New Shortcut

52
Stationarity, cointegration  Arnaud Chevalier University College Dublin January 2004

Transcript of New Shortcut

Page 1: New Shortcut

8/6/2019 New Shortcut

http://slidepdf.com/reader/full/new-shortcut 1/52

Stationarity, cointegration Arnaud Chevalier

University College DublinJanuary 2004

Page 2: New Shortcut

8/6/2019 New Shortcut

http://slidepdf.com/reader/full/new-shortcut 2/52

STATIONARITY

Typically, we only observe one set of realisations for any particular series.However if y t is stationary, the mean, variance and autocorrelations canusually be well approximated by sufficient long time averages based on asingle set of realisations.A stochastic process having a finite mean and variance is co-variancestationary if for all t and t-s:

? A ? A E

y E y E

y E y E

y st t

st t

222

)()(

W Q Q

Q

!!

!!

? A ? A s s jt jt st t y y E y y E K Q Q Q Q !!

A series is covariance stationary if its mean and all autocovariances areunaffected by a change of time origin.For a covariance stationary series, autocorrelation between y t and y s is:

0/ K K V s s | The autocorrelation is independent of time

Page 3: New Shortcut

8/6/2019 New Shortcut

http://slidepdf.com/reader/full/new-shortcut 3/52

* stati a it c iti s a A (1) cess

t t t yaa y I ! 110 Suppo se t e proc ess sta r te i per iod zero, so 0 is a determi isti c i itial cond ition.

§§!!

!1

0

101

1

0

10

t

iit

it t

i

it a yaaa y I

§!

!1

11

t

i

t it y Ey

So t e mean is ti me de pendent, and t is seq uence is t e r e or e notstati onary.

|a1|<1, 01 yt conv erges to 0 as t .

Also as t e com es la rge, we a ve: )1( 11

1aaaa

i

i

i }§!

us §g

!

!i

it i

t aaa y I

And or large t, Ye t = a 0 (1-a1), w i ch is i nite a nd time inde pendent.he limit of the var iance is:

? A2

22

1112 ...)(! t t t t aa E Y E I I I Q

? A ? A4

aaa !! W W Which is als o f inite a nd time-inde pendent.

Page 4: New Shortcut

8/6/2019 New Shortcut

http://slidepdf.com/reader/full/new-shortcut 4/52

Similarly , limiting alues f all autocovariances are f inite and ime-independent: ? A ? A ? A _ a! st st st t t t st t E y y E I I I I I I Q Q

? A ? A211

241

211

2 1/...1 aaaaa s s !!

f a1|<1 and t large , y t is a stationary process

Page 5: New Shortcut

8/6/2019 New Shortcut

http://slidepdf.com/reader/full/new-shortcut 5/52

4 STATIONARY RESTRICTION S FOR AN ARMA p

First consider an ARMA : t t t t t aa I I F ! 112211 (16)

Yt can also be written as an infinite MA pro cess:

§g

!

!0i

it it I E (17)

For the 2 expressions to be e ual we must have: t t t t t t t t I I FI EI EI EI EI EI E ! 113120221101110 ...)(...)(...

This means:

2i

1

2211

1111011

0

u!

!!

!

iii aa

aa

EEE

FE FEE

E

From (17) it is easy to see that E(y t)= and var (yt)= §g

!iiEW are finite and time invariant .

The covarian ce between y t and yt-s is constant and independent of t. ..,cov ! EEEEEW s s s st t y y

These results can be generalised to an ARMA ( p )

A finite MA pro cess will alwa ys be stationar y An infinite MA pro cess is stationar y if is finite

Page 6: New Shortcut

8/6/2019 New Shortcut

http://slidepdf.com/reader/full/new-shortcut 6/52

5 U L I FU I

* (1) pro ess t t t y y I ! 11

? A ? A2

112

21

2

1/

1/

aa

a s

s !

!

K

K

hu , h e au o orr e a on ar e s s K K V /! , hen e 1, 1=a1, =(a1)s

For an (1) pro ess a nece ssar y ond on or stationar ity is a1 |<1

Page 7: New Shortcut

8/6/2019 New Shortcut

http://slidepdf.com/reader/full/new-shortcut 7/52

* (2) process: t t t t aa I 2211

For an (2) to be stationar , the roo ts o (1-a1L-a2L2

) need to beoutside the un it cir cle.e use the u le- a lk er technique to ind the au tocorre lations:

Multip l ing t b t-s or s= ,« and tak ing ex pectations, e or :

)()()(...

)()()(

2211

2211

st t st t st t st t

t t t t t t t t

y E y y E a y y E a y Ey

y E y y E a y y E a y Ey

!

!

I

I

hus,110 W K K K ! aa

2211! s s s aa K K K Dividing s b ields:

2211! s s s aa V V V (19 ) and e k no that =1.he roo ts o (19) lie inside the un it cir cle.

Page 8: New Shortcut

8/6/2019 New Shortcut

http://slidepdf.com/reader/full/new-shortcut 8/52

* u to orr elati on un tion o an (1) pro e . 1! t t t y FI I B the ule- alk er equation , e get:

? A W F FI I FI I K !!! t t t t t t E y y E

? A 221111 )( FW FI I FI I K !!! t t t t t t E y y E

nd ? A 10)( 11 "!!! s E y y E st st t t st t s FI I FI I K

hu , e have 1,0),1/(,1 10 "!!! s s V F F V V

Page 9: New Shortcut

8/6/2019 New Shortcut

http://slidepdf.com/reader/full/new-shortcut 9/52

* u tocorre lation o f an M (1,1) process : 111! t t t t ya y FI I

By the u le- a lk er equations, e f ind that: W F FW K K ! aa (2 ) 2

11 FW K K ! a (21 )

112 K K a!

11!

s sa K K

olving (2 ) and (21 ) simultaneous ly, e ge t:

221

111

221

12

11

121

W F F

K

W F F

K

a

aa

a

a

!

