Q2_

~ ~--r-J-+7L~

1--Ui

3770 _yen~AA- ---~ ~__~_ ~ K---r

eno tshylf)

w ~ ~ ~ lt( 3 I I_

- w

td I

-J

~~~~- ~ ~ ~~~ shy ~ ~ - shy

3720

~ ~~~ -~1~-nu~~~~-

~ -~ - ~_____A~~1~ ~ _~ ~~= ~~~_______2--- ~

720

~~~-~~~~~_ 9~tbullmiddot~qor~frac12

Y~poundpoundpoundpoundpoundpoundL1~~~~r~ ~ middot

375 425 475 525 575

SOUTH

I I I I I I 11 1111 1111 1 0 10 20 30 4-0 50 0 5 10 15

(KM) WIND SPEED (MS)

DWM WINDS AT LEVEL 1 ( 1 OM) 1600 PST 19JUN87

~

NORTH

Arlt~~~ ~L _ -rJ ll

_ I I I t

_t-z~~J ~i~ bull

i- ~~~ Ii ~~( trn

3770 I - bull bull bull bull bull bull bull iigtlaquo

--- bull bull bull _-

~fJ~ t-l-lltf[llJ- jf1 rr]I ~ ~~~ ~ss~810Ja2ot-~~1i lmiddot - 1 17- - -

-ltL

~ ~ 70 y ____~ tshy

l) ) _-y ____~w

w ~

~ -~--- - -- ~ 1 ~~~~ __ _ bull---bull laquo-___~ Y~~

___p~~__---A~_A 1 ~~td I ~----______A 14 1 ~

00 _-________________ ~ __~----~1~ -A________________--r__~~~ ~ ~ ~~~--~-~~~~-~---e--~ ____________~_________-~ h

3 7 20 t-_--~____- ~ _ _ ~~-_- _ _ _ _ ~___~~~r--~~___-K ~~ ~ -~-------~~~----~ ~ ~~__________~~~~~~~______-r_-A~-1--~~~ ~__________________----r~__~__~-Y~~-------__---A----r~ 1 ~ ~__~___________~ ~

367 tcrr~__~y--rrYlt-trltltltltltlaquo-ltltltltltlaquoltlt~~~ ---

9imiddot~75 325 375 -- -

1111 1111 11111 1 1 1

0 10 20 30 40 50 0 5 10 15 I I I I I I

(KM) WIND SPEED (MS)

DWM WINDS AT LEVEL 3 (300M)

1600 PST 19JUN87

NORTH

bl I

0

~________________A-4_gt~~~_____~~__________~A

A~altP_ ~~~_________--~_A 38 20 I--=-~~_~~___~~-_-~~_ -lt~ - ~_-~_A--1~ _

~~------ ~ gt-~ ti ~----~ ~ _~~~~ 0 ~ ~-i---~~411___ I~-~~ I~A-~~----~7A7~-

A A~---~~- ---~ ~ ~ -middot~~ 1-27 ~shyA_~ ~~~ Jl--__r-t~ ~ (K~_ - fl_

A ~I J111 I _ A - ~ _ T-~ v I 1 1 1 1 1 1 ~ 1 1 _ Ji J I~ f --_i__middot1(- ~ ~)( ~JJXZ - _ r ~ - _ )( _ II I 1 ~ 1 I - _~ _)~ ~~

= 1 II II 1 (~ ~--=-~ -7fJ~~~~tm~i I- 3770 Jir - I 11 I 71 (I) ~ ~111 ~

w ~--middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotbullbull bullbull ~~~11Zll~~11~ ~ ~~_~~~llllN~~ -~~ bull 11jh fi 1 1 II 1 1 1 1 1 1 1 1 1 1 1 1 1 I I 1 0i~~~ 1gtcJ~l~p~ ~~~ ~~~ ~rr1111

70 Ishy() lt( w

111111~~ 3720 i- 1 1 ~ ~

~1~I A-A~)I 1111AA _~l11~ 1

lllllll11IIIAII- ~II ~1~~__~~Ill~~~~~ l1_ 1~~~~~~lll~~~~1 llllflfAll-)lllllllll1~~~~~

A I I I I I 1 I I I I 3670

275 325 375 425 575

SOUTH

I I I I I I 1111111111111111 0 1 0 20 30 40 50 0 5 10 15

(KM) WIND SPEED (MS)

DWM WINDS AT LEVEL 5 ( 1 OOOM) 1600 PST 19JUN87

~

A A A

1Sv3

(

1S3M

B-10

()

l ~

---u) 2 __ O 0 ~ w

w It) Q_

()

0 0 z 3

0 It)

~

0 ---I) 2 ~0N _

0

0

---2 0 __

_J

w r--- GJ OJ _J z __ )

~~ () r-

0 __ z ()3 Q_

~o 3~ ON

NORTH

middot-~~) K~xJ~ middot_1~ ~ 71( I IJ ~JI

~A I 1 ~~

liii[i~~ Hf~-~~~=~T-- ----- --=~~g~g~bull11ft _ ~~~ -1-x~~~ ~~~~-~~~--~-~---~ --~ t ~t~ -~1~~ -- ----

-lt J 1middot~~ __---~__

3 770 ~ ~~ --_tn ---------~~ 1 ~____~ _ ___~ -w bull Y ___~~~ (Al _~ _ ~

-- bull _ _ _ bull bull bull bull~___1 1I J~ _~

~- YI J _L ~~ ~~ YJll~E~

td _____-___ ____ __ 1 ~xgtx2-I ____________~__-A (~~~~ _______~~2-1 y~~- ___~__________~ ~

3 7 20 I-___~~__~~ Y --~ ~__ I _ - - _

~_---A~ ~---__~~~~~--_____~ ~ ~_____A~ y ~ ~___-__________~~ ~ -

~__-_______-yen_2 ~ ~ ~~_______~ ~

1 367~ 75 325 375 425

SOUTH

1111 1111 1111I I I I I I 1 1 1 0 10 20 30 40 50 0 5 10 15

(KM) WIND SPEED (MS)

DWM WINDS AT LEVEL 3 (300M)

2200 PST 19JUN87

~-

~ - - ---

NORTH 275

___ -~-___

- ~ I o_ ltAbull~-P- bull bull -P diams bull~--~~~~--- --- ~ ~ ti ~ ~sbull3820 ~=-J~_~~middotmiddotmiddot~~~--_~_=- =~_~c s~ ~3~

~~- bullbull~~bull~~~~~~ - bull -~~bull ~ v i-_ --- __-_ ~----~

~- st-~~1 17-~__4 ~ _~ ~-~-raquo~~~ -f _ _ bull bull bull bull~ bull bull-__-v 4 t ~ ~v ~- Jl_~ ~--z~~=~s~~~~Mil

-- _ ~ frac12--~~- -=~~ ~~l~1~l~tzi9~J t~ 1 1 1 1 1 1 ~-bull ~~___- v q (If V pp p I l_77rtfl _

3770 ~ ~ ---- I h1yenzi 1V-r-() bull bull ~ ~~~~~ w ~ bull ~ _ I JI J(_ )-II101-1 3 ~~A~~~XI IIJ~~~

~ f A I~ I I I I~--L -

tl ~1111111 ~K11~~llll~i~~~~I ~rr ~~ ~xgt~~~t---

N ~I I II)(01~ ~ ~ ~~~ 1~Y~lt~~~~~~~~ ~~~~

3720 iYY11Alllll1lIA~~~~ ~~---Y~---_ _ _ - ~ bullbull - - _

~rrll1IIIIIIIAAAA__

___________~~~AAAA~_~ ______________~~~~KAKAA1~~ lllllllllll~AAA1f~~

_~~

3670 t1i11 i i 1 i i 11111 i i i i -i i [ 111111-111 ~ ~ 11 ~ i I t 1 bull rm r~ij e =~~ raquo-il3t ~ 275 325 375 425

SOUTH

1111 111111 11111 1I I I I I I 0 1 0 20 30 40 50 0 5 10 15

(KM) WIND SPEED (MS)

DWM WINDS AT LEVEL 5 ( 1 OOOM) 2200 PST 19JUN87

24-25 June 1987

9106103

1SV3

1S3M

0 w w Q_ (J1

0 z 3

I f-shy=J 0 (J1

-_

2 0

--

_J w CJ f- _J OC)

0 U) z

f-shy )lt

J q-

(J1 N0 -_ 0

rlt) z rshyl)

N0 _ 3 Q_

0 20 3o 0 q-

0

B-13

lf)_ lf)

If) N If)

lf) r-shy~

I I-o 0 z lf)

~

lO

~

lf) N If)

(

pound bull d ~ bull 4 4 c_ q

1 4 r9middot-

0 N IX)

middot- t--bull ~Igt~

O ~f 4 fT amp)o(oj

4 ltI I~ ~ ~

0

o

middot a

~- v t rgt ( tgtj (~V~-1 f4

3 44 ~-~a4 V VM q -~~-q_4 ~4

_ ~ )

p- ~~t1~1 middot V II J ~ ~ )I 1 11 f ir -~~1I ~

II P P P Igt 4 ~(Iigt ~~ 1) IA

deg deg 4 4 ~ A -1 r 1 1-Y]~t J rz ~

fl r ~ Igt I~y ~ -- -- - 4 ~r___amp V P11 iP Igt P Igt p ~ -0

~bull 7~tpmiddot~P Pf P Ptl middot~ ~ q p Igt 1gt p ~ t b (r 4 P - 4---f ~ ~ bV ltI

ltI ~ ~ I p 6(~ d-_j b d p (4- 4 ~ 1 p Igt 1gt Igt - b ti

)4- a 4_) q V Igt p Igt o

lt(___~ ~- V fgt ~ 111 t Igt -4

~ ~ Igt r p Igt

~ ~ 1 h1

V (I Ilt v middot

t y-

t

t

p

P t P t P ~

0 0N - IX) n

1SV3 0 0 0r-shy N r-shy co

lf) lf)

If) N If)

~ - t bull~--~11n ~ -~bullmiddot t~ lt middot___

o_ ~ ~ ~

0 bull t bull 4_4 4 4IIgt

c 0----~ u c Igt( o ~ c ~A ~ 0 - A 4 4 ~ 1 q

o bull o- -~ 1gt 1gt ~ y4 -~J middot)bullmiddot ~ ~ ~ p 0- 1---f t-~ 1 ~ 4 4 o co u gt)O- eyti ~ ~l 9 -Y P- - I a c 1 oM_il_q A p- p

4 ~ ~-M f p

I 4

~ rv ~--~middot

tJmiddot bull P II f t )I~ bull V ct_~ V V V t P- ~ Igt t middot f lft V VJi P- P- fgt IIgt ~ _ J1 bull bull bull

1 v II p _bull ( ( ir ti- f Igt bull

j ~ r f -~-1t __

_I ltC_t--q_) v -~-ampgt

Q middot--- ~ - t ~ b

II

bull ~

bull bull

diams

1 bull ~ ~~ ~ ~ b b b lgt bull

-- b bull bull bull~4q~ lgtPlgt-4-~_tbblgt

Jraquo P P ~ q 11- 11- b b b b b

P Igt P q bull b b b b b b b b bull

bull bull Igt 4 4 fl ~ b b b b b b b b b bull bull Igt Igt ~ 4 q ~ b _ b b b b b b bull

P bull Igt Igt -4 ltI 9 b b b b b b b b

p bull - Igt Igt 4 lt1 _ b b b b b bull t bull bull Igt ~ 4 b bull b b b b b b bull p Igt Igt Igt bull 9 b b b b b b b b bull P p ~ ~ A 4 q - _ b b b

1S3M

figt j)

~ ~ bull

bull bull bull bull bull bull bull bull bull bull

bull bull bull bull middot bull middot

bull bull ~ ~ 9 9bull bull bull bull bull bull bull bull bull

bull ~ bull bull _ bull bull _ bull bull

~

If) N t

lf) r--11

~

If)

~

0 ONN - co n ~

I fshy=i 0 V)

- 2 0 0 n -

n _j w cjf-

0 l()

0 ~

0N

0

0

---shy2 ~ _

_j OC)

I- z lt( =i

J Vgtv 0N z f-

3 ~ 20 3o 0-t

B-14

---

1S13 0 0 0 N N r--shyltIO r--shy co I) n I)

I() l1 r--shy -U

E~i0 z

U N I() 3

I fshy)

0 U) l1 N -t

--_

2 0 0 0

-

LO

_J w CJf----_J OJ

0 U) z

f- )lt( l1-r ON z f-

3 ~ 0 20

50 U) 0 -sr

0 ON r--shy r--shy

r--shy (0

n I)

1S3M

B-15

lSV3 0 0 0_ N - _ - ~ I)

_ ()

(~i

0 z

If) If)N NIf) 3It)

I Il- I-a =gt0 0z If) If)()

N Nst- st-

_

2 0

--

- w I--- OC)Cj z0 -

I) )I- Jlt( --t-

N() 0 I-z ()

3 o_

0 0 2 0

~ 0 00( 0 0 0-N N _111) r-- 1)

1S3M

B-16

lSVJ 0 0 0 0 N r-shy N r-shy_ _agt lO n n n n

() r-shyU)

u) l() N N u) l()

I I lshy Ishyo )

0 0 z U1 l) N

l() r--_ 2 0 0 n -

n _j

w I GJ OC)

0 _j z

lt) I- ) lt( ~ lf) N 0 1-z l)

3 Q_

0 Lo38 0

0 0 0 0 _N N _ _(() n n n

lSJM

B-17

1SV3 0 0 0 0- -N N- -crJ co I) I) I)

lO II)- - U) It)

U) II) N N lO lO

lO- st

I l-o 0 z U)

N

~

I I-=gt 0 l)

st st

--_ It) - ~ I) 0

0 0 ___

lf)

J w I-

It) N I)

0 II)

~ OC) J z I- =gt lt - lf) N 0 1-z l)

~ 0

0

0

~ 0

38 0

N IIJ I)

- - I)

1S3M

B-18

middot~ bullmiddot I

1Si3 0 0 0 0 N r-shy N r-shya) r-shy r-- co I) I) 1) I)

--_

E~i l)

0 z 3

I r-0 0 z

0 I(

0 --_ n 2 0 ~ N --

0

0

1S3M

B-19

---

_J

w r----2i OC) _J z I- lt( ~ V1 N 0 1-z V)

3n 20 3 iE 0

---- --_

NORTH

-_ t t t f t A +1 t lt-1--JJ-middot+J

r ft_f_frac14 fffftl middotmiddotbull f_ n- ~ tn

ttt1I1~ ~ ~ ~ ~f --H 1--- ~ -

rJj ----~ ~ ~--- ~ l j bull bull - bull bull Ir - ---_- --- --~~~~~I-~~~ ~ bull ~ ~ rt

- - ~rnlit ~~~~ ~~~~ ~~ ~~~~~~~ - _~-~~ ~~~~~-=~~~~~~~-gt

3820

bl I

N 0

tshy() w 3 fftfftlll

ffltlIJ11111~11- I I I J ~-- - ~~~~11J~ -~

3720 - I I JI J ~~~~~~~--------~~ diams bull + I J J _~ 4 bull I I I J ___ ~~~~-s---~~IJ-bullbullbullbullbullbull ~__middot~middotmiddotmiddotmiddotmiddot~~~~~E-e~~

4flA~~middot~middotmiddotmiddotmiddotmiddot~~~~~ ~--_---~- ~~ 1

367~7i51bull1bull11bull1 111 13251777JT7777~7777 I I I 14251

--~--~- ~~_-~-----~ ~~~J

--~-_--~- 1- I 1 I

~ 1lJ

I I I I I I 14751 I I I I I I I s~sl1 I I I 1575 I I

3770 tshy() lt( w

3720

13670

SOUTH

I 0

I 10

I I 20 30

(KM)

I 40

I 50

lllI 0 5 10 15

WIND SPEED (MS)

DWM WINDS AT LEVEL 3 1600 PST 24JUN87

(300M)

lSgt3 0 0 r--shy N r--shy r--shyt)

It r---1)

lO ---- N bull ~~ r lO ~ oe--- I

~~~~ t z~_-----~8 ~ ~~~2~-~----=---~~ t ~~----~~ -frac14~~~--

~v -~ 1 ~ - ~ ~~ ~~~-~~N~~~~~~~~~~~

tf~ ~ ~ -~~~~~imiddot~~~~~ ~~ ~~

_gt~~ middot1 ~ r2 l~ --~- I _Ct _ V I - ftV

0 ~ ~~- X

z~ HF bullIh IJ i It ti ~ 1 IJtl ~ ~ j t ~1

~ ~ 1~1

1 r ~

)

r r~P t t _r )r f

~ 1+ t t t f t ti ~ 1 lt ~ diams t f J t H ff 1 1I I I It diams diams Vf- 1 f f ~ f I 11

(____ t i(_ bullbull ~ bull ~ I r fr1)L_lt--~~vi 1t1J U1 -~- middot~ 1 t) ~ bull ~ bull ~ bull 1 1 f f f I t ~ - ( ~ ~(~ (_ ~ b ~ - ~ bull f 1 f f ~ bull

j ~r~--~ ~ _ ~ ~ ~ l 6 bull bull 4 t ft It _ - __ _ - J ~ ~ ~ t bullbullbullbull t - _ ~--~_____

__ I deg j ~ ~ b ~ _ Igt ~ _ _ ___ bull bull bull bull

~ ~ I ~ ~ ~ _ ~ _ _ _ __ - bull bull bullf

~ bull ~ ~ 4

I -- I bullbullbullbullbull

~~~ ~

1 bull ~

-- V)

LO lshy -----_ lf)

l- w w

=~ It) 0 l)

It)

2= )

0

~

l() 9 __~----- lf)r--- --------J______--L--J-~J-J-______~______~~~___________________________ r---N O O O ON

0 0 z 3

--

2 0 0 0 ----

LO

_j

w I--GJ Cl)

0 _j z lf) )I-

lt( ~ ~

lf) N 0 -- 0 I-n 2 Zlf) ~0 3 0

N ---

0 20 3 g0 -

0

N r- N I-~ I- I- ~ n n n n

1S3M

B-21

1Sv3

U) N U)

lJ) N n

0 N (0 I)

0 r-shyr-shyI)

0 N

I)

It) N It)

U1 r--1)

1S3M

B-22

0 w w (L Vgt

0 z ~

---2 0 __

_j

w _ ~ OC)

0 _j z U1 I- )

lt~ NVgt

0 --shy 0 1-t) 2 z () 0 ~ ~ (LN -middot -

0 20 ~~

0 ON

bull bull bull bull bull

1Sf3 0 0 0 0 N N CX) ID I) I) li li

~ n

~ n

tf) ~

A i -02middot a_ ~ r ____ Igt middotjmiddot i -1 ~ i r middot-~-----------------gt IJ IJ bull 1 j I ------~-----------------

_ IA_Jyen ~ ~ J ~ yen ----~---------------------

~ II --~_a IIgt 11gt Igt middot~ I bull ~ ~ ~ ~

1(1gt i i _JI J Iibull I - IJ Ji H j

bull bull I( --- j J t ~o ~- -- -J I I i J diams bull1bull bull bull i ~ _I I I I J 1 ~~- ~ 11 J l J diams -~ J) bull ~ I- t t ~ ( l f middott J bull 1_~1 ~ IJ II- I ( II ~ j t t bull)

bull t )bull ~) i ~bull bull __ __ I 1gt J I I I middot----- - ~ _ ~ Ji (Ji_ If ~ --~ bull i f l-Ji ~ p VIMyen I ~ middot1 bull I Ibull lt_~ ~ p1 )

I

__________________

~ 4 V ltI - - - -

~) i t --- -- yen 4 yen -- Iii 1yen yen JY yen II

I ~1 Ja a Igt- yen yen yen yen yen yen yenyenIiyen II II

a Igt bull ~ 111) (I J I JY yen tY yen yen II( ltf ~ I~) JY yen liY yen yen yen yen yen yen yen II II II ~ ~(II ~ yen yen yen r yen 1r yen yen yen It Ill

p cl

p 4 ampgt P JI r Igt bull

bull JJ Igt II

- ~ 11- bull

- -

+ _ _ _ __ __ +- ____

- - ----4

bull bull Igt Igt Igt

11 bull bull bull bull

bull bull It

IJ Igt bull t P

Igt bull t

- II Igt fl t middot~~-~~~t_yenyen yenyenyenyenyenyenyenyen

I ~J )Igt) 1 bull yen yen ~yen yen yen yen yen r - yen If II II Igt - I 1 J bull bullI _ _ 1 ~ ~ 1K )

bull -

bull bull II ~ Igt- J 6 bull I 11

fl) 1gt 11 Ill

bull t t fl

~

U1 r- n

~ n

_________o__JJ=---=-------oti~~e-~e11JEJEolELE-ILILLEJLlLu~uJ

l~

0 tf)

~ 0 n

0 N

0

0

- Vl ~ 2 ---

0 w w CL V1

0 z 3

-

2 y --

-

2 0 0 tlt) --

n _J w f-~ OC)

_J z gt

I- Jlt( q-

NVl bull) I-z Vl -~ CL

02 0 3 N 0 NIf)

ONN I N ro r- (0

n n n I)

1S3M

B-23

17z-g

WEST u u u ~ ~ ~ N ~ N

NO N~ 0~0

7J ~ () z -I 0 N (I)

~ )gt c_ -I C zr co ~ -J rT7

r (Jl

-- __ 0 0 0 s _

--_ 7 ~ --

~ z

~-0 0

--s (I) ___

0

0

N o (A 0

t ()1 0

oj(JI

-0

-()1

0 0 0 N -J

A I q bull if ~ ii ii ii I ii if 1 i J (JI

Ab4llltli ~~144

bull~~bull~1111111 11~1middot)1i~~~1 ~4gt~1111111~ II~ - bullbull~Agt~lll11 IIIAII tbull ~4-4~~~III IIll~ I ~14 4 - ~ bull i ~bull-ttt1 111111 I I 1-~ bullbullbullbullbull gt q bullbullbullbull I t I I I I I 4 I I I I I I I 1_ J~ I

4~ A - middot~~lll111I IIll 1 I 4 -1~~ l~ gt1llllllI 1l111 -~~ I N

tn()16 -1 Igt Igt I I l1I v I 7----(Yi ti mbull1-t

~Plgtlt111 VIII ii l middot~1111~~0~ I l~lll~310bullbull I i~W~ffi 1~~~~6~~~ I J~ 1~~~rw 11~~~1~ ~l~~t ~ i 11~~~~~~~ ~~f)~t~~I I~tl -1

~ --J ()1 l 111~1JV1 ~~~1~ I Ill tniz~i~~~~~~ ~~~~ 7 ~K -~~iii~~~~~~~~ il~~~~~~~ 1~~1~~~

middot1 middot1 middot1 middot1 middot1 middot1 middot1 middot1 middot middot1 middot1 middot1 I I I I vr )Igt(_ I II I I~~~~t~ 21~~~r~~~~~v111l I ~ II I -- I~ J(( I I II J l l l Cl ~ I ~ ~ ~ J J I I I yen - - bullbullJ_~ f yen ~ I IJ t I ti

diams J J J I I - ~ - ~ l1 yen -1) I I( t I ~ N J J J J 1- ur~ ~ - Jf1( -I) I I I ti I I j~

() UI diams Mi r)r yen fir_~~ bulll1t) JI 1 I middot i - (JI0 ~ nmiddotmiddotJ jmiddot-1 I I I f ~j--1J ~ __ middot gt C ~ J I f I 1 ltH I fl 1 ti I middotr- I I-I ~ f bull t t l )1j - _ I

t J4J-fbullt t ~ ii middotlfli ii~) - ~bullmiddotttM i f bull bull1 rI-Ku bull bull bull _ middot-~-J_J middot t +imiddot i t t ~ t ( ~ middot(~ I J bull Vf I r1- ~ j~fmiddot + r bull(~t t bullbull_t- J J ~) J ~ Igt

+ __ middot + V+ bull bull ti+ bull + -fi J i bull bull ~ f --- ~ ~ t Li bull bull t ++ diams + t bull +++ + bull ~ __Vbull ~ it 4 ~ i ()1 ~ 1 bullbull diams diams diams diams ++ ++ bull t 1 fA middot_ -----Y 4 ~ tn

~ ~bull t bull + diams + bull diams +++t + bull A VJ ~ bull bull ~ -o middot ~- bull t bull diams diams diams + ~i4_ ~ ~ ~

11 -~ 1 1 1 1 ~t t diams t t ft(middot-- f g a PA

--middott 4 -4 y 1 1 1 )f7~ V g n t A ~ ~bull a~ 4 1 1 ( V P q 1 bull A ~ V Y ~-- 4 I Cl oCl 4 A A ~tW --~- ~middot -)bull ~iliJ bull1bull

bull It t-- ti __ __ ~ (~w ~ ()1UI I bullbull bullrmiddot -~)fl l~~~ ) I A IIbull N~L~ r ~~~-ff~ --bull--1) 4 4 bull ()1

~ 14 ~ bull f 4 AA 4~ bull

44( )A - ~

- ti~ f 4 ~ 4 4 4 A bull ~ i

ti ti fl 1 4 tn llflfl44 4 -()1

~ ()1 ti ti fl 4 4 _ 4 bull fl _ 4 ~ ~

~ bull t~ - - I - 1 T T fJifrac12 1f 1~ fl t [ 1 4 bull bull ~ ltt ~4 ~~~11 l~~Nfl---~ ~~ bull ~t144

1 -middot I I f I ~ fl ti ti- Imiddot tJ 1-0 I 14

z o 0 -I

I

Y

)

u u u u 0) ~ ~ ~ ~ N ~ N 0 0 0 0

EAST

1S13

0 z 3

r r I-shy Ishyer gt 0 0 z ()

--_

2 0

--

___J

w CJ r----1 (lJ

0 l() z

Ishy gtlt J LO() N0

z Ishy()

3 0

0 20 3o 0 tj--

0

1S3M

0 w w 0 ()

B-25

------

~ --- _

NORTH 275 325 375 425 475 525 575

dJ 41 l ll~I tgtI I lo fA Itgt IA IA lo 1 IA IQ 1q lq If lq I ~I 4

~ ~ IIJ ~A ltI P Igt Igt Igt P V V V Q q l_-~- q ~ ~ ~ x- ~ ~ Y t~ --___q)11 4 ltI v v v v v v v 1raquo 4 -q q -~ q ~ 1 a

~ 4 ~~_gt~) ) ~~-4_~ A ltI fl v v v v p A V yjq ~ _ _ ~bullbull --shy~~~ ~ I Cl11 ~ 4 v v v v P- deg 4 ~ -V t V ( ~ a bull-

~ 1 ~~~ v ~sa- fl V P -iLpound_~A--4 q Igt P ~ 4 a~ 4 38203820

- _1 fa bull bull ~ II 11 4 4 ltf V P deg q 9 p Igt Igt Igt Igt P~~ _ _ _ bull -

- ~_R middot ~ gt- P-~-j---s--middotp-~~--- Igt p ~(

-~~ _ amp- 4 --v--J ~--~ -__~---- ~~ t f ---~middot bullbull ~ ~ ~ ~ ~~bull--- bull~bull~~ 4 ~-deg ~--~ ~_v -~ _~raquo Wh~

bull bull bull bull ___ol bull bull --___~ ~ _ A~~-~- f_~-~ bull 1 ~bull -~ Igt bull

a l -4 bull bull~ bull ~ ~ bull frac12~ P- __ _middotmiddot11-~~j)6-_ U bull _ JIgt~ bull I- bull ft ~ 4_~~~~ 9 P lgt--1gt~~~_-~_----~~~ ~ bull ~ ~ ~ ~ --~-~- ~~-_middot ~~~A~ ~ 1111 ~- ----~~ -~- IIgt _)-

1111 1111 -( _-middot 4 ~ Po Igt q lgtmiddotv11t_ Igt Igt II

3770 ~ P 0 ~ - bull k ~ 1- 1-

() pound 4 4 ~ q -44 - bull bull Igt ~- t Igt 1 Igt () w Igt 7 lt

3 - bull It It It bull bull ~--~ p ~ Igt ~ w ~~ It It It bull ~ -_t _ ~ bull bull bull bull --~ Igt

deg

td bull ft bull v ~lt~ Igt Ci~ 4gt I ~ It bull bull ~ 6 -It Igt ~

N bull bull It It ~ ~ _ ~_) ~ ~ lr It ft ft ft ft ft ft Igt -II-~ j ~ fil- _ _ _ _ bull 11r 1o 1o It 111- bull ft ft ft ft ft i i f - ~ 3720 bull It bull ft ft ft ltt q -e- ~ ~ ~j1

4

middot bull bull bull It It ft It bull ~ ~ ~ bullmiddot ft ft ft ft ltt ft ltt ltI 1 ~ - It bull It ft ft It bull -0 ~ JIgt ]~

middotmiddotmiddotmiddotbullbull1rt1rtft11- p-bull- ~1frac121 1tftftlttltltPt1t fgtbullbull ~~- bullbull ~

