NATO ASI Series - uni-muenchen.de · NATO ASI Series Advanced Science Institutes Series A series...

36
NATO ASI Series Advanced Science Institutes Series A series presenting the results of activities sponsored by the NATO Science Committee, which aims at the dissemination of advanced scientific and technological knowledge, with a view to strengthening links between scientific communities. The series is published by an international board ot publishers in conjunction with the NATO Scientific Affairs Division A Life Sciences Plenum Publishing Corporation B Physics New York and London C Mathematical Kluwer Academic Publishers and Physical Sciences Dordrecht, Boston, and London D Behavioral and Social Sciences E Applied Sciences F Computer and Systems Sciences Springer-Verlag G Ecological Sciences Berlin, Heidelberg. New York, London, H Cell Biology Paris, and Tokyo flecenf Volumes in this Series Volume 150— Lipid Storage Disorders: Biological and Medical Aspects edited by Robert Salvayre, Louis Douste-Blazy, and Shimon Gatt Volume 151—Behavioral Adaptation to Intertidal Life edited by Guido Chelazzi and Marco Vannini Volume 752—Radiolabeled Monoclonal Antibodies for Imaging and Therapy edited by Suresh C. Srivastava Volume 753—Cerebral Blood Flow: Mathematical Models, Instrumentation, and Imaging Techniques edited by Aldo Rescigno and Andrea Boicelli Volume 154—Terrestrial Space Radiation and Its Biological Effects edited by Percival D. McCormack, Charles E. Swenberg, and Horst Bücker Volume 755—Targeting of Drugs: Anatomical and Physiological Considerations edited by Gregory Gregoriadis and George Poste Volume 156—Animal Sonar: Processes and Performance edited by Paul E. Nachtigall and Patrick W. B. Moore Series A: Life Sciences

Transcript of NATO ASI Series - uni-muenchen.de · NATO ASI Series Advanced Science Institutes Series A series...

Page 1: NATO ASI Series - uni-muenchen.de · NATO ASI Series Advanced Science Institutes Series A series presenting the results of activities sponsored by the NATO Science Committee, which

NATO ASI Series Advanced Science Institutes Series A series presenting the results of activities sponsored by the NATO Science Committee, which aims at the dissemination of advanced scientific and technological knowledge, with a view to strengthening links between scientific communities.

The ser ies is pub l ished by an international board ot publ ishers in con junc t ion w i th the NATO Scient i f ic Affairs Division

A L i fe S c i e n c e s Plenum Publ ishing Corpora t ion B P h y s i c s New York and London

C M a t h e m a t i c a l Kluwer Academic Publ ishers a n d Phys i ca l S c i e n c e s Dordrecht , Bos ton , and London

D Behav io ra l a n d Soc ia l S c i e n c e s E A p p l i e d S c i e n c e s

F C o m p u t e r a n d S y s t e m s S c i e n c e s Spr inger-Ver lag G Eco log i ca l S c i e n c e s Berl in, He ide lberg . New York , London , H Ce l l B io logy Paris, and T o k y o

flecenf Volumes in this Series

Volume 150— L i p i d S t o r a g e D i s o r d e r s : B i o l o g i c a l a n d M e d i c a l A s p e c t s e d i t e d by R o b e r t S a l v a y r e , L o u i s D o u s t e - B l a z y , a n d S h i m o n G a t t

Volume 151—Behavioral A d a p t a t i o n t o I n t e r t i d a l L i f e e d i t e d by G u i d o C h e l a z z i a n d M a r c o V a n n i n i

Volume 7 5 2 — R a d i o l a b e l e d M o n o c l o n a l A n t i b o d i e s f o r I m a g i n g a n d T h e r a p y e d i t e d by S u r e s h C. S r i v a s t a v a

Volume 7 5 3 — C e r e b r a l B l o o d F l o w : M a t h e m a t i c a l M o d e l s , I n s t r u m e n t a t i o n , a n d I m a g i n g T e c h n i q u e s e d i t e d by A l d o R e s c i g n o a n d A n d r e a B o i c e l l i

Volume 154—Terrestrial S p a c e R a d i a t i o n a n d I t s B i o l o g i c a l E f f e c t s e d i t e d by P e r c i v a l D. M c C o r m a c k , C h a r l e s E. S w e n b e r g , a n d H o r s t B ü c k e r

Volume 7 5 5 — T a r g e t i n g o f D r u g s : A n a t o m i c a l a n d P h y s i o l o g i c a l C o n s i d e r a t i o n s e d i t e d by G r e g o r y G r e g o r i a d i s a n d G e o r g e P o s t e

Volume 156—Animal S o n a r : P r o c e s s e s a n d P e r f o r m a n c e e d i t e d by P a u l E. N a c h t i g a l l a n d P a t r i c k W . B. M o o r e

Series A: Life Sciences

Page 2: NATO ASI Series - uni-muenchen.de · NATO ASI Series Advanced Science Institutes Series A series presenting the results of activities sponsored by the NATO Science Committee, which

Animal Sonar Processes and Performance

E d i t e d by

Paul E. Nachtigall a n d Patrick W. B. Moore N a v a l O c e a n S y s t e m s C e n t e r K a i l u a , H a w a i i

Plenum Press New York and London Published in Cooperation with NATO Scientific Affairs Division

Page 3: NATO ASI Series - uni-muenchen.de · NATO ASI Series Advanced Science Institutes Series A series presenting the results of activities sponsored by the NATO Science Committee, which

P r o c e e d i n g s o f a N A T O A d v a n c e d S t u d y I n s t i t u t e o n A n i m a l S o n a r S y s t e m s , h e l d S e p t e m b e r 10-19, 1986, in H e l s i n g o r , D e n m a r k

L i b r a r y o f C o n g r e s s C a t a l o g i n g in P u b l i c a t i o n D a t a

N A T O A d v a n v e d S t u d y I n s t i t u t e o n A n i m a l S o n a r S y s t e m s (1986: H e l s i n g o r , D e n m a r k )

A n i m a l s o n a r .

