NEUTRINO FLAVOR COMPOSITIONS - Ohio State UniversityCOMPOSITIONS I. M. Shoemaker and K. Murase,...

20
CONSTRAINING THE FLAVOR STRUCTURE OF LORENTZ VIOLATION HAMILTONIAN WITH THE MEASUREMENT OF ASTROPHYSICAL NEUTRINO FLAVOR COMPOSITIONS Lai, Wei-Hao(NCTU) Lai, Kwang-Chang(CGU) Lin, Guey-Lin(NCTU) arXiv: 1704.04027

Transcript of NEUTRINO FLAVOR COMPOSITIONS - Ohio State UniversityCOMPOSITIONS I. M. Shoemaker and K. Murase,...

Page 1: NEUTRINO FLAVOR COMPOSITIONS - Ohio State UniversityCOMPOSITIONS I. M. Shoemaker and K. Murase, Phys. Rev. D 93 085004 (2016) IceCube-Gen2 regions γ=2.2±0.2 Φ 0=(5.1±0.8) x 10-18GeV-1cm-2s-1sr-1

CONSTRAINING THE FLAVOR STRUCTURE OFLORENTZ VIOLATION HAMILTONIAN WITHTHE MEASUREMENT OF ASTROPHYSICALNEUTRINO FLAVOR COMPOSITIONS

Lai, Wei-Hao(NCTU)Lai, Kwang-Chang(CGU)Lin, Guey-Lin(NCTU)

arXiv: 1704.04027

Page 2: NEUTRINO FLAVOR COMPOSITIONS - Ohio State UniversityCOMPOSITIONS I. M. Shoemaker and K. Murase, Phys. Rev. D 93 085004 (2016) IceCube-Gen2 regions γ=2.2±0.2 Φ 0=(5.1±0.8) x 10-18GeV-1cm-2s-1sr-1

OUTLINE

Introduction

Lorentz violation effects to neutrino flavor transitions

Lorentz violation and the current IceCube results on astrophysical neutrino flavor compositions

IceCube-Gen2 and its potential of constraining Lorentz Violation Hamiltonian

Summary

Page 3: NEUTRINO FLAVOR COMPOSITIONS - Ohio State UniversityCOMPOSITIONS I. M. Shoemaker and K. Murase, Phys. Rev. D 93 085004 (2016) IceCube-Gen2 regions γ=2.2±0.2 Φ 0=(5.1±0.8) x 10-18GeV-1cm-2s-1sr-1

INTRODUCTION

Φe0:Φμ

0:Φτ0 Φe:Φμ:Φτ

• Flavor discriminationProbe the flavor transition, ex: ν oscillation, ν decay,

Lorentz Violation(LV)

Generate the sourcedetected at the

Earth

(Φe:Φμ:Φτ)=Pαβ(Φe0:Φμ0:Φτ0)

Page 4: NEUTRINO FLAVOR COMPOSITIONS - Ohio State UniversityCOMPOSITIONS I. M. Shoemaker and K. Murase, Phys. Rev. D 93 085004 (2016) IceCube-Gen2 regions γ=2.2±0.2 Φ 0=(5.1±0.8) x 10-18GeV-1cm-2s-1sr-1

INTRODUCTION• There are two types of astrophysical sources in proton-proton

collision and proton-γ collision:

J. P. Rachen and P. Meszaros, 1998T. Kashti and E. Waxman, Phy. Rev. Lett. 2005

PP➝(π+,π-,π0)+Χ Pγ➝Δ+➝nπ+

1. π source(1/3,2/3,0)2. μ damped source(0,1,0)1. π source(1/3,2/3,0)

2. μ damped source(0,1,0)

µ� ! e� + ⌫̄e + ⌫µ

⇡� ! µ� + ⌫̄µ

(νe,νμ,ντ)=( , , )≈(1,2,0)⌫̄e ⌫̄µ ⌫̄⌧

(νe,νμ,ντ)≈(1,1,0)( , , )≈(0,1,0)⌫̄e ⌫̄µ ⌫̄⌧

Page 5: NEUTRINO FLAVOR COMPOSITIONS - Ohio State UniversityCOMPOSITIONS I. M. Shoemaker and K. Murase, Phys. Rev. D 93 085004 (2016) IceCube-Gen2 regions γ=2.2±0.2 Φ 0=(5.1±0.8) x 10-18GeV-1cm-2s-1sr-1

• We shall focus on pion source from pp collision(νe,νμ,ντ)=( , , )≈(1/3,2/3,0)⌫̄e ⌫̄µ ⌫̄⌧

• Defining neutrino flavor fraction:

f0↵ = �0(⌫↵)/(�

0(⌫e) + �0(⌫µ) + �0(⌫⌧ ))

total flux of neutrinos and anti-neutrinos at the source

Hence

(f0e , f

0µ, f

0⌧ ) = (1/3, 2/3, 0)

