New Modelling the Division of Labor: A Spiking Neuron Net Approachsebag/Sebag_SocPAR10_a.pdf ·...

50
Modelling the Division of Labor: A Spiking Neuron Net Approach Mich` ele Sebag TAO Joint work with Sylvain Chevallier, H´ el` ene Paugam-Moisy SocPAR 2010

Transcript of New Modelling the Division of Labor: A Spiking Neuron Net Approachsebag/Sebag_SocPAR10_a.pdf ·...

Page 1: New Modelling the Division of Labor: A Spiking Neuron Net Approachsebag/Sebag_SocPAR10_a.pdf · 2010. 12. 7. · Modelling the Division of Labor: A Spiking Neuron Net Approach Mich

Modelling the Division of Labor:

A Spiking Neuron Net Approach

Michele Sebag

TAOJoint work with Sylvain Chevallier, Helene Paugam-Moisy

SocPAR 2010

Page 2: New Modelling the Division of Labor: A Spiking Neuron Net Approachsebag/Sebag_SocPAR10_a.pdf · 2010. 12. 7. · Modelling the Division of Labor: A Spiking Neuron Net Approach Mich

Framework: Swarm Robotics

Swarm-bot (2001-2005) Swarm Foraging, UWE

Symbrion IP, 2008-2013; http://symbrion.org/

Page 3: New Modelling the Division of Labor: A Spiking Neuron Net Approachsebag/Sebag_SocPAR10_a.pdf · 2010. 12. 7. · Modelling the Division of Labor: A Spiking Neuron Net Approach Mich

Swarm Robotics: Why and What

WHAT

I Simple agentssimple micro-motives for macro-behaviors

I No pacemakersdecentralized, distributed, randomized systems

I More is different

An alternative to complex robots

I Inexpensive → Many → Reliable

I The “invisible hand“(Hayek’s inheritage ?)

Page 4: New Modelling the Division of Labor: A Spiking Neuron Net Approachsebag/Sebag_SocPAR10_a.pdf · 2010. 12. 7. · Modelling the Division of Labor: A Spiking Neuron Net Approach Mich

Swarms: HOW

PrinciplesLocal information I` → estimates global quantities I

Local information → individual behaviour b(I`)Aggregate b(I`) = Behaviour[I ]

Examples

I Sounds & clusters of birds and frogs; Melhuish 99

I Bees & air-conditioning of the hive Auman 08

From observing to designing emergenceMain Issues

I Communication feasibility, cost

I Convergence individual and collective safety

I Reality Gap in simulation vs in-situ

I Bootstrapping how to prime the pump

Page 5: New Modelling the Division of Labor: A Spiking Neuron Net Approachsebag/Sebag_SocPAR10_a.pdf · 2010. 12. 7. · Modelling the Division of Labor: A Spiking Neuron Net Approach Mich

Swarms: HOW

PrinciplesLocal information I` → estimates global quantities I

Local information → individual behaviour b(I`)Aggregate b(I`) = Behaviour[I ]

Examples

I Sounds & clusters of birds and frogs; Melhuish 99

I Bees & air-conditioning of the hive Auman 08

From observing to designing emergenceMain Issues

I Communication feasibility, cost

I Convergence individual and collective safety

I Reality Gap in simulation vs in-situ

I Bootstrapping how to prime the pump

Page 6: New Modelling the Division of Labor: A Spiking Neuron Net Approachsebag/Sebag_SocPAR10_a.pdf · 2010. 12. 7. · Modelling the Division of Labor: A Spiking Neuron Net Approach Mich

This talk focuses on

Division of labor

Synchronization

Page 7: New Modelling the Division of Labor: A Spiking Neuron Net Approachsebag/Sebag_SocPAR10_a.pdf · 2010. 12. 7. · Modelling the Division of Labor: A Spiking Neuron Net Approach Mich

How do social agents proceed to synchronize their activities?