( N A T O A S I s e r i e s . S e r i e s A , L i f e s c i e n c e s ; v o l . 156) " P r o c e e d i n g s o f a N A T O A d v a n c e d S t u d y I n s t i t u t e o n A n i m a l S o n a r S y s t e m s ,

h e l d S e p t e m b e r 1 0 - 1 9 , 1 9 8 6 , in H e l s i n g o r , D e n m a r k " — T . p . v e r s o . " P u b l i s h e d in C o o p e r a t i o n w i t h N A T O S c i e n t i f i c A f f a i r s D i v i s i o n . " B i b l i o g r a p h y : p. I n c l u d e s i n d e x e s . 1 . E c h o l o c a t i o n ( P h y s i o l o g y ) — C o n g r e s s e s . I. N a c h t i g a l l , P a u l E. I I . M o o r e ,

P a t r i c k W . B. I I I . N o r t h A t l a n t i c T r e a t y O r g a n i z a t i o n . S c i e n t i f i c A f f a i r s D i v i s i o n . IV. T i t l e . V. S e r i e s : N A T O A S I s e r i e s . S e r i e s A , L i f e s c i e n c e s ; v. 156. Q P 4 6 9 . N 3 7 1988 5 9 1 . V 8 2 5 88-28886 I S B N 0-306-43031-2

© 1 9 8 8 Plenum Press, N e w York A Division of P lenum Publ ishing Corporat ion 2 3 3 Spr ing Street , New York , N.Y. 1 0 0 1 3

All r ights reserved

No part of this book may be r e p r o d u c e d , s to red in a retr ieval System, or t ransmit ted in any fo rm or by any means, e lect ron ic , mechanica l , pho tocopy ing , microf i lming, record ing , or o therw ise , w i thout wr i t ten permiss ion f rom the Publ isher

Printed in the Uni ted States of Amer ica

Page 4: NATO ASI Series - uni-muenchen.de · NATO ASI Series Advanced Science Institutes Series A series presenting the results of activities sponsored by the NATO Science Committee, which

ORGANIZING COMMITTEE

Chairman

Paul E. Nachtigall Head, Research Branch

Naval Ocean Systems Center P.O. Box 997

Kailua, Hawaii 96734 USA

Whitlow Au M. Brock Fenton N a v a l Ocean Systems Center F a c u l t y o f Science P . O . Box 9 9 7 Y o r k University K a i l u a , H a w a i i 9 6 7 3 4 U S A O n t a r i o , C a n a d a M 3 J 1 P 3

William Friedl Jeffrey Haun N a v a l Ocean Systems Center N a v a l Ocean Systems Center P . O . B o x 9 9 7 P . O . Box 9 9 7 K a i l u a , H a w a i i 9 6 7 3 4 U S A K a i l u a , H a w a i i 9 6 7 3 4 U S A

Lee Miller Cees Kamminga Biologisk I n s t i t u t Technische Hogeschool D e l f t Odense Universitet A f d e l i n g D e r Elektrotechniek Campusvej 5 5 M e k e l w e g 4, Postbus 5 0 3 1 5 2 3 0 Odense M , D e n m a r k 2 6 0 0 G A D e l f t , T h e Netherlands

Patrick W. B. Moore Bertel Mdhl N a v a l Ocean Systems Center Department o f Zoophysiology P . O . Box 9 9 7 University o f A a r h u s K a i l u a , H a w a i i 9 6 7 3 4 U S A D K - 8 0 0 0 A a r h u s C, D e n m a r k

Kenneth Norris Gerhard Neuweiler Coastal M a r i n e Laboratory Zoologisches I n s t i t u t D e r Universität E n v i r o n m e n t a l Studies Luisenstrasse 1 4 University o f C a l i f o r n i a D - 8 0 0 0 München, F e d e r a l Republic of Germany Santa C r u z , C a l i f o r n i a 9 5 0 6 4 U S A Bill A. Powell Homer O. Porter N a v a l Ocean Systems Center N a v a l Ocean Systems Center San D i e g o , C a l i f o r n i a 9 2 1 5 2 U S A San D i e g o , C a l i f o r n i a 9 2 1 5 2 U S A Uli Schnitzler James A. Simmons I n s t i t u t für Biologie III I n s t i t u t e o f Neuroscience A u f der Morgenstelle 2 8 University o f Oregon D - 7 4 0 0 Tübingen, F e d e r a l Republic of Germany Eugene, Oregon 9 7 4 0 8 U S A

ACKNOWLEDGEMENTS This Symposium was sponsored by various organizations. The organizing

committee would like to thank them and their representatives:

Defense Advanced Research Projects Agency, USA

North Atlantic Treaty Organization, Advanced Study Institutes

Office of Naval Research, USA

National Science Foundation, USA

Danish Ministry of Education Department of Higher Education, Denmark

Page 5: NATO ASI Series - uni-muenchen.de · NATO ASI Series Advanced Science Institutes Series A series presenting the results of activities sponsored by the NATO Science Committee, which

CONTENTS

MEMORIES AND REFLECTIONS ON BIOSONARS Rene Guy Busnel

SECTION 1: ECHOLOCATION SIGNALS AND THEIR PRODUCTION

ECHOLOCATION SIGNAL TYPES OF ODONTOCETES Cees Kamminga 9

THE PRODUCTION OF ECHOLOCATION SIGNALS BY BATS AND BIRDS Roderick A. Suthers 23

PROPAGATION OF BELUGA ECHOLOCATION SIGNALS Whitlow W. L. Au, Ralph H. Penner and Charles W. Turl 47

