NETL Carbon Capture Modeling Overview: CCSI, IDAES Miller...Parameter Original value * Estimated...

17
Solutions for Today | Options for Tomorrow NETL Carbon Capture Modeling Overview: CCSI, IDAES July 31, 2019 David C. Miller, Senior Fellow

Transcript of NETL Carbon Capture Modeling Overview: CCSI, IDAES Miller...Parameter Original value * Estimated...

Page 1: NETL Carbon Capture Modeling Overview: CCSI, IDAES Miller...Parameter Original value * Estimated value 7 89 11.45 11.5 7 8: 0.6471 0.39 Dataset Original holdup parameters Regressed

Solutions for Today | Options for Tomorrow

NETL Carbon Capture Modeling Overview: CCSI, IDAES

July 31, 2019David C. Miller, Senior Fellow

Page 2: NETL Carbon Capture Modeling Overview: CCSI, IDAES Miller...Parameter Original value * Estimated value 7 89 11.45 11.5 7 8: 0.6471 0.39 Dataset Original holdup parameters Regressed

Maximize the learning at each stage of technology developmentØ Early stage R&D

§ Screening concepts§ Identify conditions to focus development§ Prioritize data collection & test conditions

Ø Pilot scale§ Ensure the right data is collected§ Support scale-up design

Ø Demo scale§ Design the right process§ Support deployment with reduced risk

Toolset (2011-2016)

Industry Collaborators

Available Open Sourcehttps://github.com/CCSI-Toolset/

www.acceleratecarboncapture.org

Page 3: NETL Carbon Capture Modeling Overview: CCSI, IDAES Miller...Parameter Original value * Estimated value 7 89 11.45 11.5 7 8: 0.6471 0.39 Dataset Original holdup parameters Regressed

3

Bubbling Fluidized Bed (BFB) ModelØ Variable solids inlet and outlet locationØ Modular for multiple bed configurations

Moving Bed (MB) Model Ø Unified steady-state and dynamicØ Heat recovery system

Fixed Bed ModelØ Rigorous, 1-D, nonisothermal with heat exchange

Compression System ModelØ Integral-gear and inline compressorsØ Determines stage required stages, intercoolersØ Based on impeller speed limitationsØ Estimates stage efficiencyØ Off-design and surge control

Solvent System ModelØ Predictive, rate-based models

Membrane System ModelØ Hollow fiberØ Supports multiple configurations

High Fidelity Process Models for Carbon Capture

Page 4: NETL Carbon Capture Modeling Overview: CCSI, IDAES Miller...Parameter Original value * Estimated value 7 89 11.45 11.5 7 8: 0.6471 0.39 Dataset Original holdup parameters Regressed

4

Gas To StackCO2 out

Solids Flow Control

Flue Gas In

Fluidization Gas Recycle

Dynamic Solid Sorbent-Based Carbon Capture System Model

4

Flue Gas (Disturbance)

High Temperature Gas Velocity Constraints

Regenerator train

Adsorbertrain

Capture Rate

Recycled CO2 for Fluidization

Additional Cooling

Regenerator Steam

• Complex, pressure driven, dynamic model

• Approximately 126,000 equations per time step

• Settling time ~ 1hr• Time step of 0.02 hrs• Computationally

expensive to apply in NMPC framework directly

Solid Stream

Gas StreamHX Stream

Solids HX

Level controlsSolids Flowrate

Page 5: NETL Carbon Capture Modeling Overview: CCSI, IDAES Miller...Parameter Original value * Estimated value 7 89 11.45 11.5 7 8: 0.6471 0.39 Dataset Original holdup parameters Regressed

5

Dynamic Reduced Model Builder to Enable Advanced Controls

5

Ø Decoupled AB Net (DABNet) model § Data driven model§ Nonlinear static mapping

• artificial neural networkØ Multiple-input multiple-output (MIMO) Ø Options for time delay, linear models,

model parameter optimizationØ Criteria to measure D-RM accuracy for

validation§ Relative error, R-squared value, UQ

analysis with unscented Kalman Filter

*Ma, J., et al. (2016). Computers & Chemical Engineering, 94, 60-74.

