New Metamorphic Framework Hemlo - Geology Ontario

101
ISBN 1-4249-0981-3 THESE TERMS GOVERN YOUR USE OF THIS DOCUMENT Your use of this Ontario Geological Survey document (the “Content”) is governed by the terms set out on this page (“Terms of Use”). By downloading this Content, you (the “User”) have accepted, and have agreed to be bound by, the Terms of Use. Content: This Content is offered by the Province of Ontario’s Ministry of Northern Development and Mines (MNDM) as a public service, on an “as-is” basis. Recommendations and statements of opinion expressed in the Content are those of the author or authors and are not to be construed as statement of government policy. You are solely responsible for your use of the Content. You should not rely on the Content for legal advice nor as authoritative in your particular circumstances. Users should verify the accuracy and applicability of any Content before acting on it. MNDM does not guarantee, or make any warranty express or implied, that the Content is current, accurate, complete or reliable. MNDM is not responsible for any damage however caused, which results, directly or indirectly, from your use of the Content. MNDM assumes no legal liability or responsibility for the Content whatsoever. Links to Other Web Sites: This Content may contain links, to Web sites that are not operated by MNDM. Linked Web sites may not be available in French. MNDM neither endorses nor assumes any responsibility for the safety, accuracy or availability of linked Web sites or the information contained on them. The linked Web sites, their operation and content are the responsibility of the person or entity for which they were created or maintained (the “Owner”). Both your use of a linked Web site, and your right to use or reproduce information or materials from a linked Web site, are subject to the terms of use governing that particular Web site. Any comments or inquiries regarding a linked Web site must be directed to its Owner. Copyright: Canadian and international intellectual property laws protect the Content. Unless otherwise indicated, copyright is held by the Queen’s Printer for Ontario. It is recommended that reference to the Content be made in the following form: Thompson, P.H. 2006. A new metamorphic framework for the Hemlo greenstone belt: Implications for deformation, plutonism, alteration and gold mineralization; Ontario Geological Survey, Open File Report 6190, 80p. Use and Reproduction of Content: The Content may be used and reproduced only in accordance with applicable intellectual property laws. Non-commercial use of unsubstantial excerpts of the Content is permitted provided that appropriate credit is given and Crown copyright is acknowledged. Any substantial reproduction of the Content or any commercial use of all or part of the Content is prohibited without the prior written permission of MNDM. Substantial reproduction includes the reproduction of any illustration or figure, such as, but not limited to graphs, charts and maps. Commercial use includes commercial distribution of the Content, the reproduction of multiple copies of the Content for any purpose whether or not commercial, use of the Content in commercial publications, and the creation of value-added products using the Content. Contact: FOR FURTHER INFORMATION ON PLEASE CONTACT: BY TELEPHONE: BY E-MAIL: The Reproduction of Content MNDM Publication Services Local: (705) 670-5691 Toll Free: 1-888-415-9845, ext. 5691 (inside Canada, United States) [email protected] The Purchase of MNDM Publications MNDM Publication Sales Local: (705) 670-5691 Toll Free: 1-888-415-9845, ext. 5691 (inside Canada, United States) [email protected] Crown Copyright Queen’s Printer Local: (416) 326-2678 Toll Free: 1-800-668-9938 (inside Canada, United States) [email protected]

Transcript of New Metamorphic Framework Hemlo - Geology Ontario

Page 1: New Metamorphic Framework Hemlo - Geology Ontario

ISBN 1-4249-0981-3

THESE TERMS GOVERN YOUR USE OF THIS DOCUMENT

Your use of this Ontario Geological Survey document (the “Content”) is governed by the terms set out on this page (“Terms of Use”). By downloading this Content, you (the “User”)

have accepted, and have agreed to be bound by, the Terms of Use.

Content: This Content is offered by the Province of Ontario’s Ministry of Northern Development and Mines (MNDM) as a public service, on an “as-is” basis. Recommendations and statements of opinion expressed in the Content are those of the author or authors and are not to be construed as statement of government policy. You are solely responsible for your use of the Content. You should not rely on the Content for legal advice nor as authoritative in your particular circumstances. Users should verify the accuracy and applicability of any Content before acting on it. MNDM does not guarantee, or make any warranty express or implied, that the Content is current, accurate, complete or reliable. MNDM is not responsible for any damage however caused, which results, directly or indirectly, from your use of the Content. MNDM assumes no legal liability or responsibility for the Content whatsoever. Links to Other Web Sites: This Content may contain links, to Web sites that are not operated by MNDM. Linked Web sites may not be available in French. MNDM neither endorses nor assumes any responsibility for the safety, accuracy or availability of linked Web sites or the information contained on them. The linked Web sites, their operation and content are the responsibility of the person or entity for which they were created or maintained (the “Owner”). Both your use of a linked Web site, and your right to use or reproduce information or materials from a linked Web site, are subject to the terms of use governing that particular Web site. Any comments or inquiries regarding a linked Web site must be directed to its Owner. Copyright: Canadian and international intellectual property laws protect the Content. Unless otherwise indicated, copyright is held by the Queen’s Printer for Ontario. It is recommended that reference to the Content be made in the following form:

Thompson, P.H. 2006. A new metamorphic framework for the Hemlo greenstone belt: Implications for deformation, plutonism, alteration and gold mineralization; Ontario Geological Survey, Open File Report 6190, 80p.

Use and Reproduction of Content: The Content may be used and reproduced only in accordance with applicable intellectual property laws. Non-commercial use of unsubstantial excerpts of the Content is permitted provided that appropriate credit is given and Crown copyright is acknowledged. Any substantial reproduction of the Content or any commercial use of all or part of the Content is prohibited without the prior written permission of MNDM. Substantial reproduction includes the reproduction of any illustration or figure, such as, but not limited to graphs, charts and maps. Commercial use includes commercial distribution of the Content, the reproduction of multiple copies of the Content for any purpose whether or not commercial, use of the Content in commercial publications, and the creation of value-added products using the Content. Contact:

FOR FURTHER INFORMATION ON PLEASE CONTACT: BY TELEPHONE: BY E-MAIL:

The Reproduction of Content

MNDM Publication Services

Local: (705) 670-5691 Toll Free: 1-888-415-9845, ext.

5691 (inside Canada, United States)

[email protected]

The Purchase of MNDM Publications

MNDM Publication Sales

Local: (705) 670-5691 Toll Free: 1-888-415-9845, ext.

5691 (inside Canada, United States)

[email protected]

Crown Copyright Queen’s Printer Local: (416) 326-2678 Toll Free: 1-800-668-9938

(inside Canada, United States)

[email protected]

Page 2: New Metamorphic Framework Hemlo - Geology Ontario
Page 3: New Metamorphic Framework Hemlo - Geology Ontario

Ontario Geological SurveyOpen File Report 6190

A New MetamorphicFramework for the HemloGreenstone Belt:Implications forDeformation, Plutonism,Alteration andGold Mineralization

2006

Page 4: New Metamorphic Framework Hemlo - Geology Ontario
Page 5: New Metamorphic Framework Hemlo - Geology Ontario

ONTARIO GEOLOGICAL SURVEY

Open File Report 6190

A New Metamorphic Framework for the Hemlo Greenstone Belt: Implications forDeformation, Plutonism, Alteration and Gold Mineralization

by

P.H. Thompson

2006

Parts of this publication may be quoted if credit is given. It is recommended thatreference to this publication be made in the following form:

Thompson, P.H. 2006. A new metamorphic framework for the Hemlo greenstone belt:Implications for deformation, plutonism, alteration and gold mineralization; OntarioGeological Survey, Open File Report 6190, 80p.

e Queen’s Printer for Ontario, 2006

Page 6: New Metamorphic Framework Hemlo - Geology Ontario
Page 7: New Metamorphic Framework Hemlo - Geology Ontario

iii

e Queen’s Printer for Ontario, 2006.

Open File Reports of the Ontario Geological Survey are available for viewing at the Mines Library in Sudbury, at theMines andMinerals InformationCentre in Toronto, and at the regionalMines andMinerals officewhose district includesthe area covered by the report (see below).

Copies can be purchased at Publication Sales and the office whose district includes the area covered by the report. Al-though a particular report may not be in stock at locations other than the Publication Sales office in Sudbury, they cangenerally be obtainedwithin 3working days.All telephone, fax, mail and e-mail orders should be directed to the Publica-tion Sales office in Sudbury. Use of VISA or MasterCard ensures the fastest possible service. Cheques or money ordersshould be made payable to the Minister of Finance.

Mines and Minerals Information Centre (MMIC) Tel: (416) 314-3800Macdonald Block, Room M2-17900 Bay St.Toronto, Ontario M7A 1C3

Mines Library Tel: (705) 670-5615933 Ramsey Lake Road, Level A3Sudbury, Ontario P3E 6B5

Publication Sales Tel: (705) 670-5691(local)933 Ramsey Lake Rd., Level A3 1-888-415-9845(toll-free)Sudbury, Ontario P3E 6B5 Fax: (705) 670-5770

E-mail: [email protected]

Regional Mines and Minerals Offices:

Kenora - Suite 104, 810 Robertson St., Kenora P9N 4J2

Kirkland Lake - 10 Government Rd. E., Kirkland Lake P2N 1A8

Red Lake - Box 324, Ontario Government Building, Red Lake P0V 2M0

Sault Ste. Marie - 70 Foster Dr., Ste. 200, Sault Ste. Marie P6A 6V8

Southern Ontario - P.O. Bag Service 43, 126 Old Troy Rd., Tweed K0K 3J0

Sudbury - Level A3, 933 Ramsey Lake Rd., Sudbury P3E 6B5

Thunder Bay - Suite B002, 435 James St. S., Thunder Bay P7E 6S7

Timmins - Ontario Government Complex, P.O. Bag 3060, Hwy. 101 East, South Porcupine P0N 1H0

Toronto - MMIC, Macdonald Block, Room M2-17, 900 Bay St., Toronto M7A 1C3

This report has not received a technical edit. Discrepanciesmay occur for which the OntarioMinistry ofNorthernDevel-opment andMines does not assume any liability. Source references are included in the report andusers are urged to verifycritical information. Recommendations and statements of opinions expressed are those of the author or authors and arenot to be construed as statements of government policy.

If you wish to reproduce any of the text, tables or illustrations in this report, please write for permission to the TeamLeader, Publication Services, Ministry of Northern Development and Mines, 933 Ramsey Lake Road, Level A3,Sudbury, Ontario P3E 6B5.

Cette publication est disponible en anglais seulement.

Parts of this report may be quoted if credit is given. It is recommended that reference be made in the following form:

Thompson, P.H. 2006. A new metamorphic framework for the Hemlo greenstone belt: Implications fordeformation, plutonism, alteration and gold mineralization; Ontario Geological Survey, Open File Report 6190,80p.

Page 8: New Metamorphic Framework Hemlo - Geology Ontario
Page 9: New Metamorphic Framework Hemlo - Geology Ontario

v

Contents

Abstract ............................................................................................................................................................... xi Introduction ......................................................................................................................................................... 1 Acknowledgments ............................................................................................................................................... 1 Methodology........................................................................................................................................................ 1

Petrography................................................................................................................................................. 2 Rock Associations....................................................................................................................................... 2 Metamorphic Grade .................................................................................................................................... 4 RAGRD (Rock Association/Metamorphic Grade)...................................................................................... 6 Metamorphism of Granitoids ...................................................................................................................... 6 Deformation ................................................................................................................................................ 7 Alteration .................................................................................................................................................... 7

Geological Setting ............................................................................................................................................... 7 Rock Units .................................................................................................................................................. 7 Deformation ................................................................................................................................................ 8 Metamorphism ............................................................................................................................................ 8 Alteration and Mineralization ..................................................................................................................... 9 Geochronology............................................................................................................................................ 9

Metamorphic Maps.............................................................................................................................................. 10 Diagnostic Metamorphic Mineral Assemblages for Rock Associations ..................................................... 10

Metabasites (11 to 15) ........................................................................................................................ 10 Metamorphosed Quartzofeldspathic Rocks (21 to 26) ....................................................................... 11 Meta-ultramafic Rocks (32 to 34) ...................................................................................................... 11 Metamorphosed Aluminum-Rich Rocks (42 to 46) ........................................................................... 12 Metamorphosed Chemical Sedimentary Rocks/Iron Formation (52 to 54) ....................................... 12 Metagranitoids (61 to 66) ................................................................................................................... 12 Metamorphosed Carbonate-Rich Rocks (71 to 74) ............................................................................ 13 Unmetamorphosed Granitoids (80) .................................................................................................... 13

Metamorphic Zones in Supracrustal Rocks ................................................................................................ 15 Lower Greenschist Zone..................................................................................................................... 15 Upper Greenschist Zone ..................................................................................................................... 15 Greenschist-Amphibolite Transition Zone ......................................................................................... 15 Amphibolite Zone............................................................................................................................... 16

Metamorphism of Granitoids ...................................................................................................................... 17 Mineral Assemblages ......................................................................................................................... 17 Deformation........................................................................................................................................ 17 Regional Implications......................................................................................................................... 18

Retrograde Metamorphism.......................................................................................................................... 21 Pressure–Temperature Conditions of Metamorphism ......................................................................................... 21

Erosion Surface Pressure–Temperature Array ............................................................................................ 23 Pressure–Temperature–Time Paths............................................................................................................. 25

Page 10: New Metamorphic Framework Hemlo - Geology Ontario

vi

Page 11: New Metamorphic Framework Hemlo - Geology Ontario

vii

Metamorphic Evolution and Geological Setting.................................................................................................. 30 Depth–Time Analysis of Granitoids ........................................................................................................... 30 Depth–Time Analysis of Supracrustal Rocks ............................................................................................. 30 Timing and Duration of Deformation and Plutonism ................................................................................. 32 Telescoped Orogenesis and Elevator Tectonics.......................................................................................... 34 Cooling History........................................................................................................................................... 35 High Fluid-Flux .......................................................................................................................................... 36

Metamorphism and Mineralization...................................................................................................................... 37 Rock Types ................................................................................................................................................. 37 Deformation ................................................................................................................................................ 37 Plutonism .................................................................................................................................................... 38 Metamorphic Grade .................................................................................................................................... 38 Aluminosilicates ......................................................................................................................................... 39 Alteration and Mineralization ..................................................................................................................... 39 A Metamorphic Origin for the Hemlo Gold Deposit?................................................................................. 40

Conclusions ......................................................................................................................................................... 41 References ........................................................................................................................................................... 42 Appendix 1. Terminology................................................................................................................................... 47 Appendix 2. Petrographic Data........................................................................................................................... 51 Metric Conversion Table ..................................................................................................................................... 80

FIGURES 1. Map of the main phase (M1) regional metamorphism of the Hemlo greenstone belt ......................... back pocket

2. Simplified version of the M1 metamorphic map of the Hemlo greenstone belt ......................................... 5 3. Distribution of granitoid samples and metamorphic grade of metagranitoid and

unmetamorphosed granites.......................................................................................................................... 19 4. Map of variations in intensity of deformation in granitoid and supracrustal rocks..................................... 20 5. Retrograde metamorphism (M2) of the Hemlo greenstone belt.................................................................. 22 6. Pressure–Temperature diagram for main phase (M1) regional metamorphism in

the Hemlo greenstone belt........................................................................................................................... 24 7. Depth–time distribution of granitoids in and around the Hemlo greenstone belt........................................ 31 8. Schematic Depth–time analysis of representative metavolcanic rock and late synorogenic plutons .......... 33 9. Schematic Depth–time analysis of implications of a 2680 Ma age for the Cedar Lake pluton................... 35 10. Schematic Depth–time analysis of the cooling history of the representative felsic metavolcanic rock ...... 36

Page 12: New Metamorphic Framework Hemlo - Geology Ontario

viii

Page 13: New Metamorphic Framework Hemlo - Geology Ontario

ix

PHOTOS 1. Textures in metamorphosed granitoids ....................................................................................................... 14 2. Porphyroblast–microstructure relationships................................................................................................ 27 3. Porphyroblast–microstructure relationships................................................................................................ 29

TABLES

1. Metamorphic zones defined by diagnostic minerals and mineral assemblages........................................... 3 Table in Appendix 2 2. Petrographic data for the metamorphic map of the Hemlo greenstone belt ................................................ 51

Page 14: New Metamorphic Framework Hemlo - Geology Ontario

x

Page 15: New Metamorphic Framework Hemlo - Geology Ontario

xi

Abstract

Discussion of the origin and evolution of the Hemlo gold deposit in the Hemlo greenstone belt continues in spite of many years of research and analysis. Metamorphic data, mainly from the immediate vicinity of the mines, are an important component of previous work. The patterns, conditions, timing and duration of metamorphic events across the entire greenstone belt, however, remain essentially undocumented. The belt-scale metamorphic framework presented in this report provides a fresh perspective and new constraints on the geological setting during and after formation of the deposit. Metamorphic data and the concepts designed to explain the origin of metamorphic rocks will assist gold exploration directly by defining exploration targets and indirectly by advancing knowledge of the geological setting of mineralization and alteration.

The major regional metamorphic event (M1, lower greenschist to upper amphibolite facies) was followed tens of millions of years later by a low grade, less pervasive metamorphism (M2, subgreenschist/lower greenschist facies). In detail, localized contact metamorphism related to granitoids is present.

The abundant granitoids within and around the greenstone belt are either too old, too young, or of insufficient volume to be the source of heat for M1 regional metamorphism.

The regional pattern cuts across major structural trends while, at kilometre scale there is evidence of structural control of metamorphic grade. This is consistent with the conclusions of previous detailed studies in the vicinity of the Hemlo mines that metamorphic grade was increasing during D1 and D2, reaching maximum conditions late in D2 and remained high until after D3.

The regional metamorphic context highlights the anomalous nature of the medium-grade biotite-kyanite assemblages in quartz-muscovite aluminous rocks in and around the Hemlo gold deposit. The rocks are anomalous within the belt and in comparison with medium-grade metamorphic rocks in most Archean greenstone belts.

Depth-time analysis and constraints imposed by the geological setting of metamorphism indicate maximum metamorphic pressures were in the range of 4 to 5 kbars rather than the 6 to 9 kbars obtained by previous workers using numerical thermobarometric methods.

Early synorogenic, and to a lesser extent, late synorogenic granitoids are potential sources of a component of mineralizing fluids.

The preferred explanation for the origin of the Hemlo gold deposit is that an unusual combination of metamorphic pressures and temperatures related to localized rapid burial created the environment within a segment of a structural conduit that caused precipitation of gold from a through-going mix of metamorphic and magmatic hydrothermal fluids. Increasing temperature and decreasing pressure effectively closed the window of opportunity for mineralization because the gold remained in solution under the new conditions and/or changing P–T conditions contributed to the decline in the volume of metamorphic fluid entering the system. This hypothesis should be tested by evaluation of the P–T stability of possible primary ore sulphide assemblages and examination of other similar gold deposits and of geological settings with comparable metamorphic histories. For example, can granitoids intruded at depths of 14 to 15 km in the crust produce gold-molybdenum-rich fluids?

In the western half of the Hemlo greenstone belt, intersections between major deformation zones and the main greenschist/ampbibolite transition zone, and with transition zone and lower greenschist zone

Page 16: New Metamorphic Framework Hemlo - Geology Ontario

xii

metamorphic anomalies should be explored for Campbell–Goldcorp (Red Lake) and Dome (western Abitibi) style mineralization.

Page 17: New Metamorphic Framework Hemlo - Geology Ontario

A New Metamorphic Framework for the Hemlo Greenstone Belt: Implications for Deformation, Plutonism, Alteration and Gold Mineralization

Peter H. Thompson1 Ontario Geological Survey Open File Report 6190 2006

1 Peter H. Thompson Geological Consulting Ltd. 75 Fairmont Avenue, Ottawa, Ontario Canada K1Y 1X4 Tel/Fax: 1-613-722-8219 e-mail: [email protected]

Page 18: New Metamorphic Framework Hemlo - Geology Ontario
Page 19: New Metamorphic Framework Hemlo - Geology Ontario

1

Introduction

Discussion of the origin and evolution of the Hemlo gold deposit in the greenstone belt of the same name continues in spite of many years of research and analysis. Metamorphic data, mainly from the immediate vicinity of the mines, are an important component of previous work. The patterns, conditions, timing and duration of metamorphic events across the entire greenstone belt, however, remain essentially undocumented. The belt-scale metamorphic framework presented in this report provides a fresh perspective and new constraints on the geological setting during and after formation of the deposit.

Metamorphism is an important part of the evolution of mineralized greenstone belts. During the orogenic stages, metamorphic processes modify and obscure the definitive mineralogical and textural features of premetamorphic ore deposits. At the same time, synmetamorphic gold deposits may form as sparsely disseminated gold tied up in igneous and sedimentary rocks is liberated, transported and concentrated by significant volumes of metamorphic fluid that passed through during transformation of the volcano-sedimentary package to a greenstone belt. Additional constraints on the timing and duration of ductile deformation and plutonism come from belt-scale mapping of relationships between metamorphic zones, major structures, and granitoid plutons, and from petrographic observation of the timing of metamorphic mineral growth with respect to formation of microstructures. Metamorphic mineral assemblages indicate the temperatures and crustal depths at which these processes occur. That is, metamorphic data and the concepts designed to explain the origin of metamorphic rocks assist in gold exploration directly by defining exploration targets and indirectly by advancing knowledge of the geological setting of mineralization and alteration.

The objectives of this project are to complete the regional petrographic study started by S.L. Jackson (1998) and use the new metamorphic framework to investigate the temperatures, depths, timing and duration of deformation, plutonism, alteration and gold mineralization in the Hemlo greenstone belt.

Acknowledgments

The scientific contributions of Ontario Geological Survey (OGS) geologists G.P. Beakhouse (plutonism) and T.L. Muir (geological setting), their thin section collections, and ongoing geological discussions are key components of this work. S.L. Jackson (formerly Ontario Geological Survey) tracked down a major thin section collection that allowed me to complete the regional metamorphic framework he began 10 years ago. Jack Parker’s support and enthusiasm for the project is much appreciated. Peter H. Thompson Geological Consulting Ltd made inkind contributions to the project. The map and report benefited from the cartographic and editorial skills of Sara Jane McIlraith and Paula Takats of the Precambrian Geoscience Section and the Publications Services Section, respectively of the OGS. Critical readings by Tom Muir and Gary Beakhouse improved the report.

Methodology

The methodology applied to the Hemlo greenstone belt is similar to that applied to belt-scale metamorphic studies of the Abitibi (Thompson 2005a) and Red Lake (Thompson 2003) greenstone belts. Point data derived from regional petrography of thin sections distributed across the belt define the metamorphic zonation. For this study, thin sections were obtained from Ontario Geological Survey

Page 20: New Metamorphic Framework Hemlo - Geology Ontario

2

geologists, Gary Beakhouse and Tom Muir and, with the assistance of Steve Jackson, from OGS archives. The sections assembled for this study are stored at the Ontario Geological Survey in Sudbury.

PETROGRAPHY

Petrographic observations are the basis for determination of the rock association (generalized rock type), metamorphic grade, and intensity of deformation of each sample. Taking into account duplicate sampling at the same localities by Beakhouse, Muir and/or Jackson and multiple samples taken at any given time, the 1 646 thin sections assembled for this study were reduced to a select set of 723. Petrography of the latter, together with 105 outcrop observations of schistose and migmatitic metasedimentary rocks (Muir 2000), make up the metamorphic data set (Appendix 2) from which the metamorphic map of the Hemlo greenstone belt (Figure 1, in back pocket; and Figure 2) is constructed. Documentation of the mineral assemblages and textures in different metamorphic rock associations ensures that some measure of metamorphic grade is determined for most parts of the study area. Where more than one rock association is present at a station, the approach permits a more refined breakdown of metamorphic grade.

ROCK ASSOCIATIONS

The thin section suite and outcrop observations from Muir (2000) are divided into 7 metamorphic rock associations and one unmetamorphosed granitoid association (Table 1). Metabasites (25% of select thin section suite), metaquartzofeldspathic rocks (24%), and metamorphosed aluminous (25%), carbonate-rich (9%) and granitoid (10%) rocks make up most of the metamorphic suite. Metamorphosed iron-rich (4%), ultramafic (2%) and carbonate-rich rocks (1%) are less prominent. Granitoids containing little or no mineralogical or textural evidence of syncrystallization to postcrystallization modification are relatively rare (1%). Represented on the metamorphic map (see Figure 1) by a unique symbol shape, each metamorphic rock association represents a particular range of rock composition that reacts in a distinctive way to increasing metamorphic conditions. For example, whereas the transition from greenschist to amphibolite zone in aluminous rocks (rock association 4, see Table 1) is typically mappable as a line in metamorphic terranes, in metabasites (rock association 1, see Table 1), the change commonly involves a transition zone containing characteristics of both greenschist and amphibolite zones (Bucher and Frey 1994; Spear 1993). Although not yet accurately calibrated, the appearance of amphibole in metamorphosed ultramafic rocks (rock association 3, see Table 1) corresponds approximately with the appearance of biotite in rock associations 2 and 4. Regional mapping of mineralogical and textural features in granitoids that may be related to regional metamorphic events is not usually done, but the data are useful for evaluating the relative importance of deuteric alteration and regional metamorphism of these rock units. The compilation of metamorphic data from a range of rock associations is appropriate for greenstone belts because they typically comprise a wider variety of rock types than the classic metasedimentary rock-dominated terranes where metamorphic zone mapping was developed.

Page 21: New Metamorphic Framework Hemlo - Geology Ontario

3

Tab

le 1

. M

etam

orph

ic z

ones

def

ined

by

diag

nost

ic m

iner

als a

nd m

iner

al a

ssem

blag

es in

one

or m

ore

of se

ven

rock

ass

ocia

tions

(poi

nt d

ata

in F

igur

e 1)

out

line

belt-

scal

e va

riatio

ns in

met

amor

phic

gra

de.

Met

amor

phic

gra

de is

map

ped

as z

ones

rath

er th

an fa

cies

bec

ause

not

all

the

diag

nost

ic m

iner

als/

min

eral

ass

embl

ages

cor

resp

ond

to th

ose

used

to

def

ine

met

amor

phic

faci

es (s

ee te

xt).

The

firs

t dig

it of

the

two-

digi

t num

ber (

RA

GR

D) i

n ea

ch c

ell i

ndic

ates

the

rock

ass

ocia

tion.

The

seco

nd d

igit

indi

cate

s the

rela

tive

met

amor

phic

gra

de fo

r the

rock

ass

ocia

tion

(hig

her n

umbe

r, hi

gher

gra

de).

The

rela

tive

posi

tions

of t

he b

ound

arie

s in

rock

ass

ocia

tions

2 to

7 th

at c

orre

spon

d ap

prox

imat

ely

to th

e lo

wer

/upp

er g

reen

schi

st z

one

boun

dary

on

the

map

are

infe

rred

. The

pre

cise

pos

ition

s of t

hese

bou

ndar

ies r

elat

ive

to e

ach

othe

r hav

e ye

t to

be c

alib

rate

d. M

iner

al n

ame

abbr

evia

tions

are

loca

ted

in th

e le

gend

for A

ppen

dix

2 at

the

end

of th

is re

port.

Met

amor

phic

Gra

de In

crea

sing

Am

phib

olite

Zon

e Su

b-gr

eens

chis

t Zo

ne

Low

er

Gre

ensc

hist

Zo

ne

Upp

er G

reen

schi

st

Zone

Tr

ansi

tion

Zone

lo

wer

m

iddl

e up

per

Roc

k A

ssoc

iatio

n

Dia

gnos

tic m

iner

al a

ssem

blag

es

1) M

etab

asite

s: m

etab

asal

t/gab

bro/

diab

ase,

gr

eens

tone

, am

phib

olite

, met

a-an

desi

te

11 p

rn, p

rn-p

u 12

act

-cht

-epg

-ab

13 a

ct-h

n 14

hn-

plg(

calc

ic)

15 le

ucos

ome

24 b

t 2)

Met

aqua

rtzof

elds

path

ic ro

cks:

m

etar

hyol

ite/d

acite

, qf m

etap

orph

yry,

fels

ic

met

avol

cani

clas

tite,

met

awac

ke

21 p

rn, p

rn-p

u ch

t-wm

22

cht

-wm

, cht

-kf

cht-w

m-c

b 23

bt-e

pg-c

b 25

bt-h

n 26

leuc

osom

e

3) M

etam

orph

osed

ultr

amaf

ic ro

cks:

m

etak

omat

iite,

met

aper

idot

ite/d

unite

32 c

ht-tl

c-cb

, se-

ch

t, ch

t-tlc

-se-

cb

33 c

am (t

rm/a

ct, c

um)

34 o

l-opx

4) M

etam

orph

osed

alu

min

um-r

ich

rock

s:

met

asha

le/s

iltst

one,

met

amor

phos

ed

hydr

othe

rmal

alte

ratio

n

42 c

ht-w

m

43 b

t, bt

-grt,

ctd

-cht

44 c

rd/s

t–bt

-ch

t- an

d/ky

, cr

d-oa

m

45 c

rd/ s

t- an

d/ky

/sil-

bt,

crd-

oam

46

leuc

osom

e

5) C

hem

ical

met

ased

imen

tary

rock

s:

met

a-iro

n fo

rmat

ion

51 m

in

gree

n 52

qtz

-cht

, cht

-cb,

m

t-qtz

53

cum

/gru

, am

-grt,

2 a

m

54 o

px

64 b

t 6)

Met

amor

phos

ed g

rani

toid

s: m

etag

rani

te to

m

etat

onal

ite

61 p

rn, p

rn-p

u 62

cht

-kf,

cht-w

m

63 b

t-epg

, act

65

hn

66 le

ucos

ome

7) M

etam

opho

sed

carb

onat

e-ric

h ro

cks:

cb-

rich

met

ased

imen

ts, m

eta-

inte

rpill

ow ro

ck,

met

amor

phos

ed h

ydro

ther

mal

alte

ratio

n,

cht-c

b sc

hist

, cal

csili

cate

zon

es

72

cht

-cb-

qtz

cht-c

b-w

m-q

tz

73 b

t-cht

-cb,

trm

-cb

epg-

cht-a

m-c

b 74

dio

p-am

-grt,

hn-

bt-q

tz

8) U

nmet

amor

phos

ed g

rani

toid

s:

gran

ite to

tona

lite

80 n

o m

etam

orph

ic m

iner

als

Met

amor

phic

Fac

ies

Subg

reen

schi

stG

reen

schi

st

Amph

ibol

ite

3

Page 22: New Metamorphic Framework Hemlo - Geology Ontario

4

METAMORPHIC GRADE

Metamorphism refers to the changes in mineralogy and texture that occur when a sedimentary, igneous or metamorphic rock is subjected to physical conditions (temperature, pressure, fluid composition) that are different from those when the rock first formed (Appendix 1, Terminology). Metamorphic grade is a relative measure of the intensity or completeness of metamorphism with grade increasing as the degree of transformation increases. The changes occur in minerals making up the rock (mineral assemblages), in textures (grain size and shape, relationships between mineral grains), and in structures (planar and linear aggregates of minerals such as cleavage, foliations, folds, veins, compositional layering that are pervasive throughout the rock). Variations in grade are evident at the scale of the map, outcrop and thin section.

Working in aluminous metasedimentary rocks, Barrow (1893) was the first to map increasing metamorphic grade as a series of zones defined by the appearance of particular minerals in rocks of similar composition. Subsequently, the approach was extended to metabasites and other rock types. Metamorphic facies is a concept (Eskola 1915; Turner 1981) that provides a way of correlating metamorphic grade in different rock compositions. For example, in areas where aluminous rocks containing the greenschist facies assemblage chlorite-muscovite-biotite are absent, the extent of greenschist facies metamorphic conditions can be mapped using carbonate-rich rocks (dolomite-quartz) or metabasites (actinolite-epidote-chlorite-albite). From the beginning, attempts were made to relate metamorphic grade to temperature and pressure (Barrow 1893; Eskola 1915; Becke 1921), but it was some time before experimental petrologists were able to determine the pressure–temperature stability fields of a wide range of metamorphic minerals and mineral assemblages. Given certain assumptions about fluid compositions, the experimental data provide a link between a metamorphic zone or facies mapped in the field and the particular range of temperature and pressure on a P–T diagram. Once adequate experimental data were available, determination of metamorphic temperatures by measuring mineral compositions (e.g., Berman 1991; Powell and Holland 1988; Spear 1993; and references therein) became possible. The contrast between the compositionally simple experimental systems and natural rocks and the variable extent to which rocks attain a state of chemical equilibrium during metamorphism, however, introduce significant uncertainties into estimates of metamorphic pressures and temperatures.

Even though petrographic evidence of disequilibrium in the form of relict low-grade minerals in higher grade assemblages is quite common, variations in metamorphic grade across most metamorphic terranes is defined by a simple pattern of concentric metamorphic zones. At the scale of a greenstone belt, therefore, it is possible to assume that a state of chemical equilibrium was approached closely enough that increasing metamorphic grade, as indicated by metamorphic zones, can be correlated with changes in pressure and temperature on a P–T diagram. Definition of metamorphic zones on the basis of 7 rock associations (see Table 1) is an application of the facies concept, but the minerals and/or mineral assemblages used are specific to greenstone belts. They do not necessarily correspond to those used for classic metamorphic facies (e.g., Turner 1981). For this reason, metamorphic grade is mapped as a series of zones rather than facies (see Figures 1 and 2). Higher grade is represented by warmer colours for zones and point data symbols (e.g., from “cool” green to warm orange and red).

Page 23: New Metamorphic Framework Hemlo - Geology Ontario

5

Fi

gure

2.

Sim

plifi

ed v

ersi

on o

f the

M1

met

amor

phic

map

of t

he H

emlo

gre

enst

one

belt

(see

Fig

ure

1); l

ower

gre

ensc

hist

zon

e lim

ited

to sm

all a

rea

alon

g th

e La

ke S

uper

ior

shor

elin

e; so

uthe

rn a

nd e

aste

rn li

mits

of g

rani

toid

com

plex

are

lim

its o

f cov

erag

e. N

ote

kyan

ite-s

illim

anite

occ

urre

nce

behi

nd k

yani

te o

ccur

renc

e so

uth

of C

edar

Cre

ek st

ock.

A

lum

inos

ilica

te o

ccur

renc

es fr

om M

uir (

1997

) and

Pan

and

Fle

et (1

993)

not

obs

erve

d in

thin

sect

ion

are

incl

uded

her

e an

d w

ith p

etro

grap

hic

data

in A

ppen

dix

2.

5

Page 24: New Metamorphic Framework Hemlo - Geology Ontario

6

RAGRD (ROCK ASSOCIATION/METAMORPHIC GRADE)

Table 1 and columns labelled RAGRD1 and RAGRD2 in Appendix 2 (Table 2) contain a series of two-digit numbers that represent increasing metamorphic grade (GRD) in each rock association (RA). The first digit indicates the rock association and the second digit indicates a relative increase in metamorphic grade. For example, the sequence 11 to 15 for metabasites corresponds to increasing grade from subgreenschist through greenschist, transition and amphibolite zones.

The advantage of mapping metamorphic grade in more than one rock association is evident from the fact that the mineralogical changes in quartzofeldspathic (supracrustal rocks, felsic dikes/sills), aluminous and ultramafic rocks used to subdivide the greenschist zone on the map (see Figure 1) do not occur in metabasites. Also, mineral assemblages in aluminous rocks and iron formation define a boundary between lower and middle amphibolite zones that cannot be mapped in other rock associations. There is a problem specific to rock associations 2 and 3. Once all the chlorite present in these rocks is consumed in the formation of biotite in the upper greenschist zone, the assemblage biotite-quartz-plagioclase with or without potassium feldspar will persist essentially unchanged all the way up to the onset of partial melting at the lower limit of the upper amphibolite zone. Only grain size will change in rocks with the RAGRD code 24 or 64. In somewhat more calcic variations of this association, however, first epidote group with or without actinolite and, at higher grade, hornblende appears with increasing metamorphic grade. To cover this situation, the range of grade covered by 24 and 64 has been subdivided into 23 and 25 and 63 and 65, respectively (see Appendix 2 and Table 1; Figure 1). The upper greenschist/amphibolite zone transition in quartzofeldspathic rocks (23 to 25) is not well calibrated, but the position of the boundary (Table 1; legend on Figure 1) is consistent with Hemlo data and with medium metamorphic grade rocks in the Red Lake greenstone belt (Thompson 2003).

The metamorphic zones on the metamorphic map (see Figures 1 and 2) are products of the main metamorphism (M1, column RAGRD1 in Appendix 2). A significant number of medium- and high-grade metamorphic rocks in all rock associations also contain mineralogical and textural evidence of later, lower grade minerals and textures. Distributed in an irregular “patchy” pattern, these features are grouped together as a later subgreenschist to lower greenschist grade metamorphic event (M2, column RAGRD2 in Appendix 2).

METAMORPHISM OF GRANITOIDS

Potential sources of heat and mineralizing fluids, granitic to tonalitic granitoids are a key element of the geological evolution of the Hemlo greenstone belt (Muir 1982a, 1982b; Beakhouse 2001). The ages of plutonic magmatic events impose constraints on the timing and duration of volcanism, sedimentation, deformation, metamorphism, alteration and gold mineralization. Of particular interest to this study is whether or not individual plutons and granitoid complexes have been metamorphosed.

The textures and mineral assemblages in plutonic rocks may change where they are subjected to temperatures, pressures, fluid compositions and/or stress fields different from those at the time of crystallization. For a number of reasons, determination of metamorphic grade in metagranitoids is not as straightforward as it is in the other rock associations. Clearly, a granite or tonalite is less reactive than a mudstone and the effect of regional metamorphism will be more evident in a dike cutting metasedimentary rocks than in the core of a batholith. Also, common igneous minerals such as quartz, feldspar, biotite and hornblende are stable across a wide range of metamorphic grade. Low grade metamorphic conditions overlap with those attributed to deuteric alteration that can occur as magma

Page 25: New Metamorphic Framework Hemlo - Geology Ontario

7

crystallizes. A foliated pluton with an ellipsoidal shape oriented parallel to the regional compressional structural trend may have crystallized long before the orogenic event or during orogenesis under medium- to high-grade metamorphic conditions. On the other hand, what appears to be a coarse-grained igneous rock in outcrop is observed in thin section to be made up of fine-grained felsic (quartz, feldspar) and mafic (biotite, amphibole) domains that define a preferred orientation (foliation, lineation). Regional petrography of granitoids helps to address these problems. For example, if granitoids of different ages contain petrographic evidence of an equivalent metamorphic event that has affected supracrustal country rocks, it is possible to consider those plutons to be metamorphosed. The textural and mineralogical criteria used as evidence of the metamorphism of granitoids in this study are outlined in “Metamorphic Maps”.

DEFORMATION

The metamorphic data set (see Appendix 2) contains a qualitative estimate of the intensity of strain recorded in thin section (DEFM column) and observations in the NOTES column. Observations include the metamorphic minerals that define the preferred orientation, presence of crenulation of the predominant mineral fabric, and relationships between inclusion trains in porphyroblasts and matrix microstructures. This information contributes to knowledge of the depth, temperature and timing of deformation. Regional variations in the intensity of strain help to define structural conduits that may have influenced the movement of mineralizing fluids.

ALTERATION

A search for mineralogical and textural evidence of pre-, syn- or postmetamorphic alteration is part of the petrographic approach used in this study. Anomalously large amounts of carbonate, white mica, potassium feldspar, tourmaline and/or opaque minerals, observed in the 723 representative thin sections included in the data set (see Appendix 2), are taken as evidence of possible hydrothermal alteration before or during metamorphism. Aluminosilicate-rich rocks, with and without muscovite, staurolite, cordierite and anthophyllite may also reflect metamorphosed hydrothermal alteration. Retrogression of main phase (M1) metamorphic assemblages by a later event (M2) indicates that hydrous fluids passed through the rock under low-grade postmetamorphic peak conditions. Aside from the relatively common occurrence of alteration related to the late metamorphic event (175 of 723 samples), only 25 samples are considered altered and, in every case, textures indicate that the alteration event is premetamorphic. This aspect of the rocks is discussed in “Metamorphism and Mineralization”.

Geological Setting

ROCK UNITS

Located in the northern part of the Wawa Subprovince (western Superior Province) near Lake Superior, the Neoarchean Hemlo greenstone belt contains the Hemlo gold deposit, the third largest in Canada. Whereas metamorphosed mafic flows and intermediate to felsic calcalkaline volcaniclastites make up most of the western half of the belt, metamorphosed greywacke-mudstone and minor metaconglomerate are predominant over metavolcanic rocks in the eastern half (Jackson 1998; Muir 1997, 2000). Metamorphic zones (see Figures 1 and 2) are defined for supracrustal rocks and related felsic porphyries, dikes and sills. Variations in metamorphic grade in metagranitoids are evident only by point data because

Page 26: New Metamorphic Framework Hemlo - Geology Ontario

8

data density is insufficient to extend the zones into these rock units. Individual rock associations are distinguished by the shape of the symbols representing point data.

Archean granitoid complexes made up in large part by gneisses and foliated granitoids that are the same age or older than the metavolcanic suite bound the Hemlo greenstone belt to the north, south and east (Muir 1982a, 1982b; Beakhouse 2001). Intruded at approximately the same time as felsic volcanism, The Dotted Lake pluton is pre-orogenic (east end of the belt). Within the belt, three suites of plutons occur (Jackson 1998; Muir 1982a, 1982b, 2000; Beakhouse 2001) that are designated in this report as pre-orogenic, early synorogenic and late synorogenic (see Figures 1 and 2). Whereas the early synorogenic plutons (Cedar Lake pluton, Cedar Creek stock, Heron Bay pluton) occur in the core of the belt, the late synorogenic intrusions (Gowan Lake pluton, Musher Lake pluton, Bremner pluton) define an open arc that parallels the eastern and northern margins of the belt. Hornblende geobarometry in the 3 suites (Beakhouse and Davis 2005) indicates decreasing pressures of emplacement with time. Metamorphic point data obtained from inclusions of supracrustal rocks and from the granitoids themselves are represented on the metamorphic map, but, taking into account the different ages of granitoids, no attempt was made to outline metamorphic zones across these rock units. The Proterozoic Coldwell alkalic intrusion forms the western limit of the greenstone belt.

DEFORMATION

The complex history of ductile and brittle deformation in the Hemlo greenstone belt is documented in considerable detail in the vicinity of the gold deposit (e.g., Muir 1997, 2003; Lin 2001 and references therein), but Jackson’s (1998) preliminary report is the only belt-scale structural study. There is a consensus that current geometry is the product of 2 main phases of ductile deformation (D2, D3 of Muir; D1R, D2R of Jackson; G2, G3 of Lin) that involved generally homogeneous strain related to horizontal compression and crustal thickening that, with time, changed to more heterogeneous transpressive strain in restricted zones. One of these ductile high strain zones, the Lake Superior shear zone (see Figure 3) is associated with the Hemlo gold deposit. Regional petrography completed for the current study supports the conclusions of these authors that, at the present erosion level, metamorphic grade was increasing during Muir’s D1 and D2 (D1R, G2) to peak metamorphic conditions that prevailed during the latter part of D2 and most of D3 (D2R, G3). During the subsequent cooling history, structurally controlled retrogression of peak metamorphic assemblages occurred. At the scale of the greenstone belt, it is apparent that at least some of the retrogression is associated with brittle structures (D5-6 of Muir).

METAMORPHISM

Middle amphibolite facies metamorphic grade and the abundance of aluminosilicate minerals distinguish the Hemlo deposit from most Archean lode gold deposits. These features have generated a large number of metamorphic studies in and adjacent to the mines (Burk, Hodgson and Quartermain 1986; Kuhns, Sawkins and Ito 1994; Pan and Fleet 1993, 1995; Muir 1993, 1997; Powell and Pattison 1997; Powell, Pattison and Johnston 1999; Tomkins, Pattison and Zaleski 2004), but Jackson’s (1998) preliminary work is the only attempt to document the metamorphic framework of the entire Hemlo greenstone belt. Earlier regional mapping (Milne 1968; Muir 1982a, 1982b; Siragusa 1984a, 1984b, 1985a, 1985b) showed that, in general, metamorphic grade increased from greenschist to upper amphibolite facies from west to east and, on a smaller scale, toward the granitoid complexes to the north and south. A detailed study between the Cedar Lake pluton and the Pukaskwa granitoid complex (Pan and Fleet 1993) revealed a narrow elongate zone of relatively high metamorphic grade parallel to the Hemlo fault zone. Although there is general agreement on the peak metamorphic conditions of the main metamorphic event or phase, the interpreted metamorphic histories include both a single event (Powell, Pattison and Johnston 1999); high

Page 27: New Metamorphic Framework Hemlo - Geology Ontario

9

pressure–moderate temperature metamorphism followed by moderate pressure–high temperature metamorphism (Burk, Hodgson and Quartermain 1986); medium pressure–temperature metamorphism followed by low temperature–pressure metamorphism (Kuhns, Sawkins and Ito 1994); and 3 phases of metamorphism (Pan and Fleet 1993). Burk, Hodgson and Quartermain (1986) obtained pressures of 5 to 8 kilobars (recalculated as 7 to 9 kilobars by Powell, Pattison and Johnston 1999) from mineral compositions in the kyanite-sillimanite bearing rocks in the Teck–Corona/David Bell Mine. These pressures are anomalously high for Archean medium-grade metamorphism.

ALTERATION AND MINERALIZATION

Numerous workers have described various kinds of hydrothermal alteration associated with the Hemlo gold deposit (Burk, Hodgson and Quartermain 1986; Walford et al. 1986; Pan, Fleet and Stone 1991; Kuhns, Sawkins and Ito 1994; Pan and Fleet 1995; Muir 1997). Muir (2002) provides a perceptive summary and analysis of the range of interpretations presented to explain these rocks and points to examples of similar kinds of alteration elsewhere in the Hemlo greenstone belt. Alteration types present are characterized by abundant microcline, albite, muscovite, biotite, aluminosilicates, barite, orthoamphibole-cordierite, tourmaline, and/or, rarely, carbonate. In contrast to those who cite petrographic and structural evidence indicating that most alteration predates or is synchronous with main phase amphibolite facies metamorphism (Kuhns et al. 1986; Kuhns, Sawkins and Ito 1994; Johnston 1996; Lin 2001; Muir 2002; Davis and Lin 2003). Pan and Fleet (1995) concluded that 3 phases of alteration occurred after the peak of metamorphism as the ore deposit cooled during exhumation to the earth’s surface. Only the third and lowest grade of these events is consistent with observations by other workers. All agree, however, that there are spatial and temporal relationships between gold mineralization and alteration. The majority view mineralization in the vicinity of the mines occurring before or during the main phase of deformation (D2 of Muir 1997, G2 of Lin 2001) before regional metamorphism attained peak conditions in the amphibolite zone. Metamorphism and deformation of the deposit and its alteration envelope increase the difficulty of testing the validity of premetamorphic, pre-orogenic origins for the deposit. For example, evidence of partial melting of sulphide mineralization (Tomkins, Pattison and Zaleski 2004) and of exsolution of low temperature sulphides during postmetamorphic cooling (Powell and Pattison 1997) have obscured the original sulphide mineralogy of the deposit.

