Nim Addition and Split Extensions basis for

40
Nim Addition and Split Extensions basis for By Lydia Njuguna and Benard Kivunge Kenyatta University, Kenya Third Mile High Conference on Nonassociative Mathematics 13th August 2013 ons n 2

description

Nim Addition and Split Extensions basis for . By. Lydia Njuguna and Benard Kivunge Kenyatta University, Kenya Third Mile High Conference on Nonassociative Mathematics 13th August 2013. Introduction . - PowerPoint PPT Presentation

Transcript of Nim Addition and Split Extensions basis for

Page 1: Nim  Addition and Split Extensions basis for

Nim Addition and Split Extensions basis for

ByLydia Njuguna and Benard Kivunge

Kenyatta University, Kenya

Third Mile High Conference on Nonassociative Mathematics 13th August 2013

onsn 2

Page 2: Nim  Addition and Split Extensions basis for

A sequence of algebras over the field of real numbers can be constructed, each with twice the dimension of the previous one

The oldest method of constructing these algebras is the Cayley-Dickson formula and the algebras thus produced are known as Cayley-Dickson algebras

Introduction

Page 3: Nim  Addition and Split Extensions basis for

• The algebra constructed by doubling complex numbers is the quaternions

• Next we have the octonions,constructed by

forming ordered pairs of quaternions

• The algebra immediately following the octonions is the sedenions

Page 4: Nim  Addition and Split Extensions basis for

Real Real

Complex Complex

Quaternion Quaternion

Octonion Octonion

Sedenion Sedenion

onn 12 onn 12

onn 2

ons

22

02

12 ons

ons

32 ons

42 ons

Page 5: Nim  Addition and Split Extensions basis for

Let L be a multiplicative subloop of the non-zero octonions. Then its sedenion extension

is the disjoint union within the sedenions.

Elements of this union are encoded as pairs with , by

The multiplication of elements of in general is given by the following equations:

Multiplication of Spit Extensions

0SL

),( a }1,1{0 S )1,(aa )1,( aaf

Page 6: Nim  Addition and Split Extensions basis for

i). ,1 ,1 ,1x y xy

ii). ,1 , 1 , 1x y yx

iii). )1,()1,)(1,( yxyx

iv) , 1 , 1 ,1 x y xy

Page 7: Nim  Addition and Split Extensions basis for

Consider the non-negative integers {0, 1, 2, 3,…}.

Nim addition and multiplication gives a way of defining addition and multiplication in to make it a field of characteristic 2.

The rules of Nim addition simplify to the form: The Nim-sum of a number of distinct powers of 2

is the ordinary sum. The Nim-sum of two equal numbers is 0 Example: 32 +16 + 4 + 1 = 53

Nim Addition

Z

Page 8: Nim  Addition and Split Extensions basis for

Complex split extensions

Let )1,(),1,1(),1,(),1,1( 3210 iaaiaa

be basis elements in 0SC .The

multiplication of the elements gives rise to the

following table.

Page 9: Nim  Addition and Split Extensions basis for

0a 1a 2a 3a

0a 0a 1a 2a 3a

1a 1a - 0a 3a - 2a

2a 2a - 3a - 0a 1a

3a 3a 2a - 1a - 0a

Table 1 Multiplication of Complex Split Extensions

Page 10: Nim  Addition and Split Extensions basis for

0 1 2 3

0 0 1 2 3

1 1 0 3 2

2 2 3 0 1

3 3 2 1 0

The following table gives the Nim addition for the elements from 0 to 3

Table 2 Nim addition for the elements 0 to 3

Page 11: Nim  Addition and Split Extensions basis for

This table is similar to the multiplication table of the complex split extensions (Table 1).The subscripts of the elements in Table 1 make up Table 2.

Observation:

mkmk aaa k, m = 0,1,2,3

Page 12: Nim  Addition and Split Extensions basis for

Quaternion Split ExtensionsLet )1,(),1,(),1,(),1,( 33221100 abababab ,

)1,( 04 ab,

)1,( 15 ab,

)1,( 26 ab,

)1,( 37 ab

be basis elements in 0SH .

The multiplication of the elements gives rise to the following table

Page 13: Nim  Addition and Split Extensions basis for

0b 1b 2b 3b 4b 5b 6b 7b

0b 0b 1b 2b 3b 4b 5b 6b 7b

1b 1b 0b 3b 2b 5b 4b 7b 6b

2b 2b 3b - 0b 1b 6b 7b 4b 5b

3b 3b 2b 1b 0b 7b 6b 5b 4b

4b 4b 5b 6b 7b 0b 1b 2b 3b

5b 5b 4b 7b 6b 1b 0b 3b 2b

6b 6b 7b 4b 5b 2b 3b 0b 1b

7b 7b 6b 5b 4b 3b 2b - 1b 0b

Table 3 Mult of Quaternion Split Extention

Page 14: Nim  Addition and Split Extensions basis for

The following table gives the Nim addition for the elements from 0 to 7

Page 15: Nim  Addition and Split Extensions basis for

0 1 2 3 4 5 6 7

0 0 1 2 3 4 5 6 7

1 1 0 3 2 5 4 7 6

2 2 3 0 1 6 7 4 5

3 3 2 1 0 7 6 5 4

4 4 5 6 7 0 1 2 3

5 5 4 7 6 1 0 3 2

6 6 7 4 5 2 3 0 1

7 7 6 5 4 3 2 1 0

Table 4 Nim addition for 0 to 7

Page 16: Nim  Addition and Split Extensions basis for

This table is similar to the multiplication table of the quaternion split extensions (Table 3). The subscripts of the elements in Table 3 make up Table 4.

