Neutrino Masses in Cosmology, Neutrinoless Double-Beta...

33
Neutrino Masses in Cosmology, Neutrinoless Double-Beta Decay and Direct Neutrino Masses Carlo Giunti INFN, Sezione di Torino, and Dipartimento di Fisica Teorica, Universit` a di Torino mailto://[email protected] Neutrino Unbound: http://www.nu.to.infn.it LIONeutrino2012 Neutrinos at the forefront of elementary particle physics and astrophysics 22-24 October 2012, Lyon, France C. Giunti - Neutrino Masses - LIONeutrino2012 - 24 Oct 2012 - 1/33

Transcript of Neutrino Masses in Cosmology, Neutrinoless Double-Beta...

  • Neutrino Masses in Cosmology, Neutrinoless

    Double-Beta Decay and Direct Neutrino Masses

    Carlo Giunti

    INFN, Sezione di Torino, and Dipartimento di Fisica Teorica, Università di Torino

    mailto://[email protected]

    Neutrino Unbound: http://www.nu.to.infn.it

    LIONeutrino2012

    Neutrinos at the forefront of elementary particle physics

    and astrophysics

    22-24 October 2012, Lyon, France

    C. Giunti − Neutrino Masses − LIONeutrino2012 − 24 Oct 2012 − 1/33

    mailto://[email protected]://www.nu.to.infn.it

  • Three-Neutrino Mixing Paradigm

    νe νµ ντ

    ∆m2A

    ∆m2S

    ν2

    ν1

    ν3

    m2

    Normal Spectrum

    m2

    ∆m2S

    ν2

    ν1

    ∆m2A

    ν3

    Inverted Spectrum

    ∆m2S ≃ 7.5× 10−5 eV2 ∆m2A ≃ 2.5× 10

    −3 eV2

    C. Giunti − Neutrino Masses − LIONeutrino2012 − 24 Oct 2012 − 2/33

  • Open Problems

    ◮ CP violation ?◮ Nova, LAGUNA, CERN-GS, HyperK, . . .

    ◮ Mass Hierarchy ?◮ Nova, Atmospheric Neutrinos, Day Bay II, Supernova Neutrinos, . . .

    ◮ Absolute Mass Scale ?◮ β Decay, Neutrinoless Double-β Decay, Cosmology, . . .

    ◮ Dirac or Majorana ?◮ Neutrinoless Double-β Decay, . . .

    Cosmology: see Verde and Saviano talks

    C. Giunti − Neutrino Masses − LIONeutrino2012 − 24 Oct 2012 − 3/33

  • Absolute Scale of Neutrino Masses

    Lightest mass: m1 [eV]

    m1,

    m2,

    m3

    [e

    V]

    10−4 10−3 10−2 10−1 110−4

    10−3

    10−2

    10−1

    1

    m1

    m2

    m3 Cosm

    ological Limit

    Normal Hierarchy

    Quasi−DegenerateNormal Spectrum1σ2σ3σ

    m22 = m21 +∆m

    221 = m

    21 +∆m

    2S

    m23 = m21 +∆m

    231 = m

    21 +∆m

    2A

    Lightest mass: m3 [eV]m

    3, m

    1, m

    2

    [eV

    ]

    10−4 10−3 10−2 10−1 110−4

    10−3

    10−2

    10−1

    1

    m3

    m1

    m2

    Cosm

    ological Limit

    Inverted Hierarchy

    Quasi−DegenerateInverted Spectrum1σ2σ3σ

    m21 = m23 −∆m

    231 = m

    23 +∆m

    2A

    m22 = m21 +∆m

    221 ≃ m

    23 +∆m

    2A

    Quasi-Degenerate for m1 ≃ m2 ≃ m3 ≃ mν &√

    ∆m2A ≃ 5× 10−2 eV

    C. Giunti − Neutrino Masses − LIONeutrino2012 − 24 Oct 2012 − 4/33

  • Tritium Beta-Decay

    3H → 3He + e− + ν̄edΓ

    dT=

    (cosϑCGF)2

    2π3|M|2 F (E) pE (Q − T )

    (Q − T )2 −m2νe

    Q = M3H −M3He −me = 18.58 keV

    Kurie plot

    K(T ) =

    dΓ/dT

    (cosϑCGF)2

    2π3|M|2 F (E) pE

    =

    [

    (Q − T )√

    (Q − T )2 −m2νe

    ]1/2

    mνe > 0

    Q−mνe Q

    mνe = 0

    T

    K(T

    )

    mνe < 2.2 eV (95% C.L.)