Page 8: New Modelling the Division of Labor: A Spiking Neuron Net Approachsebag/Sebag_SocPAR10_a.pdf · 2010. 12. 7. · Modelling the Division of Labor: A Spiking Neuron Net Approach Mich

Overview

I Swarm Robotics

I Biological / Artificial modelsI SpikeAnts

I Spiking NeuronsI Network Architecture

I Analysis

I Discussion and Perspectives

Page 9: New Modelling the Division of Labor: A Spiking Neuron Net Approachsebag/Sebag_SocPAR10_a.pdf · 2010. 12. 7. · Modelling the Division of Labor: A Spiking Neuron Net Approach Mich

Biological/Artificial models

BatteryMotors

Software

The hardware perspective

Division of laborthe social stomach ?

Page 10: New Modelling the Division of Labor: A Spiking Neuron Net Approachsebag/Sebag_SocPAR10_a.pdf · 2010. 12. 7. · Modelling the Division of Labor: A Spiking Neuron Net Approach Mich

Biological/Artificial models

BatteryMotors

Software

The hardware perspectiveDivision of labor

the social stomach ?

Page 11: New Modelling the Division of Labor: A Spiking Neuron Net Approachsebag/Sebag_SocPAR10_a.pdf · 2010. 12. 7. · Modelling the Division of Labor: A Spiking Neuron Net Approach Mich

Biological/Artificial models, 2

J. Halloy et al., 2010

Social stomach: Macro-modelling

X Foraging robots β rate of energy stocking

S Stocking robots µ rate of energy consumption

Y Other robots (θ + Xt) rate of recruitment∂X∂t = (θ + Xt)(N − X − S)− βX∂S∂t = βX − µS

Y: empty robots

X: foraging robotsrate of recruitment

rate of stocking

S: stocking robots

rate of consumption

Page 12: New Modelling the Division of Labor: A Spiking Neuron Net Approachsebag/Sebag_SocPAR10_a.pdf · 2010. 12. 7. · Modelling the Division of Labor: A Spiking Neuron Net Approach Mich

Division of labor, 2

Winfield & Liu 08Finding food/resting

I Finding food delivers energy

I Searching costs energy

I bumping into other robots costs energy

Goal

I Allocate time between search and resthttp://www.brl.uwe.ac.uk/projects/swarm/index.html

Page 13: New Modelling the Division of Labor: A Spiking Neuron Net Approachsebag/Sebag_SocPAR10_a.pdf · 2010. 12. 7. · Modelling the Division of Labor: A Spiking Neuron Net Approach Mich

Adaptive Foraging in Swarm Robotic Systems, 2

Probabilistic Finite State Machine

Design

I Find transition probabilities

I Rest and Search thresholdsI Input:

I internal cues (food retrieved)I environment cues (bumping into other

robots)I social cues (success/failure of relatives)

Page 14: New Modelling the Division of Labor: A Spiking Neuron Net Approachsebag/Sebag_SocPAR10_a.pdf · 2010. 12. 7. · Modelling the Division of Labor: A Spiking Neuron Net Approach Mich

Controller design in Swarm Robotics

Constraints design of emergence

I Spatially distributed

I Decentralized (no pacemaker)

I Asynchronous

Available information

I Cues from relatives

I Internal time (hunger-like)

Can it be avoided ?