!

ence V

12

111 21

1

a

aa! .

nd ! s s V V f or a ll u s

Page 10: New Shortcut

8/6/2019 New Shortcut

http://slidepdf.com/reader/full/new-shortcut 10/52

6 PART A A TOCORR AT ON

In an AR (1) process yt and yt-2 ar e corr elate d even though yt-2 does not dir ectly a pp ear in the model. In contr ast the par tial autocorr elati on betwee n yt and yt-s eliminates the eff ect of the intervening values. So for an AR (1)

process the par tial autocorr elati on betwee n yt and yt-2 is 0. The most dir ect way to o btain par tial autocorr elati on is to for m the ser ies :

Q| t t y y*

The coeff icient J in the fo llowing AR (1) is the par tial autocorr elati on betwee n yt and yt-1. Since ther e is no intervening value this is als o the autocorr elati on.

t t t e! *

111

* J

Simila r ly 22J gives the par tial autocorr elati on betwee n yt and yt-2.

t t t t e! *

222

*

121

* J J

Page 11: New Shortcut

8/6/2019 New Shortcut

http://slidepdf.com/reader/full/new-shortcut 11/52

P ar tial autocorre lation can also be found f r om the Yule Wa l er equations:

2121222

111

1/ V V VJ

VJ

!!

§

§

!

!!1

1,1

1

1,1

1 s

j j j s

s

j j s j s s

ss

VJ

VJ VJ

For an AR (p) pr ocess, there is no direct corre lation betwee n yt and yt-s for s> p. An MA (1) pr ocess can be wr itten as an AR ( ), so always have par tial autocorre lation, decaying slowly over time.

Fea tures of autocorre lation and par tial autocorre lation, can be used to determine the ty pe of you r pr ocess.

For and ARMA (p,q), the P ACF decay star t af ter lag p

Page 12: New Shortcut

8/6/2019 New Shortcut

http://slidepdf.com/reader/full/new-shortcut 12/52

T o summarise:

Process AC F PACF hite noise All All

AR ( p) eca towards S pik es though lag p, a f ter A(1) S pik e at lag 1, af ter e ca

AR A (1,1) eca a f ter lag 1 eca af ter lag 1 AR A ( p,q) eca beginning at lag q eca beginning at lag p

Page 13: New Shortcut

8/6/2019 New Shortcut

http://slidepdf.com/reader/full/new-shortcut 13/52

7 .6 eter mining the or der of an autoregressi on

ore la gs means more i nf or mation is used, but at t he cost of

additional esti mation uncertai nt (esti mating too man

coeffi cients).

- F-statisti csStart wit h a model wit h a lar ge numbers of lags, test w hether

the coeffi cient on the last la g is si gnificant, if not reduce the

number of la gs and start t he pr ocess a gain. W hen the tr ue value

of the model is p, the test will still esti mate t he model t o be > p,

5% of the time.

Page 14: New Shortcut

8/6/2019 New Shortcut

http://slidepdf.com/reader/full/new-shortcut 14/52

- In or mation cr iter ia

In or mation cr iter ia tr ade o the improvement in the f it of the model with th e

number of estimated coeff icients. The most po pular inf or mation cr iter ia ar e the

Bayes Inf or mation Cr iter ia, also called Schwar z inf or mation cr iter ia and the Akaike

Inf or mation Cr iter ia.

T p

T pSSR

p AIC

T T

pT

pSSR p BIC

2)1(

)(ln)(

ln)1(

)(ln)(

¹ º ¸©

ª¨

!

¹ º ¸©

ª¨

!

,

You choo se the model minimizing the inf or mation cr iter ia. The diff er ence betwee n the AIC and BICis that the ter m in ln T in the BIC is r e placed by 2 in the AIC, so the second ter m ( penalty f or number of lags) is not as large. A smalle r decr ease in the SSR is needed in the AIC to justi f y including an additional r egr essor. In large sample, AIC will over esti mate p with a non- zero proba bility.

Page 15: New Shortcut

8/6/2019 New Shortcut

http://slidepdf.com/reader/full/new-shortcut 15/52

Simi lar ly the optim al umb er of lags in the add itional r egr essor s need

to be estim ated. he same methods can be used, if the r egr essions has

K coe ff icients including the int er cep t, then the I is:

T

T K

T

K SSR K B I

ln)(ln)( ¹

º ¸©

ª¨!

Important: all models should be estimated using the samesample:

So make sur e to star t ith the mode l ith the most lags, and keep thi

as you r or k ing sam le f or this test.

In r actice a convenient shor tcut is to im ose that all the r egr essor s

have the same numb er of lags to r educe the numb er of mode ls that

need com ar ing.

Page 16: New Shortcut

8/6/2019 New Shortcut

http://slidepdf.com/reader/full/new-shortcut 16/52

7.7 Nonstationar ity I: tr ends

If the e pendent var ia ble and/or r egr essor s ar e non stationar y, then y po thesis testing and f or ecast will be unr elia ble. T her e ar e two

comm on ty pe of non stationar ity, with their own solutions.

7.7.1 Wh at is a tr end?

A tr end is a per sist ent long -term movement of a var ia ble over time.