Page 6: NEUTRINO FLAVOR COMPOSITIONS - Ohio State UniversityCOMPOSITIONS I. M. Shoemaker and K. Murase, Phys. Rev. D 93 085004 (2016) IceCube-Gen2 regions γ=2.2±0.2 Φ 0=(5.1±0.8) x 10-18GeV-1cm-2s-1sr-1

f↵ = �(⌫↵)/(�(⌫e) + �(⌫µ) + �(⌫⌧ ))

total flux of neutrinos and anti-neutrinos at the terrestrial detector

f↵ = P↵�f0� P↵� = P (⌫� ! ⌫↵)

with (f0e , f

0µ, f

0⌧ ) = (1/3, 2/3, 0)

fe = 1/3 + (Peµ � Pe⌧ )/3

fµ = 1/3 + (Pµµ � Pµ⌧ )/3

f⌧ = 1/3 + (Pµ⌧ � P⌧⌧ )/3

A test of μτ symmetry breaking

Page 7: NEUTRINO FLAVOR COMPOSITIONS - Ohio State UniversityCOMPOSITIONS I. M. Shoemaker and K. Murase, Phys. Rev. D 93 085004 (2016) IceCube-Gen2 regions γ=2.2±0.2 Φ 0=(5.1±0.8) x 10-18GeV-1cm-2s-1sr-1

LV EFFECTS TO NEUTRINO FLAVOR TRANSITION

• For neutrinos, the general form of LV Hamiltonian

• For rotationally invariant LV effects

Teppei Katori, V. Alan Kostelecký, and Rex Tayloe, Phys. Rev. D 74, 105009(2006)V. Alan Kostelecký and Matthew Mewes, Phys. Rev. D 69, 016005(2004)

Sun-centered celestial equatorial frame(T,X,Y,Z) Let us first focus on aTαβ

H⌫LV =

p�E

0

@a�ee a�eµ a�e⌧a�⇤eµ a�µµ a�µ⌧a�⇤e⌧ a�⇤µ⌧ a�⌧⌧

1

A� p⇢p�

E

0

@c⇢�ee c⇢�eµ c⇢�e⌧c⇢�⇤eµ c⇢�µµ c⇢�µ⌧c⇢�⇤e⌧ c⇢�⇤µ⌧ c⇢�⌧⌧

1

A

H⌫LV =

0

@aTee aTeµ aTe⌧aT⇤eµ aTµµ aTµ⌧

aT⇤e⌧ aT⇤

µ⌧ aT⌧⌧

1

A� 4E

3

0

@cTTee cTT

eµ cTTe⌧

cTT⇤eµ cTT

µµ cTTµ⌧

cTT⇤e⌧ cTT⇤

µ⌧ cTT⌧⌧

1

A

H⌫̄LV = �

0

@aTee aTeµ aTe⌧aT⇤eµ aTµµ aTµ⌧

aT⇤e⌧ aT⇤

µ⌧ aT⌧⌧

1

A⇤

� 4E

3

0

@cTTee cTT

eµ cTTe⌧

cTT⇤eµ cTT

µµ cTTµ⌧

cTT⇤e⌧ cTT⇤

µ⌧ cTT⌧⌧

1

A⇤

Page 8: NEUTRINO FLAVOR COMPOSITIONS - Ohio State UniversityCOMPOSITIONS I. M. Shoemaker and K. Murase, Phys. Rev. D 93 085004 (2016) IceCube-Gen2 regions γ=2.2±0.2 Φ 0=(5.1±0.8) x 10-18GeV-1cm-2s-1sr-1

LORENTZ VIOLATIONS AND CURRENT ICECUBE RESULTS ON ASTROPHYSICAL NEUTRINO

FLAVOR COMPOSITION• Eν is between 25 TeV and 2.8 PeV

HSM≈Δm231/2EνHence HSM is between

5 x 10-26 GeVand

4.5 x 10-28 GeV

M. G. Aartsen et al. (IceCube Collaboration), Astrophys.J. 809 (2015) no.1, 98

Can Lorentz Violation play role in this data?

