New The Revival of Active Set Methods - Argonne National Laboratorymmin/MCS/sven.pdf · 2005. 1....

60
Informal Argonne Seminar Series, 2004 The Revival of Active Set Methods Sven Leyffer, [email protected] Mathematics & Computer Science Division, Argonne National Laboratory 1. Why Do We Need Active Set Methods? 2. Active Set Methods for Quadratic Programs 3. Active Set Methods for Nonlinear Programs

Transcript of New The Revival of Active Set Methods - Argonne National Laboratorymmin/MCS/sven.pdf · 2005. 1....

Page 1: New The Revival of Active Set Methods - Argonne National Laboratorymmin/MCS/sven.pdf · 2005. 1. 24. · The Revival of Active Set Methods Sven Leyffer, leyffer@mcs.anl.gov Mathematics

Informal Argonne Seminar Series, 2004

The Revival of Active Set Methods

Sven Leyffer, [email protected]

Mathematics & Computer Science Division, Argonne National Laboratory

1. Why Do We Need Active Set Methods?

2. Active Set Methods for Quadratic Programs

3. Active Set Methods for Nonlinear Programs

Page 2: New The Revival of Active Set Methods - Argonne National Laboratorymmin/MCS/sven.pdf · 2005. 1. 24. · The Revival of Active Set Methods Sven Leyffer, leyffer@mcs.anl.gov Mathematics

Philosophy Quadratic Programs Nonlinear Programs

Why Do We Need Active Set Methods (ASMs)?

Philosophy

Lesson

Sven Leyffer Active Set Methods 2 of 31

Page 3: New The Revival of Active Set Methods - Argonne National Laboratorymmin/MCS/sven.pdf · 2005. 1. 24. · The Revival of Active Set Methods Sven Leyffer, leyffer@mcs.anl.gov Mathematics

Philosophy Quadratic Programs Nonlinear Programs

Issues in Optimization Solvers

minimizex

f (x) subject to c(x) ≥ 0

1. Global Convergence

• merit function, e.g. f (x) + π‖c(x)−‖ for π > ‖y∗‖D

• filter ... more later

2. Active Set Identification

• given active set, simply use Newton’s method• step computation: update estimate of active set• alternative: interior point methods Yc(x) = µe & µ ↘ 0

3. Fast Local Convergence

• conjugate gradients et al.• (constrained) preconditioners

Sven Leyffer Active Set Methods 3 of 31

Page 4: New The Revival of Active Set Methods - Argonne National Laboratorymmin/MCS/sven.pdf · 2005. 1. 24. · The Revival of Active Set Methods Sven Leyffer, leyffer@mcs.anl.gov Mathematics

Philosophy Quadratic Programs Nonlinear Programs

Issues in Optimization Solvers

minimizex

f (x) subject to c(x) ≥ 0

1. Global Convergence• merit function, e.g. f (x) + π‖c(x)−‖ for π > ‖y∗‖D

• filter ... more later

2. Active Set Identification

• given active set, simply use Newton’s method• step computation: update estimate of active set• alternative: interior point methods Yc(x) = µe & µ ↘ 0

3. Fast Local Convergence

• conjugate gradients et al.• (constrained) preconditioners

Sven Leyffer Active Set Methods 3 of 31

Page 5: New The Revival of Active Set Methods - Argonne National Laboratorymmin/MCS/sven.pdf · 2005. 1. 24. · The Revival of Active Set Methods Sven Leyffer, leyffer@mcs.anl.gov Mathematics

Philosophy Quadratic Programs Nonlinear Programs

Issues in Optimization Solvers

minimizex

f (x) subject to c(x) ≥ 0

1. Global Convergence• merit function, e.g. f (x) + π‖c(x)−‖ for π > ‖y∗‖D

• filter ... more later

2. Active Set Identification• given active set, simply use Newton’s method• step computation: update estimate of active set• alternative: interior point methods Yc(x) = µe & µ ↘ 0

3. Fast Local Convergence

• conjugate gradients et al.• (constrained) preconditioners

Sven Leyffer Active Set Methods 3 of 31

Page 6: New The Revival of Active Set Methods - Argonne National Laboratorymmin/MCS/sven.pdf · 2005. 1. 24. · The Revival of Active Set Methods Sven Leyffer, leyffer@mcs.anl.gov Mathematics

Philosophy Quadratic Programs Nonlinear Programs

Issues in Optimization Solvers

minimizex

f (x) subject to c(x) ≥ 0

1. Global Convergence• merit function, e.g. f (x) + π‖c(x)−‖ for π > ‖y∗‖D

• filter ... more later

2. Active Set Identification• given active set, simply use Newton’s method• step computation: update estimate of active set• alternative: interior point methods Yc(x) = µe & µ ↘ 0

3. Fast Local Convergence• conjugate gradients et al.• (constrained) preconditioners

Sven Leyffer Active Set Methods 3 of 31

Page 7: New The Revival of Active Set Methods - Argonne National Laboratorymmin/MCS/sven.pdf · 2005. 1. 24. · The Revival of Active Set Methods Sven Leyffer, leyffer@mcs.anl.gov Mathematics

Philosophy Quadratic Programs Nonlinear Programs

Why Do We Need Active Set Methods (ASMs)?

Interior point methods (IPMs) usually faster than ASMs:

1. Pivoting inefficient for huge problems

2. Single QP solve ' several Newton steps of IPM

3. Null-space projected Hessian factors are DENSE

Why should we be interested in ASMs?

• ASMs often more robust than interior point methods• ASMs better for warm-starts (repeated solves)• Easier to precondition ... iterative solves

Challenge: overcome 1. & 2. from above

Two ways to make large changes to active set

1. Projected gradient approach

2. Sequential linear programming approach

Sven Leyffer Active Set Methods 4 of 31

Page 8: New The Revival of Active Set Methods - Argonne National Laboratorymmin/MCS/sven.pdf · 2005. 1. 24. · The Revival of Active Set Methods Sven Leyffer, leyffer@mcs.anl.gov Mathematics

Philosophy Quadratic Programs Nonlinear Programs

Why Do We Need Active Set Methods (ASMs)?

