New Stable Chemically Bonded Carbon Stationary Phases for … · 2020. 12. 7. · 2 - Metoprolol 3...

18
New Stable Chemically Bonded Carbon Stationary Phases for HPLC Angelos Kyrlidis , Lynn Toomey, and Elena Khmelnitskaia, Cabot Corporation Dwight Stoll, Clayton V. McNeff, and Peter W. Carr ZirChrom Separations, Inc. HPLC Columns TM

Transcript of New Stable Chemically Bonded Carbon Stationary Phases for … · 2020. 12. 7. · 2 - Metoprolol 3...

  • New Stable Chemically Bonded CarbonStationary Phases for HPLCAngelos Kyrlidis, Lynn Toomey, and Elena Khmelnitskaia,

    Cabot CorporationDwight Stoll, Clayton V. McNeff, and Peter W. Carr

    ZirChrom Separations, Inc.

    HPLC Columns

    TM

  • Outline

    • Advantages of Stable Phases• Development of a New Type of Reversed Phase Column:

    DiamondBond®-C18• Selectivity Comparison of DiamondBond®-C18 and Other

    DiamondBond Phases with ODS Silica• Applications• Summary

    HPLC Columns

    TM

  • Why Stable Phases?

    Advantages of ExtraordinaryChemical Stability

    pH < 1

    pH Stability

    pH > 13

    Clean withconc. Acids

    Suppress Ionsfor Acids

    Suppress Ionsfor Amines

    SanitationDepyrogenation

    LowerPressure Drop

    Thermal Stability

    Less OrganicSolvent

    ThermallyOptimize

    Selectivity

    Less Wearand Tear

    Higher FlowFast Analysis

    More RobustAnalysis

    Easier MethodDevelopment

    HPLC Columns

    TM

    Stable Stationary Phases have advantages in terms ofSelectivity, Column Lifetime, and Analysis Time

  • Improving the Stability of HPLC Phases: History

    l Pure organic polymersl Silica “hardened” by coating with alumina or zirconial Pure carbonl Silica improvements

    – Sterically bulk & bidentate ligand– Polymer coated silica– Hybrid organic-inorganic silicaceous composite phase

    l Polymer coated porous alumina and zirconial Carbon coated zirconial Chemically bonded carbon-coated zirconia

    HPLC Columns

    TM

  • HPLC Columns

    TM

    ZirChrom® Particle Properties

    Characteristic PropertySurface Area (m2/g) 22Pore Volume (cc/g) 0.13Pore Diameter (Å) 250-300Porosity 0.45Density (g/cc) 5.8 (2.5x silica)Particle Diameter (µ) 3.0

    ZirChrom®-Carb particlesare prepared by coating basezirconia particles with a thinlayer of carbon using achemical vapor depositionprocess NH2 Y + 2 HA + NaNO2 = AN≡N Y + 2 H2O + NaA

    Diazonium SaltCarbon Clad Zirconia Modified Carbon Clad Zirconia

    + N+

    N Y

    Bonding Reaction on Carbon Clad Zirconia

    - C18

  • DiamondBond®: A New Family of Stable Phases

    ZrO2DB-C18

    ZrO2DB-C8

    ZrO2

    NHO

    NHO

    NHO

    DB-Amide18

    HPLC Columns

    TM

  • DiamondBond-C18 Stabilityk'

    0

    1

    2

    3

    4

    5

    6

    7

    8

    0 250 500 750 1000 1250 2000

    Column Volumes

    k' Butylbenzene (0.5M Nitric Acid)

    k' Butylbenzene (1.0M NaOH)

    k' Butylbenzene (200 oC)

    LC Conditions: Base Stability—DiamondBondTM Phase A, 30 x 4.6 mm id; Mobile phase, 50/50 ACN/Water; Flow rate, 1.0 ml/min.;Temperature, 30 oC; Injection volume, 5ul; Detection at 254nm.Acid Stability—DiamondBondTM Phase A, 50 x 4.6 mm id; Mobile phase, 50/50 ACN/Water; Flow rate, 1.0 ml/min.;Temperature, 30 oC; Injection volume, 5ul; Detection at 254nm.Temperature Stability-- DiamondBondTM Phase B, 50 x 4.6 mm id; Mobile phase, 50/50 ACN/Water; Flow rate, 1.0ml/min.; Temperature, 30 oC; Injection volume, 5ul; Detection at 254nm.

    HPLC Columns

    TM

  • 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

    1

    3

    1

    2

    2

    4

    4

    3

    DiamondBond-C18

    ZirChrom-Carb

    Analytes

    1: Acetone2: Benzonitrile3: Ethylbenzene4: Methylbenzoate

    HPLC Columns

    TM

    Test Chromatogram on DB-C18

    LC Conditions: Column dimension, 50 x 4.6 mm id.; Mobilephase, 37.5/5/57.5 ACN/THF/Water; Temperature, 60 oC; Flowrate, 1.0 ml/min.; Injection volume, 5 µl; Detection at 254 nm.

    >100000 plates/m

  • 22 Non-Ionizable Solutes

    Mobile phase, 40/60 Acetonitrile/Water; Flow rate, 1.0 ml/min.;Temperature, 30 oC; Detection at 254nm; 5 ul Injection volume.