GEOCHRONOLOGY

Nothing is simple about the Hemlo gold deposit. Uranium–lead geochronology of the major rock units in the Hemlo greenstone belt is complicated by common occurrence of ages that indicate significant inheritance in zircons (and in titanite?) and growth of metamorphic zircon and titanite in meta-igneous and, probably, metasedimentary rocks (e.g., Corfu and Muir 1989a, 1989b; Muir 2003; Davis and Lin 2003; Beakhouse and Davis 2005). Muir (2003) indicates felsic volcanism in the range 2698 to 2693 Ma. Davis and Lin (2003) propose that the Hemlo greenstone belt was deposited on sialic crust at least 2720 million years old that contains evidence of rocks as old as 2800 Ma. Muir (see also Muir 2000, Figure 2) classifies plutons that intrude the belt as early (circa 2698 Ma), middle (2693 to 2682 Ma), and late (2678 to 2676 Ma). In this report (see Figures 1 and 2), the terms pre-orogenic, early synorogenic, and late synorogenic are applied to these rocks, respectively. The Black Pic (north of the belt) and Pukaskwa (south) granitoid complexes that contain 2720 million year old rocks as well as younger plutons are referred to here as pre-orogenic and younger granitoids. Whereas Muir (2003) estimates that D2 and D3 lasted from approximately 2692 Ma to approximately 2678 Ma, Davis and Lin (2003) indicate the G2 likely began after 2683 Ma. This discrepancy follows from the younger age (2680 Ma) that the latter

Page 28: New Metamorphic Framework Hemlo - Geology Ontario

10

workers (see also, Beakhouse and Davis 2005) attribute to the Cedar Lake pluton. Muir (2003) argues for an age in the range 2690 to 2687 Ma. Titanite ages of 2678 to 2676 Ma have been interpreted to date the peak of metamorphism (Corfu and Muir 1989b; Powell, Pattison and Johnston 1999). Jackson (1998) and Davis and Lin (2003) prefer ~2675 Ma and Kuhns, Sawkins and Ito (1994) ~2688 Ma. In fact, it is likely that rocks now at the erosion surface were at or near peak conditions for 10 to 15 Ma (Beakhouse 2001). This aspect of the interpretation is discussed in “Metamorphic Evolution”. Cooling ages (39Ar/40Ar) obtained by Grant (1995) from metamorphic hornblende, muscovite and biotite and by Corfu and Muir (1989b) from monazite and rutile, together with age estimates for a late low pressure–low temperature alteration event (Pan and Fleet 1992) indicate a slow cooling history spanning more than 100 million years. The fuchsite age (of 2671 Ma by 39Ar/40Ar) determined by Masliwec, McMaster and York (1986), requiring more rapid cooling, at least to 350ºC, may contain excess argon.

Metamorphic Maps

In order to document most effectively the variations of metamorphic grade in the Hemlo greenstone belt, 3 metamorphic maps are included with this report. The first (see Figure 1, back pocket; see also, Figure 2, a simplified page-sized version) includes point data for all 8 rock associations (see Appendix 2) and metamorphic zones related to the main phase of regional metamorphism (M1) as defined in supracrustal rocks, related small porphyry intrusions and felsic to intermediate dikes (rock associations 1 through 5 and 7, see Table 1). Variations of metamorphic grade interpreted from granitoid samples (rock association 6, see Table 1) are presented as point data on a second map (Figure 3) so that the variations of grade in granitoids of different ages and with respect to metamorphic zones in supracrustal rocks can be observed. The third map presents the distribution of metamorphic grade related to a subsequent retrograde metamorphic event (M2) (Figure 5) that has overprinted both granitoids and supracrustal rocks. Diagnostic mineral assemblages observed in each rock association for all 3 maps are described below. These criteria follow closely those used for metamorphic maps of the Red Lake (Thompson 2003) and Abitibi (Thompson 2005a) greenstone belts. Note that the second digit of the rock association – metamorphic grade (RAGRD) codes begin with 1 for subgreenschist zone rather than 0 as in the Abitibi report. Not all the variations in metamorphic mineral assemblages in Table 1 are present in the map area.

DIAGNOSTIC METAMORPHIC MINERAL ASSEMBLAGES FOR ROCK ASSOCIATIONS

Metabasites (11 to 15)

Metamorphosed basalt, basaltic andesite, leucogabbro, gabbro, diabase and some lamprophyres are included in this rock association. In outcrop, depending upon their metamorphic mineral assemblages, these rocks are greenstone (massive to weakly foliated), greenschist (intensely foliated), or amphibolites. The lowest metamorphic grade subgreenschist zone rocks (11, see Table 1; see Appendix 2; pale blue inverted triangles in Figure 1) contain prehnite, chlorite, and/or epidote group in the matrix or cross cutting veins. The assemblage actinolite + epidote + chlorite + albite (12) is diagnostic of the greenschist zone in metabasites. Relatively aluminous rocks in this association have higher epidote and/or chlorite content at the expense of actinolite. Minor carbonate may also be present. Mafic rocks containing 5 to 10 modal % carbonate are considered to be transitional to rock association 7 (see Table 1). On the metamorphic map (see Figure 1), greenschist zone metabasites are represented by medium green inverted triangles. With increasing grade, metamorphic hornblende appears. Rocks with both hornblende and actinolite and reduced amounts of chlorite and/or epidote are diagnostic of the transition zone in this rock

Page 29: New Metamorphic Framework Hemlo - Geology Ontario

11

association (13, yellow inverted triangles). Prograde chlorite and epidote are absent from the amphibolite zone where the characteristic assemblage is hornblende + calcic plagioclase (14, orange inverted triangles). Migmatitic mafic metavolcanic rocks (>5 to 10% quartzofeldspathic leucosome) are designated by code 15 in Table 1 and Appendix 2 and red inverted triangles in Figure 1.

Metamorphosed Quartzofeldspathic Rocks (21 to 26)

This rock association consists of metamorphosed sandstone, conglomerate, quartz-feldspar porphyry, rhyolite, and felsic volcaniclastic rocks. At the lowest metamorphic grade in the subgreenschist zone, prehnite with or without chlorite is present (21, see Table 1 and Appendix 2; pale blue squares in Figure 1). The appearance of biotite as a result of reaction between chlorite and potassic white mica and/or potassium feldspar is the key metamorphic boundary in this rock association. It separates chlorite + muscovite/potassium feldspar assemblages (22, pale green squares ) from biotite-bearing rocks (23, blue-green squares; 24, yellow-green squares). The boundary defines the subdivision of the greenschist zone into lower and upper greenschist zones in the project area.

In many of the rock types included in association 2, mineral assemblages do not change with increasing metamorphic grade after the appearance of biotite and disappearance of chlorite in the greenschist zone (24). Increase in average grain size and obliteration of primary sedimentary, igneous and volcaniclastic textures are the only evidence of higher metamorphic grade because quartz, potassium feldspar and plagioclase are stable together until the onset of melting in the upper amphibolite zone (26, red squares). For this reason, there is no way of mapping the transition from greenschist to amphibolite zone and the distribution of yellow green squares (24) in Figure 1 extends across a wide range of metamorphic grade.

Some variations of rock units in association 2 contain up to several modal % carbonate at sub-biotite grade. As grade increases, first epidote coexists with biotite (RAGRD = 23, dark green squares) and then hornblende appears in these rocks. First appearing some distance upgrade of the lower/upper greenschist zone boundary and typically associated with transition or amphibolite zone assemblages in metabasites, the appearance of hornblende in metaquartzofeldspathic rocks is attributed to metamorphism in the amphibolite zone (25, orange squares). A garnet-staurolite-biotite layer adjacent to a garnet-hornblende layer in a quartzofeldspathic metaclastite supports idea that hornblende-bearing metasedimentary rocks are amphibolite zone. Both hornblende and, at lower grade, epidote may be products of reactions between carbonate, white mica and chlorite in these rocks. Potassium feldspar in amphibole-bearing varieties may be recrystallized detrital grains or the product of the reaction that produces amphibole by reaction of biotite and carbonate.

Meta-ultramafic Rocks (32 to 34)

More restricted in distribution, metamorphosed ultramafic igneous rocks (metakomatiite, metaperidotite) can be divided into lower greenschist zone assemblages (32, see Table 1 and Appendix 2; pale green triangles in Figure 1) made up of various combinations of talc, chlorite, carbonate and opaque minerals and higher grade assemblages (33) dominated by colourless (in thin section) clinoamphibole with or without one or more of the lower grade minerals. In the middle and upper amphibolite zones, metamorphic olivine and orthopyroxene are present (34, orange triangles). The distribution of petrographic data in the Red Lake and Abitibi greenstone belts (Thompson 2003, 2005a, respectively) indicates that the appearance of amphibole in metamorphosed ultramafic rocks corresponds approximately with the appearance of biotite in metamorphosed quartzofeldspathic and aluminous rocks

Page 30: New Metamorphic Framework Hemlo - Geology Ontario

12

(see Table 1). Note that as with many quartzofeldspathic rocks a clear boundary between the greenschist and amphibolite zone is not defined in meta-ultramafites.

Metamorphosed Aluminum-Rich Rocks (42 to 46)

The Hemlo greenstone belt is distinguished from many Archean greenstone terranes by the presence of a significant volume of muscovite-rich pelitic rocks. Those that are interbedded with metasiltstone or metawacke are clearly metamorphosed mudstones, but massive rocks rich in white mica, some containing relict quartz or plagioclase phenocrysts, may be metamorphosed hydrothermally altered felsic rocks. The presence of unusually large amounts of tourmaline, abundant sulphides, or cordierite-anthophyllite (muscovite-absent) assemblages is interpreted as further evidence of an altered premetamorphic protolith in this rock association. Kyanite-staurolite-bearing quartz veins with or without sillimanite or andalusite (Muir 1997) may also be indicators of premetamorphic hydrothermal alteration if they predate the main tectonic fabrics.

Lower greenschist zone mineral assemblages (42, see Table 1 and Appendix 2; pale green stars in Figure 1) containing chlorite and white mica (presumed to be muscovite) are much less common than biotite-bearing upper greenschist zone rocks (43, medium green stars). In aluminous rocks, the appearance of staurolite and/or cordierite marks the boundary between the upper greenschist and lower amphibolite zones (44, orange stars). For the purposes of this study, the appearance of mineral assemblages with coexisting aluminosilicate (andalusite, sillimanite, kyanite) and biotite marks the lower boundary of the middle amphibolite zone (45, orange-red stars). The onset of partial melting in aluminous rocks (>5 to 10% leucosome) is the lower limit of the upper amphibolite zone (46, red stars). Best mapped in the field, this boundary may not be evident in thin section. For this reason, on the M1 metamorphic map (see Figure 2), outcrop observations of metasedimentary schist and migmatitic metasedimentary rocks recorded on Muir’s (2000) geological compilation map were used to define this boundary in the absence of thin sections. In the few thin sections available from the highest metamorphic grade zone of the greenstone belt, sillimanite-potassium feldspar-cordierite and sillimanite-biotite-garnet with high-grade textures were considered characteristic of the upper amphibolite zone.

Metamorphosed Chemical Sedimentary Rocks/Iron Formation (52 to 54)

In rock association 5, low-grade chlorite + carbonate + quartz + magnetite/sulphide assemblages (52, see Table 1 and Appendix 2; pale green pentagons in Figure 1), typical of metamorphosed iron formation, can be separated from rocks that contain abundant clinoamphibole (53, yellow-green pentagons). Once again, there are no clear criteria for the boundary between the greenschist and amphibolite zones in this rock association. Subgreenschist (51) and amphibolite zone assemblages (54) were not observed in the sample suite.

Metagranitoids (61 to 66)

In this study, rock association 6 (see Table 1) covers the compositional range from granite to tonalite. Metamorphosed gabbro and diorite are included with metabasites (rock association 1). Keeping in mind the potential problems outlined above (see “Methodology”), the metamorphic grade of the granitoids is derived from textures and mineralogy observed. The extent to which belt-scale variations in these

Page 31: New Metamorphic Framework Hemlo - Geology Ontario

13

features represent a regional metamorphic event or events is discussed in the interpretive sections of the report.

Presence of prehnite is a distinguishing feature of subgreenschist zone metamorphic grade (61, see Table 1 and Appendix 2; pale blue asterisks in Figure 1). In the lower greenschist zone (62, pale green asterisks), fine-grained aggregates of metamorphic chlorite and white mica and epidote replace igneous biotite, hornblende and calcic plagioclase. The appearance of fine-grained aggregates of metamorphic biotite (with/without tiny beads of titanite and epidote) (Photo 1a) marks the lower limit of the upper greenschist zone (63, medium green asterisks; 64, yellow-green asterisks). As is the case with rock association 2, once chlorite has been eliminated from the granitoids, the assemblage biotite-quartz-plagioclase-potassium feldspar with/without muscovite (64) is stable across a wide range of metamorphic grade up to the point where partial melting begins (66, red asterisks) at the lower limit of upper amphibolite zone. In granitoids of intermediate compositions, metamorphic reactions can produce actinolite and epidote in chlorite-bearing rocks within the stability field of biotite (63, medium green asterisks). With increasing grade, metamorphic hornblende is produced (65, orange asterisks) (Photo 1b). It is conceivable that igneous biotite and hornblende that survived passage through lower greenschist zone would not be altered much by upper greenschist and amphibolite zone and, if other evidence of metamorphism is present, could be used to define the boundaries of upper greenschist and amphibolite zones in metagranitoids. For example, the large grain of biotite in Photo 1a may be a relict igneous phase that was stable at the time that an adjacent hornblende was being pseudomorphed by the fine-grained biotite aggregate. In many metamorphic terranes (Archean Slave Province, Alps, French Massif Central), a characteristic feature of metamorphosed granitoids is the transformation of typically medium- to coarse-grained quartz, feldspar, and mafic minerals into fine-grained lenticular aggregates that define a linear or planar preferred orientation in the rock (e.g., Pukaskwa granitoid complex) (Photo 1c and 1d).

Metamorphosed Carbonate-Rich Rocks (71 to 74)

Approximately 1% of the samples are sufficiently rich in carbonate or in the higher grade equivalent, calcsilicate minerals (garnet, amphibole, clinopyroxene), that they are included in this rock association. Prehnite-bearing subgreenschist zone rocks (71, see Table 1 and Appendix 2; pale blue crosses in Figure 1) were not observed. The lower greenschist zone (72, pale green crosses) are defined by rocks containing variable proportions of chlorite, carbonate, and plagioclase with or without white mica. In the upper greenschist zone (73, medium green crosses), biotite coexists with chlorite and carbonate and tremolite-actinolite and epidote group may be present. Diopside-amphibole with/without garnet and epidote group assemblages represent the highest grades observed (74, orange crosses). Working with a single thin section, it is not always possible to determine whether the protolith is the metamorphosed carbonate alteration of metabasalt/gabbro, interpillow material, carbonate veins, metamorphosed concretions, or carbonate-rich clastic metasedimentary rocks.

Unmetamorphosed Granitoids (80)

Only 15 of the 77 granitoid samples did not contain some kind of mineralogical or textural evidence of postintrusion modification. Unmetamorphosed samples (80, see Table 2 and Appendix 2; black circles in Figure 1) occur in all but the oldest of the granitoid suites, the Black Pic and Pukaskwa granitoid complexes. The occurrence of unmetamorphosed samples within granitoids that also contain evidence of metamorphism indicates that either the effects of metamorphism of these rocks are not pervasive or a previously unrecognized late intrusive phase is present..

Page 32: New Metamorphic Framework Hemlo - Geology Ontario

14

Photo 1. Textures in metamorphosed granitoids: a) Sample 77TLM-M510 (image b) biotite aggregate after igneous hornblende beside igneous biotite, note fine-grained quartz; (crossed polars 1.5 mm wide); b) Sample 96GPB7213 (image a) metamorphic hornblende and biotite define preferred orientation; (parallel polars, 1.5 mm wide); c) Sample 77TLM-M562 (image a) epidote group overgrows recrystallized, metamorphic biotite that defines preferred orientation; (parallel polars, 1.5 mm wide); d) Sample 77TLM-M562 (image b) note transformation of medium-grained igneous quartz and feldspar to fine-grained aggregates aligned parallel to biotite (crossed polars, 1.5mm wide). Samples 77TLM-M510 and 77TLM-M526 are from the Pukaskwa granitoid complex and 96GPB7213 from the Black Pic granitoid complexes.

Page 33: New Metamorphic Framework Hemlo - Geology Ontario

15

METAMORPHIC ZONES IN SUPRACRUSTAL ROCKS

The new metamorphic map of the Hemlo greenstone belt (see Figures 1 and 2), derived from thin section data (723) and outcrop observations (105) for this study (see Appendix 2), is consistent with previous observations that metamorphic grade generally increases from west to east and, on a more local scale, toward the granitoid complexes that bound the belt. The predominance of the amphibolite zone is also confirmed. The perspective provided by regional petrography, however, reveals a considerably more complex metamorphic zonation. Whereas some aspects of the metamorphic pattern are apparently related to granitoid rocks or major structures, other aspects are not. The metamorphic pattern defined in supracrustal rocks is a composite produced by the main phase of regional metamorphism (M1), the contact effects of pre- and synmetamorphic granitoids, and localized structural control of the flow of heat and fluids.

Lower Greenschist Zone

Lower greenschist zones rocks are limited to 4 small areas (less than one kilometre across) along the shoreline of Lake Superior at the western end of the greenstone belt and an anomalous sample in the amphibolite zone northwest of the Cedar Creek stock (see Figures 1 and 2). Defined by 1 to 4 samples of metamorphosed quartzofeldspathic or carbonate-rich rocks, the western lowest grade zones may be individual anomalies surrounded by upper greenschist zone or parts of a more extensive zone that is covered by Lake Superior. In thin section, the occurrence in the middle of the belt appears to be a main phase lower greenschist zone rather than retrograded amphibolite zone. More sampling and petrography is required to explain this anomaly.

Upper Greenschist Zone

Biotite-bearing metasedimentary rocks and associated greenstones of the upper greenschist zone occur across a significant area at the west end of the belt and as small anomalous patches within higher grade rocks elsewhere (see Figures 1 and 2). The samples in the western zone and at the locality between the Gowan Lake and Heron Bay plutons are clearly low-grade main phase mineral assemblages. Although the overall trend of the zone is across the prominent east-west structural trends, the irregular form appears to be influenced by both structure and the Heron Bay pluton. The eastward trending fingers of greenschist zone rocks also correspond to major fault zones. The metamorphic pattern predates brittle faulting. However, if the spatial relationship is not coincidental, perhaps these zones were active during orogenesis and, therefore, influenced the thermal regime when the zone boundary was established.

Most of the upper greenschist zone anomalies farther east are on or near fault zones or the contacts of plutonic units. Typically, higher grade assemblages occur at the same locality. In these cases, it is possible that the low grade metamorphic conditions were superimposed on the high metamorphic grade rocks during exhumation and cooling of the greenstone belt.

Greenschist-Amphibolite Transition Zone

Defined by the presence of M1 actinolite and hornblende in metabasites, the transition zone is prominent at the west end of the belt and occurs as isolated patches within the amphibolite zone farther east (see Figures 1 and 2). The shape and distribution of the transition zone in the west half of the map area appears to be related to both the structural trends and the granitoids. The narrow lens close to the western part of the Pukaskwa granitoid complex implies that any contact effect of the pre-orogenic granitoid is

Page 34: New Metamorphic Framework Hemlo - Geology Ontario

16

quite limited in that area. These larger areas of transition zone metamorphic grade are attributed to the normal gradient associated with the M1 main phase of metamorphism. The smaller patches scattered across the extensive amphibolite zone farther east are more problematic. The occurrences northwest of the Musher Lake pluton and near the Pukaskwa granitoid complex south of the Cedar Lake pluton are close to fault zones. The occurrence at the east end of the Musher Lake pluton is interesting in that it is associated with greenschist zone metabasite. Considering that the data density controlling the size of the transition zone anomalies is quite sparse, whether or not these occurrences represent localized low grade metamorphism that is part of the main regional metamorphism or later focussed retrogression of amphibolite zone rocks remains open to discussion (see “Metamorphic Evolution and Geological Setting”).

Amphibolite Zone

The petrographic data confirm the predominance of amphibolite zone metamorphism in the Hemlo greenstone belt (see Figures 1 and 2) recognized by previous workers. Mapping the distribution of aluminosilicate minerals and of partially melted metasedimentary rocks outlines variations of metamorphic grade within the zone. The lower limit of the upper amphibolite zone is defined by the appearance of more than 5 to 10% leucosome in metasedimentary rocks (see Table 1). Although mappable in the field, the boundary is difficult to document in thin sections alone. For this reason, outcrop observations of metasedimentary schist and migmatitic metasedimentary rocks recorded in Muir’s (2000) geological compilation map are used here (see Figures 1 and 2). Both, the occurrence of migmatitic rocks within the sillimanite zone and the fact that limited petrographic data available (e.g., 95SLJ-0211A, B, C) is consistent with the temperatures and pressures required for partial melting, indicate the approach is a valid one. Keeping in mind that the distribution of metasedimentary rocks is not continuous within the greenstone belt, that the onset of melting is influenced by compositional variations within the rock association, the upper amphibolite zone is probably a reasonable approximation of reality at the scale of the metamorphic map. That is, the distribution of upper amphibolite zone rocks is an indication that the highest grade of metamorphism in the belt occurs within a zone 5 to 10 km wide that is oblique to the trend of the greenstone belt and structures within it. The upper amphibolite zone is associated with pre- and synorogenic granitoids, but does not follow these rock units westward. Two isolated amphibolite zone anomalies on the shore of Lake Superior (see Figure 1) may be samples with incorrect UTM coordinates that should plot adjacent to the Coldwell Complex.

Forty-six aluminosilicate-bearing aluminous rocks (rock association 4) together with 8 samples documented by Pan and Fleet (1993) and observations from trenches on the Golden Sceptre property (Muir 1997) define an incomplete boundary marking the appearance of sillimanite in these rocks. Although complete mineral assemblages are not available for all samples, the Pan and Fleet data imply that sillimanite-bearing rocks define a narrow elongate zone of relatively high grade within the amphibolite zone between the Cedar Lake pluton and Pukaskwa granitoid complex. Limited outcrop observations indicate that there may be a similar elongate narrow inflection in the upper amphibolite zone along strike to the east (see Figures 1 and 2). These metamorphic features parallel the dominant planar structural elements in this part of the map area.

The 3 main zones outline significant variations in metamorphic grade across as well as along the Hemlo greenstone belt. That is, at belt-scale, the metamorphic zonation is independent of granitoid rocks and major structures, whereas, at the kilometre scale, the zones are influenced by both these aspects of the metamorphic setting.

Page 35: New Metamorphic Framework Hemlo - Geology Ontario

17

METAMORPHISM OF GRANITOIDS

The large volume of plutonic rocks ranging from granite to tonalite in and adjacent to the Hemlo greenstone belt, their potential as sources of heat and mineralizing fluids, and a history of intrusion before and during orogenesis make granitoids a key part of the geological setting of metamorphism. As indicated in “Methodology”, evaluating the extent to which the granitoids have or have not been metamorphosed is not straightforward. For example, mineral assemblages caused by deuteric alteration (a form of autometamorphism immediately after crystallization of magma) are similar to those produced by regional metamorphism during an orogenic event long after crystallization. The first step is to map the mineralogical and textural variations observed in the granitoids. The presence or absence of evidence of ductile deformation during formation of the metamorphic assemblages and the regional distribution of the assemblages within and outside the pluton help to determine the relative importance of deuteric and regional metamorphism. The focus here is on mineral assemblages that could be related to M1 metamorphism. The effects of the younger M2 metamorphism are described in the next section of this report.

Mineral Assemblages

Point data from the granitoid units (Figure 3) show systematic variations in the distribution of the assemblages interpreted as metamorphic. Whereas unmetamorphosed samples occur in all but the oldest of the granitoids (Black Pic and Pukaskwa complexes), amphibolite zone assemblages are most prominent in the latter. The pre-orogenic Dotted Lake pluton and parts of the early synorogenic Cedar Lake and Heron Bay plutons contain higher grade mineral assemblages than late synorogenic Gowan Lake and Musher Lake plutons. Two of four samples from the north end of the late synorogenic Bremner pluton, however, are interpreted to be metamorphosed to at least the upper greenschist zone. Variations of grade within individual plutons may reflect heterogeneous strain and/or the variable extent to which metamorphic fluids have access to the rock. For example, a sample from the south margin of the Musher Lake pluton (see Figure 3) is deemed to be unmetamorphosed, but a granodiorite dike interpreted to be of similar age (Beakhouse and Davis 2005) that intrudes metasedimentary rocks approximately one kilometre to the south, is folded and contains an amphibolite zone assemblage and texture. Evaluation of the metamorphic grade of biotite-quartz-plagioclase potassium feldspar granitoids is limited because the mineralogy does not change with increasing grade above the upper greenschist zone. For example, the metamorphic grade of the Dotted Lake pluton (see Figure 3) could be in the amphibolite zone. Although a range of metamorphic grade is present in most granitoids, in general, metamorphic grade in the oldest intrusions is most likely to be concordant with the metamorphic pattern defined by supracrustal rocks. Overall, the early and late synorogenic granitoids tend to be lower grade than adjacent supracrustal rocks.

Deformation

In this study, replacement of medium- to coarse-grained igneous minerals by fine-grained aggregates of the same mineral, preferred orientation of individual mafic minerals and aggregates of mafic and felsic minerals, and strain indicators such as sutured and polygonized grain boundaries are used to assess metamorphic grade of granitoids. The numerical code (see Appendix 2, column DEFM) indicating the inferred intensity of strain ranges from 0 to 6 (0-undeformed, 1-massive/recrystallized, 2-weak preferred orientation, 3-weak to moderate preferred orientation, 4 - moderate preferred orientation, 5-moderate to intense preferred orientation, 6-intense preferred orientation). The general term “preferred orientation” is used because, in thin section, differentiation of a lineation from a foliation is not always possible. To

Page 36: New Metamorphic Framework Hemlo - Geology Ontario

18

simplify the mapping of variations in this inferred parameter, estimates of the intensity of deformation in granitoids and supracrustal rocks were grouped into 4 classes in Figure 4.

As with the distribution of metamorphic mineral assemblages, the intensity of strain is variable within most granitoid bodies (Figure 4). In this case, the range of intensity likely reflects heterogeneous strain. Except for 2 samples in the northern part of the Bremner pluton and the metagranodiorite dike south of the Musher Lake pluton, the most intensely deformed samples occur in the oldest granitoids (Pukaskwa complex, Dotted Lake pluton). Overall, strain is absent or weak in the early and late synorogenic granitoids. Aside from the Pukaskwa complex, parts of the Dotted Lake complex and a few exceptions in younger granitoids, the intensity of strain is lower in the granitoids than in adjacent supracrustal rocks and in granitoid dikes surrounded by the latter. This is attributed to the fact that the main deformational events began in the supracrustal rocks before intrusion of the early synorogenic plutons (Muir 1997; Jackson 1998) and continued, to a more limited extent, after intrusion of the late synorogenic plutons (this study).

Regional Implications

The only belt-scale structural analysis (Jackson 1998) attributed predominant planar and linear fabrics in supracrustals and granitoids to an early main phase of deformation (D1R ). On the basis of field relations, Jackson suggested that the Heron Bay pluton intruded late during D1R. Folding of the main fabric in the pre-orogenic Pukaskwa complex and of the Dotted Lake pluton and of the Heron Bay pluton (here included in early synorogenic granitoids, see Figures 3 and 4) occurred during a second regional deformation phase (D2R). A folded foliated dike (see also Muir 1997, Figure 32) and the wrapping of the main foliation trends around the Cedar Creek Stock are consistent with a syn-D2 history for the Cedar Lake pluton. The precise relationships between the deformation phases of Muir and Jackson are not clear everywhere, but both authors agree on an early syntectonic age for the plutons here included in the early synorogenic granitoids. If the ages proposed for the granodiorite dike (Beakhouse and Davis 2005) south of the Musher Lake pluton and for the Bremner pluton (Jackson 1998) are correct, the mineral assemblages and intensity of deformation in these rocks (see Figure 4) indicates that at least small or thin masses of late synorogenic granitoids were also affected by compressional deformation. If compression deformation did continue during intrusion of late synorogenic granitoids, the fabric in the Gowan Lake pluton that has been interpreted as magmatic (Muir 1982a; Beakhouse 2001) may be, at least in part, tectonic because the melt crystallized in a compressional stress field.

Although the absolute age at which peak metamorphic conditions were attained varies somewhat and the precise relationships between deformation history at the Hemlo deposit and Jackson’s regional deformation phases is unclear, most authors agree that temperatures and pressures were increasing during formation of the dominant planar fabric (D1R, D2, G2) and decreasing after D2R (D3, G3?) (e.g., Muir 1997, 2002; Jackson 1998; Powell, Pattison and Johnston 1999; Davis and Lin 2003). The general absence of evidence that the early and late synorogenic plutons were metamorphosed to amphibolite zone grade indicates that intrusion occurred during or after the attainment of peak metamorphic conditions at the depths that are now revealed on the erosion surface. Evidently, peak conditions were sustained for a significant period of time because dikes that may be related to late synorogenic plutonism are deformed and metamorphosed. Pressures of crystallization calculated by Beakhouse and Davis (2005) in the range of 3 to 5 kilobars indicate that intrusion stopped at depths of 10 to 18 km in the crust (see “Metamorphic Evolution”). Clearly, tectonic processes were involved in transporting the supracrustal country rocks to such depths and they would be metamorphosed by the temperatures and pressures of the amphibolite zone along the way. Deuteric alteration of the granitoid by magmatic fluids would occur under amphibolite

Page 37: New Metamorphic Framework Hemlo - Geology Ontario

19

Fi

gure

3.

Dis

tribu

tion

and

met

amor

phic

gra

de o

f met

agra

nito

id a

nd u

nmet

amor

phos

ed sa

mpl

es c

onta

inin

g ev

iden

ce o

f met

amor

phis

m (a

ccor

ding

to p

etro

grap

hic

feat

ures

).

Var

iatio

n in

gra

de is

inte

rpre

ted

to re

flect

the

hete

roge

neou

s nat

ure

of m

etam

orph

ism

of l

arge

mas

ses o

f plu

toni

c ro

ck.

The

exte

nt to

whi

ch th

e ob

serv

ed e

ffec

ts a

re re

late

d to

cr

ysta

lliza

tion

at si

gnifi

cant

dep

ths i

n th

e cr

ust w

ithin

a re

gion

al m

etam

orph

ic re

gim

e sh

ould

be

asse

ssed

.

19

Page 38: New Metamorphic Framework Hemlo - Geology Ontario

20

Fi

gure

4.

Map

of v

aria

tions

in in

tens

ity o

f def

orm

atio

n in

gra

nito

id a

nd su

prac

rust

al ro

cks.

In g

ener

al, i

nten

sity

of s

train

incr

ease

s with

age

of t

he g

rani

toid

. Var

iatio

n in

stra

in

inte

nsity

with

in in

divi

dual

gra

nito

id b

odie

s ref

lect

s the

non

pene

trativ

e na

ture

of t

he d

efor

mat

ion.

The

ext

ent t

o w

hich

the

deve

lopm

ent o

f a p

refe

rred

orie

ntat

ion

occu

rred

dur

ing

crys

talli

zatio

n w

ith a

regi

onal

met

amor

phic

regi

me

shou

ld b

e as

sess

ed.

20

Page 39: New Metamorphic Framework Hemlo - Geology Ontario

21

zone conditions. Therefore, greenschist zone assemblages in the granitoids (see Figure 3) are more likely to reflect the long slow cooling of the whole greenstone belt than the effects of deuteric alteration soon after crystallization.

RETROGRADE METAMORPHISM

Approximately 25% of the thin sections examined (see Appendix 2) contain mineralogical evidence of a late retrograde metamorphic overprint (M2) characterized by subgreenschist and lower greenschist zone mineral assemblages. This event corresponds to M2 of Kuhn, Sawkins and Ito (1994) and M3 of Muir (1997). Wherever prehnite + chlorite + epidote group, prehnite + chlorite + white mica, and or white mica + chlorite are observed to overprint a higher grade metamorphic assemblage or an otherwise unmetamorphosed granitoid, the M2 event is assumed to have occurred. In a few relatively mafic metaclastic rocks, very fine-grained tremolite + actinolite may also be related to this event. Present to some extent in all rock associations (see Figure 5), the distribution of M2 metamorphic point data outlines a population of small zones surrounded by extensive areas where no retrogression was observed. In many cases, the low grade zone is defined by one or two samples. Typically, parts of the sample and/or other samples at the same locality are not retrograded. The association, in many cases, with fault zones and granitoid contacts at map scale and planar fabrics or veins and fractures in thin section, implies a fairly close relationship to structural conduits and the latest phases of brittle deformation. The pressures (<2 kilobars) and temperatures (<375ºC) associated with M2 mineral assemblages such as these (see “Metamorphic Evolution and Geological Setting”), and with brittle deformation, are markedly lower than those attained at the peak of M1 metamorphism. The retrogressive hydrothermal fluids are presumed to have gained access to rocks during a deformation event that created the structures or reworked pre-existing ones tens of millions of years after M1. That is, at a time during exhumation when the rocks were much cooler.

Pressure–Temperature Conditions of Metamorphism

The predominance of amphibolite over greenschist zone metamorphic grade and the presence of all 3 polymorphs of Al2SiO5 (andalusite, kyanite, sillimanite) close to a major gold deposit distinguish the Hemlo greenstone belt from most Archean gold-bearing terranes. The magnitude of pressures and temperatures and how these parameters changed with time before, during and after formation of the deposit are key aspects of its geological setting and, possibly, of the origin of the deposit.

Previous work on metamorphic conditions focussed on the rocks in or near the deposit (Burk, Hodgson and Quartermain 1986; Kuhns, Sawkins and Ito 1994; Pan and Fleet 1995; Powell, Pattison and Johnston 1999) and on a small area 5 to 10 km to the east (Pan and Fleet 1993). There is general agreement that, in quartz-plagioclase-muscovite bearing aluminous rocks, garnet-staurolite-kyanite-biotite assemblages formed before the growth of sillimanite, the high temperature Al2SiO5 polymorph. Thermo-barometric calculations for the kyanite-bearing assemblages range from 6 kilobars/500°C (Pan and Fleet 1993) through 6 to 8 kilobars/600°C (Burk, Hodgson and Quartermain 1986; Kuhns, Sawkins and Ito 1994) to 9 kilobars/700°C (Powell, Pattison and Johnston 1999 recalculating data by Burk, Hodgson and Quartermain 1986). All but the latter authors agree that 4 to 5 kilobars/600°C prevailed during the sillimanite-stable event. Powell, Pattison and Johnston (1999) recalculated the Burk, Hodgson and Quartermain 1986 data for this event to be 6 to 8 kilobars/650 to 700°C. Whereas Burk, Hodgson and Quartermain (1986) and Powell, Pattison and Johnston (1999) proposed a single metamorphic event and one Pressure–Temperature–time path to represent the evolution of P–T conditions with time, Pan and

Page 40: New Metamorphic Framework Hemlo - Geology Ontario

22

Figu

re 5

. R

etro

grad

e m

etam

orph

ism

(M2)

of t

he H

emlo

gre

enst

one

belt.

The

shap

e of

the

grey

sym

bols

follo

w th

ose

for r

ock

asso

ciat

ions

in th

e le

gend

for F

igur

e 1.

The

shad

es

of g

rey

indi

cate

met

amor

phic

gra

de (p

ale

grey

– su

bgre

ensc

hist

zon

e, m

ediu

m g

rey

and

blac

k –

low

er g

reen

schi

st z

one)

. Whi

te c

ircle

s ind

icat

e sa

mpl

es th

at d

o no

t sho

w

petro

grap

hic

evid

ence

of t

he M

2 m

etam

orph

ism

.

22

Page 41: New Metamorphic Framework Hemlo - Geology Ontario

23

Fleet (1993) proposed two distinct metamorphic events. Kuhns, Sawkins and Ito (1994) describe two events along a single P–T–time path. Powell, Pattison and Johnston (1999) recognized that their very high recalculated pressure values may be the result of inappropriate assumptions about the state of chemical equilibrium that was attributed to the minerals used for thermobarometric methods. They used a detailed analysis of the timing of growth of aluminosilicates and a petrogenetic grid for pelitic rocks modified from Pattison and Tracy (1991) to estimate a P–T–time path for the Hemlo gold deposit. The estimated maximum pressures of 7 kilobars obtained with this approach are, however, still anomalously high for medium metamorphic grades in Archean metamorphic terranes (e.g., Easton 2000). One explanation may be that the petrogenetic grid of Powell, Pattison and Johnston (1999) indicates that the minimum pressure for the assemblage kyanite-biotite in quartz-muscovite aluminous rocks is 5.8 kilobars. An alternative grid constructed by D. M. Carmichael (Davidson, Carmichael and Pattison 1990) places the minimum pressure at 4.1 kilobars. It is possible that kyanite-biotite-muscovite-quartz assemblages at Hemlo are not as high pressure as previously thought. The presence of andalusite, the low pressure Al2SiO5 polymorph, in rocks with and without kyanite and/or sillimanite (Pan and Fleet 1993; Muir 1997; Powell, Pattison and Johnston 1999; this study) is consistent with this possibility.

In this report, a slightly modified version of the Carmichael grid (Figure 6) is appropriate because it allows for moderate pressure kyanite-biotite assemblages and incorporates stability fields for mineral assemblages such as cordierite-staurolite-anthophyllite, cordierite-sillimanite-anthophyllite that form in muscovite-absent aluminous rocks. Present in the Hemlo greenstone belt, these assemblages provide another fix on P–T conditions. In order to account for petrographic evidence of the reaction,

staurolite + chlorite + muscovite = sillimanite + biotite + H2O

the grid was moved up 15 ºC at constant pressure. In this case, this reaction intersects the kyanite-sillimanite equilibrium at 4.5 kilobars and thereby defines the upper pressure limit of sillimanite-biotite and, hence lower limit of kyanite at more moderate pressures.

Correlation of metamorphic zones and key mineral assemblages with mineral reactions on a P–T diagram provides a means of assessing variations in metamorphic conditions with increasing grade across the present erosion surface (erosion surface P–T array) and with time (P–T–time paths) for individual samples (see Figure 6). P–T–time paths are constrained by the fact that metamorphosed supracrustal rocks begin close to the origin of the diagram, become hotter during sedimentological and volcanic burial and tectonic burial and, at some point during the deformation history, begin to cool as the forces driving exhumation (uplift and erosion) become more important than the crustal thickening associated with horizontal compression. During exhumation and cooling, individual samples trace out a cooling history as they pass through the blocking temperatures of various minerals on the way to the earth’s surface. The P–T conditions constrained by the distribution of metamorphic grade across the erosion surface and by indications of the reaction history recorded by relict metamorphic minerals limit the range of geothermal gradients (increase of temperature with depth in the crust) associated with metamorphism (see Figure 6). Making an assumption about the average density of the crust (e.g., 2.86 g/cm3), it is possible to convert pressures into depth and obtain estimates of the magnitude of postmetamorphic uplift and erosion.

EROSION SURFACE PRESSURE–TEMPERATURE ARRAY

Given the potential for variations in the depth of erosion across a metamorphic terrane, the metamorphic gradient is best represented by an array of curves on a P–T diagram (see Figure 6), each one representing a traverse upgrade across the metamorphic zone boundaries. Typically, the erosion surface P–T array is concave toward the temperature axis rather than concave toward the pressure axis as are geothermal

Page 42: New Metamorphic Framework Hemlo - Geology Ontario

24

Figure 6. Pressure–Temperature diagram for main phase (M1) regional metamorphism in the Hemlo greenstone belt; a version of the D.M. Carmichael petrogenetic grid (Davidson, Carmichael and Pattison 1990); assuming average density of crust is 2.86 g/cm3, 1 kilobar = 3.5 km; g – greenschist zone, la – lower amphibolite zone, ma – middle amphibolite zone, ua – upper amphibolite zone. P–T–time paths – A, A′, B and C – represent metamorphic histories discussed in the text.

gradients because the latter decrease with increasing temperature (Thompson 1977). For the Hemlo greenstone belt (see Figure 1), curves representing the increase in metamorphic grade from greenschist to upper amphibolite zone must include one (upper edge of the array) that enters the sillimanite stability field above the intersection of the intersection of the following reactions,

kyanite = sillimanite

chlorite (cht) +staurolite (st) + muscovite (ms) = aluminosilicate (as) + biotite (bt) + quartz (qtz) + H2O

along with others that allow for the presence of andalusite at medium grade (lower edge of the erosion surface P–T array). Andalusite appears to be more common outside the immediate area of the Hemlo deposit (Muir 1982a; Pan and Fleet 1993; this study). The occurrence of cordierite-anthophyllite assemblages (e.g., 83TLM-0605, Appendix 2; Pan and Fleet 1993) in muscovite-absent aluminous rocks (see Figure 6) imposes further contraints on the erosion surface P–T array. The set of geothermal gradients (constrained by the erosion surface P–T array) outlines variations in the crustal thermal regime that is presumed to have prevailed during the main metamorphic event. The range of average geothermal

Page 43: New Metamorphic Framework Hemlo - Geology Ontario

25

gradients to depths of 13 to 14 km (35ºC/km to 50ºC/km) is transitional between those characteristic of medium pressure (kyanite stable at medium grade) and low pressure (andalusite stable at medium grade) metamorphic terranes. The inferred depths of erosion are consistent with pressures of crystallization obtained from synorogenic granitoids by (Beakhouse and Davis 2005) (see “Metamorphic Evolution”).

PRESSURE–TEMPERATURE–TIME PATHS

Each supracrustal rock on the erosion surface in the Hemlo greenstone belt followed a particular Pressure–Temperature–time path during its history of volcanological and sedimentological and tectonic burial, heating, cooling and exhumation back to the earth’s surface (see Figure 6). The fact that an erosion surface array can be inferred from metamorphic zones and mineral assemblages implies that significant volumes of rock now at the surface attained maximum pressures and temperatures within a relatively short period of time. The precise track followed is not known because, in many metamorphic rocks, only the highest grade part of the metamorphic evolution is preserved. Metamorphosed aluminum-rich rocks derived from shale and hydrothermal alteration, however, often contain evidence of an important part of that history. In thin section, the timing of the growth of various porphyroblasts with respect to each other and with respect to the development of planar and linear microstructures can be observed in thin section. These textures help to clarify the reaction history within the rock and the relative timing of metamorphism and deformation.

The occurrences of garnet, staurolite, cordierite, andalusite, kyanite and sillimanite across the Hemlo greenstone belt (see Figures 1 and 2) provide adequate constraints on a key segment of the P–T–t paths for the Hemlo gold deposit and for other parts of the belt. By far the majority of the garnet porphyroblasts observed in aluminous rocks contain straight to curved internal inclusion trails that are oblique to the predominant foliation as defined in the surrounding matrix (Photo 2a). The matrix grain size is invariably significantly coarser grained than the inclusions and the matrix foliation wraps around the garnet grains. Typically, coexisting staurolite also contains straight to curved internal inclusion trails that are oblique to the matrix foliation, but the inclusion grain size is close to that of surrounding matrix. Staurolite grains in some samples have overgrown the matrix foliation that bends around garnet (Photo 2a). Defined by biotite with or without muscovite, quartz and plagioclase, the “main” foliation can be related to either or both of the main deformation events (D2, D3 of Muir 1997, 2003; G2, G3 of Lin 2001). Internal inclusion trails are interpreted as recording the main foliation as it was earlier in its development. Rotation of the matrix fabric, with respect to internal inclusion trails during the progressive growth of garnet followed by staurolite, indicates deformation continued as the metamorphic grade of the rock was increasing.

This sequence of mineral growth is consistent with a P–T–t path that crosses the mineral reaction (see Figure 6),

chlorite + garnet + muscovite = biotite + staurolite + quartz + H2O

On the higher grade side of the reaction, relatively iron-rich aluminous rocks contain the assemblage staurolite-garnet biotite and more magnesium-rich rocks, staurolite-biotite-chlorite. With increasing grade the iron-rich assemblage remains the same until the upper limit of staurolite is reached and it is removed by the following reaction

staurolite + muscovite + quartz = andalsite/kyanite/sillimanite + biotite + garnet + H2O

The aluminosilicate produced depends on the pressure of metamorphism. In the study data set (see Appendix 2) textural evidence of high-grade garnet is limited to a small number of samples closely

Page 44: New Metamorphic Framework Hemlo - Geology Ontario

26

associated with the upper amphibolite zone (e.g., 95SLJ-211C; see Photo 2b). In this sample, the late, high-grade garnet forms a rim that overgrows the main foliation where it has wrapped around the core of an earlier phase of garnet growth. The core contains inclusion trails that are oblique to the main foliation.

At temperatures well below the upper stability limit of staurolite, the more magnesian chlorite-staurolite-biotite assemblage is transformed by the reaction defining the lower stability limit of aluminosilicate-biotite in muscovite-bearing aluminous rocks (see Figure 6),

staurolite + chlorite + muscovite = andalusite/kyanite/sillimanite + biotite + quartz + H2O

Powell, Pattison and Johnston (1999) use this reaction to constrain the P–T–t path for kyanite-bearing rocks at Hemlo. In this report, the reaction is taken as the boundary between the lower and middle amphibolite zone (see Figure 6). In this case, the aluminosilicate phase should show textural relations consistent with it being younger than garnet and staurolite. Two samples show this relationship: kyanite in sample 89TLM-2401B (Photo 2c) has overgrown a foliation that wraps around what is left of a staurolite porphyroblast and, in sample 95SLJ-182A (Photo 2d), kyanite has overgrown the main foliation where it wraps around an early garnet porphyroblast. Kuhns, Sawkins and Ito (1994) describe staurolite inclusions in kyanite. Sample 95SLJ-051A (Photo 3a) contains tiny relicts of staurolite inside plagioclase in biotite-sillimanite schist, consistent with the formation of sillimanite from the reaction of chlorite and staurolite. Elsewhere in sample 95SLJ-182A (Photo 3b), sillimanite overgrows kyanite. That is, the medium grade portions of Pressure–Temperature–time paths A and A′ on Figure 6 are consistent with these textures because they cross from the kyanite to sillimanite stability fields and they intersect the reaction that consumes chlorite-staurolite-muscovite as it produces kyanite or sillimanite. Both andalusite-bearing samples in the study data set (see Figure 1), indicate sillimanite is younger than coexisting andalusite (e.g., Sample 78TLM-M083, Photo 3c; see also Powell, Pattison and Johnston 1999, Figure 3F). A P–T–t path similar to B (see Figure 6) explains the transition from andalusite to sillimanite in rocks where kyanite is absent. P–T–t paths A and B contrast strongly with path C, an alternative that attempts to account for the high pressures obtained by thermobarometry of several kyanite-bearing rocks.

Pressure–Temperature–time path C (see Figure 6) is close to the one preferred by Powell, Pattison and Johnston (1999) as the explanation for a number of critical mineral assemblages and textures they observed. For example, their Figure 3D is interpreted as evidence of kyanite crystallizing before andalusite in aluminosilicate quartz veins that occur adjacent to the ore zone in the David Bell Mine. Such quartz-aluminosilicate veins and segregations correspond to a compositional system that is much closer to the ideal Al2SiO5 system than the aluminous rocks discussed in the previous paragraph. Consequently, the appropriate mineral reactions correspond to those representing that system on Figure 6 and it is possible to form early kyanite at pressures far below the triple point and cause it to be partially replaced by andalusite if P–T–t path C takes a jog into the andalusite stability field as proposed by Powell, Pattison and Johnston (1999). When these rocks finally reach the sillimanite field, there is an opportunity for the late sillimanite to form. A boudinaged kyanite-quartz veinlet around which the main foliation in the matrix is wrapped observed in this study (Photo 3d, 97TLM-301A4; Appendix 2) supports the occurrence of early “low pressure” kyanite in the greenstone belt. However, if at the point where path C intersects path A and A′, path C was to follow A or A′ into the sillimanite stability field, the mineralogical sequence kyanite1- andalusite - kyanite2 - sillimanite could occur. In this case, there is the possibility of a second, medium-grade kyanite forming.

Page 45: New Metamorphic Framework Hemlo - Geology Ontario

27

Photo 2. Porphyroblast–microstructure relationships: a) Sample 97SLJ-301B1 (image b) staurolite overgrows main foliation where it wraps around a rotated garnet; (parallel polars, 1.5 mm wide); b) Sample 95SLJ-211B (image a) high-grade garnet rim has overgrown main foliation that wrapped around a rotated garnet formed at low grade; sillimanite foliation upper right; (parallel polars, 1.5 mm wide); c) Sample 89TLM-2401B (image a) kyanite overgrows main foliation that wrapped around staurolite that is partially reacted away, (parallel polars, 1.5mm wide); d) Sample 95SLJ-182A (image d) inclusion trails (white lines) in kyanite preserve main foliation where it wraps a garnet (parallel polars, 1.5 mm wide).

Page 46: New Metamorphic Framework Hemlo - Geology Ontario

28

With respect to the formation of sillimanite in metamorphosed aluminous sedimentary rocks and hydrothermal alteration, Powell, Pattison and Johnston (1999) prefer essentially isothermal decompression across the kyanite-sillimanite transition (Path C, see Figure 6) or “catalytic and/or metasomatic effects of localized fluid migration along discrete conduits”. The first process does not work for rocks that do not contain kyanite before they enter the sillimanite field and the second is not consistent with many of the sillimanite-bearing rocks observed in this study.