Page 9: NEUTRINO FLAVOR COMPOSITIONS - Ohio State UniversityCOMPOSITIONS I. M. Shoemaker and K. Murase, Phys. Rev. D 93 085004 (2016) IceCube-Gen2 regions γ=2.2±0.2 Φ 0=(5.1±0.8) x 10-18GeV-1cm-2s-1sr-1

V. Alan Kostelecký and Neil Russell, Rev. Mod. Phys. 83, 11(2016)[1]T. Katori(MiniBooNE Collaboration), Mod. Phys. Lett. A 27, 1230024(2012)[2]T. Katori and J. Spitz, in CPT and Lorentz Symmetry VI(World scientific, Singapore, 2014)

K. Abe et al. (Super-Kamiokande Collaboration),Phys. Rev. D 91, 052003(2015)Super-K’s result:

HSM< 5 x 10-26 GeVSignificant room for HLV to play an important role

CURRENT BOUNDS ON LORENTZ VIOLATION PARAMETERS

[1]

[1]

[2]

[2]

Page 10: NEUTRINO FLAVOR COMPOSITIONS - Ohio State UniversityCOMPOSITIONS I. M. Shoemaker and K. Murase, Phys. Rev. D 93 085004 (2016) IceCube-Gen2 regions γ=2.2±0.2 Φ 0=(5.1±0.8) x 10-18GeV-1cm-2s-1sr-1

SIMPLE LORENTZ VIOLATION HAMILTONIAN

Recall: (Φe:Φμ:Φτ)=Pαβ(Φe0:Φμ0:Φτ0)

(Peμ-Peτ)=(Pμτ-Pττ)= -1/2(Pμμ-Pμτ)=1(fe,fμ,fτ)=(1/6,2/3,1/6)

P =

0

@1/2 0 1/20 1 0

1/2 0 1/2

1

A

Large breaking of μτ symmetry

H⌫LV =

0

@0 0 ae⌧0 0 0a⇤e⌧ 0 0

1

A

Page 11: NEUTRINO FLAVOR COMPOSITIONS - Ohio State UniversityCOMPOSITIONS I. M. Shoemaker and K. Murase, Phys. Rev. D 93 085004 (2016) IceCube-Gen2 regions γ=2.2±0.2 Φ 0=(5.1±0.8) x 10-18GeV-1cm-2s-1sr-1

SIMPLE LORENTZ VIOLATION HAMILTONIAN

Recall: (Φe:Φμ:Φτ)=Pαβ(Φe0:Φμ0:Φτ0)

(Peμ-Peτ)=0(Pμμ-Pμτ)=1(Pμτ-Pττ)= -1

(fe,fμ,fτ)=(1/3,2/3,0)Large breaking of μτ symmetry

H⌫LV =

0

@0 0 00 aTµµ 00 0 aT⌧⌧

1

A P =

0

@1 0 00 1 00 0 1

1

A , aμμΤ≠aττΤ

Page 12: NEUTRINO FLAVOR COMPOSITIONS - Ohio State UniversityCOMPOSITIONS I. M. Shoemaker and K. Murase, Phys. Rev. D 93 085004 (2016) IceCube-Gen2 regions γ=2.2±0.2 Φ 0=(5.1±0.8) x 10-18GeV-1cm-2s-1sr-1

COMPARISONS OF SPECIAL CASES WITH RECENT ICECUBE MEASUREMENT OF ASTROPHYSICAL NEUTRINO FLAVOR COMPOSITION

RED: aeτΤ, aeτΤ *≠0Yellow: aμμΤ, aττΤ ≠0Purple: aeμΤ, aeμΤ *≠0Black: aμτΤ, aμτΤ *≠0

All cases fall into 2σ region as other elements grow from zero

Page 13: NEUTRINO FLAVOR COMPOSITIONS - Ohio State UniversityCOMPOSITIONS I. M. Shoemaker and K. Murase, Phys. Rev. D 93 085004 (2016) IceCube-Gen2 regions γ=2.2±0.2 Φ 0=(5.1±0.8) x 10-18GeV-1cm-2s-1sr-1

ICECUBE-GEN2 AND ITS POTENTIAL OF CONSTRAINING LORENTZ VIOLATION HAMILTONIAN

IceCube Collaboration (M.G. Aartsen(Adelaide U.) et al.), arXiv:1412.5106

~10 km3 instrumented volume~250 m spacing of photo sensors

• A possible IceCube-Gen2 configuration• IceCube, in red, and the infill sub-detector DeepCore, in green.• blue volume shows the full instrumented next-generation detector, with

PINGU displayed in grey as a denser infill extension within DeepCore.

Page 14: NEUTRINO FLAVOR COMPOSITIONS - Ohio State UniversityCOMPOSITIONS I. M. Shoemaker and K. Murase, Phys. Rev. D 93 085004 (2016) IceCube-Gen2 regions γ=2.2±0.2 Φ 0=(5.1±0.8) x 10-18GeV-1cm-2s-1sr-1

SENSITIVITIES OF ICECUBE-GEN2 ON ASTROPHYSICAL NEUTRINO FLAVOR COMPOSITIONS

I. M. Shoemaker and K. Murase, Phys. Rev. D 93085004 (2016) IceCube-Gen2 regions

γ=2.2±0.2

Φ0=(5.1±0.8) x 10-18GeV-1cm-2s-1sr-1

Pion source from pp collision is assumed

Eth=100 TeV10 years of exposure

1σ, 2σ, and 3σ regions

Page 15: NEUTRINO FLAVOR COMPOSITIONS - Ohio State UniversityCOMPOSITIONS I. M. Shoemaker and K. Murase, Phys. Rev. D 93 085004 (2016) IceCube-Gen2 regions γ=2.2±0.2 Φ 0=(5.1±0.8) x 10-18GeV-1cm-2s-1sr-1

Allow other elements togrow from zero and includethe contribution from HSM

The parameter ranges in the tablepredict the black region of flavorfraction—disfavored at 3σ.