    Mainz & Troitsk[Weinheimer, hep-ex/0210050]

    future: KATRIN[www.katrin.kit.edu]

    start data taking in 2015

    sensitivity: mνe ≃ 0.2 eV

    C. Giunti − Neutrino Masses − LIONeutrino2012 − 24 Oct 2012 − 5/33

    www.katrin.kit.edu

  • Neutrino Mixing =⇒ K (T ) =

    [

    (Q − T )∑

    k

    |Uek |2√

    (Q − T )2 −m2k

    ]1/2

    Q−m2 T Q−m1

    K(T

    )

    Q

    analysis of data isdifferent from theno-mixing case:2N − 1 parameters(

    k

    |Uek |2 = 1

    )

    if experiment is not sensitive to masses (mk ≪ Q − T )

    effective mass: m2β =∑

    k

    |Uek |2m2k

    K2 = (Q − T )2

    k

    |Uek |2

    1−m2

    k

    (Q − T )2≃ (Q − T )2

    k

    |Uek |2

    [

    1−1

    2

    m2k

    (Q − T )2

    ]

    = (Q − T )2[

    1−1

    2

    m2β

    (Q − T )2

    ]

    ≃ (Q − T )√

    (Q − T )2 −m2β

    C. Giunti − Neutrino Masses − LIONeutrino2012 − 24 Oct 2012 − 6/33

  • Predictions of 3ν-Mixing Paradigm

    m2β = |Ue1|2 m21 + |Ue2|

    2 m22 + |Ue3|2m23

    mmin [eV]

    [e

    V]

    NS

    IS

    Current Bound

    KATRIN Sensitivity

    Cosm

    ological Limit

    10−3 10−2 10−1 1 1010−3

    10−2

    10−1

    1

    10

    1σ2σ3σ

    ◮ Quasi-Degenerate:

    m2β ≃ m2ν

    k|Uek |

    2 = m2ν

    ◮ Inverted Hierarchy:

    m2β ≃ (1− s213)∆m

    2A ≃ ∆m

    2A

    ◮ Normal Hierarchy:

    m2β ≃ s212c

    213∆m

    2S + s

    213∆m

    2A

    ≃ 2× 10−5 + 6× 10−5 eV2

    ◮ mβ . 4× 10−2 eV

    ⇓Normal Spectrum

    C. Giunti − Neutrino Masses − LIONeutrino2012 − 24 Oct 2012 − 7/33

  • Neutrinoless Double-Beta Decay

    7632Ge

    7633As

    7634Se

    0+

    2+

    0+

    β−

    β−β−

    β+

    Effective Majorana Neutrino Mass: mββ =∑

    k

    U2ek mk

    C. Giunti − Neutrino Masses − LIONeutrino2012 − 24 Oct 2012 − 8/33

  • Two-Neutrino Double-β Decay: ∆L = 0

    N (A,Z ) → N (A,Z + 2) + e− + e− + ν̄e + ν̄e

    (T 2ν1/2)−1 = G2ν |M2ν |

    2

    second order weak interaction processin the Standard Model

    d u

    W

    W

    d u

    ��

    e

    ��

    e

    e

    e

    Neutrinoless Double-β Decay: ∆L = 2

    N (A,Z ) → N (A,Z + 2) + e− + e−

    (T 0ν1/2)−1 = G0ν |M0ν |

    2 |mββ |2

    effectiveMajoranamass

    |mββ| =

    k

    U2ek mk

    d u

    W

    k

    m

    k

    U

    ek

    U

    ek

    W

    d u

    e

    e

    C. Giunti − Neutrino Masses − LIONeutrino2012 − 24 Oct 2012 − 9/33

  • Effective Majorana Neutrino Mass

    mββ =∑

    k

    U2ek mk complex Uek ⇒ possible cancellations

    mββ = |Ue1|2 m1 + |Ue2|

    2 e iα2 m2 + |Ue3|2 e iα3 m3

    α2 = 2λ2 α3 = 2 (λ3 − δ13)