It bullbullbullbull It ltt It It ltt It lrt lrt tgt - ~

~~~ItIt ItItIt 1t11tft lttlttftlttltlt ltt lt11t ~ lgtbullJgtIbullbull bull~bull bull~bull ~ 1 bull bull 3670 367~75 325 375 425 475 525 575

SOUTH

1111111111111111I I I t--l 0 10 20 30 40 50 0 5 10 15

(KM) WIND SPEED (MS)

DWM WINDS AT LEVEL 3 (300M) 400 PST 25JUN87

0 0 0 0 N r-shy N r-shya) r-shy r-- (0 I) I) 1) I)

-

LO r--1) -

l~ i ()

0 z 3

I ~ n 0 z I)

N st-

0 If)

0 - I) 2 0 ~ N -

0

0

1S3M

B-27

---_

2 0 0 0

-

If)

_J

w Cj l-_J OC)

z_ ) lt( J () L()

ON z~ 3~ 20 3oo+

0 0 0 N N C0 (0 I) ~ I)

U)

U)

U) U) N N It) U)

I I-=gt 0

U) V1 N st-

lO N I)

0 lO

0 __ I) 2 0 ~ N _

0

0

__ 2 0

--

_J

w l--Gj OC) _J z I- =gt lt( ~ V1 N 0 1-z V) 3 CL

20 3 g0

1S3M

B-28

I fshyCt 0 z

0 r-shyr-shyI)

0 N r-shyn

0 r-shyl) I)

lO r-shylO

lO N It)

lO N ltt-

--

tlt)

_j

w r---fu o) _J z f- ) lt( ~ f) N 0 1-Z Vgt3 (L

2 03g0

I fshy)

0 l)

0 lO

0 -- n 2 0 ~ N ---

0

0

1S3M

B-29

1S13

-l)~ O 0 w

deg CL w

l)l ~

0 0 z 3

I lshya 0 z

--_

2 0 0 0

--

LO

_j

w__cj IJ)

0 _j z lf I- )

lt ~ ~ V) N

I) 20 - 0 Z(f)

I-

0 ~ 3 CLN -

2 00 3 gOr-

0

1S3M

B-30

Ht 11Sittl

lS13 0 0 0 0 N N II) (0 n I) n n

-- ()

LO t-shy ~ lO

(~i0 z

lO N LO

3

I Ishygt 0

lO () N +

--

2 0

--

_j

wr-----CJ OJ

0 _j z lt) I- )

lt ~ V) N

0 -- 0 1-shyI) 2 z () 0 i 3 ClN --- --

0 28 3 ltD

lf 0~_____________________________~_______________________--- t-- 0 0 0 0 ClCI N N t-shyII) t-shy io n n n n

1S3M

B-31

==- ~-_

NORTH

I bull bull - -f I I bull ~bull - ~__~~~~ ~~~

flt~11 $~~~t=- ~~ ~ 4Aligt~ ~~~ ~~

3820 1~~~- 4 t 11 ~ ~- --~_____-- ~ ~ ~~ 3820 ~~~

~~-~~~~

3770 3770

l1 ()w l-

lllizz tshy

~ ZlZZl ~ ~~~~~~

to I -IllIll

w -I IIIll~N llllll2~~

-II I I J I-~1~ r~~~~ 3720r ~ J J UL 1~A~~ 3720

~IIJJJJJ2~ ~~~ 1 ~ fl I JI JI2~~ 1~~~V fl fl ~ JI J J ~ y ~- 1-f4~) ~ fl fl fl I JI J _A2 1~ V~

~flflflflJIJIJl~2 ~~JIw~ ~ ~jlfljlflJIJIJI~ ~JIJIJflfl~~~ ~ ~~fljlfljlJI~~~~ -

J67 t-V1111111----(((((1i I~laquo rlt~1 I I I I I I I IM m I I I I I I I ~ MJ670 g75 325 375 425 475 525 575

SOUTH

11111 11111 11111 1I I I I I I 0 10 20 30 40 50 middot 0 5 10 15

(KM) WIND SPEED (MS)

DWM WINDS AT LEVEL 3 (300M) 1600 PST 25JUN87

1

NORTH

bj I

w w

i~ -tt--t ~ + ~frac14 diams diams diams diams diams f f f J-~~~l -ff~_x~ diams t diams ---t diams + diams ff f J1ff~t t

-=tl-U +---- ~ ~ t-t- diams diams __ diams~ diams diams ~ J I I 1 1 f ~ -y- ~I -~~-1t-~ diams +__+ diams + ++--J_f 1 ~JJ-11 I --

38201- ~~-- ~ ~--t_-( 1 ~ r 1t + middot~-t_ bull ~-~ bull bull bullmiddot bull r-r 1 ~IiI 1 I ~Ji~l _-=pound-~If~_ It It It bull bull bull bull bull ~ diams f f---bullmiddot+ --I __- _ I I~ 1 f1

( - ~~~~ II lit It It 1tt Iii Iii~ -r-middot -- ___- l_f--1-l -L ~~1 1 ~ ~_( _ -~~ ~------~ 1t(~ bull (t ft- ~ middotv -11-fI 1 - t~~1 1 41

~ - ~-~- lit 1t lk_i -- -~--- -_ -j rf-- l1 r111 1 I It It~ It 1t 11i bull-~ ~- ~ t_bullbull_~ (middot ~--middottY~i_(4Xtl~4j_ middot It It ~ -- ---~----~----_I~)-~-~ -

~-It It ltt middot~- ~ -~-middot ~-pound1[_~ -~- - middot - deg - - It It l diams diams 4 middotbull--bull ~ ~ ~ diams 7 1---~~ -L_- - ~ t( I diams -( bull diams ~ ~ bull ~ -- JI JI Jf JI JI j(_ ~II deg It_ -~ ~- I I I J JI JI JI JI 1

~ J- ~llj ~- diamsdiams +II IllJI_ h~ ~ ~ ~ bull bull ~ JI J J J ~ 1 x111 X7 -~ ~ diamsdiams 4111 JJJIJJ~~~~~~~~1t diamsdiamsdiams ~111 JJIJJIJllllb~ h~~~hh middot ~ - diams diams bull I I J J I I I I JI JI I l1-14~frac12-~~~ji_ ~ + f 1 J I 1 I I I 1 ~ x~ f1 11 middot -

bull JI I I I11~bullY1iz 1 41 ~ f I J J J JI J J J J J I I I lmiddot ~ t JI JI JI 1 JI 1 1 JI J I I I It~ if~_~

It_ ~ 1 JI JI JI JI J J I I l-~ 4 t J J J J J J J JI JI I I l l deg ~~ _ ~ 1111JJIJIJIJIJIJIJIJI t JIJIJIJI~I JIJJIJIJI_

~- I t I I JJJIJIJIJIJII~~~~ t JIJJIJIJIJIIII ~~ JJ JIJIJlllll ~ t IJJIJIJl1 1 1 ~ ~~I 1 t 1 A 11111111 II I I I

325 375 425 475

SOUTH

I I I I I I 0 10 20 30 40 50

(KM)

525 575

1111 111 1111 10 5 10 15

WIND SPEED (MS)

3820

3770 1-() lt( w

3720

3670

DWM WINDS AT LEVEL 1600 PST 25JUN87

5 (1000M)

0 w w CL ()

0

1S13 0 0 0 N r-shy N agt r-shy r--t) I) 1)

I() It)- r-shyU) U)

z U) N It) 3

( I I lshy Ishyo ) 0 0z It)

~lgtIgt~() st- b tgt ~ q st

lgtbbtgtb

b b t t 0 b

N

Igt b t b b b A 6 ~ b b t b C A 4 d 4

ttCt4lt1-it e Igt b tgt tgt V q ltl ltl ltI ltl

ti- deg 1 41 9 q I I ltl q q

i V q ltl q q q q I l() r-shy AlgtV ~ tlt) ~t) -~~~q

~ bull amp ~

0 ~ ~

-qa ~ ~ 1gt1 111111

b-a~-V ltillilI

bull lt bull bull a ~ Igt ~ V V V q 4 __J

It It lgt a -a~ Igt C tgt V w r---(J OC)

bull ~ Igt t 4 bull bull bull bull U) 0 __J z middot 1gt44lt14

U) ) t) rshy J - -N

lt( l() ~ ~~ CI() ~ ~

~

0 Ishy bull bull bull diams 1 z ()~ bull ~ bull diams diams 1 CL3bull ~ ~

i b y ~bullbullTT r I I 0

~ bull bulldiams ~ ~ b b b b ~ bullbull diams T r r I U)______-11____________________________ _ 0

0 O O ON N r- N r--agt r-- _ ~ I) I) I) I)

1S3M

B-34

I

_ _ 3820r- ttr- t f T Jf-Lt If t t 1l-- -~ 1~ t t

NORTH

~bull 1414

~~-_ ~ ~ r-- - --~ ~ - - _ r-- fT W - - r V-V ff f

- t t t t f I~ _AAjAA~-r bull(- -J It ~---1 t ~~~-1-- 1 ( ~~ - J ~ t t i f 1 ~ A_A-yen~_~_ ~ ~ 1 ~ t t ~ t t middotmiddotkt f ~-~-~~-----~~-- ~ ~ ~ ___ll_ bull ~

t -r- _______~~----- r ~bullbull _ ~ ~ tt-~J--~c-~~ ~ 1~--______ bull

~ -t lJ-- f t-J-- r---~~---middot _-- ~~-- ~ bull bull ll~iti~~sect~~~ ~ bullbull~bullbull bull~~n~ bull bull bull n~ bull bull

A)~lfifrac12~~ ~III I --1

3770 l l L l L - - ~ -- ~ - 1 ~ - 770 tshy~ ~~~~~~~~~11 1 ~~=1~~- Ul

W 1lllll~I ~~~~1111~~ lt( w ~1~~1~1~~j~~~m ~~~~ ~ - ~

11 1111 1111~I I 11111111 --- middotE~

tj IIIIIIIII_ ~tI l) llllll_~_p ~1l1 1~A~~~A~~rrr-v

3720t- I I I J J J A__ r r 0 11J)~~~----~_~ppmiddot-~~f Jl~~~~~---~--~~r~-~~q~q ~1

I ~JI I~ A A-_

~JIJl~~~~~A-----A rrbullbull~f~df~ ~~JIJl~~~~A~~--~- fffdfdff

~~JIJI~~~~~~---- bullfbulldbullfdf~

~IJIJl~~~AA~ --middotmiddotmiddotmiddotmiddot~middotmiddot~~~ ~l~JIJIJl~~~Al~pp~~~~bullbullffffffdff X ~~~~JI~- A(- f bullbull P ~ ~~bull1f1q1f1f1f1f1f1d1bull

3670275 325 375

1111 1111 11111 1 1 1

0 10 20 30 4-0 50 0 5 10 15 I I I I I I i(KM) WIND SPEED (MS)

iDWM w1tms AT LEVEL 3 (300M) ir 2200 PST 25JUN87

0 If)

0 __ I) 2 0 ~ (j __

0

0

__ 2 0 0 0

__

LO

_J

w f- GJ ll) _J z I- ) lt( ~ () N 0 1-z () ~ Cl

20 ~~ ON

1S3M

B-36

Page 18: Nind Observations Collected during the Southern California ...

rtMt1

Monica Bay winds are weak throughout the basin but airflow into the Coachella Valley is especially strong

Airflow patterns on 14 July are similar to 13 July with a few exceptions During the early morning hours the surface airflow is characterized by weak disorganized flow There is no eddy apparent over the Santa Monica Bay The overlying flow is weak and primarily S to SE at 300 m agl but W to NW at 1000 m agl Sea breeze development is approximately two hours slower on this day than on 13 July By 1000 PST weak S flow has developed over the Whittier-La Habra-Pico Rivera area and SE flow is apparent at Burbank AS component to the flow appears at 1000 m The afternoon surface airflow pattern is similar to that on 13 July but the S upslope flow at Glendora is weaker S flow develops at Elsinore and several coastal Orange County sites The Coachella Valley convergence zone reappears at the surface at 1600 PST two hours later than on the previous day At 300 and 1000 m agl W to SW flow dominates over the western twoshythirds of the domain SE flow is apparent over the Coachella Valley During the evening hours the surface airflow over the central basin is S to SW W flow components persist along the eastern foothills through 2200 PST

On the morning of 15 July surface winds are weak but maintain a S component Moderate SE flow is apparent offshore The overlying flow is generally E to SE By 1000 PST the surface airflow pattern is characterized by S flow over the central basin and along the foothills SE flow in the Coachella Valley and E flow through Banning Pass The depth of the S to SE flow is greater than 1000 m agl During the afternoon a weak sea breeze penetrates inland and winds along the foothills become W Winds shift from E to NW at Banning Pass at 1600 PST A weak S flow component persists in the Whittier-La Habra-Pico Rivera area throughout the afternoon A weak slopevalley circulation develops in the Coachella Valley resulting in SE flow there At 300 m agl winds are SW to W over the central basin and SE over the Burbank and the Coachella Valley At 1000 m S to SE flow dominates W winds persist along the foothills through 2200 PST and weak S to SE flow redevelops at the surface Remnants of the afternoon airflow pattern persist aloft

27-29 August 1987

The surface and upper-air wind monitoring site locations for this intensiv middot1onitoring period are indicated on pages A-7 and A-8 respectively Plots of the dia stic wind analyses for 27-29 August are given on pages B-73 through B-108

On the morning of 27 August surface winds are weak over most land areas a 1djacent coastal waters with moderate (5 ms) NW winds well offshore Winds aloft a Jrimarily N with weak NE flow at 100-300 m agl over the central basin By 1000 PST threeshy

IIzone airflow pattern has developed at the surface and is somewhat apparent ( hin the limits of the upper-air network) at 300 m agl SE flow has developed at 100( agl

9106102 13

This pattern is maintained throughout the afternoon Within the Coachella Valley a classic daytime slopevalley flow pattern develops with SE flow extending to a depth of 1000 m E flow develops at Banning Pass and persists through 1700 PST W flow over the basin develops upward throughout the afternoon By 1600 PST wind at 300 m agl are W to SW over the central basin and SE over Burbank and the Coachella Valley During the evening hours the features of the mesoscale airflow pattern over land weaken both at the surface and aloft There is no clearly developed offshore-directed land breeze

On the morning of 28 August the surface winds are weak and the overlying flow is primarily E Retardation of the sea breeze by the overlying E flow is apparent by 0900 PST S flow develops in the Long Beach area E flow at Banning Pass is substantially stronger than on 27 August During the afternoon of 28 August S flow persists at Long Beach and develops in the Whittier-La Habra-Pico Rivers area SE flow is observed along the Orange County coast E flow through Banning Pass persists throughout the day W wind components along the Santa Monica-Palos Verdes coastline are weaker than on the previous day and NW flow fails to develop at San Nicolas Island W flow over the central basin disrupts the SE flow aloft During the evening hours the airflow features weaken W flow along the foothills does not persist as long as on the previous day

The early morning airflow pattern on 29 August is characterized by SE flow both at the surface and aloft Sea breeze development on this day is slower than on either of the previous two days S flow again develops in the Long Beach area and appears to be stronger than on the previous day Although the sea breeze is weaker winds at Banning Pass shift from E to SW by 1300 PST This shift occurs at 1800 on 27 and 28 August SE flow persists aloft with limited upward development of the W sea breeze flow W flow persists in the western basin area through 2200 PST and SE flow persists aloft

2-3 September 1987

The surface and upper-air monitoring site locations for this intensive monitoring period are indicated on pages A-9 and A-10 respectively Plots of the diagnostic wind analyses for 2-3 September are given on pages B-109 through B-132

The first day of this period is probably the most anomalous of the summer SCAQS intensive measurement days Overlying easterly forcing during the morning hours prevents development of W flow along the foothills and inhibits upward development of the sea breeze over the western and central portions of the basin The easterly forcing appears to reverse rather abruptly on the afternoon of 2 September Unusual winds are also observed at Burbank on 2 September During the late morning and afternoon Burbank experiences an unusual wind shift from SE to W through a depth of 1000 m On 3 September the overlying airflow is W and the airflow patterns are more typical

9106102 14

rrn

On the morning of 2 September strong downslope flow results in N to NE winds at several sites along the foothills of the San Gabriel Mountains At 300 m strong NE winds are apparent over the central basin The overlying flow is E By 1000 PST the sea breeze appears as W flow along the Santa Monica-Palos Verdes coast and S flow in the Long Beach area The surface analysis indicates a band of S flow from Costa Mesa to Azusa W flow has not developed along the eastern foothills Winds are SE in the Coachella Valley and E through Banning Pass E flow aloft continues and intensifies During the early afternoon hours a relatively strong sea breeze penetrates inland to Azusa while winds in the Whittier-La Habra-Pico Rivera area remain weak The sea breeze weakens considerably after mid-afternoon Between 1200 and 1500 PST the wind at Burbank shifts from SE to W through a depth of 600-1000 m By 1600 PST the overlying flow has shifted from SE to W Onshore flow continues at the surface through 2200 PST while the winds weaken considerably Although the overlying W flow persists in general 300 m agl winds at Burbank become SE

The early morning airflow on 3 September is characterized by weak winds at the surface SE flow at 300 m agl and primarily W flow at 1000 m agl Although the major surface airflow features appear to develop as on previous days upward development of the pattern is limited Strong S flow is apparent by 1200 PST between 100 and 300 m agl over the central and western basin By 1600 PST the sea breeze has penetrated well inland Imbedded in the sea breeze is a persistent calm area in the vicinity of Lynwood S flow persists at 100-300 m agl over the central and western basin while flow at this level off shore remains NW At 1000 m agl W flow continues This general pattern persists through 2200 PST but weakens considerably especially at the surface

AUTUMN INTENSIVE MONITORING PERIODS

The mesoscale airflow patterns in the SOCAB during the SCAQS autumn intensive monitoring periods exhibit a weaker diurnal cycle than the summer airflow patterns Synoptic forcing also appears to be stronger

11-13 November 1987

The surface and upper-air wind monitoring site locations for this intensive monitoring period are plotted on pages A-11 and A-12 respectively Plots of the diagnostic wind analyses for 11-13 November are given on pages B-133 through B-168

During the early morning hours of 11 November NE surface winds are apparent over most of the region Surface wind speeds are very light over the basin and somewhat stronger along the foothills and the coast At 300 m agl winds are light and generally E At 1000 m agl winds are W to SW over the western half of the domain and SE over the eastern half of the domain Weak E to NE surface flow persists throughout most of the

9106102

15

morning in the first 300 m An apparent anticyclonic eddy (SE flow at Long Beach weak S flow at Burbank W flow at El Monte) develops between 600 and 1000 m agl on this morning A weak sea breeze forms around 1200 PST penetrating only to the central basin There is no apparent turning of the sea breeze into the San Fernando Valley W to NW flow develops offshore and is deflected around the Palos Verdes Hills This W flow is also apparent at 300 m agl Downslope flow components along the foothills are apparent by 1600 PST At this time the 1000 m agl winds are weak and N The sea breeze rapidly dissipates and NE flow develops at several coastal sites indicating a land breeze NW flow is maintained off shore The nighttime airflow pattern aloft is characterized by weak N winds at 300 m agl and weak W winds at 1000 m agl

The surface airflow pattern on the morning of 12 November is generally similar to that on 11 November E flow over land is apparent through a depth of 300 m while NW flow persists offshore The overlying flow is W The afternoon surface airflow pattern is more similar to a typical summer afternoon pattern than the previous day Turning of the sea breeze into the San Fernando Valley is apparent and W flow develops along the foothills of the San Gabriel and San Bernardino Mountains by 1400 PST Airflow at 300-600 m agl appears to veer continuously from E to W at most inland sites during the afternoon NW flow through a depth of 1000 mis apparent over the Coachella Valley Surface winds become light and disorganized during the evening hours Unlike the previous day NE flow does not develop at the coastal sites and NW flow weakens offshore W winds persist aloft

On 13 November surface winds are very light through the early morning hours with E flow components apparent immediately offshore The overlying flow is WNW but becomes S over the central basin by 1000 PST As on the previous two days a sea breeze becomes apparent at the surface by noon W flow components over the basin and foothill areas are stronger than on the previous two days both at the surface and aloft Significant W flow also develops in Banning Pass Moderate to strong W winds are apparent aloft During the afternoon and evening hours SE winds are apparent at Burbank between 300 and 600 m agl Intense W flow develops off shore and propagates inland during the evening hours W flow continues aloft with some S to SE flow between 100 and 600 m agl at Burbank and El Monte

3 December 1987

The surface and upper-air wind monitoring site locations for this intensive monitoring period are plotted on pages A-13 and A-14 respectively Plots of the diagnostic wind analyses for 3 December are given on pages B-169 through B-180

The early morning surface airflow pattern on 3 December is characterized by weak NE winds over the inland areas and a weak cyclonic eddy off shore The overlying flow is S to SE Surface winds remain light and variable through most of the morning Moderate

9106102 16

txi Iii ttii

E flow is apparent over the western and central basin between 300 and 600 m agl A sea breeze develops around 1200 PST reaching a depth of 300 m and penetrating only approximately 30 km inland S to SE flow persists above 300 m agl The sea breeze weakens during the evening hours and N flow through a depth of 300 m develops at Long Beach E flow components intensify at 600 m agl and above

10-11 December 1987

The surface and upper-air wind monitoring site locations for this intensive monitoring period are plotted on pages A-15 and A-16 respectively Plots o~ the diagnostic wind analyses for 10-11 December are given on pages B-181 through B-204

On 10 December the early morning surface airflow pattern is weak and disorganized Weak NE flow is apparent over much of the basin between 100 and 600 m agl The overlying flow at 1000 m is N The surface airflow over the basin is weak throughout the morning hours while NW flow develops offshore Winds aloft remain N A weak sea breeze is apparent by 1200 PST the sea breeze penetrates only about 30 km inland and is limited to a depth of approximately 300 m There is no apparent turning of the sea breeze into the San Fernando Valley Elsewhere in the basin the surface airflow remains weak By 1600 PST the sea breeze has weakened At this time winds aloft are predominantly W to NW at 300 m agl and N at 1000 m agl During the evening hours surface airflow over the basin becomes weak and disorganized while E flow develops at Palos Verdes Strong N winds appear aloft (300-600 m agl) at Burbank LMU and Long Beach however winds at this level further to the east remain light

On 11 December the early morning surface airflow pattern is similar to that on 10 December Relatively strong ( gt 10 ms) NNW winds persist at 600-1000 m agl at Burbank and LMU E wind in the 100-300 m agl appear at LMU and Long Beach Throughout the morning the surface winds remain light and N winds 9ver Bu~ank weaken considerably A sea breeze is apparent by 1200 PST but is weaker than on the previous day and reaches a depth of only 100 m or less Significant N winds (3-6 ms) develop between San Bernardino and Elsinore and in the western San Fernando Valley NE flow is observed in Ventura County Winds aloft continue to be primarily N however E flow is apparent over the Long Beach area at 1000 m agl Surface airflow over the central and western basin becomes very weak during the evening hours Strong N to NE flow develops at the coast west of Santa Monica while N flow persists in the western San Fernando Valley and in the San BernardinoRiverside area The overlying flow is N to NE

91061 02 17

3 PARTICLE PAm ANALYSIS

A series of forward and backward particle paths (trajectories) were calculated using the SCAQS DWM wind fields The particle paths will be used by other SCAQS investigators in their examination of pollutant transport within the SOCAB The forward particle paths can be used to estimate the transport of pollutants from known source locations The backward particle paths can be used to estimate potential source areas The particle paths can also be used to estimate the residence time of certain pollutants in the SOCAB as a whole or in subregions

CALCULATION OF PARTICLE PAIBS

Two-dimensional particle paths were computed using the DWM wind fields as follows

Starting ( ending) points for a given number of forward (backward) particle paths were specified

Using a time interval of 15 minutes the hourly gridded DWM wind fields were linearly interpolated in time and then interpolated in space to each particle position using an inverse-distance-squared weighting scheme

The particles were then advected horizontally for the specified time interval

The distance traveled by each particle during each time interval was integrated The new position of the particle was reported at hourly intervals

Forward and backward particle paths were calculated for the SCAQS intensive monitoring periods for several vertical levels and a variety of origination and destination points The origination (destination) locations and times for the summer and autumn particle paths are listed in Tables 3-1 and 3-2 respectively Most of the particle paths originated (ended) at one of the SCAQS wind monitoring sites listed in Tables 1-1 and 1-2 Additional sites are identified in Table 3-3 Note that for some sites in Tables 3-1 and 3-2 a new particle path was initiated at the particles 1000 PST location but at a higher level

Additional forward particle paths were calculated for comparison with the SCAQS tracer data (England et al 1989 Horrell et al 1989) The initiation times and locations correspond to the tracer releases and are given in Tables 3-4 and 3-5

9106lrl02

~~ll1~(I titW I~l~~~t~~

TABLE 3-la Summer particle paths forward particle paths

Start Time Origination Start Date (PST) Site Level(s)

624 0500 LBCC 13 CELA 13

624 0700 LBCC 13 CELA 13

624 1000 LBCC 13 CELA 13

624 1500 LBCC 13 CELA 13

624 2100 LBCC 13 CELA 13

625 0500 HHRA 5 PADA 45 FULA 5

625 0700 FULA 5

713 0500 LBCC 13 CELA 13

713 0700 LBCC 13 CELA 13

713 1000 LBCC 13 CELA 13 EMTA 24

713 1500 LBCC 13 CELA 13

713 2100 LBCC 13 CELA 13

714 0500 LBCC 13 CELA 13

714 0700 LBCC 13 CELA 13

714 1000 LBCC 13 CELA 13

714 1500 LBCC 13 CELA 13

714 2100 LBCC 13 CELA 13

Continued

19

91061 07

TABLE 3-la Concluded

Start Time Origination Start Date (PST) Site Level(s)

827 0500 LBCC 13 CELA 13

827 0700 LBCC 13 CELA 13

827 1000 LBCC 13 CELA 13

827 1500 LBCC 13 CELA 13

827 2100 LBCC 13 CELA 13

828 0500 LBCC 13 CELA 13

828 0700 LBCC 13 CELA 13

828 1000 LBCC 13 CELA 13

828 1500 LBCC 13 CELA 13

828 2100 LBCC 13 I CELA 13

92 0500 LBCC 13 CELA 13 HHRA 12

92 0700 LBCC 13 CELA 13 FULA 12

92 1000 LBCC 13 CELA 13

HHRA 45 FULA 45

92 1500 LBCC 13 CELA 13

92 2100 LBCC 13 CELA 13

93 0700 RIVA 12

93 1000 RIVA 45

A new particle path was initiated at the particles 1000 PST location but at a higher level

20

~(Ibull bull 11

41

~1~_11Lmiddot11~1~~tV t rt~~14_ II~~~h1 1r t

TABLE 3-lb Backward particle paths

End Time Destination End Date (PST) Site Level(s)

624 1500 CABA 23 EMTA 45 BURA 1234 HHRA 4 FULA 45

624 1800 RIVA 3

625 0500 CLAR 13 RIVR 13 HHRA 5 PADA 45 FULA 5

625 0700 CLAR 13 RIVR 13 FULA 5

625 1000 CLAR 13 RIVR 13

625 1500 CLAR 13 RIVR 13 CABA 23 EMTA 4 BURA 4 RIVA 45

625 1600 RIVA 45

625 2100 CLAR 13 RIVR 13

713 - 1000 EMTA 24

713 1500 CABA 23 EMTA 45 RIVA 24

713 1600 RIVA 24

714 0500 CLAR 13 RIVR 13

714 0700 CLAR 13 RIVR 13

714 1000 CLAR 13 RIVR 13 BUR 123

714 1500 CLAR 13 RIVR 13 CABA 23 EMTA 4 BURA 234 RIVA 2

714 1600 RIVA 2

Continued

21 nn1 Y1

TABLE 3-lb Continued

End Time Destination I End Date (PST) Site Level(s)

714 2100 CLAR 13 RIVR 13

715 0500 CLAR 13 RIVR 13

715 0700 CLAR 13 RIVR 13

715 1000 CLAR 13 RIVR 13

715 1500 CLAR 13 RIVR 13

715 2100 CLAR 13 RIVR 13

827 1000 CABA 2 EMTA 23 BURA 123

827 1500 CABA 2

828 0500 CLAR 13 RIVR 13

828 0700 CLAR 13( RIVR 13

828 1000 CLAR 13 RIVR 13

828 1500 CLAR 13 RIVR 13

828 2100 CLAR 13 RIVR 13

829 0500 CLAR 13 RIVR 13

829 0700 CLAR 13 RIVR 13

829 1000 CLAR 13 RIVR 13

829 1500 CLAR 13 RIVR 13

829 2100 CLAR 13 RIVR 13

92 1000 PADA 3

92 1100 PADA 3

92 1500 EMTA 2 RIVA 2

Continued

22

91061 07

I

1bullLI bullI I bull ~ii 1 1

1 cl1

[1i1bull~j~1 Iiii~ j t-~dI ~1 1ltl1111111 II r I l~bull~II~middot t1~i~n_11~~ ~middot -

TABLE 3-lb Concluded

End Time Destination End Date (PST) Site Level(s)

92 1600 RIVA 2

93 0500 CLAR 13 RIVR 13

93 0700 CLAR 13 RIVR 13

93 1000 CLAR 13 RIVR 13 CABA 2 BURA 1234

93 1500 CLAR 13 RIVR 13

93 2100 CLAR 13 RIVR 13

23 9106107

TABLE 3-2a Autumn particle paths forward particle paths

Start Time Origination Start Date (PST) Site Level(s)

1111 0300 LBCC 13 CELA 13

1111 0700 LBCC 13 CELA 13

1111 0900 FULA 12

1111 1200 LBCC 13 CELA 13

1111 1500 LBCC 13 CELA 13

1111 2100 LBCC 13 CELA 13

1112 0300 LBCC 13 CELA 13

1112 0700 LBCC 13 CELA 13 FULA 12

1112 1000 FULA 45

1112 1200 LBCC 13 CELA 13(

1112 1500 LBCC 13 CELA 13

1112 2100 LBCC 13 CELA 13

1113 0500 ONTA 123

1113 1000 ONTA 45

123 0300 LBCC 13 CELA 13

123 0700 LBCC 13 CELA 13 FULA 12

123 1000 FULA 45

123 1200 LBCC 13 CELA 13

123 1500 LBCC 13 CELA 13

123 2100 LBCC 13 CELA 13

1210 0300 LBCC 13 CELA 13

1210 0700 LBCC 13 CELA 13

Continued

24 9106108

TABLE 3-2a Concluded

Start Time Origination Start Date (PST) Site Level(s)

1210 1200 LBCC 13 CELA 13 FULA 123

1210 1500 LBCC 13 CELA 13

1210 2100 LBCC 13 CELA 13

1211 0500 ONTA 12

1211 0700 FULA 12

1211 1000 ONTA 45 FULA 45

A new particle path was initiated at the particles 1000 PST location but at a higher level

25 9106108

TABLE 3-2b Backward particle paths

End Time Destination End Date (PST) Site Level(s)

1111 1500 HHRA 34

1112 0300 LBCC 13 CELA 13 RIVR 13

1112 0700 LBCC 13 CELA 13 RIVR 13

1112 1200 LBCC 13 CELA 13 RIVR 13

1112 1500 LBCC 13 CELA 13 RIVR 13 HHRA 34 PADA 3 FULA 34

1112 2100 LBCC 13 CELA 13 RIVR 13

1113 0300 LBCC 13( CELA 13

RIVR 13

1113 0700 LBCC 13 CELA 13 RIVR 13

1113 ~ 1200 LBCC 13 CELA 13 RIVR 13 ONTA 34 EMTA 45

1113 1500 LBCC 13 CELA 13 RIVR 13

1113 2100 LBCC 13 CELA 13 RIVR 13

123 0300 LBCC 13 CELA 13 RIVR 13

123 0700 LBCC 13 CELA 13 RIVR 13

Continued

26 9106108

TABLE 3-2b Concluded

End Time Destination End Date (PSn Site Level(s)

123 1200 LBCC 13 CELA 13 RIVR 13

123 1500 LBCC 13 CELA 13 RIVR 13 PADA 3

123 2100 LBCC 13 CELA 13 RIVR 13

1211 0300 LBCC 13 CELA 13 RIVR 13

1211 0700 LBCC 13 CELA 13 RIVR 13

1211 1200 LBCC 13 CELA 13 RIVR 13

1211 1500 LBCC 13 CELA 13 RIVR 13 PADA 1234 BURA 123

11 13 2100 LBCC 13 CELA 13 RIVR 13

27 9106108

TABLE 3-3 Additional particle path initiation (destination) points

Site Identifier Location UTM Easting (km) UTM Northing (km)

BURA Burbank Airport 3749 37859

CABA Cable Airport 4370 37751

EMTA El Monte Airport 4047 37717

FULA Fullerton Airport 4091 37485

HHRA Hawthorne Airport 3768 37547

ONTA Ontario Airport 4435 37686

PADA PADDR Intersection 3810 37175

RIVA Riverside Airport 4584 37485

28

TABLE 3-4 Forward particle paths calculated for comparison with the SCAQS tracer data

Start Start Origination Date Time Site Levels

0300 LAGS 13 0600 13 0900 II 13 1200 II 13 1500 II 13

625

715 0500 VRNN 1

0800 VRNN 1

828 0600 LAGS 13 1000 II 13 1300 13 1500 13

93 0500 VRNN 1

0800 VRNN 1

1111 1600 LAGS 3 ESGS 3 VRNN 1

1900 LAGS 3 ESGS 3 VRNN 1

1112 0600 ESGS 3 VRNN 1

0900 ESGS 3 VRNN 1

1210 0600 LAGS 3 ESGS 3 VRNN 1

0900 LAGS 3 ESGS 3 VRNN 1

1600 VRNN 1

29

9106lrl09

TABLE 3-5 SCAQS tracer release sites

I_______________________

Site Identifier Location UTM Easting (km) UTM Northing (km)

ESGS El Segundo 3690 37536 LAGS Los Alamitos 3980 37370 VRNN VRNN 3874 37625

(

91061rl09

30

The particle paths were calculated for up to a three-day period In general forward particle paths were calculated through the end of the monitoring period or until the particle was advected out of the domain Backward particle paths were calculated through the beginning of the intensive monitoring period or until the particle left the domain

Selected plots of the forward and backward particle paths are given in Appendix C

SUMMER PARTICLE PATHS

Forward particle paths (levels 1 and 3) originating from Central Los Angeles (CELA) and Long Beach City College (LBCC) at 0700 PST on 24 June 13 and 14 July 27 and 28 August and 2 September are shown on pages C-1 through C-12

The surface-level particle paths originating at CELA indicate northward advection from this site on all days The particle path initiated on 27 August indicates that the initial northward advection is followed by westward advection on the following day the particle path initiated on 2 September indicates that the initial northward advection is followed by eastward advection on the following day In all cases the residence time in the central Los Angeles basin is less than 12 hours

The surface-level particle paths originating at LBCC are carried northward and eastward usually exiting the Los Angeles basin through Cajon Pass On 24 June and 14 July however the particles are carried across the San Gabriel Mountains (with the upslope flow) Considerable eastward transport is indicated by the particle paths initiated on 2 September after 1800 PST -Residence time in the Los Angeles basin varies from day to day and is especially long for the particle path initiated on 27 August (approximately 30 hours) Particle paths initiated on 13 July and 28 August also indicate some recirculation and a significant residence time within the Los Angeles basin

The level 3 particle paths also indicate northward transport from CELA on most days Advection into the San Fernando Valley which may be partly due to the SE flow produced by the turning of the sea breeze into the valley is more pronounced on certain days (14 July 28 August and 2 September) Level 3 particle paths originating at LBCC show mostly northwestward transport Recirculation over the Los Angeles basin is indicated for the 2 September particle path

Backward particle paths (levels 1 and 3) culminating at Claremont College (CLAR) and Riverside-Rubideaux (RIVR) at 1500 PST on 25 June 14 and 15 July 28 and 29 August and 2 September are shown on pages C-13 through C-24 -

_

9106lrl 02

31