NASAL PRESSURE AND SOUND PRODUCTION IN AN ECHOLOCATING WHITE WHALE, Delphinapterus leucas

Sam H. Ridgway and Donald A. Carter 53

THE STUDY OF THE SOUND PRODUCTION APPARATUS IN THE HARBOUR PORPOISE, Phocoena phocoena. AND THE JACOBITA, Cephalorhvnchus commersoni BY MEANS OF SERIAL CRYO-MICROTOME SECTIONING AND 3-D COMPUTER GRAPHICS

Mats Amundin, Erik K a l l i n , and Sten K a l l i n 61

THE ANATOMY OF ACOUSTIC STRUCTURES IN THE SPINNER DOLPHIN FOREHEAD AS SHOWN BY X-RAY COMPUTED TOMOGRAPHY AND COMPUTER GRAPHICS

Ted W. Cranford 67

WHALE HEADS, MAGNETIC RESONANCE IMAGES, RAY DIAGRAMS AND TINY BUBBLES

R. Stuart Mackay 79

INDIVIDUAL VARIATION IN VOCAL TRACT RESONANCE MAY ASSIST OILBIRDS IN RECOGNIZING ECHOES OF THEIR OWN SONAR CLICKS

Roderick A. Suthers and Dwight H. Hector 87

MIDBRAIN AREAS AS CANDIDATES FOR AUDIO-VOCAL INTERFACE IN ECHOLOCATING BATS

Gerd Schuller and Susanne Radtke-Schuller 93

THE SOUNDS OF SPERM WHALE CALVES William A. Watkins, Karen E. Moore, Christopher W. Clark and Marilyn E. Dahlheim 99

ix

Page 6: NATO ASI Series - uni-muenchen.de · NATO ASI Series Advanced Science Institutes Series A series presenting the results of activities sponsored by the NATO Science Committee, which

APPARENT SONAR CLICKS FROM A CAPTIVE BOTTLENOSED DOLPHIN, Tursiops truncatus. WHEN 2, 7 AND 38 WEEKS OLD

Morten Lindhard 109

ONTOGENY OF VOCAL SIGNALS IN THE BIG BROWN BAT, Eptesicus fuscus Cynthia F. Moss 115

OBSERVATIONS ON THE DEVELOPMENT OF ECHOLOCATION IN YOUNG BOTTLENOSE DOLPHINS

Diana Reiss 121

THE SHORT-TIME-DURATION NARROW-BANDWIDTH CHARACTER OF ODONTOCETE ECHOLOCATION SIGNALS

Henk Wiersma 129

SECTION 2 : AUDITORY SYSTEMS OF ECHOLOCATING ANIMALS

PARALLEL-HIERARCHICAL PROCESSING OF BIOSONAR INFORMATION IN THE MUSTACHED BAT

Nobuo Suga 149

DOLPHIN ECHOLOCATION AND AUDITION Patrick W. B. Moore 161

PARALLEL AUDITORY PATHWAYS I: STRUCTURE AND CONNECTIONS John H. Casseday and George D. Pollak 169

PARALLEL AUDITORY PATHWAYS II: FUNCTIONAL PROPERTIES George D. Pollak and John H. Casseday 197

COCHLEAR PHYSIOLOGY AND ANATOMY IN BATS Marianne Vater 225

ASCENDING PATHWAYS TO THE INFERIOR COLLICULUS VIA THE SUPERIOR OLIVARY COMPLEX IN THE RUFOUS HORSESHOE BAT, Rhinolophus rouxii

John H. Casseday, E. Covey and Marianne Vater 243

PATTERN OF PROJECTIONS TO THE 60 KHZ ISOFREQUENCY REGION OF THE MUSTACHE BAT'S INFERIOR COLLICULUS

Linda S. Ross and George D. Pollak 247

TARGET RANGE PROCESSING PATHWAYS IN THE AUDITORY SYSTEM OF THE MUSTACHED BAT

William E. O'Neill, Robert D. Frisina, David M. Gooler and Martha L. Zettel 253

PROCESSING OF PAIRED BIOSONAR SIGNALS IN THE CORTICES OF Rhinolophus rouxi AND Pteronotus P. p a r n e l l i i : A COMPARATIVE NEUROPHYSIOLOGICAL AND NEUROANATOMICAL STUDY

Gerd Schuller, Susan Radtke-Schuller and William E. O'Neill 259

CENTRAL CONTROL OF FREQUENCY IN BIOSONAR EMISSIONS OF THE MUSTACHED BAT

David M. Gooler and William E. O'Neill 265

FRONTAL AUDITORY SPACE REPRESENTATION IN THE CEREBELLAR VERMIS OF ECHOLOCATING BATS

P h i l l i p H. -S. Jen and Xinde Sun 271

x

Page 7: NATO ASI Series - uni-muenchen.de · NATO ASI Series Advanced Science Institutes Series A series presenting the results of activities sponsored by the NATO Science Committee, which

DIRECTIONAL EMISSION AND TIME PRECISION AS A FUNCTION OF TARGET ANGLE IN THE ECHOLOCATING BAT Ca r o l l i a p e r s p i c i l l a t a

David J. Hartly and Roderick A. Suthers 275

THE JAW-HEARING DOLPHIN: PRELIMINARY BEHAVIORAL AND ACOUSTICAL EVIDENCE

Randall L. B r i l l 281

ACOUSTICAL ASPECTS OF HEARING AND ECHOLOCATION IN BATS Anna Guppy and Roger B. Coles 289