Interior point methods (IPMs) usually faster than ASMs:

1. Pivoting inefficient for huge problems

2. Single QP solve ' several Newton steps of IPM

3. Null-space projected Hessian factors are DENSE

Why should we be interested in ASMs?

• ASMs often more robust than interior point methods• ASMs better for warm-starts (repeated solves)• Easier to precondition ... iterative solves

Challenge: overcome 1. & 2. from above

Two ways to make large changes to active set

1. Projected gradient approach

2. Sequential linear programming approach

Sven Leyffer Active Set Methods 4 of 31

Page 9: New The Revival of Active Set Methods - Argonne National Laboratorymmin/MCS/sven.pdf · 2005. 1. 24. · The Revival of Active Set Methods Sven Leyffer, leyffer@mcs.anl.gov Mathematics

Philosophy Quadratic Programs Nonlinear Programs

Why Do We Need Active Set Methods (ASMs)?

Interior point methods (IPMs) usually faster than ASMs:

1. Pivoting inefficient for huge problems

2. Single QP solve ' several Newton steps of IPM

3. Null-space projected Hessian factors are DENSE

Why should we be interested in ASMs?

• ASMs often more robust than interior point methods• ASMs better for warm-starts (repeated solves)• Easier to precondition ... iterative solves

Challenge: overcome 1. & 2. from above

Two ways to make large changes to active set

1. Projected gradient approach

2. Sequential linear programming approachSven Leyffer Active Set Methods 4 of 31

Page 10: New The Revival of Active Set Methods - Argonne National Laboratorymmin/MCS/sven.pdf · 2005. 1. 24. · The Revival of Active Set Methods Sven Leyffer, leyffer@mcs.anl.gov Mathematics

Philosophy Quadratic Programs Nonlinear Programs

ACTIVE SETMETHODSFOR QPs

Sven Leyffer Active Set Methods 5 of 31

Page 11: New The Revival of Active Set Methods - Argonne National Laboratorymmin/MCS/sven.pdf · 2005. 1. 24. · The Revival of Active Set Methods Sven Leyffer, leyffer@mcs.anl.gov Mathematics

Philosophy Quadratic Programs Nonlinear Programs

Active Sets for Quadratic Programs (QPs)

minimizex

12xTHx + gTx

subject to ATx = bl ≤ x ≤ u

• H is symmetric (indefinite?)

• AT is m × n, m < n, full rank

• General: l ≤(

xATx

)≤ u

Active set A(x) = {i | xi = li or xi = ui}Inactive set I(x) = {1, . . . , n} − A(x)

Sven Leyffer Active Set Methods 6 of 31

Page 12: New The Revival of Active Set Methods - Argonne National Laboratorymmin/MCS/sven.pdf · 2005. 1. 24. · The Revival of Active Set Methods Sven Leyffer, leyffer@mcs.anl.gov Mathematics

Philosophy Quadratic Programs Nonlinear Programs

Active Sets for Quadratic Programs (QPs)

Active set A(x) = {i | xi = li or xi = ui}Inactive set I(x) = {1, . . . , n} − A(x)

Given A, QP solution (x∗I , y∗) solves[

HI,I −A:,IAT

:,I

](xIy

)=

(−gI − HI,AxA

b − AT:,AxA

)Active-set methods search for A∗:• Delete entries from Ak ; update a factorization; compute step

• Possibly add entries to Ak

• ∃ robust solvers; good for warm starts ... n large ???

Sven Leyffer Active Set Methods 7 of 31

Page 13: New The Revival of Active Set Methods - Argonne National Laboratorymmin/MCS/sven.pdf · 2005. 1. 24. · The Revival of Active Set Methods Sven Leyffer, leyffer@mcs.anl.gov Mathematics

Philosophy Quadratic Programs Nonlinear Programs

PROJECTEDGRADIENT

Sven Leyffer Active Set Methods 8 of 31

Page 14: New The Revival of Active Set Methods - Argonne National Laboratorymmin/MCS/sven.pdf · 2005. 1. 24. · The Revival of Active Set Methods Sven Leyffer, leyffer@mcs.anl.gov Mathematics

Philosophy Quadratic Programs Nonlinear Programs

Projected Gradient for Box Constrained QPs

Simpler box constrained QP ...{minimize

x

12xTHx + gTx =: q(x)

subject to l ≤ x ≤ u

Projected steepest descent P[x − α∇q(x)]◦ piecewise linear path

... large changes to A-set

... but slow (steepest descent)

x−tg

P[x−tg]

xc Cauchy point ≡ first minimum of q(x(α)), for α ≥ 0

Theorem: Cauchy points converge to stationary point.

Sven Leyffer Active Set Methods 9 of 31

Page 15: New The Revival of Active Set Methods - Argonne National Laboratorymmin/MCS/sven.pdf · 2005. 1. 24. · The Revival of Active Set Methods Sven Leyffer, leyffer@mcs.anl.gov Mathematics

Philosophy Quadratic Programs Nonlinear Programs

Projected Gradient & CG for Box Constrained QPs

x0 given such that l ≤ x0 ≤ u; set k = 0WHILE (not optimal) BEGIN

1. find Cauchy point xck & active set A(xc

k )

2. (approx.) solve box QP in subspace I := {1, . . . , n} − A(xck )

minimizex

12xTHx + gTx

subject to l ≤ x ≤ uxi = [xc

k ]i ,∀ i ∈ A(xck )

⇔ apply CG to ...HI,IxI = ...

for xk+1; set k = k + 1

END

Cauchy point ⇒ global convergence ... but faster due to CG

Sven Leyffer Active Set Methods 10 of 31

Page 16: New The Revival of Active Set Methods - Argonne National Laboratorymmin/MCS/sven.pdf · 2005. 1. 24. · The Revival of Active Set Methods Sven Leyffer, leyffer@mcs.anl.gov Mathematics

Philosophy Quadratic Programs Nonlinear Programs

How to Include ATx = b?

Projection onto box is easy, but tough for general QP

PQP [z ] =

minimize

x(x − z)T (x − z)

subject to ATx = bl ≤ x ≤ u

... as hard as original QP! ... Idea: project onto box only

⇒ subspace solve HI,IxI = ... becomes solve with KKT system[HI,I −A:,IAT

:,I

](xIy

)= ...

