Neutron Radii and the Neutron Equation of State

54
Alex Brown PREX Aug-17-2008 Neutron Radii and the Neutron Equation of State

description

Neutron Radii and the Neutron Equation of State. Skx-s20(5) Skyrme energy density functional. Skx-s15 Skx-s20 Skx-s25. 0.15 0.20 0.25 fm for the 208 Pb neutron skin. Neutron skin = S = Δ R np = R n – R p where R n is the rms radius for neutrons and - PowerPoint PPT Presentation

Transcript of Neutron Radii and the Neutron Equation of State

Alex Brown PREX Aug-17-2008

Neutron Radii and the Neutron Equation of State

Alex Brown PREX Aug-17-2008

Skx-s20(5) Skyrme energy density functional

Skx-s15 Skx-s20 Skx-s25

0.15 0.20 0.25 fm for the 208Pb neutron skin

Neutron skin = S = ΔRnp = Rn – Rp where Rn is the rms radius for neutrons and Rp is the rms radius for protons

Alex Brown PREX Aug-17-2008

Skyrme parameters based on fits to experimentaldata for properties of spherical nuclei, including single-particle energies, and nuclear matter

A New Skyrme Interaction for Normal and Exotic Nuclei, Skx, Skxc BAB, Phys. Rev. C58, 220 (1998).Displacement Energies with the Skyrme Hartree-Fock Method, BAB, W. A. Richter and R. Lindsay, Phys. Lett. B483, 49 (2000).Neutron Radii in Nuclei and the Neutron Equation of State, BAB, Phys. Rev. Lett. 85, 5296 (2000). S. Typel and BAB, Phys. Rev. C64, 027302 (2001).Charge Densities with the Skyrme Hartree-Fock Method, W. A. Richter and BAB, Phys. Rev. C67, 034317 (2003).Tensor interaction contributions to single-particle energies, BAB, T. Duguet, T. Otsuka, D. Abe and T. Suzuki, Phys. Rev. C 74, 061303, (2006).Neutron Skin Deduced from Antiprotonic Atom Data, BAB, G. Shen, G. C. Hillhouse, J. Meng and A. Trzcinska, Phys. Rev. C76, 034305 (2007).

Skx family of Skyrme functionals

Skx, Skx-ce

Skx-csb

Skx-ta, Skx-tb

Skx-s15, Skx-s20, Skx-s25

Alex Brown PREX Aug-17-2008

Skyrme interaction

(σ = α)

Alex Brown PREX Aug-17-2008

Skyrme energy density functional

Nuclear matter is this without the surface terms1

Nuclear matter (N=Z) depends on the t’sSymmetry energy and neutron matter also depends on the x’s

Alex Brown PREX Aug-17-2008

Alex Brown PREX Aug-17-2008

Skyrme single-particle wave equation

Effective mass m*(r)/m

Alex Brown PREX Aug-17-2008

Skyrme potential

Alex Brown PREX Aug-17-2008

Focus on properties of spherical nuclei in a spherical potential model – fast

but limited to properties of a few key nuclei

208Pb

132Sn

100Sn

Alex Brown PREX Aug-17-2008

Alex Brown PREX Aug-17-2008

Skx-s15

Alex Brown PREX Aug-17-2008

Skx-s20

Alex Brown PREX Aug-17-2008

Skx-s25

Alex Brown PREX Aug-17-2008

Data for Skx

• BE for 16O, 24O, 34Si, 40Ca, 48Ca, 48Ni, 68Ni, 88Sr, 100Sn, 132Sn and 208Pb with “errors” ranging from

1.0 MeV for 16O to 0.5 MeV for 208Pb

• rms charge radii for 16O, 40Ca, 48Ca, 88Sr and 208Pb with “errors” ranging from

0.03 fm for 16O to 0.01 fm for 208Pb

• About 50 Single particle energies with “errors” ranging from 2.0 MeV for 16O to 0.5 MeV for 208Pb.