Observation

mkmk bbb

k, m = 0, 1,...,7

Page 17: Nim  Addition and Split Extensions basis for

Octonion Split Extensions

Let )1,( 00 bc , )1,( 11 bc , )1,( 22 bc , )1,( 33 bc , )1,( 44 bc ,

)1,( 55 bc , )1,( 66 be , )1,( 77 bc , )1,( 08 bc , )1,( 19 bc , )1,( 210 bc ,

)1,( 311 bc , )1,( 412 bc , )1,( 513 bc , )1,( 616 bc , )1,( 715 bc

The multiplication of the elements give rise to the following table (only subscripts shown)

be basis elements in 0SK

Page 18: Nim  Addition and Split Extensions basis for

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1 1 0 3 2 5 4 7 6 9 8 11 10 13 12 15 14

2 2 3 0 1 6 7 4 5 10 11 8 9 14 15 12 13

3 3 2 1 0 7 6 5 4 11 10 9 8 15 14 13 12

4 4 5 6 7 0 1 2 3 12 13 14 15 8 9 10 11

5 5 4 7 6 1 0 3 2 13 12 15 14 9 8 11 10

6 6 7 4 5 2 3 0 1 14 15 12 13 10 11 8 9

7 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8

8 8 9 10 11 12 13 14 15 0 1 2 3 4 5 6 7

9 9 8 11 10 13 12 15 14 1 0 3 2 5 4 7 6

10 10 11 8 9 14 15 12 13 2 3 0 1 6 7 4 5

11 11 10 9 8 15 14 13 12 3 2 1 0 7 6 5 4

12 12 13 14 15 8 9 10 11 4 5 6 7 0 1 2 3

13 13 12 15 14 9 8 11 10 5 4 7 6 1 0 3 2

14 14 15 12 13 10 11 8 9 6 7 4 5 2 3 0 1

15 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Table 5 Nim addition for the elements 0 to 15

Page 19: Nim  Addition and Split Extensions basis for

The following table gives the Nim addition for the elements from 0 to 15

Page 20: Nim  Addition and Split Extensions basis for

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1 1 0 3 2 5 4 7 6 9 8 11 10 13 12 15 14

2 2 3 0 1 6 7 4 5 10 11 8 9 14 15 12 13

3 3 2 1 0 7 6 5 4 11 10 9 8 15 14 13 12

4 4 5 6 7 0 1 2 3 12 13 14 15 8 9 10 11

5 5 4 7 6 1 0 3 2 13 12 15 14 9 8 11 10

6 6 7 4 5 2 3 0 1 14 15 12 13 10 11 8 9

7 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8

8 8 9 10 11 12 13 14 15 0 1 2 3 4 5 6 7

9 9 8 11 10 13 12 15 14 1 0 3 2 5 4 7 6

10 10 11 8 9 14 15 12 13 2 3 0 1 6 7 4 5

11 11 10 9 8 15 14 13 12 3 2 1 0 7 6 5 4

12 12 13 14 15 8 9 10 11 4 5 6 7 0 1 2 3

13 13 12 15 14 9 8 11 10 5 4 7 6 1 0 3 2

14 14 15 12 13 10 11 8 9 6 7 4 5 2 3 0 1

15 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Table 5 Nim addition for the elements 0 to 15

Page 21: Nim  Addition and Split Extensions basis for

The table is similar to the multiplication table of the octonion split extensions 5. The subscripts of the elements in Table 5 make up Table 6