Which gradient / merit function in Cauchy step?

Sven Leyffer Active Set Methods 11 of 31

Page 17: New The Revival of Active Set Methods - Argonne National Laboratorymmin/MCS/sven.pdf · 2005. 1. 24. · The Revival of Active Set Methods Sven Leyffer, leyffer@mcs.anl.gov Mathematics

Philosophy Quadratic Programs Nonlinear Programs

AUGMENTEDLAGRANGIAN

Sven Leyffer Active Set Methods 12 of 31

Page 18: New The Revival of Active Set Methods - Argonne National Laboratorymmin/MCS/sven.pdf · 2005. 1. 24. · The Revival of Active Set Methods Sven Leyffer, leyffer@mcs.anl.gov Mathematics

Philosophy Quadratic Programs Nonlinear Programs

The Augmented Lagrangian

Arrow & Solow (’58), Hestenes (’69), Powell (’69)

minimizex

L(x , yk , ρk) = f (x) − yTk c(x) + 1

2ρk‖c(x)‖2

As yk → y∗: • xk → x∗ for ρk > ρ• No ill-conditioning, improves convergence rate

• An old idea for nonlinear constraints ... smooth merit function• Poor experience with LPs (e.g., MINOS vs. LANCELOT)• But special structure of LPs (and QPs) not fully exploited

f (x) = 12xTHx + gTx & c(x) = ATx − b

Sven Leyffer Active Set Methods 13 of 31

Page 19: New The Revival of Active Set Methods - Argonne National Laboratorymmin/MCS/sven.pdf · 2005. 1. 24. · The Revival of Active Set Methods Sven Leyffer, leyffer@mcs.anl.gov Mathematics

Philosophy Quadratic Programs Nonlinear Programs

Bound Constrained Lagrangian (BCL)

Minimizing the augmented Lagrangian subject to bounds:

WHILE (not optimal) BEGIN

1. Find ωk ↘ 0 optimal xk of

minimizel≤x≤u

f (x)− yTk c(x) + 1

2ρk‖c(x)‖2

2. IF ‖c(xk)‖ ≤ ηk ↘ 0 THENUpdate yk

(typically yk+1 = yk − ρkc(xk)

)ELSE increase ρk

END

Arbitrary sequences: ηk&ωk control feasibility & optimality

Sven Leyffer Active Set Methods 14 of 31

Page 20: New The Revival of Active Set Methods - Argonne National Laboratorymmin/MCS/sven.pdf · 2005. 1. 24. · The Revival of Active Set Methods Sven Leyffer, leyffer@mcs.anl.gov Mathematics

Philosophy Quadratic Programs Nonlinear Programs

Bound Constrained Lagrangian (BCL)

Minimizing the augmented Lagrangian subject to bounds:

WHILE (not optimal) BEGIN

1. Find ωk ↘ 0 optimal xk of

minimizel≤x≤u

f (x)− yTk c(x) + 1

2ρk‖c(x)‖2

2. IF ‖c(xk)‖ ≤ ηk ↘ 0 THENUpdate yk

(typically yk+1 = yk − ρkc(xk)

)ELSE increase ρk

END

Arbitrary sequences: ηk&ωk control feasibility & optimality

Sven Leyffer Active Set Methods 14 of 31

Page 21: New The Revival of Active Set Methods - Argonne National Laboratorymmin/MCS/sven.pdf · 2005. 1. 24. · The Revival of Active Set Methods Sven Leyffer, leyffer@mcs.anl.gov Mathematics

Philosophy Quadratic Programs Nonlinear Programs

Bound Constrained Lagrangian (BCL)

Minimizing the augmented Lagrangian subject to bounds:

WHILE (not optimal) BEGIN

1. Find ωk ↘ 0 optimal xk of

minimizel≤x≤u

f (x)− yTk c(x) + 1

2ρk‖c(x)‖2

2. IF ‖c(xk)‖ ≤ ηk ↘ 0 THENUpdate yk

(typically yk+1 = yk − ρkc(xk)

)ELSE increase ρk

END

Arbitrary sequences: ηk&ωk control feasibility & optimality

Sven Leyffer Active Set Methods 14 of 31

Page 22: New The Revival of Active Set Methods - Argonne National Laboratorymmin/MCS/sven.pdf · 2005. 1. 24. · The Revival of Active Set Methods Sven Leyffer, leyffer@mcs.anl.gov Mathematics

Philosophy Quadratic Programs Nonlinear Programs

Augmented Lagrangian for Linear Constraints

Nonlinear c(x) c(x) = ATx − b

(yk , ρk) ∈ D ρk > ρ

∀(ρ, y) ∈ D, minimize L(x , y , ρ) has unique solution x(y , ρ):• bound constrained augmented Lagrangian converges• Hessian ∇2

xxL(x , y , ρ) is positive definite on optimal face

ρ ≈ 2‖H∗‖

‖A∗AT∗‖... depends on active set ... from dual Hessian

Sven Leyffer Active Set Methods 15 of 31

Page 23: New The Revival of Active Set Methods - Argonne National Laboratorymmin/MCS/sven.pdf · 2005. 1. 24. · The Revival of Active Set Methods Sven Leyffer, leyffer@mcs.anl.gov Mathematics

Philosophy Quadratic Programs Nonlinear Programs

Augmented Lagrangian for Linear Constraints

Nonlinear c(x) c(x) = ATx − b

(yk , ρk) ∈ D ρk > ρ

∀(ρ, y) ∈ D, minimize L(x , y , ρ) has unique solution x(y , ρ):• bound constrained augmented Lagrangian converges• Hessian ∇2

xxL(x , y , ρ) is positive definite on optimal face

ρ ≈ 2‖H∗‖

‖A∗AT∗‖... depends on active set ... from dual Hessian

Sven Leyffer Active Set Methods 15 of 31

Page 24: New The Revival of Active Set Methods - Argonne National Laboratorymmin/MCS/sven.pdf · 2005. 1. 24. · The Revival of Active Set Methods Sven Leyffer, leyffer@mcs.anl.gov Mathematics