The surface-level backward particle paths originate over water on all days the particles are carried eastward and northward into the Los Angeles basin On 14 July and 28 August the particle paths indicate primarily eastward transport There is some indication that particles arriving at the destination sites on 28 August may have originated in the South Central Coast Air Basin (SCCAB) On 25 June 15 July and 3 September the particle paths indicate primarily northeastward transport On 29 August northward transport is indicated

The level 3 backward particle paths also indicate transport from the W SW or SE on the intensive monitoring days The over-water segments of the particle paths indicate eastward advection on 14 and 15 July and 27 and 28 August and northward advection on 25 June and 3 September Again there is some indication that particles arriving at the destination sites on 28 August may have originated in the SCCAB Almost all of the particle paths indicate that the particles are carried onshore between Long Beach and Laguna Beach and advected northeastward to CLAR and RIVR An exception to this occurs on 28 August On this day the particles are carried onshore near Redondo Beach and are recirculated over the Los Angeles basin for approximately 24 hours before arriving at the destination sites

AUTUMN PARTICLE PATIIS

Forward particle paths (levels 1 and 3) originating at CELA and LBCC at 0700 PST on 11 and 12 November 3 and 10 December are presented on pages C-25 through C-32

The autumn particle paths exhibit more day-to-day variability than the summer particle paths indicating more variability in the autumn airflow patterns Because both the CELA and LBCC locations are affected by the land-breezesea breeze circulations all of the surface-level particle paths show some recirculation in the western basin Particle paths initiated on 11 and 12 November eventually indicate eastward transport

The level 3 particle paths also differ among episodes but are all affected by the seashybreeze circulation Particle paths initiated on 11 November show eastward transport from CELA and southward transport from LBCC Northeastward transport at this level is indicated by the 12 November particle paths The particle paths initiated on 3 December illustrate local recirculation by the sea breeze On 10 December southward advection is indicated

Backward particle paths culminating at CELA LBCC and RIVR at 1500 PST on 12 and 13 November 3 and 11 December are presented on pages C-33 through C-40

The surface-level particle paths indicate that particles arriving at CELA at 1500 PST on all four days follow a southward then eastward course Particles arriving at LBCC are affected by some combination of onshore advection and local recirculation The particle

9106Irl02

32

paths culminating at Riverside indicate a variety of possible transport patterns eastward transport on 12 and 13 November northwestward transport on 3 December and southeastward transport on 11 December

The level 3 backward particle paths for 12 November illustrate recirculation aloft by the evolving airflow patterns while the particle paths for 13 November indicate primarily eastward advection The particle paths for 3 December are clearly affected by the SE that occurs on this day the resulting particle paths indicate northwestward transport The particle paths for 11 December indicate southward advection and recirculation by the sea breeze

COMPARISON WITH TRACER DATA

Forward particle paths originating from El Segundo (ESGS) Los Alamitos (LAGS) and Vernon (VRNN) at times corresponding to the SCAQS tracer release times are shown on

middot pages C-41 through C-76 For ground-level tracer releases the particle paths were calculated using level 1 (10 m agl winds) for stack releases the particle paths were calculated using level 3 (300 m agl) winds A qualitative comparison with the observed tracer data is provided here

Surface-level particle paths originating at LAGS on 25 June indicate northward transport during the morning and afternoon hours The level-3 particle paths indicate that material is transported out of the basin through Cajon and Banning Passes by the upper-level winds Both of these indicated transport patterns are supported by observed tracer data

Surface-level particle paths originating at VRNN on 15 July indicate northward transport and exhibit good qualitative agreement with the tracer data

Both the surface-level and level-3 particle paths originating at LAGS on 28 August indicate primarily northeastward transport Most of the particles are eventually advected through Cajon Pass This is consistent with observed tracer at Redlands San Bernardino and Crestline

Surface-level particle paths originating at VRNN on the morning of 3 September do not agree with the tracer data While the particle paths indicate northeastward transport the tracer data indicate northwestward transport

Surface-level particle paths originating at VRNN on the afternoon of 11 November indicate westward transport and a long residence time in the central basin The level-3 particle paths originating at LAGS and ESGS show southeastward transport and recirculationmiddot by the sea breeze Surface-level particle paths originating at VRNN on the following morning again show net westward transport and a long residence time in the

( central basin but the level-3 particle paths indicate northward transport with recirculation

91061rl 02

33

by the sea breeze The smface-level particle paths are consistent with the tracer data Tracer was observed over the north-central basin and along the foothills on the morning of 13 November

The surface-level particle paths originating at VRNN on the morning of 10 December indicate relatively stagnant conditions with a weak sea breeze circulation Some net transport toward the south is indicated Particle paths originating at VRNN on the afternoon of IO December show little movement throughout the following day The long residence time in the basin is in qualitative agreement with the tracer data Tracer was observed in the basin on the following day The dispersion indicated by the widespread tracer concentrations however cannot be represented by a single particle path The level 3 particle paths originating at LAGS and ESGS on the morning of 10 December show southward transport and recirculation by the sea breeze

UNCERTAINTY ANALYSIS

A simple analysis was perlormed in an attempt to quantify the degree of uncertainty inherent in the particle paths The uncertainty analysis was similar to an analysis described by Moore et al (1989)

Three major forms of error in the particle path calculations can be identified The first two result from errors in the wind fields The most fundamental of these is measurement error as measurements can only be regarded as approximations of the true winds Regardless of the accuracy of interpolation techniques measurement error will always affect the final wind field The second type of error results from the interpolation of these measurements and the parameterizations and approximations in the diagnostic wind model This error will be greatest in data-sparse areas The third type of error results from the use of two-dimensional wind fields The two-dimensional particle paths do not incorporate the effects of vertical motion which may be a significant source of error considering the mesoscale regimes present in the study area

The particle path uncertainty in this analysis is the result of all sources of error and is therefore very difficult to estimate A lower bound 11 on the uncertainty was assumed to result from measurement error alone Here we use a lower bound uncertainty estimate to illustrate the effects of measurement error on the particle path calculations Several assumptions were made in order to estimate this uncertainty First average bias for all instruments was assumed to be very small Second instrument precision was assumed to be constant over the region Third measurement error (speed and directional error) was assumed to be normally distributed around zero The standard deviation about the mean was based on observational data

For this uncertainty analysis 20 particle paths were initiated from a single site at a single time For each 15-minute particle path segment u and v were calculated as described in

9106lrl 02

34

(

the previous section Small random wind components (representing the measurement error) were then added to the interpolated wind The smaller components were determined by randomly selecting wind speed and direction error from two separate normal probability density functions (PDF) To do this a uniform random number generator was used to find two error probabilities Ps and Pd between 0 and 1 An inverse normal PDF routine was then used to find the speed or direction error that results in error probability Ps or Pd respectively Commercial statistical software from Th1SL was used to generate uniform random and inverse normal PDF values 1

The PDFs possess means of zero and standard deviations equal to the root mean square error (RMSE) of the measurements For simplicity RMSE values for speed and direction were taken from those specified by Moore et al (1989) namely 02 mis and 10 degrees respectively Random error components were determined for each 15-minute segment of every particle path The resulting divergence in the particle paths represents a lower limit to the uncertainty inherent in the particle-path calculations

Plots illustrating the effect of the lower-bound uncertainty on the particle path calculations are given for one summer and one winter episode in figures 3-1 and 3-2 respectively The summer particle-path bundles (Figure 3-1) were initiated at CELA and LBCC at 0700 PST on 14 July The winter particle paths (Figure 3-2) were initiated at CELA and LBCC at 0700 PST on 12 November The bundles were calculated for levels 1 and 3 In general the bundles indicate that the airflow patterns do not vary abruptly in space or time The winter particle paths are less divergent that the summer particle paths

While plots of the particle path bundles qualitatively indicate the degree of lower-limit uncertainty a quantitative summary of the uncertainty can be obtained via hourly estimates of RMSE of all particle positions relative to that with zero error The RMSE can be obtained from

1 1 M 2 2

RMSE = - ~ dj[ lM ]=l

where

1

dj = [(xj - X1)2 + (yj -y1)2]2

and where Mis the number of particles and ()1 represents the position of the actual particle as calculated in the previous section (ie the zero error particle path) The RMSE is used to determine the growth over time of the confidence interval about the

1 IMSL is the registered trademark of the Scientific Problem-Solving Software System developed by IMSL Inc Houston Texas

91061rl02

35

NORTH

425 31570

SOUTH (a) CELA Level 1I

20

(KM)

NORTH

425 31570

SOUTH (b) LBCC Level 1I

20

(KM)

le-path bundles initiated at 0700 PST 14 July 1987FIGURE 3- composedd par tic le paths1 Forwar of 20 particBundles are

35

NORTH

425 3570

SOUTH

(c) CELA Level 3

NORTH

425 3870

SOUTH

(d) LBCC Level 3

FIGURE 3-l Concluded

37 9106]

70

IlFil

NORTH

CEIA Level 1(a)

3(170

1-Ul j

NORTH

425 3(170

SOUTH

(b) LBCC Level 1

Forward le-path bundles initiated at 0700 12 November 1987FIGURE 3-2 composed par tic le pathsbullBundles are of 20 partic

3391061

425 3870

SOUTH

(c) CELA Level 3

J8

3870425

SOUTH

(d) LBCC Level 3 10 2

(KM)

FIGURE 3-2 Concluded

91061 39

1 1c

i I

trajectory calculated using the DWM winds Hourly RMSE values are given for the particle paths bundles shown in Figures 3-1 and 3-2 in Tables 3-6 and 3-7 respectively For level 1 the average RMSE after 12 hours is 567 km for 14 July and 167 km for 12 November For level 3 the average RMSE after 12 hours is 416 for 14 July and 260 for 12 November

9106lrl 02

40

TABLE 3-6 Hourly RMSEs for particle-path bundles initiated at 0700 PST 14 July 1987

Time LBCC RMSE CELA RMSE (PST) (km) (km)

Surface Level

0700 000 000

0800 042 042

0900 057 069

1000 063 100

1100 093 128

1200 091 143

1300 111 168

1400 136 217

1500 229 227

1600 265 219

1700 394 219

1800 620 265

1900 796 338

Level 3

0700 000 000

0800 018 049

0900 064 090

1000 068 140

1100 087 172

1200 089 162

1300 123 180

1400 231 224

1500 337 258

1600 419 278

1700 427 306

1800 449 347

1900 462 370(

9106104 41

TABLE 3-7 Hourly RMS Es for particle-path bundles initiated at 0700 PST 12 November 1987

Time LBCC RMSE CELA RMSE (PST) (km) (km)

Surface Level

0700 000 000

0800 047 049

0900 078 065

1000 077 066

1100 089 086

1200 109 094

1300 089 092

1400 118 125

1500 100 138

1600 129 150

1700 147 160

1800 161 164

1900 156 176

Level 3

0700 000 000

0800 045 076

0900 061 120

1000 069 139

1100 092 171

1200 098 163

1300 096 156

1400 125 182

1500 150 175

1600 231 171

1700 261 152

1800 308 156

1900 345 175

91061 04 42

References

Douglas S G R C Kessler and E L Carr 1989 Users Guide to the UAM Wind Preprocessor System Systems Applications International San Rafael California (SYSAPP-89079)

England W G and L H Teuscher 1989 Perfluorocarbon Tracer Experiments During the Southern California Air Quality Study Air amp Waste Management Association For presentation at the 82nd Annual Meeting amp Exhibition Anaheim California (June 25-30 1989)

Horrell R S M Deem P Wyckoff F Shair and N Crawford 1989 Ground Release SF6 Tracer Experiments Used to Characterize Transport and Dispersion of Atmospheric Pollutants During the Southern California Air Quality Study of 1987 For presentation

( at the 82nd Annual Meeting amp Exhibition Anaheim California (June 25-30 1989)

Moore G E G Z Whitten J P Killus and R D Stevens 1989 Analysis of 1985 Air Quality and Air Chemistry Data Collected Under the South Central Coast Cooperative Aerometric Monitoring Program Systems Applications International San Rafael California (SYSAPP-89058)

Ross D G and I Smith 1986 Diagnostic Wind Field Modelling for Complex Terrain-Testing and Evaluation Centre for Applied Mathematical Modelling (CAMM Report No 586)

9106105

43

rr T rr

Appendix A

SCAQS WIND MONITORING SITES

(

9106103

-

((--_ 770

-

NORTH CM~RS 42 575

5 I I j I I 1---L 525 middot 1J75 I I I I I I I I I r I I _--- I C2~middot----_J ~ ~-- 1 ( ~ ~J25 I I I I I I I I I I I I l__ ) -475 () I Li 1~)51 (

--~ltJ820f-_ ~------ ---

~- -cli( ol --9-Sl-l

lt ( ~)

CQ p llE RiDO ~ llE ANAH

I middot LAS-L

bull~ LANC ( _ Q - _J ) ) - _ ~ - ---- - ~ _ ____ middot clt G~ _----~____-=-- -___ ~PR __ - ---- --- VCTC ltgt

-- ------ f---- __ - ---_ -middot ------ --___ --~-----TEME --- _ f

-)(j _ _ middot --middot -------- - HESP f ----=----==~~~ l ----~~ -- middot l - --- __ -middotlt- CJ _ --- middot PIRs[- lt NfVL_ ---~ - C~lt --lt _ ~ ~- __ (~~

__ --- bull _ i - f c-_ _ I - )~__) - ---~poundS---_-

3770 t-()

LA llE PICO )Ct444 -w 3 ~~~ZUMA MALI VE VEN llE llE middot Jl~C - ( p

NN WOOHS ~- ~ m - middot - o - I () )IE 55I

1-- (lt - - PERI ) ~ S__~llE

BU25 bull y _ L ~~5o 13720

I ----~- - 515 3670 525

(KM)

~---

SNI

20

SCAQS SURFACE WIND MONITORING SITES

19 JUNE 1987

0

qj n

If) N ~

I

1S13

Ishy)

0 Vl

(f) w I-V)

l)

z a 0 1---

z 0 2

0 z 3 a ~ I r---

0 CX)Wm Q_ shyQ_ ) w

z (f) )

0 7 lt( um Vl ---

0

A-2

-

r~

NORTH CM~RS

I -middot_( lt - middotmiddot -~ ---lt - - - middotbulll- ) middotmiddot-middot - - -c ) 0 0 l__SG- ___ J1 bull_ -- VCTlt I

_ --middot ---middot llSeR - - __ - --middot----- J~__-- middot - - - -middot bull bullbull- HESP ~-_-middot- bull- ~- _~ - -___---middot - ~ -_ ) ME --- -middot - bullmiddot bull -_

38201-_ ~~_ _ TE _ C-bull_- - CJ - ~Jj __ -_

1

1 bull I bull __ (]

SI bull bull=-middot _ -~ ~~ ~_-__ middot _J lt(- j SIMI -M~S -~_-~It_ - - 1Ir- I w _ I B~~ AZ~~~1 AL SNBOC ~ (ELRO l~ Hf~~ ideg_=- --

)1__ CE~ wftcentrHIN RIVRM44 --- ~--- ---~ LA PICO __pound bull P

T ~NN WI-V C) D 2J~55I Wco - middot PERI Lv

R~O ~L ~AN~ TO~~~~ ~ ~ ~-MO

62

~ ~j~l)~gto ay 3670( 525

SCAQS SURFACE WIND MONITORING SITES 24-25 JUNE 1987

~ (

NORTH 275 325 375 425 475 OA~5 575

f_~ CJ ~ -middot--

_middot

middot1 Imiddot

)i

gt--o~0 (~_)r-) _ (~~3s20

--~- middot qlt ( ____ - ---- - lt__ ~ ~ -i~ J ) _ - - -

-~ -__ J V 38201-~--o- lt-

-----~~middot ---- __ - ~---- -_--- ~====- -=_---~ ~ _

~ -- middotbull ~gt ----_ _______ ) ~~~ l -- - - i - --- l

( _ (_-~ _-lt~~ - )

2middot1=~ (~gt lt_) -~~~~~(_~tJt-~~~~t~~~~-~) ~

uR--- -----Qi~ ~ 3770_ 3770 -middotmiddot--rmiddot- -7 ~ 1-

(J) llE ONT _ -middot __ w

Y-_ EMU c __- ~ Ul lt(1 w~

- -- - LMIIEUA sFtA ~

1

----_

~

_

t_~~ -bull _ middotgtI __

~- 0 ~~QgtJn~-~ ~II~

~ f-- -) -) ) ~ ~-

j (_1_j ~~TRM 3720 ( (__ -CcS l l 3720

~- ) -~ --7( ) __~---L_ ~~1-----~D~

1 ~) a --- ~middot 7 rt 0- NSI (

3670 I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I 1 I I I I I f I I I 1 I I I I I I I I I I I I I 36 70 275 325 375 425 475 525 575

SOUTH

I I I I I I 0 10 20 30 4-0 50

(KM)

SCAQS UPPER-AIR WIND MONITORING SITES

24-25 JUNE 1987

--=-

NORTH 25 575

CM6QRS C__j 475 -____

3 ---- 375 425I - L ---) - ~-

SNI

-_-~)---_ lt-____ ___3azor_~c~~ sl

VENt ELRO

BU25

275 ~ c--) ~LANC ~~-_ lt ~ 0 9-~

llE

3670

----~ - J Q ____ ~- lt) ~ 3820____ -- middot--- 0~__~- __ J S --- ---~- ---- -- -- v~ ~ ~ ===-~ - - - - ---- - - ---- - -- -middotv ------------ -~ l f----- _ -- -middot _ - --- __ HESP ~-----=- c~i - - _- --- - - gt - -bull TEME -- -middot - bull ----- -- - _ middot ( lt~ clt=~ ~i cJ~ c _

~I -~~le lt~NJWl--------~- -iHitgt~-=__~~ _I -~ J~~~ ~ 3770 r-1 - - -- -- - ltJ c__ ---middot ~ ( - ------ -c_ - - -~~~ ~ ()-~ ~ - -middotMiss ---~---=-~----r~-__ -middot _frac12 __ i5

j S ~R~~HE -7t$ llE llE ftALSNBO llE ~~ t __ -R~ B~~SA AZ~jl~r RD ~~_ ~ 1( )l___ llE CE~HAllE ~~ - RIVRM44 - llE ------___llE W~HIN -Jti )Ii ----------- __

~--- LA llE PICO l llE C -- r p

ZU VE NN Wt-laquoJHB 0 1~55WT IN - ---- ) llE CO P llE llE ( gt (____ PERI ~

IJl

~ 71t~P325 425

SOUTH

I I I I I I 0 1 0 20 30 40 50

(KM)

SCAQS SURFACE WIND MONITORING SITES 13-15 JULY 1987

clt(middotO -i ~Ill ~

()VL~t

~~) o2~ r

275

-- _~middot middotc-- ( ~ I - ___ ) --____ ~~~

---- ---bull-~ ( lt ) lt I ~ (J () - _ ~ ~ J ) bull middot ( - ~ ~- - --- middot - ~ - middot middot G--~_J lt)

cce- middot- __ V ___ -- l - _- bull middotbull - - _~---~ 3820r----=-~_~Jrlt - - - middot f ~l-~--~--~] I c___ -~c ~ -- ( _ 1middot--- 1___ _~

-I -- = lt -bull lt middotmiddotltmiddot~- middot - middot -L-

- ~-- middotbull ---_- --- J middot J ) ) -- bull- ~-bull _ --middotbullbull- middot middot _ j -- -)) 3770 -ii __gtc _ -- - - middot bull ltmiddot ~- I - _ltbull - -_j-- tn

BURbull-- - middot - - - ) ~~middotj- (~~ ) (middotIi lt(

GL U I ~ - - - w ---~ - -1 __ - ---------= ------___________--- ONT middot middot __ - --_ -

poundMUI - - ~ ____ middot----~~i -__ ~ I

--

--- ~ c) )_

deg ~

_- - (

_l

_ ~ )

C-

~ _middot

( T( f 1-

525

t j 30 50

(KM)

SCAQS UPPER-AIR WIND MONITORING SITES 13-15 JULY 1987

_==--

J ANORTH CM6sectARS

3s201-

~- ~ ~ ~ ~0A - --__ - -----~ ---~- --1(j - A ) __gt ---------_

-~~J TEMEa l_C ~r1

0

820

_--C~ = ~~~ltCH~~ J ~ S~I ----i4~58 ( J

tigt-1

-J 3 BU25

frac14~) 8 F1(5

- HA

APICO RN A A ~ N WVHB

AANAH

~IHIN J _CM44 ~-

A

CY PERI N ~ iJN

D A

HEM

770 ~ V1 lt( w

~ 3670

SCAQS SURFACE WIND MONITORING SITES 27-29 AUGUST 1987

) w l-1

C)

z-a 0 1-

z 0 ~

0 z - r---3 co a Ci)

- -ltI lshy

a )w ) Cl 0 Cl ) ) lt(

V) Ci)

0N ltI u r--- () N

A-8

NORTH CM~RS bull r (_J~

1

325 - - l L=~-) ( bull

1275 _ ( ~ --- -middotbull LANC 1 _ bull I( f LJ- ~ () ~-- 3820 bull- - J bull

- --__ _ -- )- bull bull - middotbull-~- _ I v----_J -- J middot-- - middot- - -middot I I J_______ ---==-------------- WSfgtR - -- VC _____- ltgt

-~--~-- fJ- -middot - - - --- --- _ - ----- --- ----- ) r bull---_ --- - - -- bull p -- --__-----_ - -----

38201-_ -------~- TEME --- --- - - bull -- middot- bull --- _----~ -~ II middot ) - ---- -- -- _ -- HES f I-----=-- ~ ------- ~ l _ -- - I

- bull middotbull-bullbull~ ll( middot bull - middotbullbull - 1 I ~----- middot-bull

9 -- ___ __ _ -------- _=- r _ -- )J -~~ ~~~ 3770 t--SJMImiddot MISS~~~--bull ~--~-- ll( -_ ~-VENt Cllfl58 bull I middot- - middot- - --JOE ~--bull bull ~ V)

ELRo __J 4Esc euRK ~Ej1 fAL sNeo I ~ _ J middotmiddot -~~ 1 i5 l - ~SA ___ I ROLD ~ ~ C~ ( _____~- -~ llE CE~ llE W~(HIN RIVRlK -- - 1 llE __~

3770 middot- ~LA VEN Pl llE _ _- JJ~C _CM44 - ~ p ---__-_

0 ANAC cubull~ - - v~wr LyenNN WHJHB --- -- Q~~W)( ___

- llE HA ~ -lE _ -- _ - -_

I 0

SAi middot-middot J) t450

3720 LA r TO~omiddotlt~lt~~ -~ ~ (~~

~ ~ r-~~~1~ o ~~l~

SNI 1 (l_ amp-~ 575 3670367g75 325 375 425 475 525

SOUTH

I I I I 0 10 20 50

(KM)

SCAOS SURFACE WIND MONITORING SITES 02-03 SEPTEMBER 1987

------J ------------------ ) I-- 38201--__--~~- i) ___

_-- ~--gt--

-__

_

NORTH 275 325 375 425 475 525 575

YI ~middotCJ~bull_bullrmiddot--- lt I __ (_______~ ~ - - I -- J ( - - - - - - - J i O l__ ______________ -~

~j ( lt- bull- ~ 0 C) ~ -- (-- _)) ) ----_--__ -- middot-- _ - --J ) J ---- - ------- ----- middot----- -( ~---_j

3820----==--=-- ( - -middot bull __ - ---~----= --- ---- -- -- ------------ _______ ltJ~~ A I --- - ---- - -_ - _ --_--~-- -_ - --~co___--_--___-__----- f middot l - --- - --- - __- ---_-- -- ~ middot -middot __ J L--~ cmiddot

---- -- middot--~-- -- -- - _ _-- - - ~

--- - middot- - -C-_--- - -~ rmiddot middot) _- ~middot~ I--- ----~deg- -- -- C _-_--_- __ __ _ ___ _--_--~ __---- ~---lt lt ltgt _~-__gt_ ~~-- i~ - UR ---- -------- - ----~ --lt I middot- B ~----- Qll __ ~----- _ CI____ ~ __ --- ---middotir ~ - 3770

1-I- 3770 () U)( - -- -- 0~ - j _j ______- ==--=--_ --___ - ---w lt(

w~

~gt middot1 r-

0

3720 3720

middotmiddotmiddot J ~ ) ~l - ~ ~

~ tmiddot~----_7~~ p__ D2)t~~

NSI I(--_ Imiddot- 3670 3670

275 325 375 425 475 525 575

SOUTH

I I I I I I O 1 0 20 JO 40 50

(KM)

SCAQS UPPER-AIR WIND MONITORING SITES

02-03 SEPTEMBER 1987

~ I

t

NORTH CM61yenRS

----- I uic middot I Ibull 0 z_ ~ p

-_- - - - _ - middot-~-_ ------- VCRV

820 --- -- -- I W-gtER --- _ ---- --- ~ ) - -_ - I _ _ - _ --- _ _ _ -_ bull _____ _ _ - -- -- -- _ --_ ----~ HESP 3 -- ME -- -middot bull - --- _ -- _ TE - -- __ _-- - c----~middot - r

PIRlb -_1 N bull--~ _ --lt~_- - _ _ ---------- - -MISS_ _--- ___ bull---=-- _llE ~ ~ j lt) hlt---- F-~~--_ ----1A-_c=_--middot llE ----_ ()

-middot SIM ~ICAN llE RIALSNBO llE ~J -------~~ tllE ------TmiddotllE~I ~ES BURR~ AZ~ ~-~r- RD ____-- -- ~ bull FIIISA l- bull -~~

( )l__ -middot middot c(~HA w~~N ~tfJ1 -- -- ~ ~ 1

_

375

~) middot middot ---lt -__ lt_ ___ ___ -i____) C-middotdeg - - -

- -- J_ _) lllt

_ =- ) - -

L- ~~- Iii - ~ _________

-~ 0 I -- (

SI lllt

E

NT CM58V

( j gtT__~_____)___ -- ~l- ) (

middotmiddot-- -_ bull _ ~- () ~

I --J vlt__ ltgt

--- --------- ~---------- C -

_

~(__ f - -- ~---middot)1 ~

t ~ I

I- I- ~

3720

ANAC Wo~ middot -~- lt_)

44

PERI ) ~ tlo

25 R~ ~~ANAH _i~~MN ~~-w--- ~ _ 00 )

T middot I BUllE I -eM62 7 llE

-- - ~

~ 425

SOUTH

20

(KM)

SCAQS SURFACE WIND MONITORING SITES 11 -13 NOVEMBER 1987

(_ (___JCcS ~~)

bull ------------~ - - ( ~ r-------------- Dbull ---

J

575 3670

1SV3 0 0 0 0 N r-- N r-- a) r-- r-- co I I) I) I)

I bull bull I I

I I f1 1 ~~ I- I I-)

0 l)

l)

w I-l)

L)

z Ct 0 I-

z 0 2

0 r-- z OJ

m3 Ct a lt( w0

l() mI Ct 2

~ ww Q_ gt

0 - Q_ 0 I) 2 ) z ~ ___0

N (I) n a

0 lt(- u ()

0

n 0 z I)

N +

lf) r-- I)

- I I I

i I

I 0

~ -L

w

i

~ LL

I)

C-1

+

l() r-- I)

1S3M

A-12

-~

igt I _

l)

CM~RS 275 325 375

NORTH 425 475 525 575

_J- I bullbullbullbullbullbull ~ I bullbullbullbullbullbullbull bull I middot bull -gt-----middot bullbullbull 3 )--- ____j lt c----- -_ -- gt _ ___ ----- t__ l___

-- ------- LANC l ~ ---------- __ ) -- __ ~ I ) ~ - -=~__ I -~middotmiddot- - bull middot bull bull bull lt lt Cl --- ------ ____ -~ -

38201-- ------_- ) ) -- _ ---- -- -- -- - () - --------- I --- -~-lt~~ (middot__ TEME ) --gt ~_ ----- - middot--- --- vamp c~ (~ 0~ ___- --- gtIpound - - - - ---- -- - - -- _ - - ~ ---- - - - ------------- 5SI -middot PIRltgt ----~ ( -middot _ - -- --- - --- ) HESP --------~ ltgt

___ __bull_rbull ~--------~-___ -- ___ ----gt--=- bull~ ~~ I - ---__-=---- ----

VENt CM58 _ sti --~~ ~ lt_ -~-- middot_~-~~ r-~- --middot) ~~) _J MISS-~~-- ___-_ __)~ -- ---( C

- --RESpound BUR~--==-=~----r~---_-__- ~- - ~ _- ~ -1 -

3770 I- ANAC

J I )l( ~- ~-- - i middot ----middot -X--Ret-----_~ -~

___ ( - -middot ~SA AZ~ ~ o j -------=--------~--gt~-- dampHA ~~~f __ SNBO ~~ -~

ZUMA MALI LA w~M -jmiddot I R~J ~-s ~__ )() w ~

3720

8U25

VE VERN PICO _ middotyHIN RIVRyen ( ~----- -~ CM44 -~ ~- ----- ~ C WT ~NN Wt-0HB -NQRC - middot- ~NN-a-~~ _ ~ co~ __ -- ( ~ ~

RVIJO ~ilff AN~ gt cmiddotbull yen 0 (~~ p LASAl I bull- - PERI ~ ) ~

rJ]~~_Y)~N ) (_ --

_T -cJ62~-~

~ 5j(bull 1) ~Jso

l -~

- 1 J) -~ ~7~~t~~

3820

3770 1-() lt( w

3720

I I I I I I I I I I I I I I I I I I I I I I367r I 367075

I 325 375 425 475 525 575

SOUTH

I 0

I 10

I 20

I 30

I 40

I 50

(KM)

SCAQS SURFACE WIND MONITORING SITES

03 DECEMBER 1987

NORTH 275 325 375 425 475 525 575

I I ) gt ~ _YC) ~ ~ I ( o c_ _------- (

___ middot i I 97 ~___ _ --1 cbull-- - - C -___J -- lt ( ) - - - - middotmiddot ~ l _ ----_J

I ---middot ___ __ middotmiddot-_ 1 -~ __J ) bull- middotbull_ -

3820 ------~- I -~middot --- _ middot--- -------~

C - ~ (___ _ 1 ) -- _ - - - gt _ bull f-_- --- r ------~__ -----I --- ) I ~ -~ gt ----- - --- -- ~-_]) c_middotI 38201-_~~_ l _ --- - (-- ~ f ~ I~_ - middot - middot -middotgt- -- -_ -- middot_ _- 1 L- l _- -

~----- l -- middot middot ~- middot-_ _- - middot middotmiddot--gt---~--t~~)-1 bull lt_ _ _ bull middot bull - middot- ~ ~0---~ (c ~ I ~

_ I - bull -~~~--gt~~~-~~ bullS- _~_ l ~~1t~~_~(~ t 3770 I -- -- middot __ - I S____ ( 3770

I- 1-() ()

gt w - I __~sect~- ---ONT lt(

w

tgt

f-- I

~

middot - middotI

-

L~i--

37203720 c_J - (_cS) l -~~

NSI

367~~51 3~5 13~51 14~5 I I I 14~51 is~s s~s 3670

SOUTH

I I I I I I 0 10 20 30 40 50

(KM)

fJ~

SCAOS UPPER-AIR WIND MONITORING SITES I 03 DECEMBER 1987 r~J

NORTH CM~RS 275 325 375 425 475 525 575

middot middot ___ I middot 1 I )l ___ QO --middot - v_ (-- - LANC middot ~ C) lt --bull_ I -- -- bull _ ~ - ~-- ) -------_ -- - _~-- V --I 1 J --- - bull I -J- ---middot - _ bull__ - vc i --- ltl

3820~-----=cc~ I middot -middot - middot - _ ___ -- - 1t ~~------- middot - ___) - - middot -

J-cgzot-- ~--- j 0 TEME _middot ---- --- -

-____ -- ---- _- j (

- -_ I -- --~ _JI( ---- bull bull-- llf -middotmiddot l - -- bull _middot_ middot I --- -- middot CM58

_- 1 -- middot - middot~-~ - -~__ ___ ---~-~_--__~----------D J-~J~bull A HESP

middot OJ11 r P1R1tc lt--~i_-_~-~- ~c~_r--~-~_--_~r-=-~~~~--~ _ --~ --lt__~~~~- CSI ~ -~ --- ---- middotmiddot - ---- - _ ~ r ) J

)gt SIMI -MIS5-X ~Cgt~---- middot-cemiddot middot ____~ ~ middot~ l~fu__ suRlfiI_middot- -tk~- flAf SNBO __ middot ~-~ l 3770 _ 377ob -- ~ PJIISA AZ ~JIily~ _- RDL ___ bull ( C t-shy-- -~ I ----- ~HA 71lt V)tn ANAC ~---- CE~ WALflHIN RIVR ----- ~ w

w ~ LA PICO - CM44 - T -~ ~ ZUMA MALI VEN middotbull _ -bulltRc __ ~ ~lt~~7-

N WuHB _~-- -middot bull ) _J~N ~ -- ~ 0 - ) ~ I ltgt -_middot PERI bull I- ( _

V 8U25~ 3720 3720

WJlt~ ( ~ ~ ) 1 i

~ I I I I I I I I I I I I I I I I I I I I I367r I bull I I 3670

75 325 375 425 475 525 575 SOUTH

I I I I I I 0 10 20 30 40 50

(KM)

-~ ~

SCAQS SURFACE WIND MONITORING SITES 10-11 DECEMBER 1987

NORTH 325 375 425 475 525 575275

-- ----_ lt_~- c--- - ~ ~ _ I I - ---~~c------ ) _ -middot - gt~-

3a2or ------__ lt- ) 1 middot--- -- __ - ~bull =-------------- - r---_ ___ - bull- ---- I I ~ ~-- jc- I bull - - (bull I --- middot middotmiddot - ~ -middot - -- ~ - 3820 -~- bull - middot - - ~-_ ~- _ middot- n

(

- 0 lt_( ~_lt- ~-~~- middotmiddot) ---- ()_ (---- --

--

____ middot

-middot

I

f----- (-J 1r---J~ --~ - middotlt ltbullI I ~__---__ ~-

l B~--- _c_ gt-- lt gt- (- - - j 1--_~--~--l~ -- -- --- )l

-- - --~---- middotc middot=-~-~- (~ L ----- -- --middot - -- - - -bull --- - - c-) ~ J _ -- - ---- - ) ) ltl

37703770 EMLgt middotorrmiddotbull __ ) ~~~~ofmiddot - -- __s=__I- - - ~__- ( ~ __ )---__ Ishy

V) ~ ~- lt(w ~ ---- --~ - w if)

-~2_~middot) ~~at~s t I

I-

deg

FUUA

i () ~--J)llC~lt I

3720 3720

~ltl__ (_)i~

~ NSI

367~~51 I I I I I I I 13~51 I I I I I I I 13~51 I I I I I I I 14~51 I I I I I I 14~51 I I I I I I r--- I5~51 1 I T I I I I I 5~51 I I I I 36 70

SOUTH

I I I I I I 0 1 0 20 30 40 50

(KM)

SCAQS UPPER-AIR WIND MONITORING SITES

10-11 DECEMBER 1987

Appendix B

SCAQS DIAGNOSTIC WIND ANALYSES (Six-hourly plots Levels 1 3 and S)

Summer Intensive Monitoring Periods

19 June 1987 24-25 June 1987 13-15 July 1987 27-29 August 1987 2-3 September 1987

Autumn Intensive Monitoring Periods

11-13 November 1987 3 December 1987 10-11 December 1987

Page

B-1 B-13 B-37 B-73 B-109

B-133 B-169 B-181

9106103

Summer Intensive Monitoring Periods

9106103

19 June 1987

9106103

1bullbull-lil

1SV3

I I lshy Ishyo )

0 0 z ()

IO N IO

I()

N -st-

1S3M

-- l1

l~ i --

0 z 3

---

2 0

_J w cjr----_J CD

0 l() z

I- =)lt( 7

f) 0)

0 -- i n 2 Ishy7

0 ~ ()N ____ gt a 0 20

3o 0 ~

0

B-1

1Sv3

( I l-et 0 z

(

lf) N st-

l() N ~

l()

N 0 t--

n

0 N_ n

U)

ON r-shy(0

n

1S3M

B-2

_

2 0 0 tlt)-__

tlt)

_j w 2jr-_j CX)

0 lf) I- z

lt( ~ IJ1 0)

0 _ 0 n 2 z 1-0 ~ N - 3 ~ 0 20

3o 0 Ov

-----

lSVJ

l)

----

l~3 O 0 w

w ll) (1

l)

0 0 z 3

I lshyet 0 z

--

2 0 0 0

-

LO

w ~

GJ r----~

u 0 z

OJ

I- gt lt( J

mif)

00 ---shyI) 2 z I-0 i l) N -- 3 (1

0 2 0 3 0 0 ~ 0

lSJM

B-3

1SV3

- V1 --

~5 O 0

E - w

w Ul_ 0

V1 0 0

z ~

I I lshy I-et =gt0 0Z V1

-

2 0

J wr--CJ OJ J z0

Ul I- =gt lt( ~ V1 -

0 - n 2 0 z 1-() 0 ~ N __ 3 0

0 2038 0

0

U)

l

lO N v

0 N agt n

0

r--n

0 N

0 N r-shyn

U)

U)

U) N U)

Ul

q--

Ill N q--

1S3M

B-4

td I

J1

~ ~~~~~ ~ -~~~~~ J - -~--Qf~J ~lf~ ~---~ ttt~~~~H~f~ ~ ~~lt~~~0 ~ - ltl-_t I~~~~~~-~~~~~ ~~ I _~1c j_~ L ~ (__1-T11__1 ~_-~_ ---~~~~~~ 11 - ~ +f--1~- ~-+--41-- 1-~- ~ ~ -rtt1-~--~~~~~~~ ~ ~ ~ ~ l t I J JI JI~- t _I i~~I~~~~~~

377itttttttt ~- - t I Jf --------_-- _ 70 ~ ttttttttttttti- fllJ~JI-~~_- ~~ _ =- ~~~- tn w - t t I I I_~- -V _ ~ -laquo___ _ - ltC 3 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ t t t t t I I I I JI~ JI JI ~~ I--~- ~ ~~~~~ w

H~HHHH~in+~l~Hnf5-I ~ ~~~~~~~~ ~ ~ ~ lliii it t I~t~ltt~rrrr~~~~ jl++it~~~t~

20-~~~~~~~~~J tttttttf ~~~~~~~~~~---~-~~~~~~~~~~~~~-amp~ ~ t t t t t t f f f I I I I ~ 1 J(-- _ --P ---~~~~~~~~ ~ ~ ~ ~ ~ ~ ~ ~ t t t t t t t t f f I I I I I ~ ~- j~J _ ~ ~ z~ ~ ~ ~ z l I+ nm~t ~ ~ ~ I I~Jt~-~- -~-__~~~ tr ti ~ ~ t t I t f f I I I I I I I - ~-r __ - ~~~~~~~ ~~~~ ~z11 ttt ffflllllIIII -~~---~~~~~~~~~~~ ~~~~ ~~ ttttft ttflltllllllll A~--~~~~~~~~ ~ ~ ~ ~ ~ ~ ~ t t t t t t t t t t t f I I I I I I I I I I I I I ---P~- ttttttttttttlllllllllllI -~--L~-~~~~~~~~~middot

367 70 ~75 325 375 425 475 525 575

SOUTH

1111111111111111I I I I I I 0 10 20 30 40 50 0 5 10 15

(KM) WIND SPEED (MS) i

NORTH 425 575

_ 414111fl-~bull __~) ff I -lt~i ~ + lJ Jmiddot-bull A fl t1 it bull- _I~--~---~----_---~_~~~~~~~11 t1

~~t 11 f + + diamsJ diams 1 )--t-_+ J~ I-(_ 1 1 ~t1 __

__ Lt l l t fL f_l - - +~~----~~---~___-+_~~~ J-t-t t---t-lt t t-t) LJ lt fl ~ -- t---f t tT~-- ~~ 1__t -t ti t_1 + l - -~-~-~-II~-- - ~~~-----~----t----~~~~~~_Efftt -- r1 ~J t l Lt t

fl

~ _ t_ - 11 _ _

Fi ru bulll=ti~ ~ ~ ~ ~1H1~~_~-~-~----~~~~~~~~~~

DWM WINOS AT LEVEL 3 (300M) 1000 PST 19JUN87

1Sv3

I I-shyCt 0 z

1S3M

B-6

0 II)

0 I)

-_2

0 ~ N -

0

0

-_

2 0 0 0 -

LO

_J

w r---CJ O) _J z I- gt ~~ if)

0 1--shyz V) ~ Q_

20 3 g0

NORTH 525 575

