New Results from the G0 Experiment

23
New Results from the G0 Experiment 2 e e p p Elizabeth Beise, University of Maryland 1 CIPANP 2009 E. Beise, U Maryland Parity-violating electron scattering from the nucleon Hydrogen and deuterium targets Strange quark contributions to electromagnetic form factors Axial-vector N- transition Weak interaction contribution to pion photoproduction Transverse beam spin asymmetries

description

New Results from the G0 Experiment. Elizabeth Beise, University of Maryland. Parity-violating electron scattering from the nucleon Hydrogen and deuterium targets Strange quark contributions to electromagnetic form factors Axial-vector N- D transition - PowerPoint PPT Presentation

Transcript of New Results from the G0 Experiment

Page 1: New Results from the G0 Experiment

New Results from the G0 Experiment

2

e e pp

Elizabeth Beise, University of Maryland

1CIPANP 2009 E. Beise, U Maryland

Parity-violating electron scattering from the nucleon Hydrogen and deuterium targets Strange quark contributions to electromagnetic form

factors Axial-vector N- transition Weak interaction contribution to pion photoproduction Transverse beam spin asymmetries

Page 2: New Results from the G0 Experiment

Spatial distribution of s-quarks in the nucleon

Access via form factors: contribution to nucleon charge and magnetism

E. Beise, U Maryland

EM charge Weak charge

e 1 1 + 4 sin2W

u +2/3 1 8/3 sin2W

d 1/3 1 + 4/3 sin2W

s 1/3 1 + 4/3 sin2W

sin2W =.2312

Electromagnetic: NqqeNG q

pspdpup GGGG ,,,,

3

1

3

2

and use

nsps

nupd

ndpu

GG

GG

GG

,,

,,

,,

charge

symmetry

pZnp

Wps

pZnpW

pd

pZpW

pu

MEMEMEME

MEMEMEME

MEMEME

GGGG

GGGG

GGG

,,,2,

,,,2,

,,2,

,,,,

,,,,

,,,

sin41

sin42

sin43

CIPANP 2009 2

courtesy of JLab

Page 3: New Results from the G0 Experiment

Parity Violating elastic e-N scattering

E. Beise, U Maryland 3

polarized electrons, unpolarized target

2

e e pp

unpol

AMEF

LR

LR AAAQGA

224

2

forward, H

e.g.: G0 at 687 MeV (Q2~ 0.6 GeV2)

d

B

F

eA

sM

sE

ddd

BBB

FFF

d

B

F

a

a

a

G

G

G

aaa

aaa

aaa

A

A

A

0

0

0

321

321

321

a0 (ppm) a1 (ppm) a2 (ppm) a3 (ppm)

AF -24 80 43 3

AB -39 22 63 12

Ad -50 19 13 14

back, H

back, D

CIPANP 2009

Page 4: New Results from the G0 Experiment

Summary of data at Q2 =0.1 GeV2

E. Beise, U Maryland 5

(thanks to K. Pashke, R. Young)

Solid ellipse: K. Pashke, private comm, [same as J. Liu, et al PRC 76, 025202 (2007)],uses theoretical constraintson the axial form factor

Dashed ellipse: R. Young ,et al.PRL 97 (2006) 102002, does not constrain GA with theory

CIPANP 2009

1003

1contrib%

pE,M

sE,M

G

G

2007 Long Range Plan

note: Placement of SAMPLE band on the graph depends on choice for GA

Page 5: New Results from the G0 Experiment

New Results from PVA4

Q2 = 0.22 GeV2= 145°Ameas= 17.23 ± 0.82 ± 0.89 ppm

Anvs = 15.87 ± 1.22 ppm (uses theoretical constraint ofZhu et al., for the axial FF)

S. Baunack et al., PRL 102 (2009) 151803

11.011.014.0

019.0038.0050.0

sM

sE

G

G

% contribution to proton:electric: 3.0 ± 2.5 %magnetic: 2.9 ± 3.2 %

CIPANP 2009 6E. Beise, U Maryland

Page 6: New Results from the G0 Experiment

Quasielastic PV (ee’) in Deuterium

E. Beise, U Maryland

d

nnppd

AAA

Parity conserving nuclear corrections to the asymmetry are generally small, 1-3% at backward angles. Calculation provided to us by R. Schiavilla includes final state interactions and 2-body effects.

