Nazarenko, Warwick Dec 8 2005 Wave turbulence beyond spectra Sergey Nazarenko, Warwick, UK...

39
Nazarenko, Warwick Dec 8 2005 Wave turbulence beyond spectra Sergey Nazarenko, Warwick, UK Collaborators: L. Biven, Y. Choi, Y. Lvov, A.C. Newell, M. Onorato, B. Pokorni, & V.E. Zakharov
  • date post

    20-Dec-2015
  • Category

    Documents

  • view

    216
  • download

    0

Transcript of Nazarenko, Warwick Dec 8 2005 Wave turbulence beyond spectra Sergey Nazarenko, Warwick, UK...

Page 1: Nazarenko, Warwick Dec 8 2005 Wave turbulence beyond spectra Sergey Nazarenko, Warwick, UK Collaborators: L. Biven, Y. Choi, Y. Lvov, A.C. Newell, M. Onorato,

Nazarenko, Warwick Dec 8 2005

Wave turbulence beyond spectra

Sergey Nazarenko, Warwick, UK

Collaborators: L. Biven, Y. Choi, Y. Lvov, A.C. Newell, M. Onorato, B. Pokorni, & V.E. Zakharov

Page 2: Nazarenko, Warwick Dec 8 2005 Wave turbulence beyond spectra Sergey Nazarenko, Warwick, UK Collaborators: L. Biven, Y. Choi, Y. Lvov, A.C. Newell, M. Onorato,

Nazarenko, Warwick Dec 8 2005

Plan of the talk:

Statistical waves – “Wave Turbulence”. Kolmogorov-Zakharov cascades. Non-gaussianity of wave PDF;

intermittency. Discreteness effects; sanpile behaviour

of energy cascade.

Page 3: Nazarenko, Warwick Dec 8 2005 Wave turbulence beyond spectra Sergey Nazarenko, Warwick, UK Collaborators: L. Biven, Y. Choi, Y. Lvov, A.C. Newell, M. Onorato,

Nazarenko, Warwick Dec 8 2005

What is Wave Turbulence?WT describes a stochastic field of weakly

interacting dispersive waves.

Page 4: Nazarenko, Warwick Dec 8 2005 Wave turbulence beyond spectra Sergey Nazarenko, Warwick, UK Collaborators: L. Biven, Y. Choi, Y. Lvov, A.C. Newell, M. Onorato,

Nazarenko, Warwick Dec 8 2005

Other Examples of Wave Turbulence:

Sound waves, Plasma waves, Spin waves, Waves in Bose-Einstein condensates, Interstellar turbulence & solar wind, Waves in Semi-conductor Lasers.

Page 5: Nazarenko, Warwick Dec 8 2005 Wave turbulence beyond spectra Sergey Nazarenko, Warwick, UK Collaborators: L. Biven, Y. Choi, Y. Lvov, A.C. Newell, M. Onorato,

Nazarenko, Warwick Dec 8 2005

How can we describe WT?

Hamilitonian equations for the wave field.

Weak nonlinearity expansion. Separation of the linear and nonlinear timescales.

Statistical averaging, - closure.

Page 6: Nazarenko, Warwick Dec 8 2005 Wave turbulence beyond spectra Sergey Nazarenko, Warwick, UK Collaborators: L. Biven, Y. Choi, Y. Lvov, A.C. Newell, M. Onorato,

Nazarenko, Warwick Dec 8 2005

Free surface motionr is a 2D vector in horizonal plane; z is the vertical coordinate

Page 7: Nazarenko, Warwick Dec 8 2005 Wave turbulence beyond spectra Sergey Nazarenko, Warwick, UK Collaborators: L. Biven, Y. Choi, Y. Lvov, A.C. Newell, M. Onorato,

Nazarenko, Warwick Dec 8 2005

Zakharov equation

Deep water waves, 2 = gk, W is complicated (Krasitski 1992)

Page 8: Nazarenko, Warwick Dec 8 2005 Wave turbulence beyond spectra Sergey Nazarenko, Warwick, UK Collaborators: L. Biven, Y. Choi, Y. Lvov, A.C. Newell, M. Onorato,

Nazarenko, Warwick Dec 8 2005

Frequency renormalization

Page 9: Nazarenko, Warwick Dec 8 2005 Wave turbulence beyond spectra Sergey Nazarenko, Warwick, UK Collaborators: L. Biven, Y. Choi, Y. Lvov, A.C. Newell, M. Onorato,

Nazarenko, Warwick Dec 8 2005

Statistical variables in WT

Amplitude & phase: ak = Akk ; k = exp(ik).