    α3

    α2

    Im[mββ]

    |Ue2|2e

    iα2m2

    |Ue1|2m1

    mββ

    Re[mββ]

    |Ue3|2e

    iα3m3

    α2

    α3

    Im[mββ]

    |Ue2|2e

    iα2m2

    |Ue1|2m1 Re[mββ]

    mββ

    |Ue3|2e

    iα3m3

    C. Giunti − Neutrino Masses − LIONeutrino2012 − 24 Oct 2012 − 10/33

  • Experimental Bounds

    EXO (136Xe) [PRL 109 (2012) 032505]

    T 0ν1/2 > 1.6× 1025 y (90% C.L.) =⇒ |mββ | . 0.14 − 0.38 eV

    CUORICINO (130Te) [AP 34 (2011) 822]

    T 0ν1/2 > 2.8× 1024 y (90% C.L.) =⇒ |mββ | . 0.3− 0.7 eV

    Heidelberg-Moscow (76Ge) [EPJA 12 (2001) 147]

    T 0ν1/2 > 1.9× 1025 y (90% C.L.) =⇒ |mββ| . 0.32 − 1.0 eV

    IGEX (76Ge) [PRD 65 (2002) 092007]

    T 0ν1/2 > 1.57 × 1025 y (90% C.L.) =⇒ |mββ| . 0.33 − 1.35 eV

    NEMO 3 (100Mo) [PRL 95 (2005) 182302]

    T 0ν1/2 > 4.6× 1023 y (90% C.L.) =⇒ |mββ | . 0.7− 2.8 eV

    C. Giunti − Neutrino Masses − LIONeutrino2012 − 24 Oct 2012 − 11/33

  • Experimental Positive Indication[Klapdor et al., MPLA 16 (2001) 2409]

    T 0ν1/2 = (2.23+0.44−0.31)× 10

    25 y 6.5σ evidence [MPLA 21 (2006) 1547]

    0 500 1000 1500 2000 2500 30000

    10

    20

    30

    40

    50

    60

    70

    Energy ,keV

    Cou

    nts

    / keV

    SSE2n2b Rosen − Primakov Approximation

    Q=2039 keV

    [PLB 586 (2004) 198]

    2000 2010 2020 2030 2040 2050 2060

    0

    1

    2

    3

    4

    5

    6

    7

    8

    [MPLA 21 (2006) 1547]

    |mββ | = 0.32 ± 0.03 eV [MPLA 21 (2006) 1547]

    very exciting: Majorana ν and large mass scale

    partially excluded by EXO and CUORICINO

    C. Giunti − Neutrino Masses − LIONeutrino2012 − 24 Oct 2012 − 12/33

  • Predictions of 3ν-Mixing Paradigm

    mββ = |Ue1|2 m1 + |Ue2|

    2 e iα2 m2 + |Ue3|2 e iα3 m3

    mmin [eV]

    |mββ

    | [

    eV]

    NS

    IS

    Cosm

    ological Limit

    Current Bound or Positive Indication

    10−4 10−3 10−2 10−1 110−4

    10−3

    10−2

    10−1

    1

    1σ2σ3σ

    ◮ Positive indication:tension with cosmology

    ◮ Quasi-Degenerate:

    |mββ | ≃ mν√

    1− s22ϑ12s2α2

    ◮ Inverted Hierarchy:

    |mββ | ≃√

    ∆m2A(1− s22ϑ12

    s2α2)

    ◮ Normal Hierarchy:

    |mββ| ≃ |s212

    ∆m2S + eiαs213

    ∆m2A|

    ≃ |2.7 + 1.2e iα| × 10−3 eV

    m1 & 10−3 eV⇒cancellation?

    |mββ | . 10−2 eV =⇒ Normal Spectrum

    C. Giunti − Neutrino Masses − LIONeutrino2012 − 24 Oct 2012 − 13/33

  • ββ0ν Decay ⇔ Majorana Neutrino Mass

    |mββ | can vanish because of unfortunate cancellations among m1, m2, m3contributions or because neutrinos are Dirac