~~~__A -~___~~-

F- ~_--P~

~ ff~~-- - _ middot- ~~

_ bull bull bull bull bull

_ p

~L~k~tt ~ 1 t A middot1-t

~ r~ 1 11 1 __ bull bull --l t frac12Q2_

~ ~--r-J-+7L~

1--Ui

3770 _yen~AA- ---~ ~__~_ ~ K---r

eno tshylf)

w ~ ~ ~ lt( 3 I I_

- w

td I

-J

~~~~- ~ ~ ~~~ shy ~ ~ - shy

3720

~ ~~~ -~1~-nu~~~~-

~ -~ - ~_____A~~1~ ~ _~ ~~= ~~~_______2--- ~

720

~~~-~~~~~_ 9~tbullmiddot~qor~frac12

Y~poundpoundpoundpoundpoundpoundL1~~~~r~ ~ middot

375 425 475 525 575

SOUTH

I I I I I I 11 1111 1111 1 0 10 20 30 4-0 50 0 5 10 15

(KM) WIND SPEED (MS)

DWM WINDS AT LEVEL 1 ( 1 OM) 1600 PST 19JUN87

~

NORTH

Arlt~~~ ~L _ -rJ ll

_ I I I t

_t-z~~J ~i~ bull

i- ~~~ Ii ~~( trn

3770 I - bull bull bull bull bull bull bull iigtlaquo

--- bull bull bull _-

~fJ~ t-l-lltf[llJ- jf1 rr]I ~ ~~~ ~ss~810Ja2ot-~~1i lmiddot - 1 17- - -

-ltL

~ ~ 70 y ____~ tshy

l) ) _-y ____~w

w ~

~ -~--- - -- ~ 1 ~~~~ __ _ bull---bull laquo-___~ Y~~

___p~~__---A~_A 1 ~~td I ~----______A 14 1 ~

00 _-________________ ~ __~----~1~ -A________________--r__~~~ ~ ~ ~~~--~-~~~~-~---e--~ ____________~_________-~ h

3 7 20 t-_--~____- ~ _ _ ~~-_- _ _ _ _ ~___~~~r--~~___-K ~~ ~ -~-------~~~----~ ~ ~~__________~~~~~~~______-r_-A~-1--~~~ ~__________________----r~__~__~-Y~~-------__---A----r~ 1 ~ ~__~___________~ ~

367 tcrr~__~y--rrYlt-trltltltltltlaquo-ltltltltltlaquoltlt~~~ ---

9imiddot~75 325 375 -- -

1111 1111 11111 1 1 1

0 10 20 30 40 50 0 5 10 15 I I I I I I

(KM) WIND SPEED (MS)

DWM WINDS AT LEVEL 3 (300M)

1600 PST 19JUN87

NORTH

bl I

0

~________________A-4_gt~~~_____~~__________~A

A~altP_ ~~~_________--~_A 38 20 I--=-~~_~~___~~-_-~~_ -lt~ - ~_-~_A--1~ _

~~------ ~ gt-~ ti ~----~ ~ _~~~~ 0 ~ ~-i---~~411___ I~-~~ I~A-~~----~7A7~-

A A~---~~- ---~ ~ ~ -middot~~ 1-27 ~shyA_~ ~~~ Jl--__r-t~ ~ (K~_ - fl_

A ~I J111 I _ A - ~ _ T-~ v I 1 1 1 1 1 1 ~ 1 1 _ Ji J I~ f --_i__middot1(- ~ ~)( ~JJXZ - _ r ~ - _ )( _ II I 1 ~ 1 I - _~ _)~ ~~

= 1 II II 1 (~ ~--=-~ -7fJ~~~~tm~i I- 3770 Jir - I 11 I 71 (I) ~ ~111 ~

w ~--middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotbullbull bullbull ~~~11Zll~~11~ ~ ~~_~~~llllN~~ -~~ bull 11jh fi 1 1 II 1 1 1 1 1 1 1 1 1 1 1 1 1 I I 1 0i~~~ 1gtcJ~l~p~ ~~~ ~~~ ~rr1111

70 Ishy() lt( w

111111~~ 3720 i- 1 1 ~ ~

~1~I A-A~)I 1111AA _~l11~ 1

lllllll11IIIAII- ~II ~1~~__~~Ill~~~~~ l1_ 1~~~~~~lll~~~~1 llllflfAll-)lllllllll1~~~~~

A I I I I I 1 I I I I 3670

275 325 375 425 575

SOUTH

I I I I I I 1111111111111111 0 1 0 20 30 40 50 0 5 10 15

(KM) WIND SPEED (MS)

DWM WINDS AT LEVEL 5 ( 1 OOOM) 1600 PST 19JUN87

~

A A A

1Sv3

(

1S3M

B-10

()

l ~

---u) 2 __ O 0 ~ w

w It) Q_

()

0 0 z 3

0 It)

~

0 ---I) 2 ~0N _

0

0

---2 0 __

_J

w r--- GJ OJ _J z __ )

~~ () r-

0 __ z ()3 Q_

~o 3~ ON

NORTH

middot-~~) K~xJ~ middot_1~ ~ 71( I IJ ~JI

~A I 1 ~~

liii[i~~ Hf~-~~~=~T-- ----- --=~~g~g~bull11ft _ ~~~ -1-x~~~ ~~~~-~~~--~-~---~ --~ t ~t~ -~1~~ -- ----

-lt J 1middot~~ __---~__

3 770 ~ ~~ --_tn ---------~~ 1 ~____~ _ ___~ -w bull Y ___~~~ (Al _~ _ ~

-- bull _ _ _ bull bull bull bull~___1 1I J~ _~

~- YI J _L ~~ ~~ YJll~E~

td _____-___ ____ __ 1 ~xgtx2-I ____________~__-A (~~~~ _______~~2-1 y~~- ___~__________~ ~

3 7 20 I-___~~__~~ Y --~ ~__ I _ - - _

~_---A~ ~---__~~~~~--_____~ ~ ~_____A~ y ~ ~___-__________~~ ~ -

~__-_______-yen_2 ~ ~ ~~_______~ ~

1 367~ 75 325 375 425

SOUTH

1111 1111 1111I I I I I I 1 1 1 0 10 20 30 40 50 0 5 10 15

(KM) WIND SPEED (MS)

DWM WINDS AT LEVEL 3 (300M)

2200 PST 19JUN87

~-

~ - - ---

NORTH 275

___ -~-___

- ~ I o_ ltAbull~-P- bull bull -P diams bull~--~~~~--- --- ~ ~ ti ~ ~sbull3820 ~=-J~_~~middotmiddotmiddot~~~--_~_=- =~_~c s~ ~3~

~~- bullbull~~bull~~~~~~ - bull -~~bull ~ v i-_ --- __-_ ~----~

~- st-~~1 17-~__4 ~ _~ ~-~-raquo~~~ -f _ _ bull bull bull bull~ bull bull-__-v 4 t ~ ~v ~- Jl_~ ~--z~~=~s~~~~Mil

-- _ ~ frac12--~~- -=~~ ~~l~1~l~tzi9~J t~ 1 1 1 1 1 1 ~-bull ~~___- v q (If V pp p I l_77rtfl _

3770 ~ ~ ---- I h1yenzi 1V-r-() bull bull ~ ~~~~~ w ~ bull ~ _ I JI J(_ )-II101-1 3 ~~A~~~XI IIJ~~~

~ f A I~ I I I I~--L -

tl ~1111111 ~K11~~llll~i~~~~I ~rr ~~ ~xgt~~~t---

N ~I I II)(01~ ~ ~ ~~~ 1~Y~lt~~~~~~~~ ~~~~

3720 iYY11Alllll1lIA~~~~ ~~---Y~---_ _ _ - ~ bullbull - - _

~rrll1IIIIIIIAAAA__

___________~~~AAAA~_~ ______________~~~~KAKAA1~~ lllllllllll~AAA1f~~

_~~

3670 t1i11 i i 1 i i 11111 i i i i -i i [ 111111-111 ~ ~ 11 ~ i I t 1 bull rm r~ij e =~~ raquo-il3t ~ 275 325 375 425

SOUTH

1111 111111 11111 1I I I I I I 0 1 0 20 30 40 50 0 5 10 15

(KM) WIND SPEED (MS)

DWM WINDS AT LEVEL 5 ( 1 OOOM) 2200 PST 19JUN87

24-25 June 1987

9106103

1SV3

1S3M

0 w w Q_ (J1

0 z 3

I f-shy=J 0 (J1

-_

2 0

--

_J w CJ f- _J OC)

0 U) z

f-shy )lt

J q-

(J1 N0 -_ 0

rlt) z rshyl)

N0 _ 3 Q_

0 20 3o 0 q-

0

B-13

lf)_ lf)

If) N If)

lf) r-shy~

I I-o 0 z lf)

~

lO

~

lf) N If)

(

pound bull d ~ bull 4 4 c_ q

1 4 r9middot-

0 N IX)

middot- t--bull ~Igt~

O ~f 4 fT amp)o(oj

4 ltI I~ ~ ~

0

o

middot a

~- v t rgt ( tgtj (~V~-1 f4

3 44 ~-~a4 V VM q -~~-q_4 ~4

_ ~ )

p- ~~t1~1 middot V II J ~ ~ )I 1 11 f ir -~~1I ~

II P P P Igt 4 ~(Iigt ~~ 1) IA

deg deg 4 4 ~ A -1 r 1 1-Y]~t J rz ~

fl r ~ Igt I~y ~ -- -- - 4 ~r___amp V P11 iP Igt P Igt p ~ -0

~bull 7~tpmiddot~P Pf P Ptl middot~ ~ q p Igt 1gt p ~ t b (r 4 P - 4---f ~ ~ bV ltI

ltI ~ ~ I p 6(~ d-_j b d p (4- 4 ~ 1 p Igt 1gt Igt - b ti

)4- a 4_) q V Igt p Igt o

lt(___~ ~- V fgt ~ 111 t Igt -4

~ ~ Igt r p Igt

~ ~ 1 h1

V (I Ilt v middot

t y-

t

t

p

P t P t P ~

0 0N - IX) n

1SV3 0 0 0r-shy N r-shy co

lf) lf)

If) N If)

~ - t bull~--~11n ~ -~bullmiddot t~ lt middot___

o_ ~ ~ ~

0 bull t bull 4_4 4 4IIgt

c 0----~ u c Igt( o ~ c ~A ~ 0 - A 4 4 ~ 1 q

o bull o- -~ 1gt 1gt ~ y4 -~J middot)bullmiddot ~ ~ ~ p 0- 1---f t-~ 1 ~ 4 4 o co u gt)O- eyti ~ ~l 9 -Y P- - I a c 1 oM_il_q A p- p

4 ~ ~-M f p

I 4

~ rv ~--~middot

tJmiddot bull P II f t )I~ bull V ct_~ V V V t P- ~ Igt t middot f lft V VJi P- P- fgt IIgt ~ _ J1 bull bull bull

1 v II p _bull ( ( ir ti- f Igt bull

j ~ r f -~-1t __

_I ltC_t--q_) v -~-ampgt

Q middot--- ~ - t ~ b

II

bull ~

bull bull

diams

1 bull ~ ~~ ~ ~ b b b lgt bull

-- b bull bull bull~4q~ lgtPlgt-4-~_tbblgt

Jraquo P P ~ q 11- 11- b b b b b

P Igt P q bull b b b b b b b b bull

bull bull Igt 4 4 fl ~ b b b b b b b b b bull bull Igt Igt ~ 4 q ~ b _ b b b b b b bull

P bull Igt Igt -4 ltI 9 b b b b b b b b

p bull - Igt Igt 4 lt1 _ b b b b b bull t bull bull Igt ~ 4 b bull b b b b b b bull p Igt Igt Igt bull 9 b b b b b b b b bull P p ~ ~ A 4 q - _ b b b

1S3M

figt j)

~ ~ bull

bull bull bull bull bull bull bull bull bull bull

bull bull bull bull middot bull middot

bull bull ~ ~ 9 9bull bull bull bull bull bull bull bull bull

bull ~ bull bull _ bull bull _ bull bull

~

If) N t

lf) r--11

~

If)

~

0 ONN - co n ~

I fshy=i 0 V)

- 2 0 0 n -

n _j w cjf-

0 l()

0 ~

0N

0

0

---shy2 ~ _

_j OC)

I- z lt( =i

J Vgtv 0N z f-

3 ~ 20 3o 0-t

B-14

---

1S13 0 0 0 N N r--shyltIO r--shy co I) n I)

I() l1 r--shy -U

E~i0 z

U N I() 3

I fshy)

0 U) l1 N -t

--_

2 0 0 0

-

LO

_J w CJf----_J OJ

0 U) z

f- )lt( l1-r ON z f-

3 ~ 0 20

50 U) 0 -sr

0 ON r--shy r--shy

r--shy (0

n I)

1S3M

B-15

lSV3 0 0 0_ N - _ - ~ I)

_ ()

(~i

0 z

If) If)N NIf) 3It)

I Il- I-a =gt0 0z If) If)()

N Nst- st-

_

2 0

--

- w I--- OC)Cj z0 -

I) )I- Jlt( --t-

N() 0 I-z ()

3 o_

0 0 2 0

~ 0 00( 0 0 0-N N _111) r-- 1)

1S3M

B-16

lSVJ 0 0 0 0 N r-shy N r-shy_ _agt lO n n n n

() r-shyU)

u) l() N N u) l()

I I lshy Ishyo )

0 0 z U1 l) N

l() r--_ 2 0 0 n -

n _j

w I GJ OC)

0 _j z

lt) I- ) lt( ~ lf) N 0 1-z l)

3 Q_

0 Lo38 0

0 0 0 0 _N N _ _(() n n n

lSJM

B-17

1SV3 0 0 0 0- -N N- -crJ co I) I) I)

lO II)- - U) It)

U) II) N N lO lO

lO- st

I l-o 0 z U)

N

~

I I-=gt 0 l)

st st

--_ It) - ~ I) 0

0 0 ___

lf)

J w I-

It) N I)

0 II)

~ OC) J z I- =gt lt - lf) N 0 1-z l)

~ 0

0

0

~ 0

38 0

N IIJ I)

- - I)

1S3M

B-18

middot~ bullmiddot I

1Si3 0 0 0 0 N r-shy N r-shya) r-shy r-- co I) I) 1) I)

--_

E~i l)

0 z 3

I r-0 0 z

0 I(

0 --_ n 2 0 ~ N --

0

0

1S3M

B-19

---

_J

w r----2i OC) _J z I- lt( ~ V1 N 0 1-z V)

3n 20 3 iE 0

---- --_

NORTH

-_ t t t f t A +1 t lt-1--JJ-middot+J

r ft_f_frac14 fffftl middotmiddotbull f_ n- ~ tn

ttt1I1~ ~ ~ ~ ~f --H 1--- ~ -

rJj ----~ ~ ~--- ~ l j bull bull - bull bull Ir - ---_- --- --~~~~~I-~~~ ~ bull ~ ~ rt

- - ~rnlit ~~~~ ~~~~ ~~ ~~~~~~~ - _~-~~ ~~~~~-=~~~~~~~-gt

3820

bl I

N 0

tshy() w 3 fftfftlll

ffltlIJ11111~11- I I I J ~-- - ~~~~11J~ -~

3720 - I I JI J ~~~~~~~--------~~ diams bull + I J J _~ 4 bull I I I J ___ ~~~~-s---~~IJ-bullbullbullbullbullbull ~__middot~middotmiddotmiddotmiddotmiddot~~~~~E-e~~

4flA~~middot~middotmiddotmiddotmiddotmiddot~~~~~ ~--_---~- ~~ 1

367~7i51bull1bull11bull1 111 13251777JT7777~7777 I I I 14251

--~--~- ~~_-~-----~ ~~~J

--~-_--~- 1- I 1 I

~ 1lJ

I I I I I I 14751 I I I I I I I s~sl1 I I I 1575 I I

3770 tshy() lt( w

3720

13670

SOUTH

I 0

I 10

I I 20 30

(KM)

I 40

I 50

lllI 0 5 10 15

WIND SPEED (MS)

DWM WINDS AT LEVEL 3 1600 PST 24JUN87

(300M)

lSgt3 0 0 r--shy N r--shy r--shyt)

It r---1)

lO ---- N bull ~~ r lO ~ oe--- I

~~~~ t z~_-----~8 ~ ~~~2~-~----=---~~ t ~~----~~ -frac14~~~--

~v -~ 1 ~ - ~ ~~ ~~~-~~N~~~~~~~~~~~

tf~ ~ ~ -~~~~~imiddot~~~~~ ~~ ~~

_gt~~ middot1 ~ r2 l~ --~- I _Ct _ V I - ftV

0 ~ ~~- X

z~ HF bullIh IJ i It ti ~ 1 IJtl ~ ~ j t ~1

~ ~ 1~1

1 r ~

)

r r~P t t _r )r f

~ 1+ t t t f t ti ~ 1 lt ~ diams t f J t H ff 1 1I I I It diams diams Vf- 1 f f ~ f I 11

(____ t i(_ bullbull ~ bull ~ I r fr1)L_lt--~~vi 1t1J U1 -~- middot~ 1 t) ~ bull ~ bull ~ bull 1 1 f f f I t ~ - ( ~ ~(~ (_ ~ b ~ - ~ bull f 1 f f ~ bull

j ~r~--~ ~ _ ~ ~ ~ l 6 bull bull 4 t ft It _ - __ _ - J ~ ~ ~ t bullbullbullbull t - _ ~--~_____

__ I deg j ~ ~ b ~ _ Igt ~ _ _ ___ bull bull bull bull

~ ~ I ~ ~ ~ _ ~ _ _ _ __ - bull bull bullf

~ bull ~ ~ 4

I -- I bullbullbullbullbull

~~~ ~

1 bull ~

-- V)

LO lshy -----_ lf)

l- w w

=~ It) 0 l)

It)

2= )

0

~

l() 9 __~----- lf)r--- --------J______--L--J-~J-J-______~______~~~___________________________ r---N O O O ON

0 0 z 3

--

2 0 0 0 ----

LO

_j

w I--GJ Cl)

0 _j z lf) )I-

lt( ~ ~

lf) N 0 -- 0 I-n 2 Zlf) ~0 3 0

N ---

0 20 3 g0 -

0

N r- N I-~ I- I- ~ n n n n

1S3M

B-21

1Sv3

U) N U)

lJ) N n

0 N (0 I)

0 r-shyr-shyI)

0 N

I)

It) N It)

U1 r--1)

1S3M

B-22

0 w w (L Vgt

0 z ~

---2 0 __

_j

w _ ~ OC)

0 _j z U1 I- )

lt~ NVgt

0 --shy 0 1-t) 2 z () 0 ~ ~ (LN -middot -

0 20 ~~

0 ON

bull bull bull bull bull

1Sf3 0 0 0 0 N N CX) ID I) I) li li

~ n

~ n

tf) ~

A i -02middot a_ ~ r ____ Igt middotjmiddot i -1 ~ i r middot-~-----------------gt IJ IJ bull 1 j I ------~-----------------

_ IA_Jyen ~ ~ J ~ yen ----~---------------------

~ II --~_a IIgt 11gt Igt middot~ I bull ~ ~ ~ ~

1(1gt i i _JI J Iibull I - IJ Ji H j

bull bull I( --- j J t ~o ~- -- -J I I i J diams bull1bull bull bull i ~ _I I I I J 1 ~~- ~ 11 J l J diams -~ J) bull ~ I- t t ~ ( l f middott J bull 1_~1 ~ IJ II- I ( II ~ j t t bull)

bull t )bull ~) i ~bull bull __ __ I 1gt J I I I middot----- - ~ _ ~ Ji (Ji_ If ~ --~ bull i f l-Ji ~ p VIMyen I ~ middot1 bull I Ibull lt_~ ~ p1 )

I

__________________

~ 4 V ltI - - - -

~) i t --- -- yen 4 yen -- Iii 1yen yen JY yen II

I ~1 Ja a Igt- yen yen yen yen yen yen yenyenIiyen II II

a Igt bull ~ 111) (I J I JY yen tY yen yen II( ltf ~ I~) JY yen liY yen yen yen yen yen yen yen II II II ~ ~(II ~ yen yen yen r yen 1r yen yen yen It Ill

p cl

p 4 ampgt P JI r Igt bull

bull JJ Igt II

- ~ 11- bull

- -

+ _ _ _ __ __ +- ____

- - ----4

bull bull Igt Igt Igt

11 bull bull bull bull

bull bull It

IJ Igt bull t P

Igt bull t

- II Igt fl t middot~~-~~~t_yenyen yenyenyenyenyenyenyenyen

I ~J )Igt) 1 bull yen yen ~yen yen yen yen yen r - yen If II II Igt - I 1 J bull bullI _ _ 1 ~ ~ 1K )

bull -

bull bull II ~ Igt- J 6 bull I 11

fl) 1gt 11 Ill

bull t t fl

~

U1 r- n

~ n

_________o__JJ=---=-------oti~~e-~e11JEJEolELE-ILILLEJLlLu~uJ

l~

0 tf)

~ 0 n

0 N

0

0

- Vl ~ 2 ---

0 w w CL V1

0 z 3

-

2 y --

-

2 0 0 tlt) --

n _J w f-~ OC)

_J z gt

I- Jlt( q-

NVl bull) I-z Vl -~ CL

02 0 3 N 0 NIf)

ONN I N ro r- (0

n n n I)

1S3M

B-23

17z-g

WEST u u u ~ ~ ~ N ~ N

NO N~ 0~0

7J ~ () z -I 0 N (I)