Philosophy Quadratic Programs Nonlinear Programs

QP by Projected Augmented Lagrangian QPPAL

WHILE (not optimal) BEGIN

1. Find ωk ↘ 0 optimal solution xck of

minimizel≤x≤u

12xTHx + gTx − yT (ATx − b) + 1

2ρk‖ATx − b‖2

2. Find A(xck ) & estimate penalty ρ = 2 ‖HI‖/‖AIAT

I ‖3. IF ρ > ρk THEN update ρk+1 = ρ & CYCLE

ELSE update multiplier: y ck = yk − ρk(A

Txck − b)

4. Solve equality QP in subspace → (∆xI , ∆y)[HI,I −A:,IAT

:,I

](∆xI∆y

)= −

([∇xL(xc

k , y ck , 0)]I

ATxck − b

)5. Line-search on L(xc

k + α∆x , y ck + α∆y , ρ); update x , y , k , ρ

END1.-3. identify active set ... 4. gives fast convergence

Sven Leyffer Active Set Methods 16 of 31

Page 25: New The Revival of Active Set Methods - Argonne National Laboratorymmin/MCS/sven.pdf · 2005. 1. 24. · The Revival of Active Set Methods Sven Leyffer, leyffer@mcs.anl.gov Mathematics

Philosophy Quadratic Programs Nonlinear Programs

QP by Projected Augmented Lagrangian QPPAL

WHILE (not optimal) BEGIN

1. Find ωk ↘ 0 optimal solution xck of

minimizel≤x≤u

12xTHx + gTx − yT (ATx − b) + 1

2ρk‖ATx − b‖2

2. Find A(xck ) & estimate penalty ρ = 2 ‖HI‖/‖AIAT

I ‖3. IF ρ > ρk THEN update ρk+1 = ρ & CYCLE

ELSE update multiplier: y ck = yk − ρk(A

Txck − b)

4. Solve equality QP in subspace → (∆xI , ∆y)[HI,I −A:,IAT

:,I

](∆xI∆y

)= −

([∇xL(xc

k , y ck , 0)]I

ATxck − b

)

5. Line-search on L(xck + α∆x , y c

k + α∆y , ρ); update x , y , k , ρ

END1.-3. identify active set ... 4. gives fast convergence

Sven Leyffer Active Set Methods 16 of 31

Page 26: New The Revival of Active Set Methods - Argonne National Laboratorymmin/MCS/sven.pdf · 2005. 1. 24. · The Revival of Active Set Methods Sven Leyffer, leyffer@mcs.anl.gov Mathematics

Philosophy Quadratic Programs Nonlinear Programs

QP by Projected Augmented Lagrangian QPPAL

WHILE (not optimal) BEGIN

1. Find ωk ↘ 0 optimal solution xck of

minimizel≤x≤u

12xTHx + gTx − yT (ATx − b) + 1

2ρk‖ATx − b‖2

2. Find A(xck ) & estimate penalty ρ = 2 ‖HI‖/‖AIAT

I ‖3. IF ρ > ρk THEN update ρk+1 = ρ & CYCLE

ELSE update multiplier: y ck = yk − ρk(A

Txck − b)

4. Solve equality QP in subspace → (∆xI , ∆y)[HI,I −A:,IAT

:,I

](∆xI∆y

)= −

([∇xL(xc

k , y ck , 0)]I

ATxck − b

)5. Line-search on L(xc

k + α∆x , y ck + α∆y , ρ); update x , y , k , ρ

END

1.-3. identify active set ... 4. gives fast convergence

Sven Leyffer Active Set Methods 16 of 31

Page 27: New The Revival of Active Set Methods - Argonne National Laboratorymmin/MCS/sven.pdf · 2005. 1. 24. · The Revival of Active Set Methods Sven Leyffer, leyffer@mcs.anl.gov Mathematics

Philosophy Quadratic Programs Nonlinear Programs

QP by Projected Augmented Lagrangian QPPAL

WHILE (not optimal) BEGIN

1. Find ωk ↘ 0 optimal solution xck of

minimizel≤x≤u

12xTHx + gTx − yT (ATx − b) + 1

2ρk‖ATx − b‖2

2. Find A(xck ) & estimate penalty ρ = 2 ‖HI‖/‖AIAT

I ‖3. IF ρ > ρk THEN update ρk+1 = ρ & CYCLE

ELSE update multiplier: y ck = yk − ρk(A

Txck − b)

4. Solve equality QP in subspace → (∆xI , ∆y)[HI,I −A:,IAT

:,I

](∆xI∆y

)= −

([∇xL(xc

k , y ck , 0)]I

ATxck − b

)5. Line-search on L(xc

k + α∆x , y ck + α∆y , ρ); update x , y , k , ρ

END1.-3. identify active set

... 4. gives fast convergence

Sven Leyffer Active Set Methods 16 of 31

Page 28: New The Revival of Active Set Methods - Argonne National Laboratorymmin/MCS/sven.pdf · 2005. 1. 24. · The Revival of Active Set Methods Sven Leyffer, leyffer@mcs.anl.gov Mathematics

Philosophy Quadratic Programs Nonlinear Programs

QP by Projected Augmented Lagrangian QPPAL

WHILE (not optimal) BEGIN

1. Find ωk ↘ 0 optimal solution xck of

minimizel≤x≤u

12xTHx + gTx − yT (ATx − b) + 1

2ρk‖ATx − b‖2

2. Find A(xck ) & estimate penalty ρ = 2 ‖HI‖/‖AIAT

I ‖3. IF ρ > ρk THEN update ρk+1 = ρ & CYCLE

ELSE update multiplier: y ck = yk − ρk(A

Txck − b)

4. Solve equality QP in subspace → (∆xI , ∆y)[HI,I −A:,IAT

:,I

](∆xI∆y

)= −

([∇xL(xc

k , y ck , 0)]I

ATxck − b

)5. Line-search on L(xc

k + α∆x , y ck + α∆y , ρ); update x , y , k , ρ

END1.-3. identify active set ... 4. gives fast convergence

Sven Leyffer Active Set Methods 16 of 31

Page 29: New The Revival of Active Set Methods - Argonne National Laboratorymmin/MCS/sven.pdf · 2005. 1. 24. · The Revival of Active Set Methods Sven Leyffer, leyffer@mcs.anl.gov Mathematics