Use Quasielastic scattering from deuterium as lever arm for GAe(Q2)

Diaconescu, Schiavilla + van Kolck, PRC 63 (2001) 044007Schiavilla, Carlson + Paris, PRC 67 (2003) 032501

See also Hadjimichael, Poulis + Donnelly, PRC45 (1992) 2666 Schramm + Horowitz, PRC 49 (1994) 2777 Kuster + Arenhovel, NPA 626 (1997) 911 Liu, Prezeau, + Ramsey-Musolf,

PRC 67 (2003) 035501

CIPANP 2009 7

Page 7: New Results from the G0 Experiment

2-body effects in the D asymmetry

E. Beise, U Maryland 9CIPANP 2009

leading termof the asymmetry

axial formfactor coefficienthas ~15% correction from2-body effects

calculations from R. Schiavilla, see also R.S., J. Carlson, and M. Paris, PRC70, 044007 (2004).

Page 8: New Results from the G0 Experiment

E. Beise, U Maryland

Jefferson Laboratory

E ~ 6 GeVContinuous Polarized Electron Beam

> 100 Aup to 85% polarizationconcurrent to 3 Halls

upgrade to 12 GeVnow underway

A C

G0

CIPANP 2009 10

Page 9: New Results from the G0 Experiment

The G0 experiment at JLAB

E. Beise, U Maryland

• Forward and backward angle PV e-p elastic and e-d (quasielastic) in JLab Hall C

• superconducting toroidal magnet 22 (GeV/c)0.11.0~

,

Q

GGG eA

sM

sE

range over

separatedand

• scattered particles detected in segmented scintillator arrays in spectrometer focal plane

• custom electronics count and process scattered particles at > 1 MHz

• forward angle data published 2005

• backward angle data: 2006-2007

CIPANP 2009 11

Page 10: New Results from the G0 Experiment

G0 Apparatus

E. Beise, U Maryland

One octant’s scintillator array

20 cm LH2 Target

CIPANP 2009 12

Page 11: New Results from the G0 Experiment

G0 Forward angle Results

E. Beise, U Maryland

D.S. Armstrong et al., PRL 95 (2005) 092001

NVSphysV

pE

pM

pE

F

sM

sE AA

RG

GG

QGGG

)0(

22

2 1

24

EM form factors: J.J.Kelly, PRC 70, 068202 (2004)

CIPANP 2009 13

HAPPEX-3

G0 Backward

Page 12: New Results from the G0 Experiment

G0 Backward Angle

E. Beise, U Maryland

Electron detection: = 108°, H and D targets Add Cryostat Exit Detectors (CED) to define electron trajectoryAerogel Cerenkov detector for /e separation (p < 380 MeV/c)1 scaler per channel FPD/CED pair (w/ and wo/ CER)

Ee (MeV) Q2 (GeV2)

362 0.23

687 0.62

Common Q2 with HAPPEX-III and PVA4

CIPANP 2009 14

Both H and Dat each kinematic setting

Page 13: New Results from the G0 Experiment

362 MeV

Hydrogen raw electron data

Hz/uA

d

CIPANP 200915E. Beise, U Maryland

octant # (azimuthal distribution) 687 MeV Hz/uA

Page 14: New Results from the G0 Experiment

362 MeV

687 MeV

Deuterium raw electron dataHz/uA

d

d

Hz/uA

CIPANP 200916E. Beise, U Maryland

octant # (azimuthal distribution)

Page 15: New Results from the G0 Experiment

Blinding Factors

× 0.75-1.25

H, D Raw Asymmetries, Ameas

CorrectionsScaler counting correction

Rate corrections from electronicsHelicity-correlated corrections

Background correctionsBeam polarization

Other measurementsA(Ei , Q2)

Q2 Determination(from simulation)

Analysis Strategy

H, D Physics Asymmetries, Aphys

UnblindElectromagnetic

radiative corrections(from simulation)

P= 0.8578 ± 0.0007 (stat) ± .014 (sys)

< 0.1 ppm

CIPANP 2009 17E. Beise, U Maryland

eA

sM

sE GGG ,,

4% on asymmetry

~10-50 ppm

± 0.003 GeV2

< 1% of Aphys

Page 16: New Results from the G0 Experiment

Rate Corrections

H 687 MeV

H 362 MeV

Deadtimes (%)