~ )gt c_ -I C zr co ~ -J rT7

r (Jl

-- __ 0 0 0 s _

--_ 7 ~ --

~ z

~-0 0

--s (I) ___

0

0

N o (A 0

t ()1 0

oj(JI

-0

-()1

0 0 0 N -J

A I q bull if ~ ii ii ii I ii if 1 i J (JI

Ab4llltli ~~144

bull~~bull~1111111 11~1middot)1i~~~1 ~4gt~1111111~ II~ - bullbull~Agt~lll11 IIIAII tbull ~4-4~~~III IIll~ I ~14 4 - ~ bull i ~bull-ttt1 111111 I I 1-~ bullbullbullbullbull gt q bullbullbullbull I t I I I I I 4 I I I I I I I 1_ J~ I

4~ A - middot~~lll111I IIll 1 I 4 -1~~ l~ gt1llllllI 1l111 -~~ I N

tn()16 -1 Igt Igt I I l1I v I 7----(Yi ti mbull1-t

~Plgtlt111 VIII ii l middot~1111~~0~ I l~lll~310bullbull I i~W~ffi 1~~~~6~~~ I J~ 1~~~rw 11~~~1~ ~l~~t ~ i 11~~~~~~~ ~~f)~t~~I I~tl -1

~ --J ()1 l 111~1JV1 ~~~1~ I Ill tniz~i~~~~~~ ~~~~ 7 ~K -~~iii~~~~~~~~ il~~~~~~~ 1~~1~~~

middot1 middot1 middot1 middot1 middot1 middot1 middot1 middot1 middot middot1 middot1 middot1 I I I I vr )Igt(_ I II I I~~~~t~ 21~~~r~~~~~v111l I ~ II I -- I~ J(( I I II J l l l Cl ~ I ~ ~ ~ J J I I I yen - - bullbullJ_~ f yen ~ I IJ t I ti

diams J J J I I - ~ - ~ l1 yen -1) I I( t I ~ N J J J J 1- ur~ ~ - Jf1( -I) I I I ti I I j~

() UI diams Mi r)r yen fir_~~ bulll1t) JI 1 I middot i - (JI0 ~ nmiddotmiddotJ jmiddot-1 I I I f ~j--1J ~ __ middot gt C ~ J I f I 1 ltH I fl 1 ti I middotr- I I-I ~ f bull t t l )1j - _ I

t J4J-fbullt t ~ ii middotlfli ii~) - ~bullmiddotttM i f bull bull1 rI-Ku bull bull bull _ middot-~-J_J middot t +imiddot i t t ~ t ( ~ middot(~ I J bull Vf I r1- ~ j~fmiddot + r bull(~t t bullbull_t- J J ~) J ~ Igt

+ __ middot + V+ bull bull ti+ bull + -fi J i bull bull ~ f --- ~ ~ t Li bull bull t ++ diams + t bull +++ + bull ~ __Vbull ~ it 4 ~ i ()1 ~ 1 bullbull diams diams diams diams ++ ++ bull t 1 fA middot_ -----Y 4 ~ tn

~ ~bull t bull + diams + bull diams +++t + bull A VJ ~ bull bull ~ -o middot ~- bull t bull diams diams diams + ~i4_ ~ ~ ~

11 -~ 1 1 1 1 ~t t diams t t ft(middot-- f g a PA

--middott 4 -4 y 1 1 1 )f7~ V g n t A ~ ~bull a~ 4 1 1 ( V P q 1 bull A ~ V Y ~-- 4 I Cl oCl 4 A A ~tW --~- ~middot -)bull ~iliJ bull1bull

bull It t-- ti __ __ ~ (~w ~ ()1UI I bullbull bullrmiddot -~)fl l~~~ ) I A IIbull N~L~ r ~~~-ff~ --bull--1) 4 4 bull ()1

~ 14 ~ bull f 4 AA 4~ bull

44( )A - ~

- ti~ f 4 ~ 4 4 4 A bull ~ i

ti ti fl 1 4 tn llflfl44 4 -()1

~ ()1 ti ti fl 4 4 _ 4 bull fl _ 4 ~ ~

~ bull t~ - - I - 1 T T fJifrac12 1f 1~ fl t [ 1 4 bull bull ~ ltt ~4 ~~~11 l~~Nfl---~ ~~ bull ~t144

1 -middot I I f I ~ fl ti ti- Imiddot tJ 1-0 I 14

z o 0 -I

I

Y

)

u u u u 0) ~ ~ ~ ~ N ~ N 0 0 0 0

EAST

1S13

0 z 3

r r I-shy Ishyer gt 0 0 z ()

--_

2 0

--

___J

w CJ r----1 (lJ

0 l() z

Ishy gtlt J LO() N0

z Ishy()

3 0

0 20 3o 0 tj--

0

1S3M

0 w w 0 ()

B-25

------

~ --- _

NORTH 275 325 375 425 475 525 575

dJ 41 l ll~I tgtI I lo fA Itgt IA IA lo 1 IA IQ 1q lq If lq I ~I 4

~ ~ IIJ ~A ltI P Igt Igt Igt P V V V Q q l_-~- q ~ ~ ~ x- ~ ~ Y t~ --___q)11 4 ltI v v v v v v v 1raquo 4 -q q -~ q ~ 1 a

~ 4 ~~_gt~) ) ~~-4_~ A ltI fl v v v v p A V yjq ~ _ _ ~bullbull --shy~~~ ~ I Cl11 ~ 4 v v v v P- deg 4 ~ -V t V ( ~ a bull-

~ 1 ~~~ v ~sa- fl V P -iLpound_~A--4 q Igt P ~ 4 a~ 4 38203820

- _1 fa bull bull ~ II 11 4 4 ltf V P deg q 9 p Igt Igt Igt Igt P~~ _ _ _ bull -

- ~_R middot ~ gt- P-~-j---s--middotp-~~--- Igt p ~(

-~~ _ amp- 4 --v--J ~--~ -__~---- ~~ t f ---~middot bullbull ~ ~ ~ ~ ~~bull--- bull~bull~~ 4 ~-deg ~--~ ~_v -~ _~raquo Wh~

bull bull bull bull ___ol bull bull --___~ ~ _ A~~-~- f_~-~ bull 1 ~bull -~ Igt bull

a l -4 bull bull~ bull ~ ~ bull frac12~ P- __ _middotmiddot11-~~j)6-_ U bull _ JIgt~ bull I- bull ft ~ 4_~~~~ 9 P lgt--1gt~~~_-~_----~~~ ~ bull ~ ~ ~ ~ --~-~- ~~-_middot ~~~A~ ~ 1111 ~- ----~~ -~- IIgt _)-

1111 1111 -( _-middot 4 ~ Po Igt q lgtmiddotv11t_ Igt Igt II

3770 ~ P 0 ~ - bull k ~ 1- 1-

() pound 4 4 ~ q -44 - bull bull Igt ~- t Igt 1 Igt () w Igt 7 lt

3 - bull It It It bull bull ~--~ p ~ Igt ~ w ~~ It It It bull ~ -_t _ ~ bull bull bull bull --~ Igt

deg

td bull ft bull v ~lt~ Igt Ci~ 4gt I ~ It bull bull ~ 6 -It Igt ~

N bull bull It It ~ ~ _ ~_) ~ ~ lr It ft ft ft ft ft ft Igt -II-~ j ~ fil- _ _ _ _ bull 11r 1o 1o It 111- bull ft ft ft ft ft i i f - ~ 3720 bull It bull ft ft ft ltt q -e- ~ ~ ~j1

4

middot bull bull bull It It ft It bull ~ ~ ~ bullmiddot ft ft ft ft ltt ft ltt ltI 1 ~ - It bull It ft ft It bull -0 ~ JIgt ]~

middotmiddotmiddotmiddotbullbull1rt1rtft11- p-bull- ~1frac121 1tftftlttltltPt1t fgtbullbull ~~- bullbull ~