Moreover, sillimanite foliations that wrap around garnet and staurolite (95(7)SLJ-275-2A), asymmetrical sillimanite tails on garnet (95(7)SLJ-080-1, Appendix 2), and folded sillimanite aggregates forming polygonal arcs (95SLJ-0051A) are examples of the widespread petrographic evidence that deformation continued during the growth of sillimanite and that it did not grow in a static environment. In this latter rock, fibrolite has grown in the matrix of the rock, probably nucleating on biotite, but prismatic sillimanite is growing inside an andalusite porphyroblast. Apparently, whether or not the high temperature polymorph of Al2SiO5 is fibrolitic or prismatic may have something to do with nucleation site and mineral reaction involved, rather than localized fluid migration as suggested by Powell, Pattison and Johnston (1999). Considering the abundance of staurolite in these rocks, the breakdown of staurolite by reaction with chlorite and muscovite (see above) or, once chlorite has been consumed, the reaction

staurolite + muscovite = sillimanite + biotite + quartz + H2O

is a likely alternative for sillimanite production. These dehydration reactions are, however, more viable with the increase in temperature across the sillimanite zone that is associated with P–T–t paths A and B than they are with the essentially isothermal decompression associated with path C. Integration of textures and mineral assemblages with potential P–T–time paths on a P–T diagram provides a reasonable working hypothesis for the P–T history of the Hemlo greenstone belt. It is possible, for example, that neither the anomalously high pressures (6 to 8 kilobars) calculated from mineral compositions in several kyanite-bearing rocks by Burk, Hodgson and Quartermain (1986) and recalculated (6 to 9 kilobars) by Powell, Pattison and Johnston (1999) nor the 6 to 6.5 kilobars calculated by Pan and Fleet (1993) are required to explain the kyanite-biotite assemblages associated with the Hemlo gold deposit. Even the 5 to 6 kilobars proposed by Kuhn, Sawkins and Ito (1994) may be excessive. The physical conditions of metamorphism and how they change with time as depicted on a P–T diagram are only part of the story. In order to explore the implications of this information with respect to deformation, plutonism, exhumation and gold mineralization in the Hemlo greenstone belt, the broader geological perspective provided by Depth–time analysis is required.

Page 47: New Metamorphic Framework Hemlo - Geology Ontario

29

Photo 3. Porphyroblast–microstructure relationships; a) Sample 95SLJ-051A (image c) close-up of staurolite relicts inside plagioclase, result of sillimanite-producing reaction (right side) (parallel polars, 0.75 mm wide); b) Sample 95SLJ-182A (image e) sillimanite overgrows kyanite, staurolite (lower left), biotite wraps kyanite (parallel polars, 1.5 mm wide); c) Sample 78TLM-M083 (image a) sillimanite foliation wraps andalusite poikiloblast, retrograded cordierite (lower left) (parallel polars, 1.5 mm wide); d) Sample 97TLM-301A4 (image b) boudinaged quartz-kyanite veinlet, main foliation wraps boudin (parallel polars, 0.75 mm wide).

Page 48: New Metamorphic Framework Hemlo - Geology Ontario

30

Metamorphic Evolution and Geological Setting

Having mapped metamorphic grade across the Hemlo greenstone belt and estimated the spatial and temporal variations of temperature and pressure that can account for the metamorphic pattern, the constraints this information places on the depth, temperatures, timing and duration of deformation and plutonism can be evaluated. At the same time, the constraints imposed by structure, igneous petrology, and geochronology on the metamorphic evolution are apparent.

DEPTH–TIME ANALYSIS OF GRANITOIDS

The granitoids in and around the Hemlo greenstone belt have the potential to be time markers that determine the timing and duration of metamorphism and deformation, heat sources for metamorphism, and sources of mineralizing fluids. The large amount of geochronological work done on these rocks and the availability of estimates of pressures (depths) of intrusion (Beakhouse and Davis 2005) are important contributions to understanding the evolution of the greenstone belt. The problem is that interpretation of the results is complicated by widespread evidence of inheritance and metamorphic growth of zircon and titanite and the resulting likelihood of mixed ages. Metamorphic data provides a check on both these aspects of granitic plutonism.

The Depth–time diagram (Thompson 1989a, 1989b) complements the P–T diagram of metamorphic petrologists by providing a means of examining the changing relationships between rocks (supracrustal and plutonic), depth, and isotherms during the formation and orogenic evolution of greenstone belts (Thompson 2003, 2005b). For the purposes of this report, it is useful to examine first the age and pressure data for granitoid rocks in this context. On Figure 7, pressures of crystallization (squares and circles) obtained from each sample from the same pluton (Beakhouse and Davis 2005) are joined by a vertical line. Corresponding U/Pb ages (hexagons and diamonds) are joined by a horizontal line through the median pressure estimate. Recognizing that individual 206Pb/207Pb ages within the range obtained from various mineral fractions in a single sample are not all of the same significance (due to varying degrees of discordance), plotting these results gives an indication of the potential problems associated with inheritance in and metamorphic growth of datable minerals. Given the range of crystallization pressures obtained from several plutons and the uncertainty inherent in the technique, the median pressure is clearly not definitive, but there is no doubt that the plutons intruded at significant depths in the crust and that early synorogenic plutons intruded at greater depths than the late synorogenic plutons. The widest range of ages measured (see Figure 7) was obtained from the metamorphosed aplite and granodiorite dikes located between the Musher Lake and Cedar Lake plutons (see Figures 3 and 2; see Appendix 2, samples 96GPB-7114, 7115) to the north and south that are presumed to be the sources of the dikes. Surrounded by metasedimentary rocks, these dikes are much more intensely affected by metamorphism and deformation than are the hypothetical column of crust on which a felsic volcanic rock was deposited at 2695 Ma.

DEPTH–TIME ANALYSIS OF SUPRACRUSTAL ROCKS

Figure 8a shows one possible scenario for the metamorphic history of a representative felsic volcanic rock from the vicinity of the Hemlo gold deposit along with the intrusion and exhumation of samples from the Cedar Lake and Gowan Lake plutons. The reason for extending the duration of the major ductile deformation phases (D2, D3 of Muir 2002) is discussed below. The range of titanite metamorphic ages

Page 49: New Metamorphic Framework Hemlo - Geology Ontario

31

Figure 7. Depth–time distribution of granitoids in and around the Hemlo greenstone belt compares pluton ages (vertical join lines) obtained by Corfu and Muir (1989a) with crystallization pressures and 206Pb/207Pb ages (horizontal join lines) obtained by Beakhouse and Davis (2005).

from plutonic and supracrustal includes data from Beakhouse and Davis (2005) and from Corfu and Muir (1989a, 1989b). Depth of the oldest titanites and the decrease in depth with decreasing age are inferred from the pressure data from the corresponding granitoids and from Grant’s (1995) cooling ages for hornblende, muscovite and biotite (Figure 9). The preferred Depth–time path for the felsic metavolcanic rock (see Figure 8a) corresponds to Pressure–Temperature–time path A (see Figure 6). The dashed variation corresponds approximately to P–T–t path C. Depth–time changes for the 600ºC isotherm are speculative but consistent with the igneous history leading up to volcanism in the Hemlo greenstone belt and the pressures and temperatures of metamorphism derived in the preceding section of this report.

Some explanation for the inferred Depth–time relations between supracrustal and plutonic rocks is necessary. The diagram (see Figure 8a) shows 80 Ma of the history of the upper portion of a hypothetical column of crust on which a felsic volcanic rock was deposited at 2695 Ma. Subsequently, the felsic volcanic rock was buried, first by continuing volcanism and sedimentation as the volcano-sedimentary package accumulated, and later, by horizontal compression and vertical thickening of the supracrustal sequence and underlying sialic crust. Increasing pressure and temperature begin to metamorphose the

Page 50: New Metamorphic Framework Hemlo - Geology Ontario

32

rock. At approximately 2680 Ma, the rate of exhumation (uplift and erosion) related to the presence of thicker than normal crust overtakes the rate of crustal thickening and pressure on the metamorphosed volcanic rock begins to decrease. Soon after, peak temperature is attained and sustained for several million years before the rock begins to cool as it is exhumed back to the earth’s surface. Aluminous metasedimentary rocks interlayered with the metavolcanics would contain kyanite-sillimanite-biotite-staurolite-garnet. Depth–time paths for supracrustal rocks in lower and higher grade metamorphic zones and the associated evolution of the thermal regime will be similar but with somewhat different maximum pressures and temperatures.

Figure 8b superimposes hypothetical Depth–time paths for 2 granitoid samples on to the path for the metavolcanic rock. The time gap between intrusions follows the age distribution in Figure 7 and is in line with Muir’s (2003) comment that the 2680 Ma age proposed by Beakhouse and Davis (2005) for the Cedar Lake intrusion may not be representative. The implication is that the Cedar Lake pluton intruded to a depth of 14.5 km at the point where the supracrustal rock has reached 12 km. After intrusion and crystallization, the Depth–time path for the granitoid sample follows the path of the felsic metavolcanic rock and maintains the 2.5 km of separation as long as the vertical separation is not changed by ongoing deformation. In fact the spacing likely increased somewhat. The intrusion has a short term affect on the thermal regime represented by the 600ºC isotherm. The limited contact aureole described by Pan and Fleet (1993) is consistent with the hypothetical metavolcanic rock not being affected by contact metamorphism related to the Cedar Lake pluton. For the sake of discussion, a pluton of similar age to the Gowan Lake pluton is assumed to intrude the column of crust containing the hypothetical metavolcanic rock. The pressure of crystallization estimates (Beakhouse and Davis 2005) require that the pluton intruded to levels in the crust above the presumed position of the metavolcanic rock. The essentially instantaneous rate of intrusion (see Figure 8b) follows from modelling by Marsh (1982) that indicates magmas rise rapidly through the crust (tens of kilometres in a few thousand years). This hypothetical scenario ends with the metavolcanic rock at the surface with a Cedar Lake type pluton present buried 2 to 3 km below. The late synorogenic pluton, however, would be lost to erosion. A Depth–time path for the real Gowan Lake pluton would follow a Depth–time path that ended up at the earth’s surface, implying less uplift and erosion. In fact, in contrast to the more deeply eroded kyanite-bearing rocks at Hemlo, andalusite coexists with sillimanite close to the pluton (see Figure 2). Depth–time analysis of these hypothetical situations provides a means of evaluating the relationships between metamorphism, deformation and plutonism in the greenstone belt.

TIMING AND DURATION OF DEFORMATION AND PLUTONISM

At approximately 10 to 12 Ma (Muir 2002, 2003), the duration for metamorphism, synorogenic plutonism, and crustal thickening in the Hemlo greenstone belt is comparable to that in the Red Lake greenstone belt (~15 my, Thompson 2003), but only half the time required in the Yellowknife greenstone belt (~20 my, Thompson 2005b). In both latter cases, however, the maximum pressures (depths) attained were approximately 3 kilobars as compared to 4 to 5 kilobars in kyanite-bearing rocks of the Hemlo belt (e.g., paths A, B, Figure 6; Figure 8a). That is, the strain rates were faster in the Hemlo area, at least as far as the kyanite-bearing rocks are concerned. Relatively rapid tectonic burial counteracts the heating of the rocks as pressure increases and could depress the isotherms as indicated on Figure 8. The situation is more extreme if the geothermometry results (6 to 9 kilobars, 22 to 30 km) are accepted as correct. In fact, if tectonic burial had been slower, it is possible that none of the Pressure–Temperature–time paths (see Figure 6) would have passed through the kyanite field and the Hemlo belt would be a normal andalusite-sillimanite type Archean metamorphic terrane.

Page 51: New Metamorphic Framework Hemlo - Geology Ontario

33

Figure 8. Schematic Depth–time analysis of representative metavolcanic rock and late synorogenic plutons: (a) representative metavolcanic rock and (b) representative early synorogenic and late synorogenic plutons using Corfu and Muir (1989a); inferred P–T conditions from Figure 6 for the metavolcanic sample; pressures of crystallization after Beakhouse and Davis (2005) (see Figure 7); metamorphic titanite field from Figure 9 with slope estimated from Depth–time path for the metavolcanic rock (Figure 8a).

Page 52: New Metamorphic Framework Hemlo - Geology Ontario

34

Depth–time analysis shows that the supracrustal rocks were already metamorphosed at significant pressures and temperatures when early and late synorogenic granitoids arrived at the crustal depths now exposed on the erosion surface. The extensive granitoid complexes that bound the Hemlo greenstone belt are made up in large part of rocks that are tens of millions of years older than the metamorphism. The relatively few descriptions of contact metamorphism related to synorogenic granitoids indicate the thermal effect is relatively minor (e.g., Pan and Fleet 1993). The late synorogenic granitoid suite is discordant to the highest grade metamorphic zone (see Figures 1 and 2). Moreover, at any given time, the volume of synorogenic granitoids was not sufficient to produce the metamorphic zonation of the entire belt (see Figure 1). It follows that these granitoid rocks are not good candidates for the heat source of regional metamorphism.

The increase of metamorphic grade toward the Pukaskwa complex (Jackson 1998; Muir 1982a, 1982b; this study, Figures 1 and 2) is not necessarily incompatible with a premetamorphic age for the complex. Fonteilles and Guitard (1964) proposed a concept called “l’effet du socle” (basement effect) to explain the concentric metamorphic zones around basement domes in the eastern Pyrenees. The hypothesis is that, during regional metamorphism, premetamorphic granitoids and basement complexes heat up faster than adjacent sedimentary rocks because the older rocks are not being affected by the endothermic dehydration reactions that transform the sedimentary rocks. With time, as isotherms advance upward faster in the basement complex, thermal gradients increasing toward the older rocks form what looks like a contact metamorphic aureole. Perhaps some variation of the “basement effect” has occurred adjacent to the Pukaskwa complex.

That D2-D3 deformation is represented in this study (see Figure 8) as continuing after the time when crustal thickening ended (attainment of maximum metamorphic pressure) and after intrusion of late synorogenic plutons requires some explanation. Most Pressure–temperature–time paths (see Figure 6; see also, Pan and Fleet 1993; Kuhns, Sawkins and Ito 1994; Powell, Pattison and Johnston 1999) reflect petrographic evidence indicating temperature continued to increase after pressure peaked and began to decrease. A preferred orientation of sillimanite that bends around earlier lower temperature porphyroblasts and polygonal arcs defined by sillimanite are consistent with the deformation continuing during this temperature increase. Late synorogenic plutons are presumed to postdate the “peak” of metamorphism (Muir 2002; Beakhouse and Davis 2005) yet petrographic evidence (see Figure 3) indicates parts of the Bremner pluton and dikes (dikes, Figure 7) considered to be related to the Musher Lake pluton have been metamorphosed and deformed. Also, the foliations inferred to have a magmatic origin in the Gowan Lake pluton (Muir 2000) could be products of intrusion of the melt into a compressional stress regime. In fact, the continuation of deformation after crustal thickening ended is in line with development of a strain regime increasingly dominated by transpression (Muir 2003) which Muir argues predates the late plutons.

The meaning of the term “peak of metamorphism” is not always clear. For example, P–T–t paths (see Figure 6) and related Depth–time paths (see Figure 8) indicate peak pressure comes before peak temperature. Once the reference rock attains peak temperature, it remains hot for a considerable length of time. Does the peak of metamorphism correspond to the time when peak temperatures are first attained or the point when they begin to decrease? Clearly, the “peak” of metamorphism should be considered as period rather than a point in time.

TELESCOPED OROGENESIS AND ELEVATOR TECTONICS

Davis and Lin (2003) suggest that the main phase of deformation (G2), amphibolite facies metamorphism, and synorogenic plutonism occured within “a few million years” after intrusion of the Cedar Lake pluton

Page 53: New Metamorphic Framework Hemlo - Geology Ontario

35

at 2680 Ma. When the peak metamorphic pressure is integrated with these time constraints (see Figure 9), tectonic burial of the hypothetical metavolcanic rock to the appropriate depths becomes essentially instantaneous. In this case, there will be no heating during burial and the 600°C isotherm is instantaneously depressed as well. It is possible that the isotherm will not catch up with reference rock before the thermal regime begins to cool and the felsic metavolcanic rock will not attain the temperatures indicated by the minerals present in associated aluminous rocks. The situation becomes even less tenable if pressures obtained by geothermometry (i.e., depths in excess of 25 km) are used. Even without doing sophisticated thermal modelling, the difficulties of relating such a telescoped history to metamorphic data are apparent.

Figure 9. Schematic Depth–time analysis of implications of a 2680 Ma age for the Cedar Lake pluton assuming that the main phases of deformation and metamorphism post date the 2680 Ma zircon age obtained from the Cedar Lake pluton by Davis and Lin (2003).

COOLING HISTORY

Extending the time axis of the Depth–time diagram to 2600 Ma (see Figure 10) provides a framework for discussion of the postorogenic cooling history of the Hemlo greenstone belt. For this purpose, the 3 internally consistent 39Ar/40Ar mineral cooling ages obtained by Grant (1995) (hornblende = 2645 Ma, muscovite = 2625 Ma, biotite = 2570 Ma) as cited by Powell, Pattison and Johnston (1999) are preferred to the single fuchsite age (2671 Ma) measured by Masliwec, McMaster and York (1986). The latter age

Page 54: New Metamorphic Framework Hemlo - Geology Ontario

36

is older than Grant’s hornblende age of 2645 Ma and 46 my older than Grant’s muscovite age. Following this slow cooling scenario (Figure 10), the reference rock attains temperatures below the lower temperature stability limit of biotite at approximately 2625 Ma.

This age is a maximum for development of the subgreenschist and lower greenschist zone assemblages associated with the M2, the late retrograde metamorphic event (see Figure 5). Corfu and Muir (1989b) relate rutile and monazite ages from the Hemlo gold deposit that range from 2643 to 2632 Ma to a late hydrothermal event. Pan and Fleet (1992) indicate a similar age for their youngest alteration event. If these ages can be related to M2, the estimated geothermal gradients for the cooling history of the belt should be lower so that the reference rocks reaches subgreenschist grade sooner. Alternatively, the monazite and rutile were formed by a different event. Further 39Ar/40Ar geochronology is required to confirm this slow cooling history. It is interesting to speculate that the slow cooling is reflected in the “smearing out” of metamorphic titanite ages (see Figures 7 and 8). Furthermore, such a slow cooling history is further evidence that the extreme thickening required to produce the high pressures obtained from geothermobarometry did not occur along the entire belt if at all.

Figure 10. Schematic Depth–time analysis of the cooling history of the representative felsic metavolcanic rock. There are at least 3 periods of time (grey zones) when the volume of fluid passing through the rocks of the greenstone belt was sufficient to make a major ore deposit (1 – during volcanism/sedimentation, 2 – during metamorphism and ductile deformation, 3 – during the subgreenschist to lower greenschist M2 event). Fluid circulation is concentrated along brittle structures and granitoid/supracrustal contacts (see Figure 5). Position of plutons combines Corfu and Muir (1989a) ages with Beakhouse and Davis (2005) crystallization pressures.

HIGH FLUID-FLUX

Periods of time when large volumes of fluid are moving through a greenstone belt are favourable to formation of ore deposits, because fluid flow facilitates the liberation, transport, concentration and deposition of metals. The main phase (M1) metamorphic zonation (see Figures 1 and 2) the patchy

Page 55: New Metamorphic Framework Hemlo - Geology Ontario

37

distribution of later retrograde metamorphism (M2) (see Figure 5) mark two periods during which significant volumes of fluid moved through the Hemlo greenstone belt (see Figure 10). Synorogenic plutons may have added to the fluids produced by dehydration of supracrustal rocks during M1. During sedimentation and volcanism, there is potential for significant flow of fluid through the supracrustal sequence. Cordierite-anthophyllite rocks are likely derived from rocks altered by synmetamorphic hydrothermal alteration. Abundant metamorphic evidence indicating that the Hemlo gold deposit was already present or formed during amphibolite zone metamorphism (Burk, Hodgson and Quartermain 1986; Kuhns, Sawkins and Ito 1994; Muir 1997, 2002; Powell, Pattison and Johnston 1999; this study) precludes the late retrograde event from being an important factor in formation of the deposit. There is evidence (see Figure 5, inset), however, that structurally controlled M2 retrogression was concentrated in and around the deposit. That is, the Hemlo gold deposit occurs in a segment of the belt which has had a long history of prominent fluid flow events.

Metamorphism and Mineralization

This study places previous detailed metamorphic studies of the Hemlo gold deposit in a belt-scale metamorphic framework. From this perspective, the degree to which the deposit and its immediate geological setting differ from the greenstone belt as a whole can be evaluated.

Distinctive aspects which have a more extensive footprint than the gold mineralization may prove to be useful exploration tools.

ROCK TYPES

The aluminosilicate-bearing rocks that are so prominent in and around the Hemlo deposit occur elsewhere in the belt (see Figures 1 and 2). Of particular interest are the rocks studied by Pan and Fleet (1993) 7 km east-southeast of the deposit and the occurrences along the contact between metasedimentary and metavolcanic rocks immediately north and west of the Musher Lake pluton. In the latter case, kyanite is absent from thin sections included in this study, but metamorphism in the area has received comparatively little attention. Muir (2002) includes the Armand Lake occurrence (north of Musher Lake pluton) where andalusite and sillimanite are present on his list of notable gold ± barite occurrences in the Hemlo greenstone belt that collectively share some characteristics with Hemlo gold deposit.

DEFORMATION

Although, in general, the metamorphic pattern is discordant to the structural grain of the belt, at a smaller scale there is a degree of structural control on metamorphic grade. Given the importance of structural conduits with respect to the geometry of mineralizing fluid flow and potential for metamorphic fluid to be a major component of those fluids, relationships between deformation and metamorphism may be significant. With respect to structural geometry and to the history of moderate to intense ductile strain as metamorphic grade increases form greenschist to amphibolite zone, the Hemlo gold deposit does not differ from other parts of the greenstone belt (see Figure 4). Nor is the subsequent transition to brittle-ductile and brittle deformation in the subgreenschist and lower greenschist zones limited to the vicinity of the deposit (see Figure 5). On the other hand, the parallelism of metamorphic zonation and structural trends near the deposit may be significant. The narrow elongate, tongue-like form of the boundary marking the appearance of sillimanite (see Figures 1 and 2) is parallel to the Hemlo fault zone, the trend of the main foliation and granitoid contacts. It is possible that the metamorphic boundary has been folded

Page 56: New Metamorphic Framework Hemlo - Geology Ontario

38

or that the high strain zones and foliation planes formed structural conduits that enhanced flow of heat and fluid, creating a kind of thermal ridge (see also Muir 1997, Figure 41). A more detailed petrographic study is required to test these alternatives. This kind of feature is not present in the amphibolite zone elsewhere in the greenstone belt, although lower data density may be the reason. There are, however, linear trends outlined by patches of greenschist/amphibolite transition zone that parallel the regional structural trend west and, possibly east of the Hemlo gold deposit. The combination of structural conduits and metamorphic fluids may be significant with respect to the location of mineralization.

PLUTONISM

The minimal contact metamorphism associated with the Cedar Creek pluton (Pan and Fleet 1993), the predominantly premetamorphic age of the Pukaskwa complex, and the discordance of the belt-scale metamorphic zones with respect to the distribution of early and late synorogenic granitoids support the conclusion of this report that the metamorphic zones are products of regional metamorphism (M1). Showing variable degrees of metamorphism themselves (see Figure 3) and relatively limited contact metamorphic effects on adjacent supracrustal rocks, synorogenic granitoids are not likely sources for the heat that caused the main phase of metamorphism. With intrusion ages within the period of time when main phase metamorphism and deformation occurred (see Figures 7 and 8b), synorogenic granitoids are, however, potential sources of mineralizing fluids. Petrographic evidence (e.g., Kuhns, Sawkins and Ito 1994; Powell, Pattison and Johnston 1999; Muir 2002; Tomkins, Pattison and Zaleski 2004) indicates mineralization occurred before or during thermal peak of metamorphism. This observation, together with the distribution of early and late synorogenic plutons with respect to the Hemlo gold deposit (see Figures 1, 3 and 4), favours early synorogenic plutons as a source of mineralizing fluids.

METAMORPHIC GRADE

Given that, according to Loucks and Mavrogenes (1999), 90% of the gold mined from metamorphic terranes comes from the greenschist facies, the occurrence of the Hemlo gold deposit in the amphibolite zone is anomalous with respect to gold deposits in general and Archean deposits in particular. Proximity of the Hemlo deposit to the sillimanite isograd (see Figures 1 and 2) may be significant, but the sample density and limited distribution of aluminous rocks across the rest of the metamorphic zone do not allow this observation to be tested. In this respect, the Armand Lake area immediately north of the Musher Lake pluton (see Figures 1 and 2) where andalusite-sillimanite and alteration similar to that associated with the Hemlo deposit (Muir 2002) merits further attention.

There is a spatial relationship between metamorphic zone boundaries and major gold deposits in the Red Lake and Abitibi greenstone belts (Thompson 2003, 2005a) that should be considered in the Hemlo greenstone belt. At Red Lake, the proximity to the lower greenschist/upper greenschist zone boundary and to the greenschist/amphibolite transition zone boundary is important, with the Campbell–Goldcorp mine occurring in an area where the spacing between these boundaries is anomalously narrow. The Dome Mine in the Timmins gold camp is associated with the intersection of a pipe-like anomaly of upper greenschist zone rock within the predominant lower greenschist zone and the main Porcupine–Destor deformation zone. For these reasons, the intersection of major fault/deformation zones with the transition zone (main zone and isolated patches) and isolated occurrences of lower greenschist zone rocks (see Figures 1 and 2) are of interest for gold exploration. In fact, Peekongay and Northern Eagle, two of the occurrences of prospective alteration with low but anomalous gold values cited by Muir (2002), are associated with such structural zones.

Page 57: New Metamorphic Framework Hemlo - Geology Ontario

39

ALUMINOSILICATES

Formation of kyanite in very aluminous rocks and quartz veins, at the low temperatures and pressures (see Figure 6), for example, kyanite 1 of Powell, Pattison and Johnston (1999), is compatible with normal Archean metamorphic conditions. The abundance of kyanite coexisting with biotite-muscovite-quartz in or near the Hemlo gold deposit, however, distinguishes the deposit area from the rest of the belt (see Figure 1) and from the medium-grade portions of most Archean greenstone belts.

Pressure–Temperature–time path A (see Figure 6) outlines a way of producing kyanite-biotite at pressures that are transitional between those characterizing low pressure and medium pressure metamorphic terranes. Pressure–Temperature–time path B is more typical of the evolution of widespread Archean andalusite-sillimanite regional metamorphism. The difference is that, in addition to reaching somewhat higher maximum pressures, path A incorporates a sufficiently rapid rate of burial that keeps the reference rock at temperatures in the kyanite field, below the stability limits of andalusite and sillimanite. Slower rates of burial or higher overall geothermal gradients allow the rock to heat up enough to avoid the kyanite stability field (e.g., Path B). If further sampling confirms the restriction of kyanite to the vicinity of the Hemlo gold deposit, it is possible that a particular structural setting resulted in a small part of the greenstone belt being subject to the anomalously low geothermal gradients and/or rapid burial required to produce kyanite-biotite assemblages in quartz-muscovite aluminous rocks during an Archean orogenic event. If such a structural setting existed, it may have acted as a funnel or conduit that concentrated fluids of metamorphic and plutonic origin sufficiently to form a synmetamorphic ore deposit.

ALTERATION AND MINERALIZATION

Previous workers are unanimous in recognizing a significant alteration halo around the Hemlo gold deposit (Muir 2002 and references therein). The controversy revolves around the age of the alteration and related mineralization relative to deformation and metamorphism. Over time, the consensus has changed from premetamorphic (e.g., Burk, Hodgson and Quartermain 1986; Kuhns, Sawkins and Ito 1994) to early (“pre-peak”) synmetamorphic (Johnston 1996; Powell and Pattison 1997; Powell, Pattison and Johnston 1999; Muir 2002; Davis and Lin 2003) alteration and mineralization. Pan and Fleet’s (1993, 1995) preference for late “post-peak” metamorphic mineralization is not supported by the metamorphic record. Part of the reason for the controversy is the difficulty, when looking at amphibolite facies rocks, of distinguishing premetamorphic hydrothermal alteration from early synmetamorphic alteration that formed under greenschist/lower amphibolite facies conditions sometime before peak metamorphic conditions produced the final mineral assemblages and textures. Microstructural textures and structural analysis constrain alteration/mineralization to early to middle D2 (Lin 2001; Muir 2002, 2003; Davis and Lin 2003).

Regional petrography (Appendix 2) revealed potassium feldspar-bearing metavolcaniclastic and metasedimentary rocks, but extensive intense alteration, metamorphosed or not, is rare in the thin sections examined. From a belt-scale perspective, intensive penetrative alteration is limited to a relatively small area around the Hemlo gold deposit. There is a clear spatial relationship between the deposit and a prominent regional-scale deformation zone (Muir 2000; see Figure 5 inset of this study) that contains evidence of synmetamorphic ductile deformation changing with time to brittle-ductile and brittle as the rocks cooled. That is, the distinctive alteration and related mineralization is constrained in space as well as in time with respect to deformation and metamorphism. Typically structurally controlled, the low metamorphic grade retrogression of biotite to chlorite and/or prehnite attributed to M2 (see Figure 5) is readily distinguished from the alteration that is characteristic of the Hemlo gold deposit.

Page 58: New Metamorphic Framework Hemlo - Geology Ontario

40

An amphibolite zone muscovite-quartz schist containing porphyroblasts of grid-twinned microcline with sigmoidal internal inclusion trails (87TLM-6104, Williams Heritage outcrops, not incuded in data set in Appendix 2) is the only example examined that is difficult to explain by anything other than synmetamorphic hydrothermal alteration. By comparison with lower grade rocks of equivalent composition, it is possible to explain the growth of rotated porphyroblasts of staurolite and garnet (e.g., Photo 2) by reactions between chlorite, muscovite, and quartz as temperature increases. Once potassic clays have recrystallized to muscovite, there is no low-grade mineral equivalent of microcline. In this rock, the rotated internal fabric is comprised of muscovite and quartz grains that are much finer grained than the same phases in the surrounding matrix. Growth of the poikiloblast began after a fabric had developed in the rock and continued to grow as increasing temperature and pressure caused the grain size of minerals outside the microcline to increase. In the system K2O–Al2O3–SiO2 at a particular temperature, pressure, and activity of water, the relative stability of potassium feldspar, aluminosilicate and muscovite are affected by the activity of K+. For example, with an increase in that parameter, potassium feldspar may replace muscovite or andalusite. It is possible that the growth of microcline poikiloblasts is a result of potassium-rich metamorphic fluids of the kind presumed to cause the potassic alteration associated with the Hemlo gold deposit. Further sampling at the locality may reveal evidence of the process in the form of aluminosilicates that have been partially pseudomorphed by muscovite and or microcline.

A METAMORPHIC ORIGIN FOR THE HEMLO GOLD DEPOSIT?

From the belt-scale metamorphic perspective (see Figure 1) and in comparison with medium-grade metamorphic rocks in most Archean greenstone belts, the kyanite-biotite assemblages associated with the Hemlo gold deposit are a distinctive anomaly. The explanation preferred here is that, for a period of time, an unusual set of Pressure–Temperature conditions related to abnormally rapid tectonic burial (see Figure 8a) prevailed within a structural conduit that was focussing the flow of significant volumes of potassic, metal-bearing, hydrothermal fluids derived from a mix of metamorphic and plutonic sources. Reaction with a range of rock types under these conditions resulted in precipitation of gold mineralization. Ductile deformation continued as M1 temperatures increased to a maxium and pressures began to decrease (see Figure 6). At a critical point, the change in P–T conditions effectively closed the window of opportunity for gold mineralization because the chemistry of the fluids was such that gold remained in solution under the new conditions and/or the source of fluids was exhausted. Changing P–T conditions may have contributed to the decline in fluid volume at depth and to a reduction in porosity and permeability within the deposit. If, as proposed by Tomkins, Pattison and Zaleski (2004), sulphides were partially melted at peak temperatures, the cooling and pressure decrease during exhumation resulted in changes in melt composition with low temperature phases such as realgar, cinnabar and stibnite crystallizing long after the deposit began to cool. Powell and Pattison (1997) attributed these low temperature minerals to exsolution from high temperature sulphides. Once in the field of brittle deformation, fracture-controlled retrogressive metamorphism (M2) caused localized replacement of biotite by chlorite and prehnite. The long-lived history of the structural conduit in the vicinity of the Hemlo gold deposit is evident from the concentration of M2 retrogression at that locality (see Figure 5, inset).

In fact, this proposed origin is not strictly metamorphic. A structural setting that resulted in relatively rapid burial and created a conduit is critical. Ultimately, if the crust had not been thickened enough to cause the uplift and erosion that transported the gold deposit up to an economical depth for mining, there would be no mine. From the perspective of a belt-scale metamorphic study, however, it appears that it was the right combination of pressure and temperature that caused the gold to precipitate.

Page 59: New Metamorphic Framework Hemlo - Geology Ontario

41

Conclusions • This metamorphic study is a step toward filling an important gap in knowledge of the Hemlo

greenstone belt. Three belt-scale metamorphic maps and a petrographic database provide new constraints on the history of deformation, plutonism, and gold mineralization.

• The major regional metamorphic event (M1, lower greenschist to upper amphibolite facies) was

followed tens of millions of years later by a low-grade, less pervasive metamorphism (M2, subgreenschist/lower greenschist facies). In detail, localized contact metamorphism related to granitoids is present.

• The abundant granitoids within and around the greenstone belt are either too old, too young, or of

insufficient volume to be the source of heat for M1 regional metamorphism. • The regional pattern cuts across major structural trends whereas, at kilometre scale there is

evidence of structural control of metamorphic grade. This is consistent with the conclusions of previous detailed studies in the vicinity of the Hemlo mines that metamorphic grade was increasing during D1 and D2, reached a maximum conditions late in D2 and remained high until after D3.

• The regional metamorphic context highlights the anomalous nature of the medium-grade biotite-

kyanite assemblages in quartz-muscovite aluminous rocks in and around the Hemlo gold deposit. The rocks are anomalous within the belt and in comparison with medium-grade metamorphic rocks in most Archean greenstone belts.

• Depth–time analysis and constraints imposed by the geological setting of metamorphism indicate

maximum metamorphic pressures were in the range of 4 to 5 kilobars rather than the 6 to 9 kilobars obtained by previous workers using numerical thermobarometric methods.

• Early synorogenic and, to a lesser extent, late synorogenic granitoids are potential sources of a

component of mineralizing fluids.

• The preferred explanation for the origin of the Hemlo gold deposit is that an unusual combination of metamorphic pressures and temperatures related to localized rapid burial created the environment within a segment of a structural conduit that caused precipitation of gold from a through-going mix of metamorphic and magmatic hydrothermal fluids. Increasing temperature and decreasing pressure effectively closed the window of opportunity for mineralization because the gold remained in solution under the new conditions and/or changing P–T conditions contributed to the decline in the volume of metamorphic fluid entering the system.

• The hypothesis should be tested by evaluation of the P–T stability of possible primary ore

sulphide assemblages and examination of other similar gold deposits and of geological settings with comparable metamorphic histories. For example, can granitoids intruded at depths of 14 to 15 km in the crust produce gold-molybdenum-rich fluids?

• In the western half of the Hemlo greenstone belt, intersections between major deformation zones

and the main greenschist/amphibolite transition zone, and with transition zone and lower greenschist zone metamorphic anomalies should be explored for Campbell–Goldcorp (Red Lake) and Dome (western Abitibi) style mineralization.

Page 60: New Metamorphic Framework Hemlo - Geology Ontario

42

References Barrow, G. 1893. On an intrusion of muscovite-biotite gneiss in the southeast Highlands of Scotland, and its

accompanying metamorphism; Geological Society of London Quarterly Journal, v.49, p.330-358.

Beakhouse, G.P. 2001. Nature, timing and significance of intermediate to felsic intrusive rocks associated with the Hemlo greenstone belt and implications for the regional geological setting of the Hemlo gold deposit; Ontario Geological Survey, Open File Report 6020, 248p.

Beakhouse, G.P. and Davis, D.W. 2005. Evolution and tectonic significance of intermediate to felsic plutonism associated with the Hemlo greenstone belt, Superior Province, Canada; Precambrian Research, v.137, p.61-92.

Becke, F. 1921. Zur Faciesklassifikation der metamorphen Gesteine; Tschermaks Mineralogische und Petrographishe Mitteilungen, v.35, p.215-230.

Berman, R.G. 1991. Thermobarometry using multi-equilibrium calculations: a new technique with petrological applications; The Canadian Mineralogist, v.29, p.833-855.

Bucher, K. and Frey, M. 1994. Petrogenesis of metamorphic rocks, 6th edition; Springer Verlag, Berlin, 318p.

Burk, R., Hodgson, C.J. and Quartermain, R.A. 1986. The geological setting of the Teck–Corona Au-Mo-Ba deposit, Hemlo, Ontario, Canada; in Proceedings of Gold ’86, International Symposium on the Geology of Gold Deposits, Konsult International Inc., Toronto, Ontario, p.311-326.

Corfu, F. and Muir, T.L. 1989a. The Hemlo–Heron Bay greenstone belt and Hemlo Au-Mo deposit, Superior Province, Ontario, Canada. Part 1. Sequence of igneous activity determined by zircon U–Pb geochronology; Chemical Geology, v.79, p.183-200.

——— 1989b. The Hemlo–Heron Bay greenstone belt and Hemlo Au-Mo deposit, Superior Province, Ontario, Canada. Part 2. Timing of metamorphism, alteration and Au mineralization from titanite, rutile, and monazite U–Pb geochronology; Chemical Geology, v.79, p.201-223.

Davidson, A., Carmichael, D.M. and Pattison, D.R.M. 1990. Metamorphism and geodynamics of the southwestern Grenville Province, Ontario; Field Trip Guidebook, International Geological Correlation Programme Project 235, p.304.

Davis, D.W. and Lin, S. 2003. Unraveling the geologic history of the Hemlo Archean gold deposit, Superior Province, Canada: a U–Pb geochronological study; Economic Geology, v.98, p.51-67.

Easton, R.M. 2000. Metamorphism of the Canadian Shield, Ontario, Canada. I. The Superior Province; The Canadian Mineralogist, v.38, p.287-317.

Eskola, P. 1915. On the relations between the chemical and mineralogical composition in metamorphic rocks of the Orijarvi region; Bulletin de la Commission Géologique du Finlande, no.44 (English summary, p.109-145).

Fonteilles, M. and Guitard, G. 1964. L’effet du socle dans le métamorphisme hercynien de l’enveloppe paléozoique des gneisses des Pyrénées; Comptes Rendus, v.258, p.4299-4302.

Grant, J.W. 1995. 40Ar/39Ar geochronology of the post-metamorphic thermal history of the Hemlo area; unpublished MSc thesis, Queen’s University, Kingston, Ontario, 281p.

Hodgson, C.J., Love, D.A., and Hamilton, J.V. 1993. Giant mesothermal gold deposits: descriptive characteristics, genetic model and exploration area selection criteria; in Giant Ore Deposits, Society of Economic Geologists, Special Publication 2, p.157-211.

Page 61: New Metamorphic Framework Hemlo - Geology Ontario

43

Jackson, S.L. 1998. Stratigraphy, structure and metamorphism; Part 1, in S.L. Jackson, G.P. Beakhouse and D.W. Davis, Geological setting of the Hemlo gold deposit; Ontario Geological Survey, Open File Report 5977, p. 1-71. p.1-58,

Johnston, P.J. 1996. The geological setting of the Hemlo gold deposit, Ontario, Canada; unpublished PhD thesis, Queen’s University, Kingston, Ontario, 297p.

Kuhns, R.J., Kennedy, P., Cooper, P., Brown, P., Mackie, B., Kusins, R., and Friesen, R. 1986. Geology and mineralization associated with the Golden Giant deposit, Hemlo, Ontario, Canada; in Proceedings of Gold ’86, International Symposium on the Geology of Gold Deposits, Konsult International Inc., Toronto, Ontario, p.340-354.

Kuhns, R.J., Sawkins, F.J. and Ito, E. 1994. Magmatism, metamorphism and deformation at Hemlo, Ontario and the timing of Au-Mo mineralization in the Golden Giant Mine; Economic Geology, v.89, p.720-756.

Lin, S. 2001. Stratigraphic and structural setting of the Hemlo gold deposit, Ontario, Canada; Economic Geology, v.96, p.477-507.

Loucks, R.R. and Mavrogenes, J.A. 1999. Gold solubility in supercritical hydrothermal brines measured in synthetic fluid inclusions; Science, v.284, p.2159-2163.

Marsh, B.D. 1982. On the mechanics of igneous diapirism, stoping, and zone melting; American Journal of Science, v.282, p.808-855.

Masliwec, A., McMaster, D. and York, D. 1986. The dating of Ontario’s gold deposits; in Geoscience Research Grant Program, Summary of Research 1985–1986; Ontario Geological Survey, Miscellaneous Paper 130, p.107-114.

Milne, V.G. 1968. Geology of the Black River area, District of Thunder Bay; Ontario Department of Mines, Report 72, 68p.

Muir, T.L. 1982a. Geology of the Hemlo area, District of Thunder Bay; Ontario Geological Survey, Report 217, 65p.

——— 1982b. Geology of the Heron Bay area, District of Thunder Bay; Ontario Geological Survey, Report 218, 89p.

——— 1993. The geology of the Hemlo gold deposit area; Ontario Geological Survey, Open File Report 5877, 264p.

——— 1997. Precambrian geology, Hemlo gold deposit area; Ontario Geological Survey, Report 289, 219p.

——— 2000. Geological compilation of the eastern half of the Schreiber–Hemlo greenstone belt; Ontario Geological Survey, Map 2614, scale 1:50 000.

——— 2002. The Hemlo gold deposit, Ontario, Canada: principal deposit characteristics and constraints on mineralization; Ore Geology Reviews, v.21, p.1-66.

——— 2003. Structural evolution of the Hemlo greenstone belt in the vicinity of the world-class Hemlo gold deposit; Canadian Journal of Earth Sciences, v.40, p.395-430.

Pan, Y. and Fleet, M.E. 1992. Calc-silicate alteration in the Hemlo gold deposit, Ontario: mineral assemblages, P–T–X constraints, and significance; Economic Geology, v.87, p.1104-1120.

Page 62: New Metamorphic Framework Hemlo - Geology Ontario

44

——— 1993. Polymetamorphism in the Archean Hemlo–Heron Bay greenstone belt, Superior Province, Ontario: implications for provenance and tectonic setting; Precambrian Research, v.30, p.985-996.

——— 1995. The late Archean Hemlo gold deposit: review and synthesis; Ore Geology Reviews, v.9, p.455-488.

Pan, Y., Fleet, M.E. and Stone, W.E. 1991. Skarn mineralization (Cr, Fe, Au) in an Archean greenstone belt, White River property, Hemlo area, Ontario; Economic Geology, v.86, p.1626-1645.

Pattison, D.R.M. and Tracy, R.J. 1991. Phase equilibria and thermobarometry of metapelites; in Contact metamorphism; Reviews in Mineralogy, v.26, p.105-206.

Phillips, G.N., Zhou, T. and Powell, R. 1997. Metamorphic temperature variations among Witwatersrand goldfields; evidence from the pyrophyllite-chloritoid-chlorite mineral assemblage; South African Journal of Geology, v.100, p.393-404.

Powell, R. and Holland, T.J.B. 1988. An internally consistent thermodynamic data set with uncertainties and correlations: 3. Applications to geobarometry, worked examples and a computer program; Journal of Metamorphic Petrology, v.6, p.173-204.

Powell, W.G. and Pattison, D.R.M. 1997. An exsolution origin for low-temperature sulphides at the Hemlo gold deposit; Economic Geology, v.92, p.569-577.

Powell, W.G., Pattison, D.R.M. and Johnston, P. 1999. Metamorphic history of the Hemlo gold deposit from Al2SiO5 mineral assemblages, with implications for the timing of mineralization; Canadian Journal of Earth Sciences, v.36, p.33-46.

Siragusa, G.M. 1984a. Precambrian geology, White Lake area, western part, District of Thunder Bay; Ontario Geological Survey, Preliminary Map P.2701, scale 1:15 840.

——— 1984b. Precambrian geology, White Lake area, western part, District of Thunder Bay; Ontario Geological Survey, Preliminary Map P.2702, scale 1:15 840.

——— 1985a. Precambrian geology, White Lake area, Animons Lake section, District of Thunder Bay; Ontario Geological Survey, Preliminary Map P.2739, scale 1:15 840.

——— 1985b. Precambrian geology, White Lake area,Theresa Lake section, District of Thunder Bay; Ontario Geological Survey, Preliminary Map P.2738, scale 1:15 840.

Spear, F.S. 1993. Metamorphic phase equilibria and pressure–temperature–time paths; Mineralogical Society of America, Monograph 1, 799p.

Thompson, P.H. 1977. Metamorphic P–T distributions and the geothermal gradients calculated from geophysical data; Geology, v.5, p.520-522.

——— 1989a. An empirical model for metamorphic evolution of the Archean Slave Province and adjacent Thelon Tectonic Zone, northwestern Canadian Shield; in Evolution of metamorphic belts; Geological Society, Special Publication 43, p.245-263.

——— 1989b. Moderate overthickening of thinned sialic crust and the origin of granitic magmatism and regional metamorphism in low-pressure/high-temperature terranes; Geology, v.17, p.520-523.

——— 2002. Toward a new metamorphic framework for gold exploration in the Timmins area, central Abitibi greenstone belt; Ontario Geological Survey, Open File Report 6101, 51p.

Page 63: New Metamorphic Framework Hemlo - Geology Ontario

45

——— 2003. Toward a new metamorphic framework for gold exploration in the Red Lake greenstone belt; Ontario Geological Survey, Open File Report 6122, 52p.

——— 2005a. A new metamorphic framework for gold exploration in the Timmins–Kirkland Lake area, western Abitibi greenstone belt: Discover Abitibi Initiative; Ontario Geological Survey, Open File Report 6162, 103p.

——— 2005b. Metamorphic constraints on the geological setting, thermal regime, and timing of alteration and gold mineralization in the Yellowknife Greenstone Belt, N.W.T., Canada; Chapter 11 in Gold in the Yellowknife greenstone belt, Northwest Territories: Results of the EXTECH III Multidisciplinary Research Project; Geological Association of Canada, Mineral Deposits Division, Special Publication no.3, p.142-172.

Tomkins, A.G., Pattison, D.R.M. and Zaleski, E. 2004. The Hemlo gold deposit, Ontario: an example of melting and mobilization of a precious metal-sulfosalt assemblage during amphibolite facies metamorphism and deformation; Economic Geology, v.99, p.1063-1084.

Turner, F.J. 1981. Metamorphic petrology; McGraw–Hill, Montreal, 524p.

Walford, P., Stephens, J., Skrecky, G. and Barnett, R. 1986. The geology of the ‘A’ zone, Page–Williams mine, Hemlo, Ontario; in Proceedings of Gold ’86, International Symposium on the Geology of Gold Deposits, Konsult International Inc., Toronto, Ontario, p.362-378.

Page 64: New Metamorphic Framework Hemlo - Geology Ontario

46

This page left intentionally blank

Page 65: New Metamorphic Framework Hemlo - Geology Ontario

47

Appendix 1. Terminology

Page 66: New Metamorphic Framework Hemlo - Geology Ontario

48

Appendix 1: TERMINOLOGY Applied metamorphic petrology is the application of metamorphic data and the concepts used to explain the origin of

metamorphic rocks to the reconstruction of the origin and evolution of mountain belts, Precambrian shields and of ore deposits therein.

Metamorphism refers to the changes in mineralogy and texture that occur when a sedimentary, igneous or metamorphic rock is

subjected to physical conditions (temperature, pressure, fluid composition) that are different from those when the rock first formed. Metamorphic grade is a relative measure of the intensity or completeness of metamorphism. The changes occur in minerals

making up the rock (mineral assemblages), in textures (grain size and shape, relationships between mineral grains), and in structures (planar and linear aggregates of minerals such as cleavage, foliations, folds, veins, compositional layering that are pervasive throughout the rock). Variations in grade are evident at the scale of the map, outcrop or thin section.