A eterministi c tr end is a non -r ando m f unction of time (linear

in time f or exam ple).

- A stochastic tr end is r ando m and var ies over time. For

exam ple, a stochastic tr end in inf lation may exhi bit a

pr olonge per iod of incr ease f ollowe by a per iod of ecr ease.

Since econo mic ser ies ar e the consequences of com plex

econo mic f or ces, tr ends ar e usef ully though t of as having a

lar ge unp r e icta ble, r ando m com pon ent.

Page 17: New Shortcut

8/6/2019 New Shortcut

http://slidepdf.com/reader/full/new-shortcut 17/52

T he r ndom lk mo del of tr end .T he simpl est model of v r i ble ith sto has ti tr end is the r andom

alk . tim e ser ies t is said to f ollow a r andom walk if the han ge in

t is iid:

t t t uY Y ! 1

wher e ut has onditio nal mean er o: 0,...),|( 1 !t t t u

T he basi idea of a r and om walk is that the value of the ser ies

tomo rr ow is its value today lus an un r edi table ompo nen t.

Page 18: New Shortcut

8/6/2019 New Shortcut

http://slidepdf.com/reader/full/new-shortcut 18/52

W he series have a te e cy to in cr ease or d ecr ease, th e r a om

walk ca includ e a drift compon e t.

§!

!!t

j jt t t ut uY Y

0

010 F F

Page 19: New Shortcut

8/6/2019 New Shortcut

http://slidepdf.com/reader/full/new-shortcut 19/52

If t f ollows a r a om walk the it is not stationar y: the var ia ce of the r a om walk i cr eases over time so the dist r i bu tion o f t cha ges over time.

Var (Y t )=var (Y t-1 ) + var (u t )

or Y t to b e stationar y, we must have var (Y t)=var (Y t-1 ) which impo ses that

var (ut )=0 .lternatively, say Y0 =0, the Y1=u1 , Y2 =u1 + u 2 a mor e ge er ally, Y t =

u1 +u2 + +u t . Because, the ut ar e uncorr elate , var (Y t ) =t u2

T he var ia ce of Y t de pe s on t a i cr eases as t i cr eases. Because the

var ia ce of a r a om walk i cr eases withou t bound, its popu lation

autocorr elations ar e not def i e .

Page 20: New Shortcut

8/6/2019 New Shortcut

http://slidepdf.com/reader/full/new-shortcut 20/52

The r andom walk can b e seen as a s pecial case of the AR(1 )

odel in which =1 , th en t cont ains a stochastic tr end and a no

stochastic tr end. I f | |<1 , th en t is station ar y as long as ut is

station ar y.

For an AR( p) to b e station ar y involv es the root s of the f ollo win

olynomi al to b e all gr eater th an 1. Th e root s ar e f ound b y

solving:

0...1 221 !p

p z z z F F F

In th e s pecial case of an AR(1 ), th e pol ynomi al is simpl y:

11

11 F

F !! z z .

The condition th at th e root s ar e less than unit y is equiv alent t

Page 21: New Shortcut

8/6/2019 New Shortcut

http://slidepdf.com/reader/full/new-shortcut 21/52

If an AR ( p) has a r oot equals one, the serie s is said to have a unit (autoregressive) r oot. If t has a unit r oot, it con tains a stoch astic trend and is not stationar y. (the two

ter ms can be used inter- changea bly).

If a serie s has a unit r oot, the estimator of the autoregressive coeff icient in an AR ( p) is

biased towar ds 0, t-stat have a non -nor mal distri bution, two inde pendent serie s may

a ppear relate d.

1) bias towar ds 0

Suppo se that the tr ue mod el is a random walk: ( t t t uY Y ! 1 ) but the econom etri cian

estimates an AR (1) ( t t t uY Y !

11 F ). Since the serie s is non stationar y, the OLS assump tions are not satisf ied and it can be

shown that:

T E /3Ö ! . So with 20 year s of quarterl y data, you would e pect 3.0Ö !

Page 22: New Shortcut

8/6/2019 New Shortcut

http://slidepdf.com/reader/full/new-shortcut 22/52

Mon te car lo with 100 r e plications gives: ar ia ble | O bs Mea St . D ev. M i Max

------------- -----------------------------------------------------

R ES1 | 100 .9270481 .057000 9 .7792 42 1.010915

1) on norm al distr i bu tion

If a r egr essor h as a stochastic tr e , the OL S t-statisti cs have a

nonnorm al distr i bu tion und er the nu ll hy po thesis . One impor tant

case in which it is possi ble to ta bu late this distr i bu tion is in the

context of an AR with unit roo t; we will go b ack to this.

Page 23: New Shortcut

8/6/2019 New Shortcut

http://slidepdf.com/reader/full/new-shortcut 23/52

1) s pur ious r egr essi on

S inf lation was r ising f rom the mid-6 0s through the ea r ly 80¶s, s o was t he

Ja panese GD P over the sa me per iod.

reg inflation gdp_jp if daten>=19651 & daten<=19814,robustRegression with robust standard errors Number of obs = 68

F( 1, 66) = 113.38Prob > F = 0.0000R-squared = 0.5605Root MSE = 2.2989

------------------------------------------------------------------------------| Robust

inflation | Coef. Std. Err. t P>|t| [95% Conf. Interval]-------------+----------------------------------------------------------------

gdp_jp | .1871328 .0175741 10.65 0.000 .152045 .2222207_cons | -2.938637 .7660354 -3.84 0.000 -4.468076 -1.409198