Stationary distribution of k – unsteady distribution of k ,

Random k - correlated k .

Page 10: Nazarenko, Warwick Dec 8 2005 Wave turbulence beyond spectra Sergey Nazarenko, Warwick, UK Collaborators: L. Biven, Y. Choi, Y. Lvov, A.C. Newell, M. Onorato,

Nazarenko, Warwick Dec 8 2005

Statistical objects in WT

Spectrum nk = <Ak2>

E.g. Kolmogorov-Zakharov spectrum

N-mode PDF: probability for Ak

2 to be in [sk, sk +dsk] and for k to be in [ξk, ξk+dξk] ,

P (N) {s,ξ} = <δ(s-A2) δ(ξ-)>;

s={s1,s2,…,sN}; A={A1,A2,…,AN}; ξ={ξ1,ξ2,…,ξN}; ={1,2,…,N}.

Page 11: Nazarenko, Warwick Dec 8 2005 Wave turbulence beyond spectra Sergey Nazarenko, Warwick, UK Collaborators: L. Biven, Y. Choi, Y. Lvov, A.C. Newell, M. Onorato,

Nazarenko, Warwick Dec 8 2005

Random Phase & Amplitude (RPA) wavefield: All the amplitudes and the phase factors

are independent random variables,

The phase factors are uniformly distributed on the unit circle in the complex plane.

Page 12: Nazarenko, Warwick Dec 8 2005 Wave turbulence beyond spectra Sergey Nazarenko, Warwick, UK Collaborators: L. Biven, Y. Choi, Y. Lvov, A.C. Newell, M. Onorato,

Nazarenko, Warwick Dec 8 2005

RPA fields are not Gaussian.

Gaussian distribution means P(a)(s) ~ e-s/n.

RPA does not fix the amplitude PDF.

Page 13: Nazarenko, Warwick Dec 8 2005 Wave turbulence beyond spectra Sergey Nazarenko, Warwick, UK Collaborators: L. Biven, Y. Choi, Y. Lvov, A.C. Newell, M. Onorato,

Nazarenko, Warwick Dec 8 2005

Weak nonlinearity expansion

Choose T in between the linear and nonlinear timescales:

Page 14: Nazarenko, Warwick Dec 8 2005 Wave turbulence beyond spectra Sergey Nazarenko, Warwick, UK Collaborators: L. Biven, Y. Choi, Y. Lvov, A.C. Newell, M. Onorato,

Nazarenko, Warwick Dec 8 2005

Iterations

Page 15: Nazarenko, Warwick Dec 8 2005 Wave turbulence beyond spectra Sergey Nazarenko, Warwick, UK Collaborators: L. Biven, Y. Choi, Y. Lvov, A.C. Newell, M. Onorato,

Nazarenko, Warwick Dec 8 2005

Evolution of WT statistics

Substitute value of ak(T) into the PDF definition.

Apply RPA to ak(0) . Replace [P(T)-P(0)]/T with ∂t P.

Page 16: Nazarenko, Warwick Dec 8 2005 Wave turbulence beyond spectra Sergey Nazarenko, Warwick, UK Collaborators: L. Biven, Y. Choi, Y. Lvov, A.C. Newell, M. Onorato,

Nazarenko, Warwick Dec 8 2005

Equation for the N-mode PDF (Choi, Lvov & SN, 2004)

Where Fj is the j-component of the flux,

Page 17: Nazarenko, Warwick Dec 8 2005 Wave turbulence beyond spectra Sergey Nazarenko, Warwick, UK Collaborators: L. Biven, Y. Choi, Y. Lvov, A.C. Newell, M. Onorato,

Nazarenko, Warwick Dec 8 2005

Use of the N-mode PDF

Validation that RPA holds over the nonlinear evolution time

Non-Gaussian statistics of the wave amplitudes

Page 18: Nazarenko, Warwick Dec 8 2005 Wave turbulence beyond spectra Sergey Nazarenko, Warwick, UK Collaborators: L. Biven, Y. Choi, Y. Lvov, A.C. Newell, M. Onorato,

Nazarenko, Warwick Dec 8 2005

Single-mode staitstics

Eqn. for the 1-mode PDF (Choi, Lvov, SN, 2003):

Page 19: Nazarenko, Warwick Dec 8 2005 Wave turbulence beyond spectra Sergey Nazarenko, Warwick, UK Collaborators: L. Biven, Y. Choi, Y. Lvov, A.C. Newell, M. Onorato,

Nazarenko, Warwick Dec 8 2005

Kinetic equation for spectrum

Taking 1st moment of the 1-mode PDF eqn:

Hasselmann, 1963

Page 20: Nazarenko, Warwick Dec 8 2005 Wave turbulence beyond spectra Sergey Nazarenko, Warwick, UK Collaborators: L. Biven, Y. Choi, Y. Lvov, A.C. Newell, M. Onorato,

Nazarenko, Warwick Dec 8 2005

Kolmogorov-Zakharov spectra

Power-law spectra describing a down-scale energy cascade and an up-scale wave-action cascade

WT may break at a large or small scale

Page 21: Nazarenko, Warwick Dec 8 2005 Wave turbulence beyond spectra Sergey Nazarenko, Warwick, UK Collaborators: L. Biven, Y. Choi, Y. Lvov, A.C. Newell, M. Onorato,

Nazarenko, Warwick Dec 8 2005

Breakdown of WT

Water surface: wavebreaking means there is no amplitudes higher than critical

Hard breakdown, n~s*, Biven, Newell, SN, 2001

Weak breakdown, n<<s*. Choi, Lvov, SN, 2003

Page 22: Nazarenko, Warwick Dec 8 2005 Wave turbulence beyond spectra Sergey Nazarenko, Warwick, UK Collaborators: L. Biven, Y. Choi, Y. Lvov, A.C. Newell, M. Onorato,

Nazarenko, Warwick Dec 8 2005

Steady state PDF

Gaussian core, non-gaussian tail

Choi, Lvov, SN, 2003

Page 23: Nazarenko, Warwick Dec 8 2005 Wave turbulence beyond spectra Sergey Nazarenko, Warwick, UK Collaborators: L. Biven, Y. Choi, Y. Lvov, A.C. Newell, M. Onorato,

Nazarenko, Warwick Dec 8 2005

Direct Numerical Simulations

Truncated (at the 3rd order in amplitude) Euler equations for the free water surface.

Pseudo-spectral method 256X256.

Page 24: Nazarenko, Warwick Dec 8 2005 Wave turbulence beyond spectra Sergey Nazarenko, Warwick, UK Collaborators: L. Biven, Y. Choi, Y. Lvov, A.C. Newell, M. Onorato,

Nazarenko, Warwick Dec 8 2005

Energy spectrum

Onorato et al’ 02, Dyachenko et al’03, Nakoyama’04, Lvov et al’05

Page 25: Nazarenko, Warwick Dec 8 2005 Wave turbulence beyond spectra Sergey Nazarenko, Warwick, UK Collaborators: L. Biven, Y. Choi, Y. Lvov, A.C. Newell, M. Onorato,

Nazarenko, Warwick Dec 8 2005

One-mode PDF

Anomalously high amplitude of large waves – Freak Waves

Page 26: Nazarenko, Warwick Dec 8 2005 Wave turbulence beyond spectra Sergey Nazarenko, Warwick, UK Collaborators: L. Biven, Y. Choi, Y. Lvov, A.C. Newell, M. Onorato,

Nazarenko, Warwick Dec 8 2005

Correlation of ’s.

In agreement with WT, ’s are decorrelated from A’s and among themselves

Page 27: Nazarenko, Warwick Dec 8 2005 Wave turbulence beyond spectra Sergey Nazarenko, Warwick, UK Collaborators: L. Biven, Y. Choi, Y. Lvov, A.C. Newell, M. Onorato,

Nazarenko, Warwick Dec 8 2005

’s are correlated!

Correct theory is based on random ’s and not random ’s.

Page 28: Nazarenko, Warwick Dec 8 2005 Wave turbulence beyond spectra Sergey Nazarenko, Warwick, UK Collaborators: L. Biven, Y. Choi, Y. Lvov, A.C. Newell, M. Onorato,

Nazarenko, Warwick Dec 8 2005

Exact 4-wave resonances

Collinear (Dyachenko et al’94): all 4 k’s parallel to each other (unimportant – null interaction).

Symmetric (Kartashova’98): |k1| = |k3|, |k2| = |k4|

or |k1| = |k4|, |k2| = |k3| . Tridents (Lvov et al’05): k1 anti-parallel k3, k2 is

mirror-symmetric with k4 with respect to k1 -k3 axis.

Page 29: Nazarenko, Warwick Dec 8 2005 Wave turbulence beyond spectra Sergey Nazarenko, Warwick, UK Collaborators: L. Biven, Y. Choi, Y. Lvov, A.C. Newell, M. Onorato,

Nazarenko, Warwick Dec 8 2005

Tridents

Parametrisation (SN’05):

Page 30: Nazarenko, Warwick Dec 8 2005 Wave turbulence beyond spectra Sergey Nazarenko, Warwick, UK Collaborators: L. Biven, Y. Choi, Y. Lvov, A.C. Newell, M. Onorato,

Nazarenko, Warwick Dec 8 2005

Cascade on quasi-resonances

Cascade starts at resonance broadening << k-grid spacing

It is anisotropic and supported by small fraction of k’s.