SK 95% C.L. limits: Re(aeτΤ)< 4.1x10-23 GeV Im(aeτΤ)< 2.8x10-23GeV

H⌫LV =

0

@0 0 ae⌧0 0 0a⇤e⌧ 0 0

1

A

Page 16: NEUTRINO FLAVOR COMPOSITIONS - Ohio State UniversityCOMPOSITIONS I. M. Shoemaker and K. Murase, Phys. Rev. D 93 085004 (2016) IceCube-Gen2 regions γ=2.2±0.2 Φ 0=(5.1±0.8) x 10-18GeV-1cm-2s-1sr-1

H⌫LV =

0

@0 0 00 aTµµ 00 0 aT⌧⌧

1

A

Allow other elements togrow from zero and includethe contribution from HSM

The parameter ranges in the tablepredict the black region of flavorfraction—disfavored at 3σ.

Page 17: NEUTRINO FLAVOR COMPOSITIONS - Ohio State UniversityCOMPOSITIONS I. M. Shoemaker and K. Murase, Phys. Rev. D 93 085004 (2016) IceCube-Gen2 regions γ=2.2±0.2 Φ 0=(5.1±0.8) x 10-18GeV-1cm-2s-1sr-1

Increasing M until the predictedflavor fraction is out of theIceCube Gen2 3σ region.

H=HSM+HLV

H⌫LV =

0

@0 aTeµ aTe⌧

aT⇤eµ aTµµ aTµ⌧

aT⇤e⌧ aT⇤

µ⌧ aT⌧⌧

1

A

= M

0

@0 cos⇢e

i�sin⇢e

i�

cos⇢e

�i� 0 0sin⇢e

�i� 0 0

1

A�M

0

@� 0 00 cos2↵ sin2↵ei�

0 sin2↵e�i� �cos2↵

1

A

Page 18: NEUTRINO FLAVOR COMPOSITIONS - Ohio State UniversityCOMPOSITIONS I. M. Shoemaker and K. Murase, Phys. Rev. D 93 085004 (2016) IceCube-Gen2 regions γ=2.2±0.2 Φ 0=(5.1±0.8) x 10-18GeV-1cm-2s-1sr-1

For most values of sin2α x sin2ρ, the energy scale Mis constrained to be less than few times 10-26 GeV

Excluded at 3σ

Page 19: NEUTRINO FLAVOR COMPOSITIONS - Ohio State UniversityCOMPOSITIONS I. M. Shoemaker and K. Murase, Phys. Rev. D 93 085004 (2016) IceCube-Gen2 regions γ=2.2±0.2 Φ 0=(5.1±0.8) x 10-18GeV-1cm-2s-1sr-1

K. Abe et al. (Super-Kamiokande Collaboration),Phys. Rev. D 91, 052003(2015)

Constraint on CαβΤΤ

-4ΕCαβΤΤ/3 replaces aαβΤ when the latter is turn off.

if the constraint on M, which is made of aαβΤ, is few times 10-26 GeV, the corresponding constraint on M’ (dimensionless quantity made of CαβΤΤ) is about 10-31 with E chosen as 100 TeV(Threshold energy).

[1]

[1]

[2]

[2]

Page 20: NEUTRINO FLAVOR COMPOSITIONS - Ohio State UniversityCOMPOSITIONS I. M. Shoemaker and K. Murase, Phys. Rev. D 93 085004 (2016) IceCube-Gen2 regions γ=2.2±0.2 Φ 0=(5.1±0.8) x 10-18GeV-1cm-2s-1sr-1

SUMMARYWe have introduced Lorentz violation Hamiltonian in neutrino sector.

Previous experimental search on Lorentz violation with neutrino is introduced. Previous best limit by Super-Kamiokande experiment is summarized.

We have shown that Lorentz violating Hamiltonian with parameters in the above SK limits can change significantly the flavor transition probabilities of high energy astrophysical neutrinos in TeV to PeV energy range.

For the pion source induced from pp collisions, Lorentz violating Hamiltonian with large μ𝛕 symmetry breaking effect is more stringently constrained.

We show that IceCube-Gen2 can place stringent constraints on the Lorentz violating Hamiltonian.