An isograd is a line or surface of constant metamorphic grade. Commonly mapped as the first appearance of a mineral or

mineral assemblage in rocks of similar composition, isograds mark the boundaries between metamorphic zones. In general, and neglecting the addition or subtraction of small amounts of water or carbon dioxide, rock composition does not

change during regional and contact metamorphism. Rocks of different composition such as shales, basalt, and tonalite respond differently to increasing metamorphic grade. This means that specific stratigraphic markers or premetamorphic hydrothermal alteration zones can be mapped from the lowest to highest grades in metamorphic terranes. Furthermore, variations of mineral assemblage with composition at constant grade mean each rock type develops a distinctive set of isograds. Although fluid composition variations may complicate the picture, in general, isograds in different compositions are concordant.

Metamorphic zones are descriptive features defined by characteristic minerals or mineral assemblages in rocks of similar

composition (e.g., greenschist, transition, and amphibolite zones in metabasalt/gabbro; lower and upper greenschist zones in metamorphosed quartzofeldspathic rocks).

A metamorphic facies refers to a range of temperature and pressure that has produced characteristic mineral assemblages in

a variety of rock compositions. For example, upper greenschist facies is defined by the occurrence of chlorite + epidote + actinolite + albite in mafic rocks, chlorite + muscovite + biotite in aluminous metasedimentary rocks, and talc + calcite in siliceous dolomitic metacarbonates. In the Hemlo greenstone belt, variations in metamorphic grade are mapped as zones rather than facies because the diagnostic minerals/mineral assemblages do not always correspond to those used in classic defintions of metamorphic facies (e.g. Turner 1981).

Regional metamorphism occurs across thousands of square kilometres and lasts tens of millions of years. The transformation

is caused by the heating and deformation of rocks during events that shorten and thicken the crust beyond a normal value of 35 km (orogenesis).

Contact metamorphism results from heating near an igneous intrusion. Duration is in the range of thousands to hundreds of

thousands of years. Contact metamorphic zones are typically centimetres to a kilometre or two thick. The magmatism that drives the process may or may not be related to orogenesis.

Hydrothermal Metamorphism (metasomatism/alteration) involves the movement of volatile and nonvolatile elements in and

out of a rock. Typically structurally controlled and of limited distribution (centimetres to hundreds of metres), the time frame of alteration is likely to be similar to that for contact metamorphism, but could be of long duration as well. Hydrothermal metamorphism is not necessarily associated with orogenesis. It can occur long before, during, or after regional and contact metamorphism in greenstone belts.

Temperature increasing with depth in the crust or with proximity to an igneous body is a principal cause of the changes

observed in metamorphic rocks. Pressure on solid components of rocks increases with depth in the crust at a rate dependent on the average density of overlying rocks (crustal average - 2.857g/cm3, ~ 0.02857 GPa/km, ~ 0.2857 kilobar/km). For most natural systems, pressure on the intergranular fluid phase (Pfluid ) during regional and contact metamorphism is assumed to equal Psolid .

P–T diagrams are orthogonal plots of temperature and pressure that incorporate the above assumptions about fluid pressure

and generally include the assumption that metamorphic fluids are 100% water. Plotted on such a diagram, stability fields for key metamorphic mineral assemblages constrain estimates of the P–T conditions of metamorphism. A traverse perpendicular to isograds in a metamorphic terrane is represented on a P–T diagram by an erosion surface P–T array (metamorphic field gradient of Turner (1981).

Geothermal gradients are the increase of temperature with depth in the crust. Making an assumption about the average

density of the crust, it is possible to relate lithostatic pressure (Psolid) to depth and calculate the geothermal gradients implied by metamorphic grade and the magnitude of postmetamorphic exhumation (uplift and erosion).

Page 67: New Metamorphic Framework Hemlo - Geology Ontario

49

Depth–time diagrams (Thompson 1989a, 1989b, 2002) illustrate the evolution of metamorphic rocks with respect to changes in temperature and depth (pressure) during deposition, deformation, mineralization, metamorphism and exhumation of greenstone belts.

The “gold deposition zone” (Thompson 2002) is derived from the conclusion of Loucks and Mavrogenes (1999) (they cite

Hodgson, Love and Hamilton 1993; Phillips, Zhou and Powell 1997) that 90% of the gold mined from metamorphic terranes around the world was deposited between temperatures of 250 and 450º C and pressures of 1 and 3 kilobars.

Page 68: New Metamorphic Framework Hemlo - Geology Ontario

50

This page left blank intentionally

Page 69: New Metamorphic Framework Hemlo - Geology Ontario

51

Appendix 2. Petrographic Data

Page 70: New Metamorphic Framework Hemlo - Geology Ontario

52

Legend for Hemlo Petrographic Data, Appendix 2 (Table 2) Rock Association–Metamorphic Grade (RAGRD, e.g., 12) First digit = rock association, second digit = metamorphic grade

Rock associations: 1 – metabasites 2 – metaquartzofeldspathic rocks 3 – meta-ultramafites 4 – metamorphosed aluminous rocks 5 – chemical metasediments (e.g. iron formation) 6 – metagranitoids 7 – metamorphosed carbonate-rich rocks 8 – unmetamorphosed granitoids 9 – rock association unknown

Metamorphic Grade 1-6 – higher number = higher grade for each association note: subdivision of grade is unique to rk assoc, e.g., five divisions in metabasites (11-15), 9 – metamorphosed but grade unknown az – amphibolite zone ugz-laz – upper greenschist zone - lower amphibolite zone znd – zoned Mineral Name Abbreviations 2 am – two amphiboles ab – albite act – actinolite afp – alkali feldspar as – aluminosilicate am – amphibole undifferentiated and – andalusite ap – apatite as – aluminosilicate bt – biotite cb – carbonate (ankerite, calcite, dolomite, magnesite, siderite) cht – chlorite cam – clinoamphibole cpx – clinopyroxene crd – cordierite ctd – chloritoid cum – cummingtonite diop – diopside epg – epidote group (epidote, clinozoisite, zoisite) fp – feldspar gra – graphite grt – garnet green – greenalite gru – grünerite hn – hornblende kf – potassium feldspar ky – kyanite min – minnesotaite ms – muscovite mt – magnetite mz – monazite m/z – monazite and/or zircon oam – orthoamphibole ol – olivine op – opaque opx – orthopyroxene ox – oxide plg – plagioclase (-ve = relief negative to qtz, sodic) phl – phlogopite prn – prehnite ps – pseudomorphs pu – pumpellyite qtz – quartz r – relict mineral

Mineral Name Abbreviations (cont’d) ru – rutile se – serpentine sil – sillimanite st – staurolite stp – stilpnomelane su – sulphide tit – titanite tlc – talc trm – tremolite to – tourmaline un – unknown wm – white mica zi – zircon Mineral Name Modifier agg – aggregate aft – after, e.g., cht aft bt clss – colourless, e.g., am (clss) “plg” , plg” – plg pseudomorphed, partially pseudomorphed plgrn – pale green; brn - brown, bl - blue 2cb – two carbonate minerals present ? – presence uncertain -ve – negative relief with respect to qtz Rock Name, Modifier Abbreviations aft – after amyg – amygdaloidal clsl – calcsilicate fel – felsic fgr – fine-grained fol – foliated fp – feldspar, e.g. feldspar metaporphyry grtd – granitoid ign – igneous intm – intermediate rock compositions m – meta maf – mafic maltd – metamorphosed alteration mclastite, mclte – metaclastite metabasite – metamorphosed basalt/gabbro metaclastite – metamorphosed clastic texture/synmeta gsr metam – metamorphism, metad – metamorphosed metamin – metamorphosed mineralization multramafite – meta-ultramafic rock (mumaf) mporphyry, mporph – metaporphyry mtuff – metatuff phyl – phyllite poiks – poikiloblasts pste – psammite qf – quartz-feldspar rx – rocks scst – schist txt – texture vfgr – very fine-grained xl mtuff – crystal metatuff Deformation (DEFM) Numerical codes for degree of intensity in strain

0 – undeformed 1 – massive/recrystallized 2 – weak preferred orientation 3 – weak to moderated preferred orientation 4 – moderated preferred orientation 5 – moderate to intense preferred orientation 6 – intense preferred orientation

Page 71: New Metamorphic Framework Hemlo - Geology Ontario

53

Deformation (DEFM) (cont’d) anld - annealed cren, crn - crenulated, crenulation c-s - C-S fabric defmd - deformed flld – folded gb – grain boundaries gsr – grain size reduction hsz – high strain zone gb – grain boundaries gsr – grain size reduction ll – parallels lyr, lyrd – layering, layered mrtxt – mortar texture msv – massive Pshad – pressure shadows po – preferred orientation; w, m, i – weak moderate, intense polygd – polygonized rexl – recrystallized Si – internal preferred orientation of incl in porphyroblast SL – late foliation postdates SM SM – main foliation sutd – sutured grain boundaries vn – vein w/ – with Alteration (ALT) altd – altered, cbaltd – cb alteration, wmaltd – wm alteration alt – alteration w, m, i – weak, moderate, intense cb – carbonate alteration k – potassium alteration retrod – retrograded wm – white mica alteration (K-mica, Na-mica)

Column Headings XEAST3 – UTM easting NAD 1983 YNORT3 – UTM northing NAD 1983 SAMNO – sample number

95(7)SLJ… – Jackson 1997 thin section sample numbers mislabelled as 1995

RAGRD1 – M1 rock association - metamorphic grade RAGRD2 – M2 rock association-metamorphic grade DEFM – deformation MRN – map reference number NOTES – comments (see below)

mineral modes are separated by commas: >10%, 1-10%,<1% w/m/ipo – defm intensity [hn P] – hn pressure measured [ZT] U/Pb zircon, titanite age dyk-dike east-eastern complex

PLN – granitoid bodies Bo – Botham BP – Black Pic Br – Bremner CCr – Cedar Ck CLk –Cedar Lk DL – Dotted Lk FB – Fourbay, Lk – Gowan Lk, HB – Heron Bay, Mu – Musher Lk P – Pukaskwa, PI – Picture Is, OI – Olgivie Is, S – Satellite, WR– White River Mis-miscellaneous

Page 72: New Metamorphic Framework Hemlo - Geology Ontario

Tabl

e 2.

Pet

rogr

aphi

c da

ta fo

r the

met

amor

phic

map

of t

he H

emlo

gre

enst

one

belt

area

. X

EA

ST83

YN

OR

T83

RA

GR

D1

RA

GR

D2

DE

FMSA

MN

O

MR

NN

OT

ES

PLN

5952

72

5397

108

80

61

0 95

GP

B-7

004A

1

plg-

qtz-

kf,h

n-bt

,epg

-prn

-mt-c

hl-ti

t-ap-

zir;(

cht-p

rn)a

ft bt

; tit

w/ a

ltd b

t met

am?,

hn

prob

ign,

[hnP

] C

Lk

5952

72

5397

108

80

80

0 95

GP

B-7

004B

2

plg-

hn-k

f,qtz

-bt,m

t-epg

-tit-s

u; e

pg ri

ms

on b

rn a

mor

phou

s co

res

CLk

5907

83

5396

403

62

69

0 95

GP

B-7

006B

3

plg-

qtz-

kf-h

n,bt

,epg

-tit-a

p-zi

; cht

-epg

-act

on

hn-p

lg-q

tz, w

m a

ft pl

g, o

p ne

ckla

ces

on b

t-hn

maf

ic in

cl

CLk

5870

46

5396

155

62

69

1 95

GP

B-7

007

4 pl

g-qt

z-hn

,kf-b

t,epg

-mt-t

it-ap

-zi;

cht a

ft bt

, wm

-epg

aft

plg,

act

on

hn, t

it lo

oks

ign

CLk

5862

31

5396

055

14

19

0 95

GP

B-7

008B

5

plg-

hn,b

t,kf-q

tz-e

pg-m

t-tit-

ap-z

i. hn

repl

acin

g bt

, gra

nobl

astic

, int

m m

bas

incl

usio

n C

Lk

5849

79

5395

628

65

69

3 95

GP

B-7

009

6 pl

g-kf

-qtz

-hn,

bt,e

pg-m

t-tit-

cht-a

p-zi

; w-m

po(b

t,hn)

, som

e po

lyg,

ign

tit, c

ht a

ft bt

, wm

aft

plg

core

s, 6

3?

CLk

5849

79

5395

628

65

62

3 96

GP

B-7

009B

7

hn-p

lg,k

f-qtz

,epg

-mt-t

it-ap

; w-m

po(h

n); c

ht-e

pg-a

ct o

n hn

-plg

-qtz

, mpo

(hn)

, fel

sic

ampb

? C

Lk

5839

75

5396

433

64

69

1 95

GP

B-7

010

8 pk

g-qt

z-kf

,hn-

bt,e

pg-m

t-tit-

apt z

i; ig

n hn

, bt,

tit; a

nhed

/sub

hed

plg

in re

xlzd

mat

rix, h

n zn

d, p

olyg

d pl

g,bt

C

Lk

5837

27

5397

217

69

69

1 95

GP

B-7

013

9 pl

g-qt

z-hn

,kf-b

t-tit,

mt-a

p-zi

; ign

hn

bt ti

t,mes

sy u

n on

gb;

fine

r-gr

nd m

trx lo

oks

rexl

; cgr

qtz

pol

ygd

CLk

5838

76

5400

603

62

69

1 95

GP

B-7

016

10

plg-

qtz-

kf,h

n-bt

,epg

-mt-t

ti-ap

-zi;

ign

hn,b

t,tit;

bt p

artly

cht

zd;a

nhed

ral t

o su

bh p

lg in

rxlz

d m

atrix

C

Lk

5855

55

5399

263

80

80

1 95

GP

B-7

018A

11

pl

g-qt

z-kf

,hn-

bt,e

pg-m

t-tit-

ap-z

i; un

alte

red,

ign

hn b

t tit

[hnP

] C

Lk

5855

55

5399

263

14

19

2 95

GP

B-7

018B

12

kf

-plg

-hn,

qtz-

bt-e

pg,ti

t-ap;

wpo

(hn,

bt),

gran

obla

stic

, a lo

t of k

f C

Lk

5832

30

5394

864

80

80

1 96

GP

B-7

032

13

plg-

qtz-

kf,b

t-hn,

mt-e

pg-ti

t-ap-

zi-c

ht; i

gn h

n bt

plg

tit,

fres

h ig

n rx

see

n,bu

t rat

her g

rano

blas

tic te

xt [h

nP]

CLk

5834

78

5394

914

80

80

0 95

GP

B-7

033A

14

pl

g-qt

z-kf

,hn-

bt,m

t-cht

-tit-a

p-zi

;som

e bt

cht

zd, m

inor

wm

alt o

f plg

cor

es b

ut o

vera

ll ig

n [h

nP]

CLk

5834

78

5394

914

14

19

2 95

GP

B-7

033B

15

pl

g-hn

-kf,q

tz-b

t,mt-c

ht-ti

t-ap-

zi; w

po?;

gra

nobl

c hn

agg

reg

aft?

, bt i

nlc

in h

n, c

ht a

ft bt

, in

clus

ion?

in g

rdt

CLk

5873

94

5393

573

63

69

1 95

GP

B-7

034

16

plg-

qtz,

kf-h

n-bt

-cht

,epg

-mt-t

it-ap

-zi;

bt p

artly

cht

, ww

mal

t of p

lg c

ores

, act

bet

wee

n bt

+hn;

ove

rall

ign

CLk

5895

70

5393

146

62

69

0 95

GP

B-7

038

17

plg-

qtz-

kf,h

n-bt

-cht

2,ep

g-m

t-tit-

ap-z

i;all

bt to

cht

; epg

com

mon

in c

htzd

bt;

ign

hn+

tit

CLk

5930

58

5394

060

63

69

0 95

GP

B-7

067

18

plg-

qtz-

hn-k

f,epg

-mt-c

ht-a

p-zi

-bt';

bt t

o ch

t;ign

hn

tit p

lg; w

m a

ft pl

g co

res,

act

on

hn, b

t ok

in h

nite

[hnP

] C

Lk

5828

82

5394

675

65

69

2 95

GP

B-7

031

19

plg-

qtz-

kf-h

n,bt

,mt-t

it-ap

-zi;

ign

plg,

ign+

met

am h

n?, g

rano

blas

tic, f

gr h

n w

/ bt a

gg a

ft?,h

nP li

kely

met

am

dyk

5809

97

5395

223

62

69

1 96

GP

B-7

294

20

plg-

qtz-

kf,b

t,epg

-mt-t

it-ap

-zi;

NB

fgr r

hom

bic

tit, c

ht a

ft bt

loca

lly, s

ome

poly

gd q

tz (q

uite

cgr

) C

Cr

5811

53

5394

952

62

69

1 96

GP

B-7

297

21

plg-

qtz-

kf,b

t-hn,

epg-

mt-c

ht-ti

t-ap-

zi; N

B ig

n tit

insi

de b

t, ru

, bt a

nd h

n lik

ely

ign,

pol

yg o

f plg

,qtz

; [hn

P]

CC

r

5726

97

5393

603

62

69

0 95

GP

B-7

071

22

plg-

qtz-

kf,h

n-bt

,epg

-mt-c

ht-ti

t-ap;

mos

t bt t

o ch

t, ig

n hn

plg

tit,

tit-e

pg w

/ cht

, ww

mal

t of p

lg, [

hnP

] H

B

5683

75

5393

126

64

69

0 95

GP

B-7

094

23

plg-

qtz-

kf,h

n-bt

,cb-

mt-t

it-ap

-zi;

epg

insi

de p

lg m

etam

?, b

t int

ergr

own

w/

fp, e

pg a

ft bt

, ign

hn

bt ti

t H

B

5708

89

5392

491

64

69

0 95

GP

B-7

096

24

plg-

qtz-

kf,h

b-bt

,epg

-mt-t

it-ap

; epg

ove

rgro

ws

bt, b

t ok,

ign

hn ti

t plg

, [hn

P]

HB

5716

64

5391

885

62

69

1 95

GP

B-7

097

25

plg-

qtz,

kf-h

n-ch

t,epg

-mt-t

it-ap

-zi;

cht a

ft bt

w/ +

w/o

ut e

pg, h

n ok

, ign

tit;

NB

irre

g su

ture

d gb

aro

und

fp

HB

5729

76

5391

865

80

61

0 95

GP

B-7

099

26

plg-

qtz-

kf,h

n-bt

,epg

-prn

-mt-c

ht-ti

t-ap-

zi; c

ht a

ft bt

; prn

bul

ges

in b

t, ig

n hn

tit p

lg, w

wm

alt o

f pl;[

hnP

] H

B

5651

95

5388

221

62

69

0 96

GP

B-7

123

27

plg-

qtz-

kf,h

b-bt

,epg

-mt-c

ht-ti

t-ap-

zi;e

uh e

pg in

bt,

porp

hbla

stic

epg

=met

m, g

rano

blas

tic, i

rreg

plg

(ign

) gb

HB

5564

99

5387

040

62

69

1 96

GP

B-7

133

28

plg-

qtz-

kf,h

n-ep

g-ch

t,bt-t

it-ap

-zi-s

u; e

uh e

pg a

ft bt

, bt t

o ch

t, hn

ok,

plg

par

tly to

wm

-epg

; rex

ld m

trx?

HB

5559

83

5387

973

69

69

1 96

GP

B-7

137

29

plg-

kf-q

tz,h

b-bt

-epg

,mt-c

ht-ti

t-ap-

zi-s

u; e

uh/p

oikl

ibl e

pg, e

pg x

lizin

g su

b-so

lidus

, pol

yg o

f fp

gb; 8

0?

HB

5567

78

5386

345

65

69

2 96

GP

B-7

152

30

plg-

qtz-

kf,h

b-bt

-epg

,mt-c

ht-ti

t-ap-

zi;w

po(h

n), p

oiki

lbl e

pg in

bt+

at h

n-fp

con

tact

, bt o

k, z

nd p

lg [h

nP]

HB

5667

25

5390

346

65

62

2 96

GP

B-7

155

31

plg-

qtz-

kf-h

n,ch

t,bt-e

pg-tm

-tit-a

p-zi

;wpo

(hn)

, cht

aft

bt,h

n, e

pg s

ubso

ldus

/, po

lygd

gb,

ign

mpo

? H

B

54

Page 73: New Metamorphic Framework Hemlo - Geology Ontario

XE

AST

83 Y

NO

RT

83 R

AG

RD

1 R

AG

RD

2 D

EFM

SAM

NO

M

RN

NO

TE

S PL

N

5682

26

5391

399

62

69

0 96

GP

B-7

157

32

plg-

qtz-

kf,h

n-bt

-cht

,epg

-mt-t

it-ap

-zi;

ign

hn, p

; epg

-cht

-wm

eve

nt, p

olyg

d qt

z;bt

to c

ht, h

n ok

H

B

5692

99

5389

294

80

80

0 96

GP

B-7

264

33

plg-

qtz-

kf,h

b-bt

,epg

-mt-c

ht-ti

t-ap-

zi; i

gn ti

t, N

B v

fgr k

f agg

reg

betw

een

coar

ser p

lg (r

xld

or ra

pid

cool

) H

B

5632

47

5390

733

80

80

0 96

GP

B-7

267

34

plg-

qtz-

kf-h

n,bt

-mt-e

pg-m

t-cht

-tit-a

p-zi

-su;

ign

hn b

t tit,

poi

kilb

epg

(late

ign/

met

am?)

; cht

aft

bt

HB

5732

64

5390

922

64

62

1 96

GP

B-7

329

35

plg-

qtz,

kf-h

b-bt

,mt-e

pg-c

ht-ti

t-ap-

zi;lo

okin

g re

xl, c

gr q

tz b

lebs

pol

ygd,

clo

se to

Puk

askw

a H

B

5738

40

5402

827

62

69

0 96

GP

B-7

173

36

plg-

kf-h

n,qt

z-ch

t,epg

-mt-t

it-a;

lots

of w

m-e

pg in

plg

, bt c

htzd

, lot

s of

met

atit

w/ c

ht a

ft bt

, G

Lk

5763

15

5405

280

62

69

0 96

GP

B-7

175

37

plg-

kf-h

n,ch

t,epg

-mt-t

it-cb

;mod

wm

alt o

f plg

, cht

aft

bt+

hn, e

pg w

/cht

, cht

-epg

-wm

eve

nt; [

hnP

] G

Lk

5677

58

5404

803

80

80

0 96

GP

B-7

183

38

plg-

kf-q

tz-h

n,bt

-mt-c

px,e

pg-c

ht-a

p-zi

;cpx

rim

med

by

hn, b

t vcg

r in

good

sha

pe, i

gn h

n cp

x [h

nP]

GLk

5682

95

5404

942

80

80

0 96

GP

B-7

184

39

plg-

kf-h

n-bt

,qtz

,cpx

-epg

-mt-c

ht-a

p;cp

x rim

med

by

hn, f

resh

vcg

r bt,i

gn h

n+ c

px; t

it gr

ains

in b

t (af

t ru?

) G

Lk

5688

52

5400

345

62

69

1 96

GP

B-7

250

40

plg-

kf-q

tz-h

n,bt

-mt,e

pg-m

t-cht

-tit-a

p-zi

;tit r

ims

on o

p, c

px re

licts

less

pro

min

ent,

bt is

cht

zd,

[hnP

] G

Lk

5656

02

5398

994

62

69

2 96

GP

B-7

233

41

plg-

kf-h

n,qt

z-bt

,epg

-mt-t

it-ap

-zi;w

po(h

n);e

pg-c

ht e

vent

;ign+

met

am ti

t, ep

g af

t bt,

bt in

trgw

n w

/ plg

, [hn

P]

GLk

5656

02

5398

994

14

12

0 96

GP

B-7

233B

42

pl

g-kf

-hn,

qtz-

bt,e

pg-m

t-cht

-tit-a

p;m

etag

abbr

o in

cl; c

ht-e

pg-a

ct e

vent

on

fract

s, w

m-e

pg a

ft lg

e pl

g co

re

GLk

5674

80

5421

176

80

80

1 96

GP

B-7

240

43

plg-

kf-h

n-qt

z,bt

-cpx

-mt,e

pg-c

ht-ti

t-ap-

zi; l

ge ir

reg

fresh

bt ,

like

ly ig

n bu

t lot

s of

incl

(big

one

s); [

hnP

] FB

5971

23

5414

891

80

80

0 95

GP

B-7

045

44

plg-

qtz-

kf,b

t,epg

-mt-c

ht-ti

t-ap-

wm

-zi;

bt le

ucog

rnt,

ig ti

t, bt

hea

lthy,

trac

e w

m, K

f poi

kilit

ic/p

oiki

lobl

astic

D

L

5970

13

5408

368

62

69

0 95

GP

B-7

050

45

plg-

qtz-

kf,b

t,epg

-mt-t

it-w

m-a

p-zi

; poi

kilo

blas

tic e

pg a

ft bt

, wha

t is

epg

mak

ing

reac

tion?

Bt l

euco

grn

t D

L

5954

83

5413

710

62

69

1 95

GP

B-7

056

46

cht-e

pg a

ft bt

, wm

alt o

f plg

cor

es, b

ut n

ot d

efm

d, h

n pa

rtly

repl

aced

by

epg

D

L

5921

54

5413

829

64

69

1 95

GP

B-7

079

47

plg-

qtz-

kf,b

t,epg

-mt-c

ht-ti

t-ap-

zi;

bt in

trgrn

w/ p

lg, r

utile

+new

vfg

r bt,

fgr e

pg in

plg

, epg

aft

bt, f

gr fp

, [ZT

] D

L

5895

70

5414

951

64

69

0 96

GP

B-7

303

48

plg-

qtz,

kf-b

t-epg

-cht

,tit-a

p-w

m;b

t rxl

d, m

etam

tit,

min

or c

ht, e

p-w

m in

plg

, ign

bt b

ent,

poly

gd q

tz

DL

5897

19

5413

233

64

62

0 96

GP

B-7

310

49

plg-

qtz-

kf,c

ht,b

t-epg

-tit-a

p-zi

-wm

; cht

aft

bt, e

pg; b

oth

less

than

in o

ther

sam

ples

, rxl

plg

-qtz

, epg

in p

lg

DL

5883

38

5413

511

64

62

4 96

GP

B-7

313

50

plg-

qtz-

kf,c

ht,e

pg-m

t-tit-

ap-w

m-s

u; m

po(b

t, qt

z-fp

agg

rs) v

lcl o

r tec

tono

cl, c

ht a

ft bt

, epg

-wm

aft

plg

D

L 59

1110

54

1653

9 64

69

4

96G

PB

-730

5 51

pl

g-qt

z-bt

,kf,e

pg-m

t-cht

-tit-a

p-zi

-wm

-su;

mpo

(bt,a

ggs)

,bt a

ggs

aft i

gn b

t,epg

in p

lg, g

rnob

last

i, po

lygd

qtz

D

L

5532

30

5379

672

62

69

1 96

GP

B-7

222

52

plg-

qtz-

kf,c

ht,b

t-epg

-mt-t

it-ap

-zi;p

lg w

/ ep

g+vf

gr w

m, b

t to

cht+

tit, q

tz p

olyg

d, g

rano

blst

ic te

xtur

e P

I

5536

97

5379

901

62

69

4 96

GP

B-7

223

53

plg-

qtz-

kf,c

ht,b

t-epg

-tit-a

p-zi

-su;

ign+

met

am ti

t, ch

t aft

bt, e

pg v

ns, p

oiki

lobl

wm

, pol

ygd

qtz

PI

5537

27

5379

464

64

69

4 96

GP

B-7

224

54

plg-

qtz-

kf,b

t-cht

,epg

-mt-t

it-ap

-zi-s

u; m

po(b

t,agg

s)w

rps

cgr p

lg, l

ots

of p

lg a

ssoc

w/ r

exl p

lg,

PI

5772

09

5393

772

64

62

1 96

GP

B-7

066

55

plg-

qtz-

kf,b

t,epg

-mt-t

it-ap

-zi;

epg

poik

s on

bt,

gran

obl,

cht a

ft bt

,2 ti

t, w

m ri

ms

on b

t, tit

age

onl

y, [Z

T]

Bo

5772

09

5393

831

64

62

1 96

GP

B-7

301

56

plg-

qtz,

kf-b

t,epg

-mt-c

ht-ti

t-ap-

zi;s

treak

y bt

agg

reg

over

grw

n by

epg

, pol

ygd

sutu

red

qtz

Bo

5769

11

5393

811

24

22

4 96

GP

B-7

299

57

plg-

qtz-

wm

,cht

2-bt

-epg

; mpo

(cht

2 af

t bt,

qtz-

fp a

ggs)

wrp

s re

lict p

heno

s, fe

l mcl

astit

e (v

lcl o

r tec

tonc

l)

5765

43

5393

901

23

22

6 96

GP

B-7

300

58

epg

vn, h

igh

stra

in, c

ht-e

pg g

rade

, cht

cou

ld b

e af

t bt,

hsz

cut e

pg v

ns, f

elsi

c m

etap

orph

yry

5615

48

5394

318

13

19

1 96

GP

B-7

129

59

plg-

hn,q

tz-b

t-kf,e

pg-w

m-m

t-cht

-tit-a

p-su

;wpo

am

(ign

hn,m

eta

act-h

n); t

it on

bt(m

eta)

+ign

, epg

-wm

aft

plg

5617

66

5394

645

13

19

0 96

GP

B-7

130

60

plg-

2am

(ign

hn+a

ct ri

m-q

tz-c

ht,e

pg-m

t-tit-

ap-s

u; a

m h

as re

plac

ed b

t?,a

ct m

etam

5619

15

5394

904

13

19

0 96

GP

B-7

131

61

plg'

-2am

(hn>

act),

,wm

-epg

-tit-o

p;ig

n hn

+met

am a

ct,N

B c

gr w

m a

ft pl

g; m

etab

asite

real

ly

5843

83

5406

183

80

80

1 95

GP

B-7

075

62

plg-

qtz-

bt,k

f-hn,

epg-

mt-t

it-ap

-zi;m

inor

epg

-cht

aft

bt, h

n ok

, loc

ally

act

pat

ches

; grn

bltc

: ign

hn

bt ti

t, [h

nP]

Mu

5918

96

5406

997

80

61

0 95

GP

B-7

093

63

plg-

qtz-

hn,k

f-bt-c

ht2-

prn-

tit-a

p-zi

; cht

-prn

-epg

aft

bt, e

pg-w

m a

ft pl

g; g

ood

eg o

f altd

bt

Mu

5885

86

5407

742

62

69

0 96

GP

B-7

261

64

plg-

qtz-

kf,h

n-ch

t-tit,

bt-e

pg-a

p-zi

-su;

cht

-tit a

ft bt

, vfg

r wm

in p

lg, i

gn h

n, ti

t;

Mu

55

Page 74: New Metamorphic Framework Hemlo - Geology Ontario

XE

AST

83 Y

NO

RT

83 R

AG

RD

1 R

AG

RD

2 D

EFM

SAM

NO

M

RN

NO

TE

S PL

N

5483

80

5384

230

62

69

1 96

GP

B-7

324

65

plg-

qtz-

cht,b

t-epg

-kf,h

n-tit

-ap-

zi; c

ht-ti

t aft

bt, p

olyg

d qt

z, e

pg a

ft bt

, and

in p

lg,

OI

5790

56

5398

885

13

19

4 96

GP

B-7

257

66

plg-

2am

(hn>

act)-

kf,q

tz,b

t-epg

-mt-t

ita-a

p; m

po(b

t, am

) loc

ally

, som

e ch

t aft

bt, f

gr m

etam

onzo

dior

ite

S

5792

25

5398

617

64

69

1 96

GP

B-7

260

67

plg-

qtz,

kf-h

n-bt

,epg

-mt-c

ht-ti

t-ap-

zi-s

u; ig

n bt

hn,

bt p

olyg

d, c

ht-e

pg la

ter,

Whi

te R

iver

plu

ton

WR

5925

41

5389

879

14

12

4 95

GP

B-7

040

68

2am

(hn>

act)-

plg-

kf,,c

ht-ti

t-su;

epg

"cla

stic

" vn,

mpo

(hn)

, cht

aft

bt h

n, a

ct-c

ht a

ft hn

Whi

te R

Plu

ton

WR

5924

22

5389

760

14

12

2 95

GP

B-7

041

69

plg-

hn,k

f,epg

-cht

-tit-s

u; m

gbro

?; w

po(h

n),m

eta

hn, t

it; c

ht-ti

t aft

bt, w

m a

ft pl

g, p

oiki

lbla

stic

hn,

see

2nd

ts

WR

5925

41

5389

393

13

19

1 95

GP

B-7

042

70

plg-

hn-k

f,qtz

,bt-e

pg-c

ht-ti

t-ap-

su;

if hn

is ig

neou

s, 1

3 on

ign,

cht

-epg

-wm

"eve

nt",

wm

aft

plg,

gra

nobl

stic

WR

5925

12

5389

552

62

69

1 95

GP

B-7

043

71

plg-

hn-k

f,qtz

,epg

-cht

-tit-a

p; d

efin

itely

ign

hn m

ade

fuzz

y, lo

cally

cht

-epg

from

low

gra

de m

etam

Whi

te R

. W

R

5947

67

5393

355

64

69

1 95

GP

B-7

069

72

plg-

qtz-

kf-b

t,hn-

mt,e

pg-ti

t-ap-

su; f

gr b

t-hn

mgr

dt

Mis

5948

17

5393

067

64

69

1 95

GP

B-7

070

73

plg-

hn,q

tz-b

t-kf,e

pg-ti

t-ap-

su; h

n af

t bt,

poik

ilolit

ic o

r poi

kilo

blas

tic h

n w

/ euh

bt i

n, lo

oks

rexl

; epg

aft

bt

Mis

5965

96

5406

968

65

62

2 96

GP

B-7

053

74

plg-

qtz-

hn,k

f,bt-e

pg-m

t-tit-

ap-z

i; w

po(h

n) fr

om s

catte

red

grai

ns, g

rano

blas

tic, n

o ly

r in

ts, c

ht-e

pg o

n az

B

P

5811

03

5417

552

64

69

2 96

GP

B-7

148

75

plg-

qtz-

kf,b

t,epg

-mt-t

it-ap

-zi;w

po(q

tz-fp

agg

) no

laye

rs in

ts, n

icel

y re

xl

BP

5774

87

5414

246

64

62

2 96

GP

B-7

188

76

plg-

hn-k

f,qtz

-cht

,cpx

-epg

-mt-t

it-ap

; cht

-tit a

ft bt

, hn

aft c

px (m

etam

/ign

hn?)

, wm

aft

plg,

; cht

pos

t hn

rims

BP

5753

51

5391

597

65

69

3 96

GP

B-7

141

77

plg-

qtz-

hn,k

f-bt,e

pg-m

t-tit-

ap-z

i-su;

w-m

po(a

ggs,

hn,b

t), re

xld,

min

or c

ht a

ft bt

; def

md

Ced

ar L

k pl

uton

? P

5753

51

5391

597

64

69

4 96

GP

B-7

141b

78

m

po(b

t, m

in a

ggs)

, ign

plg

phe

nos

but m

atrix

is g

rano

blas

tic re

xl, f

gr b

t grd

t dyk

e ?

P

5759

28

5391

206

65

69

4 96

GP

B-7

144

79

plg-

qtz,

kf-h

n-bt

,epg

-mt-c

ht-ti

t-ap-

zi-s

u; m

po(b

t, hn

agg

s, m

in a

ggs)

, gra

nobl

astic

, hn

rexl

, met

a tit

pos

sibl

e P

5818

79

5388

906

64

62

2 96

GP

B-7

254

80

plg-

qtz,

kf-h

n-bt

-cht

2,ep

g-m

t-tit-

ap-z

i-su;

epg

aft

bt+h

n,ch

t aft

bt, g

rano

bl tx

t, fla

ttene

d qt

z po

lgyd

? P

5821

17

5389

601

64

69

3 96

GP

B-7

255

81

plg-

qtz,

kf-h

n-bt

,epg

-mt-t

it-ap

-zi;

w-m

po(q

tz-fp

agg

, bt),

wel

l rex

ld, b

t in

good

sha

pe,

rexl

hn?

[hnP

] P

5820

67

5390

455

65

62

4 96

GP

B-7

256

82

plg-

qtz,

df-h

n-bt

,epg

-mt-c

ht2-

tit-a

p-zi

; mpo

(bt,

hn, q

tz-fp

agg

s), e

pg-c

ht-w

m e

vent

, no

lyrs

in ts

, poi

k ep

g P

5540

25

5379

067

64

62

4 96

GP

B-7

271

83

plg-

qtz,

bt-k

f-epg

-cht

,mt-a

p-zi

-su;

mpo

(bt,

qtz-

fp a

gg),

epg

poik

s af

t fab

ric, q

tz ri

bbon

s , c

ht a

ft bt

, [Z]

P

5535

98

5378

103

64

62

4 96

GP

B-7

273

84

plg-

qtz,

bt-k

f-cht

,epg

-mt-t

it-ap

-su;

mpo

(bt a

ggs,

pol

yd q

tz, f

p-qt

z ag

g), c

ht a

ft bt

, por

phyr

bl e

pg

P

5539

65

5376

415

64

69

2 96

GP

B-7

276

85

plg-

qtz-

bt,k

f-epg

,mt-c

ht2-

tit-a

p-zi

; wpo

(bt a

ggs,

qtz,

aggs

) wra

ps re

lict p

lg p

heno

s ep

g af

t bt

P

5822

07

5390

982

65

62

4 96

GP

B-7

253

86

plg-

qtz,

kf-h

n-bt

-cht

,epg

-mt-t

it-ap

-zi;m

po(b

t,agg

s,so

me

hn),

mos

t bt t

o ch

t, fg

r epg

, wm

in p

lg, c

ht a

ft m

po

P

5546

21

5375

254

64

61

1 96

GP

B-7

277

87

plg-

qtz-

bt,e

pg,k

f-mt-c

ht2-

prn-

tit-a

p-zi

-wm

;wm

aft

plg,

cht-p

rn-e

pg a

ft bt

, gra

nobl

astic

P

5630

08

5376

048

64

61

1 96

GP

B-7

291

88

plg-

qtz-

hn,k

f-bt-c

ht2,

prn-

epg-

mt-t

it-ap

;grn

obla

stic

, hn

ok (i

gn?)

cou

ld b

e re

xld,

cht

-prn

aft

bt, a

ltn p

ost t

ext

P

5537

67

5378

918

64

62

1 96

GP

B-7

272

89

seve

re c

htzn

of b

t, ep

g ve

ry p

rom

inen

t, si

gnif

wm

aft

plg;

epg

rim

on

lge

yelb

rn u

nkno

wn

P

5539

65

5376

415

69

69

1 96

GP

B-7

276B

90

pl

g-qt

z-kf

,,bt-e

pg-m

t-cht

2; g

rani

tic rk

, no

bt, s

ugge

stio

n of

gra

nobl

astic

text

ure

but n

ot d

efin

itive

P

5799

25

5394

164

24

29

4 95

GP

B-7

001A

91

pl

g-kf

-qtz

,wm

,bt-s

u-ch

t2(a

ft bt

)-zi

-to;m

po(w

m,p

lg a

ugen

), w

m q

zfp

scst

/pst

e,lo

oks

ugz-

laz

5776

36

5394

397

24

29

4 95

GP

B-7

087

92

plg-

qtz-

bt,w

m(a

ft pl

g,m

trx),c

b-ch

t-ap-

op;m

po(b

t, qt

z+pl

g gr

ains

); fe

lsic

met

atuf

f, 23

-24

5784

90

5394

328

24

22

4 95

GP

B-7

100

93

plg-

qtz,

bt'-c

ht2(

aft b

t)-w

m(a

ft pl

g,m

trx),o

p-cb

;mpo

(bt,q

tz-fp

agg

s), c

ht a

ft bt

in z

nes,

fel m

clsi

te,

5784

90

5394

328

24

29

4 95

GP

B-7

102

94

Nap

lg(a

ugen

,mtrx

)-qt

z,bt

-wm

,op-

cb;m

po(w

m,b

t,cht

aft

bt,q

tz-fp

agg

s);m

ostly

plg

"phe

nos"

,

5794

44

5394

149

24

29

2 96

GP

B-7

109

95

Nap

lg-q

tz-k

f,bt-w

m; w

po(a

ggs)

; fel

s m

etac

last

ite

5798

91

5393

722

24

29

4 95

GP

B-7

064

96

plg-

qtz-

bt,,c

ht-c

b-op

; mpo

(bt,

long

D fp

gra

ins)

, fel

sic

met

acla

stite

, rou

nded

ex

plg

phen

os

5774

97

5393

712

24

22

4 95

GP

B-7

065

97

Nap

lg-q

tz,c

ht2(

aft b

t),bt

-epg

-wm

-op;

mpo

(cht

,bt,p

lg);r

nded

plg

phe

nos/

clas

ts, f

el-m

clas

tite,

24+

22?

56

Page 75: New Metamorphic Framework Hemlo - Geology Ontario

XE

AST

83 Y

NO

RT

83 R

AG

RD

1 R

AG

RD

2 D

EFM

SAM

NO

M

RN

NO

TE

S PL

N

5776

36

5394

189

24

29

4 95

GP

B-7

086

98

plg-

qtz-

bt,w

m-c

b,op

-epg

;mpo

(bt,

plg

grai

ns);f

els

mcl

astit

e/bt

-qzf

p sc

hist

; if d

yke,

it is

pre

-met

am, 2

3?

5776

36

5394

437

24

29

4 95

GP

B-7

088

99

plg-

qtz-

bt,,w

m-c

b-ep

g-tit

-op;

mpo

(bt,

qzfp

agg

reg)

,mcl

astit

e/bt

-qzf

p sc

st;if

dyk

e,it

is p

rem

etam

;23?

5776

36

5393

831

24

29

4 95

GP

B-7

091

100

plg-

qtz-

bt,,w

m-c

b-ep

g-tit

-op;

mpo

(bt,

qzfp

agg

reg)

,mcl

astit

e/bt

-qzf

p sc

st;if

dyk

e,it

is p

rem

etam

;23?

5805

47

5393

792

24

29

4 96

GP

B-7

108

101

plg-

qtz-

kf,,b

t-wm

-epg

,ap;

mpo

(bt,w

m,a

ggs)

;fel m

clas

tite,

fairl

y cg

r cou

ld b

e 24

5784

60

5394

417

24

29

4 96

GP

B-7

110

102

plg-

qtz-

kf,w

m-b

t,cb-

tit(ig

n)-e

pg;m

po(b

t,wm

,qtz

-fp a

ggs)

,fels

met

apor

phyr

y

5803

88

5393

712

24

29

4 95

GP

B-7

063B

10

3 pl

g-qt

z-kf

-bt,w

m(a

ft ig

n pl

g),c

b-tit

-m/z

;mpo

(bt,a

ggs)

;fel m

etac

last

ite/p

lg x

l met

atuf

f;23?

5776

36

5394

099

24

29

4 95

GP

B-7

085

104

qtz-

plg-

wm

(poi

ks,m

trx),b

t,cb-

op-a

p-m

/z;m

po(b

t,wm

);wm

agg

reg

aft?

, met

atuf

f/met

apor

phyr

y;24

?

5784

90

5394

328

24

29

2 95

GP

B-7

103

105

plg-

qtz,

,bt-c

b-ep

g-op

-m/z

;wpo

(qtz

-fp a

ggs)

wra

p pl

g 'p

heno

s";p

lg-q

tz m

etap

orph

yry;

24?

5776

36

5394

139

24

29

2 95

GP

B-7

089

106

plg-

qtz,

kf-b

t-cht

2-w

m,e

pg-ti

t-ap;

wpo

(bt,a

ggs)

;felm

etat

uff/p

orph

yry;

5589

94

5393

533

24

29

4 95

GP

B-7

092

107

plg-

qtz,

bt-w

m(in

plg

),cb-

m/z

-op;

mpo

(bt,a

ggs)

; NB

plg

'phe

nos'

are

roun

ded,

mcl

ste?

;23?

5565

59

5388

132

24

29

0 96

GP

B-7

138

108

plg-

qtz,

,bt-e

pg-m

/z-o

p-cb

; plg

met

apor

phyr

y; 2

3?

5603

45

5387

129

24

29

4 96

GP

B-7

156B

10

9 pl

g-kf

-qtz

,,bt-e

pg-m

/z; m

po(b

t,agg

s); m

etap

orph

yry

5512

62

5389

234

24

22

2 96

GP

B-7

199

110

plg-

qtz-

cht(a

ft bt

,mtrx

),wm

-cb,

op-a

p-ru

; wpo

(cht

2,ag

gs,w

m);s

igni

f ret

ro, m

etap

orph

yry/

met

atuf

f

5481

82

5388

996

23

29

4 96

GP

B-7

326

111

plg-

qtz,

bt-e

pg,w

m-c

ht2-

op-c

b-m

/z;m

po(b

t,cht

2,ag

gs);

bt-e

pg m

etap

orph

y

5753

51

5391

597

24

29

2 96

GP

B-7

141B

11

2 pl

g-kf

-qtz

,bt,o

p-tit

-m/z

-epg

-ap;

wpo

(bt,a

ggs)

;met

apor

phyr

y

5521

27

5389

592

24

29

5 96

GP

B-7

221

113

plg-

qtz,

bt,o

p-ap

;m-ip

o(bt

,agg

s) m

etap

orpp

h or

xl m

tuff,

sul

phid

es

5506

06

5388

817

24

22

4 96

GP

B-7

327

114

plg-

qtz-

wm

,cht

2-w

m,o

p-bt

-cb;

mpo

(wm

,agg

s,bt

/cht

2);fe

l met

acla

stite

/met

apor

ph

5512

23

5395

207

44

49

i 95

SLJ

-003

A

115

wm

-qtz

-plg

-cht

-bt,c

b-gr

a,op

-st-t

o; s

t nuc

leat

ing,

to in

gra

-ric

h zn

, sch

ist

5518

69

5395

232

43

49

4 95

SLJ

-004

A

116

qtz-

plg-

bt-c

ht, ,

op-g

rt-m

/z; b

t-cht

-grt

met

acla

stite

, no

wm

5518

87

5393

558

73

79

4 95

SLJ

-005

A

117

cht-b

t-cb,

qtz-

epg,

op; m

po(c

ht,a

ggs)

fold

ed ly

r, S

m ll

axp

l

5518

87

5393

558

73

79

2 95

SLJ

-005

D

118

plg-

qtz-

cht-b

t-cb,

,op-

epg-

m/z

,hn?

; maf

ic m

etac

last

ite

5528

77

5390

168

12

19

2 95

SLJ

-007

11

9 ch

t-epg

-plg

(mtrx

,phe

nos)

-qtz

-op-

cb, m

afic

met

acla

stite

5512

34

5389

010

23

29

4 95

SLJ

-008

A

120

plg-

qtz-

cb-w

m-c

ht-b

t,op-

ap; m

po(c

ht,b

t,agg

s); c

b pr

imar

y, fe

ls m

clas

tite

55

2971

53

8945

6 23

29

2

95S

LJ-0

09A

12

1 pl

g-qt

z,w

m-c

b,bt

-cht

-op-

to(b

lgry

);qtz

-cb

vn fl

dd,re

xl;

55

3533

53

8849

9 23

29

6

95S

LJ-0

10A

12

2 pl

h-qt

z-bt

-cht

,epg

-wm

,ap-

op-m

/z; i

po(b

t,agg

s)w

raps

plg

phe

nos/

clas

ts

55

3052

53

8604

6 63

69

0

95S

LJ-0

11A

12

3 ep

g-bt

-act

on

bt-h

n(ig

n), m

tona

lite;

plg

-qtz

-bt-2

am-e

pg, ,

tit

HB

5523

71

5384

858

43

49

2 95

SLJ

-012

A1

124

wm

-bt-c

ht-q

tz-p

lg,,g

rt-ap

-op;

wpo

(som

e m

ica)

;met

asilt

ston

e

5539

96

5390

394

25

29

2 95

SLJ

-013

B

125

bt-q

tz-p

lg, h

n(bl

grn)

-epg

-op

met

acla

stite

5539

96

5390

394

23

29

0 95

SLJ

-013

C

126

qtz-

cb v

n in

epg

-cht

-plg

-qtz

met

acla

stite

, 73

also

5540

68

5391

054

74

79

6 95

SLJ

-014

A

127

hn(b

lgrn

)-ch

t-plg

-qtz

-cb;

op-b

t,epg

;ipo(

cht-a

m-o

p) a

m-b

t met

acla

stite

,73?