I Random generator probabilistic model

I Sophisticated skills counting ability

Page 15: New Modelling the Division of Labor: A Spiking Neuron Net Approachsebag/Sebag_SocPAR10_a.pdf · 2010. 12. 7. · Modelling the Division of Labor: A Spiking Neuron Net Approach Mich

Overview

I Swarm Robotics

I Biological / Artificial modelsI SpikeAnts

I Spiking NeuronsI Network Architecture

I Analysis

I Discussion and Perspectives

Page 16: New Modelling the Division of Labor: A Spiking Neuron Net Approachsebag/Sebag_SocPAR10_a.pdf · 2010. 12. 7. · Modelling the Division of Labor: A Spiking Neuron Net Approach Mich

Spiking neurons vs std neurons

Standard neurons

I Directed graph G = (E ,V) and weights W

I An activation function: (linear, sigmoid, RBF)

ei (t + 1) =← f (∑j

wijej(t))

Spiking neurons Hodgkin Huxley 52

I Internal state (membrane potential)

I Activation function ≡ differential equation

∂e(t)∂t = f (e(t),Excitations, Inhibitions) if e(t) < ϑ

else fires a spike and e(t) is set to Vreset

Page 17: New Modelling the Division of Labor: A Spiking Neuron Net Approachsebag/Sebag_SocPAR10_a.pdf · 2010. 12. 7. · Modelling the Division of Labor: A Spiking Neuron Net Approach Mich

Spiking neurons, 2

What is new

I An asynchronous process

I What matters is the dynamics of the input

Modelling/studying dynamics

I Synchrony in cell assembliesHebb, 49

I Complete synchronyMirollo, 90

I Transient synchronyHopfield, 01

I Order-chaos phase transitionSchrauwen, 08

I PolychronizationIzhikevich, 06

I Rhythmic oscillationsBrunel, 03

Page 18: New Modelling the Division of Labor: A Spiking Neuron Net Approachsebag/Sebag_SocPAR10_a.pdf · 2010. 12. 7. · Modelling the Division of Labor: A Spiking Neuron Net Approach Mich

Synchronization

In biological systems

I Fireflies

I Cricket chirping

I Pacemaker cells of the heart

I Neural cells

Questions

I Why (synchronized patterns are more efficient ?)

I How ?

ClaimEmergence/Dynamics results from individual interactions

Cole 91, Gordon 92

Page 19: New Modelling the Division of Labor: A Spiking Neuron Net Approachsebag/Sebag_SocPAR10_a.pdf · 2010. 12. 7. · Modelling the Division of Labor: A Spiking Neuron Net Approach Mich

Division of labor among foraging ants

PrincipleThe ant goes foraging

iff she does not see sufficiently many ants foraging

Related problems

I The Dying seminar Schelling 1978

I The El Farol bar Arthur 1994

Page 20: New Modelling the Division of Labor: A Spiking Neuron Net Approachsebag/Sebag_SocPAR10_a.pdf · 2010. 12. 7. · Modelling the Division of Labor: A Spiking Neuron Net Approach Mich

The Dying Seminar

Schelling, 1978; Nadal et al. 2009

Individual Utility Function

I N scientists are asked to go to a seminar:

I ... scientist i will go if #attendees > n(i)

Page 21: New Modelling the Division of Labor: A Spiking Neuron Net Approachsebag/Sebag_SocPAR10_a.pdf · 2010. 12. 7. · Modelling the Division of Labor: A Spiking Neuron Net Approach Mich

The Dying Seminar

Schelling, 1978; Nadal et al. 2009

Individual Utility Function

I N scientists are asked to go to a seminar:

I ... scientist i will go if #attendees > n(i)

Page 22: New Modelling the Division of Labor: A Spiking Neuron Net Approachsebag/Sebag_SocPAR10_a.pdf · 2010. 12. 7. · Modelling the Division of Labor: A Spiking Neuron Net Approach Mich

The Dying Seminar

Schelling, 1978; Nadal et al. 2009

Individual Utility Function

I N scientists are asked to go to a seminar:

I ... scientist i will go if #attendees > n(i)

Page 23: New Modelling the Division of Labor: A Spiking Neuron Net Approachsebag/Sebag_SocPAR10_a.pdf · 2010. 12. 7. · Modelling the Division of Labor: A Spiking Neuron Net Approach Mich

The El Farol bar

Arthur 1994

Individual Utility Function 100 scientists

I The best option is to go to El Farol bar

I ... if not too many people go to the bar... < 60

I otherwise, better stay at home...