------------------------------------------------------------------------------

. reg inflation gdp_jp if daten>=19821 & daten<=19994,robustRegression with robust standard errors Number of obs = 70

F( 1, 68) = 5.49Prob > F = 0.0221R -squared = 0.0797Root MSE = 1.5262

------------------------------------------------------------------------------| Robust

inflation | Coef. Std. Err. t P>|t| [95% Conf. Interval]-------------+----------------------------------------------------------------

gdp_jp | -.0304821 .0130145 -2.34 0.022 -.0564521 -.0045121_cons | 6.30274 1.378873 4.57 0.000 3.551242 9.054239

------------------------------------------------------------------------------

Page 24: New Shortcut

8/6/2019 New Shortcut

http://slidepdf.com/reader/full/new-shortcut 24/52

da t196 197 198 199

-5

5

1

15

Page 25: New Shortcut

8/6/2019 New Shortcut

http://slidepdf.com/reader/full/new-shortcut 25/52

da t

Page 26: New Shortcut

8/6/2019 New Shortcut

http://slidepdf.com/reader/full/new-shortcut 26/52

7.7.2 T esting f or u nit roo t

T he most comm only use test in pr actice is the Dick ey an uller test.

* D ick ey uller in the AR(1 ) model

In the AR(1 ) case, we want to test whether 11 ! F , if we cannot r ejec t

the null hy po thesis then t contains a unit roo t an is not stationar y

(contains a stochastic tr en ).

owever, the test is best im plemente by substr acting t-1 to bo th si es,

it then becomes:

0: 0!H vs 1: 0H

t t t uY Y !( 10 H F wher e 11! FH

T he OL t-stat testi ng 0!H is calle the Dick ey- uller statisti cs.

Note: the test is one si e because the r elevant alter native is that the

ser ies is stationar y.

Page 27: New Shortcut

8/6/2019 New Shortcut

http://slidepdf.com/reader/full/new-shortcut 27/52

Regression with robust standard errors Number of obs = 68F( 1, 66) = 4.47Prob > F = 0.0383R-squared = 0.0852Root MSE = 1.7954

------------------------------------------------------------------------------| Robust

dinf | Coef. Std. Err. t P>|t| [95% Conf. Interval]-------------+----------------------------------------------------------------

inf_1 | -.1559304 .0737577 -2.11 0.038 -.3031924 -.0086683_cons | 1.07776 .4075892 2.64 0.010 .2639821 1.891538

------------------------------------------------------------------------------

The DF statisti cs does not have a nor mal distr i bution, so the cr itical values ar e s pecif ic

to the test.Ta ble 7.1 Critic a l v a lues f r Au mented Dickey a nd Fuller test

10% 5% 1%

Inter ce pt only -2.57 -2.86 - .4

Inter ce pt an time tr en - .12 - .41 - .96

So in the pr evious r egr ession we cannot r eject at any level of statisti cal conf i ence that

0!H , so the ser ies has a unit root, an is not stationar y.

Page 28: New Shortcut

8/6/2019 New Shortcut

http://slidepdf.com/reader/full/new-shortcut 28/52

* ick ey-Fu ller test in the ( p) model

For an ( p), the ick ey Fuller test is base on the f ollowing r egr essi on:

t pt pt t t t uY Y Y Y Y (((!( K K K H ...221110

(7.7)

0: 0!H vs 1: 0H The F statistics is the LS-t-statistics testi ng 0!H . If 0 is r e jecte , Yt

is stati onar y.

The num ber of p-lags nee e is unk nown. Studies sugg est that f or the F

it is bette r to h ave too many lags r ather than too f ew, so it is r ecomme n e to use the I to dete r mine the num ber of lags f or the F.

Page 29: New Shortcut

8/6/2019 New Shortcut

http://slidepdf.com/reader/full/new-shortcut 29/52

* Di ck ey Full er allowing f or a linear tr en

Som e series have an obviou s linear tr en (Ja panese GD P ) so it will b e

uninf orm ative to t est th eir stationarity without accounting f or th e tr en .

Alter natively, if t is stationar y aroun a determi nistic linear tr en , th e

tr en must be a e to (7.7) which becom es:

t pt pt t t t uY Y Y Y t Y (((!( K K K H E F ...220

If 0 is r e jecte , t is stationar y aroun a determi nistic tim e tr en .

If the series is f oun to h ave a unit root, th en the f ir st di ff er ence of the

series does not h ave a tr en . For exampl e: t t t u! 10 F then

t t uY !( 0 F is stationar y.

Page 30: New Shortcut

8/6/2019 New Shortcut

http://slidepdf.com/reader/full/new-shortcut 30/52

Rq: T he power of a test is equal to the pro ba bilit y of r e jecting a f alse null

hypo thesis (1-pro b T ype II). Monte Ca r lo have shown that UR test have

low power , they canno t distingu ish betwee n a unit roo t and a stati onary near un it roo t process . T hus the test will of ten ind icate that a ser ies con tains

a UR .

t t t t

t t t t

z z z y y y

I I !! 21

21

15.01.11.01.1

Checking f or UR ,

Wit h the f ir st process , we have: 10y,1

0)11.0)(1(

01.01.11 2

!! !

!

y y y

y y

Wit h the second process , we have the f ollowing roo ts: z=0.940 5, z=0.1 595.

So the f ir st process has a UR and the second on e is stati onary.