5521

31

5384

550

52

59

0 95

SLJ

-015

L 12

8 to

-qtz

, wm

-cht

-op,

cb;

met

ad b

oron

altn

or b

oron

-ric

h se

d

5521

31

5384

550

42

49

4 95

SLJ

-015

K

129

cht-q

tz-p

lg-w

m,g

rt,to

-op-

cb(in

vn)

;mpo

(wm

, cht

) cre

n, d

efm

d po

lygd

qtz

vn,

wel

l rxl

d bu

t no

sign

of b

t

5526

45

5383

155

43

49

4 95

SLJ

-016

A

130

ipo(

wm

-cht

), qt

z-w

m-c

ht,b

t,op

met

asilt

ston

e, S

m lo

cally

obl

ique

to ly

r

57

Page 76: New Metamorphic Framework Hemlo - Geology Ontario

XE

AST

83 Y

NO

RT

83 R

AG

RD

1 R

AG

RD

2 D

EFM

SAM

NO

M

RN

NO

TE

S PL

N

5524

17

5391

048

13

19

2 95

SLJ

-017

A

131

am(h

n co

lour

, act

hab

it)-e

pg(m

trx,a

ggs)

-cb-

plg-

cht-o

p; m

etab

asite

, 14?

5508

22

5395

107

42

49

6 95

SLJ

-018

B

132

met

asilt

ston

e/m

udst

one;

qtz

-wm

-cht

-plg

-op-

cb-e

pg, i

po(w

m,a

ggs)

5473

40

5391

903

12

19

0 95

SLJ

-019

A

133

met

abas

ite; a

ct-c

ht-e

pg-p

lg, o

p

5481

41

5390

583

12

19

0 95

SLJ

-020

A

134

met

abas

ite; a

ct-c

ht-e

pg-p

lg-b

rn a

m(ig

n)-ti

t

5485

30

5389

582

43

49

4 95

SLJ

-023

A

135

qtz-

wm

-cht

-cb(

mtrx

,vn)

,bt-p

lg,o

p-to

-ap;

mpo

(wm

, cht

, agg

s) o

pen

cren

ulat

ion

of S

m, b

t ove

rgro

ws,

73?

5491

26

5388

927

72

79

4 95

SLJ

-024

A

136

cht-c

b sc

hist

, mpo

(cht

,agg

s), c

ht-c

b-qt

z, p

lg, o

p

5500

39

5389

072

23

29

4 95

SLJ

-025

C

137

73 p

ossi

bly;

plg

-qtz

-wm

, epg

-cb-

bt-c

ht, o

p; e

pg-b

t-wm

met

acla

stite

5494

73

5395

299

13

19

0 95

SLJ

-026

A

138

met

abas

ite, a

m(h

n co

lour

+act

t te

xt),

am-p

lg',

wm

-epg

-op-

cht u

pper

13?

5566

85

5390

638

13

19

0 95

SLJ

-033

B

139

met

abas

ite(d

iorit

e?),

ig h

n re

licts

to z

oned

grn

am

; plg

-2am

-bt-e

pg-q

tz-o

p

5650

59

5392

761

13

19

2 95

SLJ

-034

A

140

met

abas

ite; a

m(h

n co

l, ac

t tex

t), p

lg-o

p, b

t-cb-

qtz

5658

74

5392

888

13

19

3 95

SLJ

-035

B

141

met

abas

ite; h

n(ac

t tex

t)-ep

g, o

p-pl

g-qt

z-cb

, w-m

po(a

m, a

gg) 1

4/

5729

83

5393

669

14

19

0 95

SLJ

-038

A

142

grt-b

t sch

ist,

no w

m o

r cht

to m

ake

othe

r thi

ngs

5729

83

5393

669

14

11

0 95

SLJ

-038

B

143

hn m

etac

last

ite c

ut b

y ep

g-pr

n(?)

vns

5729

83

5393

669

44

41

4 95

SLJ

-038

C

144

qtz-

plg-

bt,g

rt-st

-cht

-cht

2,op

-to-m

/z-e

pg(v

n)-p

rn;m

po(b

t) w

rps

grt,

cht-e

pg w

/ hsz

+ pr

ehni

te, s

t nuc

leat

ing

5729

83

5393

669

14

19

0 95

SLJ

-038

D

145

hn-e

pg b

ut q

tzfp

rk n

ot m

etab

asal

t

5756

08

5393

479

44

42

4 95

SLJ

-039

E

146

qtz-

wm

(ps)

-cht

2,gr

t'-st

'(par

tly p

s)-b

t,op-

to(d

kgrn

)-m

/z;c

ht p

s af

t grt,

wm

ps

aft s

t, 42

of 4

4, m

po(b

t, ag

gs)

5743

67

5393

655

14

19

4 95

SLJ

-040

A

147

met

abas

ite; h

n-pl

g-cu

m,q

tz-g

rt-op

, mpo

(hn)

5764

88

5393

691

14

19

5 95

SLJ

-041

A

148

met

abas

ite, h

n-pl

g-qt

z-cb

(w/q

tz,h

n)-o

p, m

-imp(

hn)

5838

78

5396

702

14

19

0 95

SLJ

-044

B

149

hn-b

t met

abas

ite, h

n-bt

-cht

2(af

t btg

)-pl

g-qt

z-cb

-op-

tit, m

po(h

n,bt

)

5526

37

5383

167

43

49

4 95

SLJ

-047

A

150

qtz-

plg-

wm

,bt-c

ht,to

-ap;

wm

mpo

cre

nula

ted,

bt j

ust g

ettin

g go

ing,

23

poss

ible

5527

06

5382

783

42

49

0 95

SLJ

-048

A

151

qtz-

plg-

wm

-cht

,grt,

to-o

p-am

(blg

rn);4

3 if

grt i

s in

dica

tion

of u

gz 4

2 if

nor

5527

06

5382

783

43

49

4 95

SLJ

-048

C

152

cht-q

tz,g

rt-cb

,op;

cht m

po w

arps

aro

und

grt w

ith S

i obl

ique

to S

m, n

o w

m, 5

3?

5527

06

5382

783

43

49

4 95

SLJ

-048

D

153

hn-w

m!!,

qtz

-plg

-wm

-cht

, hn(

euh

poik

s), o

p-to

(bl)-

bt-a

p

5527

06

5382

783

43

49

4 95

SLJ

-048

M

154

qtz-

wm

-cht

-to,,g

rt-op

; 43

if gr

t is

indi

catio

n of

ugz

, mpo

(wm

, cht

, to)

, fol

ded

com

po ly

r, 42

-43

5526

31

5382

439

43

49

5 95

SLJ

-049

A

155

bt-e

pg-w

m-q

tz-p

lg p

hylli

te, c

b-ric

h,ep

g-bt

-ric

h ly

rs, i

-mpo

(bt,w

m) t

race

cht

5526

31

5382

439

73

79

4 95

SLJ

-049

B

156

qtz-

plg-

cb-w

m-e

pg-c

ht-b

t mcl

ste

cb-,

ep-,

cht-r

ich

lyrs

II S

m (m

icas

, agg

s),2

3?

5499

41

5384

243

14

19

2 95

SLJ

-050

A

157

am(h

n co

lour

, act

hab

it),,p

lg-o

p-tit

-cb;

qtz

-cht

-cb

vns

5499

41

5384

243

25

29

4 95

SLJ

-050

B

158

plg-

qtz-

bt-h

n,cb

-epg

,op-

m/z

; bt-h

n m

etac

last

ite

5843

34

5404

190

45

49

0 95

SLJ

-051

A

159

qtz-

bt-s

il-pl

g,gr

tr -wm

,str -to

(ylb

rn);g

rt gr

ains

w/ b

t rim

+ o

uter

ring

of f

ibro

lite,

relic

t st,

fib fo

lded

pris

sil

not

5843

34

5404

190

45

42

0 95

SLJ

-051

B

160

qtz-

bt-w

m2,

grtr -c

ht2-

wm

,to(y

l);fib

+pris

sil

gone

to w

m2,

bt o

k, c

ht2

abun

dant

5843

34

5404

190

45

49

0 95

SLJ

-051

C

161

qtz-

bt-s

il-pl

g,gr

tr-w

m,s

tr-to

(yl);

grt g

rain

s w

/ bt r

im +

out

er ri

ng o

f fib

rolit

e, re

lict s

t, fib

fold

ed p

ris s

il no

t

5838

28

5400

391

25

29

2 95

SLJ

-053

B

162

plg-

qtz-

hn-b

t,kf,o

p-tit

,cb;

wpo

(hn,

bt),

intm

ed m

etac

last

ite

5563

30

5380

209

14

19

4 95

SLJ

-056

A

164

hn-p

lg,o

p; w

-mpo

(hn)

; ign

twin

s in

som

e pl

g

58

Page 77: New Metamorphic Framework Hemlo - Geology Ontario

XE

AST

83 Y

NO

RT

83 R

AG

RD

1 R

AG

RD

2 D

EFM

SAM

NO

M

RN

NO

TE

S PL

N

5563

30

5380

209

54

59

4 95

SLJ

-056

B-2

16

5 hn

>grt

lyrs

, hn-

mt l

yrs,

mpo

(hn)

, Si i

n gr

t+so

me

hn o

bliq

ue to

Sm

, lot

s qt

z

5562

01

5380

481

14

19

4 95

SLJ

-057

A

166

hn-p

lg-q

tz,,o

p-tit

; mpo

(hn,

qtz

aggs

); m

afic

met

acla

stite

5559

80

5381

099

13

19

0 95

SLJ

-058

A

167

am(H

n>ac

t),pl

g,op

-cb-

qtz;

msv

; cla

ssic

tran

sitio

n zo

ne m

etab

asite

5557

95

5381

654

13

19

6 95

SLJ

-059

A

168

am(h

n-ac

t)-cb

-plg

,op-

qtz;

ipo(

am,a

ggs)

+cb

vns(

defm

d); v

eine

d m

etab

asite

5555

83

5381

951

13

19

0 95

SLJ

-060

A

169

zone

d am

(hn>

act),

epg-

cht-p

lg,o

p; u

pper

end

of t

z

5551

72

5382

082

13

19

0 95

SLJ

-061

B

170

zone

d am

(hn>

act),

epg-

plg,

op-ti

t-bt;

uppe

r end

of t

z

5551

72

5382

082

73

79

4 95

SLJ

-061

C

171

cht(m

g)-q

tz-c

b(vn

+mtrx

),,am

-op;

am

nuc

leat

ing;

cb

vns

fold

ed p

olyg

d; S

2

5569

38

5380

989

13

19

2 95

SLJ

-062

A

172

zone

d am

(hn>

act)-

plg,

cht-o

p-ep

g,bt

; wpo

(am

); ch

t cou

ld b

e la

te

5528

14

5383

708

43

49

4 95

SLJ

-064

A

173

qtz-

plg-

wm

,bt-g

rt-ch

t-cht

2(af

t bt),

to-o

p-ap

;mpo

(wm

, agg

s), b

t acr

oss

Sm

+ ll

axp

l cre

n, g

rt af

t Sm

pre

S2

5528

14

5383

708

43

49

4 95

SLJ

-064

B

174

cht2

aft

bt, m

po(w

m, a

ggs)

, bt a

cros

s S

m +

ll a

xpl c

ren,

grt

aft S

m +

S2

5531

71

5383

941

43

49

4 95

SLJ

-065

A

175

qtz-

plg-

bt-c

ht,g

rt,to

-op-

ap-w

m;b

t=po

lygo

nal a

rcs,

cren

ul a

t bt g

rade

, mpo

bt w

raps

grt

w/ o

bliq

ue S

i, S

2

5532

96

5384

431

24

29

6 95

SLJ

-066

A

176

fels

met

acla

stite

, plg

-qtz

-bt,c

b-ep

g,ap

; ana

stom

ipo(

bt,a

ggs)

5574

79

5380

979

13

19

4 95

SLJ

-067

A

177

2am

(hn>

act),

plg-

epg-

qtz,

tit-o

p;m

po(h

n,ag

gs),

epg-

qtz-

rich

lyr

5535

16

5381

918

13

19

6 95

SLJ

-070

A

178

znd

am(a

ct>h

n)-p

lg,e

pg-ti

t(aft

op)-

qtz;

ipo(

am) w

rap

auge

n(am

agg

)

5543

56

5381

389

13

19

4 95

SLJ

-072

A

179

znd

am(a

ct>h

n)-p

lg,e

pg-ti

t(aft

op)-

qtz;

hsz

on

edge

of t

s, a

m o

k in

it

5545

83

5381

183

14

19

6 95

SLJ

-073

A

180

hn-p

lg,,o

p-tit

-wm

2(af

t plg

)-ch

t; az

hsz

ipo(

hn,a

ggs)

5554

40

5380

368

14

19

2 95

SLJ

-075

A

181

hn,p

lg,o

p-ep

g; w

po(s

ome

am)

5553

99

5379

609

14

19

6 95

SLJ

-076

B

182

hn,p

lg'-e

pg-w

m(a

ft pl

g),o

p; ip

o(hn

), di

scor

d vn

(prn

?)

5599

43

5381

110

13

19

4 95

SLJ

-077

C

183

znd

am(h

n>>a

ct) l

yr,q

tz-e

pg-c

b zn

/vns

, mpo

(am

)

5601

79

5380

712

14

19

4 95

SLJ

-078

A

18

4 ly

rd m

basi

te(h

n-, e

pg-,

bt-c

ht-e

pg-r

ich

lyrs

), hn

pol

yg a

rcs

in c

renu

l of S

m

5598

17

5381

334

14

19

2 95

SLJ

-079

A

18

5 hn

,plg

-op;

som

e be

nt a

m p

rism

s, b

arel

y az

;

5596

57

5381

607

13

19

4 95

SLJ

-080

A

18

6 zn

d am

(act

>hn)

,,op-

epg-

plg;

mpo

(am

,op)

5598

69

5381

812

13

19

4 95

SLJ

-081

A

18

7 hn

met

acla

stite

, plg

-qtz

-hn-

op(g

ra +

),,ep

g-ch

t; m

essy

look

ing;

14?

5594

98

5381

878

13

19

0 95

SLJ

-082

B

18

8 hn

(som

e zo

natio

n)-p

lg,o

p-qt

z,ep

g; 1

4?

5593

65

5382

114

13

19

4 95

SLJ

-083

B

18

9 so

me

znd

am(h

n>>a

ct),p

lg-o

p,ep

g-ch

t; m

po(a

m);

14?

5589

65

5382

805

43

49

0 95

SLJ

-084

A

18

0 qt

z-pl

g-bt

,wm

,op-

ap;c

ould

be

high

er g

rade

than

43

as c

ht a

ll go

ne, i

e al

l use

d up

5591

33

5382

529

44

43

4 95

SLJ

-085

A

19

1 w

m(p

s,m

trx)-

cht-q

tz-c

b,bt

-plg

,ru-o

p;ps

eudo

s af

t por

phyr

obl w

/ inc

lusi

ons

as c

gr a

s m

trx g

rain

s, m

po

5591

33

5382

529

43

49

4 95

SLJ

-085

B

19

2 w

m-q

tz-p

lg'-b

t-cht

,,op-

to(b

lgrn

); w

m a

ft pl

g, m

po(m

icas

,agg

s)

5585

21

5383

555

23

29

4 95

SLJ

-086

C

19

3 qt

z-pl

g(N

a)-b

t,epg

-cht

, op;

mpo

(bt,c

ht,a

ggs)

, met

acla

stite

5585

21

5383

555

13

19

0 95

SLJ

-086

D

19

4 zn

d am

(hn

core

act

rim

)-pl

g, c

ht-o

p-tit

; met

abas

ite

5586

39

5383

358

24

29

4 95

SLJ

-087

A

19

5 qt

z-pl

g(N

a)-b

t,epg

, op-

ap-m

/z; m

po(b

t,agg

s), q

tz-r

ich

bt m

etac

last

ite

5587

77

5383

116

24

29

4 95

SLJ

-088

C

19

6 qt

z-pl

g-bt

,,epg

-ap-

kf-m

/z; m

po(b

t); fe

lsic

bt m

etac

last

ite

5590

34

5382

672

24

29

4 95

SLJ

-089

A

19

7 qt

z-pl

g-bt

,,un(

epg?

)-ap

-m/z

; mpo

(bt);

59

Page 78: New Metamorphic Framework Hemlo - Geology Ontario

XE

AST

83 Y

NO

RT

83 R

AG

RD

1 R

AG

RD

2 D

EFM

SAM

NO

M

RN

NO

TE

S PL

N

5652

35

5392

231

14

19

2 95

SLJ

-091

A

19

8 hn

-plg

-cb(

vns)

,,op-

epg;

wpo

(hn)

, cb

vns

rxld

def

md;

hn

met

acla

stite

5652

35

5392

231

74

79

4 95

SLJ

-091

B

19

9 qt

z-pl

g-cb

(vn,

mtrx

)-hn

, cht

-op;

mpo

(agg

s) fo

lded

tran

spos

ed c

b vn

s

5642

14

5392

028

13

19

0 95

SLJ

-092

A

20

0 am

(hn-

act)-

epg(

clot

s,m

trx),p

lg-o

p-qt

z; w

po(a

m,a

ggs)

;met

abas

ite

5632

06

5392

215

13

19

2 95

SLJ

-093

A

20

1 am

(hn>

>act

),epg

,op-

plg-

bt; w

po(a

m);

met

abas

ite

5496

15

5384

223

14

19

4 95

SLJ

-094

C

20

2 hn

zon

e, c

b-qt

z-am

(act

/hn)

zon

e, d

efm

d vn

in m

afic

met

acla

stite

5491

75

5383

960

42

49

4 95

SLJ

-095

A

20

3 w

m-q

tz-p

lg-b

t,,to

-op;

mpo

(wm

, cht

) cre

nula

ted,

def

md

poly

gd q

tz v

n, p

hoto

op

gz c

renu

l

5484

90

5383

577

73

79

0 95

SLJ

-096

A

20

4 ac

t(blg

rn-p

lgrn

)-cb

-qtz

,bt(m

ost t

o am

),cht

-op-

un(to

o fg

r, tit

?)

5484

77

5384

329

24

29

3 95

SLJ

-098

A

20

5 pl

g-qt

z-ep

g-bt

,,op-

m/z

-cht

; w-m

po(b

t,agg

s);

5484

77

5384

329

24

29

3 95

SLJ

-098

B

20

6 pl

g-qt

z-ep

g-bt

,,op-

m/z

-cht

; w-m

po(b

t,agg

s);

5484

77

5384

329

73

79

4 95

SLJ

-098

C

20

7 ch

t-qtz

-plg

-cb,

,op-

epg-

bt; m

po(c

ht,a

ggs)

, is

this

hsz

or l

yr in

met

acla

stite

?; 2

3?

5492

99

5384

987

73

79

3 95

SLJ

-099

B

20

8 qt

z-bt

-plg

-cb-

cht,e

pg-o

p; m

po(b

t,agg

s)

5487

44

5385

269

73

79

2 95

SLJ

-100

B

20

9 bt

-act

-plg

-cb,

cht

(mg)

-qtz

, op-

m/z

; wpo

(bt)?

5485

90

5385

649

73

79

0 95

SLJ

-101

A

21

0 bt

-cb-

qtz-

plg,

,cht

-m/z

; vfg

r lith

ic c

last

s in

; bt-c

b m

etac

last

ite

5485

90

5385

649

73

79

4 95

SLJ

-101

C

21

1 w

m-c

ht-q

tz-e

pg, b

t-cb;

mpo

(wm

,cht

,agg

s), q

tz +

plg

xls

/cla

sts,

ep-

bt m

clas

tite

5503

75

5385

943

73

79

4 95

SLJ

-102

B

21

2 ch

t-op-

cb-q

tz-p

lg,e

pg; m

po(c

ht,a

ggs)

; loo

ks li

ke c

ht-c

b zo

ne a

t YK

5495

38

5385

863

73

79

2 95

SLJ

-103

A

21

3 ep

g-qt

z-cb

-plg

,bt,c

ht-o

p-w

m-ti

t; m

etam

orph

osed

cb

altn

of f

elsi

c cl

astit

e; 2

3?, v

ns

5503

25

5386

206

23

29

5 95

SLJ

-104

A

21

4 pl

g-w

m-q

tz,b

t-cht

,cb-

op; m

-ipo(

wm

,cht

,agg

s); f

elsi

c m

etac

last

ite

5503

25

5386

206

72

79

4 95

SLJ

-104

B

21

5 m

etad

def

md

qtz-

cb-to

vn

w/ w

mal

tn in

met

afel

site

;qtz

-cb-

wm

-to,c

ht; c

ren

5493

94

5386

737

72

79

4 95

SLJ

-106

A

216

cb-q

tz,,c

ht(m

g)-to

(blg

rey)

-op;

def

md

wel

l rex

ld q

tz-c

b vn

and

adj

acen

t cb

altn

5493

58

5387

115

22

29

4 95

SLJ

-107

B

21

7 qt

z-pl

g-w

m,c

ht-c

b,op

-tit;

mpo

(wm

,cht

,agg

s); f

elsi

c m

etac

last

ite

5495

98

5387

472

29

29

0 95

SLJ

-108

A

21

8 qt

z-pl

g-w

m,,o

p; e

ssen

tially

msv

, lik

ely

met

ad k

-alte

red

fels

ic m

etac

last

ite

5495

98

5387

472

23

29

2 95

SLJ

-108

D

21

9 ch

t-cb-

qtz-

plg,

,wm

-op-

bt; b

t not

hea

lthy;

wpo

(cht

), ni

cely

rexl

zd m

clas

tite

5495

98

5387

472

23

29

0 95

SLJ

-108

E

22

0 qt

z-pl

g-w

m-c

b-ch

t,,op

-bt-t

o(bl

); fe

lsic

met

acla

stite

5489

68

5388

327

23

22

3 95

SLJ

-110

B

22

1 pl

g-qt

z-bt

-cb-

cht(1

+2),,

op-a

p; w

-mpo

(bt);

som

e of

cht

is re

trog;

mcl

astit

e

5480

19

5388

220

23

22

0 95

SLJ

-111

A

22

2 pl

g-bt

(agg

aft?

)-cb

,cht

(som

e ch

t2),e

pg-a

p-m

/z; i

f mgr

td, c

ompl

etel

y re

xlzd

; 22

over

prin

t?

5480

19

5388

220

73

79

0 95

SLJ

-111

B

22

3 ep

g-bt

-plg

-qtz

,cb-

cht,o

p; c

urio

us e

pg-r

ich

rk, m

etac

baltn

?

5472

45

5388

699

24

22

4 95

SLJ

-112

D

22

4 pl

g-bt

-cht

-qtz

-cb-

epg,

,op-

ap;b

t po

cren

w/ b

t ll S

2,ch

t lat

er; m

etac

last

ite

5471

83

5389

982

73

79

4 95

SLJ

-114

B

22

5 cb

-am

(pal

e br

n),p

lg-e

pg-q

tz,o

p(vf

gr);m

po(a

m,c

bagg

s);c

b-am

sch

ist

5471

83

5389

982

13

12

0 95

SLJ

-114

C

22

6 am

-cht

-epg

-cb

zn, c

ht-c

b-qt

z zn

, epg

-qtz

-cb

zn; 7

2 ov

erpr

int?

5469

33

5390

642

24

29

2 95

SLJ

-115

A

22

7 pl

g-qt

z,bt

-epg

,cht

-op-

tit; w

po(b

t,agg

); w

ell r

ound

ed q

tz,p

lg c

last

s

5514

99

5382

841

43

49

4 95

SLJ

-117

B

22

8 qt

z-bt

-wm

-plg

-cb,

,op-

to-m

/z;m

po (b

t-cht

-wm

) stra

ight

, pre

curs

or to

epg

rk, 7

3 po

ssib

ly

5513

05

5382

080

73

79

6 95

SLJ

-118

A

22

9 ch

t-cb-

plg-

qtz,

,bt-o

p; ip

o(ch

t,bt,a

gg);c

ht-c

b-bt

sch

ist;

pre-

,syn

met

a al

tn?

5513

05

5382

080

13

19

6 95

SLJ

-118

B

23

0 hn

>act

,cht

-epg

-cb,

op; i

po(a

m,a

gg),

hn c

ol b

ut a

ct b

irefr

60

Page 79: New Metamorphic Framework Hemlo - Geology Ontario

XE

AST

83 Y

NO

RT

83 R

AG

RD

1 R

AG

RD

2 D

EFM

SAM

NO

M

RN

NO

TE

S PL

N

5517

17

5381

884

13

12

6 95

SLJ

-119

B

23

1 hn

/act

,cht

-epg

,qtz

-op;

ipo(

am,c

ht a

gg),

cht s

eam

s co

uld

be la

tish;

12

over

prin

t?

5517

17

5381

884

73

79

2 95

SLJ

-119

C

23

2 qt

z-cb

-cht

vei

n cu

ts b

t-plg

rock

5519

49

5381

415

14

19

0 95

SLJ

-120

A

23

3 ts

thic

k; h

n(pr

is)(

aft c

px)-

cpx,

op-

bt; c

px li

kely

ign

5519

49

5381

415

23

29

6 95

SLJ

-120

B

23

4 (v

fgr q

tz-fp

)-bt

-act

,cht

-cb,

tit-m

/z; i

po(b

t,act

): bt

-act

met

acla

stite

5519

49

5381

415

14

19

4 95

SLJ

-120

C

23

5 hn

(blo

cky,

pris

), pl

g-qt

z-tit

, op;

con

torte

d po

(pris

am

) ben

t abo

ut b

lock

y hn

5517

32

5381

082

13

19

4 95

SLJ

-121

B

23

6 zn

d am

(act

>hn)

-plg

,epg

,cht

-op-

tit; p

olyg

onal

arc

s of

am

5531

99

5380

556

13

19

2 95

SLJ

-122

A

23

7 he

tero

am

(hn>

act)-

epg,

plg-

qtz,

op-ti

t; w

po(a

m)

5535

21

5380

739

13

19

4 95

SLJ

-123

A

23

8 he

tero

am

(hn>

act)-

plg,

,epg

,op-

tit; w

po(a

m) w

arps

aro

und

lge

am g

rain

s

5532

70

5381

080

12

19

4 95

SLJ

-124

B

23

9 ac

t,epg

-cht

-plg

,op;

cb

vein

; mpo

(act

) cre

nula

ted

w/ c

b ve

in, m

etab

asite

5532

70

5381

080

12

19

4 95

SLJ

-124

C

24

0 ac

,qt-c

b(vn

),epg

-cht

-op-

tit; m

po(a

ct),

vn d

efm

ed re

xld,

vn

pre-

to s

yn m

eta

5540

52

5380

781

13

12

4 95

SLJ

-125

A

24

1 ac

t>>h

n,,p

lg-c

ht-e

pg-o

p; th

in c

ht-c

b-qt

z-ep

g hs

z; m

etab

asite

5550

54

5380

800

12

19

6 95

SLJ

-126

A

24

2 ac

t-cht

(mg)

-epg

,,hnr (ig

n)-o

p-qt

z-pl

g-tit

-cb;

ipo(

act,c

ht,a

ggs)

; met

abas

ite

5549

28

5380

984

13

19

4 95

SLJ

-128

A

24

3 zn

d am

(act

>>hn

), pl

g-ep

g, o

p-tit

5549

28

5380

984

13

19

6 95

SLJ

-128

C

24

4 ch

t-cb-

am(a

ct-h

n) z

n w

/ ipo

(am

,cht

,agg

s), m

ore

qtz-

plg;

13+

73 s

ame

time?

5540

20

5379

339

13

19

4 95

SLJ

-129

A

24

5 zn

d am

(hn>

>act

),plg

,qtz

-op;

mpo

(am

), au

gen

amph

ibol

ite(m

etab

asite

)

5540

20

5379

339

13

19

6 95

SLJ

-129

C

246

znd

am(a

ct>h

n)-p

lg,,o

p; h

sz d

ispl

epg

(euh

,rand

om)-

plg

vn c

uts

ipo(

am)

5538

06

5379

171

13

19

4 95

SLJ

-130

A

24

7 ep

g-cb

-znd

am

(act

>hn)

-plg

,,cht

-op;

mpo

(am

,agg

; maf

ic m

etac

last

ite

5537

79

5378

978

14

12

4 95

SLJ

-131

A

24

8 hn

-plg

',wm

(aft

plg)

,cht

2-ep

g2(th

in s

eam

s)as

soc

w/ w

mal

tn o

f plg

, mpo

(lin)

5495

91

5384

024

43

49

0 95

SLJ

-132

B

24

9 qt

z-pl

g-bt

-cb-

wm

-cht

,,op-

to-m

/z;c

oars

er g

r, pr

ecur

sor t

o ep

g rk

, 73

poss

ibly

5539

31

5383

305

43

49

4 95

SLJ

-133

A

25

0 qt

z-bt

-plg

-cht

-wm

,,op-

to-m

/z;m

po (b

t-cht

-wm

) stra

ight

,

5541

90

5382

971

43

42

5 95

SLJ

-134

A

25

1 qt

-plg

-wm

-cht

2(af

t bt),

bt,o

p-to

(grn

)-ap

; i-m

po(w

m,b

t,cht

), S

m w

raps

bt

5541

90

5382

971

42

49

0 95

SLJ

-134

B

25

2 w

m-q

tz-p

lg-c

ht;c

b po

iks!

;42

on 4

3?, a

ll bt

gon

e?, b

ut c

ht p

oiks

look

prim

ary

5552

26

5382

525

23

22

4 95

SLJ

-135

A

25

3 pl

g-qt

z-bt

-cb-

cht(1

+2),,

op-a

pm/z

; mpo

(bt);

cht

aft

bt p

rom

inen

t;mcl

astit

e

5552

26

5382

525

43

42

0 95

SLJ

-135

B

25

4 pl

g-qt

z-w

m,c

ht(1

-2),c

b(po

iks)

-bt-o

p; S

m(c

ht,w

m) c

renu

l, po

iks

afte

r Sm

5549

60

5383

094

24

29

0 95

SLJ

-136

B

25

5 pl

g-bt

-qtz

-epg

,,cb-

m/z

-op;

mpo

(bt)

wra

ps z

nd ig

n pl

g xl

s; b

t-epg

mcl

astit

e

5548

85

5383

648

24

22

4 95

SLJ

-137

A

25

6 pl

g-qt

z-w

m-c

ht(p

roba

b 2)

,,cb-

op-a

p; m

po(w

m) w

raps

cgr

plg

, fel

s m

clst

e

5548

60

5383

840

24

22

2 95

SLJ

-138

A

25

7 bt

-am

-grt

mcl

astit

e, q

tz-a

m-e

pg v

n (e

x cb

-qtz

-cht

vn?

,

5548

60

5383

840

44

49

4 95

SLJ

-138

BB

25

8 pl

g-qt

z-bt

-wm

,st-g

rt,op

-m/z

-am

(blg

rn);g

rt S

i obl

q to

Sm

, am

on

edge

of t

s

5548

60

5383

840

44

42

4 95

SLJ

-138

C

25

9 bt

-cht

2-w

m-g

rt-hn

sch

ist,

hn-b

t-grt

in z

ones

, hn

is b

lgry

-grn

var

iety

5549

05

5383

931

24

29

4 95

SLJ

-139

A

26

0 pl

g-qt

z-bt

-znd

am

(hn>

act),

epg,

cb-o

p; c

b-be

arin

g se

d, n

ow b

t-hn

mcl

astit

e

5549

36

5384

094

24

29

2 95

SLJ

-140

A

261

bt-g

rt m

clas

tite

+ gr

t-hn,

epg

-grt-

hn c

alcs

ilica

tely

rs; w

po(b

t,hn)

; 74

also

5549

36

5384

094

44

49

4 95

SLJ

-140

BB

26

2 qt

z-bt

-plg

-grt,

st-a

m,o

p-to

-m/z

-ap;

mpo

bt,

aggs

;

5544

69

5384

259

44

49

4 95

SLJ

-141

A

26

3 qt

z-bt

-plg

-wm

,grt-

st,o

p-to

-m/z

;grt

star

ting

to ro

tate

, st j

ust g

ettin

g gr

owin

g, li

ttle

rota

tion

of m

po (b

t-wm

)

61

Page 80: New Metamorphic Framework Hemlo - Geology Ontario

XE

AST

83 Y

NO

RT

83 R

AG

RD

1 R

AG

RD

2 D

EFM

SAM

NO

M

RN

NO

TE

S PL

N

5574

52

5390

598

25

29

4 95

SLJ

-142

A

26

4 pl

g-qt

z-hn

,cht

2-bt

,wm

(aft

plg)

,op-

ap; m

po(h

n,ag

gs) w

raps

hn,

plg

auge

n

5570

21

5389

259

14

19

0 95

SLJ

-143

A

26

5 hn

,cb(

amyg

s,vn

)-pl

g-qt

z(am

yg,v

n,m

trx),o

p-ep

g; v

ns d

efm

d re

xld

5566

61

5388

762

44

42

0 95

SLJ

-144

A

26

6 w

m-c

ht2-

qtz,

grt'-

ps(c

ht)-

plg,

op; s

ever

e re

trod

of a

z rk

5566

61

5388

762

44

43

4 95

SLJ

-144

E

26

7 bt

-qtz

-plg

-wm

-st,c

ht(m

trx,p

s)-g

rt,op

-to; l

ots

of b

t obl

ique

to S

m, c

ht-w

m a

ft st

,

5566

61

5388

762

44

42

4 95

SLJ

-144

G

26

8 qt

z-bt

-st-g

rt-ch

t-wm

-plg

,op-

to-m

/z;c

ht p

oiks

at a

ngle

to S

m, w

po(b

t-wm

-agg

s), c

ht(m

g) p

oiks

/ps

aft s

t

5526

01

5385

472

24

29

4 95

SLJ

-146

A

26

9 pl

g-qt

z,bt

-wm

,cht

-cb(

bleb

s); m

po(b

t,wm

);

5526

01

5385

472

14

19

2 95

SLJ

-146

D

27

0 hn

-bt-g

rt-pl

g(ca

), ep

g(vf

gr c

lust

ers)

,cb

in q

tz-r

ich

zone

s; h

n-gr

t mcl

astit

e; 2

4 al

so?

5522

14

5385

767

25

22

4 95

SLJ

-147

C

27

1 pl

g-qt

z-hn

-cb-

cht2

(aft

bt?)

,op-

epg;

mpo

(am

,cht

2,ag

gs) w

arpe

d;S

2; h

n m

clst

e

5519

90

5385

963

12

19

4 95

SLJ

-148

B

27

2 ac

t-epg

-plg

-qtz

,,cb-

op-c

ht-b

t; m

po(a

m,a

ggs)

;maf

ic m

etac

last

ite

5520

70

5386

287

13

19

4 95

SLJ

-149

A

27

3 am

(hn>

>act

)-pl

g,ep

g-qt

z,op

-cht

-cb;

mpo

(am

,agg

s);m

afic

met

acla

stite

5521

63

5386

632

23

29

4 95

SLJ

-150

A

27

4 pl

g-qt

z-bt

,epg

-cht

,cb-

op-m

/z; m

po(b

t,agg

s); b

t-epg

fels

ic m

etac

last

ite

5521

63

5386

632

43

49

4 95

SLJ

-150

B

27

5 qt

z-w

m-p

lg,c

ht(s

ome,

all?

2)-

bt,c

b-op

; mpo

(wm

,cht

);qfp

sch

ist

5528

38

5386

977

13

19

4 95

SLJ

-153

A

27

6 pl

g-qt

z-zn

d am

(hn>

>act

)-ep

g-bt

-cht

(2?)

; mpo

(am

,bt,c

ht);

maf

ic m

clas

tite

5515

95

5395

713

44

42

4 95

SLJ

-154

A

27

7 w

m-c

ht-q

tz,p

lg,o

p;co

mpl

ete

retro

gd o

f az

porp

h sc

hist

, 42

on 4

4, m

po w

raps

ps/

porp

hs

5509

08

5396

489

13

19

4 95

SLJ

-155

A

27

8 pl

g-zn

d am

(hn>

>act

)-qt

z,bt

-cht

2,op

-tit;

mpo

(am

,bt);

maf

ic m

etac

last

ite

5519

31

5394

753

14

19

4 95

SLJ

-156

B

27

9 am

phib

(dk

blgr

n hn

) w/ b

t-epg

-ric

h zo

ne, c

ht in

am

pb (2

?), m

po(h

n)

5517

17

5392

916

14

19

0 95

SLJ

-157

A

28

0 pl

g(he

tero

)-hn

,op-

qtz,

cb; l

euco

crat

ic m

etab

asite

5543

17

5393

711

33

39

0 95

SLJ

-158

A

28

1 am

(clls

),cht

(mg)

,tit-p

lg; u

maf

?.

5543

17

5393

711

33

39

2 95

SLJ

-158

B

28

2 ac

t-cb,

,tit-c

ht-o

p; m

sv a

ct a

ggre

g cu

t by

cb v

n, b

oth

defo

rmed

, no

mpo

5749

72

5393

130

25

42

4 95

SLJ

-159

A

28

3 pl

g-qt

z-hn

-cht

2(af

t bt),

cb(s

ome

lyrs

)-bt

',wm

2(af

t plg

); m

po(a

m,c

ht,b

t)

5748

11

5392

802

25

42

4 95

SLJ

-160

A

28

4 pl

g-qt

z-hn

-bt,e

pg-c

ht2,

kf-ti

t-wm

2(af

t plg

)-op

; mpo

(am

,bt);

met

acla

stite

5747

88

5392

527

25

29

4 95

SLJ

-162

A

28

5 pl

g-qt

z-hn

-bt(d

k ol

brn)

,,epg

-kf-o

p-tit

; mpo

(hn,

bt);

intm

met

acla

stite

5743

35

5392

455

25

29

4 95

SLJ

-163

A

28

6 pl

g-qt

z-hn

,bt-e

pg-k

f; m

po(h

n,bt

); hn

met

acla

stite

5737

65

5391

979

25

29

2 95

SLJ

-164

A

28

7 pl

g-qt

z-hn

,epg

,bt-k

f-tit-

op-a

p; h

n m

etac

last

ite

5732

07

5390

843

25

29

2 95

SLJ

-166

A

28

8 pl

g-qt

z-hn

(pal

e gr

ygrn

)-bt

,op-

ap; w

po(b

t,am

,agg

);hn-

bt m

etac

last

ite

5726

90

5390

324

14

19

2 95

SLJ

-167

A

28

9 pl

g-hn

,wm

2(af

t plg

),tit-

op; h

n lin

?; w

eak

but p

erva

sive

wm

altn

of p

lg

5726

90

5390

324

74

79

0 95

SLJ

-167

B

29

0 cp

x-ric

h ly

rs w

/hn-

act,e

pg; m

ain

phas

e m

etam

not

late

altn

5739

47

5391

440

14

12

4 95

SLJ

-168

BA

29

1 pl

g-hn

-qtz

,cht

2(af

t bt)-

wm

2(af

t plg

)-bt

,op-

act-m

/z-a

p-tit

; maf

ic m

clas

tite,

fldd

lyr

5745

64

5392

118

73

79

2 95

SLJ

-169

B

29

2 qt

z-cb

-epg

,plg

'(wm

2)-a

ct,ti

t;wm

=tlc

?; m

etam

cb-

qtz

vein

; pro

tolit

h fo

r epg

?

5736

04

5393

769

14

19

2 95

SLJ

-170

A

29

3 hn

, hn-

grt l

yrs,

cb

lyrs

;hn(

blgr

n)-p

lg',o

p-ch

t2-w

m2;

lyrd

am

pb, m

etab

asite

5736

04

5393

769

74

79

4 95

SLJ

-170

E

29

4 hn

-epg

-plg

rk c

ut b

y cb

-hn-

op v

n, m

po(h

n)+c

b vn

fold

ed, h

n po

lyg

arcs

5739

60

5393

652

14

19

2 95

SLJ

-171

A

29

5 hn

-plg

-qtz

,,op-

wm

2(af

t plg

nea

r fra

ct/v

n); w

po(h

n,ag

g), c

b-op

vn

defm

d

5746

70

5393

530

13

19

0 95

SLJ

-172

A

29

6 zn

d am

(hn>

>act

)-pl

g',w

m2(

aft p

lg n

ear f

ract

s?vn

s),ti

t-op;

met

abas

ite

62

Page 81: New Metamorphic Framework Hemlo - Geology Ontario

XE

AST

83 Y

NO

RT

83 R

AG

RD

1 R

AG

RD

2 D

EFM

SAM

NO

M

RN

NO

TE

S PL

N

5746

70

5393

530

13

19

4 95

SLJ

-172

C

29

7 am

(act

/hn)

-plg

-qtz

-to,,o

p; m

m to

poi

ks(!)

ove

rgro

w m

po(a

m)

5746

70

5393

530

74

79

0 95

SLJ

-172

E

29

8 qt

z-to

(pk-

blgr

y)-e

pg-p

lg'-h

n, g

rt, o

p; m

etaa

ltn

5756

99

5393

633

24

22

4 95

SLJ

-173

A

29

9 qt

z-kf

-wm

-plg

',bt-c

ht2(

aft b

t)-ep

g,to

(dkg

rn);

plg

to w

m; m

po(w

m)fe

lmcl

ste

5760

18

5393

622

14

12

0 95

SLJ

-174

A

30

0 hn

-plg

-grt-

cht2

(aft

bt),q

tz-o

p,ap

; som

e w

m a

ft pl

g; m

etab

asite

5760

18

5393

622

25

22

0 95

SLJ

-174

C

30

1 hn

-bt m

clas

tite

mos

tly re

trod

to c

ht-e

pg-w

m s

chis

t mcl

astit

e

5770

87

5393

699

14

11

0 95

SLJ

-175

B

302

hn-p

lg'-b

t'-qt

z-cb

-epg

-wm

(aft

plg)

-cht

(aft

bt),,

tit-p

rn(a

ft bt

); sp

ecta

c re

tro

5777

65

5393

694

43

49

0 95

SLJ

-176

A

30

3 bt

-grt-

qtz-

plg,

cht,o

p, n

o m

s, b

t ver

y dk

ple

o E

-W, 4

3 or

hig

her g

rade

, sch

ist

5777

65

5393

694

24

29

0 95

SLJ

-176

B

30

4 qt

z-pl

g-bt

,grt,

op; n

o m

s, n

ot u

sefu

l, ps

amm

ite, 2

3 or

hig

her g

rade

5777

65

5393

694

24

29

0 95

SLJ

-176

C

30

5 qt

z-pl

g-bt

,grt,

op; n

o m

s, 2

3 or

hig

her g

rade

5788

39

5393

809

14

19

4 95

SLJ

-177

A

30

6 hn

-plg

,,op-

tit-w

m2(

aft p

lg)-

cb; m

po(h

n,ag

gs);

met

abas

ite

5788

39

5393

809

33

39

4 95

SLJ

-177

B

30

7 am

(clls

,trem

?),,c

ht-tl

c-op

; mpo

(am

,agg

s)

5792

71

5393

802

14

19

2 95

SLJ

-179

A

30

8 hn

-plg

,,qtz

-op

lyr;

qtz-

epg

lyr;

mpo

(am

); ep

g=ex

cb

altn

?, a

ssoc

w/ q

tz; 7

3+ a

lso

poss

ible

5799

06

5393

724

25

29

4 95

SLJ

-180

A-2

30

9 qt

z-pl

g-bt

lyr,

hn-p

lg-q

tz-ti

t-epg

lyr

5799

06

5393

724

42

42

4 95

SLJ

-180

C

31

0 qt

z-pl

g-w

m-to

,cht

(2?)

, not

e cg

r to;

too

cgr f

or 4

2; re

trod

44?

5804

50

5393

719

24

22

4 95

SLJ

-181

A

31

1 qt

z-pl

g-bt

-grt-

cht2

,op;

grt

Si o

bliq

ue to

Sm

(mpo

bt);

grt-

bt m

clas

tite

5811

69

5393

726

45

42

4 95

SLJ

-182

A

31

2 qt

z-pl

g-bt

-st,w

m-g

rt-ky

-sil,

op; m

po(b

t,wm

,sil)

; Si s

t,ky

oblq

to S

m,

5811

69

5393

726

73

79

0 95

SLJ

-182

B

31

3 ac

t-epg

-atz

-cb-

plg,

,op-

tit; w

here

is c

px if

a 4

5 gr

ade

otcp

; cal

csili

cate

rk

5782

80

5393

513

44

41

0 95

SLJ

-183

A

31

4 pl

g-qt

z-bt

-cht

2,st

-grt,

op-to

-prn

(aft

bt);

st w

orm

y (o

n w

ay o

ut?)

, cht

repl

acin

g gr

t

5782

80

5393

513

44

41

0 95

SLJ

-183

C

31

5 qt

z-pl

g-ch

t-wm

(ps)

,grt-

ps,o

p-to

;wm

pse

udos

(I) a

ft st

?, a

lot o

f prn

, all

bt g

one,

grt

goin

g to

cht

5786

91

5393

471

44

41

4 95

SLJ

-184

B

31

6 qt

z-bt

-cht

-plg

-grt,

cht2

-str ,o

p-to

(blg

rn)-

ap-p

rn;re

lict s

t, ch

t aft

alsi

lic?,

no

wm

, prn

aft

bt, c

ht a

ft ro

tatd

grt

5818

62

5393

105

44

41

4 95

SLJ

-188

B

31

7 pl

g-qt

z-bt

,grt-

cht2

(aft

bt)-

wm

2(af

t plg

),prn

(aft

bt);

Si(g

rt) o

blqu

to S

m(b

t)

5836

26

5392

926

14

19

0 95

SLJ

-190

C

318

ampb

(hn-

plg-

qtz-

grt,,

op-ti

t) ly

r; ca

lcsi

lic ly

r(qt

z-cp

x--g

rt-pl

g), m

af m

clas

tite

5841

02

5393

098

13

19

4 95

SLJ

-191

A

31

9 zn

d am

(hn>

>act

),'pl

g-(w

m(2

aft

plg)

,op;

mpo

(hn)

, mpo

(am

) dis

cord

frac

ts;

5842

06

5393

788

24

21

4 95

SLJ

-192

A

32

0 qt

z-pl

g,ch

t2(a

ft bt

)-pr

n vn

s; m

po(c

ht2/

bt),

prn

vein

s di

scor

dant

5809

31

5393

435

14

12

4 95

SLJ

-193

A

321

plg'

-hn-

wm

2(af

t plg

),epg

-cht

2,tit

-op

lyrs

; qtz

-epg

-plg

lyr;

mpo

(hn,

cht2

)

5808

65

5393

260

45

49

0 95

SLJ

-194

A

32

2 bt

-plg

-st-k

y,gr

t-wm

,op-

to-a

p(cg

r);w

m (m

trx, a

ft pl

g), c

gr k

y-st

, ben

t ky,

cht

aft

st, q

tz a

bsen

t, vn

mar

gin?

5808

65

5393

260

45

42

4 95

SLJ

-194

B

32

3 ch

t-wm

-qtz

-plg

-ps,

grt,s

t-op-

to;s

ever

e re

trod

of a

z rk

, ps

= st

, ky?

, mpo

wm

-cht

, agg

s

5809

98

5392

660

74

79

2 95

SLJ

-195

A

32

4 pl

g-qt

z-hn

-bt-e

pg,,o

p-ch

t-m/z

; mpo

(hn,

bt);

hn-b

t-epg

met

acla

stite

5810

21

5392

362

73

79

0 95

SLJ

-196

A

325

act,,

bt-p

lg-e

pg-c

ht2(

aft b

t); a

ctin

olite

rock

5810

21

5392

362

14

19

2 95

SLJ

-196

B

326

hn-p

lg,c

px-e

pg,o

p-tit

; cpx

-epg

clo

ts in

am

pb; w

po(h

n)

5806

61

5391

932

74

79

4 95

SLJ

-197

AA

32

7 hn

-plg

-tit,

hn-q

tz, h

n-ep

g, e

pg-q

tz ly

rs; c

alcs

ilica

te m

clas

tite;

mpo

(hn,

aggs

)

5806

61

5391

932

25

29

2 95

SLJ

-197

B

32

8 kf

-qtz

,bt-h

n-ep

g,ap

-tit-o

p; w

po(b

t); fe

lsic

met

acla

stite

5806

13

5391

818

14

19

4 95

SLJ

-198

A

32

9 hn

-plg

,grt-

tit,o

p-ep

g; m

po(h

n) w

arps

aro

und

grt-e

pg c

lots

63

Page 82: New Metamorphic Framework Hemlo - Geology Ontario

XE

AST

83 Y

NO

RT

83 R

AG

RD

1 R

AG

RD

2 D

EFM

SAM

NO

M

RN

NO

TE

S PL

N

5813

79

5393

784

45

49

4 95

SLJ

-201

A

330

qtz-

bt-p

lg-s

t-grt,

wm

-ky-

sil-c

ht2-

wm

2,op

-m/z

-toch

t2; s

pect

ac ro

tate

d st

, grt;

NB

sil

5813

79

5393

784

45

49

4 95

SLJ

-201

AA

33

1 qt

z-pl

g-cr

d,bt

-st-k

y,to

-ap-

m/z

-grt;

mpo

(bt,a

gg);

ky-s

t rel

licts

in c

rd

5813

79

5393

784

44

49

4 95

SLJ

-201

B

33

2 cr

d-bt

-qtz

,grt-

str -c

ht(m

g),to

-m/z

-op-

ap;re

lict s

tin c

rd, c

rd rp

lc s

t + o

vrgr

w b

t mpo

, grt

is o

lder

; no

wm

5813

79

5393

784

44

43

4 95

SLJ

-201

D

33

3 ch

t2-c

b2-p

lg-b

t-qtz

,ant

'-grt,

op-a

p;m

po(a

nt-b

t, ag

gs);

cht2

rand

om o

rient

, sev

ere

retro

grd,

cb

=sid

erite

?