Devising a policy

I Random draw: go to the bar with probability .6

I Find rules to predict the attendance, based on the history

Page 24: New Modelling the Division of Labor: A Spiking Neuron Net Approachsebag/Sebag_SocPAR10_a.pdf · 2010. 12. 7. · Modelling the Division of Labor: A Spiking Neuron Net Approach Mich

Division of labor among foraging ants

PrincipleThe ant goes foraging

iff she does not see sufficiently many ants foraging

Related problems

I The Dying seminar Schelling 1978

I The El Farol bar Arthur 1994

Differences

I Not an imitation game survival of the colony

I No synchronization

Page 25: New Modelling the Division of Labor: A Spiking Neuron Net Approachsebag/Sebag_SocPAR10_a.pdf · 2010. 12. 7. · Modelling the Division of Labor: A Spiking Neuron Net Approach Mich

The foraging colony

A 4 state agent model

I S leep

I Observe

I Forage

I General Interest

S O

F

G

Ant policy

1. If I don’t see “sufficiently many” foraging ants,I go foraging (then sleeping)

2. Otherwise, I go for General Interest tasks

3. After any task, back to Observation

Page 26: New Modelling the Division of Labor: A Spiking Neuron Net Approachsebag/Sebag_SocPAR10_a.pdf · 2010. 12. 7. · Modelling the Division of Labor: A Spiking Neuron Net Approach Mich

The ant model: Two spiking neurons

Passive neuron Leaky Integrate-and-Fire (LIF)

dVp

dt = −λ(Vp(t)− Vrest) + Iexc(t), if Vp < ϑelse fires a spike and Vp is set to V p

reset

Excitation: signal of working ants

Active neuron Quadratic Integrate-and-Fire (QIF)

dVa

dt = −λ(Va(t)− Vrest)(Va(t)− Vthres) + Iinh(t) + Iclock(t), if Va < ϑelse fires a spike and Va is set to V a

reset

Inhibition: signal of working ants

Excitation: internal clock

Bistable:

{> Vrest bursting regime< Vrest goto V a

reset

Page 27: New Modelling the Division of Labor: A Spiking Neuron Net Approachsebag/Sebag_SocPAR10_a.pdf · 2010. 12. 7. · Modelling the Division of Labor: A Spiking Neuron Net Approach Mich

The ant model: Two spiking neurons, foll’d

During the observation state,Decision making: Competition of active and passive neuron

I if Active wins, goto F (and emits spikes, sent to neighborants)

I If Passive wins, goto GI if none wins before tO, goto F .

wins= emits a spikeOther states

I Passive and Active neurons are not excited/inhibited.

Page 28: New Modelling the Division of Labor: A Spiking Neuron Net Approachsebag/Sebag_SocPAR10_a.pdf · 2010. 12. 7. · Modelling the Division of Labor: A Spiking Neuron Net Approach Mich

Microscopic Scale

Sleep state

PA

0

0.5

1

1.5

0 20 40 60 80 100 120

Active neuronPassive neuron

ϑ

Time (ms)

Page 29: New Modelling the Division of Labor: A Spiking Neuron Net Approachsebag/Sebag_SocPAR10_a.pdf · 2010. 12. 7. · Modelling the Division of Labor: A Spiking Neuron Net Approach Mich

Microscopic Scale

Observation state

PA

0

0.5

1

1.5

0 20 40 60 80 100 120

Active neuronPassive neuron

ϑ

Time (ms)

Page 30: New Modelling the Division of Labor: A Spiking Neuron Net Approachsebag/Sebag_SocPAR10_a.pdf · 2010. 12. 7. · Modelling the Division of Labor: A Spiking Neuron Net Approach Mich

Microscopic Scale

Foraging state

PA

0

0.5

1

1.5

0 20 40 60 80 100 120

Active neuronPassive neuron

ϑ

Time (ms)