Page 31: New Shortcut

8/6/2019 New Shortcut

http://slidepdf.com/reader/full/new-shortcut 31/52

t

y z

0 00 200 300 400

-20

- 0

0

0

Page 32: New Shortcut

8/6/2019 New Shortcut

http://slidepdf.com/reader/full/new-shortcut 32/52

Similar ly, it can be diff icult to disti ngu ish bet ee n a tr end stati onary and a unit roo t proc ess ith

dr if t.

/02.0

02.01

1 t t t

t t

x x

t w

I I

!!

t

w x

1

-5

5

1

Page 33: New Shortcut

8/6/2019 New Shortcut

http://slidepdf.com/reader/full/new-shortcut 33/52

In the shor t run , the for ecast from stati onary and non- stati onary mo dels

ill be close , how ever the long term for ecast will be quite diff er ent.

lso, the power of the un it roo t test is dr asti cally aff ected b y the dat

gener ating proc ess . If we ina ppropr iatel y om it the interce pt or time

tr end, the power of the test can go to 0. or e amp le om itting the

tr end leads to an upw ar d b ias in the esti mate d value of K in:

t pt pt t t t uY Y Y Y t Y (((!( K K K H E F ...221110

(7 .8)

Page 34: New Shortcut

8/6/2019 New Shortcut

http://slidepdf.com/reader/full/new-shortcut 34/52

T hu s a procedur e for testi ng can take the fo llow ing form :

1- se the least r est r ictive mo del (7 .8) to test for .

test have low pow er to r e ject Ho, so if Ho is r e jected ther e i

no need to proceed fur ther. If no t go to ste p 2.

2- T est 0!E , if no t use (7 .8) to test for ste p 1 If yes , use (7 .7 ) to test for , if Ho is r e jected conc lude no un it roo t, i

no t, go to ste p .

- T est 0! F , if no t go back to ste p 2,

If yes , use §!

(!% p

j jt t y y y y

11H to test for .

Page 35: New Shortcut

8/6/2019 New Shortcut

http://slidepdf.com/reader/full/new-shortcut 35/52

7.8 N on station ar y: Br eak s

A second ty pe of non station ar y arises when the popul ation r egr ession

f unction changes over the cour se of the sampl e

A br eak can arise either f rom a iscr ete change in the popul ation

r egr ession coeff icients at a istinct ate ( poli cy change) or f rom

gr a ual evolution of the coeff icients over a long er period of tim e (change in the structur e of the econom y).

If the br eak is not noti ce , estim ates will be base on the aver age

behaviour of the series over the period of tim e and not the true

r elation ship at the end of the period , thu s f or ecast will be poor .

Page 36: New Shortcut

8/6/2019 New Shortcut

http://slidepdf.com/reader/full/new-shortcut 36/52

7.8.1 testing f or br eak s at a k nown date

To k ee p it simpl e, l et¶s consid er th e ADL(1 ,1) mod el. Let¶s denote X the period

at which th e br eak is suppos e to h ave ha pp ene .

r eate a dumm y varia bl e (D t)tak ing v alues 0 bef or e X and 1 af ter X . D is also

inter acte to t-1 and X t-1.

t t t t t t t t t X DY D D X Y Y ! )()( 12111111 K K K H F F

nder th e hy poth esis o f no br eak , 21 !!! K K K can b e teste using a F-test.

nder th e alternative of a br eak , at least on e of these coeff icients will b e

diff er ent f rom . This is usu ally r ef err e as a how test.

This a ppro ach can b e modi f ie to check f or a br eak in a subs et of the

coeff icients b y including onl y the bin ar y varia ble inter actions f or th at subs et of

r egr essions o f inter est.

Page 37: New Shortcut

8/6/2019 New Shortcut

http://slidepdf.com/reader/full/new-shortcut 37/52

7.8.2 Testing f or br eak at an un k nown d ate

Of ten the date of a poss i ble br eak is un k nown, bu t you m ay susp ec t the r ange

dur ing wh ich the br eak took place, say between 10 and X X . Th e how test is us e

to test f or br eak s at all dates between 10 and X X ., then us ing the lar gest of the

r esulting F-statistics to test f or a br eak at an un k nown d ate. Th is is o f ten r ef err e

as Qu andt Lik elihood R atio. Since, Q LR is the lar gest of a ser ies of F-statistics,

its d istr i bution is sp ecial and d e pends on the numb er of r estr ictions teste q (nbr

of coeff icients, including the inter ce pt allowe to b r eak), 10 and X X , expr esse as

a f r action o f the total sample size. For the lar ge sample a ppr oximation to the

distr i bution o f the QLR to be a good on e, 10 and X X cannot be too close to the end

of the sample, For this r eason, the QLR is compu te over a tr imm e r ange so that

T 15.!X and T 85.0!X .

The QLR test can detect a single discr ete br eak , mu lti ple discr ete br eak s and/or

slow evolution o f the r egr ession f unction. If ther e is a distinct br eak in the

r egr ession f unction, the date at which the lar gest how s tatistics occur s is an

estimator of the br eak date.