    ββ0ν decay can be generated by another mechanism beyond SM

    d

    d u

    u

    e−

    e−

    ββ0ν =⇒

    d

    d u

    u

    e−

    W+

    W+

    e−ββ0ν

    ν̄e ≡ νe(h = +1)

    νe ≡ νe(h = −1)

    [Schechter, Valle, PRD 25 (1982) 2951] [Takasugi, PLB 149 (1984) 372]

    Majorana Mass Term: LMeL

    = −12 mee(

    νceLνeL + νeL ν

    c

    eL

    )

    four-loop diagram calculation: mee ∼ 10−24 eV [Duerr, Lindner, Merle, JHEP 06 (2011) 091]

    C. Giunti − Neutrino Masses − LIONeutrino2012 − 24 Oct 2012 − 14/33

  • ◮ In any case finding ββ0ν decay is important information to solve theDirac-Majorana question in favor of Majorana

    ◮ On the other hand, it is not possible to prove experimentally thatneutrinos are Dirac.A Dirac neutrino is equivalent to 2 Majorana neutrinos with the samemass.Impossible to prove experimentally that mass splitting is exactly zero.

    C. Giunti − Neutrino Masses − LIONeutrino2012 − 24 Oct 2012 − 15/33

  • Beyond Three-Neutrino Mixing

    ν1

    m21 logm2m22

    ν2 ν3

    m23

    νe

    νµ

    ντνs1 · · ·

    ν4 ν5 · · ·

    m24 m25

    νs2

    3ν-mixing

    ∆m2ATM ∆m2SBL∆m

    2SOL

    [see Schwetz and Cribier talks]

    C. Giunti − Neutrino Masses − LIONeutrino2012 − 24 Oct 2012 − 16/33

  • Sterile Neutrinos

    ◮ Sterile means no standard model interactions (e.g. νcR= νsL)

    ◮ Oscillation observables:

    ◮ Disappearance of active neutrinos (neutral current deficit)

    ◮ Indirect evidence through combined fit of data (current indication)

    ◮ Short-baseline anomalies + 3ν-mixing:

    ∆m221 ≪ |∆m231| ≪ |∆m

    241| ≤ . . .

    ν1 ν2 ν3 ν4 . . .

    νe νµ ντ νs1 . . .

    ◮ Neutrino number and mass observable:

    ◮ Number of thermalized relativistic particles in early Universe (BBN, CMB,BAO)

    ◮ m4 effects in cosmology (CMB, LLS), direct β-decay neutrino massmeasurements and neutrinoless double-β decay (if Majorana)

    C. Giunti − Neutrino Masses − LIONeutrino2012 − 24 Oct 2012 − 17/33

  • Reactor Electron Antineutrino Anomaly

    [Mention et al, PRD 83 (2011) 073006]

    [update in White Paper, arXiv:1204.5379

    new reactor ν̄e fluxes[Mueller et al, PRC 83 (2011) 054615]

    [Huber, PRC 84 (2011) 024617]

    2.8σ anomaly

    0 20 40 60 80 100

    0.7

    0.8

    0.9

    1.0

    1.1

    1.2

    L [m]

    R

    R = 0.93 ± 0.024

    Reactor Rates

    Bugey3−15Bugey3−40Bugey3−95Bugey4ROVNOGosgen−38

    Gosgen−45Gosgen−65ILLKrasno−33Krasno−92Krasno−57

    Average Rate

    C. Giunti − Neutrino Masses − LIONeutrino2012 − 24 Oct 2012 − 18/33

  • Gallium Anomaly

    Gallium Radioactive Source Experiments: GALLEX and SAGE

    Detection Process: νe +71Ga → 71Ge + e−

    νe Sources: e− + 51Cr → 51V + νe e

    − + 37Ar → 37Cl + νe

    Anomaly supported by new 71Ga(3He, 3H)71Ge cross section measurement[Frekers et al., PLB 706 (2011) 134]