5813

79

5393

784

45

42

4 95

SLJ

-201

EA

33

4 qt

z-pl

g-bt

-grt-

st,k

y,si

l-to-

ap-o

p-m

/z-c

ht2;

44

with

44+

42 a

t one

end

, ky

is n

ot e

arly

, grt

is o

lder

5813

79

5393

784

45

49

4 95

SLJ

-201

EB

33

5 qt

z-pl

g-bt

,st-k

y-w

m,o

p-m

/z-c

ht2;

mpo

(bt,a

ggs)

,Si i

n st

obl

q S

m,s

t-ky-

ap-q

tz v

n

5813

79

5393

784

43

49

5 95

SLJ

-201

G

33

6 qt

z-pl

g-bt

-cht

,grt,

op-to

-ap-

m/z

; grt

look

s m

ed g

rade

as

does

rest

of r

k, c

ht(m

g), m

-ipo

bt, c

ht ,

aggs

44?

5813

79

5393

784

44

49

5 95

SLJ

-201

H

33

7 an

t-bt-c

ht(m

g)-q

tz-p

lg,g

rt,op

-ap-

m/z

;qtz

-bt-a

nt,g

rt-ch

t,op;

m-ip

o(ch

t-bt-a

nt) w

raps

grt

w/ S

i obl

ique

5813

79

5393

784

54

59

4 95

SLJ

-201

IB

338

plg-

qtz-

gru,

grt,b

t-op;

mpo

(gru

,bt);

Fe-

rich

met

ased

5819

67

5394

049

13

19

4 95

SLJ

-203

A

33

9 hn

(trac

e ac

t)-bt

,plg

,qtz

-op-

tit-(

cb-e

pg a

myg

); m

etab

asite

, ver

y up

per t

z

5819

67

5394

049

23

29

2 95

SLJ

-203

B

34

0 pl

g-qt

z-ep

g,bt

-cb-

wm

,op;

wpo

(agg

); ep

g-bt

met

acla

stite

, app

roac

hes

73?

5827

77

5394

529

74

79

0 95

SLJ

-204

B

34

1 zn

d am

(hn>

act)-

bt-c

px,e

pg-p

lg,ti

t, bt

-ric

h ca

lcsi

licat

e rk

, tz

am w

/ cpx

(dio

); ly

r

5827

77

5394

529

24

22

3 95

SLJ

-204

D

34

2 pl

g-qt

z-bt

-wm

2-ch

t2,g

rt-cb

(vn

w/ g

rt), m

po(b

t); re

trod

bt-g

rt m

etac

last

ite

5827

77

5394

529

14

19

4 95

SLJ

-204

F

343

hn-p

lg,g

rt,tit

-op;

mpo

(hn)

, met

abas

ite

5946

92

5393

357

14

19

4 95

SLJ

-205

A

34

4 hn

-plg

,op-

bt-e

pg ly

r, cp

x(gr

n)-z

nd a

m-q

tz-e

pg ly

r; m

afic

exc

b m

etac

last

ite; 7

4 al

so?

5951

05

5392

445

23

22

4 95

SLJ

-207

A

34

5 qt

z-pl

g-bt

-cht

2 ly

r, ep

g-ac

t-em

-cht

lyr;

mpo

(bt);

bt m

etac

last

ite w

i cls

l lyr

5962

44

5390

968

13

22

4 95

SLJ

-208

B

34

6 zn

d am

(hn>

act)-

bt-p

lg',w

m2(

aft p

lg),e

pg-ti

t-op;

mpo

(am

,bt);

maf

ic m

clas

tite

5959

54

5390

914

25

22

4 95

SLJ

-209

A

34

7 pl

g-qt

z-hn

-cht

2(af

t bt),

wm

2(pl

g)-a

p-op

; ret

rod

maf

ic m

etac

last

ite

5954

51

5390

931

24

21

4 95

SLJ

-210

A

34

8 in

tens

ely

retro

d bt

-gar

net q

tz-fp

sch

sist

, NB

prn

wm

2-ch

t2

5954

51

5390

931

24

22

4 95

SLJ

-210

B

34

9 qt

z-pl

g-bt

,grt-

cht2

,ap-

op-m

/z; m

po(b

t,agg

s); b

t-grn

t met

acla

stite

; 23+

?

5947

39

5391

016

45

49

4 95

SLJ

-211

A

35

0 bt

-qtz

-plg

(-ve

to q

tz)-

sil-s

t-cht

2,gr

t,op-

to-a

p-m

/z; a

ll w

m is

aft

plg;

mpo

bt-s

il w

raps

grt,

st (

mim

etic

?)

5947

39

5391

016

45

49

4 95

SLJ

-211

B

35

1 pl

g-qt

z-ch

t2-b

t-st-s

il,gr

t,op-

to-a

p-m

/z; s

ever

e re

tro o

f bt,

sil l

ooks

syn

tect

e

5947

39

5391

016

45

49

0 95

SLJ

-211

C

35

2 qt

z-cr

d-st

-plg

,grt-

sil-b

t,op-

ap-to

-m/z

; rel

ict s

t sil

in c

rd, w

ellro

unde

d gr

t, si

l pre

-crd

, sil

conc

in h

sz?

5951

46

5389

871

74

79

0 95

SLJ

-212

A

35

3 zn

d am

(hn>

act)-

plg-

qtz-

di,,t

it; c

alcs

ilica

te rk

or m

etab

asite

?, c

alcs

ilica

te rk

13

also

?

5952

86

5389

642

14

19

4 95

SLJ

-213

B

35

4 hn

-plg

-qtz

,bt,c

ht2(

aft b

t)op;

mpo

(hn)

; maf

ic m

etac

last

ite

5951

09

5388

785

74

79

0 95

SLJ

-215

A

35

5 di

-grt,

epg,

cb(a

ltn v

ns,fr

acts

); al

tn o

f plg

; cal

csili

cate

gne

iss

5951

40

5388

600

73

72

4 95

SLJ

-216

A

35

6 hn

-act

-bt'-

epg,

cht2

(aft

bt)-

wm

2(af

t bt),

tit; m

po(b

t); b

t-cal

csili

cate

rk

5951

26

5388

122

25

29

4 95

SLJ

-218

A

35

7 pl

g-qt

z-kf

-hn,

,tit-o

p-bt

-ap;

mpo

(agg

s,hn

); hn

met

acla

stite

5951

75

5387

794

14

12

4 95

SLJ

-219

A

35

8 hn

-plg

,di-a

ct,e

pg-ti

t-op;

mpo

(hn)

fold

ed(o

pen)

;act

agg

s af

t di =

12 o

verp

rnt?

5960

17

5397

121

25

29

4 95

SLJ

-221

A

35

9 pl

g-qt

z-kf

-bt,h

n(au

gen)

,tit-a

p-ep

g; m

po(b

t), S

m w

raps

hn

poik

s, h

n m

clst

e

5968

67

5396

853

25

22

0 95

SLJ

-222

B

36

0 pl

g-kf

-qtz

-cht

2(af

t bt)-

wm

2(af

t plg

)-hn

poi

ks,ti

t-epg

; ret

rod

hn-b

t mcl

astit

e

5976

72

5396

781

13

12

4 95

SLJ

-224

B

36

1 zn

d am

(hn=

act)-

'plg

'(wm

2),,q

tz-e

pg-ti

t-op;

met

abas

ite

5979

67

5396

886

25

29

2 95

SLJ

-225

D

36

2 qt

z-pl

g,hn

-bt,,

epg-

act-t

it; w

po(a

gg),

qf v

n co

mpl

etel

y re

xld,

2 a

m m

clas

tite;

23-

24

64

Page 83: New Metamorphic Framework Hemlo - Geology Ontario

XE

AST

83 Y

NO

RT

83 R

AG

RD

1 R

AG

RD

2 D

EFM

SAM

NO

M

RN

NO

TE

S PL

N

5984

34

5397

250

73

79

0 95

SLJ

-226

A

36

3 qt

z-pl

g-cb

(zn)

-znd

am

(hn-

act)-

epg-

kf;b

t-qtz

-kf-p

lg ly

r; m

po(b

t); c

lsl r

k

5986

78

5397

436

25

29

4 95

SLJ

-227

A

36

4 pl

g-kf

-bt-q

tz,h

n(po

iks)

,tit-a

p; m

po(b

t); rl

zd q

tz-fp

vn;

hn-

bt m

etac

last

ite

5986

78

5397

436

25

22

4 95

SLJ

-227

C

36

5 pl

g'-q

tz-c

ht2(

aft b

t),hn

-wm

2(af

t plg

),tit-

epg;

mpo

('bt',

cht2

) hn-

bt m

etac

last

ite

5990

48

5397

643

25

22

2 95

SLJ

-228

A

36

6 qt

z-kf

-plg

'-hn(

poik

s),c

ht/w

m2,

tit-a

p-op

; wpo

(bt);

par

tly re

trod

hn-b

t mcl

ste

5944

05

5390

461

25

29

4 95

SLJ

-231

A

36

7 pl

g-qt

z-hn

,bt-g

rt,op

-m/z

;mpo

(bt,a

m);

grt i

ncl s

mal

ler t

han

mtrx

, bt-h

n m

clst

e

5944

05

5390

461

25

29

4 95

SLJ

-231

B

368

grt-b

t lyr

, hn-

cum

lyr;

hn-c

um-b

t-grt

met

acla

stite

5930

53

5390

012

74

79

4 95

SLJ

-234

B

369

plg'

(wm

)-hn

,cpx

(di)-

qtz,

epg-

act-t

it; w

mal

tn o

f plg

;act

-cb

vn c

uts

Sm

(hn)

5928

40

5389

793

74

72

4 95

SLJ

-235

A

37

0 ep

g-hn

-plg

,act

-qtz

,kf-t

it-op

; lyr

ben

t, ac

t-bea

ring

vn, c

lsl m

etac

last

ite

5920

57

5389

840

14

11

2 95

SLJ

-236

A

37

1 hn

-plg

,,tit-

op; w

po in

term

it hn

; prn

vei

n vn

; met

abas

ite

6012

78

5397

276

24

29

2 95

SLJ

-237

A

37

2 bt

-grt-

wm

psa

mm

ite, m

ediu

m g

rade

by

grai

nsiz

e, w

po(b

t,agg

s)

6012

78

5397

276

14

19

0 95

SLJ

-237

B

37

3 hn

-plg

,grt,

act-o

p-tit

; met

abas

ite g

rt am

phib

olite

6020

60

5396

573

14

19

0 95

SLJ

-239

A

37

4 hn

-bt-p

lg,a

ct,ti

t-op-

ap; b

t met

agab

bro

6028

99

5396

231

62

61

0 95

SLJ

-240

A

37

5 hn

-plg

-bt,,

kf-o

p-tit

-epg

-prn

-ap;

met

agab

bro

w/ 1

1-12

retro

g, p

rn in

bt

Br

6031

33

5396

188

62

69

0 95

SLJ

-241

A

37

6 pl

g-qt

z,hn

-bt',

cht(m

eta?

,aft

bt)-

tit-a

p; ti

t loo

ks ig

n, p

ossi

ble

lgz

met

a of

tonl

B

r

6040

35

5396

627

14

19

0 95

SLJ

-243

AA

37

7 hn

,plg

,tit-e

pg; m

etab

asite

6040

35

5396

627

14

19

4 95

SLJ

-243

AB

37

8 fo

liate

d m

etad

iorit

e (p

lg-h

n-bt

,tit;

mpo

(bt,a

m) c

ut b

y m

sv rx

l kf-p

lg,g

rt dy

ke

6042

91

5396

706

24

29

4 95

SLJ

-244

B

37

9 bt

-grt

psam

mite

, tra

ce c

ht2,

med

gra

de b

y gs

6042

91

5396

706

24

29

4 95

SLJ

-244

D

38

0 pl

g-qt

z-bt

,grt,

op-e

pg-a

p-ch

t2(a

ft bt

); m

po(b

t,agg

); m

ed g

rade

by

grai

nsiz

e

6098

45

5394

380

64

69

0 95

SLJ

-245

A

38

1 pl

g-kf

-qtz

,btr -b

t2-e

pg,o

p-tit

(ign)

-ap-

hn; m

etag

rani

te; b

t2-e

pg=m

etam

orph

ic

east

6098

45

5394

380

64

69

0 95

SLJ

-245

B

38

2 pl

g-(h

n-bt

ign)

-qtz

,bt2

-epg

,ap-

tit(ig

n); g

rano

blas

tic te

xt,

east

6098

45

5394

380

14

19

0 95

SLJ

-245

C

38

3 hn

-plg

,,tit-

ap; i

nclu

sion

in o

r cut

by

the

mgr

td?,

6006

61

5395

610

25

29

4 95

SLJ

-248

A

38

4 pl

g-qt

z-hn

(dkg

rn),b

t(dko

lbrn

),cht

2(af

t bt)-

epg-

ap-o

p-tit

;mps

(hn,

bt),

mcl

ste

5997

00

5395

880

24

29

2 95

SLJ

-249

A

38

5 pl

g-qt

z-hn

-bt,t

it-ep

g-ap

-op-

wm

; bt r

epla

cing

hn,

epg

rpl c

bt;

64?

5994

40

5396

327

14

19

3 95

SLJ

-250

A

38

6 hn

-plg

,bt,t

it-qt

z-ch

t2(a

ft bt

)-ap

; w-m

po(b

t); b

t met

agab

bro

5999

44

5397

057

25

29

4 95

SLJ

-252

A

38

7 qt

z-pl

g,hn

(poi

ks,g

rain

s)-b

t,op-

kf-a

p-ep

g-ch

t2; m

po(h

n,bt

);hn

poik

s=m

clst

e?

6004

21

5397

678

25

29

4 95

SLJ

-253

A

38

8 pl

g-qt

z,hn

-bt,o

p-ap

-zi;m

po(b

t,hn)

, som

e hn

poi

ks; h

n m

tonl

vn?

64?

6011

97

5398

700

14

19

0 95

SLJ

-254

A

38

9 hn

-plg

,bt,c

ht2(

aft b

t)-tit

(ign)

, col

our z

ning

of h

n, m

gabb

ro?,

bt i

ncl i

n hn

6003

45

5399

168

14

12

2 95

SLJ

-255

A

39

0 hn

-plg

,,kf-a

p: w

po(h

n); s

ome

wm

altn

of p

lg, m

etag

abbr

o 14

ok

here

6009

37

5400

420

14

19

0 95

SLJ

-257

A

39

1 az

mga

bbro

or w

eak

gz m

gbr(

12)?

; plg

-hn-

cpx(

gran

obla

stic

)

6009

37

5400

420

14

19

0 95

SLJ

-257

B

39

2 hn

(poi

ks-q

tz(p

olyg

d)-p

lg,o

p,tit

-ap;

def

inite

ly m

etam

orph

ic rk

6009

37

5400

420

14

19

4 95

SLJ

-257

D

39

3 hn

-qtz

-plg

,bt';

mpo

(bt,h

n); l

ots

of q

tz, b

t a b

it al

tere

d

6009

37

5400

420

14

12

0 95

SLJ

-257

E2

39

4 hn

(poi

ks,n

onpo

iks)

,qtz

-plg

,bt'-

cht2

(aft

bt)-

grt-c

um; h

n-gr

t-bt-c

um g

neis

s

6012

62

5400

530

14

19

0 95

SLJ

-258

A

39

5 hn

-plg

(pol

ygd)

,,tit-

epg-

qtz-

op;

65

Page 84: New Metamorphic Framework Hemlo - Geology Ontario

XE

AST

83 Y

NO

RT

83 R

AG

RD

1 R

AG

RD

2 D

EFM

SAM

NO

M

RN

NO

TE

S PL

N

6010

09

5400

863

74

71

4 95

SLJ

-259

A

39

6 hn

-plg

-cpx

-epg

,wm

2(af

t plg

); m

po(h

n,ag

gs);

epg

+un

in a

nd b

y fra

ct/v

n

6008

96

5402

649

74

79

0 95

SLJ

-260

AA

39

7 cp

x-qt

z-ep

g-hn

-grt

calc

silic

ate

lyr i

nter

lyrd

w/ 2

60A

B

6008

96

5402

649

14

19

4 95

SLJ

-260

AB

39

8 hn

-plg

; mpo

(hn)

;

6011

93

5403

012

14

19

4 95

SLJ

-261

A

39

9 am

pb ly

r (hn

,plg

,op-

m/z

), cu

m-h

n ly

r(cu

m-q

tz-p

lg-h

n-op

); m

po (h

n,cu

m)

60

1214

54

0363

9 14

19

4

95S

LJ-2

62A

400

(hn-

plg,

op)ly

r,(qt

z-cu

m,h

n,op

)lyr,b

t'-hn

-op

vn (c

ht a

ft bt

) mpo

(hn,

aggs

)

6012

14

5403

639

74

79

4 95

SLJ

-262

C

40

1 (h

n-pl

g,op

)lyr,(

cpx-

grt(b

rn)-

qtz)

lyr;

mpo

(hn,

aggs

) ben

t pol

ygd

at n

eck;

14?

;bou

din

6015

47

5403

759

14

19

0 95

SLJ

-263

CA

40

2 pl

g-hn

,,qtz

-epg

-op

6015

47

5403

759

74

79

0 95

SLJ

-263

CB

40

3 (e

pg-q

tz,h

n-op

)+(c

px-h

n-ac

t)lyr

s se

para

ted

by 1

00%

hn

zne

from

263

CA

5711

86

5382

975

54

59

0 95

SLJ

-264

A

40

4 cu

m,p

lg,u

n-tit

-op-

epg;

un

is b

rn v

fgr a

ggr a

ssoc

w/ o

p, ti

t/epg

-like

; 53?

5705

80

5382

634

13

19

4 95

SLJ

-269

A

40

5 zn

d am

(hn>

>act

)-pl

g,,q

tz-ti

t-epg

-cb;

mpo

(am

), m

etab

asite

5704

92

5382

974

25

22

4 95

SLJ

-270

A

40

6 pl

g-qt

z-(b

t'-ch

t2 a

ft bt

),hn,

op-to

-tit-a

p; m

po(b

t); b

t-hn

met

acla

stite

5690

45

5385

937

65

61

4 95

SLJ

-284

C

40

7 pl

g'(w

m-e

pg)-

hn-q

tz,,o

p-ap

-cht

2(af

t bt?

)-pr

n; m

po(h

n,ag

gs),p

olyg

d pl

g P

5687

12

5386

504

14

19

4 95

SLJ

-286

A

40

8 hn

-plg

-qtz

,,op;

mpo

(hn)

fold

ed

5704

32

5383

744

14

19

3 95

SLJ

-288

A

40

9 hn

-plg

,qtz

-op;

mpo

(hn)

fold

ed, h

n po

lyg

arcs

; met

abas

ite

5710

69

5382

904

53

59

5 95

SLJ

-289

A

41

0 zn

d am

(grn

>>cu

m),p

lg-ti

t-qtz

;tot(u

n);m

-ipo(

am);

poss

ible

mfe

fm n

earb

y?

6054

49

5396

369

14

19

4 95

SLJ

-302

-1A

41

1 hn

-plg

,grt-

op-ti

t lyr

; mpo

(hn,

agg)

6054

49

5396

369

74

79

0 95

SLJ

-302

-1B

41

2 cp

x(di

)-ep

g-gr

t-hn

lyr;

6085

47

5394

743

14

19

4 95

SLJ

-305

-1

413

inte

rlyrd

grt-

hn a

mpb

(14)

+ g

rt-cu

m-h

n-bt

rk(5

4?),

mpo

(bt,c

um,h

n), t

race

cht

2

6085

47

5394

743

24

29

4 95

SLJ

-305

-2

414

qtz-

plg-

bt,g

rt-w

m,o

p; m

po(b

t,agg

s); a

lmos

t a p

eliti

c rk

6078

93

5399

214

62

69

0 95

SLJ

-307

-1

415

plg-

qtz,

kf-b

t-hn'

,epg

-tit(i

gn)-

cht2

(aft

bt);

gran

obla

stic

text

, ea

st

6042

87

5396

280

64

62

4 95

SLJ

-310

A

41

6 pl

g-qt

z,bt

,op-

tit-e

pg2-

cht2

(aft

bt);

mpo

(bt,a

ggs)

,mto

nal d

yke?

,hn-

bt-p

lg ly

r;23+

22?)

B

r?

6040

15

5395

928

64

69

4 95

SLJ

-311

A

41

7 pl

g-qt

z-kf

,bt-h

n,ep

g-tit

-op-

ap; m

po(b

t,agg

s),g

rnob

last

ic te

xt, m

grdt

/tonl

B

r?

6014

02

5404

680

13

19

4 95

SLJ

-313

BA

41

8 zn

d am

(hn>

act),

plg,

op-ti

t;act

-epg

-ric

h zo

ne; m

po(a

m) w

raps

am

aug

en

6014

02

5404

680

13

19

0 95

SLJ

-313

D

41

9 ep

g-di

-act

zon

e (7

4) in

tz m

etab

asite

w/ z

nd a

m-p

lg-ti

t pre

dom

inan

t

6016

10

5405

027

74

79

0 95

SLJ

-314

A

42

0 hn

-plg

-qtz

-epg

,,cb-

cpx-

bt-o

p-tit

; cal

csili

cate

met

acla

stite

5980

58

5405

567

25

29

4 95

SLJ

-315

BA

42

1 pl

g-qt

z-bt

-hn,

op-c

b-m

/z; m

po(b

t,hn)

; bt-h

n m

etac

last

ite

6044

53

5407

610

14

19

0 95

SLJ

-319

AA

42

2 hn

,plg

-tit-e

pg ly

r; m

essy

epg

-ric

h-qt

z-op

lyr

5635

24

5387

663

25

29

2 95

SLJ

-324

A

42

3 qt

z-pl

g,bt

-hn-

epg,

ap-o

p-tit

; w(s

ome

am,b

t); h

n-bt

-epg

met

acla

stite

5668

03

5381

688

13

19

4 95

SLJ

-326

B

42

4 hn

/act

-epg

,plg

-qtz

-cht

,op;

upp

er tz

pro

babl

y, ts

thic

k ha

rd to

say

.

6005

93

5406

877

14

19

2 95

SLJ

-329

A

42

5 hn

-plg

,bt-t

it-qt

z; w

po(h

n,bt

); bt

-hn

met

abas

ite

5993

17

5402

125

14

19

0 95

SLJ

-339

A

42

6 hn

-plg

-cpx

,tit-a

p

6000

79

5400

621

14

19

2 95

SLJ

-341

C

42

7 hn

,bt-p

lg,o

p; c

b ve

in

6002

89

5400

754

73

79

0 95

SLJ

-342

CA

42

8 qt

z-ep

g,ac

t-plg

,tit

66

Page 85: New Metamorphic Framework Hemlo - Geology Ontario

XE

AST

83 Y

NO

RT

83 R

AG

RD

1 R

AG

RD

2 D

EFM

SAM

NO

M

RN

NO

TE

S PL

N

6002

89

5400

754

14

19

0 95

SLJ

342D

AA

429

zone

in 3

42D

A, p

lg-h

n,qt

z-ep

g-op

-tit

6002

89

5400

754

74

79

0 95

SLJ

342D

AB

430

zone

in 3

42D

A, d

i-grt(

pkbr

n),h

n-tit

6003

47

5401

117

74

79

0 95

SLJ

-343

B

43

1 cp

x(ro

unde

d)-a

m-b

t-plg

, msv

; cal

csili

cate

or g

rtd?(

64?

)

5996

87

5401

412

25

29

2 95

SLJ

-345

A

43

2 pl

g-qt

z,bt

-hn-

epg,

ap-o

p; w

po(a

ggs,

som

e bt

); bt

-hn-

epg

met

acla

stite

5964

08

5405

901

14

19

0 95

SLJ

-351

A

43

3 cu

m/g

ru-p

lg,e

pg,o

p-ch

t(mg)

13?

5962

79

5406

120

14

19

6 95

SLJ

-352

A

43

4 hn

-plg

,,op-

qtz;

ipo(

hn,a

ggs)

13?

5960

76

5405

700

74

79

0 95

SLJ

-357

C

43

5 cp

x-hn

-grt-

qtz,

cb-

op, t

it, c

alcs

ilica

te ro

ck

5960

76

5405

700

54

59

4 95

SLJ

-357

D

43

6 gr

t-hn-

op ly

r, cu

m-g

rt-op

lyr,

mpo

(cum

), vf

gr in

cl in

grt,

like

ly c

last

ic p

roto

lit

5964

63

5405

018

74

79

2 95

SLJ

-359

A

43

7 hn

,grt,

tit ly

r; di

-grt-

act-h

n,tit

lyr;

calc

silic

ate

zone

in h

n-gr

t am

phib

olite

5970

24

5405

076

14

12

4 95

SLJ

-361

A

43

8 hn

-plg

'-wm

2(af

t plg

),cht

2,op

; mpo

(hn)

retro

d m

etab

asite

5927

24

5410

030

14

19

6 95

SLJ

-367

A

43

9 hn

-plg

,qtz

,op-

tit; i

po(h

n); m

etab

asite

5927

93

5409

494

14

19

6 95

SLJ

-368

A

44

0 h;

n,pl

g,op

-tit;e

pg; i

po h

n, v

n di

scor

dant

to S

m

5885

84

5402

420

45

42

4 95

SLJ

-382

A

44

1 qt

z-pl

g-bt

,sil-

wm

2(af

t sil)

,grt-

op-to

-wm

;str ,g

rtr in p

lg?;

vfgr

wm

-qtz

vn+

altn

;mpo

(sil,

bt)

58

8584

54

0242

0 45

42

4

95S

LJ-3

82B

1

442

qtz-

plg-

bt,w

m-s

il-gr

t,op-

ap-to

-m/z

;sam

e as

382

A,b

ut m

ore

retro

d; m

po(s

il,bt

)

5895

04

5403

177

25

29

0 95

SLJ

-383

A

44

3 qt

z>pl

g,bt

-hn-

epg,

op-a

p; h

n-ric

h ly

r, bt

-ric

h ly

r, so

me

retro

cht

, 24

poss

ibly

5899

39

5404

390

49

42

4 95

SLJ

-385

A

44

4 qt

z-'p

lg'(w

m2)

-'bt'(

cht2

),grt;

m-ip

o(bt

,wm

,agg

s) c

renu

late

d in

par

t of t

s

5924

70

5407

402

12

19

0 95

SLJ

-389

A

44

5 ac

t,plg

,cht

-epg

-op;

met

abas

ite, u

pper

end

of g

z;

5929

88

5407

317

13

19

0 95

SLJ

-390

A

44

6 zn

d am

(hn>

>act

)-pl

g,ep

g,op

-tit;

met

abas

ite u

pper

end

of t

z

5843

82

5404

492

14

19

0 95

SLJ

-391

A

44

7 hn

,plg

,epg

-op;

cpx-

epg-

plg'

.wm

2(af

t plg

); ca

lcsi

licat

e zn

in a

mpb

5843

82

5404

492

64

62

2 95

SLJ

-391

E

44

8 pl

g-qt

z,kf

,bt'-

cht(a

ft bt

),epg

-hnr ,a

p-op

; wpo

(bt,c

ht);

met

a gr

anito

id

dyk

5844

44

5405

291

25

22

2 95

SLJ

-392

A

449

plg-

qtz,

hn,o

p-tit

-ap;

qtz-

epg-

plg,

cb,h

n-tit

; hn

mcl

astit

e w

/ epg

zn;

wm

alt p

lg

5860

03

5409

919

14

19

4 95

SLJ

-394

AA

45

0 hn

(act

int c

ol),p

lg,g

rt-tit

; mpo

(hn)

; met

abas

ite ly

r ass

oc w

ith 3

94A

B

5860

03

5409

919

74

79

0 95

SLJ

-394

AB

45

1 hn

(act

int c

ol),e

pg,p

lg,ti

t; m

po(h

n); e

pg-r

ich

lyr a

ssoc

with

394

AB

5860

03

5409

919

74

79

0 95

SLJ

-394

CA

45

2 hn

,grt,

tit ly

r; in

terly

rd w

/ epg

-ric

h zn

, rk

too

hete

ro fo

r mba

salt/

gabb

ro

5860

03

5409

919

74

79

0 95

SLJ

-394

CB

45

3 ep

g-qt

z,cb

,grt-

tit-o

p; c

alcs

ilica

te ly

r in

394C

5860

03

5409

919

13

19

4 95

SLJ

-394

D

45

4 am

(hn>

>act

),,ep

g-ch

t(mg)

-grt;

mpo

(am

); m

etab

asite

; clo

se to

14

5887

69

5412

662

13

19

6 95

SLJ

-397

B

45

5 am

(blg

rn,a

ct in

t col

ours

),plg

,qtz

-op-

tit-c

ht(m

g); i

po(a

m),

clos

e to

14

5879

52

5412

297

14

19

2 95

SLJ

-398

A

45

6 am

(hn

colo

ur, a

ct h

abit)

,,plg

-op-

tit-e

pg; w

po(a

m,a

ggs)

; am

in v

n; m

basi

te

5877

97

5412

259

14

19

6 95

SLJ

-399

A

45

7 hn

(blg

rn),p

lg-q

tz,o

p-ep

g; ip

o(hn

),epg

vn

cuts

acr

oss

Sm

; met

abas

ite

5872

13

5411

995

13

19

0 95

SLJ

-400

A

45

8 zn

d am

(hn=

act),

plg-

epg,

op-ti

t;

5870

95

5411

831

14

19

0 95

SLJ

-401

A

45

9 am

(hn

colo

ur, a

ct h

abit)

,,plg

-op-

cht(m

g)-ti

t-epg

;hn-

op v

n/ly

r; m

basi

te; u

pper

13

5870

99

5411

550

14

19

0 95

SLJ

-402

A

46

0 hn

-plg

,qtz

-tit-o

p; m

etab

asite

fgr

5871

56

5411

402

13

19

4 95

SLJ

-403

A

46

1 zn

d am

(hn>

>act

),plg

-qtz

,op;

mpo

(am

);met

abas

ite, u

pper

mos

t tz

66 67

Page 86: New Metamorphic Framework Hemlo - Geology Ontario

XE

AST

83 Y

NO

RT

83 R

AG

RD

1 R

AG

RD

2 D

EFM

SAM

NO

M

RN

NO

TE

S PL

N

5868

32

5410

990

74

79

4 95

SLJ

-404

A

46

2 hn

-epg

-plg

,op-

act;

mpo

(hn)

5838

75

5408

988

14

11

5 95

(7)S

LJ00

3-5

463

Si i

n gr

t not

evi

dent

in S

m d

efin

ed b

y hn

; prn

-fille

d sh

ear v

eins

, lyr

5838

75

5408

988

43

49

4 97

SLJ

-003

-6

464

qtz-

'plg

'-wm

2-un

-bt,g

rt-ch

t2,o

p-to

;un

is b

rnis

h,hi

gh re

lief,e

pg?;

mpo

(bt-a

ggs)

; rot

ated

grts

w/ g

ood

Si,4

3+

5837

29

5409

622

25

29

4 95

(7)S

LJ00

4-5

465

mpo

(bt)

(hn

linea

tion)

, bt-h

n m

etac

last

ite, l

yr

5836

53

5414

570

53

59

4 95

(7)S

LJ01

4-2

466

mpo

(bt,g

run)

, 2 a

m(g

ru>g

rn a

m)-

grt-b

t-op

5836

53

5414

570

53

59

4 95

(7)S

LJ01

4-4

467

2 am

(hn>

clls

am

)-m

t-grt

5825

23

5408

093

14

12

4 95

(7)S

LJ01

8-1

468

grt a

mph

ib w

/ cht

-epg

-wm

(aft

plg)

zon

es ll

Sm

, mp0

(hn,

cht

2)

5825

23

5408

093

14

11

4 95

(7)S

LJ01

8-2

469

grt-b

t am

phib

/mcl

astit

e, m

po(h

n,bt

); pr

n-ch

t-wm

(aft

plg)

retro

5823

35

5414

131

14

11

4 95

(7)S

LJ01

9-3

470

mpo

(hn)

grt

over

grow

s hn

mpo

), gr

t-am

phib

, prn

afte

r bt,

sign

if ep

g

5874

55

5410

263

25

21

2 95

(7)S

LJ02

9-1

471

gr

t-bt a

mph

ib/m

clas

tite,

mpo

(hn,

bt);

prn

aft b

t nea

r vei

n,

5876

98

5410

178

14

19

4 97

SLJ

-030

-1

472

hn-p

lg,o

p-tit

; mpo

(som

e hn

,agg

s);

58

7698

54

1017

8 44

41

2

95(7

)SLJ

030-

347

3 qt

z-bt

-plg

'-wm

,grt-

st-h

n-pr

n,op

;st a

s tin

y gr

ains

, som

e lo

ok re

lict,

wm

alt

of p

lg,m

po(b

t), h

n ly

r, pr

n w

/ vn

5876

98

5410

178

74

79

4 95

(7)S

LJ03

0-4

474

cpx-

hn-c

b ly

r, qt

z-hn

lyr,

both

w/ l

ots

of p

y in

, mpo

(hn)

mcb

alt o

r cb

sed

5876

98

5410

178

44

49

4 95

(7)S

LJ03

0-5

475

qt

z-w

m-p

lg-b

t,grt-

st,o

p-to

(bl);

mpo

(wm

,bt);

clu

ster

s tin

y st

5900

90

5409

539

54

59

4 95

(7)S

LJ03

5-7

476

gr

t-am

(blg

ry-g

rn)-

bt la

yers

, sig

moi

d S

i in

grt,

mpo

(am

,bt),

som

e ch

t2, p

y

5971

87

5417

978

14

19

4 95

(7)S

LJ05

2-1A

47

7 am

phib

w/ c

px-c

b-gr

t-epg

laye

r/vei

n; m

etav

ein

or m

eta

cb la

yer i

n cl

astit

e; 2

4?

5971

87

5417

978

54

59

4 95

(7)S

LJ05

2-1B

47

8 hn

-grt-

mt f

efm

, mpo

(hn,

aggs

)

5811

08

5411

474

14

11

4 95

(7)S

LJ07

0-1

479

hn

-grt-

bt' l

yrd

amph

b, g

rt eu

w/ f

ew in

cl, b

t par

tly to

prn

, adj

ac p

lg to

wm

5809

79

5406

556

45

49

4 95

(7)S

LJ-0

75-1

A

480

qtz-

plg-

bt-s

il(fib

+pris

),grt,

to-o

p-ap

-wm

2-st

/and

r ?,m

po(s

il), s

igm

Si i

n gr

t, re

lict s

t or a

nd,

5809

79

5406

556

45

42

4 95

(7)S

LJ-0

75-1

B

481

qtz-

plg-

bt-s

il,gr

t-st-w

m2-

cht2

,op-

to-a

p-m

/z-s

t/and

r ;st g

oing

, syn

tect

sil,

pris

in p

lg a

ggre

gs, s

ome

retro

5809

79

5406

556

45

42

4 95

(7)S

LJ-0

75-1

C

482

qtz-

plg-

sil-b

t,grt-

cht2

,op-

to-a

p-m

/z-a

ndr ?;

mor

e si

ll, s

ame

poss

ible

and

relic

ts in

plg

agg

regs

, no

st

5809

79

5406

556

45

42

4 95

(7)S

LJ07

5-2

483

qt

z-pl

g-si

(fib+

pris

)-bt

,grt-

cht2

,op-

to-a

p-m

/z-a

ndr ?,

str in

plg

, sig

m S

i in

grt,

grt i

ncl f

ree

zone

s, p

ris la

ter?

5803

98

5406

300

45

49

5 95

(7)S

LJ08

0-1

484

plg-

qtz-

sil(f

ib+p

ris)-

bt,g

rt-st

r -wm

2-ch

t2,o

p-to

-ap-

m/z

; sil

assy

m a

bout

grt,

mpo

(sil,

bt) w

raps

grt(

obq

Si)

5803

98

5406

300

45

49

5 95

(7)S

LJ08

0-2

485

plg-

qtz-

sil(s

il+pr

is)-

bt,g

rt-st

r -wm

2-ch

t2,o

p-to

-ap-

w/z

;mor

e st

, grt

to s

il ag

ain?

5803

98

5406

300

45

49

5 95

(7)S

LJ08

0-3

486

pl

g-qt

z-si

l(fib

+pris

)-bt

,grt-

str -w

m2-

cht2

,op-

to-a

p-m

/z;b

ut m

ore

st, g

rt to

sil

agai

n?

5739

29

5401

206

74

71

2 95

(7)S

LJ08

6-1

487

epg-

am-g

rt, b

t, ch

t2-w

m2

prn,

cb,

met

acla

stite

; 24?

5739

29

5401

206

44

42

4 95

(7)S

LJ08

6-2A

48

8 bt

-grt-

cht2

-wm

poi

ks(p

s?)-

qtz-

plg

schi

st, e

x po

ikilo

blas

tic s

chis

t

5746

87

5401

627

44

42

4 95

(7)S

LJ09

2-1

489

retro

d bt

-grt

schi

st, n

ow w

m2-

cht2

, vei

n w

/ unk

,

6047

04

5397

178

14

19

0 95

(7)S

LJ12

8-1

490

cp

x-hn

-grt

zone

(74)

in h

n am

phib

, min

or ti

t,op,

cb

6047

04

5397

178

14

19

0 95

(7)S

LJ12

8-2A

49

1 cp

x-hn

-grt

zone

(74)

in h

n am

phib

, min

or ti

t,op,

cb

6047

04

5397

178

74

79

0 95

(7)S

LJ12

8-2B

49

2 cp

x-hn

-grt

zone

(74)

in h

n am

phib

, min

or ti

t,op,

cb

6078

91

5395

020

46

49

4 95

(7)S

LJ14

9-1A

49

3 pl

t-bt-s

il(pr

is)-

qtz,

crd'

-grt,

op-c

ht2-

to-m

/z;m

po(b

t), lo

ts p

lg, m

ost c

rd to

pin

ite, g

rt ol

der t

han

crd,

6078

91

5395

020

46

49

4 95

(7)S

LJ14

9-1B

49

4 qt

z-pl

g-bt

,sil(

pris

)-gr

t-crd

,op-

cht2

(mg)

-to-m

/z;le

ss c

rd +

sil,

bt m

po b

ette

r def

ined

, is

this

uaz

?

68

Page 87: New Metamorphic Framework Hemlo - Geology Ontario

XE

AST

83 Y

NO

RT

83 R

AG

RD

1 R

AG

RD

2 D

EFM

SAM

NO

M

RN

NO

TE

S PL

N

6078

91

5395

020

46

49

4 95

(7)S

LJ14

9-1C

49

5 qt

z-pl

g-bt

-crd

,sil(

pris

)-gr

t,op-

cht2

(mg)

-to-m

/z; c

rd le

ss a

ltere

d, m

po b

t

6099

63

5395

512

14

19

4 95

(7)S

LJ15

0-1A

49

6 hn

am

phb

+ ep

g-qt

z-cp

x-hn

vn/

zone

(74)

6099

63

5395

512

14

19

0 95

(7)S

LJ-1

50-2

A

497

hn a

mph

b +

qtz

vn

6085

98

5394

756

53

59

0 95

(7)S

LJ15

1-1

498

cum

-bt-g

rt-hn

, op-

tit

6085

98

5394

756

53

59

0 95

(7)S

LJ15

1-2

499

cum

-bt-g

rt-hn

, op-

tit

6085

98

5394

756

53

59

0 95

(7)S

LJ15

1-3

500

cum

-bt-g

rt-hn

, op-

tit

6091

82

5394

566

14

12

0 95

(7)S

LJ15

2-1

501

2am

(act

>hn)

-plg

',cht

(mg)

-tit;

msv

; wm

2 af

t plg

, cht

pro

min

ent

6134

99

5387

112

74

79

0 95

(7)S

LJ-1

70-3

A50

2 qt

z-ric

h zo

ne w

/ cpx

-epg

-grt(

ylbr

n), p

ale

hn-r

ich

zone

als

o, c

alcs

ilica

te rk

6134

99

5387

112

14

19

0 95

(7)S

LJ-1

70-3

B

503

amph

b w

/ epg

-cpx

zon

e

6039

13

5397

196

44

49

0 95

(7)S

LJ18

7-1

504

grt-b

t-qtz

-plg

-op

rock

, min

or c

ht2,

coa

rse

grai

ned

enou

gh fo

r 44;

44+

pos

sibl

e

6039

13

5397

196

46

49

4 95

(7)S

LJ18

7-2

505

qtz-

plg-

bt-s

il(pr

is),g

rt,op

-cht

2-w

m2-

m/z

;qtz

-plg

sch

ist,

cht2

, wm

pro

babl

y 2,

mpo

(bt,s

il), p

ris s

il

6032

47

5397

672

46

42

0 95

(7)S

LJ19

1-1

506

qtz-

plg-

bt,g

rt,si

l-to-

ap-o

p-m

/z-c

ht2-

wm

2;tra

ce s

il, is

wm

late

?, b

t-grt-

sil,

gree

n ps

aft

crd?

,

6032

47

5397

672

46

42

4 95

(7)S

LJ19

1-2

507

qtzp

lg-w

m2-

bt,c

ht2(

aft c

rd),o

p-m

/z; w

m p

s af

t sil,

grn

cht

ps

aft c

rd,

6015

05

5398

876

14

19

0 95

(7)S

LJ19

9-1

508

met

abas

ite, p

lg-h

n, g

rt-qt

z, ti

t, ep

g(ac

cess

ory)

not

epg

-hn

faci

es

6015

05

5398

876

74

79

0 95

(7)S

LJ19

9-2

509

mai

nly

calc

silic

ate

zone

, lot

s of

epg

, but

not

epg

-hn

faci

es

6015

05

5398

876

14

19

0 95

(7)S

LJ-1

99-3

A

510

hn-p

lg-g

rt-pl

g-tit

-qtz

zon

e, e

pg z

one

w/ e

pg p

oiks

repl

acin

g al

l plg

6017

68

5398

686

74

79

0 97

SLJ

-200

-1

511

cpx-

epg-

qtz-

grt-t

it, s

ca-e

pg-q

tz, m

sv, m

ain

phas

e m

eta

not l

ater

eve

nt

5648

10

5383

592

14

19

4 97

SLJ

-323

A

512

hn-p

lg,o

p-qt

z;m

po(h

n)

5838

71

5392

483

44

42

4 97

SLJ

-267

-3

513

qtz-

plg-

bt,g

rt-st

,op-

to-a

p-m

/z-c

ht2;

strt

Si i

n gr

t obl

q S

m, c

urvi

ng S

i in

st, r

etro

lim

ited

to z

one

5838

71

5392

483

45

42

4 97

SLJ

-267

-6

514

qtz-

plg-

bt,g

rt-st

,op-

to-a

p-m

/z-c

ht2-

sil;

sos

but t

race

sil(

fib, 2

4.5/

60.6

) and

relic

t st i

n pl

g

5863

23

5391

371

74

79

0 97

SLJ

-274

-1

515

msv

hn-

grt-q

tz rk

, 74

beca

use

of a

bund

qtz

and

grt;

14

poss

ilbe

5863

23

5391

371

54

52

0 97

SLJ

-274

-2A

51

6 cu

m-g

rt ly

rs, h

n-gr

t lyr

s, c

ht2-

wm

2

5863

23

5391

371

54

52

0 97

SLJ

-274

-3B

51

7 cu

m-b

t-grt-

cht-q

tz-p

lg, n

b ch

t-cb

ps a

ft am

(ign?

), op

-tit,

FeM

gAl r

x of

SLJ

5863

23

5391

371

54

52

0 97

SLJ

-274

-5A

51

8 bt

-grt-

cum

, cht

2(fe

) I th

ink,

go

for u

nusu

al c

hem

istry

NB

big

to

5863

23

5391

371

54

52

0 97

SLJ

-274

-5B

51

9 bt

-grt-

cum

, cht

2, m

po(b

t,cum

line

atio

n)

5865

11

5391

198

45

49

4 97

SLJ

-275

-1

520

bt-s

t-grt-

plg-

qtz,

cht(m

g)2?

,op-

to(b

lgrn

)-m

/z-a

p;st

ove

rgro

ws

fln b

ent a

roun

d gr

t, lo

ts a

p, m

t oct

s,

5865

11

5391

198

45

49

4 97

SLJ

-275

-2A

52

1 qt

z-bt

-sil-

st,g

rtr -wm

,to-o

p-m

/z-c

ht2w

m2;

cht(m

g)af

t bt;

wm

aft

sil,

st S

i rot

ated

re b

t-sil

Sm

, grt

relic

t

5865

11

5391

198

45

49

4 97

SLJ

-275

-2B

52

2 qt

z-bt

-sil-

st,g

rt-w

m,to

-op-

m/z

-wm

2-ch

t2;c

ht(m

g)af

t bt;

wm

aft

sil,

st S

i rot

ated

re b

t-sil

Sm

, grts

relic

t

5865

11

5391

198

45

42

0 97

SLJ

-275

-3

523

bt-s

il-qt

z-pl

g-w

m2,

grt-c

ht2,

to(b

lgrn

)-st

-op-

m/z

;muc

h le

ss s

t, m

ore

sil t

han

275-

2A,B

; lot

of w

m a

ft si

l

5865

11

5391

198

45

49

4 97

SLJ

-275

-4

524

bt-q

tz-p

lg-s

t,grt-

sil-b

t-wm

,to-o

p-ap

-m/z

;sil

mos

tly in

fln

som

e po

intin

g pe

rpen

dic

to s

lide

5836

42

5390

191

14

19

0 97

SLJ

-294

-1

525

hn-r

ich

zn w

/ tit-

plg,

epg

in c

px-r

ich

zns,

all

mai

n ph

ase;

cpx

-grt

in 2

94-2

5486

54

5384

995

24

29

4 97

SLJ

-309

-3

526

plg-

qtz-

epg,

bt-c

ht,o

p;m

po(b

t,cht

,agg

)wra

ps p

lg p

orph

s,ep

g af

t maf

phe

nos

5486

54

5384

995

24

29

4 97

SLJ

-309

-4

527

plg(

phen

os,m

trx)-

qtz-

epg,

bt-c

ht; e

pg ti

ny in

plg

, rep

lace

s ex

maf

phe

nos

69

Page 88: New Metamorphic Framework Hemlo - Geology Ontario

XE

AST

83 Y

NO

RT

83 R

AG

RD

1 R

AG

RD

2 D

EFM

SAM

NO

M

RN

NO

TE

S PL

N

5489

86

5385

799

22

29

2 97

SLJ

-310

-1

528

plg-

qtz-

cht,w

m-c

b,ep

g-op

;wpo

(cht

,wm

); qt

z-pl

g fe

lsic

met

apor

phyr

y

5488

64

5385

659

23

29

2 97

SLJ

-311

-1

529

plg-

qtz,

wm

-cht

-epg

-bt,o

p-tit

;wpo

(mic

a); q

tz-p

lg fe

lsic

met

apor

phyr

y

5488

64

5385

659

23

29

4 97

SLJ

-311

-2

530

plg(

xl,m

trx)-

qtz(

xls,

mtrx

)-ch

t,epg

-wm

-bt,c

b-op

-ap;

fels

xl m

etat

uff

5492

84

5386

865

22

29

2 97

SLJ

-312

-1

531

plg-

qtz,

epg-

cht-c

b,op

-wm

; wpo

(agg

s), f

elsi

c m

etac

last

ite

5492

84

5386

865

72

79

4 97

SLJ

-312

-2

532

plg-

wm

-cht

-qtz

,epg

-cb,

op-to

(blg

ry;m

po(a

ggs,

cht);

cb-

cht-w

m m

clas

tite

5492

77

5386

750

24

29

0 97

SLJ

-313

-1

533

qtz(

xl,m

trx)-

plg(

xl,m

trx),

bt-e

pg-c

ht; f

els

plg

met

apor

phyr

y

5474

47

5388

630

23

29

0 97

SLJ

-314

-3

534

plg-

qtz,

bt-c

ht-e

pg-c

b(bl

eb),w

m(in

side

plg

)-ap

-op;

fels

plg

met

apor

phyr

y

5474

47

5388

630

12

19

4 97

SLJ

-314

-5

535

plg-

epg-

act,q

tz,b

t-cht

-cb(

bleb

s)-ti

t; m

po(a

ggs,

som

e ac

t); m

afic

plg

mtu

ff

5469

93

5390

832

24

29

0 97

SLJ

-315

-1

536

plg-

qtz-

epg-

bt,,o

p-ch

t-ap;

bt a

ggs

aft i

gn a

m?,

epg

aft

plg;

intm

plg

-?m

porp

h

5478

67

5388

910

24

29

4 97

SLJ

-317

-1

537

plg-

qtz-

epg,

bt,o

p-ap

-cht

-act

; mpo

(agg

s);b

t pse

udos

elo

ng; b

t-epg

mcl

astit

e

5478

67

5388

910

25

22

4 97

SLJ

-317

-4

538

plg'

-qtz

-cht

(aft

bt),h

n-w

m(a

ft pl

g),e

pg-o

p-tit

-ap;

mpo

(cht

,hn,

aggs

),mcl

astit

e

5522

72

5381

586

13

19

3 97

SLJ

-324

-1

539

hn(b

lgrn

,act

intc

ol),p

lg-a

ct,o

p;w

-mpo

(hn)

;upp

erm

ost 1

3;op

-ric

h hn

ps

aft?

