NER Aurora Thermal_Monitoring_Whitepaper

7
Thermal Monitoring Best Practices Benefits gained through proper deployment and utilizing sensors that work with evolving monitoring systems NER Data Corporation White Paper

description

Data Center Thermal Condition Monitoring Best Practices! Leveraging Aurora Temp Sensors!

Transcript of NER Aurora Thermal_Monitoring_Whitepaper

Page 1: NER Aurora Thermal_Monitoring_Whitepaper

Thermal Monitoring Best Practices Benefits gained through proper deployment and utilizing sensors that work with evolving monitoring systems

NER Data Corporation White Paper

Page 2: NER Aurora Thermal_Monitoring_Whitepaper

Page 2

Introduction Data centers are dynamic environments that change based on evolving business requirements. Monitoring your physical infrastructure is key ensuring business continuity, preventing disruption of service, meeting compliance requirements, reducing costs and increasing ROI. Decisions made today affect your ability to monitor and manage your future state. Monitoring and management requirements change over time, so best practices use the deployment of tools that meet the needs of today while allowing for changes in the future. Best Practice: Monitor Temperature at Multiple Rack Level Points The 2013 Uptime Institute Data Center Industry Survey reported “..only 15% of the data center managers responding to the survey said they were measuring and controlling air temperatures from the server inlet, which is the most accurate location. Nearly a third of the respondents are managing inlet air temperature at the room level, which is the least accurate method. Obviously there is room for some further cooling efficiency improvements.” Thermal monitoring should be conducted at the rack and key points within the data center to properly protect equipment and to gather data for cost saving optimization. A goal in data center cooling is to maintain server rack exhaust temp under 100*F and a Rack Delta temperature of around 20*F while targeting the highest efficiency. In order to do this you must monitor rack intake and exhaust tempertures at various heights. Rack inlet and exhaust temperatures can vary over 10*F within just 8". The American Society of Heating, Refrigerating and Air-Conditioning Engineers (ASHRAE) recommends at least 6 temperature sensors per rack (top, middle, bottom / front and back). Monitoring return air temps at the CRAC unit provides valuable information but only measures intermixed air. This method leaves gaps for hot (under provisioned) areas and cold (over provisioned) areas at the rack level. Measurements taken at multiple points at the rack as described above and at the CRAC feed and return provide you with actionable information:

1. Divide each individual CRAC unit return air temperatures to the average rack exhaust temperature to determine the return path efficiency. Example: CRAC unit 1 return air temperature average is 76°F. The average server rack exhaust temperature is 88°F. There is a 12°FΔT so the return air path back to CRAC 1 is 86% efficient.

2. Next determine the cooling delivery efficiency. Divide the CRAC unit feed temperature by the average rack inlet temperature for each CRAC unit. Example: CRAC unit 1 feed air temperature average is 52°F. The Average server inlet temperature is 58°F. There is a 6°FΔT so the cool air distribution is 89% efficient.

3. Finally determine the overall airflow distribution efficiency by averaging the efficiency rating for distribution

and return together. Example: CRAC unit 1 return airflow efficiency is 86% and the cool air distribution is 89% efficient. The overall airflow distribution efficiency for CRAC 1 is 87.5%.

Page 3: NER Aurora Thermal_Monitoring_Whitepaper

Page 3

By measuring at the rack and key points within the data center you will know what is changing in your data center and you can clearly see:

• where the highest capacity exist in the rack • where available cooling capacity exist • cooling effectiveness at the rack and data center levels • whether you are over/under provisioning cooling per rack • problem alerting • seasonal and weather impacts on server cooling • cooling policy and SLA enforcement • local problem solving such as blanking panel placement • proof of concept pre and post deployment

Temperature is Just Part of the Cooling Equation There are four values which affect the cooling properties of air: Temperature, Humidity, Pressure, and Flow A change in any one of these values will effectively alter the air’s ability to cool an electrical heat load as illustrated in the examples below: Baseline server rack with a 12kW load is introduced cooling air with the following values: Temperature: 70°F, Relative Humidity: 50%, Pressure, Sea Level @ 14.7 psi, Flow: 1900cfm = exhaust temperature of 90°F and 20 Δ°F temperature (Note: changing the temperature also changes the relative humidity) .