THE PERCEPTION OF COMPLEX ECHOES BY AN ECHOLOCATING DOLPHIN Whitlow W. L. Au and Patrick W. B. Moore 295

MORPHOMETRIC ANALYSIS OF COCHLEAR STRUCTURES IN THE MUSTACHED BAT, Pteronotus p. p a r n e l l i i

0. W. Henson, Jr. and M. M. Henson 301

THE EFFERENT AUDITORY SYSTEM IN DOPPLER-SHIFT COMPENSATING BATS Alle n L. Bishop and 0 W. Henson, Jr. 307

SOME COMPARATIVE ASPECTS OF AUDITORY BRAINSTEM CYTOARCHITECTURE IN ECHOLOCATING MAMMALS: SPECULATIONS ON THE MORPHOLOGICAL BASIS OF TIME-DOMAIN SIGNAL PROCESSING

John M. Zook, Myron S Jacobs, Ilya Glezer and Peter J. Morgane 311

TEMPORAL ORDER DISCRIMINATION WITHIN THE DOLPHIN CRITICAL INTERVAL

Richard A. Johnson, Patrick W. B. Moore, Mark W. Stoermer, Jeffrey L. Pawloski, and Leslie C. Anderson 317

DETECTION ABILITIES AND SIGNAL CHARACTERISTICS OF ECHOLOCATING FALSE KILLER WHALES (Pseudorca crassidens)

Jeanette Thomas, Mark Stoermer, Clark Bowers, Les Anderson, and Alan Garver 323

BINAURAL NEURONS IN THE MUSTACHE BAT'S INFERIOR COLLICULUS: PHYSIOLOGY, FUNCTIONAL ORGANIZATION , AND BEHAVIORAL IMPLICATIONS

Jeffrey J. Wenstrup 329

ONTOGENY OF THE ECHOLOCATION SYSTEM IN RHINOLOPHOID CF-FM BATS: AUDITION AND VOCALIZATION IN EARLY POSTNATAL DEVELOPMENT

Rudolf Rubsamen 335

LIGHTMICROSCOPIC OBSERVATION OF COCHLEAR DEVELOPMENT IN HORSESHOE BATS (Rhinolophus rouxi)

Marianne Vater 341

ONLY ONE NUCLEUS IN THE BRAINSTEM PROJECTS TO THE COCHLEA IN HORSESHOE BATS: THE NUCLEUS OLIVO-COCHLEARIS

Joachim Ostwald and Andreas Aschoff 347

SECTION 3: PERFORMANCE OF ANIMAL SONAR SYSTEMS

THE PERFORMANCE OF ECHOLOCATION: ACOUSTIC IMAGES PERCEIVED BY ECHOLOCATING BATS

James A. Simmons and Alan D. Grinnell 353

xi

Page 8: NATO ASI Series - uni-muenchen.de · NATO ASI Series Advanced Science Institutes Series A series presenting the results of activities sponsored by the NATO Science Committee, which

DESIGNING CRITICAL EXPERIMENTS ON DETECTION AND ESTIMATION IN ECHOLOCATING BATS

Dieter Menne 387

TARGET DISCRIMINATION AND TARGET CLASSIFICATION IN ECHOLOCATING BATS

Joachim Ostwald, H. - U l i Schnitzler and Gerd Schuller 413

TARGET DETECTION BY ECHOLOCATING BATS Bertel Mjrfhl 435

SONAR TARGET DETECTION AND RECOGINITION BY ODONTOCETES Whitlow W. L. Au 451

PREY INTERCEPTION: PREDICTIVE AND NONPREDICTIVE STRATEGIES W. Mitchell Masters 467

A MECHANISM FOR HORIZONTAL AND VERTICAL TARGET LOCALIZATION IN THE MUSTACHE BAT (Pteronotus p_. p a r n e l l i i )

Zoltan M. Fuzessery 471

ECHOES OF FLUTTERING INSECTS Rudi Kober 477

ENCODING OF NATURAL INSECT ECHOES AND SINUSOIDALLY MODULATED STIMULI BY NEURONS IN THE AUDITORY CORTEX OF THE GREATER HORSESHOE BAT, Rhinolophus ferrumeauinum

Joachim Ostwald 483

DO SIGNAL CHARACTERISTICS DETERMINE A BAT'S ABILITY TO AVOID OBSTACLES?

Albert S. Feng and Karen T y r e l l 489

GREATER HORSESHOE BATS LEARN TO DISCRIMATE SIMULATED ECHOES OF INSECTS FLUTTERING WITH DIFFERENT WINGBEAT RATES

Gerhard von der Emde 495

PREDICTIVE TRACKING OF HORIZONTALLY MOVING TARGETS BY THE FISHING BAT, Noctilio leporinus

Karen A. Campbell and Roderick A. Suthers 501

DISCRIMINATION OF TARGET SURFACE STRUCTURE IN THE ECHOLOCATING BAT, Megaderma lyra

Sabine Schmidt 507

A TIME WINDOW FOR DISTANCE INFORMATION PROCESSING IN THE BATS, Noctilio albiventris and Rhinolophus rouxi

Roald C. Roverud 513

SECTION 4 : NATURAL HISTORY OF ECHOLOCATION

NATURAL HISTORY ASPECTS OF MARINE MAMMAL ECHOLOCATION: FEEDING STRATEGIES AND HABITAT

William E. Evans and Frank T. Awbrey 521

BEHAVIOUR AND FORAGING ECOLOGY OF ECHOLOCATING BATS Gerhard Neuweiler and M. Brock Fenton 535

INTERACTION BETWEEN ECHOLOCATING BATS AND THEIR PREY Annemarie Surlykke 551

xii

Page 9: NATO ASI Series - uni-muenchen.de · NATO ASI Series Advanced Science Institutes Series A series presenting the results of activities sponsored by the NATO Science Committee, which