    0.7

    0.8

    0.9

    1.0

    1.1

    R

    Cr1GALLEX

    CrSAGE

    Cr2GALLEX

    ArSAGE

    R = 0.84 ± 0.05

    E ∼ 0.7MeV

    〈L〉GALLEX = 1.9m

    〈L〉SAGE = 0.6m

    2.9σ anomaly

    C. Giunti − Neutrino Masses − LIONeutrino2012 − 24 Oct 2012 − 19/33

  • 3+1 SBL νe and ν̄e Survival Probability

    P(−)νe→

    (−)νe

    = 1− sin2 2ϑee sin2

    (

    ∆m241L

    4E

    )

    sin2 2ϑee = 4|Ue4|2(

    1− |Ue4|2)

    standard parameterization

    Ue1 = c12c13c14 Ue2 = s12c13c14 Ue3 = s13c14e−iδ13 Ue4 = s14e

    −iδ14

    sin2 2ϑee = sin2 2ϑ14

    C. Giunti − Neutrino Masses − LIONeutrino2012 − 24 Oct 2012 − 20/33

  • Global νe and ν̄e Disappearance[Giunti, Laveder, Y.F. Li, Q.Y. Liu, H.W. Long, arXiv:1210.5715]

    sin22ϑee

    ∆m412

    [e

    V2 ]

    +

    10−2 10−1 110−2

    10−1

    1

    10

    102

    ++

    +

    95% CL

    GalliumReactorsνeCSunCombined

    95% CL

    GalliumReactorsνeCSunCombined

    νe +12C → 12Ng.s. + e−

    KARMEN + LSND[Conrad, Shaevitz, PRD 85 (2012) 013017]

    [Giunti, Laveder, PLB 706 (2011) 200]

    sin22ϑee

    ∆m412

    [e

    V2 ]

    10−2 10−1 110−1

    1

    10

    +

    GAL+REA+νeC+SUN68.27% CL (1σ)90.00% CL95.45% CL (2σ)99.00% CL99.73% CL (3σ)

    GAL+REA+νeC+SUN68.27% CL (1σ)90.00% CL95.45% CL (2σ)99.00% CL99.73% CL (3σ)

    solar νe + KamLAND ν̄e + ϑ13[Giunti, Li, PRD 80 (2009) 113007]

    [Palazzo, PRD 83 (2011) 113013]

    [Palazzo, PRD 85 (2012) 077301]

    C. Giunti − Neutrino Masses − LIONeutrino2012 − 24 Oct 2012 − 21/33

  • The existence of ν4 with m4 & 1 eV can have dramatic effects not only onneutrino oscillations but also on all phenomena sensitive to the absolutevalue of neutrino masses:

    ◮ direct β-decay neutrino mass measurements

    ◮ neutrinoless double-β decay (if Majorana)

    ◮ cosmology

    Information on νe and ν̄e disappearance is crucial for β decay andneutrinoless double-β decay

    ◮ νe and ν̄e disappearance depends on sin2 2ϑee = 4|Ue4|

    2(1− |Ue4|2)

    ◮ In β decay and neutrinoless double-β decay ν4 contribution depends on|Ue4|

    2

    C. Giunti − Neutrino Masses − LIONeutrino2012 − 24 Oct 2012 − 22/33

  • Direct β-Decay Neutrino Mass Measurements

    −5 −4 −3 −2 −1 0

    T − Q [eV]

    1−

    K(T

    )/(Q

    −T

    )

    10−4

    10−3

    10−2

    (sin22ϑee,∆m412 [eV2])

    ( 0.12 , 7.6 )( 0.1 , 2 )( 0.07 , 0.9 )( 0.052 , 0.46 )

    sin22ϑee∆m

    412

    [eV

    2 ]10−2 10−1 1

    10−1

    1

    10

    +

    ++

    + GAL+REA+νeC+SUN68.27% CL (1σ)90.00% CL95.45% CL (2σ)99.00% CL99.73% CL (3σ)

    GAL+REA+νeC+SUN68.27% CL (1σ)90.00% CL95.45% CL (2σ)99.00% CL99.73% CL (3σ)

    (

    K (T )

    Q − T

    )2

    = 1− |Ue4|2 + |Ue4|

    2

    1−m24

    (Q − T )2θ(Q − T −m4)