Philosophy Quadratic Programs Nonlinear Programs

FilterMethods

Sven Leyffer Active Set Methods 17 of 31

Page 30: New The Revival of Active Set Methods - Argonne National Laboratorymmin/MCS/sven.pdf · 2005. 1. 24. · The Revival of Active Set Methods Sven Leyffer, leyffer@mcs.anl.gov Mathematics

Philosophy Quadratic Programs Nonlinear Programs

A Filter for Augmented Lagrangian Methods

Two competing aims in augmented Lagrangian:

1. reduce hk := ‖ATxk − b‖ ≤ ηk ↘ 0

2. reduce θk := ‖∇L(xk , yk , ρk)− zk‖ ≤ ωk ↘ 0

... why should one sequence {ωk} , {ηk} fit all problems ???

Sven Leyffer Active Set Methods 18 of 31

Page 31: New The Revival of Active Set Methods - Argonne National Laboratorymmin/MCS/sven.pdf · 2005. 1. 24. · The Revival of Active Set Methods Sven Leyffer, leyffer@mcs.anl.gov Mathematics

Philosophy Quadratic Programs Nonlinear Programs

A Filter for Augmented Lagrangian Methods

Two competing aims in augmented Lagrangian:

1. reduce hk := ‖ATxk − b‖ ≤ ηk ↘ 0

2. reduce θk := ‖∇L(xk , yk , ρk)− zk‖ ≤ ωk ↘ 0

... why should one sequence {ωk} , {ηk} fit all problems ???

Sven Leyffer Active Set Methods 18 of 31

Page 32: New The Revival of Active Set Methods - Argonne National Laboratorymmin/MCS/sven.pdf · 2005. 1. 24. · The Revival of Active Set Methods Sven Leyffer, leyffer@mcs.anl.gov Mathematics

Philosophy Quadratic Programs Nonlinear Programs

A Filter for Augmented Lagrangian Methods

Introduce a filter F to promote convergence

• list of pairs (‖ATxl − b‖, ‖∇Ll − zl‖)• no pair dominates any other pair

• new xk acceptable to filter F , iff

1. hk ≤ 0.99 · hl ∀l ∈ F2. θk ≤ 0.99 · θl ∀l ∈ F

• remove redundant entries

• reject new xk , if hk ≥ hl & θk ≥ θl

forbidden

Ax − b

L(x,y,r)−z

... and old friend from Chicago ...

Sven Leyffer Active Set Methods 19 of 31

Page 33: New The Revival of Active Set Methods - Argonne National Laboratorymmin/MCS/sven.pdf · 2005. 1. 24. · The Revival of Active Set Methods Sven Leyffer, leyffer@mcs.anl.gov Mathematics

Philosophy Quadratic Programs Nonlinear Programs

A Filter for Augmented Lagrangian Methods

Introduce a filter F to promote convergence

• list of pairs (‖ATxl − b‖, ‖∇Ll − zl‖)• no pair dominates any other pair

• new xk acceptable to filter F , iff

1. hk ≤ 0.99 · hl ∀l ∈ F2. θk ≤ 0.99 · θl ∀l ∈ F

• remove redundant entries

• reject new xk , if hk ≥ hl & θk ≥ θl

forbidden

L(x,y,r)−z

Ax − b

... and old friend from Chicago ...

Sven Leyffer Active Set Methods 19 of 31

Page 34: New The Revival of Active Set Methods - Argonne National Laboratorymmin/MCS/sven.pdf · 2005. 1. 24. · The Revival of Active Set Methods Sven Leyffer, leyffer@mcs.anl.gov Mathematics

Philosophy Quadratic Programs Nonlinear Programs

A Filter for Augmented Lagrangian Methods

Introduce a filter F to promote convergence

• list of pairs (‖ATxl − b‖, ‖∇Ll − zl‖)• no pair dominates any other pair

• new xk acceptable to filter F , iff

1. hk ≤ 0.99 · hl ∀l ∈ F2. θk ≤ 0.99 · θl ∀l ∈ F

• remove redundant entries

• reject new xk , if hk ≥ hl & θk ≥ θl

forbidden

L(x,y,r)−z

Ax − b

... and old friend from Chicago ...

Sven Leyffer Active Set Methods 19 of 31

Page 35: New The Revival of Active Set Methods - Argonne National Laboratorymmin/MCS/sven.pdf · 2005. 1. 24. · The Revival of Active Set Methods Sven Leyffer, leyffer@mcs.anl.gov Mathematics

Philosophy Quadratic Programs Nonlinear Programs

A Filter for Augmented Lagrangian Methods

Introduce a filter F to promote convergence

• list of pairs (‖ATxl − b‖, ‖∇Ll − zl‖)• no pair dominates any other pair

• new xk acceptable to filter F , iff

1. hk ≤ 0.99 · hl ∀l ∈ F2. θk ≤ 0.99 · θl ∀l ∈ F

• remove redundant entries

• reject new xk , if hk ≥ hl & θk ≥ θl

forbidden

L(x,y,r)−z

Ax − b

... and old friend from Chicago ...

Sven Leyffer Active Set Methods 19 of 31

Page 36: New The Revival of Active Set Methods - Argonne National Laboratorymmin/MCS/sven.pdf · 2005. 1. 24. · The Revival of Active Set Methods Sven Leyffer, leyffer@mcs.anl.gov Mathematics

Philosophy Quadratic Programs Nonlinear Programs

Augmented Lagrangian Cauchy Pointe (Al Capone)

Requirement on Cauchy Point xck for filter:

1. xck , y c

k acceptable to filter

2. ‖∇L(xk , yk , ρk)− zk‖ ≤ ωk

. . . optimality of Lagrangian

New: ωk := 0.1 max {‖∇Ll − zl‖}... depends on filter

1. ensures that back-tracking line-search will succeed... if not acceptable then reduce ωk+1 = ωk/2

2. & ωk+1 = ωk/2 ensure new entry can be added to filter

Why do you keep the penalty parameter?... combines search directions for ‖ATx − b‖, and‖∇L(xl , yl , ρl)− zl‖⇒ gradient projection possible

