NED and post-NED WUT involvement
Embed Size (px)
description
Transcript of NED and post-NED WUT involvement

NED and post-NED WUT NED and post-NED WUT involvementinvolvement
NED S.C. meeting 30.10.2007
Maciej Chorowski

The NED cryostat, construction phase at WUT
Copper thermal shields
Recuperative heat exchanger

Schemat kriostatu wykonanego w I-20 dla NED (Next European Dipole) w ramach VI PR
H e I
H e IIp
H e IIs
Zbiorn ikkriogeniczny
N aczyniepróżniow e
Zbiorn ik H e IIp
Zbiorn ik H e IIs
Zaw iesia p łyty
R ura w ym iennikaciepła
W ym iennikciepła
Zew netrznyekran rad iacyjny
W ew nętrznyekran rad iacyjny
Zaw ór
Płyta
Prow adzeniezaw oru
Ekranyradiacyjne
Ciś
nie
nie
[kP
a]
Tem peratura [K ]
sprężonyH e II
nasyconyH e II
para
ciecz I
c iecz II
nasyconyH e I
K r
superkrytycznyH e
cia ło sta łe
654321
10 4
10 3
10 2
10
1
1.8
1.6
2 1
3
Zaw órrozprężny

Optimization of thermal insulation of the NED cryostat
300 K 300 K
300 K 4.2 K
T(a)
T(b)
LHe
4.2 K
L
a
b
H
q r1
q r2
q r4
q r3 q r5
Naczynie próżniowe
Zewnętrzny ekranradiacyjny
W ewnetrzny ekranradiacyjny
Zbiornikkriogeniczny
x
T(x)
T
X
4.2 K 300 KT(b) T(a)
0
a
b

Thermal shields location optimization
a
b
S
a
b
Sa
b
Sgen
a
b
Sgen

Simplified geometry of the magnet
n =0
Q = h (T - T )A fb fin helium A
n =0
T ( )co il Q = h (T - T )B fin helium Bk
he liu m A
“Q ua si - a d iab a ticp is to n”
n =0
Collar
Collar
he liu m B
Coi
lr = 4 0 m minner
r = 10 0 m mouter
100
m
n =0
rz
Sym metric condition
Sym metric conditionKapton layers
FEM model and boundary conditions of the collar fin for the heat transfer simulations
Input data:
1. Geometry of fin2. Material properties of stainless steel and polyimide (density, specific heat and thermal conductivity)3. Evolution of the coil temperature 4. Boundary conditions from two-volume model5. Heat transfer coefficients

Example of numerical calculation
co lla r
selected points
coil
Quasi- adiabaticpiston
helium A
helium B
a)
b )
Tem
pe
ratu
re [K
]
Tim e [s]
Distance [c
m]
a). Pictorial view of simplified geometry of numerical calculations with the selected points of the collar b) Evolution of the temperature in the fin
Animation of evolution of temperature in the fin

Stability tests of QRL bellows, commissioning of the LHC

Reception tests of cryogenic systems
Reception test of the LHC Cryogenic Distribution Line in sector 7-8 (sub-sectors A and B)
Reception test of the LHC Cryogenic Distribution Line in sector 8-1
- WUT-CERN collaboration
- performed in 2005-2006
- aims: ● to verify overal behaviour of the line at cryogenic temperatures;
● to measure heat inleaks to the circuts 4.5-20K and 50-80K

Reception tests of cryogenic systems
Temperature evolutions of the Cryogenic Distribution Line main
headers during the reception test in sector 8-1
Heat inleakHeat inleak
11-Dec 8818 W
12-Dec 9007 W
13-Dec 8920 W
Heat inleak
with JRwith JR without without JRJR
11-Dec
633.3 W
603.9 W
12-Dec
632.9 W
582.3 W
13-Dec
635.1 W
572.5 W
Measured heat inleaks
to circuit 50-80 K
Measured heat inleaks to circuit 4.5-20 K

Reception tests of cryogenic systems
The LHC Cryogenic Distribution Line during
the reception tests in sector 8-1
Some members of WUT cryogenic grup in the LHC
tunnel

Material Equilibrium structure
1 Ag-Mg Solid solution α (Mg in Ag) 2 Ag-Sn Solid solution α (Sn in Ag) 3 Ag-Sb Solid solution α (Sb w Ag)
4 Ag-Mn Solid solution α (Mn in Ag) and precipitates of solid solution β (Ag in Mn)
5 Ag-Cu-Zr Solid solution α (Cu in Ag) and precipitates of phase/phases rich in Cu and Zr
6 Ag-Cu-Ni Solid solution α (Cu in Ag) and precipitates of phase/phases rich in Cu and Ni
Development of Ag alloys for BSCCO tape sheaths

Material Rp0.2 [MPa]
UTS [MPa]
Elong. [%]
Ag 19 135 47 Ag-Mg 38 150 34 Ag-Sb 37 183 77 Ag-Sn 41 219 75 Ag-Mg II 62 145 20 Ag-Cu-Ni 119 197 23 Ag-Cu-Zr 102 186 20 Ag-Mn 67 217 26
0
50
100
150
200
250
0 10 20 30 40 50 60 70 80
[%]
[M
Pa]
Mechanical properties of designed alloys
Ambient temperature – state after annealing at 830°C/10h

Mechanical properties of designed alloys
77K – state after annealing at 830°C/10h
Material Rp0.2 [MPa]
UTS [MPa]
Elong. [%]
Ag 35 221 86 Ag-Mg 46 236 39 Ag-Sb 39 235 76 Ag-Sn 81 314 84 Ag-Cu-Ni 157 319 33 Ag-Cu-Zr 168 274 24 Ag-Mn 100 281 30
0
50
100
150
200
250
300
350
0 10 20 30 40 50 60 70 80 90 100[%]
[M
Pa]

Furnace atmosphere O2 Ag alloy oxides
boundary of layers discontinuity O O2 Ag O O2 BSCCO
Analysis of oxygen diffusion and internal oxidation in BSCCO tape sheath
O2 Furnace atmosphere Ag alloy Ag BSCCO
Furnace atmosphere O2

Thermal conductivity of sheath material – state after oxidation at 830°C/30h
0
50
100
150
200
250
300
350
400
450
0 50 100 150 200 250 300 350
T [K]
[
W/m
K] Ag
Ag-Sn
Ag-Cu-Zr
Ag-Cu-Ni

Sheath manufacturing
Identification of phase composition of sheath materials in state after recrystallization annealing
Sheath material Phase composition
Ag Ag
Ag-Mg Solid solution of Mg in Ag
Ag-Sn Solid solution of Sn in Ag
Ag-Cu-Zr Solid solution of Cu in Ag and precipitates of CuZr2
Ag-Cu-Ni Solid solution of Cu in Ag and precipitates of Cu3,8Ni
75 mm

BSCCO/Ag/Ag
BSCCO/Ag/Ag-Mg
BSCCO/Ag/Ag-Sn
BSCCO/Ag/Ag-Cu-Zr
BSCCO/Ag/Ag-Cu-Ni
BSCCO tapes manufacturing (IFW Dresden)
20 mm

WUT proposed involvement in WP
WP1 mat. 20 keuro, personnel 12 keuroWP2 mat. 150 keuro, personnel 380 keuroWP3 mat. 20 keuro, personnel 48 keuroWP4 mat. 20 keuro, personnel 48 keuroWP5 mat 20 keuro, personnel 24 keuro

WUT proposed involvement
• 850 keuro• 230 keuro mat• 620 keuro personnel