Alex Brown PREX Aug-17-2008

1998 - Skx - fit to these data

Fitted parameters:

t0 t1 t2 t3 x0 x1 x2 x3 W (spin orbit term)

t0s (isospin symmetry breaking)

Vary α (power of the density dependence) by hand minimum at α = 0.5 (K=270 nuclear matter incompressibility)

t0 t0s t1 t2 t3 x0 and W well determined from exp data

x3 depends on neutron EOS

x1 and x2 not determined

Alex Brown PREX Aug-17-2008

Skx – single-particle energies

Single-particle states from the Skyrme potential of the close-shell nucleus (A) are associated with experimental values for the differences

-[BE(A) - BE(A-1)] or = -[BE(A+1)-BE(A)] based on the HF modelThe potential spe are typically within 200 keV of those calculated from the theoretical values for -[BE(A) - BE(A-1)] or = -[BE(A+1)-BE(A)]

No time-odd type interactions, but time-odd contribution to spe are typically not more than 200 keV (Dobascewski, Duguet)

Alex Brown PREX Aug-17-2008

Skx Skyrme single-particle energies - implies that (m*/m)=1.00

Alex Brown PREX Aug-17-2008

Skx Skyrme single-particle energies

Alex Brown PREX Aug-17-2008

1998 - Neutron EOS and neutron skin -- x3

How can we constrain the neutron equation of state?

• Friedman-Pandharipanda neutron EOS - Phys. Rev. C33, 335 (1986)

Alex Brown PREX Aug-17-2008

Nuclear charge densities

Alex Brown PREX Aug-17-2008

Alex Brown PREX Aug-17-2008

Alex Brown PREX Aug-17-2008

Neutron density for 208Pb

Shows the shell layers

(Dashed line is the proton density)

Alex Brown PREX Aug-17-2008

Alex Brown PREX Aug-17-2008

Diffuseness of the charge density iscorrelated with nuclear matter

incompressibility

Best fit to charge density requiresK=200-230 MeV

Skx-s20(5) takes α = 1/6Which gives K=200

Phys. Rev. C 76, 034305 (2007).

Ratios of charge densities (Skm*)

Alex Brown PREX Aug-17-2008

0.25

0.20

0.15

S (fm)

Phys. Rev. C 76, 034305 (2007).

Ratios of neutron densities (Skm*)

Alex Brown PREX Aug-17-2008

0.25

0.20

0.15

S (fm)

K=200 MeV for nuclear matter incompressibility α = 1/6

Phys. Rev. C 76, 034305 (2007).

Skx for charge density diffuseness and neutron skin

Alex Brown PREX Aug-17-2008

Assumption about neutron matter effective mass (m*/m)=1.00 used as a fit constraint

Alex Brown PREX Aug-17-2008

-0.5 to 0.5 -1.0 to 1.0

Alex Brown PREX Aug-17-2008

Alex Brown PREX Aug-17-2008

Ab-initio low-density value A. Gezerlis and J. Carlson, PRC77, 032801 (2008) also important to get low-density part right (Andrew Steiner…)

Alex Brown PREX Aug-17-2008

BE(132Sn)-BE(100Sn)(MeV)

277278282283284291296299

Exp = 278(1)

Alex Brown PREX Aug-17-2008

K=270 α =1/2S=0.25

K=200α = 1/6S=0.20

So next step would be to introduce two α valuesOne for nuclear matter and another for the symmetry potential

Alex Brown PREX Aug-17-2008

Alex Brown PREX Aug-17-2008

Data for Skx

• BE for 16O, 24O, 34Si, 40Ca, 48Ca, 48Ni, 68Ni, 88Sr, 100Sn, 132Sn and 208Pb with “errors” ranging from

1.0 MeV for 16O to 0.5 MeV for 208Pb

• rms charge radii for 16O, 40Ca, 48Ca, 88Sr and 208Pb with “errors” ranging from

0.03 fm for 16O to 0.01 fm for 208Pb

• About 50 Single particle energies with “errors” ranging from 2.0 MeV for 16O to 0.5 MeV for 208Pb.