Page 38: New Shortcut

8/6/2019 New Shortcut

http://slidepdf.com/reader/full/new-shortcut 38/52

Say, we want to check that our estimates o f the determ inants o f inflation in the

S ov er the 1962:I and 1999 :4 per iod. Mor e specif ically, we ar e concerne

that the inter ce pt and un emp loyment may have change over time. Th e f irs t

per iod we can check f or s tru ctur al br eak is 0.15T is 1967:4. So we cr ea te a

dumm y var ia ble f or obs ervations af ter 1967:4 and inter act it with

unemp loyment var ia bles: Source | SS df MS Number of obs = 15

-------------+------------------ ------------ F( 13, 138) = 7.41Model | 184.330595 13 14.1792765 Prob > F = 0.000

Residual | 283.045198 138 1.91246756 R -squared = 0.3944-------------+------------------ ------------ Adj R-squared = 0.3412

Total | 467.375793 151 2.90295524 Root MSE = 1.382

-----------------------------------------------------------------------------dinf | Coef. Std. Err. t P>|t| [95% Conf. Interv al]

-------------+---------------------------------------------------------------dinf_1 | -.4009554 .0824812 -4.86 0.000 -.5639484 -.2379 623dinf_2 | -.3433158 .0892349 -3.85 0.000 -.5196549 -.1669 767dinf_3 | .0545284 .0850863 0.64 0.523 -.1136126 .2226693dinf_4 | -.038809 .0754606 -0.51 0.608 -.1879284 .1103105

unemp_1 | -1.719641 1.254766 -1.37 0.173 -4.199214 .7599307unemp_2 | 3.46834 2.364168 1.47 0.144 -1.203546 8.140225unemp_3 | -3.370699 2.164944 -1.56 0.122 -7.648893 .9074963unemp_4 | 1.666702 1.155521 1.44 0.151 -.6167486 3.950152

D | 1.775541 1.839904 0.97 0.336 -1.860335 5.411417D_unemp_1 | -1.225527 1.351754 -0.91 0.366 -3.896758 1.445703D_unemp_2 | .2032217 2.560099 0.08 0.937 -4.855847 5.26229D_unemp_3 | 2.394236 2.370403 1.01 0.314 -2.28997 7.078442D_unemp_4 | -1.668078 1.255425 -1.33 0.186 -4.148952 .8127955

_cons | -.2276938 1.757672 -0.13 0.897 -3.701068 3.245681-----------------------------------------------------------------------------

. testparm D-D_unemp_4F( 5, 148) = 0.85

Prob > F = 0.5135

Page 39: New Shortcut

8/6/2019 New Shortcut

http://slidepdf.com/reader/full/new-shortcut 39/52

F=0 .85, we now r e-esti mate this mod el wit h =1 if t>=19 6 8:1, and until

1993 :I.

For e amp le, a br eak at 1981 :4 leads to Regression with robust standard errors Number of obs = 152

F( 13, 138) = 8.42Prob > F = 0.0000R-squared = 0.4223Root MSE = 1.367

------------------------------------------------------------------------------| Robust

dinf | Coef. Std. Err. t P>|t| [95% Conf. Interval]-------------+----------------------------------------------------------------

dinf_1 | -.4075559 .0932063 -4.37 0.000 -.591853 -.2232587dinf_2 | -.3777853 .0977229 -3.87 0.000 -.5710131 -.1845574dinf_3 | .0515292 .0798247 0.65 0.520 -.1063085 .2093669dinf_4 | -.0260024 .0826179 -0.31 0.753 -.1893631 .1373584

unemp_1 | -2.705181 .6911244 -3.91 0.000 -4.071744 -1.338618unemp_2 | 3.54704 1.300035 2.73 0.007 .9764752 6.117605unemp_3 | -2.025859 1.188034 -1.71 0.090 -4.374964 .3232453unemp_4 | .9846463 .5641419 1.75 0.083 -.1308334 2.100126

D | -.0729984 .9544203 -0.08 0.939 -1.960177 1.81418D_unemp_1 | -.5718067 .8773241 -0.65 0.516 -2.306543 1.162929

D_unemp_2 | .1754026 1.576346 0.11 0.912 -2.941512 3.292317D_unemp_3 | 2.79729 1.599601 1.75 0.083 -.3656069 5.960186D_unemp_4 | -2.432152 .8388761 -2.90 0.004 -4.090865 -.7734395

_cons | 1.350888 .733964 1.84 0.068 -.100382 2.802157------------------------------------------------------------------------------

. testparm D-D_unemp_4F( 5, 138) = 3.31

Prob > F = 0.0074

Page 40: New Shortcut

8/6/2019 New Shortcut

http://slidepdf.com/reader/full/new-shortcut 40/52

Page 41: New Shortcut

8/6/2019 New Shortcut

http://slidepdf.com/reader/full/new-shortcut 41/52

7.8. P seudo ou t of sample f or ecast

1) choose the numb er o f observations P f or which you will gener ate pseudo ou t of

sample f or ecast, say P =10 . Let¶s def ine s=T-P

2) Estimate the r egr ession on the sho r tene sample: t=1,..,s

) Compu te the f or ecast f or the f ir st per iod b eyond the shor tene samp le: s sY |1~

4) The f or ecast error : s s s s Y Y |111 ~~ !

5) R e peat ste ps 2-4 f or each date f rom T-p 1 to T- 1 (r eestimating the r egr ession

each time) .