    NonpolarBenzene Toluene Ethylbenzene p-xylene Propylbenzene Butylbenzene

    PolarBr Cl

    Cl

    OO

    O

    CN NO2 NO2Cl

    NO2

    OBromobenzene p-Dichlorobenzene Anisole Methylbenzoate Napthalene Acetophenone

    Benzonitrile Nitrobenzene p-Nitrotoluene p-Nitrobenzyl Chloride

    O

    Benzophenone

    HB DonorOH OH NH H

    OOH OH

    Cl

    Benzylalcohol 3-Phenyl Propanol N-Benzyl Formamide Phenol p-Chlorophenol

  • HPLC Columns

    TM

    Selectivity Comparison

    -1.5

    -1

    -0.5

    0

    0.5

    1

    1.5

    2

    Diamondbond-C18

    ODS-1

    Unmodified Carbon coated zirconia

  • Effect of Polar Embedded Amide

    0.1

    1

    10

    100

    0.1 1 10 100Absolute Retention on Silica C18

    Abs

    olut

    e R

    eten

    tion

    on S

    ilica

    RP

    Am

    ide

    Phenol

    p-Chlorophenol

    Benzylalcohol

    N-Benzylformamide3-Phenylpropanol

    0.1

    1

    10

    100

    0.1 1 10 100Absolute Retention on Carbon C18

    Abs

    olut

    e R

    eten

    tion

    on C

    arbo

    n R

    PA

    mid

    e

    p-Chlorophenol

    Phenol

    N-Benzylformamide

    Benzylalcohol

    3-Phenylpropanol

    Silica Amidevs. C18

    Carbon Amide vs.C18

    RPAmide shows increased retention of HB Donorson silica and carbon-based phases

  • Why are Bonded Carbons Unique?

    l Carbon surfaces have π-electrons which increaseretention of certain types ofanalytes:– fused polyaromatics (e.g.

    naphthalene, etc)– polar molecules (e.g. amides,

    ketones, alcohols, etc)l Surface modified carbon surfaces

    combine some of theseinteractions with interactionsspecific to the bonded surfacegroups.

    l Bonded Carbons maintain thehigh pH and thermal stability thatis inherent in the C-C bond.

    π - electrons

    Bonded Carbon

    Carbon

  • Shape Makes a Difference

    p-xylene

    C-C-C-C-C-C-C-C-C-C-C-C C-C-C-C-C-C-C-C-C-C-C-C

    ethylbenzene

    α ODS=1.03

    α CARB=1.58

    α DB-C18=1.22

  • Shape Selectivity: Anabolic Steroids

    min0 1 2 3 4 5

    mAU

    0

    1

    2

    3

    4

    5

    6

    7

    VWD1 A, Wavelength=215 nm (G:\HPCHEM\DATA\MDARCHIV\08220275.D)

    14

    3

    2

    LC Conditions: Column, 150 x 4.6 DiamondBond-C18; Mobile phase, 60/40 ACN/Water; Flow rate, 2.0 ml/min.; Temperature, 100 oC; Injection volume, 10ul; Detection at 215nm; Solutes: 1=Epietiocholanolone, 2=Etiocholanolone, 3=Androsterone, 4=Epiandrosterone

    Anabolic Steroids Separationin less than 3 minutes!

    HPLC Columns

    TM

  • High pH Stability - Beta Blockers

    min0 0.5 1 1.5 2 2.5 3 3.5

    Analytes1 - Atenolol2 - Metoprolol3 - Oxprenolol4 - Alprenolol

    LC Conditions:20/20/60 ACN/THF/200 mM TMAH and 200 mM NaCl, pH 13.3Flow Rate: 1 ml/min. Temperature: 75 oC. Injection Volume: 5 ulDetection: 254 nm.

    HPLC Columns

    TM

  • High Temperature Stability - Speed

    min0 10 20 30 40

    4

    1

    53

    2

    6

    43

    Resolution (min; 3,4) =2.2Temperature = 21 oCFlow Rate = 1.4 ml/min.ACN/Buffer = 18.5/81.5Analysis Time = 43 min.

    Resolution (min; 3,4) = 2.2Temperature = 80 oCFlow Rate = 3.2 ml/min.ACN/Buffer = 8.8/91.2Analysis Time = 21 min.

    min0 10 20 30 40

    3

    12

    4

    5

    6

    34

    Analytes:1 = Barbital2 = Butabarbital3 = Pentobarbital4 = Carbromal5 = Secobarbital6 = Methohexital

    Mobile Phase: ACN/5mM Ammonium phosphate, pH 7.0

    Pressure drop =195 bar

  • Application in LC/MS/MS

    THC in Saliva by LC/MS/MS=

    l Blue – THC (tetrahydrocannabinol parent drug)l Red – D3 THC (Internal Standard)l Column – 50mm X 4.6mm DBC18

    – 80o C @ 1.5 mL/min– Solvent A – 20mM NH4CH3CO2 in

    70% Acetonitrile, 30% aqueous(0.1% acetic acid, pH 4.5)

    – Solvent B – Acetonitrilel Isocratic 35% A, 65%B – 25 ul injection

    = Data Courtesy R. Clouette - Clinical Reference Laboratories

    0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8

    Time, min

    0

    1000

    2000

    3000

    4000

    5000

    6000

    7000

    8000

    Inte

    nsi

    ty, c

    ps

    0.86

    XIC of +MRM(2 pairs):315.2/193.2 amu

    HPLC Columns

    TM

  • Summary

    l The effect of ligand type on retention for bonded carbon phasesis similar to that for bonded silicas– Unique surface chemistry enables unique separations

    l The carbon-carbon attachment bond is extremely stable– Low pH and High pH applications– High Temperature / Fast HPLC

    l Both “normal” and high pH, high temperature applications arepossible on these new materials– LC/MS pharmaceutical applications enabled by this

    technology

    HPLC Columns

    TM