Page 31: New Modelling the Division of Labor: A Spiking Neuron Net Approachsebag/Sebag_SocPAR10_a.pdf · 2010. 12. 7. · Modelling the Division of Labor: A Spiking Neuron Net Approach Mich

Microscopic Scale

Sleep state

PA

0

0.5

1

1.5

0 20 40 60 80 100 120

Active neuronPassive neuron

ϑ

Time (ms)

Page 32: New Modelling the Division of Labor: A Spiking Neuron Net Approachsebag/Sebag_SocPAR10_a.pdf · 2010. 12. 7. · Modelling the Division of Labor: A Spiking Neuron Net Approach Mich

Microscopic Scale

Observation state

PA

0

0.5

1

1.5

0 20 40 60 80 100 120

Active neuronPassive neuron

ϑ

Time (ms)

Page 33: New Modelling the Division of Labor: A Spiking Neuron Net Approachsebag/Sebag_SocPAR10_a.pdf · 2010. 12. 7. · Modelling the Division of Labor: A Spiking Neuron Net Approach Mich

Microscopic Scale

General Interest state

PA

0

0.5

1

1.5

0 20 40 60 80 100 120

Active neuronPassive neuron

ϑ

Time (ms)

Page 34: New Modelling the Division of Labor: A Spiking Neuron Net Approachsebag/Sebag_SocPAR10_a.pdf · 2010. 12. 7. · Modelling the Division of Labor: A Spiking Neuron Net Approach Mich

Microscopic Scale

Observation state

PA

0

0.5

1

1.5

0 20 40 60 80 100 120

Active neuronPassive neuron

ϑ

Time (ms)

Page 35: New Modelling the Division of Labor: A Spiking Neuron Net Approachsebag/Sebag_SocPAR10_a.pdf · 2010. 12. 7. · Modelling the Division of Labor: A Spiking Neuron Net Approach Mich

Microscopic Scale

Foraging state

PA

0

0.5

1

1.5

0 20 40 60 80 100 120

Active neuronPassive neuron

ϑ

Time (ms)

Page 36: New Modelling the Division of Labor: A Spiking Neuron Net Approachsebag/Sebag_SocPAR10_a.pdf · 2010. 12. 7. · Modelling the Division of Labor: A Spiking Neuron Net Approach Mich

Macroscopic Scale

Ant colony

I M ants = M (active, passive) neurons

I A spiking neuron network

I Sparsely connected (connectivity ρ)

What happens ?n(t): number of foraging ants at time t

Foraging effort F =∑t

n(t)

Page 37: New Modelling the Division of Labor: A Spiking Neuron Net Approachsebag/Sebag_SocPAR10_a.pdf · 2010. 12. 7. · Modelling the Division of Labor: A Spiking Neuron Net Approach Mich

Parameters of the model

Parameter type Symbol Description Value (units)

Neural λ Membrane relaxation constant 0.1 mV−1

Vrest Resting potential 0.0 mVϑ Spike firing threshold 1.0 mV

V preset Passive neuron reset potential -0.1 mV

Vthres Active neuron bifurcation threshold 0.5 mVV a

reset Active neuron reset potential 0.55 mVIclock Active neuron constant input current 0.1 mVw Synaptic weight 0.01 mV−1

Agent tF Foraging duration 47.1 mstO Maximum observation duration 10.5 mstS Sleeping duration 45.7 mstG General I. duration 16.7 ms

Population ρ Connection probability 0.3 %M Population size 150 agents

Initializationevery ant sleeps and wakes up after U[0, 2tS ]

Page 38: New Modelling the Division of Labor: A Spiking Neuron Net Approachsebag/Sebag_SocPAR10_a.pdf · 2010. 12. 7. · Modelling the Division of Labor: A Spiking Neuron Net Approach Mich

Foraging effort: Sensitivity analysis

Average on 10 independent runs times 100,000 time steps

200

400

600

800

1000

0 200 400 600 800 1000200

300

400

500

600

700

0 0.2 0.4 0.6 0.8 1

FF

M ρ

0

500

1000

1500

0 0.05 0.1 0.15 0.2

Fw

200

240

280

0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95

F

V areset

vs population size M, connectivity ρ,active neuron reset potential V a

reset and synaptic weight w .