6) The pseudo f or ecast error s can be examine to see if they ar e consist ent with a

stationar y r elationshi p

Page 42: New Shortcut

8/6/2019 New Shortcut

http://slidepdf.com/reader/full/new-shortcut 42/52

For exampl e, going back to our pr e iction of inf lation , using ata up to

199 : 4, we can pr e ict inf lation f or 1994:1, oing so until 1999: 4, we have 24

pseudo f or ecasts. Regression with robust standard errors Number of obs = 128

F( 13, 114) = 7.37Prob > F = 0.0000R -squared = 0.4210Root MSE = 1.4729

------------------------------------------------------------------------------| Robust

dinf | Coef. Std. Err. t P>|t| [95% Conf. Interval]

-------------+----------------------------------------------------------------dinf_1 | -.4190169 .0998416 -4.20 0.000 -.6168024 -.2212315dinf_2 | -.3961329 .1031673 -3.84 0.000 -.6005065 -.1917593dinf_3 | .039491 .0844715 0.47 0.641 -.1278463 .2068283dinf_4 | -.0449508 .0860523 -0.52 0.602 -.2154198 .1255181

unemp_1 | -2.679112 .6980463 -3.84 0.000 -4.061936 -1.296288unemp_2 | 3.465039 1.325757 2.61 0.010 .8387247 6.091353unemp_3 | -1.987951 1.22184 -1.63 0.106 -4.408407 .4325056unemp_4 | .9924426 .5769953 1.72 0.088 -.1505805 2.135466

D | .4808356 1.389741 0.35 0.730 -2.27223 3.233901

D_unemp_1 | -.9707623 .9465191 -1.03 0.307 -2.845809 .9042847D_unemp_2 | .6794326 1.700203 0.40 0.690 -2.688656 4.047521D_unemp_3 | 2.716406 1.821819 1.49 0.139 -.8926028 6.325415D_unemp_4 | -2.525234 .9671997 -2.61 0.010 -4.441249 -.6092183

_cons | 1.414308 .7407146 1.91 0.059 -.0530417 2.881658

The inf lation r ate is pr e icte to rise by 1.9 per centage point s. But the true

value is 0.9, so our f or ecast erro is ±1 per centage point s.

D i hi 24 i fi d h h f i 0 37 hi h i i ifi l

Page 43: New Shortcut

8/6/2019 New Shortcut

http://slidepdf.com/reader/full/new-shortcut 43/52

Doing this 24 times, w e f ind that the aver age for ecast err or is 0.37 which is s ignif icantl

diff er ent f r om 0 (t=-2.7 1). T his sugg ests that the for ecasts wer e biased over the per iod,

systematically for ecasting higher inflation. T his would suggest that the mod el has been

unsta ble (br eak ).

Page 44: New Shortcut

8/6/2019 New Shortcut

http://slidepdf.com/reader/full/new-shortcut 44/52

7.9 Co integr ation

7.9.1 Co integr ation and error corr ection

Ser ies can move together so closely over the long run that they a pp ear to h ave the same tr end

com pon ent. For exam ple, the months and 12months S inter est r ate.

daten

FYFF FYGM3

20004

. 3

.

Page 45: New Shortcut

8/6/2019 New Shortcut

http://slidepdf.com/reader/full/new-shortcut 45/52

mor eover , the s pr ead between the two ser ies does not a ppear to have a tr end.

daten00 00 00 00 20000

2

0

2

4

T he two ser ies have a common stochastic tr end, they ar e said to be cointegr ated. .

Page 46: New Shortcut

8/6/2019 New Shortcut

http://slidepdf.com/reader/full/new-shortcut 46/52

Suppo se X t and Y t ar e integr ated of ord er 1. If ther e e ist a coeff icient U such

that t t X Y U is integr ated of ord er 0 (stati onary) , then the 2 ser ies ar e said to be

cointegr ated with a cointegr ating coeff icient U .

Unit roo t testi ng can be e tended to test f or cointegr ation. If X t and Yt ar e

cointegr ated, then t t X Y U is I(0) (the null hypo thesis of a unit roo t is r e jected)

other wise t t X Y U isI(1).

* T esting f or co integr ation when U is k nown.

In som e cases , econom ic theory sugg ests a value of U . In this case a F test on

the ser ies X Y z t t U! is conduc ted.

Page 47: New Shortcut

8/6/2019 New Shortcut

http://slidepdf.com/reader/full/new-shortcut 47/52

In our example, let¶ s assume that theor y sugge st that U =1. There i s no trend in d s pread, so we

simpl y estimate:. reg dspread spread_1 dspread_1 dspread_2 dspread_3 dspread_4

Source | SS df MS Number of obs = 163-------------+------------------------------ F( 5, 157) = 11.73

Model | 20.0646226 5 4.01292452 Prob > F = 0.0000Residual | 53.706531 157 .342079815 R-squared = 0.2720

-------------+------------------------------ Adj R-squared = 0.2488Total | 73.7711536 162 .455377491 Root MSE = .58488

------------------------------------------------------------------------------dspread | Coef. Std. Err. t P>|t| [95% Conf. Interval]

-------------+----------------------------------------------------------------spread_1 | -.2506278 .0719562 -3.48 0.001 -.3927548 -.1085007

dspread_1 | -.283247 .091436 -3.10 0.002 -.4638504 -.1026437dspread_2 | .0230289 .0910197 0.25 0.801 -.1567521 .20281dspread_3 | -.0599991 .0895151 -0.67 0.504 -.2368085 .1168102dspread_4 | .048277 .0791148 0.61 0.543 -.1079897 .2045436

_cons | .1548892 .063015 2.46 0.015 .0304227 .2793557------------------------------------------------------------------------------

Lags AI

4 -1.049

-1.059

2 -1.063

1 -1.072

The t- stat on s pread_ 1 = -3.48, which is greater than the critical value (1% of the ADF) so we re ject

the null h y pothe sis that 0!H , the serie s does not have a unit root, and i s there f ore I (0). The 2

intere st rate serie s are cointegrated.

Page 48: New Shortcut

8/6/2019 New Shortcut

http://slidepdf.com/reader/full/new-shortcut 48/52

* testing f or cointegr ation whe n U is unk nown.