    C. Giunti − Neutrino Masses − LIONeutrino2012 − 24 Oct 2012 − 23/33

  • Mainz Neutrino Mass Experiment[Kraus, Singer, Valerius, Weinheimer, arXiv:1210.4194]

    C. Giunti − Neutrino Masses − LIONeutrino2012 − 24 Oct 2012 − 24/33

  • ∆m241 Upper Bound

    sin22ϑee

    ∆m412

    [e

    V2 ]

    10−2 10−1 110−2

    10−1

    1

    10

    102

    103

    104

    +

    Osc. vs Mainz

    68.27% CL (1σ)90.00% CL95.45% CL (2σ)99.00% CL99.73% CL (3σ)

    Osc. vs Mainz

    68.27% CL (1σ)90.00% CL95.45% CL (2σ)99.00% CL99.73% CL (3σ)

    sin22ϑee

    ∆m412

    [e

    V2 ]

    10−2 10−1 110−2

    10−1

    1

    10

    102

    103

    104

    +

    Osc. + Mainz

    68.27% CL (1σ)90.00% CL95.45% CL (2σ)99.00% CL99.73% CL (3σ)

    Osc. + Mainz

    68.27% CL (1σ)90.00% CL95.45% CL (2σ)99.00% CL99.73% CL (3σ)

    C. Giunti − Neutrino Masses − LIONeutrino2012 − 24 Oct 2012 − 25/33

  • KATRIN Sensitivity

    [Formaggio, Barrett, PLB 706 (2011) 68]

    10-2 10-1 110-2

    10-1

    1

    10

    20

    Sin22ΘsD

    m41

    2He

    V2 L

    Bugey4+Rovno , 99% C.L.Bugey3 , 99% C.L.

    global fit , 90% C.L.m1 = 2 eV , 90% C.L.m1 = 1 eV , 90% C.L.

    m1 = 0 , 90% C.L.

    [Esmaili, Peres, PRD 85 (2012) 117301]

    [see also Sejersen Riis, Hannestad, JCAP (2011) 1475; Sejersen Riis, Hannestad, Weinheimer, PRC 84 (2011) 045503]

    C. Giunti − Neutrino Masses − LIONeutrino2012 − 24 Oct 2012 − 26/33

  • Neutrinoless Double-β Decay0

    24

    68

    10

    mββ(4)

    [eV]

    ∆χ2

    EXO90% CL

    KK10−3 10−2 10−1 1

    68.27%

    90%

    95.45%

    99%

    99.73%

    GAL+REA+νeC+SUN

    |mββ| =∣

    ∑4k=1 U

    2ek

    mk

    m(4)ββ = |Ue4|

    2√

    ∆m241

    C. Giunti − Neutrino Masses − LIONeutrino2012 − 24 Oct 2012 − 27/33

  • Cancellation with m(light)ββ ?

    [Barry, Rodejohann, Zhang, JHEP 07 (2011) 091]; Li, Liu, PLB 706 (2012) 406; Rodejohann, arXiv:1206.2560]

    m(light)ββ =

    3∑

    k=1

    U2ek mk

    m(4)ββ = |Ue4|

    2√

    ∆m241

    mββ = m(light)ββ + e

    iα4m(4)ββ m

    (4)ββ & 10

    −2 eV

    ◮ Normal Hierarchy: m(light)ββ . 4.5× 10

    −3 eV (95%CL)no cancellation is possible

    ◮ Inverted Hierarchy: 1.4× 10−2 . m(light)ββ . 5.0× 10

    −2 eV (95%CL)cancellation is possible

    ◮ Quasi-Degenerate: m(light)ββ & 5.0 × 10

    −2 eV cancellation is possible

    C. Giunti − Neutrino Masses − LIONeutrino2012 − 24 Oct 2012 − 28/33

  • Lightest mass: m1 [eV]

    mββ

    [e

    V]

    EXO90% CL

    10−4 10−3 10−2 10−1 110−4

    10−3

    10−2

    10−1

    Normal Spectrum

    1σ2σ3σ

    Lightest mass: m3 [eV]

    mββ

    [e

    V]