Page 39: New Modelling the Division of Labor: A Spiking Neuron Net Approachsebag/Sebag_SocPAR10_a.pdf · 2010. 12. 7. · Modelling the Division of Labor: A Spiking Neuron Net Approach Mich

Influence of connectivity ρ

ρ = 0.1

ρ = 0.2

0

10

20

30

40

50

60

0 500 1000 1500 2000 2500 3000

nF

(t)

01020304050607080

0 500 1000 1500 2000 2500 3000

nF

(t)

t

Emergence of workshift as ρ increases.

Page 40: New Modelling the Division of Labor: A Spiking Neuron Net Approachsebag/Sebag_SocPAR10_a.pdf · 2010. 12. 7. · Modelling the Division of Labor: A Spiking Neuron Net Approach Mich

Influence of population size M

0102030405060708090

0 500 1000 1500 2000 2500 3000

nF

(t)

300 agents

050

100150200250300350

0 500 1000 1500 2000 2500 3000

nF

(t)

t

1000 agents

Variance of workshift size increases with M

Page 41: New Modelling the Division of Labor: A Spiking Neuron Net Approachsebag/Sebag_SocPAR10_a.pdf · 2010. 12. 7. · Modelling the Division of Labor: A Spiking Neuron Net Approach Mich

Macroscopic study, foll’d

First indicator: Foraging effort FI Behaves as expected

I high variance in some regions.

Second indicator: Entropy of synchronization HI Consider n(t) number of foraging agents at t

I Discard orphan time steps t s.t. n(t − 1) 6= n(t) 6= n(t + 1)

I LetN = {n(t), t = 1 . . .T , n(t) = n(t + 1) or n(t) = n(t − 1)}

I Let pn ∝ |{t, n(t) = n, n ∈ N}|H = −

∑n∈N

pn log pn

Page 42: New Modelling the Division of Labor: A Spiking Neuron Net Approachsebag/Sebag_SocPAR10_a.pdf · 2010. 12. 7. · Modelling the Division of Labor: A Spiking Neuron Net Approach Mich

Three different regimes

0

10

20

30

40

50

60

70

80

0 500 1000 1500 2000

n F(t

)

Simulated time t

0

50

100

150

200

250

0 500 1000 1500 2000

n F(t

)Simulated time t

0100200300400500600700800900

1000

0 500 1000 1500 2000

n F(t

)

Simulated time t

Asynchronous Synchronous aperiodic Synchronous periodicA B C

0

10

20

30

40

50

60

70

80

0 10 20 30 40 50 60 70 80

n F(t

+1)

nF(t)

50

100

150

200

250

50 100 150 200 250

n F(t

+1)

nF(t)

200

400

600

800

1000

200 400 600 800 1000

n F(t

+1)

nF(t)

H = 0 High Log2

Page 43: New Modelling the Division of Labor: A Spiking Neuron Net Approachsebag/Sebag_SocPAR10_a.pdf · 2010. 12. 7. · Modelling the Division of Labor: A Spiking Neuron Net Approach Mich

Three different regimes

0

10

20

30

40

50

60

70

80

0 500 1000 1500 2000

n F(t

)

Simulated time t

0

50

100

150

200

250

0 500 1000 1500 2000

n F(t

)

Simulated time t

0100200300400500600700800900

1000

0 500 1000 1500 2000

n F(t

)