• Example 1: Lower Temperature to 55°F, Relative Humidity: 50%, Pressure, Sea Level @ 14.7 psi, Flow: 1900cfm = exhaust temperature of 74.3°F and 19.3Δ°F temperature rise.

• Example 2: Temperature:70°F, Relative Humidity: 50%, Pressure, Sea Level @ 14.7 psi,

Reduce Flow to 1500cfm = exhaust temperature of 95.3°F and 25.3Δ°F temperature rise.

• Example 3: Increase Temperature to 77°F, Relative Humidity: 50%, Pressure, Sea Level @ 14.7 psi, Reduce Flow to 1750cfm = exhaust temperature of 99°F and 22Δ °F temperature rise.

• Example 4: The same server rack and airflow values as the Baseline, only this time we reduce the air

pressure by placing the rack in Denver Co. with an elevation of 5,280 feet. The result is an exhaust temperature of 94.3°F and 24.3 Δ °F temperature rise.

These cooling examples show that monitoring temperature at the rack intake is just a piece of the puzzle and a change in any variable can affect cooling. Through continual monitoring and measuring it may be possible to adjust temperature (and corresponding humidity) and flow while still staying within a desired server exhaust temperature. Benefits come in cost savings through reduced compressor and fan energy usage. To optimize monitoring and management, temperature sensors should be positioned along the front and rear of each priority rack. Also barometric and humidity sensors should be placed within the aisle where these racks reside.

Page 4: NER Aurora Thermal_Monitoring_Whitepaper

Page 4

Aurora High Resolution Temperature Strip Enables Best-Practice Rack Level Thermal Monitoring The Aurora consists of innovative patent-pending technology that couples a series of 8 thermally isolated temperature sensors with an array of high intensity LEDs. Aurora visually displays temperature reading similar to a CFD through a range of cool (blue) to hot (red) and a blend of 129 colors in between. With 8 sensors per strip, temperature is monitored over the entire height of the cabinet; perfect for meeting ASHRAE recommendations, aisle containment and areas susceptible to temperature stratification. Sensors start 4.5” from bottom of unit and end at 60.5” to provide measuring of temperature fluctuations within 8” increments. Used as self-policing, real-time troubleshooting tool, it clearly identifies potential cooling or heat-related issues and provides instantaneous feedback that is invaluable when monitoring changes or validating best-practice improvements. Aurora is extremely accurate because it measures air temperature, not surface temperature. Three User-Selectable Sensitivity Settings allow for fine tuning of the monitored temperature range over the full 129-color spectrum.

• Low setting concentrates the color spectrum towards the colder end of the temperature scale. The 129 colors will vary between 25 degrees F (50°F/10°C to 75°F/23.8°C). This setting offers more color resolution for colder data centers such as cold aisle containment.

. • Medium setting closely reflects the ASHRAE standards for acceptable equipment inlet

temperatures. The 129 colors will vary between 25 degrees F (65°F/18.3°C to 90°F/32.2°C).

• High setting concentrates the color spectrum towards the hotter end of the temperature scale. The 129 colors will vary between 25 degrees F (70°F/21.1°C to 95°F/35°C). This setting offers more color resolution for data centers with hotter temperature settings. This setting is also suitable for positioning the Aurora Temperature Strip in the hot aisle.

Benefits of Visual Alerting Studies on human behavior show that warnings are most effective when they are presented proximate (in time and space) to the hazard. By visually indicating the issue in both a Management System interface and at the exact physical location, time to remediation can be decreased. With automated alerts and easy to comprehend alerts at the point of hazard, every team member can insure that no issue goes unnoticed.