Trai

ning

Set

CO2 Capture % Sorbent Temperature oC

CO2

Rem

oved

(%)

Sorb

ent T

max

(oC

)

Valid

atio

n Se

t

Page 6: NETL Carbon Capture Modeling Overview: CCSI, IDAES Miller...Parameter Original value * Estimated value 7 89 11.45 11.5 7 8: 0.6471 0.39 Dataset Original holdup parameters Regressed

6

Rigorous Solvent-Based Capture Modeling Framework

6

Process Sub-Models

Kinetic Models

Hydrodynamic Models

Mass Transfer Models

Properties Models

Chemistry Models

Thermodynamic Models

Transport Models

Pilot/Commercial Scale Data

WWC/Bench/Pilot Scale DataLab Scale Data

UQ

Process UQ

Measurement Uncertainty

Measurement Uncertainty

Measurement Uncertainty

Steady-State and DynamicSystem Models

UQ

Probabilistic Results

Deterministic Results

Probabilistic

Deterministic

Page 7: NETL Carbon Capture Modeling Overview: CCSI, IDAES Miller...Parameter Original value * Estimated value 7 89 11.45 11.5 7 8: 0.6471 0.39 Dataset Original holdup parameters Regressed

Prior CI Width: 10.5 ± 1.5

Posterior CI Width: 4.4 ± 0.4

www.tcmda.com

Technology Centre Mongstad – Summer 2018

Sequential Design of Experiments to Maximize Learning from Carbon Capture Pilot Plant Testing

Model + Experiments + StatisticsEnsure right data is collected

Maximize value of data collected

Ultimate GoalReduce technical risk associated with scale-up

Page 8: NETL Carbon Capture Modeling Overview: CCSI, IDAES Miller...Parameter Original value * Estimated value 7 89 11.45 11.5 7 8: 0.6471 0.39 Dataset Original holdup parameters Regressed

Typical Dynamic Model Validation for Carbon Capture

8

• Little work done so far• Usually single step tests are done mainly for model validation• Dynamic test runs can provide significantly more information than steady-state test runs in much shorter

time thus saving resources and money• Dynamic tests can be used to estimate parameters corresponding to the accumulation terms, that may

not be observable through steady-state tests

Enaasen Flø et al., Dynamic Model Validation of Post-Combustion CO2 absorption Process, International Journal of Greenhouse Gas Control, 41, 127-141, 2015

Dynamic Response due to Step Change in Lean Solvent Flowrate*

Page 9: NETL Carbon Capture Modeling Overview: CCSI, IDAES Miller...Parameter Original value * Estimated value 7 89 11.45 11.5 7 8: 0.6471 0.39 Dataset Original holdup parameters Regressed

Dynamic Experiments Identify Complex Nonlinear Behavior

99

Normal vs Inverse Response:

Motivation:Normal vs Oscillatory Response:

H(𝜼, 𝒚, 𝒖 )�̇� = 𝒇 𝜼 , 𝒚, 𝒖, 𝜽g 𝜼 , 𝒚, 𝒖, 𝜽 ≤ 𝟎

Not Observed in Steady-State Test Runs

Observed in Steady-State Test Runs

Page 10: NETL Carbon Capture Modeling Overview: CCSI, IDAES Miller...Parameter Original value * Estimated value 7 89 11.45 11.5 7 8: 0.6471 0.39 Dataset Original holdup parameters Regressed

10

CCSI Campaigns at the National Carbon Capture Center• Steady-State (2014):

• Space filling strategy• Model Validation

• Dynamic (2014): • Quasi-PRBS strategy• Model Validation• Understanding of nonlinear effects

• Steady-State (2017): • Bayesian DOE strategy• Refining of model parameters

• Dynamic (2017): • PRBS/Multisine DOE strategy• Parameter estimation

Page 11: NETL Carbon Capture Modeling Overview: CCSI, IDAES Miller...Parameter Original value * Estimated value 7 89 11.45 11.5 7 8: 0.6471 0.39 Dataset Original holdup parameters Regressed

Noisy, inaccurate, and missing measurementsData reconciliation guarantees mass and energy conservation in the dynamic data

Dynamic Data Reconciliation and Parameter Estimation

11

𝒎𝒊𝒏 𝒚𝒆𝒙𝒑 − 𝒚 3𝚺5𝟏 𝒚𝒆𝒙𝒑 − 𝒚s.t.