Simulated time t

Asynchronous Synchronous aperiodic Synchronous periodicA B C

0

50

100

150

200

0 500 1000 1500 2000Simulated time t

0

50

100

150

200

0 500 1000 1500 2000Simulated time t

0

50

100

150

200

0 500 1000 1500 2000Simulated time t

Raster plot: Active = red, passive = blue

Page 44: New Modelling the Division of Labor: A Spiking Neuron Net Approachsebag/Sebag_SocPAR10_a.pdf · 2010. 12. 7. · Modelling the Division of Labor: A Spiking Neuron Net Approach Mich

SpikeAnts: Emergent synchronization

Control parameters

I Sociability ρ√M

I Receptivity w|ϑ−Vrest|

Phase diagram

C

B

AC

B

A

0 0.2 0.4 0.6 0.8

0.05

0.1

0.15

0.2

Rec

epti

vity

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

0 0.2 0.4 0.6 0.8

0.05

0.1

0.15

0.2

Rec

epti

vity

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

H(m

ean)

H(s

tand

ard

devi

atio

n)

Sociability Sociability

Page 45: New Modelling the Division of Labor: A Spiking Neuron Net Approachsebag/Sebag_SocPAR10_a.pdf · 2010. 12. 7. · Modelling the Division of Labor: A Spiking Neuron Net Approach Mich

SpikeAnts: Emergent synchronization

Control parameters

I Sociability ρ√M

I Receptivity w|ϑ−Vrest|

Phase diagram

C

B

AC

B

A

0 0.2 0.4 0.6 0.8

0.05

0.1

0.15

0.2

Rec

epti

vity

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

0 0.2 0.4 0.6 0.8

0.05

0.1

0.15

0.2

Rec

epti

vity

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

H(m

ean)

H(s

tand

ard

devi

atio

n)

Sociability Sociability

Page 46: New Modelling the Division of Labor: A Spiking Neuron Net Approachsebag/Sebag_SocPAR10_a.pdf · 2010. 12. 7. · Modelling the Division of Labor: A Spiking Neuron Net Approach Mich

SpikeAnts: A representative run

at the triple point

B A B A B C

0

50

100

150

200

250

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

n F(t

)

t

Stable regime: synchronous periodic.

Page 47: New Modelling the Division of Labor: A Spiking Neuron Net Approachsebag/Sebag_SocPAR10_a.pdf · 2010. 12. 7. · Modelling the Division of Labor: A Spiking Neuron Net Approach Mich

Overview

I Swarm Robotics

I Biological / Artificial modelsI SpikeAnts

I Spiking NeuronsI Network Architecture

I Analysis

I Discussion and Perspectives

Page 48: New Modelling the Division of Labor: A Spiking Neuron Net Approachsebag/Sebag_SocPAR10_a.pdf · 2010. 12. 7. · Modelling the Division of Labor: A Spiking Neuron Net Approach Mich

SpikeAnts

The model

I Frugal, deterministic model

I Biological plausibility / no counting abilities

I Accounts for the emergence of synchronization

Further extensions

I Comparisons with probabilistic models

I Stochastic parameters

Page 49: New Modelling the Division of Labor: A Spiking Neuron Net Approachsebag/Sebag_SocPAR10_a.pdf · 2010. 12. 7. · Modelling the Division of Labor: A Spiking Neuron Net Approach Mich

Further extensions

Reconsidering excitation/inhibitionFrom SpikeAnts to an Ising model

The environment handling perturbationsWhat can be learned/optimized within SpikeAnts ?

Going realImplementing SpikeAnts

Page 50: New Modelling the Division of Labor: A Spiking Neuron Net Approachsebag/Sebag_SocPAR10_a.pdf · 2010. 12. 7. · Modelling the Division of Labor: A Spiking Neuron Net Approach Mich

Thanks

I Sylvain Chevallier, Helene Paugam Moisy TAO, LRI

I Jose Halloy, Jean-Louis Deneubourg VUB

I Symbrion IP

More in NIPS 2010.