Sven Leyffer Active Set Methods 20 of 31

Page 37: New The Revival of Active Set Methods - Argonne National Laboratorymmin/MCS/sven.pdf · 2005. 1. 24. · The Revival of Active Set Methods Sven Leyffer, leyffer@mcs.anl.gov Mathematics

Philosophy Quadratic Programs Nonlinear Programs

Augmented Lagrangian Cauchy Pointe (Al Capone)

Requirement on Cauchy Point xck for filter:

1. xck , y c

k acceptable to filter

2. ‖∇L(xk , yk , ρk)− zk‖ ≤ ωk

. . . optimality of Lagrangian

New: ωk := 0.1 max {‖∇Ll − zl‖}... depends on filter

forbidden

Ax − b

L(x,y,r)−z

1. ensures that back-tracking line-search will succeed... if not acceptable then reduce ωk+1 = ωk/2

2. & ωk+1 = ωk/2 ensure new entry can be added to filter

Why do you keep the penalty parameter?... combines search directions for ‖ATx − b‖, and‖∇L(xl , yl , ρl)− zl‖⇒ gradient projection possible

Sven Leyffer Active Set Methods 20 of 31

Page 38: New The Revival of Active Set Methods - Argonne National Laboratorymmin/MCS/sven.pdf · 2005. 1. 24. · The Revival of Active Set Methods Sven Leyffer, leyffer@mcs.anl.gov Mathematics

Philosophy Quadratic Programs Nonlinear Programs

Augmented Lagrangian Cauchy Pointe (Al Capone)

Requirement on Cauchy Point xck for filter:

1. xck , y c

k acceptable to filter

2. ‖∇L(xk , yk , ρk)− zk‖ ≤ ωk

. . . optimality of Lagrangian

New: ωk := 0.1 max {‖∇Ll − zl‖}... depends on filter

forbidden

Ax − b

L(x,y,r)−z

1. ensures that back-tracking line-search will succeed... if not acceptable then reduce ωk+1 = ωk/2

2. & ωk+1 = ωk/2 ensure new entry can be added to filter

Why do you keep the penalty parameter?... combines search directions for ‖ATx − b‖, and‖∇L(xl , yl , ρl)− zl‖⇒ gradient projection possible

Sven Leyffer Active Set Methods 20 of 31

Page 39: New The Revival of Active Set Methods - Argonne National Laboratorymmin/MCS/sven.pdf · 2005. 1. 24. · The Revival of Active Set Methods Sven Leyffer, leyffer@mcs.anl.gov Mathematics

Philosophy Quadratic Programs Nonlinear Programs

Augmented Lagrangian Cauchy Pointe (Al Capone)

Requirement on Cauchy Point xck for filter:

1. xck , y c

k acceptable to filter

2. ‖∇L(xk , yk , ρk)− zk‖ ≤ ωk

. . . optimality of Lagrangian

New: ωk := 0.1 max {‖∇Ll − zl‖}... depends on filter

forbidden

Ax − b

L(x,y,r)−z

1. ensures that back-tracking line-search will succeed... if not acceptable then reduce ωk+1 = ωk/2

2. & ωk+1 = ωk/2 ensure new entry can be added to filter

Why do you keep the penalty parameter?... combines search directions for ‖ATx − b‖, and‖∇L(xl , yl , ρl)− zl‖⇒ gradient projection possible

Sven Leyffer Active Set Methods 20 of 31

Page 40: New The Revival of Active Set Methods - Argonne National Laboratorymmin/MCS/sven.pdf · 2005. 1. 24. · The Revival of Active Set Methods Sven Leyffer, leyffer@mcs.anl.gov Mathematics

Philosophy Quadratic Programs Nonlinear Programs

Augmented Lagrangian Cauchy Pointe (Al Capone)

Requirement on Cauchy Point xck for filter:

1. xck , y c

k acceptable to filter

2. ‖∇L(xk , yk , ρk)− zk‖ ≤ ωk

. . . optimality of Lagrangian

New: ωk := 0.1 max {‖∇Ll − zl‖}... depends on filter

forbidden

Ax − b

L(x,y,r)−z

1. ensures that back-tracking line-search will succeed... if not acceptable then reduce ωk+1 = ωk/2

2. & ωk+1 = ωk/2 ensure new entry can be added to filter

Why do you keep the penalty parameter?... combines search directions for ‖ATx − b‖, and‖∇L(xl , yl , ρl)− zl‖⇒ gradient projection possible

Sven Leyffer Active Set Methods 20 of 31

Page 41: New The Revival of Active Set Methods - Argonne National Laboratorymmin/MCS/sven.pdf · 2005. 1. 24. · The Revival of Active Set Methods Sven Leyffer, leyffer@mcs.anl.gov Mathematics

Philosophy Quadratic Programs Nonlinear Programs

Augmented Lagrangian Cauchy Pointe (Al Capone)

Requirement on Cauchy Point xck for filter:

1. xck , y c

k acceptable to filter

2. ‖∇L(xk , yk , ρk)− zk‖ ≤ ωk

. . . optimality of Lagrangian

New: ωk := 0.1 max {‖∇Ll − zl‖}... depends on filter

forbidden

Ax − b

L(x,y,r)−z

1. ensures that back-tracking line-search will succeed... if not acceptable then reduce ωk+1 = ωk/2

2. & ωk+1 = ωk/2 ensure new entry can be added to filter

Why do you keep the penalty parameter?... combines search directions for ‖ATx − b‖, and‖∇L(xl , yl , ρl)− zl‖⇒ gradient projection possible

Sven Leyffer Active Set Methods 20 of 31

Page 42: New The Revival of Active Set Methods - Argonne National Laboratorymmin/MCS/sven.pdf · 2005. 1. 24. · The Revival of Active Set Methods Sven Leyffer, leyffer@mcs.anl.gov Mathematics

Philosophy Quadratic Programs Nonlinear Programs

Active Set Evolution: blockqp4 100

AUGLAG

FILTER

red = lower bound activegreen = upper bound active

Sven Leyffer Active Set Methods 21 of 31

Page 43: New The Revival of Active Set Methods - Argonne National Laboratorymmin/MCS/sven.pdf · 2005. 1. 24. · The Revival of Active Set Methods Sven Leyffer, leyffer@mcs.anl.gov Mathematics