Page 31: Nazarenko, Warwick Dec 8 2005 Wave turbulence beyond spectra Sergey Nazarenko, Warwick, UK Collaborators: L. Biven, Y. Choi, Y. Lvov, A.C. Newell, M. Onorato,

Nazarenko, Warwick Dec 8 2005

Frequency peaks at fixed k.

2nd peak is contribution of k/2 mode

Weak turbulence: 1st peak << 2nd peak

Sometimes 2nd peak gets > 1st peak

Diagnostics of nonlinear activity

Page 32: Nazarenko, Warwick Dec 8 2005 Wave turbulence beyond spectra Sergey Nazarenko, Warwick, UK Collaborators: L. Biven, Y. Choi, Y. Lvov, A.C. Newell, M. Onorato,

Nazarenko, Warwick Dec 8 2005

Phase runs

Phase runs – diagnostics of nonlinear activity

Page 33: Nazarenko, Warwick Dec 8 2005 Wave turbulence beyond spectra Sergey Nazarenko, Warwick, UK Collaborators: L. Biven, Y. Choi, Y. Lvov, A.C. Newell, M. Onorato,

Nazarenko, Warwick Dec 8 2005

“Sandpile avalanches”

Nonlinear activity at k1 and k2 are correlated (k2>k1),

It is time delayed and amplified at k2 with respect k1.

“sandpile avalanches”.

Page 34: Nazarenko, Warwick Dec 8 2005 Wave turbulence beyond spectra Sergey Nazarenko, Warwick, UK Collaborators: L. Biven, Y. Choi, Y. Lvov, A.C. Newell, M. Onorato,

Nazarenko, Warwick Dec 8 2005

Cycle of discrete turbulence Weak turbulence at forcing scale –

no resonance, no cascade. Energy accumulation, growth of

nonlinearity. Nonlinear resonance broadening,

cascade activation – “avalanche”. Avalanche drains energy from the

forcing scale, -> beginning of the cycle.

Page 35: Nazarenko, Warwick Dec 8 2005 Wave turbulence beyond spectra Sergey Nazarenko, Warwick, UK Collaborators: L. Biven, Y. Choi, Y. Lvov, A.C. Newell, M. Onorato,

Nazarenko, Warwick Dec 8 2005

Summary

Generalised WT description: PDF. Kolmogorov-Zakharov spectrum. RPA validation. Correlations of phases. Anomalous distribution of waves with

high amplitudes Discreteness effects: exact and quasi-

resonances, sanpile behavior of cascade.

Page 36: Nazarenko, Warwick Dec 8 2005 Wave turbulence beyond spectra Sergey Nazarenko, Warwick, UK Collaborators: L. Biven, Y. Choi, Y. Lvov, A.C. Newell, M. Onorato,

Nazarenko, Warwick Dec 8 2005

Phases vs Phase factors

Illustration through an example :

Phases are correlated, because

Phase factors are statistically independent,

Page 37: Nazarenko, Warwick Dec 8 2005 Wave turbulence beyond spectra Sergey Nazarenko, Warwick, UK Collaborators: L. Biven, Y. Choi, Y. Lvov, A.C. Newell, M. Onorato,

Nazarenko, Warwick Dec 8 2005

Mean phase

Expression for phase Evolution eqn.

the mean value of the phase is steadily changing over the nonlinear time and it would be incorrect to assume that phases remains uniformly distributed in [-,].

Page 38: Nazarenko, Warwick Dec 8 2005 Wave turbulence beyond spectra Sergey Nazarenko, Warwick, UK Collaborators: L. Biven, Y. Choi, Y. Lvov, A.C. Newell, M. Onorato,

Nazarenko, Warwick Dec 8 2005

Dispersion of the phase

is always positive and the phase fluctuations experience ultimate growth (linear in steady state)

Page 39: Nazarenko, Warwick Dec 8 2005 Wave turbulence beyond spectra Sergey Nazarenko, Warwick, UK Collaborators: L. Biven, Y. Choi, Y. Lvov, A.C. Newell, M. Onorato,

Nazarenko, Warwick Dec 8 2005

Essentially RPA fields

The amplitude variables are almost independent is a sense that for each M<<N modes the M-mode amplitude PDF is equal to the product of the one-mode PDF’s up to and corrections.