It bullbullbullbull It ltt It It ltt It lrt lrt tgt - ~

~~~ItIt ItItIt 1t11tft lttlttftlttltlt ltt lt11t ~ lgtbullJgtIbullbull bull~bull bull~bull ~ 1 bull bull 3670 367~75 325 375 425 475 525 575

SOUTH

1111111111111111I I I t--l 0 10 20 30 40 50 0 5 10 15

(KM) WIND SPEED (MS)

DWM WINDS AT LEVEL 3 (300M) 400 PST 25JUN87

0 0 0 0 N r-shy N r-shya) r-shy r-- (0 I) I) 1) I)

-

LO r--1) -

l~ i ()

0 z 3

I ~ n 0 z I)

N st-

0 If)

0 - I) 2 0 ~ N -

0

0

1S3M

B-27

---_

2 0 0 0

-

If)

_J

w Cj l-_J OC)

z_ ) lt( J () L()

ON z~ 3~ 20 3oo+

0 0 0 N N C0 (0 I) ~ I)

U)

U)

U) U) N N It) U)

I I-=gt 0

U) V1 N st-

lO N I)

0 lO

0 __ I) 2 0 ~ N _

0

0

__ 2 0

--

_J

w l--Gj OC) _J z I- =gt lt( ~ V1 N 0 1-z V) 3 CL

20 3 g0

1S3M

B-28

I fshyCt 0 z

0 r-shyr-shyI)

0 N r-shyn

0 r-shyl) I)

lO r-shylO

lO N It)

lO N ltt-

--

tlt)

_j

w r---fu o) _J z f- ) lt( ~ f) N 0 1-Z Vgt3 (L

2 03g0

I fshy)

0 l)

0 lO

0 -- n 2 0 ~ N ---

0

0

1S3M

B-29

1S13

-l)~ O 0 w

deg CL w

l)l ~

0 0 z 3

I lshya 0 z

--_

2 0 0 0

--

LO

_j

w__cj IJ)

0 _j z lf I- )

lt ~ ~ V) N

I) 20 - 0 Z(f)

I-

0 ~ 3 CLN -

2 00 3 gOr-

0

1S3M

B-30

Ht 11Sittl

lS13 0 0 0 0 N N II) (0 n I) n n

-- ()

LO t-shy ~ lO

(~i0 z

lO N LO

3

I Ishygt 0

lO () N +

--

2 0

--

_j

wr-----CJ OJ

0 _j z lt) I- )

lt ~ V) N

0 -- 0 1-shyI) 2 z () 0 i 3 ClN --- --

0 28 3 ltD

lf 0~_____________________________~_______________________--- t-- 0 0 0 0 ClCI N N t-shyII) t-shy io n n n n

1S3M

B-31

==- ~-_

NORTH

I bull bull - -f I I bull ~bull - ~__~~~~ ~~~

flt~11 $~~~t=- ~~ ~ 4Aligt~ ~~~ ~~

3820 1~~~- 4 t 11 ~ ~- --~_____-- ~ ~ ~~ 3820 ~~~

~~-~~~~

3770 3770

l1 ()w l-

lllizz tshy

~ ZlZZl ~ ~~~~~~

to I -IllIll

w -I IIIll~N llllll2~~

-II I I J I-~1~ r~~~~ 3720r ~ J J UL 1~A~~ 3720

~IIJJJJJ2~ ~~~ 1 ~ fl I JI JI2~~ 1~~~V fl fl ~ JI J J ~ y ~- 1-f4~) ~ fl fl fl I JI J _A2 1~ V~

~flflflflJIJIJl~2 ~~JIw~ ~ ~jlfljlflJIJIJI~ ~JIJIJflfl~~~ ~ ~~fljlfljlJI~~~~ -

J67 t-V1111111----(((((1i I~laquo rlt~1 I I I I I I I IM m I I I I I I I ~ MJ670 g75 325 375 425 475 525 575

SOUTH

11111 11111 11111 1I I I I I I 0 10 20 30 40 50 middot 0 5 10 15

(KM) WIND SPEED (MS)

DWM WINDS AT LEVEL 3 (300M) 1600 PST 25JUN87

1

NORTH

bj I

w w

i~ -tt--t ~ + ~frac14 diams diams diams diams diams f f f J-~~~l -ff~_x~ diams t diams ---t diams + diams ff f J1ff~t t

-=tl-U +---- ~ ~ t-t- diams diams __ diams~ diams diams ~ J I I 1 1 f ~ -y- ~I -~~-1t-~ diams +__+ diams + ++--J_f 1 ~JJ-11 I --

38201- ~~-- ~ ~--t_-( 1 ~ r 1t + middot~-t_ bull ~-~ bull bull bullmiddot bull r-r 1 ~IiI 1 I ~Ji~l _-=pound-~If~_ It It It bull bull bull bull bull ~ diams f f---bullmiddot+ --I __- _ I I~ 1 f1

( - ~~~~ II lit It It 1tt Iii Iii~ -r-middot -- ___- l_f--1-l -L ~~1 1 ~ ~_( _ -~~ ~------~ 1t(~ bull (t ft- ~ middotv -11-fI 1 - t~~1 1 41

~ - ~-~- lit 1t lk_i -- -~--- -_ -j rf-- l1 r111 1 I It It~ It 1t 11i bull-~ ~- ~ t_bullbull_~ (middot ~--middottY~i_(4Xtl~4j_ middot It It ~ -- ---~----~----_I~)-~-~ -

~-It It ltt middot~- ~ -~-middot ~-pound1[_~ -~- - middot - deg - - It It l diams diams 4 middotbull--bull ~ ~ ~ diams 7 1---~~ -L_- - ~ t( I diams -( bull diams ~ ~ bull ~ -- JI JI Jf JI JI j(_ ~II deg It_ -~ ~- I I I J JI JI JI JI 1

~ J- ~llj ~- diamsdiams +II IllJI_ h~ ~ ~ ~ bull bull ~ JI J J J ~ 1 x111 X7 -~ ~ diamsdiams 4111 JJJIJJ~~~~~~~~1t diamsdiamsdiams ~111 JJIJJIJllllb~ h~~~hh middot ~ - diams diams bull I I J J I I I I JI JI I l1-14~frac12-~~~ji_ ~ + f 1 J I 1 I I I 1 ~ x~ f1 11 middot -

bull JI I I I11~bullY1iz 1 41 ~ f I J J J JI J J J J J I I I lmiddot ~ t JI JI JI 1 JI 1 1 JI J I I I It~ if~_~

It_ ~ 1 JI JI JI JI J J I I l-~ 4 t J J J J J J J JI JI I I l l deg ~~ _ ~ 1111JJIJIJIJIJIJIJIJI t JIJIJIJI~I JIJJIJIJI_

~- I t I I JJJIJIJIJIJII~~~~ t JIJJIJIJIJIIII ~~ JJ JIJIJlllll ~ t IJJIJIJl1 1 1 ~ ~~I 1 t 1 A 11111111 II I I I

325 375 425 475

SOUTH

I I I I I I 0 10 20 30 40 50

(KM)

525 575

1111 111 1111 10 5 10 15

WIND SPEED (MS)

3820

3770 1-() lt( w

3720

3670

DWM WINDS AT LEVEL 1600 PST 25JUN87

5 (1000M)

0 w w CL ()

0

1S13 0 0 0 N r-shy N agt r-shy r--t) I) 1)

I() It)- r-shyU) U)

z U) N It) 3

( I I lshy Ishyo ) 0 0z It)

~lgtIgt~() st- b tgt ~ q st

lgtbbtgtb

b b t t 0 b

N

Igt b t b b b A 6 ~ b b t b C A 4 d 4

ttCt4lt1-it e Igt b tgt tgt V q ltl ltl ltI ltl

ti- deg 1 41 9 q I I ltl q q

i V q ltl q q q q I l() r-shy AlgtV ~ tlt) ~t) -~~~q

~ bull amp ~

0 ~ ~

-qa ~ ~ 1gt1 111111

b-a~-V ltillilI

bull lt bull bull a ~ Igt ~ V V V q 4 __J

It It lgt a -a~ Igt C tgt V w r---(J OC)

bull ~ Igt t 4 bull bull bull bull U) 0 __J z middot 1gt44lt14

U) ) t) rshy J - -N

lt( l() ~ ~~ CI() ~ ~

~

0 Ishy bull bull bull diams 1 z ()~ bull ~ bull diams diams 1 CL3bull ~ ~

i b y ~bullbullTT r I I 0

~ bull bulldiams ~ ~ b b b b ~ bullbull diams T r r I U)______-11____________________________ _ 0

0 O O ON N r- N r--agt r-- _ ~ I) I) I) I)

1S3M

B-34

I

_ _ 3820r- ttr- t f T Jf-Lt If t t 1l-- -~ 1~ t t

NORTH

~bull 1414

~~-_ ~ ~ r-- - --~ ~ - - _ r-- fT W - - r V-V ff f

- t t t t f I~ _AAjAA~-r bull(- -J It ~---1 t ~~~-1-- 1 ( ~~ - J ~ t t i f 1 ~ A_A-yen~_~_ ~ ~ 1 ~ t t ~ t t middotmiddotkt f ~-~-~~-----~~-- ~ ~ ~ ___ll_ bull ~

t -r- _______~~----- r ~bullbull _ ~ ~ tt-~J--~c-~~ ~ 1~--______ bull

~ -t lJ-- f t-J-- r---~~---middot _-- ~~-- ~ bull bull ll~iti~~sect~~~ ~ bullbull~bullbull bull~~n~ bull bull bull n~ bull bull

A)~lfifrac12~~ ~III I --1

3770 l l L l L - - ~ -- ~ - 1 ~ - 770 tshy~ ~~~~~~~~~11 1 ~~=1~~- Ul

W 1lllll~I ~~~~1111~~ lt( w ~1~~1~1~~j~~~m ~~~~ ~ - ~

11 1111 1111~I I 11111111 --- middotE~

tj IIIIIIIII_ ~tI l) llllll_~_p ~1l1 1~A~~~A~~rrr-v

3720t- I I I J J J A__ r r 0 11J)~~~----~_~ppmiddot-~~f Jl~~~~~---~--~~r~-~~q~q ~1

I ~JI I~ A A-_

~JIJl~~~~~A-----A rrbullbull~f~df~ ~~JIJl~~~~A~~--~- fffdfdff

~~JIJI~~~~~~---- bullfbulldbullfdf~

~IJIJl~~~AA~ --middotmiddotmiddotmiddotmiddot~middotmiddot~~~ ~l~JIJIJl~~~Al~pp~~~~bullbullffffffdff X ~~~~JI~- A(- f bullbull P ~ ~~bull1f1q1f1f1f1f1f1d1bull

3670275 325 375

1111 1111 11111 1 1 1

0 10 20 30 4-0 50 0 5 10 15 I I I I I I i(KM) WIND SPEED (MS)

iDWM w1tms AT LEVEL 3 (300M) ir 2200 PST 25JUN87

0 If)

0 __ I) 2 0 ~ (j __

0

0

__ 2 0 0 0

__

LO

_J

w f- GJ ll) _J z I- ) lt( ~ () N 0 1-z () ~ Cl

20 ~~ ON

1S3M

B-36

Page 19: Nind Observations Collected during the Southern California ...

This pattern is maintained throughout the afternoon Within the Coachella Valley a classic daytime slopevalley flow pattern develops with SE flow extending to a depth of 1000 m E flow develops at Banning Pass and persists through 1700 PST W flow over the basin develops upward throughout the afternoon By 1600 PST wind at 300 m agl are W to SW over the central basin and SE over Burbank and the Coachella Valley During the evening hours the features of the mesoscale airflow pattern over land weaken both at the surface and aloft There is no clearly developed offshore-directed land breeze

On the morning of 28 August the surface winds are weak and the overlying flow is primarily E Retardation of the sea breeze by the overlying E flow is apparent by 0900 PST S flow develops in the Long Beach area E flow at Banning Pass is substantially stronger than on 27 August During the afternoon of 28 August S flow persists at Long Beach and develops in the Whittier-La Habra-Pico Rivers area SE flow is observed along the Orange County coast E flow through Banning Pass persists throughout the day W wind components along the Santa Monica-Palos Verdes coastline are weaker than on the previous day and NW flow fails to develop at San Nicolas Island W flow over the central basin disrupts the SE flow aloft During the evening hours the airflow features weaken W flow along the foothills does not persist as long as on the previous day

The early morning airflow pattern on 29 August is characterized by SE flow both at the surface and aloft Sea breeze development on this day is slower than on either of the previous two days S flow again develops in the Long Beach area and appears to be stronger than on the previous day Although the sea breeze is weaker winds at Banning Pass shift from E to SW by 1300 PST This shift occurs at 1800 on 27 and 28 August SE flow persists aloft with limited upward development of the W sea breeze flow W flow persists in the western basin area through 2200 PST and SE flow persists aloft

2-3 September 1987

The surface and upper-air monitoring site locations for this intensive monitoring period are indicated on pages A-9 and A-10 respectively Plots of the diagnostic wind analyses for 2-3 September are given on pages B-109 through B-132

The first day of this period is probably the most anomalous of the summer SCAQS intensive measurement days Overlying easterly forcing during the morning hours prevents development of W flow along the foothills and inhibits upward development of the sea breeze over the western and central portions of the basin The easterly forcing appears to reverse rather abruptly on the afternoon of 2 September Unusual winds are also observed at Burbank on 2 September During the late morning and afternoon Burbank experiences an unusual wind shift from SE to W through a depth of 1000 m On 3 September the overlying airflow is W and the airflow patterns are more typical

9106102 14

rrn

On the morning of 2 September strong downslope flow results in N to NE winds at several sites along the foothills of the San Gabriel Mountains At 300 m strong NE winds are apparent over the central basin The overlying flow is E By 1000 PST the sea breeze appears as W flow along the Santa Monica-Palos Verdes coast and S flow in the Long Beach area The surface analysis indicates a band of S flow from Costa Mesa to Azusa W flow has not developed along the eastern foothills Winds are SE in the Coachella Valley and E through Banning Pass E flow aloft continues and intensifies During the early afternoon hours a relatively strong sea breeze penetrates inland to Azusa while winds in the Whittier-La Habra-Pico Rivera area remain weak The sea breeze weakens considerably after mid-afternoon Between 1200 and 1500 PST the wind at Burbank shifts from SE to W through a depth of 600-1000 m By 1600 PST the overlying flow has shifted from SE to W Onshore flow continues at the surface through 2200 PST while the winds weaken considerably Although the overlying W flow persists in general 300 m agl winds at Burbank become SE

The early morning airflow on 3 September is characterized by weak winds at the surface SE flow at 300 m agl and primarily W flow at 1000 m agl Although the major surface airflow features appear to develop as on previous days upward development of the pattern is limited Strong S flow is apparent by 1200 PST between 100 and 300 m agl over the central and western basin By 1600 PST the sea breeze has penetrated well inland Imbedded in the sea breeze is a persistent calm area in the vicinity of Lynwood S flow persists at 100-300 m agl over the central and western basin while flow at this level off shore remains NW At 1000 m agl W flow continues This general pattern persists through 2200 PST but weakens considerably especially at the surface

AUTUMN INTENSIVE MONITORING PERIODS

The mesoscale airflow patterns in the SOCAB during the SCAQS autumn intensive monitoring periods exhibit a weaker diurnal cycle than the summer airflow patterns Synoptic forcing also appears to be stronger

11-13 November 1987

The surface and upper-air wind monitoring site locations for this intensive monitoring period are plotted on pages A-11 and A-12 respectively Plots of the diagnostic wind analyses for 11-13 November are given on pages B-133 through B-168

During the early morning hours of 11 November NE surface winds are apparent over most of the region Surface wind speeds are very light over the basin and somewhat stronger along the foothills and the coast At 300 m agl winds are light and generally E At 1000 m agl winds are W to SW over the western half of the domain and SE over the eastern half of the domain Weak E to NE surface flow persists throughout most of the

9106102

15

morning in the first 300 m An apparent anticyclonic eddy (SE flow at Long Beach weak S flow at Burbank W flow at El Monte) develops between 600 and 1000 m agl on this morning A weak sea breeze forms around 1200 PST penetrating only to the central basin There is no apparent turning of the sea breeze into the San Fernando Valley W to NW flow develops offshore and is deflected around the Palos Verdes Hills This W flow is also apparent at 300 m agl Downslope flow components along the foothills are apparent by 1600 PST At this time the 1000 m agl winds are weak and N The sea breeze rapidly dissipates and NE flow develops at several coastal sites indicating a land breeze NW flow is maintained off shore The nighttime airflow pattern aloft is characterized by weak N winds at 300 m agl and weak W winds at 1000 m agl

The surface airflow pattern on the morning of 12 November is generally similar to that on 11 November E flow over land is apparent through a depth of 300 m while NW flow persists offshore The overlying flow is W The afternoon surface airflow pattern is more similar to a typical summer afternoon pattern than the previous day Turning of the sea breeze into the San Fernando Valley is apparent and W flow develops along the foothills of the San Gabriel and San Bernardino Mountains by 1400 PST Airflow at 300-600 m agl appears to veer continuously from E to W at most inland sites during the afternoon NW flow through a depth of 1000 mis apparent over the Coachella Valley Surface winds become light and disorganized during the evening hours Unlike the previous day NE flow does not develop at the coastal sites and NW flow weakens offshore W winds persist aloft

On 13 November surface winds are very light through the early morning hours with E flow components apparent immediately offshore The overlying flow is WNW but becomes S over the central basin by 1000 PST As on the previous two days a sea breeze becomes apparent at the surface by noon W flow components over the basin and foothill areas are stronger than on the previous two days both at the surface and aloft Significant W flow also develops in Banning Pass Moderate to strong W winds are apparent aloft During the afternoon and evening hours SE winds are apparent at Burbank between 300 and 600 m agl Intense W flow develops off shore and propagates inland during the evening hours W flow continues aloft with some S to SE flow between 100 and 600 m agl at Burbank and El Monte

3 December 1987

The surface and upper-air wind monitoring site locations for this intensive monitoring period are plotted on pages A-13 and A-14 respectively Plots of the diagnostic wind analyses for 3 December are given on pages B-169 through B-180

The early morning surface airflow pattern on 3 December is characterized by weak NE winds over the inland areas and a weak cyclonic eddy off shore The overlying flow is S to SE Surface winds remain light and variable through most of the morning Moderate

9106102 16

txi Iii ttii

E flow is apparent over the western and central basin between 300 and 600 m agl A sea breeze develops around 1200 PST reaching a depth of 300 m and penetrating only approximately 30 km inland S to SE flow persists above 300 m agl The sea breeze weakens during the evening hours and N flow through a depth of 300 m develops at Long Beach E flow components intensify at 600 m agl and above

10-11 December 1987

The surface and upper-air wind monitoring site locations for this intensive monitoring period are plotted on pages A-15 and A-16 respectively Plots o~ the diagnostic wind analyses for 10-11 December are given on pages B-181 through B-204

On 10 December the early morning surface airflow pattern is weak and disorganized Weak NE flow is apparent over much of the basin between 100 and 600 m agl The overlying flow at 1000 m is N The surface airflow over the basin is weak throughout the morning hours while NW flow develops offshore Winds aloft remain N A weak sea breeze is apparent by 1200 PST the sea breeze penetrates only about 30 km inland and is limited to a depth of approximately 300 m There is no apparent turning of the sea breeze into the San Fernando Valley Elsewhere in the basin the surface airflow remains weak By 1600 PST the sea breeze has weakened At this time winds aloft are predominantly W to NW at 300 m agl and N at 1000 m agl During the evening hours surface airflow over the basin becomes weak and disorganized while E flow develops at Palos Verdes Strong N winds appear aloft (300-600 m agl) at Burbank LMU and Long Beach however winds at this level further to the east remain light

On 11 December the early morning surface airflow pattern is similar to that on 10 December Relatively strong ( gt 10 ms) NNW winds persist at 600-1000 m agl at Burbank and LMU E wind in the 100-300 m agl appear at LMU and Long Beach Throughout the morning the surface winds remain light and N winds 9ver Bu~ank weaken considerably A sea breeze is apparent by 1200 PST but is weaker than on the previous day and reaches a depth of only 100 m or less Significant N winds (3-6 ms) develop between San Bernardino and Elsinore and in the western San Fernando Valley NE flow is observed in Ventura County Winds aloft continue to be primarily N however E flow is apparent over the Long Beach area at 1000 m agl Surface airflow over the central and western basin becomes very weak during the evening hours Strong N to NE flow develops at the coast west of Santa Monica while N flow persists in the western San Fernando Valley and in the San BernardinoRiverside area The overlying flow is N to NE

91061 02 17

3 PARTICLE PAm ANALYSIS

A series of forward and backward particle paths (trajectories) were calculated using the SCAQS DWM wind fields The particle paths will be used by other SCAQS investigators in their examination of pollutant transport within the SOCAB The forward particle paths can be used to estimate the transport of pollutants from known source locations The backward particle paths can be used to estimate potential source areas The particle paths can also be used to estimate the residence time of certain pollutants in the SOCAB as a whole or in subregions

CALCULATION OF PARTICLE PAIBS

Two-dimensional particle paths were computed using the DWM wind fields as follows

Starting ( ending) points for a given number of forward (backward) particle paths were specified

Using a time interval of 15 minutes the hourly gridded DWM wind fields were linearly interpolated in time and then interpolated in space to each particle position using an inverse-distance-squared weighting scheme

The particles were then advected horizontally for the specified time interval

The distance traveled by each particle during each time interval was integrated The new position of the particle was reported at hourly intervals

Forward and backward particle paths were calculated for the SCAQS intensive monitoring periods for several vertical levels and a variety of origination and destination points The origination (destination) locations and times for the summer and autumn particle paths are listed in Tables 3-1 and 3-2 respectively Most of the particle paths originated (ended) at one of the SCAQS wind monitoring sites listed in Tables 1-1 and 1-2 Additional sites are identified in Table 3-3 Note that for some sites in Tables 3-1 and 3-2 a new particle path was initiated at the particles 1000 PST location but at a higher level

Additional forward particle paths were calculated for comparison with the SCAQS tracer data (England et al 1989 Horrell et al 1989) The initiation times and locations correspond to the tracer releases and are given in Tables 3-4 and 3-5

9106lrl02

~~ll1~(I titW I~l~~~t~~

TABLE 3-la Summer particle paths forward particle paths

Start Time Origination Start Date (PST) Site Level(s)

624 0500 LBCC 13 CELA 13

624 0700 LBCC 13 CELA 13

624 1000 LBCC 13 CELA 13

624 1500 LBCC 13 CELA 13

624 2100 LBCC 13 CELA 13

625 0500 HHRA 5 PADA 45 FULA 5

625 0700 FULA 5

713 0500 LBCC 13 CELA 13

713 0700 LBCC 13 CELA 13

713 1000 LBCC 13 CELA 13 EMTA 24

713 1500 LBCC 13 CELA 13

713 2100 LBCC 13 CELA 13

714 0500 LBCC 13 CELA 13

714 0700 LBCC 13 CELA 13

714 1000 LBCC 13 CELA 13

714 1500 LBCC 13 CELA 13

714 2100 LBCC 13 CELA 13

Continued

19

91061 07

TABLE 3-la Concluded

Start Time Origination Start Date (PST) Site Level(s)

827 0500 LBCC 13 CELA 13

827 0700 LBCC 13 CELA 13

827 1000 LBCC 13 CELA 13

827 1500 LBCC 13 CELA 13

827 2100 LBCC 13 CELA 13

828 0500 LBCC 13 CELA 13

828 0700 LBCC 13 CELA 13

828 1000 LBCC 13 CELA 13

828 1500 LBCC 13 CELA 13

828 2100 LBCC 13 I CELA 13

92 0500 LBCC 13 CELA 13 HHRA 12

92 0700 LBCC 13 CELA 13 FULA 12

92 1000 LBCC 13 CELA 13

HHRA 45 FULA 45

92 1500 LBCC 13 CELA 13

92 2100 LBCC 13 CELA 13

93 0700 RIVA 12

93 1000 RIVA 45

A new particle path was initiated at the particles 1000 PST location but at a higher level

20

~(Ibull bull 11

41

~1~_11Lmiddot11~1~~tV t rt~~14_ II~~~h1 1r t

TABLE 3-lb Backward particle paths

End Time Destination End Date (PST) Site Level(s)

624 1500 CABA 23 EMTA 45 BURA 1234 HHRA 4 FULA 45

624 1800 RIVA 3

625 0500 CLAR 13 RIVR 13 HHRA 5 PADA 45 FULA 5

625 0700 CLAR 13 RIVR 13 FULA 5

625 1000 CLAR 13 RIVR 13

625 1500 CLAR 13 RIVR 13 CABA 23 EMTA 4 BURA 4 RIVA 45

625 1600 RIVA 45

625 2100 CLAR 13 RIVR 13

713 - 1000 EMTA 24

713 1500 CABA 23 EMTA 45 RIVA 24

713 1600 RIVA 24

714 0500 CLAR 13 RIVR 13

714 0700 CLAR 13 RIVR 13

714 1000 CLAR 13 RIVR 13 BUR 123

714 1500 CLAR 13 RIVR 13 CABA 23 EMTA 4 BURA 234 RIVA 2

714 1600 RIVA 2

Continued

21 nn1 Y1

TABLE 3-lb Continued

End Time Destination I End Date (PST) Site Level(s)

714 2100 CLAR 13 RIVR 13

715 0500 CLAR 13 RIVR 13

715 0700 CLAR 13 RIVR 13

715 1000 CLAR 13 RIVR 13

715 1500 CLAR 13 RIVR 13

715 2100 CLAR 13 RIVR 13

827 1000 CABA 2 EMTA 23 BURA 123

827 1500 CABA 2

828 0500 CLAR 13 RIVR 13

828 0700 CLAR 13( RIVR 13

828 1000 CLAR 13 RIVR 13

828 1500 CLAR 13 RIVR 13

828 2100 CLAR 13 RIVR 13

829 0500 CLAR 13 RIVR 13

829 0700 CLAR 13 RIVR 13

829 1000 CLAR 13 RIVR 13

829 1500 CLAR 13 RIVR 13

829 2100 CLAR 13 RIVR 13

92 1000 PADA 3

92 1100 PADA 3

92 1500 EMTA 2 RIVA 2

Continued

22

91061 07

I

1bullLI bullI I bull ~ii 1 1

1 cl1

[1i1bull~j~1 Iiii~ j t-~dI ~1 1ltl1111111 II r I l~bull~II~middot t1~i~n_11~~ ~middot -

TABLE 3-lb Concluded

End Time Destination End Date (PST) Site Level(s)

92 1600 RIVA 2

93 0500 CLAR 13 RIVR 13

93 0700 CLAR 13 RIVR 13

93 1000 CLAR 13 RIVR 13 CABA 2 BURA 1234

93 1500 CLAR 13 RIVR 13

93 2100 CLAR 13 RIVR 13

23 9106107

TABLE 3-2a Autumn particle paths forward particle paths

Start Time Origination Start Date (PST) Site Level(s)

1111 0300 LBCC 13 CELA 13

1111 0700 LBCC 13 CELA 13

1111 0900 FULA 12

1111 1200 LBCC 13 CELA 13

1111 1500 LBCC 13 CELA 13

1111 2100 LBCC 13 CELA 13

1112 0300 LBCC 13 CELA 13

1112 0700 LBCC 13 CELA 13 FULA 12

1112 1000 FULA 45

1112 1200 LBCC 13 CELA 13(

1112 1500 LBCC 13 CELA 13

1112 2100 LBCC 13 CELA 13

1113 0500 ONTA 123

1113 1000 ONTA 45

123 0300 LBCC 13 CELA 13

123 0700 LBCC 13 CELA 13 FULA 12

123 1000 FULA 45

123 1200 LBCC 13 CELA 13

123 1500 LBCC 13 CELA 13

123 2100 LBCC 13 CELA 13

1210 0300 LBCC 13 CELA 13

1210 0700 LBCC 13 CELA 13

Continued

24 9106108

TABLE 3-2a Concluded

Start Time Origination Start Date (PST) Site Level(s)

1210 1200 LBCC 13 CELA 13 FULA 123

1210 1500 LBCC 13 CELA 13

1210 2100 LBCC 13 CELA 13

1211 0500 ONTA 12

1211 0700 FULA 12

1211 1000 ONTA 45 FULA 45

A new particle path was initiated at the particles 1000 PST location but at a higher level

25 9106108

TABLE 3-2b Backward particle paths

End Time Destination End Date (PST) Site Level(s)

1111 1500 HHRA 34

1112 0300 LBCC 13 CELA 13 RIVR 13

1112 0700 LBCC 13 CELA 13 RIVR 13

1112 1200 LBCC 13 CELA 13 RIVR 13

1112 1500 LBCC 13 CELA 13 RIVR 13 HHRA 34 PADA 3 FULA 34

1112 2100 LBCC 13 CELA 13 RIVR 13

1113 0300 LBCC 13( CELA 13

RIVR 13

1113 0700 LBCC 13 CELA 13 RIVR 13

1113 ~ 1200 LBCC 13 CELA 13 RIVR 13 ONTA 34 EMTA 45

1113 1500 LBCC 13 CELA 13 RIVR 13

1113 2100 LBCC 13 CELA 13 RIVR 13

123 0300 LBCC 13 CELA 13 RIVR 13

123 0700 LBCC 13 CELA 13 RIVR 13

Continued

26 9106108

TABLE 3-2b Concluded

End Time Destination End Date (PSn Site Level(s)

123 1200 LBCC 13 CELA 13 RIVR 13

123 1500 LBCC 13 CELA 13 RIVR 13 PADA 3

123 2100 LBCC 13 CELA 13 RIVR 13

1211 0300 LBCC 13 CELA 13 RIVR 13

1211 0700 LBCC 13 CELA 13 RIVR 13

1211 1200 LBCC 13 CELA 13 RIVR 13

1211 1500 LBCC 13 CELA 13 RIVR 13 PADA 1234 BURA 123

11 13 2100 LBCC 13 CELA 13 RIVR 13

27 9106108

TABLE 3-3 Additional particle path initiation (destination) points

Site Identifier Location UTM Easting (km) UTM Northing (km)

BURA Burbank Airport 3749 37859

CABA Cable Airport 4370 37751

EMTA El Monte Airport 4047 37717

FULA Fullerton Airport 4091 37485

HHRA Hawthorne Airport 3768 37547

ONTA Ontario Airport 4435 37686

PADA PADDR Intersection 3810 37175

RIVA Riverside Airport 4584 37485

28

TABLE 3-4 Forward particle paths calculated for comparison with the SCAQS tracer data

Start Start Origination Date Time Site Levels

0300 LAGS 13 0600 13 0900 II 13 1200 II 13 1500 II 13

625

715 0500 VRNN 1

0800 VRNN 1

828 0600 LAGS 13 1000 II 13 1300 13 1500 13

93 0500 VRNN 1

0800 VRNN 1

1111 1600 LAGS 3 ESGS 3 VRNN 1

1900 LAGS 3 ESGS 3 VRNN 1

1112 0600 ESGS 3 VRNN 1

0900 ESGS 3 VRNN 1

1210 0600 LAGS 3 ESGS 3 VRNN 1

0900 LAGS 3 ESGS 3 VRNN 1

1600 VRNN 1

29

9106lrl09

TABLE 3-5 SCAQS tracer release sites

I_______________________

Site Identifier Location UTM Easting (km) UTM Northing (km)

ESGS El Segundo 3690 37536 LAGS Los Alamitos 3980 37370 VRNN VRNN 3874 37625

(

91061rl09

30

The particle paths were calculated for up to a three-day period In general forward particle paths were calculated through the end of the monitoring period or until the particle was advected out of the domain Backward particle paths were calculated through the beginning of the intensive monitoring period or until the particle left the domain

Selected plots of the forward and backward particle paths are given in Appendix C

SUMMER PARTICLE PATHS

Forward particle paths (levels 1 and 3) originating from Central Los Angeles (CELA) and Long Beach City College (LBCC) at 0700 PST on 24 June 13 and 14 July 27 and 28 August and 2 September are shown on pages C-1 through C-12

The surface-level particle paths originating at CELA indicate northward advection from this site on all days The particle path initiated on 27 August indicates that the initial northward advection is followed by westward advection on the following day the particle path initiated on 2 September indicates that the initial northward advection is followed by eastward advection on the following day In all cases the residence time in the central Los Angeles basin is less than 12 hours

The surface-level particle paths originating at LBCC are carried northward and eastward usually exiting the Los Angeles basin through Cajon Pass On 24 June and 14 July however the particles are carried across the San Gabriel Mountains (with the upslope flow) Considerable eastward transport is indicated by the particle paths initiated on 2 September after 1800 PST -Residence time in the Los Angeles basin varies from day to day and is especially long for the particle path initiated on 27 August (approximately 30 hours) Particle paths initiated on 13 July and 28 August also indicate some recirculation and a significant residence time within the Los Angeles basin

The level 3 particle paths also indicate northward transport from CELA on most days Advection into the San Fernando Valley which may be partly due to the SE flow produced by the turning of the sea breeze into the valley is more pronounced on certain days (14 July 28 August and 2 September) Level 3 particle paths originating at LBCC show mostly northwestward transport Recirculation over the Los Angeles basin is indicated for the 2 September particle path

Backward particle paths (levels 1 and 3) culminating at Claremont College (CLAR) and Riverside-Rubideaux (RIVR) at 1500 PST on 25 June 14 and 15 July 28 and 29 August and 2 September are shown on pages C-13 through C-24 -

_

9106lrl 02

31

The surface-level backward particle paths originate over water on all days the particles are carried eastward and northward into the Los Angeles basin On 14 July and 28 August the particle paths indicate primarily eastward transport There is some indication that particles arriving at the destination sites on 28 August may have originated in the South Central Coast Air Basin (SCCAB) On 25 June 15 July and 3 September the particle paths indicate primarily northeastward transport On 29 August northward transport is indicated

The level 3 backward particle paths also indicate transport from the W SW or SE on the intensive monitoring days The over-water segments of the particle paths indicate eastward advection on 14 and 15 July and 27 and 28 August and northward advection on 25 June and 3 September Again there is some indication that particles arriving at the destination sites on 28 August may have originated in the SCCAB Almost all of the particle paths indicate that the particles are carried onshore between Long Beach and Laguna Beach and advected northeastward to CLAR and RIVR An exception to this occurs on 28 August On this day the particles are carried onshore near Redondo Beach and are recirculated over the Los Angeles basin for approximately 24 hours before arriving at the destination sites

AUTUMN PARTICLE PATIIS

Forward particle paths (levels 1 and 3) originating at CELA and LBCC at 0700 PST on 11 and 12 November 3 and 10 December are presented on pages C-25 through C-32

The autumn particle paths exhibit more day-to-day variability than the summer particle paths indicating more variability in the autumn airflow patterns Because both the CELA and LBCC locations are affected by the land-breezesea breeze circulations all of the surface-level particle paths show some recirculation in the western basin Particle paths initiated on 11 and 12 November eventually indicate eastward transport

The level 3 particle paths also differ among episodes but are all affected by the seashybreeze circulation Particle paths initiated on 11 November show eastward transport from CELA and southward transport from LBCC Northeastward transport at this level is indicated by the 12 November particle paths The particle paths initiated on 3 December illustrate local recirculation by the sea breeze On 10 December southward advection is indicated

Backward particle paths culminating at CELA LBCC and RIVR at 1500 PST on 12 and 13 November 3 and 11 December are presented on pages C-33 through C-40

The surface-level particle paths indicate that particles arriving at CELA at 1500 PST on all four days follow a southward then eastward course Particles arriving at LBCC are affected by some combination of onshore advection and local recirculation The particle

9106Irl02

32

paths culminating at Riverside indicate a variety of possible transport patterns eastward transport on 12 and 13 November northwestward transport on 3 December and southeastward transport on 11 December

The level 3 backward particle paths for 12 November illustrate recirculation aloft by the evolving airflow patterns while the particle paths for 13 November indicate primarily eastward advection The particle paths for 3 December are clearly affected by the SE that occurs on this day the resulting particle paths indicate northwestward transport The particle paths for 11 December indicate southward advection and recirculation by the sea breeze

COMPARISON WITH TRACER DATA

Forward particle paths originating from El Segundo (ESGS) Los Alamitos (LAGS) and Vernon (VRNN) at times corresponding to the SCAQS tracer release times are shown on

middot pages C-41 through C-76 For ground-level tracer releases the particle paths were calculated using level 1 (10 m agl winds) for stack releases the particle paths were calculated using level 3 (300 m agl) winds A qualitative comparison with the observed tracer data is provided here

Surface-level particle paths originating at LAGS on 25 June indicate northward transport during the morning and afternoon hours The level-3 particle paths indicate that material is transported out of the basin through Cajon and Banning Passes by the upper-level winds Both of these indicated transport patterns are supported by observed tracer data

Surface-level particle paths originating at VRNN on 15 July indicate northward transport and exhibit good qualitative agreement with the tracer data

Both the surface-level and level-3 particle paths originating at LAGS on 28 August indicate primarily northeastward transport Most of the particles are eventually advected through Cajon Pass This is consistent with observed tracer at Redlands San Bernardino and Crestline

Surface-level particle paths originating at VRNN on the morning of 3 September do not agree with the tracer data While the particle paths indicate northeastward transport the tracer data indicate northwestward transport

Surface-level particle paths originating at VRNN on the afternoon of 11 November indicate westward transport and a long residence time in the central basin The level-3 particle paths originating at LAGS and ESGS show southeastward transport and recirculationmiddot by the sea breeze Surface-level particle paths originating at VRNN on the following morning again show net westward transport and a long residence time in the

( central basin but the level-3 particle paths indicate northward transport with recirculation

91061rl 02

33

by the sea breeze The smface-level particle paths are consistent with the tracer data Tracer was observed over the north-central basin and along the foothills on the morning of 13 November

The surface-level particle paths originating at VRNN on the morning of 10 December indicate relatively stagnant conditions with a weak sea breeze circulation Some net transport toward the south is indicated Particle paths originating at VRNN on the afternoon of IO December show little movement throughout the following day The long residence time in the basin is in qualitative agreement with the tracer data Tracer was observed in the basin on the following day The dispersion indicated by the widespread tracer concentrations however cannot be represented by a single particle path The level 3 particle paths originating at LAGS and ESGS on the morning of 10 December show southward transport and recirculation by the sea breeze

UNCERTAINTY ANALYSIS

A simple analysis was perlormed in an attempt to quantify the degree of uncertainty inherent in the particle paths The uncertainty analysis was similar to an analysis described by Moore et al (1989)

Three major forms of error in the particle path calculations can be identified The first two result from errors in the wind fields The most fundamental of these is measurement error as measurements can only be regarded as approximations of the true winds Regardless of the accuracy of interpolation techniques measurement error will always affect the final wind field The second type of error results from the interpolation of these measurements and the parameterizations and approximations in the diagnostic wind model This error will be greatest in data-sparse areas The third type of error results from the use of two-dimensional wind fields The two-dimensional particle paths do not incorporate the effects of vertical motion which may be a significant source of error considering the mesoscale regimes present in the study area

The particle path uncertainty in this analysis is the result of all sources of error and is therefore very difficult to estimate A lower bound 11 on the uncertainty was assumed to result from measurement error alone Here we use a lower bound uncertainty estimate to illustrate the effects of measurement error on the particle path calculations Several assumptions were made in order to estimate this uncertainty First average bias for all instruments was assumed to be very small Second instrument precision was assumed to be constant over the region Third measurement error (speed and directional error) was assumed to be normally distributed around zero The standard deviation about the mean was based on observational data

For this uncertainty analysis 20 particle paths were initiated from a single site at a single time For each 15-minute particle path segment u and v were calculated as described in

9106lrl 02

34

(

the previous section Small random wind components (representing the measurement error) were then added to the interpolated wind The smaller components were determined by randomly selecting wind speed and direction error from two separate normal probability density functions (PDF) To do this a uniform random number generator was used to find two error probabilities Ps and Pd between 0 and 1 An inverse normal PDF routine was then used to find the speed or direction error that results in error probability Ps or Pd respectively Commercial statistical software from Th1SL was used to generate uniform random and inverse normal PDF values 1

The PDFs possess means of zero and standard deviations equal to the root mean square error (RMSE) of the measurements For simplicity RMSE values for speed and direction were taken from those specified by Moore et al (1989) namely 02 mis and 10 degrees respectively Random error components were determined for each 15-minute segment of every particle path The resulting divergence in the particle paths represents a lower limit to the uncertainty inherent in the particle-path calculations

Plots illustrating the effect of the lower-bound uncertainty on the particle path calculations are given for one summer and one winter episode in figures 3-1 and 3-2 respectively The summer particle-path bundles (Figure 3-1) were initiated at CELA and LBCC at 0700 PST on 14 July The winter particle paths (Figure 3-2) were initiated at CELA and LBCC at 0700 PST on 12 November The bundles were calculated for levels 1 and 3 In general the bundles indicate that the airflow patterns do not vary abruptly in space or time The winter particle paths are less divergent that the summer particle paths

While plots of the particle path bundles qualitatively indicate the degree of lower-limit uncertainty a quantitative summary of the uncertainty can be obtained via hourly estimates of RMSE of all particle positions relative to that with zero error The RMSE can be obtained from

1 1 M 2 2

RMSE = - ~ dj[ lM ]=l

where

1

dj = [(xj - X1)2 + (yj -y1)2]2

and where Mis the number of particles and ()1 represents the position of the actual particle as calculated in the previous section (ie the zero error particle path) The RMSE is used to determine the growth over time of the confidence interval about the

1 IMSL is the registered trademark of the Scientific Problem-Solving Software System developed by IMSL Inc Houston Texas

91061rl02

35

NORTH

425 31570

SOUTH (a) CELA Level 1I

20

(KM)

NORTH

425 31570

SOUTH (b) LBCC Level 1I

20

(KM)

le-path bundles initiated at 0700 PST 14 July 1987FIGURE 3- composedd par tic le paths1 Forwar of 20 particBundles are

35

NORTH

425 3570

SOUTH

(c) CELA Level 3

NORTH

425 3870

SOUTH

(d) LBCC Level 3

FIGURE 3-l Concluded

37 9106]

70

IlFil

NORTH

CEIA Level 1(a)

3(170

1-Ul j

NORTH

425 3(170

SOUTH

(b) LBCC Level 1

Forward le-path bundles initiated at 0700 12 November 1987FIGURE 3-2 composed par tic le pathsbullBundles are of 20 partic

3391061

425 3870

SOUTH

(c) CELA Level 3

J8

3870425

SOUTH

(d) LBCC Level 3 10 2

(KM)

FIGURE 3-2 Concluded

91061 39

1 1c

i I

trajectory calculated using the DWM winds Hourly RMSE values are given for the particle paths bundles shown in Figures 3-1 and 3-2 in Tables 3-6 and 3-7 respectively For level 1 the average RMSE after 12 hours is 567 km for 14 July and 167 km for 12 November For level 3 the average RMSE after 12 hours is 416 for 14 July and 260 for 12 November

9106lrl 02

40

TABLE 3-6 Hourly RMSEs for particle-path bundles initiated at 0700 PST 14 July 1987

Time LBCC RMSE CELA RMSE (PST) (km) (km)

Surface Level

0700 000 000

0800 042 042

0900 057 069

1000 063 100

1100 093 128

1200 091 143

1300 111 168

1400 136 217

1500 229 227

1600 265 219

1700 394 219

1800 620 265

1900 796 338

Level 3

0700 000 000

0800 018 049

0900 064 090

1000 068 140

1100 087 172

1200 089 162

1300 123 180

1400 231 224

1500 337 258

1600 419 278

1700 427 306

1800 449 347

1900 462 370(

9106104 41

TABLE 3-7 Hourly RMS Es for particle-path bundles initiated at 0700 PST 12 November 1987

Time LBCC RMSE CELA RMSE (PST) (km) (km)

Surface Level

0700 000 000

0800 047 049

0900 078 065

1000 077 066

1100 089 086

1200 109 094

1300 089 092

1400 118 125

1500 100 138

1600 129 150

1700 147 160

1800 161 164

1900 156 176

Level 3

0700 000 000

0800 045 076

0900 061 120

1000 069 139

1100 092 171

1200 098 163

1300 096 156

1400 125 182

1500 150 175

1600 231 171

1700 261 152

1800 308 156

1900 345 175

91061 04 42

References

Douglas S G R C Kessler and E L Carr 1989 Users Guide to the UAM Wind Preprocessor System Systems Applications International San Rafael California (SYSAPP-89079)

England W G and L H Teuscher 1989 Perfluorocarbon Tracer Experiments During the Southern California Air Quality Study Air amp Waste Management Association For presentation at the 82nd Annual Meeting amp Exhibition Anaheim California (June 25-30 1989)

Horrell R S M Deem P Wyckoff F Shair and N Crawford 1989 Ground Release SF6 Tracer Experiments Used to Characterize Transport and Dispersion of Atmospheric Pollutants During the Southern California Air Quality Study of 1987 For presentation

( at the 82nd Annual Meeting amp Exhibition Anaheim California (June 25-30 1989)

Moore G E G Z Whitten J P Killus and R D Stevens 1989 Analysis of 1985 Air Quality and Air Chemistry Data Collected Under the South Central Coast Cooperative Aerometric Monitoring Program Systems Applications International San Rafael California (SYSAPP-89058)

Ross D G and I Smith 1986 Diagnostic Wind Field Modelling for Complex Terrain-Testing and Evaluation Centre for Applied Mathematical Modelling (CAMM Report No 586)

9106105

43

rr T rr

Appendix A

SCAQS WIND MONITORING SITES

(

9106103

-

((--_ 770

-

NORTH CM~RS 42 575

5 I I j I I 1---L 525 middot 1J75 I I I I I I I I I r I I _--- I C2~middot----_J ~ ~-- 1 ( ~ ~J25 I I I I I I I I I I I I l__ ) -475 () I Li 1~)51 (

--~ltJ820f-_ ~------ ---

~- -cli( ol --9-Sl-l

lt ( ~)

CQ p llE RiDO ~ llE ANAH

I middot LAS-L

bull~ LANC ( _ Q - _J ) ) - _ ~ - ---- - ~ _ ____ middot clt G~ _----~____-=-- -___ ~PR __ - ---- --- VCTC ltgt

-- ------ f---- __ - ---_ -middot ------ --___ --~-----TEME --- _ f

-)(j _ _ middot --middot -------- - HESP f ----=----==~~~ l ----~~ -- middot l - --- __ -middotlt- CJ _ --- middot PIRs[- lt NfVL_ ---~ - C~lt --lt _ ~ ~- __ (~~

__ --- bull _ i - f c-_ _ I - )~__) - ---~poundS---_-

3770 t-()

LA llE PICO )Ct444 -w 3 ~~~ZUMA MALI VE VEN llE llE middot Jl~C - ( p

NN WOOHS ~- ~ m - middot - o - I () )IE 55I

1-- (lt - - PERI ) ~ S__~llE

BU25 bull y _ L ~~5o 13720

I ----~- - 515 3670 525

(KM)

~---

SNI

20

SCAQS SURFACE WIND MONITORING SITES

19 JUNE 1987

0

qj n

If) N ~

I

1S13

Ishy)

0 Vl

(f) w I-V)

l)

z a 0 1---

z 0 2

0 z 3 a ~ I r---

0 CX)Wm Q_ shyQ_ ) w

z (f) )

0 7 lt( um Vl ---

0

A-2

-

r~

NORTH CM~RS

I -middot_( lt - middotmiddot -~ ---lt - - - middotbulll- ) middotmiddot-middot - - -c ) 0 0 l__SG- ___ J1 bull_ -- VCTlt I

_ --middot ---middot llSeR - - __ - --middot----- J~__-- middot - - - -middot bull bullbull- HESP ~-_-middot- bull- ~- _~ - -___---middot - ~ -_ ) ME --- -middot - bullmiddot bull -_

38201-_ ~~_ _ TE _ C-bull_- - CJ - ~Jj __ -_

1

1 bull I bull __ (]

SI bull bull=-middot _ -~ ~~ ~_-__ middot _J lt(- j SIMI -M~S -~_-~It_ - - 1Ir- I w _ I B~~ AZ~~~1 AL SNBOC ~ (ELRO l~ Hf~~ ideg_=- --

)1__ CE~ wftcentrHIN RIVRM44 --- ~--- ---~ LA PICO __pound bull P

T ~NN WI-V C) D 2J~55I Wco - middot PERI Lv

R~O ~L ~AN~ TO~~~~ ~ ~ ~-MO

62

~ ~j~l)~gto ay 3670( 525

SCAQS SURFACE WIND MONITORING SITES 24-25 JUNE 1987

~ (

NORTH 275 325 375 425 475 OA~5 575

f_~ CJ ~ -middot--

_middot

middot1 Imiddot

)i

gt--o~0 (~_)r-) _ (~~3s20

--~- middot qlt ( ____ - ---- - lt__ ~ ~ -i~ J ) _ - - -

-~ -__ J V 38201-~--o- lt-

-----~~middot ---- __ - ~---- -_--- ~====- -=_---~ ~ _

~ -- middotbull ~gt ----_ _______ ) ~~~ l -- - - i - --- l

( _ (_-~ _-lt~~ - )

2middot1=~ (~gt lt_) -~~~~~(_~tJt-~~~~t~~~~-~) ~

uR--- -----Qi~ ~ 3770_ 3770 -middotmiddot--rmiddot- -7 ~ 1-

(J) llE ONT _ -middot __ w

Y-_ EMU c __- ~ Ul lt(1 w~

- -- - LMIIEUA sFtA ~

1

----_

~

_

t_~~ -bull _ middotgtI __

~- 0 ~~QgtJn~-~ ~II~

~ f-- -) -) ) ~ ~-

j (_1_j ~~TRM 3720 ( (__ -CcS l l 3720

~- ) -~ --7( ) __~---L_ ~~1-----~D~

1 ~) a --- ~middot 7 rt 0- NSI (

3670 I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I 1 I I I I I f I I I 1 I I I I I I I I I I I I I 36 70 275 325 375 425 475 525 575

SOUTH

I I I I I I 0 10 20 30 4-0 50

(KM)

SCAQS UPPER-AIR WIND MONITORING SITES

24-25 JUNE 1987

--=-

NORTH 25 575

CM6QRS C__j 475 -____

3 ---- 375 425I - L ---) - ~-

SNI

-_-~)---_ lt-____ ___3azor_~c~~ sl

VENt ELRO

BU25

275 ~ c--) ~LANC ~~-_ lt ~ 0 9-~

llE

3670

----~ - J Q ____ ~- lt) ~ 3820____ -- middot--- 0~__~- __ J S --- ---~- ---- -- -- v~ ~ ~ ===-~ - - - - ---- - - ---- - -- -middotv ------------ -~ l f----- _ -- -middot _ - --- __ HESP ~-----=- c~i - - _- --- - - gt - -bull TEME -- -middot - bull ----- -- - _ middot ( lt~ clt=~ ~i cJ~ c _

~I -~~le lt~NJWl--------~- -iHitgt~-=__~~ _I -~ J~~~ ~ 3770 r-1 - - -- -- - ltJ c__ ---middot ~ ( - ------ -c_ - - -~~~ ~ ()-~ ~ - -middotMiss ---~---=-~----r~-__ -middot _frac12 __ i5

j S ~R~~HE -7t$ llE llE ftALSNBO llE ~~ t __ -R~ B~~SA AZ~jl~r RD ~~_ ~ 1( )l___ llE CE~HAllE ~~ - RIVRM44 - llE ------___llE W~HIN -Jti )Ii ----------- __

~--- LA llE PICO l llE C -- r p

ZU VE NN Wt-laquoJHB 0 1~55WT IN - ---- ) llE CO P llE llE ( gt (____ PERI ~

IJl

~ 71t~P325 425

SOUTH

I I I I I I 0 1 0 20 30 40 50

(KM)

SCAQS SURFACE WIND MONITORING SITES 13-15 JULY 1987

clt(middotO -i ~Ill ~

()VL~t

~~) o2~ r

275

-- _~middot middotc-- ( ~ I - ___ ) --____ ~~~

---- ---bull-~ ( lt ) lt I ~ (J () - _ ~ ~ J ) bull middot ( - ~ ~- - --- middot - ~ - middot middot G--~_J lt)

cce- middot- __ V ___ -- l - _- bull middotbull - - _~---~ 3820r----=-~_~Jrlt - - - middot f ~l-~--~--~] I c___ -~c ~ -- ( _ 1middot--- 1___ _~

-I -- = lt -bull lt middotmiddotltmiddot~- middot - middot -L-

- ~-- middotbull ---_- --- J middot J ) ) -- bull- ~-bull _ --middotbullbull- middot middot _ j -- -)) 3770 -ii __gtc _ -- - - middot bull ltmiddot ~- I - _ltbull - -_j-- tn

BURbull-- - middot - - - ) ~~middotj- (~~ ) (middotIi lt(

GL U I ~ - - - w ---~ - -1 __ - ---------= ------___________--- ONT middot middot __ - --_ -

poundMUI - - ~ ____ middot----~~i -__ ~ I

--

--- ~ c) )_

deg ~

_- - (

_l

_ ~ )

C-

~ _middot

( T( f 1-

525

t j 30 50

(KM)

SCAQS UPPER-AIR WIND MONITORING SITES 13-15 JULY 1987

_==--

J ANORTH CM6sectARS

3s201-

~- ~ ~ ~ ~0A - --__ - -----~ ---~- --1(j - A ) __gt ---------_

-~~J TEMEa l_C ~r1

0

820

_--C~ = ~~~ltCH~~ J ~ S~I ----i4~58 ( J

tigt-1

-J 3 BU25

frac14~) 8 F1(5

- HA

APICO RN A A ~ N WVHB

AANAH

~IHIN J _CM44 ~-

A

CY PERI N ~ iJN

D A

HEM

770 ~ V1 lt( w

~ 3670

SCAQS SURFACE WIND MONITORING SITES 27-29 AUGUST 1987

) w l-1

C)

z-a 0 1-

z 0 ~

0 z - r---3 co a Ci)

- -ltI lshy

a )w ) Cl 0 Cl ) ) lt(

V) Ci)

0N ltI u r--- () N

A-8

NORTH CM~RS bull r (_J~

1

325 - - l L=~-) ( bull

1275 _ ( ~ --- -middotbull LANC 1 _ bull I( f LJ- ~ () ~-- 3820 bull- - J bull

- --__ _ -- )- bull bull - middotbull-~- _ I v----_J -- J middot-- - middot- - -middot I I J_______ ---==-------------- WSfgtR - -- VC _____- ltgt

-~--~-- fJ- -middot - - - --- --- _ - ----- --- ----- ) r bull---_ --- - - -- bull p -- --__-----_ - -----

38201-_ -------~- TEME --- --- - - bull -- middot- bull --- _----~ -~ II middot ) - ---- -- -- _ -- HES f I-----=-- ~ ------- ~ l _ -- - I

- bull middotbull-bullbull~ ll( middot bull - middotbullbull - 1 I ~----- middot-bull

9 -- ___ __ _ -------- _=- r _ -- )J -~~ ~~~ 3770 t--SJMImiddot MISS~~~--bull ~--~-- ll( -_ ~-VENt Cllfl58 bull I middot- - middot- - --JOE ~--bull bull ~ V)

ELRo __J 4Esc euRK ~Ej1 fAL sNeo I ~ _ J middotmiddot -~~ 1 i5 l - ~SA ___ I ROLD ~ ~ C~ ( _____~- -~ llE CE~ llE W~(HIN RIVRlK -- - 1 llE __~

3770 middot- ~LA VEN Pl llE _ _- JJ~C _CM44 - ~ p ---__-_

0 ANAC cubull~ - - v~wr LyenNN WHJHB --- -- Q~~W)( ___

- llE HA ~ -lE _ -- _ - -_

I 0

SAi middot-middot J) t450

3720 LA r TO~omiddotlt~lt~~ -~ ~ (~~

~ ~ r-~~~1~ o ~~l~

SNI 1 (l_ amp-~ 575 3670367g75 325 375 425 475 525

SOUTH

I I I I 0 10 20 50

(KM)

SCAOS SURFACE WIND MONITORING SITES 02-03 SEPTEMBER 1987

------J ------------------ ) I-- 38201--__--~~- i) ___

_-- ~--gt--

-__

_

NORTH 275 325 375 425 475 525 575

YI ~middotCJ~bull_bullrmiddot--- lt I __ (_______~ ~ - - I -- J ( - - - - - - - J i O l__ ______________ -~

~j ( lt- bull- ~ 0 C) ~ -- (-- _)) ) ----_--__ -- middot-- _ - --J ) J ---- - ------- ----- middot----- -( ~---_j

3820----==--=-- ( - -middot bull __ - ---~----= --- ---- -- -- ------------ _______ ltJ~~ A I --- - ---- - -_ - _ --_--~-- -_ - --~co___--_--___-__----- f middot l - --- - --- - __- ---_-- -- ~ middot -middot __ J L--~ cmiddot

---- -- middot--~-- -- -- - _ _-- - - ~

--- - middot- - -C-_--- - -~ rmiddot middot) _- ~middot~ I--- ----~deg- -- -- C _-_--_- __ __ _ ___ _--_--~ __---- ~---lt lt ltgt _~-__gt_ ~~-- i~ - UR ---- -------- - ----~ --lt I middot- B ~----- Qll __ ~----- _ CI____ ~ __ --- ---middotir ~ - 3770

1-I- 3770 () U)( - -- -- 0~ - j _j ______- ==--=--_ --___ - ---w lt(

w~

~gt middot1 r-

0

3720 3720

middotmiddotmiddot J ~ ) ~l - ~ ~

~ tmiddot~----_7~~ p__ D2)t~~

NSI I(--_ Imiddot- 3670 3670

275 325 375 425 475 525 575

SOUTH

I I I I I I O 1 0 20 JO 40 50

(KM)

SCAQS UPPER-AIR WIND MONITORING SITES

02-03 SEPTEMBER 1987

~ I

t

NORTH CM61yenRS

----- I uic middot I Ibull 0 z_ ~ p

-_- - - - _ - middot-~-_ ------- VCRV

820 --- -- -- I W-gtER --- _ ---- --- ~ ) - -_ - I _ _ - _ --- _ _ _ -_ bull _____ _ _ - -- -- -- _ --_ ----~ HESP 3 -- ME -- -middot bull - --- _ -- _ TE - -- __ _-- - c----~middot - r

PIRlb -_1 N bull--~ _ --lt~_- - _ _ ---------- - -MISS_ _--- ___ bull---=-- _llE ~ ~ j lt) hlt---- F-~~--_ ----1A-_c=_--middot llE ----_ ()

-middot SIM ~ICAN llE RIALSNBO llE ~J -------~~ tllE ------TmiddotllE~I ~ES BURR~ AZ~ ~-~r- RD ____-- -- ~ bull FIIISA l- bull -~~

( )l__ -middot middot c(~HA w~~N ~tfJ1 -- -- ~ ~ 1

_

375

~) middot middot ---lt -__ lt_ ___ ___ -i____) C-middotdeg - - -

- -- J_ _) lllt

_ =- ) - -

L- ~~- Iii - ~ _________

-~ 0 I -- (

SI lllt

E

NT CM58V

( j gtT__~_____)___ -- ~l- ) (

middotmiddot-- -_ bull _ ~- () ~

I --J vlt__ ltgt

--- --------- ~---------- C -

_

~(__ f - -- ~---middot)1 ~

t ~ I

I- I- ~

3720

ANAC Wo~ middot -~- lt_)

44

PERI ) ~ tlo

25 R~ ~~ANAH _i~~MN ~~-w--- ~ _ 00 )

T middot I BUllE I -eM62 7 llE

-- - ~

~ 425

SOUTH

20

(KM)

SCAQS SURFACE WIND MONITORING SITES 11 -13 NOVEMBER 1987

(_ (___JCcS ~~)

bull ------------~ - - ( ~ r-------------- Dbull ---

J

575 3670

1SV3 0 0 0 0 N r-- N r-- a) r-- r-- co I I) I) I)

I bull bull I I

I I f1 1 ~~ I- I I-)

0 l)

l)

w I-l)

L)

z Ct 0 I-

z 0 2

0 r-- z OJ

m3 Ct a lt( w0

l() mI Ct 2

~ ww Q_ gt

0 - Q_ 0 I) 2 ) z ~ ___0

N (I) n a

0 lt(- u ()

0

n 0 z I)

N +

lf) r-- I)

- I I I

i I

I 0

~ -L

w

i

~ LL

I)

C-1

+

l() r-- I)

1S3M

A-12

-~

igt I _

l)

CM~RS 275 325 375

NORTH 425 475 525 575

_J- I bullbullbullbullbullbull ~ I bullbullbullbullbullbullbull bull I middot bull -gt-----middot bullbullbull 3 )--- ____j lt c----- -_ -- gt _ ___ ----- t__ l___

-- ------- LANC l ~ ---------- __ ) -- __ ~ I ) ~ - -=~__ I -~middotmiddot- - bull middot bull bull bull lt lt Cl --- ------ ____ -~ -

38201-- ------_- ) ) -- _ ---- -- -- -- - () - --------- I --- -~-lt~~ (middot__ TEME ) --gt ~_ ----- - middot--- --- vamp c~ (~ 0~ ___- --- gtIpound - - - - ---- -- - - -- _ - - ~ ---- - - - ------------- 5SI -middot PIRltgt ----~ ( -middot _ - -- --- - --- ) HESP --------~ ltgt

___ __bull_rbull ~--------~-___ -- ___ ----gt--=- bull~ ~~ I - ---__-=---- ----

VENt CM58 _ sti --~~ ~ lt_ -~-- middot_~-~~ r-~- --middot) ~~) _J MISS-~~-- ___-_ __)~ -- ---( C

- --RESpound BUR~--==-=~----r~---_-__- ~- - ~ _- ~ -1 -

3770 I- ANAC

J I )l( ~- ~-- - i middot ----middot -X--Ret-----_~ -~

___ ( - -middot ~SA AZ~ ~ o j -------=--------~--gt~-- dampHA ~~~f __ SNBO ~~ -~

ZUMA MALI LA w~M -jmiddot I R~J ~-s ~__ )() w ~

3720

8U25

VE VERN PICO _ middotyHIN RIVRyen ( ~----- -~ CM44 -~ ~- ----- ~ C WT ~NN Wt-0HB -NQRC - middot- ~NN-a-~~ _ ~ co~ __ -- ( ~ ~

RVIJO ~ilff AN~ gt cmiddotbull yen 0 (~~ p LASAl I bull- - PERI ~ ) ~

rJ]~~_Y)~N ) (_ --

_T -cJ62~-~

~ 5j(bull 1) ~Jso

l -~

- 1 J) -~ ~7~~t~~

3820

3770 1-() lt( w

3720

I I I I I I I I I I I I I I I I I I I I I I367r I 367075

I 325 375 425 475 525 575

SOUTH

I 0

I 10

I 20

I 30

I 40

I 50

(KM)

SCAQS SURFACE WIND MONITORING SITES

03 DECEMBER 1987

NORTH 275 325 375 425 475 525 575

I I ) gt ~ _YC) ~ ~ I ( o c_ _------- (

___ middot i I 97 ~___ _ --1 cbull-- - - C -___J -- lt ( ) - - - - middotmiddot ~ l _ ----_J

I ---middot ___ __ middotmiddot-_ 1 -~ __J ) bull- middotbull_ -

3820 ------~- I -~middot --- _ middot--- -------~

C - ~ (___ _ 1 ) -- _ - - - gt _ bull f-_- --- r ------~__ -----I --- ) I ~ -~ gt ----- - --- -- ~-_]) c_middotI 38201-_~~_ l _ --- - (-- ~ f ~ I~_ - middot - middot -middotgt- -- -_ -- middot_ _- 1 L- l _- -

~----- l -- middot middot ~- middot-_ _- - middot middotmiddot--gt---~--t~~)-1 bull lt_ _ _ bull middot bull - middot- ~ ~0---~ (c ~ I ~

_ I - bull -~~~--gt~~~-~~ bullS- _~_ l ~~1t~~_~(~ t 3770 I -- -- middot __ - I S____ ( 3770

I- 1-() ()

gt w - I __~sect~- ---ONT lt(

w

tgt

f-- I

~

middot - middotI

-

L~i--

37203720 c_J - (_cS) l -~~

NSI

367~~51 3~5 13~51 14~5 I I I 14~51 is~s s~s 3670

SOUTH

I I I I I I 0 10 20 30 40 50

(KM)

fJ~

SCAOS UPPER-AIR WIND MONITORING SITES I 03 DECEMBER 1987 r~J

NORTH CM~RS 275 325 375 425 475 525 575

middot middot ___ I middot 1 I )l ___ QO --middot - v_ (-- - LANC middot ~ C) lt --bull_ I -- -- bull _ ~ - ~-- ) -------_ -- - _~-- V --I 1 J --- - bull I -J- ---middot - _ bull__ - vc i --- ltl

3820~-----=cc~ I middot -middot - middot - _ ___ -- - 1t ~~------- middot - ___) - - middot -

J-cgzot-- ~--- j 0 TEME _middot ---- --- -

-____ -- ---- _- j (

- -_ I -- --~ _JI( ---- bull bull-- llf -middotmiddot l - -- bull _middot_ middot I --- -- middot CM58

_- 1 -- middot - middot~-~ - -~__ ___ ---~-~_--__~----------D J-~J~bull A HESP

middot OJ11 r P1R1tc lt--~i_-_~-~- ~c~_r--~-~_--_~r-=-~~~~--~ _ --~ --lt__~~~~- CSI ~ -~ --- ---- middotmiddot - ---- - _ ~ r ) J

)gt SIMI -MIS5-X ~Cgt~---- middot-cemiddot middot ____~ ~ middot~ l~fu__ suRlfiI_middot- -tk~- flAf SNBO __ middot ~-~ l 3770 _ 377ob -- ~ PJIISA AZ ~JIily~ _- RDL ___ bull ( C t-shy-- -~ I ----- ~HA 71lt V)tn ANAC ~---- CE~ WALflHIN RIVR ----- ~ w

w ~ LA PICO - CM44 - T -~ ~ ZUMA MALI VEN middotbull _ -bulltRc __ ~ ~lt~~7-

N WuHB _~-- -middot bull ) _J~N ~ -- ~ 0 - ) ~ I ltgt -_middot PERI bull I- ( _

V 8U25~ 3720 3720

WJlt~ ( ~ ~ ) 1 i

~ I I I I I I I I I I I I I I I I I I I I I367r I bull I I 3670

75 325 375 425 475 525 575 SOUTH

I I I I I I 0 10 20 30 40 50

(KM)

-~ ~

SCAQS SURFACE WIND MONITORING SITES 10-11 DECEMBER 1987

NORTH 325 375 425 475 525 575275

-- ----_ lt_~- c--- - ~ ~ _ I I - ---~~c------ ) _ -middot - gt~-

3a2or ------__ lt- ) 1 middot--- -- __ - ~bull =-------------- - r---_ ___ - bull- ---- I I ~ ~-- jc- I bull - - (bull I --- middot middotmiddot - ~ -middot - -- ~ - 3820 -~- bull - middot - - ~-_ ~- _ middot- n

(

- 0 lt_( ~_lt- ~-~~- middotmiddot) ---- ()_ (---- --

--

____ middot

-middot

I

f----- (-J 1r---J~ --~ - middotlt ltbullI I ~__---__ ~-

l B~--- _c_ gt-- lt gt- (- - - j 1--_~--~--l~ -- -- --- )l

-- - --~---- middotc middot=-~-~- (~ L ----- -- --middot - -- - - -bull --- - - c-) ~ J _ -- - ---- - ) ) ltl

37703770 EMLgt middotorrmiddotbull __ ) ~~~~ofmiddot - -- __s=__I- - - ~__- ( ~ __ )---__ Ishy

V) ~ ~- lt(w ~ ---- --~ - w if)

-~2_~middot) ~~at~s t I

I-

deg

FUUA

i () ~--J)llC~lt I

3720 3720

~ltl__ (_)i~

~ NSI

367~~51 I I I I I I I 13~51 I I I I I I I 13~51 I I I I I I I 14~51 I I I I I I 14~51 I I I I I I r--- I5~51 1 I T I I I I I 5~51 I I I I 36 70

SOUTH

I I I I I I 0 1 0 20 30 40 50

(KM)

SCAQS UPPER-AIR WIND MONITORING SITES

10-11 DECEMBER 1987

Appendix B

SCAQS DIAGNOSTIC WIND ANALYSES (Six-hourly plots Levels 1 3 and S)

Summer Intensive Monitoring Periods

19 June 1987 24-25 June 1987 13-15 July 1987 27-29 August 1987 2-3 September 1987

Autumn Intensive Monitoring Periods

11-13 November 1987 3 December 1987 10-11 December 1987

Page

B-1 B-13 B-37 B-73 B-109

B-133 B-169 B-181

9106103

Summer Intensive Monitoring Periods

9106103

19 June 1987

9106103

1bullbull-lil

1SV3

I I lshy Ishyo )

0 0 z ()

IO N IO

I()

N -st-

1S3M

-- l1

l~ i --

0 z 3

---

2 0

_J w cjr----_J CD

0 l() z

I- =)lt( 7

f) 0)

0 -- i n 2 Ishy7

0 ~ ()N ____ gt a 0 20

3o 0 ~

0

B-1

1Sv3

( I l-et 0 z

(

lf) N st-

l() N ~

l()

N 0 t--

n

0 N_ n

U)

ON r-shy(0

n

1S3M

B-2

_

2 0 0 tlt)-__

tlt)

_j w 2jr-_j CX)

0 lf) I- z

lt( ~ IJ1 0)

0 _ 0 n 2 z 1-0 ~ N - 3 ~ 0 20

3o 0 Ov

-----

lSVJ

l)

----

l~3 O 0 w

w ll) (1

l)

0 0 z 3

I lshyet 0 z

--

2 0 0 0

-

LO

w ~

GJ r----~

u 0 z

OJ

I- gt lt( J

mif)

00 ---shyI) 2 z I-0 i l) N -- 3 (1

0 2 0 3 0 0 ~ 0

lSJM

B-3

1SV3

- V1 --

~5 O 0

E - w

w Ul_ 0

V1 0 0

z ~

I I lshy I-et =gt0 0Z V1

-

2 0

J wr--CJ OJ J z0

Ul I- =gt lt( ~ V1 -

0 - n 2 0 z 1-() 0 ~ N __ 3 0

0 2038 0

0

U)

l

lO N v

0 N agt n

0

r--n

0 N

0 N r-shyn

U)

U)

U) N U)

Ul

q--

Ill N q--

1S3M

B-4

td I

J1

~ ~~~~~ ~ -~~~~~ J - -~--Qf~J ~lf~ ~---~ ttt~~~~H~f~ ~ ~~lt~~~0 ~ - ltl-_t I~~~~~~-~~~~~ ~~ I _~1c j_~ L ~ (__1-T11__1 ~_-~_ ---~~~~~~ 11 - ~ +f--1~- ~-+--41-- 1-~- ~ ~ -rtt1-~--~~~~~~~ ~ ~ ~ ~ l t I J JI JI~- t _I i~~I~~~~~~

377itttttttt ~- - t I Jf --------_-- _ 70 ~ ttttttttttttti- fllJ~JI-~~_- ~~ _ =- ~~~- tn w - t t I I I_~- -V _ ~ -laquo___ _ - ltC 3 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ t t t t t I I I I JI~ JI JI ~~ I--~- ~ ~~~~~ w

H~HHHH~in+~l~Hnf5-I ~ ~~~~~~~~ ~ ~ ~ lliii it t I~t~ltt~rrrr~~~~ jl++it~~~t~

20-~~~~~~~~~J tttttttf ~~~~~~~~~~---~-~~~~~~~~~~~~~-amp~ ~ t t t t t t f f f I I I I ~ 1 J(-- _ --P ---~~~~~~~~ ~ ~ ~ ~ ~ ~ ~ ~ t t t t t t t t f f I I I I I ~ ~- j~J _ ~ ~ z~ ~ ~ ~ z l I+ nm~t ~ ~ ~ I I~Jt~-~- -~-__~~~ tr ti ~ ~ t t I t f f I I I I I I I - ~-r __ - ~~~~~~~ ~~~~ ~z11 ttt ffflllllIIII -~~---~~~~~~~~~~~ ~~~~ ~~ ttttft ttflltllllllll A~--~~~~~~~~ ~ ~ ~ ~ ~ ~ ~ t t t t t t t t t t t f I I I I I I I I I I I I I ---P~- ttttttttttttlllllllllllI -~--L~-~~~~~~~~~middot

367 70 ~75 325 375 425 475 525 575

SOUTH

1111111111111111I I I I I I 0 10 20 30 40 50 0 5 10 15

(KM) WIND SPEED (MS) i

NORTH 425 575

_ 414111fl-~bull __~) ff I -lt~i ~ + lJ Jmiddot-bull A fl t1 it bull- _I~--~---~----_---~_~~~~~~~11 t1

~~t 11 f + + diamsJ diams 1 )--t-_+ J~ I-(_ 1 1 ~t1 __

__ Lt l l t fL f_l - - +~~----~~---~___-+_~~~ J-t-t t---t-lt t t-t) LJ lt fl ~ -- t---f t tT~-- ~~ 1__t -t ti t_1 + l - -~-~-~-II~-- - ~~~-----~----t----~~~~~~_Efftt -- r1 ~J t l Lt t

fl

~ _ t_ - 11 _ _

Fi ru bulll=ti~ ~ ~ ~ ~1H1~~_~-~-~----~~~~~~~~~~

DWM WINOS AT LEVEL 3 (300M) 1000 PST 19JUN87

1Sv3

I I-shyCt 0 z

1S3M

B-6

0 II)

0 I)

-_2

0 ~ N -

0

0

-_

2 0 0 0 -

LO

_J

w r---CJ O) _J z I- gt ~~ if)

0 1--shyz V) ~ Q_

20 3 g0

NORTH 525 575