In gener al U is unk nown, the cointegr ation coeff icient must be estim ate pr ior to testing f or

unit root. Th is pr eliminar y ste p mak es it necessar y to u se diff er ent cr itical values f or the

subsequent unit root test.

Ste p 1: estim ate t t t X Y LE ! (7.12)

Ste p2: a Dick ey Fuller t -test is use to test f or u nit roo t in the r esi uals f rom (1): t LÖ

This proce ur e is calle the Engle -Gr anger Augmente Dick ey Fuller Test. C r itical values f or

the EGAD F ar e:

N br o f X in (7.12):

Cointegr ate var ia bles

10% 5% 1%

1 -3.12 -3.41 -3.96

2 -3.52 -3.80 -4.36

3 -3.84 -4.16 -4.73

4 -4.20 -4.49 -5.07

Page 49: New Shortcut

8/6/2019 New Shortcut

http://slidepdf.com/reader/full/new-shortcut 49/52

. reg dnu nu_1 dnu_1 dnu_2 dnu_3 dnu_4

Source | SS df MS Number of obs = 163-------------+------------------------------ F( 5, 157) = 21.53

Model | 31.2052888 5 6.24105775 Prob > F = 0.0000Residual | 45.5212134 157 .289944035 R -squared = 0.4067

-------------+------------------------------ Adj R-squared = 0.3878Total | 76.7265022 162 .473620384 Root MSE = .53846

------------------------------------------------------------------------------dnu | Coef. Std. Err. t P>|t| [95% Conf. Interval]-------------+----------------------------------------------------------------

nu_1 | -.5739985 .1150186 -4.99 0.000 -.8011821 -.3468149dnu_1 | -.1574595 .1139771 -1.38 0.169 -.3825858 .0676667dnu_2 | .0752181 .1052652 0.71 0.476 -.1327006 .2831369dnu_3 | .0053021 .0974368 0.05 0.957 -.1871541 .1977583dnu_4 | .1237554 .0782992 1.58 0.116 -.0309003 .278411_cons | .0016953 .0421806 0.04 0.968 -.0816193 .0850099

R eject the null hy po thesis of a unit root, the two ser ies ar e cointegr ate .

Page 50: New Shortcut

8/6/2019 New Shortcut

http://slidepdf.com/reader/full/new-shortcut 50/52

*E rror corr ection mod el

If 2 ser ies a r e cointegr ated, then the f or ecast of tand (( t Y can be improv ed by including an

error corr ection term.

If Xt and Yt ar e cointegr ated, one wa y to eliminate t he stochasti c tr end is to compu te t he se r ies

t t X Y U which is stati onary and can be used f or analysis. The te rm t t X Y U is calle d the e rror

corr ection term t t t qt qt ¡ t ¡ t t X X X ((((!( )(....... 1111110 UEK K F F F

similar ly, we als o have:

t t t qt qt pt pt t u X Y X X Y Y X ((((!( )(....... 1111110 UEK K F F F

if U is unk nown, then the E rror Corr ection Models can be esti mated using 1Öt L .

Page 51: New Shortcut

8/6/2019 New Shortcut

http://slidepdf.com/reader/full/new-shortcut 51/52

Inter est r ate change accor ding to stoch asti c shoc ks and pr evious per iod

deviati on from the long- term equili br ium t t X Y U =0. l phas can be

interpr eted as the s peed of ad justment.

T he a bsence of Gr anger causalit y for cointegr ate d var ia bles r equir es

that the s peed of ad justment is 0 as well as all gamm as (r es p, all betas )

to be 0. f cour se at least one of the al phas has to be non- zero for the 2

ser ies to be cointegr ated.

or t y( to be I(0) , t t X Y U needs to be I(0) since the error term andall f ir st diff er ence terms ar e I(0) , hence the 2 ser ies ar e cointegr ated

(1,1).

Page 52: New Shortcut

8/6/2019 New Shortcut

http://slidepdf.com/reader/full/new-shortcut 52/52

reg dfyff dfyff_1-dfyff_4 dfy3m_1-dfy3m_4 spread_1

Source | SS df MS Number of obs = 163-------------+------------------------------ F( 9, 153) = 4.74

Model | 69.5220297 9 7.72466996 Prob > F = 0.0000Residual | 249.54597 153 1.63101941 R -squared = 0.2179

-------------+------------------------------ Adj R-squared = 0.1719Total | 319.067999 162 1.96955555 Root MSE = 1.2771

------------------------------------------------------------------------------dfyff | Coef. Std. Err. t P>|t| [95% Conf. Interval]

-------------+----------------------------------------------------------------dfyff_1 | -.0014132 .2136881 -0.01 0.995 -.4235733 .4207468dfyff_2 | -.0264828 .2208415 -0.12 0.905 -.4627751 .4098095dfyff_3 | .1002626 .2129522 0.47 0.638 -.3204438 .5209689dfyff_4 | .1444413 .1802188 0.80 0.424 -.2115972 .5004798dfy3m_1 | .0068489 .2541142 0.03 0.979 -.4951767 .5088745dfy3m_2 | -.1758844 .275382 -0.64 0.524 -.7199263 .3681576dfy3m_3 | .2220654 .2653096 0.84 0.404 -.3020777 .7462086dfy3m_4 | -.3159166 .2272404 -1.39 0.166 -.7648506 .1330174

spread_1 | -.4598352 .1585354 -2.90 0.004 -.7730361 -.1466342_cons | .2955998 .1381308 2.14 0.034 .0227098 .5684897

------------------------------------------------------------------------------

the lag s pr ea does help to pr e ict change in int er est r ate in th e one year tr easur e bond r ate.