Page 5: NER Aurora Thermal_Monitoring_Whitepaper

Page 5

Managing Alerts Centralized management systems provide a way to capture, manage, and effectively use sensor data. Down-time causing events can be avoided or minimized through monitoring systems that allow IT staff to quickly respond to environmental changes and alerts. In advanced systems, alerts can trigger automated response such as adjusting VFD controllers for target areas based on alert thresholds. Through the use of real-time data, Monitoring Solutions take the guess-work out of decision making and planning processes. Sensors provide important inputs for establishing baseline conditions, trending, capacity planning, validating best-practice improvements, monitoring changes, and confirming compliance with company mandates. Best Practice: Use Adaptable Sensors and Systems The Aurora Strip is designed to work in any data center environment – from basic server rooms without monitoring applications to Tier 4 data centers that deploy sophisticated DCiM systems. For data centers with existing monitoring and DCiM solutions, Aurora can be integrated to provide data to these systems. Data from the strips can interact with systems to provide automated remediation such as adjusting VFD controllers. In addition, Aurora’s resource-saving communications require just one port to capture up to 800 different sensor readings. For data centers without existing monitoring systems, the Aurora strip can be used as a stand-alone visual monitoring tool. However, a centralized monitoring system allows administrators to respond quickly and truly reap the benefits of the sensor data. Deploying such a system can be costly and overwhelming, but the Aurora Wireless Management Application (cloud-based and enterprise) is an easy avenue for data centers to move to the next level of monitoring and management. The system provides for monitoring of additional sensor types (humidity, fluid detection, airflow, etc.), automated alerts, powerful visual mapping tools, data trending/reporting, and API commands for integrating with 3rd party applications.

According to the Uptime Institute 2013 Data Center Industry Survey: “Data center infrastructure management (DCIM) software adoption seems to have skyrocketed. An astounding 38% reported that they have deployed DCIM software.” “That’s not to say that the companies have fully installed the tools, or are reaping the rewards of the software’s capabilities. For many companies, it’s just the beginning of a long cycle of implementation and maintenance of the systems.”

Page 6: NER Aurora Thermal_Monitoring_Whitepaper

Page 6

Aurora Wireless Management Application Features

• Complete configuration and customization at a sensor, local network, or client wide level

• Notifications via SMS text and email

• Unlimited sensor data storage and trending

• Unlimited user accounts for system configuration, monitoring and notifications

• Sensor heartbeats (check-ins) down to 10 minutes: o Timed sensors (i.e. temperature) can be user-set to check against alert thresholds up to 256

times between heartbeats o Triggered sensors (i.e. motion, door/window, etc.) record data as it happens, regardless of

heartbeat

• Advanced sensor configuration options: o Automatic sensor recovery attempts o Sensor inactivity alerts o Sub-heartbeat assessments with alert thresholds o Sensor aware state reporting

• Advanced Thermographic Sensor Mapping tool

• Sensor Grouping feature allows onscreen sensors to easily be arranged to exactly match physical strip deployments

• API commands for integrating into 3rd party applications

Page 7: NER Aurora Thermal_Monitoring_Whitepaper

Page 7

Summary

Environmental monitoring and management systems are crucial to running efficient data centers. The data provided is used to avoid downtime, increase efficiency, aid in capacity planning, and lower operating costs. At the root of these systems are sensors that collect the data for analysis. Best practices involve utilizing sensors that are scalable, flexible, and can be deployed as stand-alone systems or can be integrated into existing monitoring systems. The Aurora Solution allows you easily achieve a best practice deployment. More information including an overview video can be found at www.nerdata.com/Aurora About NER Data Corporation NER Data Corporation is an innovative leader in the demanding, growing, and continually changing Data Center Infrastructure Management and Managed Print businesses. NER offers unique value-add solutions that truly solve business issues and allow reseller partners to develop and maintain stronger relationships with their end-users. Our approach has earned NER a loyal following with North America’s leading Resellers, Integrators, VARS, and their Fortune 2000 end-user customers. For more information, visit www.nerdata.com. Copyright © 2014 NER Data Corporation

www.nerdata.com 888-NER-DATA \ 637-3282