LOUD IMPULSE SOUNDS IN ODONTOCETE PREDATION AND SOCIAL BEHAVIOR Kenneth Marten, Kenneth S. Norris, Patrick W. B. Moore and Kirsten A. Englund 567

HARMONIC STRUCTURE OF BAT ECHOLOCATION SIGNALS Karl Zbinden 581

ACOUSTICAL VS. VISUAL ORIENTATION IN NEOTROPICAL BATS Uwe Schmidt, G. Joermann and G. Rother 589

ECHOLOCATION STRATEGIES OF AERIAL INSECTIVOROUS BATS AND THEIR INFLUENCE ON PREY SELECTION

Robert M. R. Barclay 595

FORAGING BEHAVIOR, PREY SELECTION AND ECHOLOCATION IN PHYLLOSTOMINE BATS (Phvllostomidae)

Jacqueline J. Beiwood 601

VARIATION IN FORAGING STRATEGIES IN FIVE SPECIES OF INSECTIVOROUS BATS - IMPLICATIONS FOR ECHOLOCATION CALL DESIGN

M. Brock Fenton 607

DETECTION OF PREY IN ECHOCLUTTERING ENVIRONMENTS Gerhard Neuweiler, A. Link, G. Marimuthu, and R. Rubsamen 613

HOW THE BAT, Pip i s t r e l l u s kuhli. HUNTS FOR INSECTS Hans-Ulrich Schnitzler, Elisabeth Kalko, Lee Mil l e r and Annemarie Surylkke 619

THE COMMUNICATION ROLE OF ECHOLOCATION CALLS IN VESPERTILIONID BATS

Jonathan P. Balcombe and M. Brock Fenton 625

AUDITORY INPUT TO THE DORSAL LONGITUDINAL FLIGHT MOTOR NEURONS OF A NOCTUID MOTH

Lee A. Mil l e r and Bent M. Madsen 629

DISRUPTING FORAGING BATS: THE CLICKS OF ARCTIID MOTHS M. G. Stoneman and M. Brock Fenton 635

THE ECHOLOCATION ASSEMBLAGE: ACOUSTIC ENSEMBLES IN A NEOTROPICAL HABITAT

James H. Fullard and Jacqueline J. Beiwood 639

MICROBAT VISION AND ECHOLOCATION IN AN EVOLUTIONARY CONTEXT John D. Pettigrew 645

FUTURE DIRECTIONS M. Brock Fenton 651

SECTION 5: ECHOLOCATION AND COGNITION

ON THE EVOLUTION OF ACOUSTIC COMMUNICATION SYSTEMS IN VERTEBRATES PART I: HISTORICAL ASPECTS

Kenneth S. Norris and Evans C. Evans III 655

ON THE EVOLUTION OF ACOUSTIC COMMUNICATION SYSTEMS IN VERTEBRATES PART II: COGNITIVE ASPECTS

Evan C. Evans III and Kenneth S. Norris 671

xiii

Page 10: NATO ASI Series - uni-muenchen.de · NATO ASI Series Advanced Science Institutes Series A series presenting the results of activities sponsored by the NATO Science Committee, which

COGNITIVE ASPECTS OF ECHOLOCATION Donald R. G r i f f i n 683

COGNITION AND ECHOLOCATION OF DOLPHINS Ronald J. Schusterman 691

LOUD SOUNDS DÜRING FEEDING IN INDIAN OCEAN BOTTLENOSE DOLPHINS Rachel Smolker and Andrew Richards 703

ATTENTION AND DETECTION IN DOLPHIN ECHOLOCATION Ralph H. Penner 707

ODONTOCETE SONAR SYSTEMS RESEARCH - FUTURE DIRECTIONS FROM A ETHOLOGIST'S PERSONAL POINT OF VIEW

R. Paul Terry 715

SECTION 6: ECHOLOCATION THEORY AND APPLICATIONS

SOME THEORETICAL CONCEPTS FOR ECHOLOCATION Richard A. Altes 725

DETECTION AND RECOGNITION MODELS OF DOLPHIN SONAR SYSTEMS Whitlow W. L. Au 753

A BRIEF HISTORY OF BIONIC SONARS C. Scott Johnson 769

BIOSONAR SIGNAL PROCESSING APPLICATIONS Robert W. Floyd 773

TAKE OFF SIGNALS EMITTED BY Mvotis mvstacinus: THEORY OF RECEIVERS AND MODELLING

Bernard Escudie 785

NOSELEAVES AND BAT PULSES J. David Pye 791

TIME-FREQUENCY PROCESSING OF BAT SONAR SIGNALS Patrick Flandrin 797

ECHOES FROM INSECTS PROCESSED USING TIME DELAYED SPECTROMETRY (TDS) Lee A. Miller and Simon B. Pedersen 803

SONAR DISCRIMINATION OF METALLIC PLATES BY DOLPHINS AND HUMANS Whitlow W. L. Au and Douglas W. Martin 809

ECHOES FROM SOLID AND HOLLOW METALLIC SPHERES Theodorus A. W. M. Lanen and Cees Kamminga 815

TARGET IDENTIFICATION IN A NATURAL ENVIRONMENT: A STATISTICAL VIEW OF THE INVERSE PROBLEM

Manell E. Zakharia 823

AN AUTOMATIC TARGET RECOGNITION ALGORITHM USING TIME-DOMAIN FEATURES

Douglas W. Martin and Whitlow W. L. Au 829

A MATCHED FILTER BANK FOR TIME DELAY ESTIMATION IN BATS Dieter Menne 835

xiv

Page 11: NATO ASI Series - uni-muenchen.de · NATO ASI Series Advanced Science Institutes Series A series presenting the results of activities sponsored by the NATO Science Committee, which

PARTICIPANTS 843

INDEX 851

xv

Page 12: NATO ASI Series - uni-muenchen.de · NATO ASI Series Advanced Science Institutes Series A series presenting the results of activities sponsored by the NATO Science Committee, which

MIDBRAIN AREAS AS CANDIDATES FOR AUDIO-VOCAL INTERFACE IN

ECHOLOCATING BATS

Gerd Schuller and Susanne Radtke-Schuller

Zoologisches I n s t i t u t der Universität München Luisenstr. 14, D-8000 München 2, F.R.G.