~~~__A -~___~~-

F- ~_--P~

~ ff~~-- - _ middot- ~~

_ bull bull bull bull bull

_ p

~L~k~tt ~ 1 t A middot1-t

~ r~ 1 11 1 __ bull bull --l t frac12Q2_

~ ~--r-J-+7L~

1--Ui

3770 _yen~AA- ---~ ~__~_ ~ K---r

eno tshylf)

w ~ ~ ~ lt( 3 I I_

- w

td I

-J

~~~~- ~ ~ ~~~ shy ~ ~ - shy

3720

~ ~~~ -~1~-nu~~~~-

~ -~ - ~_____A~~1~ ~ _~ ~~= ~~~_______2--- ~

720

~~~-~~~~~_ 9~tbullmiddot~qor~frac12

Y~poundpoundpoundpoundpoundpoundL1~~~~r~ ~ middot

375 425 475 525 575

SOUTH

I I I I I I 11 1111 1111 1 0 10 20 30 4-0 50 0 5 10 15

(KM) WIND SPEED (MS)

DWM WINDS AT LEVEL 1 ( 1 OM) 1600 PST 19JUN87

~

NORTH

Arlt~~~ ~L _ -rJ ll

_ I I I t

_t-z~~J ~i~ bull

i- ~~~ Ii ~~( trn

3770 I - bull bull bull bull bull bull bull iigtlaquo

--- bull bull bull _-

~fJ~ t-l-lltf[llJ- jf1 rr]I ~ ~~~ ~ss~810Ja2ot-~~1i lmiddot - 1 17- - -

-ltL

~ ~ 70 y ____~ tshy

l) ) _-y ____~w

w ~

~ -~--- - -- ~ 1 ~~~~ __ _ bull---bull laquo-___~ Y~~

___p~~__---A~_A 1 ~~td I ~----______A 14 1 ~

00 _-________________ ~ __~----~1~ -A________________--r__~~~ ~ ~ ~~~--~-~~~~-~---e--~ ____________~_________-~ h

3 7 20 t-_--~____- ~ _ _ ~~-_- _ _ _ _ ~___~~~r--~~___-K ~~ ~ -~-------~~~----~ ~ ~~__________~~~~~~~______-r_-A~-1--~~~ ~__________________----r~__~__~-Y~~-------__---A----r~ 1 ~ ~__~___________~ ~

367 tcrr~__~y--rrYlt-trltltltltltlaquo-ltltltltltlaquoltlt~~~ ---

9imiddot~75 325 375 -- -

1111 1111 11111 1 1 1

0 10 20 30 40 50 0 5 10 15 I I I I I I

(KM) WIND SPEED (MS)

DWM WINDS AT LEVEL 3 (300M)

1600 PST 19JUN87

NORTH

bl I

0

~________________A-4_gt~~~_____~~__________~A

A~altP_ ~~~_________--~_A 38 20 I--=-~~_~~___~~-_-~~_ -lt~ - ~_-~_A--1~ _

~~------ ~ gt-~ ti ~----~ ~ _~~~~ 0 ~ ~-i---~~411___ I~-~~ I~A-~~----~7A7~-

A A~---~~- ---~ ~ ~ -middot~~ 1-27 ~shyA_~ ~~~ Jl--__r-t~ ~ (K~_ - fl_

A ~I J111 I _ A - ~ _ T-~ v I 1 1 1 1 1 1 ~ 1 1 _ Ji J I~ f --_i__middot1(- ~ ~)( ~JJXZ - _ r ~ - _ )( _ II I 1 ~ 1 I - _~ _)~ ~~

= 1 II II 1 (~ ~--=-~ -7fJ~~~~tm~i I- 3770 Jir - I 11 I 71 (I) ~ ~111 ~

w ~--middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotbullbull bullbull ~~~11Zll~~11~ ~ ~~_~~~llllN~~ -~~ bull 11jh fi 1 1 II 1 1 1 1 1 1 1 1 1 1 1 1 1 I I 1 0i~~~ 1gtcJ~l~p~ ~~~ ~~~ ~rr1111

70 Ishy() lt( w

111111~~ 3720 i- 1 1 ~ ~

~1~I A-A~)I 1111AA _~l11~ 1

lllllll11IIIAII- ~II ~1~~__~~Ill~~~~~ l1_ 1~~~~~~lll~~~~1 llllflfAll-)lllllllll1~~~~~

A I I I I I 1 I I I I 3670

275 325 375 425 575

SOUTH

I I I I I I 1111111111111111 0 1 0 20 30 40 50 0 5 10 15

(KM) WIND SPEED (MS)

DWM WINDS AT LEVEL 5 ( 1 OOOM) 1600 PST 19JUN87

~

A A A

1Sv3

(

1S3M

B-10

()

l ~

---u) 2 __ O 0 ~ w

w It) Q_

()

0 0 z 3

0 It)

~

0 ---I) 2 ~0N _

0

0

---2 0 __

_J

w r--- GJ OJ _J z __ )

~~ () r-

0 __ z ()3 Q_

~o 3~ ON

NORTH

middot-~~) K~xJ~ middot_1~ ~ 71( I IJ ~JI

~A I 1 ~~

liii[i~~ Hf~-~~~=~T-- ----- --=~~g~g~bull11ft _ ~~~ -1-x~~~ ~~~~-~~~--~-~---~ --~ t ~t~ -~1~~ -- ----

-lt J 1middot~~ __---~__

3 770 ~ ~~ --_tn ---------~~ 1 ~____~ _ ___~ -w bull Y ___~~~ (Al _~ _ ~

-- bull _ _ _ bull bull bull bull~___1 1I J~ _~

~- YI J _L ~~ ~~ YJll~E~

td _____-___ ____ __ 1 ~xgtx2-I ____________~__-A (~~~~ _______~~2-1 y~~- ___~__________~ ~

3 7 20 I-___~~__~~ Y --~ ~__ I _ - - _

~_---A~ ~---__~~~~~--_____~ ~ ~_____A~ y ~ ~___-__________~~ ~ -

~__-_______-yen_2 ~ ~ ~~_______~ ~

1 367~ 75 325 375 425

SOUTH

1111 1111 1111I I I I I I 1 1 1 0 10 20 30 40 50 0 5 10 15

(KM) WIND SPEED (MS)

DWM WINDS AT LEVEL 3 (300M)

2200 PST 19JUN87

~-

~ - - ---

NORTH 275

___ -~-___

- ~ I o_ ltAbull~-P- bull bull -P diams bull~--~~~~--- --- ~ ~ ti ~ ~sbull3820 ~=-J~_~~middotmiddotmiddot~~~--_~_=- =~_~c s~ ~3~

~~- bullbull~~bull~~~~~~ - bull -~~bull ~ v i-_ --- __-_ ~----~

~- st-~~1 17-~__4 ~ _~ ~-~-raquo~~~ -f _ _ bull bull bull bull~ bull bull-__-v 4 t ~ ~v ~- Jl_~ ~--z~~=~s~~~~Mil

-- _ ~ frac12--~~- -=~~ ~~l~1~l~tzi9~J t~ 1 1 1 1 1 1 ~-bull ~~___- v q (If V pp p I l_77rtfl _

3770 ~ ~ ---- I h1yenzi 1V-r-() bull bull ~ ~~~~~ w ~ bull ~ _ I JI J(_ )-II101-1 3 ~~A~~~XI IIJ~~~

~ f A I~ I I I I~--L -

tl ~1111111 ~K11~~llll~i~~~~I ~rr ~~ ~xgt~~~t---

N ~I I II)(01~ ~ ~ ~~~ 1~Y~lt~~~~~~~~ ~~~~

3720 iYY11Alllll1lIA~~~~ ~~---Y~---_ _ _ - ~ bullbull - - _

~rrll1IIIIIIIAAAA__

___________~~~AAAA~_~ ______________~~~~KAKAA1~~ lllllllllll~AAA1f~~

_~~

3670 t1i11 i i 1 i i 11111 i i i i -i i [ 111111-111 ~ ~ 11 ~ i I t 1 bull rm r~ij e =~~ raquo-il3t ~ 275 325 375 425

SOUTH

1111 111111 11111 1I I I I I I 0 1 0 20 30 40 50 0 5 10 15

(KM) WIND SPEED (MS)

DWM WINDS AT LEVEL 5 ( 1 OOOM) 2200 PST 19JUN87

24-25 June 1987

9106103

1SV3

1S3M

0 w w Q_ (J1

0 z 3

I f-shy=J 0 (J1

-_

2 0

--

_J w CJ f- _J OC)

0 U) z

f-shy )lt

J q-

(J1 N0 -_ 0

rlt) z rshyl)

N0 _ 3 Q_

0 20 3o 0 q-

0

B-13

lf)_ lf)

If) N If)

lf) r-shy~

I I-o 0 z lf)

~

lO

~

lf) N If)

(

pound bull d ~ bull 4 4 c_ q

1 4 r9middot-

0 N IX)

middot- t--bull ~Igt~

O ~f 4 fT amp)o(oj

4 ltI I~ ~ ~

0

o

middot a

~- v t rgt ( tgtj (~V~-1 f4

3 44 ~-~a4 V VM q -~~-q_4 ~4

_ ~ )

p- ~~t1~1 middot V II J ~ ~ )I 1 11 f ir -~~1I ~

II P P P Igt 4 ~(Iigt ~~ 1) IA

deg deg 4 4 ~ A -1 r 1 1-Y]~t J rz ~

fl r ~ Igt I~y ~ -- -- - 4 ~r___amp V P11 iP Igt P Igt p ~ -0

~bull 7~tpmiddot~P Pf P Ptl middot~ ~ q p Igt 1gt p ~ t b (r 4 P - 4---f ~ ~ bV ltI

ltI ~ ~ I p 6(~ d-_j b d p (4- 4 ~ 1 p Igt 1gt Igt - b ti

)4- a 4_) q V Igt p Igt o

lt(___~ ~- V fgt ~ 111 t Igt -4

~ ~ Igt r p Igt

~ ~ 1 h1

V (I Ilt v middot

t y-

t

t

p

P t P t P ~

0 0N - IX) n

1SV3 0 0 0r-shy N r-shy co

lf) lf)

If) N If)

~ - t bull~--~11n ~ -~bullmiddot t~ lt middot___

o_ ~ ~ ~

0 bull t bull 4_4 4 4IIgt

c 0----~ u c Igt( o ~ c ~A ~ 0 - A 4 4 ~ 1 q

o bull o- -~ 1gt 1gt ~ y4 -~J middot)bullmiddot ~ ~ ~ p 0- 1---f t-~ 1 ~ 4 4 o co u gt)O- eyti ~ ~l 9 -Y P- - I a c 1 oM_il_q A p- p

4 ~ ~-M f p

I 4

~ rv ~--~middot

tJmiddot bull P II f t )I~ bull V ct_~ V V V t P- ~ Igt t middot f lft V VJi P- P- fgt IIgt ~ _ J1 bull bull bull

1 v II p _bull ( ( ir ti- f Igt bull

j ~ r f -~-1t __

_I ltC_t--q_) v -~-ampgt

Q middot--- ~ - t ~ b

II

bull ~

bull bull

diams

1 bull ~ ~~ ~ ~ b b b lgt bull

-- b bull bull bull~4q~ lgtPlgt-4-~_tbblgt

Jraquo P P ~ q 11- 11- b b b b b

P Igt P q bull b b b b b b b b bull

bull bull Igt 4 4 fl ~ b b b b b b b b b bull bull Igt Igt ~ 4 q ~ b _ b b b b b b bull

P bull Igt Igt -4 ltI 9 b b b b b b b b

p bull - Igt Igt 4 lt1 _ b b b b b bull t bull bull Igt ~ 4 b bull b b b b b b bull p Igt Igt Igt bull 9 b b b b b b b b bull P p ~ ~ A 4 q - _ b b b

1S3M

figt j)

~ ~ bull

bull bull bull bull bull bull bull bull bull bull

bull bull bull bull middot bull middot

bull bull ~ ~ 9 9bull bull bull bull bull bull bull bull bull

bull ~ bull bull _ bull bull _ bull bull

~

If) N t

lf) r--11

~

If)

~

0 ONN - co n ~

I fshy=i 0 V)

- 2 0 0 n -

n _j w cjf-

0 l()

0 ~

0N

0

0

---shy2 ~ _

_j OC)

I- z lt( =i

J Vgtv 0N z f-

3 ~ 20 3o 0-t

B-14

---

1S13 0 0 0 N N r--shyltIO r--shy co I) n I)

I() l1 r--shy -U

E~i0 z

U N I() 3

I fshy)

0 U) l1 N -t

--_

2 0 0 0

-

LO

_J w CJf----_J OJ

0 U) z

f- )lt( l1-r ON z f-

3 ~ 0 20

50 U) 0 -sr

0 ON r--shy r--shy

r--shy (0

n I)

1S3M

B-15

lSV3 0 0 0_ N - _ - ~ I)

_ ()

(~i

0 z

If) If)N NIf) 3It)

I Il- I-a =gt0 0z If) If)()

N Nst- st-

_

2 0

--

- w I--- OC)Cj z0 -

I) )I- Jlt( --t-

N() 0 I-z ()

3 o_

0 0 2 0

~ 0 00( 0 0 0-N N _111) r-- 1)

1S3M

B-16

lSVJ 0 0 0 0 N r-shy N r-shy_ _agt lO n n n n

() r-shyU)

u) l() N N u) l()

I I lshy Ishyo )