, met

abas

ite

5540

33

5379

360

14

19

6 97

SLJ

-325

-1

540

hn(b

lgrn

,act

intc

ol),p

lg'(w

m a

ft pl

g),o

p;ip

o(hn

,def

md

rexl

vns

;low

erm

ost 1

4met

abas

ite

5523

89

5381

026

13

19

5 97

SLJ

-326

-1

541

am(a

ct,h

n)-e

pg-p

lg,c

ht,o

p-tit

-cb;

m-ip

o(am

,agg

s)

5511

64

5381

982

13

19

2 97

SLJ

-327

-1

542

cb-c

ht v

ns c

ut m

basi

te(h

n-pl

g-ep

g,ac

t,cht

-op)

brx

;vns

rexl

,loca

lly fo

liate

d

5520

39

5381

842

13

19

6 97

SLJ

-328

-1

543

hn,z

nd a

m(h

n>ac

t)-ep

g,pl

g,op

-cht

; ipo

(am

,plg

agg

s); m

etab

asite

5526

22

5381

830

13

19

5 97

SLJ

-329

-1

544

znd

am(a

ct>h

n)-h

n,qt

z,tit

-op;

mpo

(am

,agg

s);m

etab

asite

6130

18

5386

585

25

29

5 97

SLJ

-330

-1

545

hn-p

lg-q

tz,k

f,tit-

epg;

mic

poi

ks c

onta

in o

rient

ed a

m;m

po(s

-l,hn

)

6130

18

5386

585

74

79

4 97

SLJ

-330

-2B

54

6 ca

lcsi

licat

e gn

eiss

;hn-

cpx-

epg-

plg'

-qtz

,wm

(aft

plg)

,tit-o

p;m

po(l>

s,hn

,agg

s)

5603

95

5393

328

24

29

4 97

SLJ

-345

-1

547

plg-

qtz-

op,b

t-cum

,tit;

met

amor

phos

ed m

iner

aliz

atio

n, b

t agg

ps

aft?

, fel

sic

mcl

astit

e

5603

95

5393

328

73

79

0 97

SLJ

-345

-2

548

act,p

lg-c

b-bt

-epg

,tit;h

eter

og,li

thic

met

atuf

f/lap

illi m

tuff;

pre

-met

a cb

altn

pos

sibl

e

5593

46

5393

785

25

29

4 97

SLJ

-346

-1

549

plg(

clas

ts,m

trx)-

qtz-

bt,,h

n-ep

g-op

;mpo

(bt,c

last

s,ag

gs);r

nded

plg

cla

sts.

met

acla

stite

5592

29

5393

276

22

29

4 97

SLJ

-347

-1

550

fgr q

tz-w

m(c

lls)-

wm

(grn

)-py

, sph

al?-

cht(m

g) m

alt,

grn

mic

a kn

ots

repl

spl

5592

29

5393

276

54

52

4 97

SLJ

-347

-2

551

hn-b

t-grt-

op, c

ht o

r cht

2?, m

po(b

t), p

ale

yl to

,

5592

29

5393

276

54

59

0 97

SLJ

-347

-5

552

pyrit

ic m

etac

last

ite, a

m-b

t-qtz

-plg

-cb,

cht

2, p

y pr

edat

es m

eta/

defm

; 53?

5592

29

5393

276

54

59

0 97

SLJ

-347

-6

553

pyrit

ic m

etac

last

ite, h

n-gr

t, ch

t2, p

y pr

edat

es m

eta/

defm

5539

94

5394

097

74

79

4 97

SLJ

-348

-1

554

hn-,c

b-,a

nd q

tz-r

ich

zns;

hn-

plg-

op-ti

t,cb-

qtz,

trace

epg

,bt;

defm

d ve

ined

mba

site

or c

lsl r

k

5823

10

5390

395

74

79

2 97

SLJ

-349

-1A

55

5 qt

z-ep

g-hn

-cpx

lyr;q

tz-p

lg ly

r

5823

10

5390

395

14

12

4 97

SLJ

-349

-1B

55

6 hn

-plg

,,(ch

t-epg

)-tit

;mpo

(l>s,

hn);a

mph

lyr i

n hn

-bt m

etac

last

ite

5823

10

5390

395

14

19

6 97

SLJ

-349

-2

557

hn-b

t,tit;

inte

nse

hn-b

t po,

tigh

tly fo

lded

; hn

+ bt

def

ine

poly

gona

l arc

s;

5870

66

5410

223

25

22

0 97

SLJ

-382

-1

558

hn-g

rt-bt

met

acla

stite

, wm

2(af

t plg

)-ch

t2 p

rom

inen

t,

5892

30

5408

924

24

29

4 97

SLJ

-391

-1

559

qtz-

plg-

wm

,kf(m

ic),o

p; m

po(w

m,a

ggs)

;fels

path

ic m

etaw

acke

or m

etag

rani

te, 2

3-24

by

gs

5896

49

5409

481

24

29

4 97

SLJ

-392

-1

560

qtz-

plg-

kf(m

ic),b

t-wm

,epg

-cht

2(af

t bt)-

op-m

/z;b

t agg

s af

t?;m

po(b

t,agg

s); f

elsi

c m

clas

tite

70

Page 89: New Metamorphic Framework Hemlo - Geology Ontario

XE

AST

83 Y

NO

RT

83 R

AG

RD

1 R

AG

RD

2 D

EFM

SAM

NO

M

RN

NO

TE

S PL

N

5896

19

5409

418

14

19

4 97

SLJ

-393

-1

561

hn-q

tz-p

lg,,b

t-cht

(mg)

-op;

mpo

(hn,

aggs

); m

afic

met

acla

stite

5895

37

5409

061

24

29

2 97

SLJ

-394

-1

562

plg-

qtz-

kf(m

ic),b

t,tit-

epg-

cht2

-op;

wpo

(bt s

treak

s,ag

gs)w

raps

plg

phe

nos;

fels

bt m

porp

hyry

5890

52

5409

213

14

19

6 97

SLJ

-399

-1

563

hn-p

lg,,q

tz-o

p-ep

g;ip

o(hn

,agg

s); m

etab

asite

5875

02

5409

840

45

49

4 97

SLJ

-401

-1

564

qtz-

plg-

sil,s

t-and

-bt,o

p; s

chis

t, m

etal

tn?,

al-r

ich

met

aqtz

aren

? U

TM c

oord

inat

es e

stim

ated

5875

02

5409

840

25

22

4 97

SLJ

-401

-3

565

retro

d gr

t-bt/h

n-ep

g m

etac

last

ite, w

m2

aft p

lg, c

ht2,

nb

com

po v

aria

tions

; utm

est

imat

ed

5863

17

5410

043

74

79

0 97

SLJ

-403

-1

566

calc

silic

ate-

pyrit

e m

etam

orph

osed

min

eral

izat

ion,

qtz

-hn-

cpx-

grt-e

pg-p

y

5865

01

5410

066

44

42

0 97

SLJ

-404

-1A

56

7 qt

z-bt

'-cht

2-st

,ant

-grt,

op;m

altn

like

ly, n

b an

t on

one

side

, lot

s of

st,

cht2

eve

nt p

rom

in,

utm

s es

timat

ed

5865

01

5410

066

45

43

4 97

SLJ

-404

-3

568

qtz-

st-p

lg-c

ht2,

grt-a

nt,o

p-to

; sil

clos

e to

grt,

rand

om a

ltn a

cros

s S

m(b

t,agg

s);u

tm e

stim

ated

5867

03

5410

045

42

49

0 97

SLJ

-405

-2

569

plg-

qtz-

bt-c

ht2-

wm

(ps)

,,op;

wm

poi

ks a

ft?, p

lg p

artly

to w

m v

fgr

5872

28

5410

220

24

29

2 97

SLJ

-406

-1

570

qtz-

plg,

bt,e

pg-o

p-ch

t(2?-

cb);w

po(b

t,agg

s); b

t met

acla

stite

5872

54

5409

984

44

49

4 97

SLJ

-407

-1

571

sil-q

tz,s

t-wm

,cht

2-to

(olg

rn)-

ap;s

il-ric

h rk

, mal

tn?,

som

e si

l def

ine

Sm

but

man

y pe

rpen

dic

5872

54

5409

984

45

49

0 97

SLJ

-407

-3

572

sil-q

tz,s

t(2 a

ges?

)-w

m,c

ht2-

to-o

p-bt

-crd

?;st

-cht

-wm

on

sill-

bt-s

t?, p

oiki

lobl

plg

or c

rd?

5872

54

5409

984

45

49

0 97

SLJ

-407

-4

573

qtz-

sil(f

ib+p

ris)-

bt-s

t-plg

,grt,

to-o

p-m

/z;n

o w

m-c

ht; s

till 2

st?

, bt-s

il la

yer;g

rt af

t sil,

mul

ti gr

ain

st a

ggs

late

r?

5841

69

5409

939

74

79

0 97

SLJ

-409

-1

574

cpx-

cb-h

n-su

lphi

de-q

tz, m

etal

tn/m

iner

al

5841

69

5409

939

44

42

0 97

SLJ

-409

-2A

57

5 so

me

or m

ost c

ht is

2?;

st m

ultig

rain

agg

regs

, pol

ymet

am?

5841

69

5409

939

43

42

0 97

SLJ

-409

-3

576

qtz-

grt-c

ht2(

aft b

t),op

,bt;

qtz-

rich,

met

a fe

fm?,

a lo

t of g

rt

5842

04

5409

872

25

29

4 97

SLJ

-410

-1

577

plg-

qtz,

hn,o

p-bt

-wm

2(af

t plg

)-op

-tit;m

po(h

n,ag

gs);

hn m

etac

lasi

te

5840

76

5409

855

14

12

4 97

SLJ

-411

-1

578

plg'

-hn,

cht2

(aft

bt),o

p-tit

-act

-wm

(aft

plg)

;mpo

(agg

s,ch

t agg

s,am

);maf

ic m

etac

last

ite

5838

55

5409

404

54

59

0 97

SLJ

-412

-1

579

qtz-

am(b

rn,g

rybl

,pris

mat

ic)-

bt,o

p;am

rand

om, s

ome

poly

g ar

cs; m

eta

Fe-r

ich

sed

5829

32

5409

009

73

79

4 97

SLJ

-415

-1

580

am(a

ct,h

n)-e

pg-p

lg-q

tz,,t

it;m

-ipo(

am,a

ggs)

;73

in a

bsen

ce o

f cpx

; epg

-ric

h zo

nes,

thin

lyr

5819

49

5407

299

44

42

4 97

SLJ

-418

-1

581

bt-c

ht-q

tz-p

lg'-w

m(p

s),g

rt,to

(ylb

rn);

retro

d po

rphy

robl

astic

sch

ist,

grt O

K

5819

49

5407

299

43

49

4 97

SLJ

-418

-2

582

qtz-

plg-

cht-w

m-g

rt,,o

p;m

po(c

ht a

ggs,

qtz

-plg

agg

s), l

ooks

like

lgz

but i

s ch

t ret

ro?,

plg

-ve,

42?

5819

49

5407

299

45

41

4 97

SLJ

-418

-3

583

qtz-

plg'

-bt-w

m2-

sil,c

ht2,

op-p

rn(a

ft bt

-ap;

sch

ist +

low

gra

de re

tro (4

2-41

on

43?)

5830

61

5411

720

43

49

4 97

SLJ

-419

-1

584

qtz-

plg-

am(b

lgrn

-vpl

grn,

act/h

n?),c

ht,b

t-op;

mpo

(am

,agg

s), p

ossi

bly

44, a

m m

etac

last

ite

5831

39

5410

860

13

19

2 97

SLJ

-420

-1

585

plg-

znd

am(h

n>ac

t)-qt

z,,o

p-tit

-epg

; wpo

(agg

s,am

); m

afic

am

met

acla

stite

5831

41

5410

736

25

29

4 97

SLJ

-421

-1

586

plg(

clas

ts,m

trx)-

qtz-

bt,h

n,op

-ap-

m/z

;mpo

(bt,c

last

s,ag

gs);b

t-hn

met

acla

stite

5606

76

5393

655

43

49

4 77

TLM

-B22

1 58

7 qt

z-pl

g-bt

,epg

-op-

zi; m

po(b

t), p

ossi

bly

S2,

or S

1-2,

Sm

acr

oss

bdg;

epg

rare

, som

e N

a pl

g

5626

00

5395

190

13

19

0 77

TLM

-B26

0 58

8 pl

g-2a

m(h

n>ac

t),qt

z,ep

g-op

-tit;

fresh

rexl

rk; M

elgu

nd s

tock

; is

hn ig

n th

en?

If ye

s 12

is g

rd

5589

28

5397

832

63

69

0 77

TLM

-B47

0 58

9 pl

g-kf

-qtz

,bt-h

n,ep

g-tit

-zi;

if m

etd

occu

rred

bt-h

n st

ill s

tabl

e, e

pg a

t hn-

fp c

onta

cts

5596

20

5391

631

24

22

6 77

TLM

-M52

59

0 pl

g-qt

z,zn

d am

(hn>

act)-

bt-e

pg-c

ht,o

p;m

po(b

t,am

,agg

s) w

rps

plg

auge

n, b

t-am

mcl

ste

5504

31

5390

497

73

79

2 77

TLM

-M82

59

1 ep

g-pl

g-qt

z,bt

,op-

cb-c

ht;w

po(b

t,agg

s); a

lot o

f epg

, lik

ely

calc

sed

m p

roto

lith

5469

86

5390

654

24

29

2 77

TLM

-M10

4 59

2 pl

g'-q

tz-b

t-epg

,ru-a

p; w

po(b

t) w

raps

plg

gra

ins,

epg

aft

plg,

fels

met

acla

stite

5470

80

5390

326

24

29

2 77

TLM

-M11

6 59

3 qt

z-pl

g-ep

g(?)

,bt,w

m-o

p; w

po(b

t); e

pg(?

) is

too

fgr t

o se

e, e

pg is

bes

t gue

ss, v

fgr m

clst

e

71

Page 90: New Metamorphic Framework Hemlo - Geology Ontario

XE

AST

83 Y

NO

RT

83 R

AG

RD

1 R

AG

RD

2 D

EFM

SAM

NO

M

RN

NO

TE

S PL

N

5471

87

5390

294

22

29

4 77

TLM

-M11

8 59

4 pl

g-qt

z-ep

g,w

m-c

ht,o

p-tit

; mpo

(wm

,agg

s); p

lg g

rain

s(xl

s/cl

asts

?) p

rom

inen

t, fe

ls m

clas

tite

5472

86

5390

025

13

19

0 77

TLM

-M12

6 59

5 ac

t-plg

-epg

,qtz

-bt,c

ht-ti

t-op-

cb;fa

int l

yr, r

elic

t plg

phe

nos/

xls,

73

also

?

5475

77

5389

533

43

49

4 77

TLM

-M13

0 59

6 w

m-q

tz-p

lg-b

t,cht

-cb(

vn),o

p-gr

a;m

po(b

t,wm

);bt-w

m m

etas

iltst

one

5475

34

5389

483

43

49

0 77

TLM

-M13

3 59

7 bt

-epg

-plg

-qtz

,cb-

cht(a

ltn z

ns),o

p-m

/z; t

hin

lyrs

, 73

also

?

5484

82

5388

987

22

29

4 77

TLM

-M15

9 59

8 pl

g-qt

z-w

m-c

b,ch

t,op-

ru-a

p; m

po(w

m,a

ggs)

; fel

sic

met

acla

stite

5519

27

5398

061

43

43

4 77

TLM

-M21

9 59

9 bt

-cht

(mg)

2?-p

lg-q

tz,g

rt,op

-gra

-m/z

;w-m

po(b

t,agg

s),c

ht o

ver S

m, g

rt re

lict o

r nuc

leat

?44?

5493

26

5385

761

22

29

4 77

TLM

-M30

3 60

0 pl

g-w

m-q

tz-c

b-ep

g,ch

t,op-

ap-r

u-tit

;mpo

(wm

,agg

s)w

rps

plg

xls/

clas

ts; f

elsi

c m

etac

last

ite

5493

48

5385

212

22

29

4 77

TLM

-M31

9 60

1 pl

g-w

m-q

tz-c

b,ch

t,op;

mpo

(wm

,agg

s)w

rps

plg

xls/

clas

ts; f

elsi

c m

etac

last

ite

5515

32

5382

898

24

29

4 77

TLM

-M32

3 60

2 pl

g-qt

z-w

m-b

t,cb(

mtrx

)-ch

t,op-

to(a

cic,

olbr

n)-m

/z; m

po(b

t,wm

,agg

s,to

), ly

r

5490

28

5384

994

24

29

2 77

TLM

-M34

7 60

3 pl

g-qt

z-w

m-c

b, b

t-epg

,cht

-op;

wpo

(wm

,agg

s); f

elsi

c m

etac

last

ite

5490

28

5384

994

24

29

2 77

TLM

-M35

0 60

4 pl

g-qt

z-w

m,b

t-epg

,op-

cht;

wpo

(bt,w

m);

fels

ic m

etac

last

ite

5515

77

5383

121

24

29

4 77

TLM

-M41

9 60

5 pl

g-qt

z,w

m-b

t,cht

-epg

-cb-

op; m

po(b

t,agg

s) fe

lsic

met

acla

stite

5532

92

5380

581

64

69

2 77

TLM

-M51

0 60

6 m

tona

lite;

plg-

qtz,

bt-e

pg-b

tr ,wm

(aft

plg)

-tit-m

/z; b

t agg

aft

am, p

oylg

d qt

z, e

pg a

ft pl

g 63

+ P

I

5537

30

5379

055

64

69

4 77

TLM

-M56

2 60

7 m

tona

lite;

plg-

qtz,

bt-e

pg,w

m(a

ft pl

g)-ti

t-m/z

; mpo

(bt,e

pg,p

lg-q

tz a

ggs)

, 63+

P

I

5521

79

5381

561

33

39

0 77

TLM

-M58

5 60

8 hn

(dk

blgr

n),o

p,cb

-cht

; gz

on a

lkal

ic h

nite

or a

z m

etah

ornb

lend

ite?

34?

5524

55

5381

683

33

39

0 77

TLM

-M60

1 60

9 hn

-act

-op,

cb; t

z-az

met

ahor

nble

ndite

, com

plex

inte

rgro

wn

am, i

nter

stit

cb, s

trang

e, 3

4?

5525

47

5381

694

33

39

0 77

TLM

-M62

0 61

0 se

-tlc-

am-o

p,cb

; am

=trm

?

5470

53

5390

798

23

29

4 77

TLM

-M65

4 61

1 pl

g'-q

tz-b

t-epg

(aft

plg)

,,cht

-op-

tit; m

po(b

t,agg

s); f

elsi

c m

etac

last

ite

5724

44

5394

340

54

59

6 78

TLM

-L06

2 61

2 am

(hn>

>act

)-gr

t,bt-c

ht,o

p-m

/z;ip

o(am

) cre

n, g

rt ov

er c

ren;

met

afef

m?

5658

67

5397

277

45

43

4 78

TLM

-L08

3 61

3 qt

z-pl

g-bt

-'crd

'-sil,

and-

cht2

-wm

2,op

-to-m

/z;a

nd p

reda

tes

Sil,

wm

-cht

aft

crd;

mpo

(bt,s

il)

5694

94

5396

658

24

29

4 78

TLM

-L08

7 61

4 pl

g-qt

z-ep

g,am

(hn>

>act

)-ch

t,op-

m/z

;mpo

(agg

s); h

n lik

ely

ign

relic

ts, a

m-e

pg m

etac

last

ite

5677

21

5396

662

44

42

0 78

TLM

-L08

9 61

5 ch

t2(p

s)-w

m2(

ps)-

qtz,

plg,

op-g

rt-bt

;cht

ps(

aft g

rt),w

m p

s (a

ft ?)

, m

po(c

ht a

ft bt

), re

lict g

rt

5670

56

5398

223

24

22

2 78

TLM

-L09

1 61

6 pl

g-qt

z,bt

-cht

2(af

t bt)-

op-m

/z;w

po(b

t); fe

lsic

met

acla

stite

5727

22

5389

512

65

69

4 78

TLM

-L17

3 61

7 pl

g-qt

z-kf

,bt-h

n,tit

-cht

2-ep

g2; t

otal

ly re

xliz

ed/fo

liate

d, m

inor

cht

2 P

5730

02

5393

362

43

49

0 78

TLM

-M02

1 61

8 bt

-qtz

-plg

-cht

(mg)

,to-a

p-op

;sch

ist;

5735

36

5393

377

25

29

4 78

TLM

-M02

5 61

9 hn

-epg

-qtz

-plg

,,tit;

mpo

(hn,

aggs

); hn

-epg

but

like

ly c

alc

mse

d

5750

01

5393

506

14

19

6 78

TLM

-M03

6 62

0 hn

-plg

,cb(

vn/ly

r)-q

tz,,o

p; ip

o(hn

); cb

lyr/v

n re

xld,

like

ly p

re-m

etam

orph

ic

5759

33

5393

682

14

19

4 78

TLM

-M04

1 62

1 hn

-plg

,qtz

,op-

cb; r

elat

ivel

y cg

r, lo

cally

mpo

(hn)

; hn

is fu

ll of

incl

5756

14

5393

650

24

22

2 78

TLM

-M04

5 62

2 pl

g-qt

z-kf

,bt-w

m-e

pg-c

b,op

-cht

; wpo

(bt,a

ggs)

;epg

aft

bt; b

t-cb

OK

, so

24; f

els

mcl

ste,

5752

64

5393

544

33

39

4 78

TLM

-M04

6 62

3 ch

t(mg)

-trm

/act

,,op;

mpo

(cht

,am

); m

etau

ltram

afite

5763

69

5393

714

24

29

2 78

TLM

-M04

7 62

4 pl

g-bt

,qtz

-cb,

op-ti

t-op-

m/z

-ap;

wpo

(bt,a

ggs)

; bt-c

b, n

o am

, epg

5764

54

5393

639

14

19

5 78

TLM

-M04

8 62

5 hn

-plg

,epg

(zns

,lyr,v

n),o

p-tit

;m-ip

o(hn

,agg

s); e

pg ri

ch ly

r/zn

likel

y pr

imar

y, m

afic

met

acla

stite

5770

84

5393

796

44

42

6 78

TLM

-M05

1 62

6 pl

g'-q

tz,w

m-c

ht2(

aft g

rt-bt

)-gr

t,op-

bt;ip

o(w

m-c

ht2,

wm

); hi

gh s

train

w/ r

etro

eve

nt

72

Page 91: New Metamorphic Framework Hemlo - Geology Ontario

XE

AST

83 Y

NO

RT

83 R

AG

RD

1 R

AG

RD

2 D

EFM

SAM

NO

M

RN

NO

TE

S PL

N

5776

28

5393

850

72

79

0 78

TLM

-M05

4 62

7 cb

-,cht

-bt(r

elic

t ign

?)-o

p,m

/z; m

sv; r

etro

d lo

okin

g ei

ther

not

Arc

hean

or p

erva

sive

M2

5777

12

5393

807

43

49

4 78

TLM

-M05

9 62

8 qt

z-w

m-b

t-cht

,grt-

op,to

(blg

rn)-

ap;g

rt-bt

-cht

-wm

, sch

ist;

cb p

orph

s, c

ht a

ft gr

t

5774

20

5393

890

33

39

4 78

TLM

-M06

3 62

9 am

(plg

rn,a

ct?)

,cht

(mg)

-bt-o

p;>9

5% a

m; m

po(a

m,b

t);ac

tinol

iteite

?

5826

69

5394

512

24

22

4 78

TLM

-M06

7 63

0 pl

g-qt

z,bt

-kf,t

it-ch

t2-w

m2-

epg2

-op-

ap-m

/z; m

po(b

t), re

tro h

sz ll

Sm

; bt m

etac

last

ite/p

sam

mite

5803

17

5393

739

24

29

4 78

TLM

-M07

6 63

1 pl

g-qt

z-kf

-bt,w

m(m

trx,a

ft pl

g)-c

b,tit

-m/z

-op-

ap;m

po(b

t,agg

s); m

etac

last

ite, p

lg c

last

s

5798

54

5393

644

24

21

2 78

TLM

-M07

7A63

2 pl

g-qt

z-kf

?,w

m-w

m2(

altn

)-ch

t(aft

bt?)

-tit;

wpo

(wm

,agg

s); w

m-c

b al

tn fr

act c

ontro

lled

5751

47

5392

858

14

19

4 78

TLM

-M08

6 63

3 pl

g-hn

-qtz

,wm

2(af

t plg

),epg

-op;

mpo

(hn,

aggs

); m

afic

met

acla

stite

; wm

altn

alo

ng fl

n lo

cally

5763

32

5393

178

42

49

0 78

TLM

-M09

1 63

4 gr

a-ric

h m

silts

tone

;qtz

-plg

-gra

,wm

-cht

,to; p

ossi

bly

mai

n ph

ase

42, n

ot re

trod

5766

59

5393

429

24

29

4 78

TLM

-M09

4 63

5 pl

g-qt

z-bt

,op-

m/z

-to; m

po(b

t,agg

s);

5664

47

5382

140

14

19

0 78

TLM

-M09

7 63

6 pl

g-am

(hn,

actin

oliti

c hn

),op-

cht2

; 2 h

n on

e rx

l ign

and

oth

er m

etam

orph

ic

5662

52

5381

813

14

19

0 78

TLM

-M10

1 63

7 hn

(rex

l ign

,met

am)-

cpx(

ign)

,bt(i

gn?)

,op-

tit,c

b;pr

obab

not

met

aultr

amaf

ite

5662

92

5381

967

33

39

0 78

TLM

-M10

2 63

8 cp

x(ig

n)-a

m(tr

m?)

-op-

cht(m

g); m

etac

linop

yrox

enite

5658

67

5381

841

33

39

0 78

TLM

-M10

3 63

9 se

-cb-

op,a

m(tr

m?)

-cb;

5654

63

5382

085

33

39

0 78

TLM

-M10

5 64

0 se

-op,

am(c

lls tr

m?)

; goo

d re

lict o

l rep

lace

d by

se

aggs

;

5817

19

5395

151

80

80

0 78

TLM

-M10

9 64

1 pl

g-kf

-qtz

,bt,e

pg-h

n-tit

-zi-w

m2-

cht2

; min

or w

m a

ltn o

f plg

; C

edar

Lk

plut

C

Lk

5676

40

5382

901

14

19

4 78

TLM

-M11

2 64

2 hn

,plg

-op(

cube

s,ag

gs),c

ht2-

m/z

; mpo

(hn

op a

ggs)

, cut

by

cht-a

ct-c

b hs

z; m

etab

asite

5792

89

5393

517

24

22

4 78

TLM

-M12

0 64

3 pl

g-qt

z,ch

t2(a

ft bt

)-bt

-wm

2(af

t plg

),cb-

op-a

p; m

po(b

t,agg

s), b

oudi

nd re

xl q

tz-c

b vn

s, la

te c

b vn

+ a

ltn

5736

08

5395

293

13

12

4 78

TLM

-M13

6 64

4 pl

g-qt

z-am

(hn>

act),

bt-e

pg-c

ht-c

b,op

;mpo

(am

,bt,a

ggs)

,cut

by

cht-a

ct-c

b-ep

g hs

z m

fmcl

ste

5798

47

5392

427

14

19

2 78

TLM

-M14

0A64

5 hn

-plg

,,op-

(kf-q

tz v

nlet

s); c

onta

ct m

etam

?, fr

act r

elat

ed a

ltn n

ot o

bvio

us in

ts

5786

27

5396

182

42

49

4 78

TLM

-M15

9 64

6 gr

a-ric

h m

silts

tone

;qtz

wm

-gra

,cht

-epg

; lik

ely

mai

n ph

ase

42, n

ot re

trod

5771

10

5395

755

14

19

5 78

TLM

-M16

7 64

7 hn

-plg

,qtz

,bt-o

p-m

/z;m

-ipo(

hn,a

ggs)

;hn

blgr

n to

grn

,

5813

83

5393

794

43

49

4 78

TLM

-M27

6 64

8 qt

z-bt

-plg

-cht

2(m

g),g

rt,to

-op-

m/z

;qui

te lg

e in

cl in

grt,

44

poss

ible

;mpo

(bt,c

ht) w

raps

grt

5775

93

5399

247

24

29

w

78TL

M-M

336

649

plg-

qtz,

bt,e

pg-a

p-op

;w to

msv

; fel

sic

met

acla

stite

5816

26

5393

843

24

29

4 83

TLM

-051

8 65

0 pl

g-qt

z-kf

,bt-c

b,tit

-op-

ap;m

po(b

t,agg

s),p

rom

inen

t fp

clas

ts; f

p-qt

z-bt

-cb

mcg

l

5814

14

5393

805

43

42

0 83

TLM

-060

2 65

1 qt

z-ch

t2(a

ft bt

)-pl

g,bt

r-grt-

cht2

,prn

-to(y

lbrn

);wk

wm

altn

of p

lg, b

t mpo

, sig

nif r

etro

altn

5814

14

5393

805

44

49

4 83

TLM

-060

5 65

2 m

etam

al-a

ltn;q

tz-p

lg-b

t,crd

-ant

-st-o

p-gr

t,to-

m/z

-cht

2;st

r in

crd,

mpo

(bt,

aggs

) wra

ps g

rt

5814

03

5393

770

54

59

0 83

TLM

-060

9 65

3 m

g-fe

mcl

ste;

plg-

qtz-

cum

,bt-g

rt-ch

t(mg)

,op-

m/z

-to;m

po(a

m,a

ggs)

gent

ly w

raps

grt

5814

03

5393

770

44

49

4 83

TLM

-061

1 65

4 qt

z-pl

g-bt

,grt,

to-m

/z-c

ht(m

g);m

po(b

t, ag

gs) w

raps

grt

w/ S

i obl

ique

, mgc

ht m

ay n

ot b

e re

tro

5798

65

5394

432

44

49

4 84

TLM

-040

2 65

5 qt

z-pl

g-w

m,g

rt-st

,op-

m/z

-to-c

ht2;

mpo

(bt,w

m,a

ggs)

wra

ps s

t-grt,

wm

zns

+ w

/ grt-

st

5796

83

5394

641

44

42

0 84

TLM

-100

1 65

6 qt

z-pl

g-bt

,grt,

m/z

-cht

2;gr

t-bt l

ow w

m, s

pect

ac g

rt ov

ergr

owth

s, s

igni

f cht

altn

at e

nd o

f ts

5796

38

5394

753

24

22

4 84

TLM

-100

2 65

7 pl

g-qt

z-w

m-b

t,cht

2(af

t bt)-

cb,to

-op;

mpo

(bt a

ggs)

;wm

poi

ks+a

ft pl

g, w

m-b

t-cb

mcl

ste

5822

47

5393

077

24

22

4 84

TLM

-140

4 65

8 pl

g-qt

z-kf

,bt-w

m(p

oiks

),epg

-cht

2(af

t bt),

ap-o

p;m

po(m

ica,

aggs

); M

2 w

eak

5810

96

5393

246

25

22

4 84

TLM

-140

5 65

9 pl

g-qt

z-kf

,hn-

bt,e

pg-c

ht2-

ap-o

p;m

po(c

ht2,

bt,h

n), h

n=lin

;retro

wea

k he

re; h

n-bt

mcl

ste

73 73

Page 92: New Metamorphic Framework Hemlo - Geology Ontario

XE

AST

83 Y

NO

RT

83 R

AG

RD

1 R

AG

RD

2 D

EFM

SAM

NO

M

RN

NO

TE

S PL

N

5753

54

5393

023

25

22

0 84

TLM

-170

7 66

0 qt

z-pl

g-bt

-epg

,hn,

cht2

(aft

bt)-

m/z

-ap-

tit;m

po(b

t,hn)

;dis

cord

ant l

inea

r altn

cut

s S

m, w

m a

ft pl

g

5754

66

5393

475

24

29

4 84

TLM

-170

9 66

1 qt

z-pl

g-bt

,wm

,cb-

epg-

op-c

ht2-

ap;m

po(b

t,agg

s) ll

bdg

; wm

poi

lilob

last

ic, m

etac

last

ite

5787

63

5394

267

25

21

4 84

TLM

-190

8 66

2 pl

g'-q

tz-c

ht2(

aft b

t)-ep

g,bt

-hn,

op-tr

m-u

n-pr

n;m

po(a

ggs)

;trm

-un

vn, s

igni

f ret

ro;b

t-hn

mcl

ste

5796

57

5393

729

14

19

4 84

TLM

-200

1 66

3 hn

-plg

-qtz

-op;

mpo

(hn,

aggs

);qtz

and

op

high

for m

etab

asite

, maf

ic m

clas

tite

5786

98

5393

789

33

32

4 84

TLM

-201

0 66

4 trm

,cht

(mg)

,cb-

bt-o

p;m

po(a

m,c

ht-b

t sea

m);

cht p

artly

aft

bt, c

ht-b

t in

seam

; mum

afite

5805

42

5393

150

25

22

4 85

TLM

-190

2 66

5 pl

g'-q

tz-w

m2(

aft p

lg)-

'bt'-

cht2

(aft

bt),h

n,ac

t(aft

hn)-

op;m

po(h

n,ch

t2),c

ross

frac

ts, r

etro

d

5787

45

5394

175

25

22

4 85

TLM

-190

5 66

6 pl

g'-q

tz-h

n-ch

t2(a

ft bt

),epg

-wm

2,op

-act

2-tit

;mpo

(hn,

aggs

);act

-cht

-epg

-wm

ove

rprin

t sig

nif

5805

71

5393

028

25

21

4 85

TLM

-190

8 66

7 qt

z-pl

g-hn

,,bt-t

it-kf

-ap-

op-c

ht 2

(aft

bt)-

prn(

aft b

t,am

?)-w

m2;

mpo

(hn,

bt,a

ggs)

;M2

altn

frac

s

5805

60

5392

672

14

21

4 85

TLM

-191

1 66

8 pl

g-hn

-qtz

,cb,

tit-c

ht2(

aft b

t)-w

m2-

op-a

p;m

po(h

n,ag

gs),w

m2

altn

frac

ts,tr

ace

act2

5805

67

5392

572

53

59

4 85

TLM

-191

2 66

9 gr

u-bt

-qtz

,plg

-cb,

op-m

/z;m

po(g

ru,b

t) fo

lded

, pol

yg a

rcs,

unu

sual

com

po, m

eta-

altn

?

5822

21

5390

659

33

39

4 85

TLM

-230

1 67

0 ch

t(mg)

-trm

,,op;

mpo

(cht

,trm

); m

etau

ltram

afite

5800

55

5394

275

44

49

4 85

TLM

-260

8 67

1 qt

z-bt

-grt,

plg-

st-c

ht2,

to-a

p-op

;mpo

(bt w

m a

ggs)

, grt

very

irre

g, s

t rar

e, p

lg d

iscr

ete

grai

ns

5798

13

5394

294

44

42

4 85

TLM

-270

2 67

2 pl

g-qt

z-bt

'-cht

,grt-

wm

-cht

2-w

m2,

st-o

p;m

po(b

t) w

raps

grt,

sig

nif r

etro

of b

t + u

nk to

cht

wm

5797

45

5394

062

24

21

4 85

TLM

-290

3 67

3 qt

z-'p

lg'-w

m(a

ft pl

g,m

trx)-

cht2

(aft

bt),p

rn(a

ft bt

);mpo

(cht

,agg

s); i

nten

se re

trog;

fels

lith

ic m

aren

ite

5800

55

5394

199

44

42

4 85

TLM

-350

1 67

4 pl

g'-q

tz-b

t'-w

m(1

,2)c

ht2,

grt-s

t,ky-

to-o

p-m

/z;s

t-bt t

o ch

t,sil

to w

m,k

y ov

er S

m w

rpng

st-g

rt

5795

40

5394

537

43

41

4 85

TLM

-370

4 67

5 qt

z-pl

g'-b

t'-ch

t-cht

2wm

2,gr

t-am

,op-

prn;

cb v

n/al

tn to

am

; prn

aft

bt;2

3-24

+21?

5794

45

5394

505

24

29

4 85

TLM

-400

2 67

6 pl

g-qt

z-bt

-cht

2,gr

t,op-

ap-to

;mpo

(bt)

wrp

s gr

t w/ o

bliq

ue S

i, to

o fe

ldsp

athi

c so

bt-g

rt on

ly

5797

71

5394

671

24

29

4 85

TLM

-440

4 67

7 pl

g-qt

z-bt

,wm

,op-

cht2

-to(g

rn)-

ap-m

/z;m

po(b

t); w

m p

oiki

lobl

, aft

plg;

feld

spat

hic

scst

5795

66

5394

550

44

49

4 85

TLM

-470

3 67

8 pl

g-qt

z-bt

-wm

,grt-

st,to

-op-

m/z

-cht

2; s

t you

nger

than

grt,

fln

wra

ps s

t +gr

t w/ o

bliq

ue S

i

5795

55

5394

537

43

41

4 85

TLM

-470

4 67

9 pl

g-qt

z-'b

t'-ch

t2,g

rt-pr

n2-w

m2,

op-m

/z;m

po(b

t, ag

gs) w

raps

grt,

prn

in m

trx +

bt,

wm

aft

plg

5794

59

5394

444

45

49

4 85

TLM

-470

9 68

0 qt

z-pl

g-bt

-wm

,grt-

st,k

y-to

-op-

m/z

;mpo

(bt,w

m,a

ggs)

wrp

s gr

t w/ o

bliq

Si,

ky-b

t sta

ble

5803

35

5393

849

24

29

0 85

TLM

-560

8 68

1 qt

z-m

i-bt-w

m-o

p, a

p-to

;mic

rocl

ine

porp

hyro

blas

ts

5803

05

5393

883

29

29

0 85

TLM

-561

4 68

2 qt

z-ab

-mi-o

p,w

m;w

m a

nd k

f but

no

cht s

o ca

n't c

hoos

e m

etam

orph

ic g

rade

5803

05

5393

883

24

29

4 85

TLM

-561

6 68

3 m

i-qtz

-op,

tit-b

t-am

(clls

)-cb

,tit-w

m(g

rn);a

m w

/ cb-

bt z

ns;m

po(b

t,am

,wm

,agg

s) ll

lyr;

Au

ore

5802

81

5393

911

24

29

4 85

TLM

-561

7 68

4 m

i-py-

qtz,

tit-b

t-wm

;tit r

ed to

ylb

rn, m

po(b

t); c

ould

be

high

er g

rade

than

23

give

n te

xtur

e

5802

66

5393

924

22

29

2 85

TLM

-561

9 68

5 ab

,cht

-wm

,qtz

-cb-

m/z

-op-

ap;c

ht a

ft bt

?; w

po(c

ht) p

aral

lels

com

po ly

r

5802

66

5393

925

45

42

0 85

TLM

-562

0 68

6 qt

z-ky

-wm

,bt',

st-m

/z-o

p-ch

t2(a

ft bt

);wm

2 af

t plg

) mpo

(bt,k

y),W

illia

ms

Azo

ne, i

nter

lyrd

w/ q

tz; m

altn

5791

95

5396

945

25

29

4 86

TLM

-220

1 68

7 pl

g-qt

z-bt

,hn,

op-c

b-kf

-ap-

epg-

m/z

;mpo

(bt,h

n,ag

gs),f

ldd

rxld

kf-q

tz v

n;bt

-hn

met

acla

stite

5776

81

5394

681

25

22

4 86

TLM

-280

1 68

8 pl

g-qt

z-ch

t2(a

ft bt

)-hn

-bt,c

b-w

m2(

aft p

lg),o

p-tit

-epg

;frac

t rel

ated

altn

,mpo

(agg

s);b

t-hn

mcl

ste

5776

89

5394

617

24

22

4 86

TLM

-280

4 68

9 qt

z-pl

g'-w

m(m

trx,a

ft pl

g),c

b-ch

t2(a

ft bt

)-w

m2,

op-a

p; m

po(a

ggs)

; fra

cs w

/ wm

-cb

altn

mcl

ste

5776

96

5394

489

24

29

4 86

TLM

-280

8 69

0 pl

g(N

a)-q

tz,b

t-cb,

op-c

ht(m

g,2?

);mpo

(bt,a

ggs)

;cb-

bt c

oexi

st; f

elsi

c m

etac

last

ite

5785

72

5394

423

64

62

2 86

TLM

-400

2 69

1 pl

g-qt

z-kf

-bt'.

cht2

(aft

bt)-

wm

,op-

tit; w

po(b

t/cht

,agg

s); m

etag

rani

tic d

yke

dyk

5777

18

5394

213

44

49

6 86

TLM

-410

5 69

2 qt

z-w

m,b

t-op;

ipo(

wm

,bt);

qtz

-wm

-bt s

chis

t

74

Page 93: New Metamorphic Framework Hemlo - Geology Ontario

XE

AST

83 Y

NO

RT

83 R

AG

RD

1 R

AG

RD

2 D

EFM

SAM

NO

M

RN

NO

TE

S PL

N

5770

80

5394

412

24

22

4 86

TLM

-550

3 69

3 qt

z-pl

g,ch

t(pro

bab

2)-w

m,o

p-bt

-cb;

cb-

epg

vn c

uts

mpo

(cht

,agg

s); l

ooks

bt g

rade

5770

80

5394

313

24

22

0 86

TLM

-550

4 69

4 pl

g-qt

z-ch

t2(a

ft bt

),bt-w

m(m

trx,a

ft pl

g),c

b-ep

g-to

(grn

)-op

;mpo

(cht

2,bt

);fel

s m

cgl

5771

16

5394

090

24

29

4 86

TLM

-550

7 69

5 pl

g-qt

z-bt

,epg

-cb-

op-a

p;m

po(b

t,agg

s)w

rps

ghos

tly fp

cla

sts/

crys

tals

; az

from

gs

5782

02

5393

693

14

12

6 87

PJS

-160

8 69

6 hn

-plg

,qtz

,bt-c

ht2(

aft b

t)-ep

g,op

-tit;i

po(h

n,ag

gs);

cht a

ltn a

long

mpo

; M2

wea

k

5814

03

5393

767

54

51

0 87

TLM

-150

1A

697

plg(

+ve)

-qtz

-cum

-bt,c

ht2(

ps)-

grt-w

m2,

op-m

/z-p

rn-c

ht2;

prn-

cht a

ft bt

, cht

ps

aft 2

nd a

m

5814

03

5393

767

54

51

0 87

TLM

-150

1B

698

plg(

+ve)

-qtz

-cum

-bt,c

ht2(

ps)-

grt-w

m2,

op-m

/z-p

rn-c

ht2;

prn-

cht a

ft bt

, grt

has

cgr i

ncl

5812

97

5394

699

64

69

0 87

TLM

-470

2 69

9 kf

-qtz

-plg

dyk

e w

/ gra

nobl

astic

txt s

train

ed p

olyg

d qt

z, b

t cut

s rx

ld g

rntd

;nea

r CL

plut

on

dyk

5800

52

5395

100

62

69

1 87

TM-5

202

700

plg-

qtz-

kf,b

t'-ac

t-hn(

in in

clus

ion)

-cht

-epg

,wm

--tit

; cht

-wm

-epg

-act

are

met

am, s

ome

poly

gn

CC

r

5816

38

5393

591

24

29

4 87

TLM

-600

2B

701

plg-

qtz-

bt,c

ht-c

b-w

m,ti

t-op-

ap-m

/z;m

po(b

t) ll

ts;c

last

s=N

aplg

-qtz

-cht

(mg)

-wm

, som

e cb

-bt

5813

84

5393

761

44

49

0 87

TLM

-600

4 70

2 qt

z-pl

g-bt

-cht

(mg)

,grt,

op-z

i-ap;

m-ip

o(ch

t-bt),

wel

l rex

l loo

ks a

mph

b zo

ne, e

ven

w/ m

g ch

t

5813

63

5393

750

44

49

0 87

TLM

-600

5 70

3 cr

d-qt

z-pl

g-bt

,grt,

op-m

/z-a

p-to

;st o

n w

ay o

ut, g

rt ok

but

wel

l rou

nded

, no

wm

, met

a al

-altn

5809

81

5393

749

44

42

0 87

TLM

-601

0 70

4 pl

g'-q

tz-w

m2-

bt'-c

ht2,

grt-s

t,ap-

to-o

p;w

m p

s af

t st;

icht

altn

, Si g

rt-st

obl

q S

m

5775

69

5393

719

43

49

0 87

TLM

-601

6A

705

qtz-

bt-p

lg,g

rt,ch

t2-to

-op-

m/z

;rota

td g

rt, b

t grn

ish,

wel

l rex

l for

43,

grt

qtz

incl

fine

r tha

n m

trx

5775

69

5393

719

43

49

0 87

TLM

-601

6B

706

qtz-

bt-p

lg,g

rt,ch

t2-to

-op-

m/z

;rota

td g

rt, b

t grn

ish,

wel

l rex

l for

43,

grt

qtz

incl

fine

r tha

n m

trx

5816

53

5393

490

24

22

4 88

TLM

-030

2 70

7 pl

g-qt

z-cb

-am

(plg

rn)-

kf,c

ht2(

aft b

t?),t

it-m

/z-o

p;bt

-cb

reac

tion?

;mpo

(agg

s,am

), m

arly

mcl

ste

5789

36

5394

267

29

29

2 88

TLM

-210

1 70

8 qt

z-kf

-ab?

,op-

un(a

ft bt

?); w

po(u

n); n

o in

dex

min

eral

, fel

sic

met

acla

stite

5789

45

5394

261

24

29

0 88

TLM

-210

2 70

9 qt

z-kf

-plg

,bt-c

ht2(

mg)

-op-

ap;w

po(a

ggs,

bt);f

resh

fels

ic m

clas

tite

5796

30

5393

442

44

49

4 88

TLM

-250

7 71

0 qt

z-pl

g-bt

,st-g

rt-w

m,to

-op-

m/z

-cht

2; m

po(b

t) w

raps

st+

grt w

/ obl

ique

Si,

grt-

st q

tz v

ns

5803

15

5393

122

25

29

4 88

TLM

-251

0A

711

plg-

qtz-

hn-b

t-epg

,cb-

tit-a

p-ch

t2(a

ft bt

);mpo

(bt,h

n,ag

gs),(

hn-,b

t-,cb

-ric

h ly

rs)

5818

27

5391

254

25

29

0 88

TLM

-300

1 71

2 hn

-epg

-qtz

,plg

',op-

wm

(aft

plg)

; com

po ly

r, ca

lcar

eous

maf

ic m

clst

e

5817

68

5391

254

14

19

4 88

TLM

-300

2 71

3 hn

, tit-

op-c

ht2(

aft b

t); m

po(h

n); h

ornb

lend

ite m

afic

met

adyk

e

5826

19

5391

785

32

39

5 88

TLM

-320

3 71

4 tlc

-cb-

cht(m

g),o

p-ch

t(fe,

aft b

t?);i

po(c

ht m

g) in

mm

hsz

; in

mid

dle

of a

z! P

erva

sive

M2?