INTRODUCTION

In bats the auditory system and the v o c a l i z a t i o n system have a close functional r e l a t i o n to each other during acoustic communication as well as during echolocation. In many species the spectral parameters of the emitted echolocation sounds are adapted to the sp e c i a l echolocation tasks during a behavioral sequence. In order to control the parameters of the echo­loc a t i o n sounds appropriately the relevant Information has to be transmitted from the auditory to the motor system.

The Doppler s h i f t compensation behavior of CF-FM bats (Rhinolophus and Pteronotus) i s a good model for the i n v e s t i -gation of audio-vocal i n t e r a c t i o n . During t h i s behavior, the bats vary only a Single parameter of the emitted echolocation sounds, i . e . the emitted frequency, i n order to cancel the Doppler-induced frequency s h i f t s i n the returning echoes.

Much data i s available f o r the processing of the relevant frequencies (frequencies at and above the r e s t i n g frequency of the bat) at d i f f e r e n t l e v e l s of the auditory system. The Information on the efferent neuronal pathways Co n t r o l l i n g v o c a l i z a t i o n and on the neuronal connections mediating audi­tory Information to the v o c a l i z a t i o n system are, i n contrast, very scarce.

The efferent v o c a l i z a t i o n system has been studied recent-l y at the l e v e l of the motor nucleus of the larynx, the Ncl. ambiguus, by HRP in j e c t i o n s into p h y s i o l o g i c a l l y defined areas of t h i s nucleus and the adjacent formatio r e t i c u l a r i s (1). Following t h i s study, many brain areas at d i f f e r e n t brain l e v e l s showed retrograde l a b e l i n g , but t h e i r s p e c i f i c involve-ment i n the control of v o c a l i z a t i o n remained unclear. In order to investigate t h e i r p a r t i c i p a t i o n i n the control of the echolocation c a l l s , e l e c t r i c a l microstimulation was used and trac e r i n j e c t i o n s (HRP, WGA) yielded t h e i r connectional pattern within the efferent motor system. In addition, possible sources of auditory input into the motor system could be revealed.

9 3

Page 13: NATO ASI Series - uni-muenchen.de · NATO ASI Series Advanced Science Institutes Series A series presenting the results of activities sponsored by the NATO Science Committee, which

MATERIAL AND METHODS

Eighteen rufous bats (Rhinolophus rouxi) from S r i Lanka were used i n t h i s study. The e l e c t r i c a l Stimulation experi-ments were conducted i n a stereotaxic device allowing a recon-s t r u c t i o n of Stimulation s i t e s with a p r e c i s i o n of 100-200 um i n a l l three dimensions (2). The e l e c t r i c a l Stimuli consisted of 15 msec long t r a i n s of 15 pulses of negative p o l a r i t y with a duration of 0.1 msec and were applied through insulated tungsten electrodes with t i p diameters between 2 and 2 0 um.

The e l i c i t e d v o c a lizations were picked up with a conden-ser microphone, analyzed i n frequency and i n t e n s i t y and stored on tape together with the e l e c t r i c a l Stimuli and the signal monitoring the r e s p i r a t i o n cycle. In p a r a l l e l the animals were observed with a TV-camera and ear and f a c i a l movements were recorded on video tape.

Midbrain structures were systematically scanned between the l e v e l of the r o s t r a l superior c o l l i c u l u s and the caudal h a l f of the i n f e r i o r c o l l i c u l u s i n a dense g r i d (100-200 um) of Stimulation coordinates. Only the very d o r s o l a t e r a l parts of the midbrain and the areas adjacent to the midsagittal plane have not been probed with the same density. Locations were termed " s p e c i f i c " for e l i c i t i n g echolocation sounds under the conditions, that 1) the threshold for t r i g g e r i n g v o c a l i z a t i o n s was smaller than 2 0 uA, l y i n g t y p i c a l l y even below 10 uA; 2) the e l i c i t e d v o c a l i z a t i o n corresponded to the natural echo­lo c a t i o n sounds i n respect to frequency, i n t e n s i t y and dura­t i o n ; 3) no other movements were e l i c i t e d besides the voca l i z a t i o n s except ear or noseleaf movements which belong intimately to the pattern of sound emission; 4) the latency of voca l i z a t i o n s r e l a t i v e to the e l e c t r i c a l Stimulus was stable within 10 to 20 msec and smaller than 100 msec and 5) the voc a l i z a t i o n s did not occur as a secondary reaction to Stimulus induced general arousal.

Horseradish peroxidase (HRP) or wheat germ agglutinin (WGA) (3-4 pAmin and 4-5 luAmin, respectively) was injected io n t o p h o r e t i c a l l y into the so defined " v o c a l i z a t i o n - s p e c i f i c " f o c i . The brains were h i s t o l o g i c a l l y processed following the Mesulam TMB-protocol or a modified DAB-protocol (Adams) and every second section was counterstained with neutral red or the cytochrome oxidase reaction (Radtke-Schuller, i n prep.). Data from Stimulation experiments and anatomical Information were reconstructed on a common data base.