Philosophy Quadratic Programs Nonlinear Programs

Active Set Evolution: blockqp4 100

AUGLAG FILTER

red = lower bound activegreen = upper bound active

Sven Leyffer Active Set Methods 21 of 31

Page 44: New The Revival of Active Set Methods - Argonne National Laboratorymmin/MCS/sven.pdf · 2005. 1. 24. · The Revival of Active Set Methods Sven Leyffer, leyffer@mcs.anl.gov Mathematics

Philosophy Quadratic Programs Nonlinear Programs

Summary: Active Set QP Method

1. Global Convergence

• augmented Lagrangian & filter⇒ no arbitrary parameters

2. Active Set Identification

• projected gradient on augmented Lagrangian• easy penalty parameter estimate

3. Fast Local Convergence

• conjugate gradients on equality QP• (constrained) preconditioners ???• Benzi-Golub ... ties in with augmented Lagrangian

Sven Leyffer Active Set Methods 22 of 31

Page 45: New The Revival of Active Set Methods - Argonne National Laboratorymmin/MCS/sven.pdf · 2005. 1. 24. · The Revival of Active Set Methods Sven Leyffer, leyffer@mcs.anl.gov Mathematics

Philosophy Quadratic Programs Nonlinear Programs

Summary: Active Set QP Method

1. Global Convergence• augmented Lagrangian & filter⇒ no arbitrary parameters

2. Active Set Identification

• projected gradient on augmented Lagrangian• easy penalty parameter estimate

3. Fast Local Convergence

• conjugate gradients on equality QP• (constrained) preconditioners ???• Benzi-Golub ... ties in with augmented Lagrangian

Sven Leyffer Active Set Methods 22 of 31

Page 46: New The Revival of Active Set Methods - Argonne National Laboratorymmin/MCS/sven.pdf · 2005. 1. 24. · The Revival of Active Set Methods Sven Leyffer, leyffer@mcs.anl.gov Mathematics

Philosophy Quadratic Programs Nonlinear Programs

Summary: Active Set QP Method

1. Global Convergence• augmented Lagrangian & filter⇒ no arbitrary parameters

2. Active Set Identification• projected gradient on augmented Lagrangian• easy penalty parameter estimate

3. Fast Local Convergence

• conjugate gradients on equality QP• (constrained) preconditioners ???• Benzi-Golub ... ties in with augmented Lagrangian

Sven Leyffer Active Set Methods 22 of 31

Page 47: New The Revival of Active Set Methods - Argonne National Laboratorymmin/MCS/sven.pdf · 2005. 1. 24. · The Revival of Active Set Methods Sven Leyffer, leyffer@mcs.anl.gov Mathematics

Philosophy Quadratic Programs Nonlinear Programs

Summary: Active Set QP Method

1. Global Convergence• augmented Lagrangian & filter⇒ no arbitrary parameters

2. Active Set Identification• projected gradient on augmented Lagrangian• easy penalty parameter estimate

3. Fast Local Convergence• conjugate gradients on equality QP• (constrained) preconditioners ???• Benzi-Golub ... ties in with augmented Lagrangian

Sven Leyffer Active Set Methods 22 of 31

Page 48: New The Revival of Active Set Methods - Argonne National Laboratorymmin/MCS/sven.pdf · 2005. 1. 24. · The Revival of Active Set Methods Sven Leyffer, leyffer@mcs.anl.gov Mathematics

Philosophy Quadratic Programs Nonlinear Programs

ACTIVE SETMETHODSFOR NLPs

Sven Leyffer Active Set Methods 23 of 31

Page 49: New The Revival of Active Set Methods - Argonne National Laboratorymmin/MCS/sven.pdf · 2005. 1. 24. · The Revival of Active Set Methods Sven Leyffer, leyffer@mcs.anl.gov Mathematics

Philosophy Quadratic Programs Nonlinear Programs

Sequential Quadratic Programming (SQP)

NLP: minimizex

f (x) subject to c(x) ≥ 0

SQP method of choice for NLP

Compute displacement/step d by solving QP subproblem

minimized

gTd + 12dTWd

subject to c + ATd ≥ 0‖d‖∞ ≤ ∆ Trust-Region

where g = ∇f (x), A = ∇c(x)T , W = ∇2L(x , y)

Sven Leyffer Active Set Methods 24 of 31

Page 50: New The Revival of Active Set Methods - Argonne National Laboratorymmin/MCS/sven.pdf · 2005. 1. 24. · The Revival of Active Set Methods Sven Leyffer, leyffer@mcs.anl.gov Mathematics

Philosophy Quadratic Programs Nonlinear Programs

Sequential Quadratic Programming (SQP)

WHILE (not optimal) BEGIN

1. Compute displacement/step d by solving QP subproblem

2. IF step d acceptable THENx = x + d & increase trust-region radius ∆ = 2 ∗∆

ELSEx = x & decrease trust-region radius ∆ = ∆/2

END

• How to make it work for n large ???QP solve is bottleneck ... could use new QPFIL

• ∃ excellent LP solvers ... but QP harder

Sven Leyffer Active Set Methods 25 of 31

Page 51: New The Revival of Active Set Methods - Argonne National Laboratorymmin/MCS/sven.pdf · 2005. 1. 24. · The Revival of Active Set Methods Sven Leyffer, leyffer@mcs.anl.gov Mathematics

Philosophy Quadratic Programs Nonlinear Programs

Sequential Linear Programming

Throw away quadratic term ⇒ linear program

Compute displacement/step dLP by solving LP subproblem

minimized

gTd+12dTWd

subject to c + ATd ≥ 0‖d‖∞ ≤ ∆ Trust-Region

where g = ∇f (x), A = ∇c(x)T , W = ∇2L(x , y)

Sven Leyffer Active Set Methods 26 of 31

Page 52: New The Revival of Active Set Methods - Argonne National Laboratorymmin/MCS/sven.pdf · 2005. 1. 24. · The Revival of Active Set Methods Sven Leyffer, leyffer@mcs.anl.gov Mathematics

Philosophy Quadratic Programs Nonlinear Programs

Sequential Linear Programming

WHILE (not optimal) BEGIN

1. Compute displacement/step dLP by solving LP subproblem

2. Identify active constraints: A = {i : ci + aTi dLP = 0} & solve

minimized

gTd + 12dTWd

subject to ci + aTi d = 0 i ∈ A

⇔[

HI,I −AT:,I

A:,I

](dIy

)= ...

equality QP for step d

3. IF step d acceptable THENx = x + d & increase trust-region radius ∆ = 2 ∗∆

ELSEx = x & decrease trust-region radius ∆ = ∆/2

END⇒ slow local convergence ... steepest descent

How expensive areLPs??