5796

50

5395

619

25

22

4 88

TLM

-360

2 71

5 qt

z-pl

g,bt

,epg

-hn-

cb-o

p-tit

-to-c

ht2-

act2

;mpo

(bt,a

ggs)

,rxld

qtz

vns

; spr

ay o

f act

2;M

2 w

k

5789

86

5396

034

54

59

2 88

TLM

-370

2 71

6 qt

z-pl

g-bt

-cum

,grt-

cht2

,op;

am(c

lls)-

grt-b

t-cht

, cht

late

r?, c

b ve

in d

ispl

aces

grt,

53-

54

5764

84

5393

703

45

49

4 89

TLM

-240

1A

717

wm

-qtz

-bt-p

lg,s

t-grt,

ky-to

-op-

ap-c

ht(a

ft st

,bt);

mpo

(bt,w

m),

grt e

arly

wrt

synt

ect s

t, st

in k

y

5764

84

5393

703

45

49

0 89

TLM

-240

1B

718

wm

-qtz

-bt-p

lg,s

t-grt-

wm

,ky-

to-o

p-ap

-cht

(aft

st,b

t) ky

ove

rgow

s S

m w

rapi

ng s

t+gr

t aug

en

5764

36

5393

716

44

49

4 97

TLM

-301

A2

719

qtz-

plg-

bt-w

m,g

rt-st

-cht

2,op

-to-a

p-m

/z;g

rt-st

pre

-Sm

5764

36

5393

716

45

49

4 97

TLM

-301

A3

720

qtz-

plg-

bt-w

m,g

rt-ch

t2,s

t;les

s gr

t-st,

Sm

cre

nula

ted

5764

36

5393

716

45

42

0 97

TLM

-301

A4

721

qtz-

plg-

bt-w

m,g

rt-st

-cht

2(af

t st),

ky-to

-op-

m/z

;bt-w

m-k

y po

ssib

ly p

re-S

m, g

rt-st

in q

tz b

lebs

5764

36

5393

716

45

49

0 97

TLM

-301

B1

722

qtz-

plg-

bt-w

m,g

rt-st

-cht

2,op

-to-a

p-m

/z;s

ynte

ct s

t,old

er g

rt, k

y la

te?,

sigm

oid

st, s

now

ballg

rt

5764

36

5393

716

45

49

0 97

TLM

-301

B2

723

qtz-

plg-

bt-w

m,s

t-grt-

cht2

,ky-

to-a

p-op

-m/z

-un;

3 k

y gr

ns la

ter t

han

st-g

rt, u

n -v

e to

qtz

6087

50

5394

579

46

49

M

uir2

000

724

met

ased

imen

tary

mig

mat

ite o

n M

uir's

(200

0) c

ompi

latio

n m

ap

6040

00

5397

119

46

49

M

uir2

000

725

met

ased

imen

tary

mig

mat

ite o

n M

uir's

(200

0) c

ompi

latio

n m

ap

75

Page 94: New Metamorphic Framework Hemlo - Geology Ontario

XE

AST

83 Y

NO

RT

83 R

AG

RD

1 R

AG

RD

2 D

EFM

SAM

NO

M

RN

NO

TE

S PL

N

6034

75

5397

639

46

49

M

uir2

000

726

met

ased

imen

tary

mig

mat

ite o

n M

uir's

(200

0) c

ompi

latio

n m

ap

5997

50

5401

349

46

49

M

uir2

000

727

met

ased

imen

tary

mig

mat

ite o

n M

uir's

(200

0) c

ompi

latio

n m

ap

5990

00

5401

819

46

49

M

uir2

000

728

met

ased

imen

tary

mig

mat

ite o

n M

uir's

(200

0) c

ompi

latio

n m

ap

5936

40

5403

149

46

49

M

uir2

000

729

met

ased

imen

tary

mig

mat

ite o

n M

uir's

(200

0) c

ompi

latio

n m

ap

5935

00

5402

894

45

49

M

uir2

000

730

met

ased

imen

tary

sch

ist o

n M

uir's

(200

0) c

ompi

latio

n m

ap

5932

10

5401

994

46

49

M

uir2

000

731

met

ased

imen

tary

mig

mat

ite o

n M

uir's

(200

0) c

ompi

latio

n m

ap

5931

00

5402

279

45

49

M

uir2

000

732

met

ased

imen

tary

sch

ist o

n M

uir's

(200

0) c

ompi

latio

n m

ap

5923

80

5401

694

45

49

M

uir2

000

733

met

ased

imen

tary

sch

ist o

n M

uir's

(200

0) c

ompi

latio

n m

ap

5920

95

5401

329

46

49

M

uir2

000

734

met

ased

imen

tary

mig

mat

ite o

n M

uir's

(200

0) c

ompi

latio

n m

ap

5916

10

5401

629

46

49

M

uir2

000

735

met

ased

imen

tary

mig

mat

ite o

n M

uir's

(200

0) c

ompi

latio

n m

ap

5913

40

5402

550

46

49

M

uir2

000

736

met

ased

imen

tary

mig

mat

ite o

n M

uir's

(200

0) c

ompi

latio

n m

ap

5913

60

5402

840

45

49

M

uir2

000

737

met

ased

imen

tary

sch

ist o

n M

uir's

(200

0) c

ompi

latio

n m

ap

5902

80

5403

280

45

49

M

uir2

000

738

met

ased

imen

tary

sch

ist o

n M

uir's

(200

0) c

ompi

latio

n m

ap

5888

90

5402

740

46

49

M

uir2

000

739

met

ased

imen

tary

mig

mat

ite o

n M

uir's

(200

0) c

ompi

latio

n m

ap

5867

40

5403

670

46

49

M

uir2

000

740

met

ased

imen

tary

mig

mat

ite o

n M

uir's

(200

0) c

ompi

latio

n m

ap

5867

60

5404

170

45

49

M

uir2

000

741

met

ased

imen

tary

sch

ist o

n M

uir's

(200

0) c

ompi

latio

n m

ap

5866

10

5403

010

45

49

M

uir2

000

742

met

ased

imen

tary

sch

ist o

n M

uir's

(200

0) c

ompi

latio

n m

ap

5865

45

5402

644

46

49

M

uir2

000

743

met

ased

imen

tary

mig

mat

ite o

n M

uir's

(200

0) c

ompi

latio

n m

ap

5868

25

5402

145

45

49

M

uir2

000

744

met

ased

imen

tary

sch

ist o

n M

uir's

(200

0) c

ompi

latio

n m

ap

5885

90

5401

980

45

49

M

uir2

000

745

met

ased

imen

tary

sch

ist o

n M

uir's

(200

0) c

ompi

latio

n m

ap

5873

00

5401

095

46

49

M

uir2

000

746

met

ased

imen

tary

mig

mat

ite o

n M

uir's

(200

0) c

ompi

latio

n m

ap

5881

20

5401

145

46

49

M

uir2

000

747

met

ased

imen

tary

mig

mat

ite o

n M

uir's

(200

0) c

ompi

latio

n m

ap

5884

85

5401

380

46

49

M

uir2

000

748

met

ased

imen

tary

mig

mat

ite o

n M

uir's

(200

0) c

ompi

latio

n m

ap

5894

25

5401

770

46

49

M

uir2

000

749

met

ased

imen

tary

mig

mat

ite o

n M

uir's

(200

0) c

ompi

latio

n m

ap

5895

75

5401

340

45

49

M

uir2

000

750

met

ased

imen

tary

sch

ist o

n M

uir's

(200

0) c

ompi

latio

n m

ap

5911

30

5402

019

45

49

M

uir2

000

751

met

ased

imen

tary

sch

ist o

n M

uir's

(200

0) c

ompi

latio

n m

ap

5911

80

5401

710

45

49

M

uir2

000

752

met

ased

imen

tary

sch

ist o

n M

uir's

(200

0) c

ompi

latio

n m

ap

5904

10

5401

320

46

49

M

uir2

000

753

met

ased

imen

tary

mig

mat

ite o

n M

uir's

(200

0) c

ompi

latio

n m

ap

5891

50

5400

640

45

49

M

uir2

000

754

met

ased

imen

tary

sch

ist o

n M

uir's

(200

0) c

ompi

latio

n m

ap

5901

40

5399

880

46

49

M

uir2

000

755

met

ased

imen

tary

mig

mat

ite o

n M

uir's

(200

0) c

ompi

latio

n m

ap

5923

00

5399

180

46

49

M

uir2

000

756

met

ased

imen

tary

mig

mat

ite o

n M

uir's

(200

0) c

ompi

latio

n m

ap

5932

60

5398

700

45

49

M

uir2

000

757

met

ased

imen

tary

sch

ist o

n M

uir's

(200

0) c

ompi

latio

n m

ap

5945

80

5399

600

46

49

M

uir2

000

758

met

ased

imen

tary

mig

mat

ite o

n M

uir's

(200

0) c

ompi

latio

n m

ap

76

Page 95: New Metamorphic Framework Hemlo - Geology Ontario

XE

AST

83 Y

NO

RT

83 R

AG

RD

1 R

AG

RD

2 D

EFM

SAM

NO

M

RN

NO

TE

S PL

N

5950

00

5399

170

45

49

M

uir2

000

759

met

ased

imen

tary

sch

ist o

n M

uir's

(200

0) c

ompi

latio

n m

ap

5982

25

5398

835

45

49

M

uir2

000

760

met

ased

imen

tary

sch

ist o

n M

uir's

(200

0) c

ompi

latio

n m

ap

5967

40

5398

390

45

49

M

uir2

000

761

met

ased

imen

tary

sch

ist o

n M

uir's

(200

0) c

ompi

latio

n m

ap

5972

40

5398

420

46

49

M

uir2

000

762

met

ased

imen

tary

mig

mat

ite o

n M

uir's

(200

0) c

ompi

latio

n m

ap

5978

35

5398

050

45

49

M

uir2

000

763

met

ased

imen

tary

sch

ist o

n M

uir's

(200

0) c

ompi

latio

n m

ap

5988

10

5397

495

45

49

M

uir2

000

764

met

ased

imen

tary

sch

ist o

n M

uir's

(200

0) c

ompi

latio

n m

ap

5995

20

5395

800

46

49

M

uir2

000

765

met

ased

imen

tary

mig

mat

ite o

n M

uir's

(200

0) c

ompi

latio

n m

ap

6004

50

5393

450

46

49

M

uir2

000

766

met

ased

imen

tary

mig

mat

ite o

n M

uir's

(200

0) c

ompi

latio

n m

ap

6008

00

5393

280

45

49

M

uir2

000

767

met

ased

imen

tary

sch

ist o

n M

uir's

(200

0) c

ompi

latio

n m

ap

6037

00

5391

110

45

49

M

uir2

000

768

met

ased

imen

tary

sch

ist o

n M

uir's

(200

0) c

ompi

latio

n m

ap

6035

75

5390

880

46

49

M

uir2

000

769

met

ased

imen

tary

mig

mat

ite o

n M

uir's

(200

0) c

ompi

latio

n m

ap

6025

80

5391

194

45

49

M

uir2

000

770

met

ased

imen

tary

sch

ist o

n M

uir's

(200

0) c

ompi

latio

n m

ap

6031

20

5390

590

46

49

M

uir2

000

771

met

ased

imen

tary

mig

mat

ite o

n M

uir's

(200

0) c

ompi

latio

n m

ap

5986

10

5391

095

45

49

M

uir2

000

772

met

ased

imen

tary

sch

ist o

n M

uir's

(200

0) c

ompi

latio

n m

ap

5986

00

5391

780

46

49

M

uir2

000

773

met

ased

imen

tary

mig

mat

ite o

n M

uir's

(200

0) c

ompi

latio

n m

ap

5961

40

5390

420

46

49

M

uir2

000

774

met

ased

imen

tary

mig

mat

ite o

n M

uir's

(200

0) c

ompi

latio

n m

ap

5966

10

5391

100

45

49

M

uir2

000

775

met

ased

imen

tary

sch

ist o

n M

uir's

(200

0) c

ompi

latio

n m

ap

5943

00

5391

420

45

49

M

uir2

000

776

met

ased

imen

tary

sch

ist o

n M

uir's

(200

0) c

ompi

latio

n m

ap

5942

80

5391

640

46

49

M

uir2

000

777

met

ased

imen

tary

mig

mat

ite o

n M

uir's

(200

0) c

ompi

latio

n m

ap

5941

80

5392

030

45

49

M

uir2

000

778

met

ased

imen

tary

sch

ist o

n M

uir's

(200

0) c

ompi

latio

n m

ap

5943

25

5392

650

46

49

M

uir2

000

779

met

ased

imen

tary

mig

mat

ite o

n M

uir's

(200

0) c

ompi

latio

n m

ap

5927

60

5392

325

46

49

M

uir2

000

780

met

ased

imen

tary

mig

mat

ite o

n M

uir's

(200

0) c

ompi

latio

n m

ap

5917

00

5392

500

46

49

M

uir2

000

781

met

ased

imen

tary

mig

mat

ite o

n M

uir's

(200

0) c

ompi

latio

n m

ap

5907

80

5391

625

45

49

M

uir2

000

782

met

ased

imen

tary

sch

ist o

n M

uir's

(200

0) c

ompi

latio

n m

ap

5928

90

5391

150

45

49

M

uir2

000

783

met

ased

imen

tary

sch

ist o

n M

uir's

(200

0) c

ompi

latio

n m

ap

5926

80

5391

340

46

49

M

uir2

000

784

met

ased

imen

tary

mig

mat

ite o

n M

uir's

(200

0) c

ompi

latio

n m

ap

6008

00

5387

050

45

49

M

uir2

000

785

met

ased

imen

tary

sch

ist o

n M

uir's

(200

0) c

ompi

latio

n m

ap

6010

90

5388

150

46

49

M

uir2

000

786

met

ased

imen

tary

mig

mat

ite o

n M

uir's

(200

0) c

ompi

latio

n m

ap

6007

80

5387

650

45

49

M

uir2

000

787

met

ased

imen

tary

sch

ist o

n M

uir's

(200

0) c

ompi

latio

n m

ap

6004

75

5387

470

46

49

M

uir2

000

788

met

ased

imen

tary

mig

mat

ite o

n M

uir's

(200

0) c

ompi

latio

n m

ap

6009

00

5387

150

45

49

M

uir2

000

789

met

ased

imen

tary

sch

ist o

n M

uir's

(200

0) c

ompi

latio

n m

ap

6021

75

5387

125

46

49

M

uir2

000

790

met

ased

imen

tary

mig

mat

ite o

n M

uir's

(200

0) c

ompi

latio

n m

ap

6066

40

5386

600

46

49

M

uir2

000

791

met

ased

imen

tary

mig

mat

ite o

n M

uir's

(200

0) c

ompi

latio

n m

ap

77

Page 96: New Metamorphic Framework Hemlo - Geology Ontario

XE

AST

83 Y

NO

RT

83 R

AG

RD

1 R

AG

RD

2 D

EFM

SAM

NO

M

RN

NO

TE

S PL

N

6051

75

5389

840

46

49

M

uir2

000

792

met

ased

imen

tary

mig

mat

ite o

n M

uir's

(200

0) c

ompi

latio

n m

ap

5963

50

5387

700

46

49

M

uir2

000

793

met

ased

imen

tary

mig

mat

ite o

n M

uir's

(200

0) c

ompi

latio

n m

ap

5841

80

5393

650

46

49

M

uir2

000

794

met

ased

imen

tary

mig

mat

ite o

n M

uir's

(200

0) c

ompi

latio

n m

ap

5793

10

5402

350

46

49

M

uir2

000

795

met

ased

imen

tary

mig

mat

ite o

n M

uir's

(200

0) c

ompi

latio

n m

ap

5785

40

5403

960

45

49

M

uir2

000

796

met

ased

imen

tary

sch

ist o

n M

uir's

(200

0) c

ompi

latio

n m

ap

5778

20

5403

045

45

49

M

uir2

000

797

met

ased

imen

tary

sch

ist o

n M

uir's

(200

0) c

ompi

latio

n m

ap

5777

00

5403

420

46

49

M

uir2

000

798

met

ased

imen

tary

mig

mat

ite o

n M

uir's

(200

0) c

ompi

latio

n m

ap

5766

30

5403

450

46

49

M

uir2

000

799

met

ased

imen

tary

mig

mat

ite o

n M

uir's

(200

0) c

ompi

latio

n m

ap

5780

00

5403

470

46

49

M

uir2

000

800

met

ased

imen

tary

mig

mat

ite o

n M

uir's

(200

0) c

ompi

latio

n m

ap

5783

95

5403

730

45

49

M

uir2

000

801

met

ased

imen

tary

sch

ist o

n M

uir's

(200

0) c

ompi

latio

n m

ap

5786

00

5404

270

45

49

M

uir2

000

802

met

ased

imen

tary

sch

ist o

n M

uir's

(200

0) c

ompi

latio

n m

ap

5792

20

5404

550

46

49

M

uir2

000

803

met

ased

imen

tary

mig

mat

ite o

n M

uir's

(200

0) c

ompi

latio

n m

ap

5802

35

5403

410

46

49

M

uir2

000

804

met

ased

imen

tary

mig

mat

ite o

n M

uir's

(200

0) c

ompi

latio

n m

ap

5834

50

5403

940

46

49

M

uir2

000

805

met

ased

imen

tary

mig

mat

ite o

n M

uir's

(200

0) c

ompi

latio

n m

ap

5842

25

5403

840

45

49

M

uir2

000

806

met

ased

imen

tary

sch

ist o

n M

uir's

(200

0) c

ompi

latio

n m

ap

5846

30

5403

720

46

49

M

uir2

000

807

met

ased

imen

tary

mig

mat

ite o

n M

uir's

(200

0) c

ompi

latio

n m

ap

5853

10

5403

880

45

49

M

uir2

000

808

met

ased

imen

tary

sch

ist o

n M

uir's

(200

0) c

ompi

latio

n m

ap

5845

60

5404

380

46

49

M

uir2

000

809

met

ased

imen

tary

mig

mat

ite o

n M

uir's

(200

0) c

ompi

latio

n m

ap

5843

30

5404

180

46

49

M

uir2

000

810

met

ased

imen

tary

mig

mat

ite o

n M

uir's

(200

0) c

ompi

latio

n m

ap

5837

60

5404

180

45

49

M

uir2

000

811

met

ased

imen

tary

sch

ist o

n M

uir's

(200

0) c

ompi

latio

n m

ap

5841

80

5404

770

45

49

M

uir2

000

812

met

ased

imen

tary

sch

ist o

n M

uir's

(200

0) c

ompi

latio

n m

ap

5848

80

5405

050

46

49

M

uir2

000

813

met

ased

imen

tary

mig

mat

ite o

n M

uir's

(200

0) c

ompi

latio

n m

ap

5845

25

5405

350

45

49

M

uir2

000

814

met

ased

imen

tary

sch

ist o

n M

uir's

(200

0) c

ompi

latio

n m

ap

5851

80

5405

740

45

49

M

uir2

000

815

met

ased

imen

tary

sch

ist o

n M

uir's

(200

0) c

ompi

latio

n m

ap

5831

25

5407

130

45

49

M

uir2

000

816

met

ased

imen

tary

sch

ist o

n M

uir's

(200

0) c

ompi

latio

n m

ap

5825

60

5407

745

46

49

M

uir2

000

817

met

ased

imen

tary

mig

mat

ite o

n M

uir's

(200

0) c

ompi

latio

n m

ap

5874

00

5406

580

46

49

M

uir2

000

818

met

ased

imen

tary

mig

mat

ite o

n M

uir's

(200

0) c

ompi

latio

n m

ap

5876

25

5407

180

46

49

M

uir2

000

819

met

ased

imen

tary

mig

mat

ite o

n M

uir's

(200

0) c

ompi

latio

n m

ap

5911

80

5405

860

45

49

M

uir2

000

820

met

ased

imen

tary

sch

ist o

n M

uir's

(200

0) c

ompi

latio

n m

ap

5916

20

5406

010

46

49

M

uir2

000

821

met

ased

imen

tary

mig

mat

ite o

n M

uir's

(200

0) c

ompi

latio

n m

ap

5933

90

5404

100

45

49

M

uir2

000

822

met

ased

imen

tary

mig

mat

ite o

n M

uir's

(200

0) c

ompi

latio

n m

ap

5923

20

5403

520

45

49

M

uir2

000

823

met

ased

imen

tary

sch

ist o

n M

uir's

(200

0) c

ompi

latio

n m

ap

5930

00

5401

320

46

49

M

uir2

000

824

met

ased

imen

tary

mig

mat

ite o

n M

uir's

(200

0) c

ompi

latio

n m

ap

78 78

Page 97: New Metamorphic Framework Hemlo - Geology Ontario

XE

AST

83 Y

NO

RT

83 R

AG

RD

1 R

AG

RD

2 D

EFM

SAM

NO

M

RN

NO

TE

S PL

N

5921

50

5401

140

46

49

M

uir2

000

825

met

ased

imen

tary

mig

mat

ite o

n M

uir's

(200

0) c

ompi

latio

n m

ap

5881

00

5405

820

45

49

M

uir2

000

826

met

ased

imen

tary

sch

ist o

n M

uir's

(200

0) c

ompi

latio

n m

ap

5878

25

5405

980

46

49

M

uir2

000

827

met

ased

imen

tary

mig

mat

ite o

n M

uir's

(200

0) c

ompi

latio

n m

ap

5876

00

5400

530

45

49

M

uir2

000

828

met

ased

imen

tary

sch

ist o

n M

uir's

(200

0) c

ompi

latio

n m

ap

79

Page 98: New Metamorphic Framework Hemlo - Geology Ontario

80

Metric Conversion Table

Conversion from SI to Imperial Conversion from Imperial to SI

SI Unit Multiplied by Gives Imperial Unit Multiplied by Gives

LENGTH1 mm 0.039 37 inches 1 inch 25.4 mm1 cm 0.393 70 inches 1 inch 2.54 cm1 m 3.280 84 feet 1 foot 0.304 8 m1 m 0.049 709 chains 1 chain 20.116 8 m1 km 0.621 371 miles (statute) 1 mile (statute) 1.609 344 km

AREA1 cm@ 0.155 0 square inches 1 square inch 6.451 6 cm@1 m@ 10.763 9 square feet 1 square foot 0.092 903 04 m@1 km@ 0.386 10 square miles 1 square mile 2.589 988 km@1 ha 2.471 054 acres 1 acre 0.404 685 6 ha

VOLUME1 cm# 0.061 023 cubic inches 1 cubic inch 16.387 064 cm#1 m# 35.314 7 cubic feet 1 cubic foot 0.028 316 85 m#1 m# 1.307 951 cubic yards 1 cubic yard 0.764 554 86 m#

CAPACITY1 L 1.759 755 pints 1 pint 0.568 261 L1 L 0.879 877 quarts 1 quart 1.136 522 L1 L 0.219 969 gallons 1 gallon 4.546 090 L

MASS1 g 0.035 273 962 ounces (avdp) 1 ounce (avdp) 28.349 523 g1 g 0.032 150 747 ounces (troy) 1 ounce (troy) 31.103 476 8 g1 kg 2.204 622 6 pounds (avdp) 1 pound (avdp) 0.453 592 37 kg1 kg 0.001 102 3 tons (short) 1 ton (short) 907.184 74 kg1 t 1.102 311 3 tons (short) 1 ton (short) 0.907 184 74 t1 kg 0.000 984 21 tons (long) 1 ton (long) 1016.046 908 8 kg1 t 0.984 206 5 tons (long) 1 ton (long) 1.016 046 90 t

CONCENTRATION1 g/t 0.029 166 6 ounce (troy)/ 1 ounce (troy)/ 34.285 714 2 g/t

ton (short) ton (short)1 g/t 0.583 333 33 pennyweights/ 1 pennyweight/ 1.714 285 7 g/t

ton (short) ton (short)

OTHER USEFUL CONVERSION FACTORS

Multiplied by1 ounce (troy) per ton (short) 31.103 477 grams per ton (short)1 gram per ton (short) 0.032 151 ounces (troy) per ton (short)1 ounce (troy) per ton (short) 20.0 pennyweights per ton (short)1 pennyweight per ton (short) 0.05 ounces (troy) per ton (short)

Note:Conversion factorswhich are in boldtype areexact. Theconversion factorshave been taken fromor havebeenderived from factors given in theMetric PracticeGuide for the CanadianMining andMetallurgical Industries, pub-lished by the Mining Association of Canada in co-operation with the Coal Association of Canada.

Page 99: New Metamorphic Framework Hemlo - Geology Ontario
Page 100: New Metamorphic Framework Hemlo - Geology Ontario

ISSN 0826--9580ISBN 1--4249--0981--3

Page 101: New Metamorphic Framework Hemlo - Geology Ontario

!(!(!(

!(!(!(

!(!(

!(!(!(!(!(!(!(

!(!(

!(

!(!(

!(!(!(!(

!(

!( !(!(!(

!(

!(

!(

!(!(

!(

!(!( !(

!(!(

kj

kj#*

kjkj

kj

kj

kj

!(

#*

kj

kj

kj

kj

kj

kj

kj !(

kj

kj

kj

kj

kj

kj

!(

!(kj

kj

kj

!(!(

kj

kj

#*

!(

!(

kj

kjkj

kj

kj

kj

kj

kj

kj

kj

#*

#*

#*

!(

!(

kj

kj

#*

kj

#*#*

#*kj

kj

kj

kj

kj

kj

kjkj

kj

kj

kj

kj

kj

kj

kj

kj

kj

kj

kj

kj

")

")

")

")

")

")

")

")

_̂ _̂

GFGF

#*

")

")

")

kj

")")

GF

$+̂_

#*

#*

#*

GF")

#*

#*

#*#*

#*#*

#*

#*

_̂̂_̂_̂_

_̂GF

#*

")

_̂̂_̂_

")

#*#*

$+

#*

#*

#*

#*#*

GF

#*

_̂̂__̂

")

#*

#*

#*

#*

#*

#*

#*

#*

#*

#*#*#*

#*

_̂̂_

")

#*

")

")

")

#*

GF#*#*

#*

GF

")")GF

GF

GF

GFGF

GFGF

")GF

GF

")

")")")

")")GF

")

GF

#*

")

GF

#*#*

GF

#*

")

#*

#*

#*#*

#*#*

#* #*#*#*

#*#*#*#*

_̂̂_

")̂_

")

")")̂_̂_")")̂_

")

#*

_̂̂_̂_

")

#*

")

#*

#*

")̂_

#*

#*

#*

#*

#*#*

")

")

#*

GF

#*

#*

GF #*

#*

#*

")

#*

")")")_̂̂_̂_

GF

#*

GFGF

")

#*

")

") #*")

GF")")

")

")")

GF

GF

#*

")

#*

#*

kj kj

#*#*")")

kjkj

#*

")

")

#*

")

")

#*

#*

#*#*#*#*#*

GF

GF

#*

#*

#*

GF

#*

GF

$+

#*

")

kj

#*

#*

$+

#*

GF

#*

")

kj

kj

kj

#*#*

GF

")

#*

")

#*

#*

#*

#*GF

#*

GF

GF

")

#*#*

GF$+

GF

#*

#*

#*

_̂̂_

")

#* #*

#*

kj

")

#*

GFGFGF

#*

#*

#*#*

#*#*

#*#*

GF

#*

")

$+$+

#*#*

#*

") #*

_̂GF̂_

$+

#*

$+

#*

_̂̂_̂_̂__̂̂_̂_

GF̂_

#*#*

GF

_̂̂_̂_

#*#*

$+$+$+ #*

GF

#*

_̂̂_

_̂̂_

#*

GF

#*

GF

#*

GF$+$+$+$+_̂̂_̂_̂_̂_

#*

")")

")")")

")GF")

")

#*

")

")")

#*

#*

#*

#*#* #*

")GF

")GF

")

")$+$+$+

GF

GF

#*#*

")

")

")#*

")

#*

_̂")GF_̂̂__̂

")

_̂̂_̂_GF̂_̂_")

#*

$+

GF

_̂̂_̂_

#*

")

#*

kj

")

GF")

")")

#*

_̂̂_

")

")

")

")

")")

")

kj

kj

#*#*#*

")

$+

")_̂

")

kj

_̂ ")

#*

#*#*#*

#*

#*

#*

#*")

#*

")

")

#*

#*

")

$+

_̂_̂

_̂_̂

_̂ _̂_̂

_̂ _̂

_̂_̂

_̂_̂

_̂_̂

_̂_̂

_̂_̂

_̂_̂

_̂ _̂

_̂_̂ _̂

_̂ _̂_̂

_̂_̂_̂

_̂_̂

_̂_̂

_̂_̂

XW

XW

XW

XW

XWXWXWXW

XW

XW

XW

XW

XW

XW

XW

XW

XW

XW

XW

XW

XW

XWXW

XWXW

XW XW

XW

XW

XW

XW

XWXWXW

XW

XW

XW

XW

XW

XWXWXW

XW

XW

XW

XW

XW

XW

XW XW

XW

XW

XW

XW

XW

XW

XW

XWXWXW

XW

XWXW

XW

XW

!(

!(

!(!(

!(

!(

!(!(

986

5

4

3

2

65

6463

61

6059

57

56

55

53

52

51

50

4948

47

69

46

45

44

43

68 67

42

41

4039

38

3735

34

3332

31

3029

2827

24

23

22

21

20

18

17

16

1514

71

70

62

58

66

36

2625

19

10

9

8

76

5 43

21

90

89

88

87

86

85

84

83

82

81

80

797877

76

75

74

7372

71

70

6968

6766

65

64

63

62

6160

59

54

5352

51

5049

48

47 46

45

44

43

4241

40

3938

37

36

3534

33

32

31

30

29

28

27

2625

24

23

2218

17

16

1211

10 828

827826

825824

823

822

821820

819

818

817

816

815

814813

812

811810

809

808807806

805

804

803802

801800799 798

797

796

795

793

792

791

790789788

787

786

785

784783

782

781780

779

778

777776

775

774

773

772

771

770

769

768

767

766

765

764

763

762761

760759

758

757

756

755

754

753752

751

750749

748747746

745744

743

742

741

740

739

738737

736

735734

733

732731

730729

728

727

726

725

724

716

715

714

713712

687

670

649

647

646

644

642

640639

638

637

636

619618

617

616

615 614

613

612

611

610609608

607

606

605

604603

602

601600

599

598

597596

595594593

592 591

590

589

588

587

586585

584

583582581

580579

578577

576575574

573572571

471569568

567566

565564

563562

561560

559

558

555,556,557

554

553552

551550

549

548547

546545

544543

542

541

540

539

538

570

537

536

535534

533532531

530529 528

527526

525524523522521520

519518517

512

511

510509508

507506

505504

503502

501

500499498

497496

495494493

492491490

489

488487

486485484 483482481480

479

478477

476

475474473

470

469468

467466

465

464463

462

461460459

458

457 456

455

454453452451450

449

448447

446445

444

443

442441

440

439

438437

436435

434433

432431

430429428

427

426

425

424

423

422

421

420

419418

417

416

415

414413

412411

410

409

408

407

406

405

404

403402

401400

399

398397

396

395394393392391

390

389

388

387

386

385

384

383382381

380379378377

376375

374

373372

371 370369

368367

366365364

363

362361360359

358357

356

355

354353

352351350 349348

347 346

345

344

327

295294293

291

290289

288

287

282281

280

279

278

277

276

275274273

272271270269

268267266

265

264

263262

261

260259258257

256

255

254253

252251

250

249

248247

246245,

244243

242241

240239

238237

236235234233

232231

230229

228

227

226 225

224

223222 221

220219218

217

216

215214

213212

211210

209

208

207206205

204203

202

201200

199198

197

196195194

193

192191

180

189188 187

186185

184

183

182

181

180

179

178

177

176

175174173

172

171170

169168

167

166

165164163

162

161160159

158157

156155

154153152151150

149

145144

143

141140

139

138

137136

135

134

133

132

131

130

129128

127

126125

124

123

122

121

120

119

118117

116115

114

113

112

111

110

109

108

107

516515

472471

142

S

S

SSS

S

S

S

BothamStock

Lake Superior

BremnerPluton

CCFZ

FourbayPluton

SatelliteStock

Heron BayPluton

Armand LakeZone

Cedar LakePluton

Cedar Creek Stock

Gowan Lake Pluton

Musher LakePluton

Dotted LakePluton

Northern Eagle Zone

Picture IslandStock

Ogilvie IslandStock

Pukaskwagranitoid complex

Black Picgranitoid complex

MelgundStock

HFZWhite River

Stock

RFZ

LSSZHFZ

PUKASKWANATIONAL PARK

WHITE LAKEPROVINCIAL PARK

LABERGE

PIC

LECOURS BOMBY

BRYANT

McCRON

COTTE

ATIKAMEG

BROTHERS

McGILL

FLOOD

CECILE

O'NEILL

MIKANO

KNOWLES

SHABOTIK

McCO

Y

KWINKWAGAGROUND MORAINE

UPLANDSCONSERVATION RESERVE

Isko Dewabo Lake ComplexConservation Reserve

WHITE LAKEPEATLANDSPROVINCIALNATURE RESERVE

Pan Lake FenProvincial Park

CRAIG'S PITPROVINCIAL

NATURE RESERVE Pic

Amwri

MelgundPringle

Marathon

HemloRous Lake

Heron Bay

White Lake

Gowan Lake

White River

Swede Creek

Dotted Lake

Gowan Cree

k

Cirrus Lake

Black River

Herrick Lake

Wabikoba LakeBouchard Lake

BananishLake

Atikameg Lake

Oskabukuta Lake

PukatawaganLake

Pic RiverIndian Reserve 50

Pic Mobert NorthIndian Reserve

Pic Mobert SouthIndian Reserve

Struthers

550000

550000

555000

555000

560000

560000

565000

565000

570000

570000

575000

575000

580000

580000

585000

585000

590000

590000

595000

595000

600000

600000

605000

605000

610000

610000

615000

615000

620000

620000

5375

000

5375

000

5380

000

5380

000

5385

000

5385

000

5390

000

5390

000

5395

000

5395

000

5400

000

5400

000

5405

000

5405

000

5410

000

5410

000

5415

000

5415

000

5420

000

5420

000

!(

!(

!(!(!(!(

!(

!(

!(

!(

!(!(!(!(!(

!(

!(

!(

!(

!(

!(!(

!(!(

#*

kj

kj

kj

kjkj")

")

")

")")")

")

")")

")

")

") ")

")

")

")

")

")

#* #*

")

")

")")

GF

#*#*

GF")

#*

")

#*

_̂")")

#*

#*

#*

")̂_ ") _̂GF

_̂̂_ _̂

#*

#*

")

#*

_̂̂_

GF

GF

#*

GF")

_̂̂_̂_̂_̂_̂_̂_̂_$+

#*

")

GF")

#*

_̂̂_

#*

#*

")#*

") #*

_̂GF_̂

#*

")

")")

#*

")

!(

")

#*

_̂")_̂̂_$+̂_

_̂")

")

")

")

")

")

#*#*

")

")

")

#*

$+

_̂_̂

")

_̂")

")

_̂̂__̂

")")")")")̂_

")")

")kj

")")

")

#* $+$+

kj

kj

")

_̂̂__̂_̂̂_

")

")")

")

_̂̂_̂_̂_̂_̂_̂_ _̂

XW

XW

XW

XW

XWXW

XWXW

XW

XWXW

XWXW

XW7

1

54

79

78

7413

12

11 72

7773

76

75

99

98

9796

95949392

91

5857 56

55

21

20

19151413

794723722721

720719

718

711

710

709708

707

706705704

701

700

699

696

695

694693692

691689688

686685

681-684

680

679678 677

676

675

674

673

672 671

669668

667

666

665

664 663

662

661

660

659658

657656

650

645

643

641

635634

633

632

630

629628

626

624623

622 621

620

514513

343342341

340339

329328

326325

324

323322321

320

319318

317

316315314

313312311310308307

300,301

299298297296

292

286

285284

283

147

146

106104

101

717

702,703697,698

690 655

648,651-654

631

627

625

330-338

309

306

305304303302148

105

103

102

100

S

SS

DavidBellWilliams

Golden GiantGoldenSceptre

574000

574000

576000

576000

578000

578000

580000

580000

582000

582000

584000

584000

5392

000

5392

000

5394

000

5394

000

FIGURE 1:Metamorphic Map -

Hemlo Greenstone Belt1:50000

Inset

1:25000

Deposits

Au, ProspectAu,Ag,Mo;Au,Mo;Au,Zn,Ag;Mo,Au

Au Mo,Sb;Au,Mo,Sb,HgAu

Occurrences

Prospects

Current or Past Producers

Au

Au,Ag,Co;Au,Ag,Mo,Cu;Au,Zn,Mo;Au,Ag,Zn;Au,Mo;Au,Mo,Ag;Mo,AuAu,Zn,Ag;Ba,As,Au;Cu,Zn,Au

Au,AgXW

XW

XW

XW

XW

XW

XW

XW

Occurrences

66 Lytton C-Zone67 Lytton Main Zone (Bowhill, Peekongay, Heron Bay68 Lytton Porphyry Zone69 Playter Zone (Galex, Johnson)70 Gouda Lake Deposit71 Interlake Deposit

72 Hemlo Deposit Lower Zone73 Golden Sceptre North Zone74 Williams A-Zone75 David Bell Mine76 Golden Giant Mine77 Golden Sceptre South Zone78 Williams C-Zone79 Williams Mine

Prospects Current or Past Producers

Aluminosilicatesandalusiteandalusite-kyaniteandalusite-sillimanite

kyanitekyanite-sillimanitesillimanite

!(

!(

!(

!(

!(

!(

1 Bel-Air DDH BA-1 2 Carroll-MacDougall 3 Dakota 4 Egg Lake Horizon 5 Golden Sceptre DDH NGS-211 6 Golden Sceptre DDH NGS-212 (North) 7 Golden Sceptre DDH NGS-212 (South) 8 Golden Sceptre DDH NGS-213 9 Golden Sceptre DDH NGS-21910 Golden Sceptre DDH NGS-22011 Highway Porphyry12 Horizon Zone13 Muir (Highway) Zone14 Patio Lake Au North15 Patio Lake Au South16 Pricemore DDH PO-217 Score Mo-Au18 Thor Lake19 Upper Anomalous Zone20 Aurelian21 Bond Gold DDH HW89-0522 Boulton Point23 CPR Island24 Esso DDH 84-YE-0125 Esso DDH 85-TW-0326 Esso DDH 85-TW-0527 Esso DDH 85-TW-0728 Esso DDH 85-TW-0829 Esso DDH 86-TW-0230 Esso DDH 86-TW-0331 Esso DDH 86-TW-0532 Esso Grab 1 (location uncertain)

33 Esso Grab 2 (location uncertain)34 Golden Sceptre DDH NGS-21435 Golden Sceptre DDH NGS-21636 Goldfields DDH Y84-137 Goldfields Powerline38 Gowan39 Heron Bay East40 Heron Bay North41 Heron Bay South42 Homestake DDH RL97-0143 Maple Leaf-Noranda44 Michano-Black River45 Michano-Pic46 Northern Eagle Zone (Hemlo West)47 Prospect Cove East48 Randle Cove49 Screamer Zone50 Sperle51 Teck-Heron Bay52 Toothpick53 Trestle54 Barren Sulphide (Sucker) Zone55 NE Musher Lk 19156 Armand Lk357 Armand Lk 458 NE Musher LK 9159 NE Musher Lk 9260 NE Musher Lk 9361 NE Musher Lk 9462 NE Musher Lk 18563 NE Musher Lk 18764 NE Musher Lk 18865 NE Musher LK 190

0 1 2 30.5Kilometres

0 1 2 3 4 5 6 7 80.5Kilometres

Sub-greenschist Zone

LowerGreenschist Zone

UpperGreenschist Zone

Transition Zone

Sub-greenschist Facies

Greenschist Facies Amphibolite Facies

8) Unmetamorphosed Granitoids granite to tonalite

7) Metamorphosed Carbonate-rich Rocks: carbonate-rich metasediments, metamorphosed interpillow rock/ breccia/ hydrothermal alteration, synmetamorphic carb alteration

6) Metamorphosed Granitoids: granite to tonalite

5) Metamorphosed Chemical Sedimentary Rocks: meta-iron formation, chert

4) Metamorphosed Aluminum-rich Rocks: metamudstone/siltstone, meta-hydrothermal alteration

3) Metaultramafites: metaperidotite/dunite, metakomatiite

2) Meta-quartzofeldspathic Rocks: meta-rhyolite/dacite, qtz-fp metaporphyry, felsic metavolcaniclastite, metasandstone, psammite, gneiss

1) Metabasites: metabasalt/gabbro/andesite, greenstone, amphibolite

Rock Association/Metamorphic Grade of Samples

Archean Metamorphic Zones (M1)

11pu/prn

12act-cht-epg-ab

13act-hn

14 hn-calcic plg

21pu/prn

22cht-wm/kf

24 biotite

32 33cht-tlc-se-cb clinoamphibole

42 43 44cht/ctd-wm bt-cht, bt-grt-cht crd/st-cht-bt

crd-oam-and52 53

cb-cht mt-qtz qtz-cht

cum/gru,act-hn,grt61 62

pu/prn cht-wm/kf72 73 74

cht-cb-wm-qtzcht-cb-qtz bt-cht-cb

epg-act-cb-cht trm-cb, diop-am-grt, hn-bt

no metamorphic minerals

Metamorphic Facies

71

29

34

49

54

leucosome

orthopyroxene, olivine

leucosome, crd-grt, sil-crd-kf

hypersthene

65 hornblende66

leucosome

80

23 bt-cb-epg 25 bt-hn

45 crd-oam-sil

lower middle upperAmphibolite Zone

prn-cc

64 biotite63 bt-epg/act

15leucosome

upperUpper

GreenschistZone

LowerGreenschist

ZoneAmphibolite Zone

#* #* #*

")")

")

")")

#* #*

_̂ _̂ _̂ _̂ _̂

$+ $+ $+

kjkj

kjkj

kj

GF GF GF

!(

26

46

#*

#*

Map created by:Peter H. Thompson Geological Consulting Ltd.email: [email protected] map information is derived from the Natural Resources Values Infomation System (NRVS),Ontario Ministry of Natural Resources, scale 1:20 000.Final map cartography by:Sara McIlraith, Ontario Geological Survey.

Sillimanite zone boundary(S on high-grade side of boundary) Faults

Coldwell ComplexLate synorogenic plutonsEarly synorogenic plutons

Granitoid complex(pre-orogenic and younger)pre-orogenic

S LSSZHFZ

CCFZRFZ

Lake Superior shear zoneHemlo fault zone

Cedar Creek fault zoneRailway fault zone

Structural Zones

Granitoids

Linear Features

Accompanies Open File Report 6190

This metamorphic map accompanies Open File Report (OFR) 6190 . The map is based on regional petrography of 723 thin sections that are representative of the 1646 sections assembled for this study from the archives of the Ontario Geological Survey and from current (Tom Muir, Gary Beakhouse) and former (Steve Jackson) OGS geologists. One-hundred and five outcrop observations of schistose and migmatitic metasedimentary rocks recorded on the geological compilation of the eastern half of the Schreiber-Hemlo greenstone belt (Muir 2000) permit definition of the upper amphibolite zone. NAD 1983 (Zone 16) is the datum used for the map and the metamorphic data table (Table 2, Appendix 2). Map reference numbers associated with point data symbols refer to Table 2 (Appendix 2). As indicated on the metamorphic legend, the shape of each symbol corresponds to the rock association derived from a thin section at that location. The colour of the symbol indicates the grade of metamorphism with higher grade associated with warmer colours. The first digit of the number in each box on the legend represents the rock association, and the second digit metamorphic grade (see RAGRD column, Table 2, Appendix 2). The yellow-green symbols for rock association-metamorphic grade codes 24, 33, 53, 64 indicate that the mineral assemblage is stable across the boundary between the upper greenschist, transition and lower amphibolite zone boundaries. Where the data for more than one thin section are available at a given location, the symbol associated with the lowest sample number appears on map. Map reference numbers associated with each symbol provide a link to information about the higher sample numbers from Table 2. Symbols representing non-granitoid rock associations that occur within granitoid bodies are assumed to be inclusions. Thin sections from the Melgund stock are sufficiently mafic variations of the metatonalite that they are classed as metabasites. White symbols indicate metamorphosed samples for which the metamorphic grade is not defined. Metamorphic zones were not extended across granitoids containing petrographic evidence of metamorphism because data density is low and determination of metamorphic grade is less certain than in supracrustal rocks (see Metamorphism of Granitoids, Figures 3 and 4). Point data indicate that metamorphic grade is highest in the pre-orogenic components of the Black Pic and Pukaskwa granitoid complexes and lowest in the late synorogenic granitoids. Variations in metamorphic grade within individual plutons reflect the varying degrees of access available to metamorphic fluids and different times at which such fluids attained access. Each occurrence of low grade metamorphic rocks within a zone of higher grade metamorphism should be examined in more detail to determine if the occurrence is a low grade metamorphic anomaly that formed during main phase (M1) metamorphism or if it is a product of retrogression during post peak M1 cooling or during the low grade late M2 metamorphic event (see Retrograde Metamorphism, Figure 5). Distribution of the Al2SiO5 aluminosilicate polymorphs (andalusite, kyanite, sillimanite) is of interest. Occurrences for which thin sections were not available include aluminosilicate-bearing quartz veins south of the Golden Sceptre mine from Muir (1993), two field trip localities one kilometre southeast of the David Bell mine (Muir, personal communication, 2006), and mineral assemblages described by Pan and Fleet (1993) from an area 3 to 7 km southeast of the latter mine.. These occurrences are marked by the larger coloured circles indicating the presence of aluminosilicates, but lack the star symbol indicating that a thin section of aluminous rocks (rock association 4) was examined. As discussed in the text of the accompanying Open File Report, the locations of two amphibolite zone anomalies and one transition zone anomaly at the west end of the belt close to Lake Superior may be incorrect. The UTM coordinates are taken from the location database obtained for this study. However, the page size metamorphic map in Jackson (1998) includes three samples containing hornblende that occur adjacent to the Coldwell Complex. There are no samples at these locations in the database. Increasing the UTM northing without changing the UTM easting of the samples defining the anomalies, moves the data points into what presumably is the contact metamorphic aureole of the Proterozoic alkalic igneous complex. Diamond-shaped symbols of varying size and colour indicate the presence of gold as occurrences, prospects and current/past producers. Given the spatial relationship between gold producers/occurrences and metamorphic zone boundaries in the Red Lake and western Abitibi greenstone belts (Thompson 2003, 2005a), gold occurrences close to the lower/upper greenschist and the transition zone boundaries at the west end of the belt and in the transition zone between the Heron Bay pluton and Pukaskwa granitoid complex merit attention. Intersections of metamorphic zone boundaries with major structural zones are prospective. However, in several cases, low data density does not constrain well the position of the metamorphic boundary. Elsewhere in the Hemlo greenstone belt, gold occurrences are located in areas where metamorphic data are absent. More petrographic work is required to apply metamorphic gold exploration tools in these areas. The relative abundance of medium-grade kyanite (i.e., kyanite-biotite stable) in the vicinity of the Hemlo deposit is anomalous with respect to the rest of the Hemlo greenstone belt and with respect to Archean gold deposits in general. The lower pressure polymorph of Al2SiO5, andalusite, is more typical of medium grade metamorphism in Archean greenstone belts and metasedimentary sequences. If the deposit is, for the most part synmetamorphic (e.g., Muir 1993, 2002; Davis and Lin 2003), the presence of kyanite implies anomalously low geothermal gradients that may have been products of unusually rapid rates of tectonic burial during the time when metamorphic grade was increasing. The localized nature of the kyanite and the nearby gold deposit may reflect the fact that an unusual combination of P-T conditions and fluid compositions appropriate for gold deposition prevailed for a short time during the tectono-metamorphic history of the greenstone belt. It is likely that the spatially restricted aspect of anomalous metamorphic conditions and gold deposition also indicates some kind of structural control.