RESULTS

Type of e l i c i t e d v o c a l i z a t i o n s . When vo c a l i z a t i o n s could be e l i c i t e d a f t e r the c r i t e r i a (1,3,4,5) from above, i n most cases the spectral pattern and duration were i d e n t i c a l to those of natural echolocation sounds as uttered by the bat i n the r e s t i n g p o s i t i o n . Only i n pontine areas and the overlying f i b e r s could v o c a l i z a t i o n s be e l i c i t e d with extremely short duration and frequencies of the constant frequency portion lower than the re s t i n g frequency of the bat. The latencies between e l e c t r i c a l Stimulation and onset of the vo c a l i z a t i o n ranged t y p i c a l l y between 20 msec and 6o msec but i n some locations i t was consistently around 8 0 msec. With increasing Stimulation i n t e n s i t y above threshold the latency

9 4

Page 14: NATO ASI Series - uni-muenchen.de · NATO ASI Series Advanced Science Institutes Series A series presenting the results of activities sponsored by the NATO Science Committee, which

s t a b i l i z e d (variations below 10 to 20 msec) as long as there was no strong discrepancy between respiratory cycle and Stimu­l a t i o n rate. The Stimulation rate was found to be an important f a c t o r f o r c o n s i s t e n t l y e l i c i t i n g v o c a l i z a t i o n and most often was optimum at 7 Hz, which i s about twice the spontaneous r e s p i r a t i o n rate.

Besides the amplitude of the emitted sound and i n some loc a ­t i o n s the number of emitted v o c a l i z a t i o n s , no other parameter of the v o c a l i z a t i o n could be systematically influenced by changing the parameters of e l e c t r i c a l Stimulation. The r e s t i n g frequency of the echolocation sounds could not be manipulated i n the midbrain structures we have probed with e l e c t r i c a l Stimulation.

C o r r e l a t i o n with ear and noseleaf movements. Stimulus induced ear movements could be e l i c i t e d at many more brain locations than v o c a l i z a t i o n s . Movements of either one ear or coordinated movements of both ears occurred. At Stimulation s i t e s s p e c i f i c for t r i g g e r i n g of v o c a l i z a t i o n s , the ear movements and voca­l i z a t i o n s had very s i m i l a r thresholds and were i n s t r i c t temporal coordination to the emitted echolocation sounds. Nose l e a f movements could be evoked either u n i l a t e r a l l y or b i l a t e r a l l y and most often accompanied the v o c a l i z a t i o n s i n close synchrony.

Co r r e l a t i o n with r e s p i r a t i o n . The respiratory cycle was syn-chronized at many Stimulation s i t e s by Stimulation currents smaller than the threshold currents needed to evoke v o c a l i z a ­t i o n . On the other hand, synchronized r e s p i r a t i o n could also occur as ac secondary e f f e c t to the e l i c i t i n g of v o c a l i z a t i o n as part of the e n t i r e pattern of sound emission.

Brain s i t e s of s p e c i f i c t r i g g e r i n g of v o c a l i z a t i o n s • Figure 1 indicates the areas of lowest thresholds for evoking s p e c i e s - s p e c i f i c v o c a l i z a t i o n s . The crosses indicate Stimula­t i o n s i t e s with thresholds below 10 uA and the c i r c l e s mark places where the thresholds lay between 10 and 2 0 uA. In the shaded ranges the v o c a l i z a t i o n s were optimally e l i c i t e d at lower or the same thresholds as the other constituents of the pattern of sound emission (res p i r a t i o n , ears, noseleaf). These l o c i s p e c i f i c f o r e l i c i t i n g echolocation sounds are: 1) the deep and intermediate layers of the superior c o l l i c u l u s (SC) adjacent to the griseum centrale (CG) and dorsal to the Ncl. cuneiformis (CUN), 2) the Ncl. mesencephalicus profundus (NMP) i n the dorso-l a t e r a l part of the r e t i c u l a r formation and 3) the Ncl. tegmentalis pedunculopontinus (NTPP), a c e l l aggregation medial and anteromedial to the r o s t r a l part of the Ncl. lemniscus l a t e r a l i s d o r s a l i s .

Injections of HRP and WGA. Figure 2 summarizes the i n t e r -connections of the superior c o l l i c u l u s (SC), Ncl. mesencepha­l i c u s profundus (NMP) and Ncl. tegmentalis pedunculopontinus (NTPP) within the efferent v o c a l i z a t i o n system and t h e i r inputs from auditory n u c l e i . None of these three areas showed a d i r e c t anatomical projection to the motor nucleus of the laryngeal nerves, the Ncl. ambiguus. The intermediate and deep layers of the SC have c l e a r r e c i p r o c a l connections with the NMP and with the CUN, where no v o c a l i z a t i o n s could be e l e c t r i -c a l l y e l i c i t e d . The superior c o l l i c u l u s also receives inputs from the Ncl. tegmentalis pedunculopontinus (NTPP).

9 5

Page 15: NATO ASI Series - uni-muenchen.de · NATO ASI Series Advanced Science Institutes Series A series presenting the results of activities sponsored by the NATO Science Committee, which

F i g . 1. Brain Stimulation s i t e s for s p e c i e s - s p e c i f i c v o c a l i z a ­t i o n i n the bat, Rhinolophus rouxi. +:thresholds 10 uA, o: thresholds 10-20 uA, shaded: v o c a l i z a t i o n optimally evoked. GC: griseum centrale, SC: superior c o l l i c u l u s , AP: p r e t e c t a l area, NR: Ncl. ruber, SN: subst. nigra, pc: cerebral peduncle, r r f : r e t r o r u b r a l f i e l d , IC: i n f e r i o r c o l l i c u l u s , NMP: Ncl. mesencephalicus profundus, LL: lemniscus l a t e r a l i s , PB: Ncl. parabigeminalis, b i c : brachium of IC, CGM: corpus geniculatum mediale, NTPP: Ncl.tegmentalis pedunculopontinus (NTPP).