Sven Leyffer Active Set Methods 27 of 31

Page 53: New The Revival of Active Set Methods - Argonne National Laboratorymmin/MCS/sven.pdf · 2005. 1. 24. · The Revival of Active Set Methods Sven Leyffer, leyffer@mcs.anl.gov Mathematics

Philosophy Quadratic Programs Nonlinear Programs

Sequential Linear Programming

WHILE (not optimal) BEGIN

1. Compute displacement/step dLP by solving LP subproblem

2. Identify active constraints: A = {i : ci + aTi dLP = 0} & solve

minimized

gTd + 12dTWd

subject to ci + aTi d = 0 i ∈ A

⇔[

HI,I −AT:,I

A:,I

](dIy

)= ...

equality QP for step d

3. IF step d acceptable THENx = x + d & increase trust-region radius ∆ = 2 ∗∆

ELSEx = x & decrease trust-region radius ∆ = ∆/2

ENDHow expensive are LPs??

Sven Leyffer Active Set Methods 27 of 31

Page 54: New The Revival of Active Set Methods - Argonne National Laboratorymmin/MCS/sven.pdf · 2005. 1. 24. · The Revival of Active Set Methods Sven Leyffer, leyffer@mcs.anl.gov Mathematics

Philosophy Quadratic Programs Nonlinear Programs

Active Set Identification by SLP

Polyhedral trust-region makes LP solves inefficient

minimized

gTd

subject to c + ATd ≥ 0‖d‖∞ ≤ ∆ Trust-Region

• many changes to active trust-region bounds

• LP solvers too slow near solution

Sven Leyffer Active Set Methods 28 of 31

Page 55: New The Revival of Active Set Methods - Argonne National Laboratorymmin/MCS/sven.pdf · 2005. 1. 24. · The Revival of Active Set Methods Sven Leyffer, leyffer@mcs.anl.gov Mathematics

Philosophy Quadratic Programs Nonlinear Programs

Active Set Identification by SLP

Ellipsoidal trust-region makes LPs into NLPs

minimized

gTd

subject to c + ATd ≥ 0‖d‖2 ≤ ∆ Trust-Region

• trust-region (always) active ⇒ no changes

• subproblem is now NLP ... as hard as original problem ???

Sven Leyffer Active Set Methods 29 of 31

Page 56: New The Revival of Active Set Methods - Argonne National Laboratorymmin/MCS/sven.pdf · 2005. 1. 24. · The Revival of Active Set Methods Sven Leyffer, leyffer@mcs.anl.gov Mathematics

Philosophy Quadratic Programs Nonlinear Programs

Active Set Identification by SLP

Ellipsoidal trust-region makes LPs into NLPs

minimized

gTd

subject to c + ATd ≥ 0dTd ≤ ∆2 Trust-Region

• trust-region (always) active ⇒ no changes

• subproblem is now NLP ... as hard as original problem ???

Sven Leyffer Active Set Methods 30 of 31

Page 57: New The Revival of Active Set Methods - Argonne National Laboratorymmin/MCS/sven.pdf · 2005. 1. 24. · The Revival of Active Set Methods Sven Leyffer, leyffer@mcs.anl.gov Mathematics

Philosophy Quadratic Programs Nonlinear Programs

Summary: Active Set NLP Method

1. Global Convergence

• Sequential bound constraint• Trust-region & Filter

2. Active Set Identification

• dLP LP steps from subproblem

3. Fast Local Convergence

• conjugate gradients on equality QP• (constrained) preconditioners ???

Sven Leyffer Active Set Methods 31 of 31

Page 58: New The Revival of Active Set Methods - Argonne National Laboratorymmin/MCS/sven.pdf · 2005. 1. 24. · The Revival of Active Set Methods Sven Leyffer, leyffer@mcs.anl.gov Mathematics

Philosophy Quadratic Programs Nonlinear Programs

Summary: Active Set NLP Method

1. Global Convergence• Sequential bound constraint• Trust-region & Filter

2. Active Set Identification

• dLP LP steps from subproblem

3. Fast Local Convergence

• conjugate gradients on equality QP• (constrained) preconditioners ???

Sven Leyffer Active Set Methods 31 of 31

Page 59: New The Revival of Active Set Methods - Argonne National Laboratorymmin/MCS/sven.pdf · 2005. 1. 24. · The Revival of Active Set Methods Sven Leyffer, leyffer@mcs.anl.gov Mathematics

Philosophy Quadratic Programs Nonlinear Programs

Summary: Active Set NLP Method

1. Global Convergence• Sequential bound constraint• Trust-region & Filter

2. Active Set Identification• dLP LP steps from subproblem

3. Fast Local Convergence

• conjugate gradients on equality QP• (constrained) preconditioners ???

Sven Leyffer Active Set Methods 31 of 31

Page 60: New The Revival of Active Set Methods - Argonne National Laboratorymmin/MCS/sven.pdf · 2005. 1. 24. · The Revival of Active Set Methods Sven Leyffer, leyffer@mcs.anl.gov Mathematics

Philosophy Quadratic Programs Nonlinear Programs

Summary: Active Set NLP Method

1. Global Convergence• Sequential bound constraint• Trust-region & Filter

2. Active Set Identification• dLP LP steps from subproblem

3. Fast Local Convergence• conjugate gradients on equality QP• (constrained) preconditioners ???

Sven Leyffer Active Set Methods 31 of 31