    EXO90% CL

    10−4 10−3 10−2 10−1 110−4

    10−3

    10−2

    10−1

    Inverted Spectrum

    1σ2σ3σ

    C. Giunti − Neutrino Masses − LIONeutrino2012 − 24 Oct 2012 − 29/33

  • Assumption: no cancellation

    mββ ≥ m(4)ββ

    = |Ue4|2√

    ∆m241

    ∆m241 =

    m(4)ββ

    |Ue4|2

    2

    (

    mββ

    |Ue4|2

    )2

    sin22ϑee

    ∆m412

    [e

    V2 ]

    EXO90% CL

    KK

    10−2 10−1 110−2

    10−1

    1

    10

    102

    103

    104

    +

    GAL+REA+νeC+SUN

    68.27% CL (1σ)90.00% CL95.45% CL (2σ)99.00% CL99.73% CL (3σ)

    GAL+REA+νeC+SUN

    68.27% CL (1σ)90.00% CL95.45% CL (2σ)99.00% CL99.73% CL (3σ)

    C. Giunti − Neutrino Masses − LIONeutrino2012 − 24 Oct 2012 − 30/33

  • Cosmology

    ◮ Ns = number of thermalized sterile neutrinos (not necessarily integer)[see Saviano talk]

    ◮ CMB and LSS in ΛCDM: Ns = 1.3 ± 0.9 ms < 0.66 eV (95% C.L.)[Hamann, Hannestad, Raffelt, Tamborra, Wong, PRL 105 (2010) 181301]

    Ns = 1.61± 0.92 ms < 0.70 eV (95% C.L.)[Giusarma, Corsi, Archidiacono, de Putter, Melchiorri, Mena, Pandolfi, PRD 83 (2011) 115023]

    ◮ BBN:

    {

    Ns ≤ 1 at 95% C.L. [Mangano, Serpico, PLB 701 (2011) 296]Ns = 0.0 ± 0.5 [Pettini, Cooke, arXiv:1205.3785]

    ◮ CMB+LSS+BBN: Ns = 0.85+0.39−0.56 (95% C.L.)

    [Hamann, Hannestad, Raffelt, Wong, JCAP 1109 (2011) 034]

    ◮ Standard ΛCDM: 3+1 allowed, 3+2 disfavored

    C. Giunti − Neutrino Masses − LIONeutrino2012 − 24 Oct 2012 − 31/33

  • 2 3 4 5 6 7Neff

    0.0

    0.5

    1.0

    1.5

    2.0

    ∑ mν [

    eV

    ]

    CMBWMAP+CMBSPT+H(z)+SNLS+BAO+WiggleZ

    CMBWMAP+H0CMBWMAP+H0+CMBSPTCMBWMAP+H0+H(z)

    CMBWMAP+BAO

    CMBWMAP+H0+WiggleZ

    68% and 95% CL[Riemer-Sørensen, Parkinson, Davis, Blake, arXiv:1210.2131]

    Σ mν

    Ne

    ff

    0 0.5 1 1.5 2

    2

    4

    6

    8

    CMB (blue), CMB+WL (red)CMB+BAO+OHD (magenta)CMB+BAO+SNIa (green)

    CMB+WL+BAO+OHD+SNIa (cyan)

    [Wang et al., arXiv:1210.2136]

    C. Giunti − Neutrino Masses − LIONeutrino2012 − 24 Oct 2012 − 32/33

  • Conclusions

    ◮ Cosmology◮ Very powerful probe of neutrino number and masses

    ◮ Model dependent. Thermalization loophole

    ◮ Bright future (Plank, . . . )

    ◮ Direct β-Decay Neutrino Mass Measurements◮ Model independent and robust

    ◮ Sensitive to large neutrino masses beyond three-neutrino mixing

    ◮ KATRIN will start in 2015

    ◮ Unclear future (bolometers, project 8: radio-frequency)

    ◮ Neutrinoless Double-β Decay◮ Crucial for Majorana discovery

    ◮ Sensitive to large neutrino masses beyond three-neutrino mixing

    ◮ Many running and future experiments

    C. Giunti − Neutrino Masses − LIONeutrino2012 − 24 Oct 2012 − 33/33