Alex Brown PREX Aug-17-2008

Alex Brown PREX Aug-17-2008

Alex Brown PREX Aug-17-2008

122ZrS BE

(fm) (MeV)0.15 -928.60.20 –931.30.25 –934.2

Alex Brown PREX Aug-17-2008

S (fm) = 0.12 0.16

Alex Brown PREX Aug-17-2008

• Participating Institutions and Co-Investigators:Ames National Laboratory - SosonkinaANL - Pieper, Wiringa, Lusk, Moré, NorrisLawrence Berkeley National Laboratory - Ng, Yang

LLNL - Escher, Navratil, Ormand, ThompsonLos Alamos National Laboratory - Carlson, KawanoORNL - Arbanas, Dean, Nazarewicz, Fann, Roche, SheltonCentral Michigan University - HoroiIowa State University - VaryMichigan State University - Brown, BognerUniversity of North Carolina at Chapel Hill - EngelOhio State University - FurnstahlSan Diego State University - JohnsonUniversity of Tennessee - Bertulani, PapenbrockUniversity of Washington - Bertsch, Bulgac

• Funding Partners: Office of Science, Advanced Scientific Computing Research, and National Nuclear Security Agency

SciDAC -Building a universal energy density functional

Alex Brown PREX Aug-17-2008

Nuclear Structure Theory - Confrontation and Convergence

• (AI) Ab initio methods with NN and NNN

• (CI) Shell model configuration interactions with effective single-particle and two-body matrix elements

• (DFT) Density functionals plus GCM…

My examples with Skyrme Hartree-Fock (Skx)

• Cluster models, group theoretical models …..

• Good – most “fundamental”

• Bad – only for light nuclei, need NNN parameters, “complicated wf”

• Good – applicable to more nuclei, 150 keV rms, “good wf”

• Bad – limited to specific mass regions and Ex, need effective spe and tbme for good results

• Good – applicable to all nuclei

• Bad – limited mainly to gs and yrast, 600 keV rms mass, need interaction parameters

• Good – simple understanding of special situations

• Bad – certain classes of states, need effective hamiltonian

Each of these has its own computational challenges

Alex Brown PREX Aug-17-2008

• Mihai Horoi

Thomas Duguet

• Werner Richter

Taka Otsuka

D. Abe

T. Suzuki

• Funding from the NSF

Collaborations

Alex Brown PREX Aug-17-2008

Skx Skyrme Interaction

Alex Brown PREX Aug-17-2008

Displacement energy requires a new parameter

Alex Brown PREX Aug-17-2008

Skx - fit to all of these data

Fit done by 2p calculations for the values V and V+epsilon of the p parameters. Then using Bevington’s routine for a “fit to an arbitrary function”. After one fit, iterate until convergence – 20-50 iterations.

10 nuclei, 8 parameters, so each fit requires 2000-5000 spherical calculations.

Takes about 30 min on the laptop.

Goodness of fit characterized by CHI with best fit obtained for “Skx” with CHI=0.6

Alex Brown PREX Aug-17-2008

Rms charge radii

Alex Brown PREX Aug-17-2008

Alex Brown PREX Aug-17-2008

Alex Brown PREX Aug-17-2008

114Sn to 115Sb proton spectroscopic factors

Alex Brown PREX Aug-17-2008

For Skxtbα t = -118, β t = 110

For Skxtaα t = 60, β t = 110

For Skxα t = 0, β t = 0

Alex Brown PREX Aug-17-2008

Skx – fit to single-particle energies

Alex Brown PREX Aug-17-2008

Skx with G matrix tensorCHI jumps up from 0.6 to 1.5 due to spe

Alex Brown PREX Aug-17-2008

normal spin-orbit

tensor terms

Alex Brown PREX Aug-17-2008

A α β δ γ ε η θ κ λ μ ν π ρ σ τ υ φ χ ψ ω

A Ώ Γ Δ Λ Π Σ Φ Ψ Ω