0 0 z U1 l) N

l() r--_ 2 0 0 n -

n _j

w I GJ OC)

0 _j z

lt) I- ) lt( ~ lf) N 0 1-z l)

3 Q_

0 Lo38 0

0 0 0 0 _N N _ _(() n n n

lSJM

B-17

1SV3 0 0 0 0- -N N- -crJ co I) I) I)

lO II)- - U) It)

U) II) N N lO lO

lO- st

I l-o 0 z U)

N

~

I I-=gt 0 l)

st st

--_ It) - ~ I) 0

0 0 ___

lf)

J w I-

It) N I)

0 II)

~ OC) J z I- =gt lt - lf) N 0 1-z l)

~ 0

0

0

~ 0

38 0

N IIJ I)

- - I)

1S3M

B-18

middot~ bullmiddot I

1Si3 0 0 0 0 N r-shy N r-shya) r-shy r-- co I) I) 1) I)

--_

E~i l)

0 z 3

I r-0 0 z

0 I(

0 --_ n 2 0 ~ N --

0

0

1S3M

B-19

---

_J

w r----2i OC) _J z I- lt( ~ V1 N 0 1-z V)

3n 20 3 iE 0

---- --_

NORTH

-_ t t t f t A +1 t lt-1--JJ-middot+J

r ft_f_frac14 fffftl middotmiddotbull f_ n- ~ tn

ttt1I1~ ~ ~ ~ ~f --H 1--- ~ -

rJj ----~ ~ ~--- ~ l j bull bull - bull bull Ir - ---_- --- --~~~~~I-~~~ ~ bull ~ ~ rt

- - ~rnlit ~~~~ ~~~~ ~~ ~~~~~~~ - _~-~~ ~~~~~-=~~~~~~~-gt

3820

bl I

N 0

tshy() w 3 fftfftlll

ffltlIJ11111~11- I I I J ~-- - ~~~~11J~ -~

3720 - I I JI J ~~~~~~~--------~~ diams bull + I J J _~ 4 bull I I I J ___ ~~~~-s---~~IJ-bullbullbullbullbullbull ~__middot~middotmiddotmiddotmiddotmiddot~~~~~E-e~~

4flA~~middot~middotmiddotmiddotmiddotmiddot~~~~~ ~--_---~- ~~ 1

367~7i51bull1bull11bull1 111 13251777JT7777~7777 I I I 14251

--~--~- ~~_-~-----~ ~~~J

--~-_--~- 1- I 1 I

~ 1lJ

I I I I I I 14751 I I I I I I I s~sl1 I I I 1575 I I

3770 tshy() lt( w

3720

13670

SOUTH

I 0

I 10

I I 20 30

(KM)

I 40

I 50

lllI 0 5 10 15

WIND SPEED (MS)

DWM WINDS AT LEVEL 3 1600 PST 24JUN87

(300M)

lSgt3 0 0 r--shy N r--shy r--shyt)

It r---1)

lO ---- N bull ~~ r lO ~ oe--- I

~~~~ t z~_-----~8 ~ ~~~2~-~----=---~~ t ~~----~~ -frac14~~~--

~v -~ 1 ~ - ~ ~~ ~~~-~~N~~~~~~~~~~~

tf~ ~ ~ -~~~~~imiddot~~~~~ ~~ ~~

_gt~~ middot1 ~ r2 l~ --~- I _Ct _ V I - ftV

0 ~ ~~- X

z~ HF bullIh IJ i It ti ~ 1 IJtl ~ ~ j t ~1

~ ~ 1~1

1 r ~

)

r r~P t t _r )r f

~ 1+ t t t f t ti ~ 1 lt ~ diams t f J t H ff 1 1I I I It diams diams Vf- 1 f f ~ f I 11

(____ t i(_ bullbull ~ bull ~ I r fr1)L_lt--~~vi 1t1J U1 -~- middot~ 1 t) ~ bull ~ bull ~ bull 1 1 f f f I t ~ - ( ~ ~(~ (_ ~ b ~ - ~ bull f 1 f f ~ bull

j ~r~--~ ~ _ ~ ~ ~ l 6 bull bull 4 t ft It _ - __ _ - J ~ ~ ~ t bullbullbullbull t - _ ~--~_____

__ I deg j ~ ~ b ~ _ Igt ~ _ _ ___ bull bull bull bull

~ ~ I ~ ~ ~ _ ~ _ _ _ __ - bull bull bullf

~ bull ~ ~ 4

I -- I bullbullbullbullbull

~~~ ~

1 bull ~

-- V)

LO lshy -----_ lf)

l- w w

=~ It) 0 l)

It)

2= )

0

~

l() 9 __~----- lf)r--- --------J______--L--J-~J-J-______~______~~~___________________________ r---N O O O ON

0 0 z 3

--

2 0 0 0 ----

LO

_j

w I--GJ Cl)

0 _j z lf) )I-

lt( ~ ~

lf) N 0 -- 0 I-n 2 Zlf) ~0 3 0

N ---

0 20 3 g0 -

0

N r- N I-~ I- I- ~ n n n n

1S3M

B-21

1Sv3

U) N U)

lJ) N n

0 N (0 I)

0 r-shyr-shyI)

0 N

I)

It) N It)

U1 r--1)

1S3M

B-22

0 w w (L Vgt

0 z ~

---2 0 __

_j

w _ ~ OC)

0 _j z U1 I- )

lt~ NVgt

0 --shy 0 1-t) 2 z () 0 ~ ~ (LN -middot -

0 20 ~~

0 ON

bull bull bull bull bull

1Sf3 0 0 0 0 N N CX) ID I) I) li li

~ n

~ n

tf) ~

A i -02middot a_ ~ r ____ Igt middotjmiddot i -1 ~ i r middot-~-----------------gt IJ IJ bull 1 j I ------~-----------------

_ IA_Jyen ~ ~ J ~ yen ----~---------------------

~ II --~_a IIgt 11gt Igt middot~ I bull ~ ~ ~ ~

1(1gt i i _JI J Iibull I - IJ Ji H j

bull bull I( --- j J t ~o ~- -- -J I I i J diams bull1bull bull bull i ~ _I I I I J 1 ~~- ~ 11 J l J diams -~ J) bull ~ I- t t ~ ( l f middott J bull 1_~1 ~ IJ II- I ( II ~ j t t bull)

bull t )bull ~) i ~bull bull __ __ I 1gt J I I I middot----- - ~ _ ~ Ji (Ji_ If ~ --~ bull i f l-Ji ~ p VIMyen I ~ middot1 bull I Ibull lt_~ ~ p1 )

I

__________________

~ 4 V ltI - - - -

~) i t --- -- yen 4 yen -- Iii 1yen yen JY yen II

I ~1 Ja a Igt- yen yen yen yen yen yen yenyenIiyen II II

a Igt bull ~ 111) (I J I JY yen tY yen yen II( ltf ~ I~) JY yen liY yen yen yen yen yen yen yen II II II ~ ~(II ~ yen yen yen r yen 1r yen yen yen It Ill

p cl

p 4 ampgt P JI r Igt bull

bull JJ Igt II

- ~ 11- bull

- -

+ _ _ _ __ __ +- ____

- - ----4

bull bull Igt Igt Igt

11 bull bull bull bull

bull bull It

IJ Igt bull t P

Igt bull t

- II Igt fl t middot~~-~~~t_yenyen yenyenyenyenyenyenyenyen

I ~J )Igt) 1 bull yen yen ~yen yen yen yen yen r - yen If II II Igt - I 1 J bull bullI _ _ 1 ~ ~ 1K )

bull -

bull bull II ~ Igt- J 6 bull I 11

fl) 1gt 11 Ill

bull t t fl

~

U1 r- n

~ n

_________o__JJ=---=-------oti~~e-~e11JEJEolELE-ILILLEJLlLu~uJ

l~

0 tf)

~ 0 n

0 N

0

0

- Vl ~ 2 ---

0 w w CL V1

0 z 3

-

2 y --

-

2 0 0 tlt) --

n _J w f-~ OC)

_J z gt

I- Jlt( q-

NVl bull) I-z Vl -~ CL

02 0 3 N 0 NIf)

ONN I N ro r- (0

n n n I)

1S3M

B-23

17z-g

WEST u u u ~ ~ ~ N ~ N

NO N~ 0~0

7J ~ () z -I 0 N (I)

~ )gt c_ -I C zr co ~ -J rT7

r (Jl

-- __ 0 0 0 s _

--_ 7 ~ --

~ z

~-0 0

--s (I) ___

0

0

N o (A 0

t ()1 0

oj(JI

-0

-()1

0 0 0 N -J

A I q bull if ~ ii ii ii I ii if 1 i J (JI

Ab4llltli ~~144

bull~~bull~1111111 11~1middot)1i~~~1 ~4gt~1111111~ II~ - bullbull~Agt~lll11 IIIAII tbull ~4-4~~~III IIll~ I ~14 4 - ~ bull i ~bull-ttt1 111111 I I 1-~ bullbullbullbullbull gt q bullbullbullbull I t I I I I I 4 I I I I I I I 1_ J~ I

4~ A - middot~~lll111I IIll 1 I 4 -1~~ l~ gt1llllllI 1l111 -~~ I N

tn()16 -1 Igt Igt I I l1I v I 7----(Yi ti mbull1-t

~Plgtlt111 VIII ii l middot~1111~~0~ I l~lll~310bullbull I i~W~ffi 1~~~~6~~~ I J~ 1~~~rw 11~~~1~ ~l~~t ~ i 11~~~~~~~ ~~f)~t~~I I~tl -1

~ --J ()1 l 111~1JV1 ~~~1~ I Ill tniz~i~~~~~~ ~~~~ 7 ~K -~~iii~~~~~~~~ il~~~~~~~ 1~~1~~~

middot1 middot1 middot1 middot1 middot1 middot1 middot1 middot1 middot middot1 middot1 middot1 I I I I vr )Igt(_ I II I I~~~~t~ 21~~~r~~~~~v111l I ~ II I -- I~ J(( I I II J l l l Cl ~ I ~ ~ ~ J J I I I yen - - bullbullJ_~ f yen ~ I IJ t I ti

diams J J J I I - ~ - ~ l1 yen -1) I I( t I ~ N J J J J 1- ur~ ~ - Jf1( -I) I I I ti I I j~

() UI diams Mi r)r yen fir_~~ bulll1t) JI 1 I middot i - (JI0 ~ nmiddotmiddotJ jmiddot-1 I I I f ~j--1J ~ __ middot gt C ~ J I f I 1 ltH I fl 1 ti I middotr- I I-I ~ f bull t t l )1j - _ I

t J4J-fbullt t ~ ii middotlfli ii~) - ~bullmiddotttM i f bull bull1 rI-Ku bull bull bull _ middot-~-J_J middot t +imiddot i t t ~ t ( ~ middot(~ I J bull Vf I r1- ~ j~fmiddot + r bull(~t t bullbull_t- J J ~) J ~ Igt

+ __ middot + V+ bull bull ti+ bull + -fi J i bull bull ~ f --- ~ ~ t Li bull bull t ++ diams + t bull +++ + bull ~ __Vbull ~ it 4 ~ i ()1 ~ 1 bullbull diams diams diams diams ++ ++ bull t 1 fA middot_ -----Y 4 ~ tn

~ ~bull t bull + diams + bull diams +++t + bull A VJ ~ bull bull ~ -o middot ~- bull t bull diams diams diams + ~i4_ ~ ~ ~

11 -~ 1 1 1 1 ~t t diams t t ft(middot-- f g a PA

--middott 4 -4 y 1 1 1 )f7~ V g n t A ~ ~bull a~ 4 1 1 ( V P q 1 bull A ~ V Y ~-- 4 I Cl oCl 4 A A ~tW --~- ~middot -)bull ~iliJ bull1bull

bull It t-- ti __ __ ~ (~w ~ ()1UI I bullbull bullrmiddot -~)fl l~~~ ) I A IIbull N~L~ r ~~~-ff~ --bull--1) 4 4 bull ()1

~ 14 ~ bull f 4 AA 4~ bull

44( )A - ~

- ti~ f 4 ~ 4 4 4 A bull ~ i

ti ti fl 1 4 tn llflfl44 4 -()1

~ ()1 ti ti fl 4 4 _ 4 bull fl _ 4 ~ ~

~ bull t~ - - I - 1 T T fJifrac12 1f 1~ fl t [ 1 4 bull bull ~ ltt ~4 ~~~11 l~~Nfl---~ ~~ bull ~t144

1 -middot I I f I ~ fl ti ti- Imiddot tJ 1-0 I 14

z o 0 -I

I

Y

)

u u u u 0) ~ ~ ~ ~ N ~ N 0 0 0 0

EAST

1S13

0 z 3

r r I-shy Ishyer gt 0 0 z ()

--_

2 0

--

___J

w CJ r----1 (lJ

0 l() z

Ishy gtlt J LO() N0

z Ishy()

3 0

0 20 3o 0 tj--

0

1S3M

0 w w 0 ()

B-25

------

~ --- _

NORTH 275 325 375 425 475 525 575

dJ 41 l ll~I tgtI I lo fA Itgt IA IA lo 1 IA IQ 1q lq If lq I ~I 4

~ ~ IIJ ~A ltI P Igt Igt Igt P V V V Q q l_-~- q ~ ~ ~ x- ~ ~ Y t~ --___q)11 4 ltI v v v v v v v 1raquo 4 -q q -~ q ~ 1 a

~ 4 ~~_gt~) ) ~~-4_~ A ltI fl v v v v p A V yjq ~ _ _ ~bullbull --shy~~~ ~ I Cl11 ~ 4 v v v v P- deg 4 ~ -V t V ( ~ a bull-

~ 1 ~~~ v ~sa- fl V P -iLpound_~A--4 q Igt P ~ 4 a~ 4 38203820

- _1 fa bull bull ~ II 11 4 4 ltf V P deg q 9 p Igt Igt Igt Igt P~~ _ _ _ bull -

- ~_R middot ~ gt- P-~-j---s--middotp-~~--- Igt p ~(

-~~ _ amp- 4 --v--J ~--~ -__~---- ~~ t f ---~middot bullbull ~ ~ ~ ~ ~~bull--- bull~bull~~ 4 ~-deg ~--~ ~_v -~ _~raquo Wh~

bull bull bull bull ___ol bull bull --___~ ~ _ A~~-~- f_~-~ bull 1 ~bull -~ Igt bull

a l -4 bull bull~ bull ~ ~ bull frac12~ P- __ _middotmiddot11-~~j)6-_ U bull _ JIgt~ bull I- bull ft ~ 4_~~~~ 9 P lgt--1gt~~~_-~_----~~~ ~ bull ~ ~ ~ ~ --~-~- ~~-_middot ~~~A~ ~ 1111 ~- ----~~ -~- IIgt _)-

1111 1111 -( _-middot 4 ~ Po Igt q lgtmiddotv11t_ Igt Igt II

3770 ~ P 0 ~ - bull k ~ 1- 1-

() pound 4 4 ~ q -44 - bull bull Igt ~- t Igt 1 Igt () w Igt 7 lt

3 - bull It It It bull bull ~--~ p ~ Igt ~ w ~~ It It It bull ~ -_t _ ~ bull bull bull bull --~ Igt

deg

td bull ft bull v ~lt~ Igt Ci~ 4gt I ~ It bull bull ~ 6 -It Igt ~

N bull bull It It ~ ~ _ ~_) ~ ~ lr It ft ft ft ft ft ft Igt -II-~ j ~ fil- _ _ _ _ bull 11r 1o 1o It 111- bull ft ft ft ft ft i i f - ~ 3720 bull It bull ft ft ft ltt q -e- ~ ~ ~j1

4

middot bull bull bull It It ft It bull ~ ~ ~ bullmiddot ft ft ft ft ltt ft ltt ltI 1 ~ - It bull It ft ft It bull -0 ~ JIgt ]~

middotmiddotmiddotmiddotbullbull1rt1rtft11- p-bull- ~1frac121 1tftftlttltltPt1t fgtbullbull ~~- bullbull ~

It bullbullbullbull It ltt It It ltt It lrt lrt tgt - ~

~~~ItIt ItItIt 1t11tft lttlttftlttltlt ltt lt11t ~ lgtbullJgtIbullbull bull~bull bull~bull ~ 1 bull bull 3670 367~75 325 375 425 475 525 575

SOUTH

1111111111111111I I I t--l 0 10 20 30 40 50 0 5 10 15

(KM) WIND SPEED (MS)

DWM WINDS AT LEVEL 3 (300M) 400 PST 25JUN87

0 0 0 0 N r-shy N r-shya) r-shy r-- (0 I) I) 1) I)

-

LO r--1) -

l~ i ()

0 z 3

I ~ n 0 z I)

N st-

0 If)

0 - I) 2 0 ~ N -

0

0

1S3M

B-27

---_

2 0 0 0

-

If)

_J

w Cj l-_J OC)

z_ ) lt( J () L()

ON z~ 3~ 20 3oo+

0 0 0 N N C0 (0 I) ~ I)

U)

U)

U) U) N N It) U)

I I-=gt 0

U) V1 N st-

lO N I)

0 lO

0 __ I) 2 0 ~ N _

0

0

__ 2 0

--

_J

w l--Gj OC) _J z I- =gt lt( ~ V1 N 0 1-z V) 3 CL

20 3 g0

1S3M

B-28

I fshyCt 0 z

0 r-shyr-shyI)

0 N r-shyn

0 r-shyl) I)

lO r-shylO

lO N It)

lO N ltt-

--

tlt)

_j

w r---fu o) _J z f- ) lt( ~ f) N 0 1-Z Vgt3 (L

2 03g0

I fshy)

0 l)

0 lO

0 -- n 2 0 ~ N ---

0

0

1S3M

B-29

1S13

-l)~ O 0 w

deg CL w

l)l ~

0 0 z 3

I lshya 0 z

--_

2 0 0 0

--

LO

_j

w__cj IJ)

0 _j z lf I- )

lt ~ ~ V) N

I) 20 - 0 Z(f)

I-

0 ~ 3 CLN -

2 00 3 gOr-

0

1S3M

B-30

Ht 11Sittl

lS13 0 0 0 0 N N II) (0 n I) n n

-- ()

LO t-shy ~ lO

(~i0 z

lO N LO

3

I Ishygt 0

lO () N +

--

2 0

--

_j

wr-----CJ OJ

0 _j z lt) I- )

lt ~ V) N

0 -- 0 1-shyI) 2 z () 0 i 3 ClN --- --

0 28 3 ltD

lf 0~_____________________________~_______________________--- t-- 0 0 0 0 ClCI N N t-shyII) t-shy io n n n n

1S3M

B-31

==- ~-_

NORTH

I bull bull - -f I I bull ~bull - ~__~~~~ ~~~

flt~11 $~~~t=- ~~ ~ 4Aligt~ ~~~ ~~

3820 1~~~- 4 t 11 ~ ~- --~_____-- ~ ~ ~~ 3820 ~~~

~~-~~~~

3770 3770

l1 ()w l-

lllizz tshy

~ ZlZZl ~ ~~~~~~

to I -IllIll

w -I IIIll~N llllll2~~

-II I I J I-~1~ r~~~~ 3720r ~ J J UL 1~A~~ 3720

~IIJJJJJ2~ ~~~ 1 ~ fl I JI JI2~~ 1~~~V fl fl ~ JI J J ~ y ~- 1-f4~) ~ fl fl fl I JI J _A2 1~ V~

~flflflflJIJIJl~2 ~~JIw~ ~ ~jlfljlflJIJIJI~ ~JIJIJflfl~~~ ~ ~~fljlfljlJI~~~~ -

J67 t-V1111111----(((((1i I~laquo rlt~1 I I I I I I I IM m I I I I I I I ~ MJ670 g75 325 375 425 475 525 575

SOUTH

11111 11111 11111 1I I I I I I 0 10 20 30 40 50 middot 0 5 10 15

(KM) WIND SPEED (MS)

DWM WINDS AT LEVEL 3 (300M) 1600 PST 25JUN87

1

NORTH

bj I

w w

i~ -tt--t ~ + ~frac14 diams diams diams diams diams f f f J-~~~l -ff~_x~ diams t diams ---t diams + diams ff f J1ff~t t

-=tl-U +---- ~ ~ t-t- diams diams __ diams~ diams diams ~ J I I 1 1 f ~ -y- ~I -~~-1t-~ diams +__+ diams + ++--J_f 1 ~JJ-11 I --

38201- ~~-- ~ ~--t_-( 1 ~ r 1t + middot~-t_ bull ~-~ bull bull bullmiddot bull r-r 1 ~IiI 1 I ~Ji~l _-=pound-~If~_ It It It bull bull bull bull bull ~ diams f f---bullmiddot+ --I __- _ I I~ 1 f1

( - ~~~~ II lit It It 1tt Iii Iii~ -r-middot -- ___- l_f--1-l -L ~~1 1 ~ ~_( _ -~~ ~------~ 1t(~ bull (t ft- ~ middotv -11-fI 1 - t~~1 1 41

~ - ~-~- lit 1t lk_i -- -~--- -_ -j rf-- l1 r111 1 I It It~ It 1t 11i bull-~ ~- ~ t_bullbull_~ (middot ~--middottY~i_(4Xtl~4j_ middot It It ~ -- ---~----~----_I~)-~-~ -

~-It It ltt middot~- ~ -~-middot ~-pound1[_~ -~- - middot - deg - - It It l diams diams 4 middotbull--bull ~ ~ ~ diams 7 1---~~ -L_- - ~ t( I diams -( bull diams ~ ~ bull ~ -- JI JI Jf JI JI j(_ ~II deg It_ -~ ~- I I I J JI JI JI JI 1

~ J- ~llj ~- diamsdiams +II IllJI_ h~ ~ ~ ~ bull bull ~ JI J J J ~ 1 x111 X7 -~ ~ diamsdiams 4111 JJJIJJ~~~~~~~~1t diamsdiamsdiams ~111 JJIJJIJllllb~ h~~~hh middot ~ - diams diams bull I I J J I I I I JI JI I l1-14~frac12-~~~ji_ ~ + f 1 J I 1 I I I 1 ~ x~ f1 11 middot -

bull JI I I I11~bullY1iz 1 41 ~ f I J J J JI J J J J J I I I lmiddot ~ t JI JI JI 1 JI 1 1 JI J I I I It~ if~_~

It_ ~ 1 JI JI JI JI J J I I l-~ 4 t J J J J J J J JI JI I I l l deg ~~ _ ~ 1111JJIJIJIJIJIJIJIJI t JIJIJIJI~I JIJJIJIJI_

~- I t I I JJJIJIJIJIJII~~~~ t JIJJIJIJIJIIII ~~ JJ JIJIJlllll ~ t IJJIJIJl1 1 1 ~ ~~I 1 t 1 A 11111111 II I I I

325 375 425 475

SOUTH

I I I I I I 0 10 20 30 40 50

(KM)

525 575

1111 111 1111 10 5 10 15

WIND SPEED (MS)

3820

3770 1-() lt( w

3720

3670

DWM WINDS AT LEVEL 1600 PST 25JUN87

5 (1000M)

0 w w CL ()

0

1S13 0 0 0 N r-shy N agt r-shy r--t) I) 1)

I() It)- r-shyU) U)

z U) N It) 3

( I I lshy Ishyo ) 0 0z It)

~lgtIgt~() st- b tgt ~ q st

lgtbbtgtb

b b t t 0 b

N

Igt b t b b b A 6 ~ b b t b C A 4 d 4

ttCt4lt1-it e Igt b tgt tgt V q ltl ltl ltI ltl

ti- deg 1 41 9 q I I ltl q q

i V q ltl q q q q I l() r-shy AlgtV ~ tlt) ~t) -~~~q

~ bull amp ~

0 ~ ~

-qa ~ ~ 1gt1 111111

b-a~-V ltillilI

bull lt bull bull a ~ Igt ~ V V V q 4 __J

It It lgt a -a~ Igt C tgt V w r---(J OC)

bull ~ Igt t 4 bull bull bull bull U) 0 __J z middot 1gt44lt14

U) ) t) rshy J - -N

lt( l() ~ ~~ CI() ~ ~

~

0 Ishy bull bull bull diams 1 z ()~ bull ~ bull diams diams 1 CL3bull ~ ~

i b y ~bullbullTT r I I 0

~ bull bulldiams ~ ~ b b b b ~ bullbull diams T r r I U)______-11____________________________ _ 0

0 O O ON N r- N r--agt r-- _ ~ I) I) I) I)

1S3M

B-34

I

_ _ 3820r- ttr- t f T Jf-Lt If t t 1l-- -~ 1~ t t

NORTH

~bull 1414

~~-_ ~ ~ r-- - --~ ~ - - _ r-- fT W - - r V-V ff f

- t t t t f I~ _AAjAA~-r bull(- -J It ~---1 t ~~~-1-- 1 ( ~~ - J ~ t t i f 1 ~ A_A-yen~_~_ ~ ~ 1 ~ t t ~ t t middotmiddotkt f ~-~-~~-----~~-- ~ ~ ~ ___ll_ bull ~

t -r- _______~~----- r ~bullbull _ ~ ~ tt-~J--~c-~~ ~ 1~--______ bull

~ -t lJ-- f t-J-- r---~~---middot _-- ~~-- ~ bull bull ll~iti~~sect~~~ ~ bullbull~bullbull bull~~n~ bull bull bull n~ bull bull

A)~lfifrac12~~ ~III I --1

3770 l l L l L - - ~ -- ~ - 1 ~ - 770 tshy~ ~~~~~~~~~11 1 ~~=1~~- Ul

W 1lllll~I ~~~~1111~~ lt( w ~1~~1~1~~j~~~m ~~~~ ~ - ~

11 1111 1111~I I 11111111 --- middotE~

tj IIIIIIIII_ ~tI l) llllll_~_p ~1l1 1~A~~~A~~rrr-v

3720t- I I I J J J A__ r r 0 11J)~~~----~_~ppmiddot-~~f Jl~~~~~---~--~~r~-~~q~q ~1

I ~JI I~ A A-_

~JIJl~~~~~A-----A rrbullbull~f~df~ ~~JIJl~~~~A~~--~- fffdfdff

~~JIJI~~~~~~---- bullfbulldbullfdf~

~IJIJl~~~AA~ --middotmiddotmiddotmiddotmiddot~middotmiddot~~~ ~l~JIJIJl~~~Al~pp~~~~bullbullffffffdff X ~~~~JI~- A(- f bullbull P ~ ~~bull1f1q1f1f1f1f1f1d1bull

3670275 325 375

1111 1111 11111 1 1 1

0 10 20 30 4-0 50 0 5 10 15 I I I I I I i(KM) WIND SPEED (MS)

iDWM w1tms AT LEVEL 3 (300M) ir 2200 PST 25JUN87

0 If)

0 __ I) 2 0 ~ (j __

0

0

__ 2 0 0 0

__

LO

_J

w f- GJ ll) _J z I- ) lt( ~ () N 0 1-z () ~ Cl

20 ~~ ON

1S3M

B-36

Page 20: Nind Observations Collected during the Southern California ...
Page 21: Nind Observations Collected during the Southern California ...
Page 22: Nind Observations Collected during the Southern California ...
Page 23: Nind Observations Collected during the Southern California ...
Page 24: Nind Observations Collected during the Southern California ...
Page 25: Nind Observations Collected during the Southern California ...
Page 26: Nind Observations Collected during the Southern California ...
Page 27: Nind Observations Collected during the Southern California ...
Page 28: Nind Observations Collected during the Southern California ...
Page 29: Nind Observations Collected during the Southern California ...
Page 30: Nind Observations Collected during the Southern California ...
Page 31: Nind Observations Collected during the Southern California ...
Page 32: Nind Observations Collected during the Southern California ...
Page 33: Nind Observations Collected during the Southern California ...
Page 34: Nind Observations Collected during the Southern California ...
Page 35: Nind Observations Collected during the Southern California ...
Page 36: Nind Observations Collected during the Southern California ...
Page 37: Nind Observations Collected during the Southern California ...
Page 38: Nind Observations Collected during the Southern California ...
Page 39: Nind Observations Collected during the Southern California ...
Page 40: Nind Observations Collected during the Southern California ...
Page 41: Nind Observations Collected during the Southern California ...
Page 42: Nind Observations Collected during the Southern California ...
Page 43: Nind Observations Collected during the Southern California ...
Page 44: Nind Observations Collected during the Southern California ...
Page 45: Nind Observations Collected during the Southern California ...
Page 46: Nind Observations Collected during the Southern California ...
Page 47: Nind Observations Collected during the Southern California ...
Page 48: Nind Observations Collected during the Southern California ...
Page 49: Nind Observations Collected during the Southern California ...
Page 50: Nind Observations Collected during the Southern California ...
Page 51: Nind Observations Collected during the Southern California ...
Page 52: Nind Observations Collected during the Southern California ...
Page 53: Nind Observations Collected during the Southern California ...
Page 54: Nind Observations Collected during the Southern California ...
Page 55: Nind Observations Collected during the Southern California ...
Page 56: Nind Observations Collected during the Southern California ...
Page 57: Nind Observations Collected during the Southern California ...
Page 58: Nind Observations Collected during the Southern California ...
Page 59: Nind Observations Collected during the Southern California ...
Page 60: Nind Observations Collected during the Southern California ...
Page 61: Nind Observations Collected during the Southern California ...
Page 62: Nind Observations Collected during the Southern California ...
Page 63: Nind Observations Collected during the Southern California ...
Page 64: Nind Observations Collected during the Southern California ...
Page 65: Nind Observations Collected during the Southern California ...
Page 66: Nind Observations Collected during the Southern California ...
Page 67: Nind Observations Collected during the Southern California ...
Page 68: Nind Observations Collected during the Southern California ...
Page 69: Nind Observations Collected during the Southern California ...
Page 70: Nind Observations Collected during the Southern California ...
Page 71: Nind Observations Collected during the Southern California ...
Page 72: Nind Observations Collected during the Southern California ...
Page 73: Nind Observations Collected during the Southern California ...
Page 74: Nind Observations Collected during the Southern California ...
Page 75: Nind Observations Collected during the Southern California ...
Page 76: Nind Observations Collected during the Southern California ...
Page 77: Nind Observations Collected during the Southern California ...
Page 78: Nind Observations Collected during the Southern California ...
Page 79: Nind Observations Collected during the Southern California ...
Page 80: Nind Observations Collected during the Southern California ...
Page 81: Nind Observations Collected during the Southern California ...
Page 82: Nind Observations Collected during the Southern California ...
Page 83: Nind Observations Collected during the Southern California ...
Page 84: Nind Observations Collected during the Southern California ...
Page 85: Nind Observations Collected during the Southern California ...
Page 86: Nind Observations Collected during the Southern California ...
Page 87: Nind Observations Collected during the Southern California ...
Page 88: Nind Observations Collected during the Southern California ...
Page 89: Nind Observations Collected during the Southern California ...
Page 90: Nind Observations Collected during the Southern California ...
Page 91: Nind Observations Collected during the Southern California ...
Page 92: Nind Observations Collected during the Southern California ...
Page 93: Nind Observations Collected during the Southern California ...
Page 94: Nind Observations Collected during the Southern California ...
Page 95: Nind Observations Collected during the Southern California ...
Page 96: Nind Observations Collected during the Southern California ...
Page 97: Nind Observations Collected during the Southern California ...
Page 98: Nind Observations Collected during the Southern California ...
Page 99: Nind Observations Collected during the Southern California ...
Page 100: Nind Observations Collected during the Southern California ...
Page 101: Nind Observations Collected during the Southern California ...
Page 102: Nind Observations Collected during the Southern California ...
Page 103: Nind Observations Collected during the Southern California ...
Page 104: Nind Observations Collected during the Southern California ...
Page 105: Nind Observations Collected during the Southern California ...
Page 106: Nind Observations Collected during the Southern California ...
Page 107: Nind Observations Collected during the Southern California ...