Page 22: Nim  Addition and Split Extensions basis for

From tables 5 and 6, the following observations can be made: There are 4 cases

Observation

Case 1: 7,7 mk

mkmkmkmk cbbbcc )1,()1,()1,(

Page 23: Nim  Addition and Split Extensions basis for

Case 2: 8,7 mk

km

km

km

km

km

mkmk

cbbb

bbbbcc

)1,()1,()1,(

)1,()1,()1,(

8

8

8

8

8

Page 24: Nim  Addition and Split Extensions basis for

Case 3 : 78 mk

km

mk

mk

mk

mk

mk

mkmk

cbb

bbbb

bb

bbcc

)1,()1,(

)1,()1,()1,(

)1,()1,(

8

8

8

8

8

8

Page 25: Nim  Addition and Split Extensions basis for

Case 4: 88 mk

km

mk

mk

mk

mk

mk

mk

mkmk

c

b

b

bbb

bbbb

bbcc

)1(

)1,(

)1,()1,(

]1),)([()1,(

)1,()1,(

,16

16

88

88

88

88

88

Page 26: Nim  Addition and Split Extensions basis for

In general,. mkmk ccc k, m = 0, 1,...,15

Page 27: Nim  Addition and Split Extensions basis for

3.4 Sedenion Split Extensions

)1,( 0cdo , )1,( 11 cd , )1,( 22 cd , )1,( 33 cd , )1,( 44 cd , )1,( 55 cd , )1,( 66 cd ,)1,( 77 cd , )1,( 88 cd , )1,( 99 e , )1,( 1010 cd , )1,( 1111 cd , )1,( 1212 cd , )1,( 1313 cd , )1,( 1414 cd

, )1,( 1515 cd , )1,( 016 cd , )1,( 117 cd , )1,( 218 cd , )1,( 319 cd , )1,( 420 cd , )1,( 521 cd ,)1,( 622 cd , )1,( 723 cd , )1,( 824 cd , )1,( 925 cd , )1,( 1026 cd , )1,( 1127 cd ,)1,( 1228 cd , )1,( 1329 cd , )1,( 1430 cd , )1,( 1531 cd

Page 28: Nim  Addition and Split Extensions basis for

Using the three results of the previous Section the multiplication of these elements can be summarized in the following 4 cases

Case 1: 15,15 mk

km

km

km

mkmk

dcc

ccdd

)1,()1,(

)1,()1,(

Page 29: Nim  Addition and Split Extensions basis for

16,15 mk

km

km

km

km

km

mkmk

dccc

ccccdd

)1,()1,()1,()1,(

)1,()1,(

16

16

16

16

16

Page 30: Nim  Addition and Split Extensions basis for

Case 3: 15,16 mk

km

mk

mk

mk

mk

mk

mk

mkmk

d

ccc

cccc

cc

ccdd

)()1,()1,()1,(

)1,()1,(

)1,()1,(

16

16

16

16

16

16

16

Page 31: Nim  Addition and Split Extensions basis for

Case 4: 1616 mk

mk

mk

mk

mk

mk

mk

mk

mkmk

dcc

ccc

cccc

ccdd

)1,()1,(

)1,()1,(

]1),)([()1,(

)1,()1,(

32

32

)16()16(

1616

1616

1616

1616

Page 32: Nim  Addition and Split Extensions basis for

In general,

mkmk ddd k, m = 0, 1,...,31

Page 33: Nim  Addition and Split Extensions basis for

Consider the split extension basis elements of dimension ,n = 1,2,…given by

4. Main Theorem

n2

where...,,,12210 nffff

12,...,12,2)1(

12,...,2,1,0),1,(

11,2

1

1nnn

i

ni

i

ig

igf

n

Then, mkmk fff for k ,m = 0, 1,…. 12 n

Page 34: Nim  Addition and Split Extensions basis for

Proof:Let the split extension basis elements be given by

12,...,12,2)1(

12,...,2,1,0),1,(

11,2

1

1nnn

i

ni

i

ig

igf

n

(1)

By induction hypothesis, suppose it’s true for n-1 with basis elements

12210 1...,,,,ngggg . We prove that it’s true for n with basis elements

12210 ...,,,,nffff defined in equation 2 above.

If it is true for n-1 with basis elements 12210 1...,,,,

ngggg , then

mkk ggg m k, m=0,1,… 12 1 n

Page 35: Nim  Addition and Split Extensions basis for

There are 4 cases

Case 1: 12,12 11 nn mk

mk

km

km

mk

mkmk

fgggg

ggff

)1,()1,(

)1,()1,()1,(

Page 36: Nim  Addition and Split Extensions basis for

Case 2: 11 2,12 nn mk

km

km

km

km

km

mkmk

f

g

g

g

gg

ggff

n

n

n

n

n

)1,(

)1,(

)1,(

)1,(

)1,()1,(

1

1

1

1

1

2][

2][

2

2

2

Page 37: Nim  Addition and Split Extensions basis for

Case 3: 12,2 11 nn mk

km

mk

mk

mk

mk

mk

mkmk

f

g

g

gg

gg

gg

ggff

n

n

n

n

n

n

)1,(

)1,(

)1,(

)1,(

)1,(

)1,()1,(

1

1

1

1

1

1

2][

2

2

2

2

2

Page 38: Nim  Addition and Split Extensions basis for

Case 4: 11 2,2 nn mk

mk

mk

mk

mk

mk

mk

mk

mkmk

f

g

g

g

gg

gg

gg

ggff

n

n

nn

nn

nn

nn

nn

)1,(

)1,(

)1,(

)1,(

]1),)([(

)1,(

)1,()1,(

2

2

)2()2(

22

22

22

22

11

11

11

11

11

Page 39: Nim  Addition and Split Extensions basis for

Therefore, mkmk fff for k ,m = 0, 1,… 12 n .

Page 40: Nim  Addition and Split Extensions basis for

The end

Thank you