Correct the yields for random coincidences and electronic deadtime prior to asymmetry calculation

randoms small except for D-687 (due to higher pion rate)

Direct (out-of-time) randoms measured

Validated with simulation of the complete electronics chain

CIPANP 2009 18E. Beise, U Maryland

Data set

Correction to Yield (%)

AsymmetryCorrection (ppm)

systematic error (ppm)

H 362 6 0.3 0.06

H 687 7 1.4 0.17

D 362 13 0.7 0.2

D 687 9 6 1.8

Page 17: New Results from the G0 Experiment

Backgrounds: Magnetic Field Scans

Use simulation shapes to help determine dilution factors

Main contributions are Aluminum windows (~10%), pions (for D-687 data only).

D-687CED 7, FPD 13

CIPANP 2009 19E. Beise, U Maryland

Data set Asymmetry Correction (ppm)

systematic error (ppm)

H 362 0.50 0.37

H 687 0.13 0.78

D 362 0.06 0.02

D 687 2.03 0.37

Page 18: New Results from the G0 Experiment

Experimental “Physics” Asymmetries

E. Beise, U Maryland 20CIPANP 2009

Data Set Asymmetry Stat Sys pt Global

H 362 -11.01 0.84 0.26 0.37

D 362 -16.50 0.79 0.39 0.19

H 687 -44.76 2.36 0.80 0.72

D 687 -54.03 3.22 1.91 0.62

H: systematic uncertainties dominated by beam polarizationD: rate corrections also contribute to uncertainty

all entries in ppm

PRELIMINARY – NOT FOR QUOTATION

Page 19: New Results from the G0 Experiment

Asymmetries to Form Factors

E. Beise, U Maryland 21CIPANP 2009

0s s e

phys E E M M A AA a a G a G a G

Electromagnetic form factors: Kelly (PRC 70 (2004))also used in Schiavilla calculation for Ddoes not include new low Q2 data from BLAST or JLabeventually use new fits (Arrington & Melnitchouk for p, Arrington & Sick for n)

differences in fits become 0.5 – 1 % in the asymmetry

Two-boson exchange corrections to Asymmetry: 0.5 -1.2%(see Tjon, Blunden & Melnitchouk, arXiv:0903.2759v1) includes D contributions, calculation for n in progress

11

1Z Z

meas Born BornA A A

Page 20: New Results from the G0 Experiment

Form Factor Results Using interpolation of G0 forward measurements

G0 forward/backwardPVA4: PRL 102 (2009)Q2 = 0.1 GeV2 combined

Global uncertainties

G0 forward/backward

SAMPLE

Zhu, et al. PRD 62 (2000)

CIPANP 2009 22E. Beise, U Maryland

 

Calculations: Leinweber, et al. PRL 97 (2006) 022001 Leinweber, et al. PRL 94 (2005) 152001 Wang, et al arXiv:0807.0944 (Q2 = 0.23 GeV2) Doi, et al, arXiv:0903.3232

PRELIMINARY – NOT FOR QUOTATION

Page 21: New Results from the G0 Experiment

Anapole form factor FA(Q2)

E. Beise, U Maryland 23

2. FA(Q2) is flat

(Riska, NPA 678 (2000) 79)

1. FA(Q2) is like GA(Q2)

3. FA(Q2) ~ 1 + Q2

(Maekawa, Viega, van Kolck, PLB 488 (2000) 167) – (shown here are the most extreme set of model parameters)

Three scenarios

CIPANP 2009

PRELIMINARY – NOT FOR QUOTATION

Page 22: New Results from the G0 Experiment

Summary

E. Beise, U Maryland

• first look at Q2 behavior of strangeness contribution to proton’s charge and magnetism: continue to be small

• first results for the Q2 behavior of the anapole contributions to the axial form factor

• other results to come soon from G0:

transverse beam spin asymmetries (2- exchange) in H and D

PV in the N- transition: axial transition f.f.

PV asymmetry in inclusive production

24CIPANP 2009

Page 23: New Results from the G0 Experiment

25

The G0 Collaboration (backward angle run)

Caltech, Carnegie Mellon, William and Mary, Hendricks College, Orsay, Grenoble, LA Tech, NMSU, Ohio, JLab, TRIUMF, Illinois, Kentucky, Manitoba, Maryland, Winnipeg, Zagreb, Virginia

Tech, Yerevan Physics Institute

CIPANP 2009 E. Beise, U Maryland