Raw data

Datapreprocessing Optimizer Aspen plus

Dynamics®

Reconciled variables

Fixed variables (DOF)Initial Values

Calculated variables

H(𝜼, 𝒚, 𝒖, 𝜽)�̇� = 𝒇 𝜼 , 𝒚, 𝒖, 𝜽g 𝜼 , 𝒚, 𝒖, 𝜽 ≤ 𝟎

Page 12: NETL Carbon Capture Modeling Overview: CCSI, IDAES Miller...Parameter Original value * Estimated value 7 89 11.45 11.5 7 8: 0.6471 0.39 Dataset Original holdup parameters Regressed

Model Validation with Dynamic Data Reconciliation

75

80

85

90

95

100

0 5 10 15 20 25

CO

2ca

ptur

ed (%

)

Time (hr)

Experimental Reconciled

12

Page 13: NETL Carbon Capture Modeling Overview: CCSI, IDAES Miller...Parameter Original value * Estimated value 7 89 11.45 11.5 7 8: 0.6471 0.39 Dataset Original holdup parameters Regressed

Parameter Estimation via Dynamic Experiments: Holdup Model

Parameter Original value * Estimated value𝐻89 11.45 11.5

𝐻8: 0.6471 0.39

DatasetOriginal holdup

parameters Regressed holdup parameters

Pseudo Random

Binary Signal3.25 3.11

Schroeder-phased

input signal2.15 1.96

13

RMSE analysis (%CO2 captured)

* Soares Chinen, A., et al. "Development of a Rigorous Modeling Framework for Solvent-Based CO2 Capture. 1. Hydraulic and Mass Transfer Models and Their Uncertainty Quantification." Industrial & Engineering Chemistry Research57.31 (2018): 10448-10463.

Page 14: NETL Carbon Capture Modeling Overview: CCSI, IDAES Miller...Parameter Original value * Estimated value 7 89 11.45 11.5 7 8: 0.6471 0.39 Dataset Original holdup parameters Regressed

Machine Learning / Parameter Est.- physical properties, thermodynamicsreaction kinetics

- multi-scale surrogate modeling andoptimization

Modeling Framework & Library- library of process unit operations- rigorous thermo, propertiesmultiphase physics

- grid operation and planning models

Software and Computational Infrastructure- open-source, algebraic modeling languagewith rich programming capabilities

- advanced solvers / architectures- full data provenance (DMF)

Uncertainty Quant. / Optimization- comprehensive, end-to-end UQ

- efficient sensitivity analysis- two-stage stochastic programming

- robust optimization, adaptive robust optimization

14

Extending Modeling & Optimization Beyond Commercial Tools

Discrete Optimization (MILP/NLP)- design, integration, intensification

- materials optimization- grid integration, market analysis,

grid operations and planning

Nonlinear Simulation & Optimization- design, operations, estimation- optimal control and dynamics,

trajectory, state estimation- rigorous embedded black-box

Page 15: NETL Carbon Capture Modeling Overview: CCSI, IDAES Miller...Parameter Original value * Estimated value 7 89 11.45 11.5 7 8: 0.6471 0.39 Dataset Original holdup parameters Regressed

Multi-Scale Surrogate

Modeling & Optimization

Algebraic Modeling Language

15

Model Customization

Process Design & OptimizationProcess Integration

Conceptual Design via SuperstructureHierarchical

Process Model Library

Steady State

Dynamic Model

Dynamics & ControlOptimal Control

State Estimation

DynamicModel

Parameter Estimation

Solid In

Solid Out

Gas In

Gas Out

Utility In

Utility Out

Optimization-Based Machine Learning

forPhysical Properties Thermodynamics

&Reaction Kinetics

Page 16: NETL Carbon Capture Modeling Overview: CCSI, IDAES Miller...Parameter Original value * Estimated value 7 89 11.45 11.5 7 8: 0.6471 0.39 Dataset Original holdup parameters Regressed

Dynamic, Two-Film Tower Model for an Electrolyte System

16

Page 17: NETL Carbon Capture Modeling Overview: CCSI, IDAES Miller...Parameter Original value * Estimated value 7 89 11.45 11.5 7 8: 0.6471 0.39 Dataset Original holdup parameters Regressed

David C. Miller, Ph.D.Senior Fellow

National Energy Technology [email protected]

Disclaimer This presentation was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

idaes.org

We graciously acknowledge funding from the U.S. Department of Energy, Office of Fossil Energy, through the Crosscutting Research and Carbon Capture Programs.

acceleratecarboncapture.orghttps://github.com/CCSI-Toolset/ https://github.com/IDAES