WGA-injections i n the NMP provided evidence for an anterograde connection to the NTPP and for a r e c i p r o c a l connection with the Ncl. cuneiformis, as well as of a projection to the Ncl. f a c i a l i s . The l i n k to the laryngeal motor nucleus was

9 6

Page 16: NATO ASI Series - uni-muenchen.de · NATO ASI Series Advanced Science Institutes Series A series presenting the results of activities sponsored by the NATO Science Committee, which

demonstrated by tracer i n j e c t i o n s into the Ncl. cuneiformis which displayed strong anterograde transport to the Ncl. am-biguus, thus confirming the retrograde r e s u l t s of Rübsamen and Schweizer (1). Besides the connections of SC, NMP, NTPP with the Ncl. ambiguus v i a the Ncl. cuneiformis there are at l e a s t 3 more i n d i r e c t connections mediated by a) the r e t i c u l a r formation d o r s o l a t e r a l to the Ncl. f a c i a l i s , b) the Ncl. r e t r o f a c i a l i s immediately r o s t r a l to the Ncl. ambiguus and c) the dorsal portions of the Ncl. parabrachialis. Direct input from auditory brain areas ( i n f e r i o r c o l l i c u l u s , auditory cortex) reach the SC and the NTPP. In addition, i n ­d i r e c t pathways to these n u c l e i and to the CUN may transmit auditory Information to the efferent v o c a l i z a t i o n system v i a pontine and c e r e b e l l a r n u c l e i .

F i g . 2. Block diagram summarizing the projections of the " v o c a l i z a t i o n - s p e c i f i c " n u c l e i as revealed by HRP- and WGA-i n j e c t i o n s and connections to nuc l e i within the auditory Sys­tem. Abbrev.: see Fig. 1 and rp: r o s t r a l pole, ex: external, RF: formatio r e t i c u l a r i s , MGB: medial geniculate body.

CONCLUSIONS

Three f o c i f o r s p e c i f i c t r i g g e r i n g of v o c a l i z a t i o n could be i d e n t i f i e d i n the midbrain of the bat Rhinolophus rouxi. These areas are only i n d i r e c t l y coupled to the laryngeal motor nucleus. They are embedded i n a complicated functional net coordinating the behavioral pattern of echolocation sound emission comprising the simultaneous control of r e s p i r a t i o n , the larynx and the f a c i a l movements. There also e x i s t s a number of d i r e c t and i n d i r e c t connections of these premotor midbrain areas with auditory brain centers, which may convey auditory modulation of motor a c t i v i t y . Thus, the audio-vocal i n t e r f a c e appears as a d i s t r i b u t e d , multipath connection bet­ween the hearing and the v o c a l i z a t i o n system, so that no u n i-d i r e c t i o n a l or h i e r a r c h i c a l control of the vocal efferences can be expected.

Page 17: NATO ASI Series - uni-muenchen.de · NATO ASI Series Advanced Science Institutes Series A series presenting the results of activities sponsored by the NATO Science Committee, which

Acknowledgement

Supported by Deutsche Forschungsgemeinschaft SFB 2 04/TP 10

References

(1) Rübsamen, R.,Schweizer, H.; J.Comp.Physiol.159 (1986, i n press); (2) Schuller, G.,Radtke-Schuller, S., Betz, M.; J . Neurose. Meth. (1986, i n press))

9 8

Page 18: NATO ASI Series - uni-muenchen.de · NATO ASI Series Advanced Science Institutes Series A series presenting the results of activities sponsored by the NATO Science Committee, which

PARTICIPANTS

ALTES, Richard A.

AMUNDIN, Mats

AU, Whitlow W. L.

AWBREY, Frank

BARCLAY, Robert M. R.

BELWOOD, Jacqueline

BISHOP, Allen

BJORNO, Leif

BRILL, Randy

BROWN, Patri c i a

BUSNEL, Marie-Claire

BUSNEL, Rene-Guy

Chirp Corporation 8248 Sugarraan Drive

La J o l l a , CA 92037 USA

Kolmardens Djurpark Kolmarden Sweden Naval Ocean Systems Center P.O. Box 997 Kailua, HI 96734-0997 USA

Hubbs-Sea World Research Institute 1700 South Shores Road San Diego, CA 92109 USA

Department of Biology University of Calgary Calgary, Alberta T2N 1N4 Canada

Entomology and Nematology University of Florida Gainesville, FL 32611 USA

Department of Anatomy School of Medicine University of North Carolina Chapel H i l l , NC 27514 USA

Industrial Acoustics Laboratory Institute of Manufacturing Engineering Technical University of Denmark Building 352

DK-2800 Lyngby Denmark

Brookfield Zoo Brookfield, IL 60513 USA Maturango Museum P.O. Box 1776 Ridgecrest, CA 93555 USA

Chemin de l a Butte au diable Bievres France

Chemin de l a Butte au diable Bievres France

8 4 3

Page 19: NATO ASI Series - uni-muenchen.de · NATO ASI Series Advanced Science Institutes Series A series presenting the results of activities sponsored by the NATO Science Committee, which

CAMPBELL, Karen

CARDER, Donald A.

CASSEDAY, John H.

CRANFORD, Ted

DALSGAARD, Jacob

Indiana University Medical Sciences Program Physiology Section Myers Hall 263 Bloomington, IN 47405 USA

Naval Ocean Systems Center Code 514

San Diego, CA 92152-5000 USA

P.O. Box 3943 Duke University Medical Center Durham, NC 27710 USA Long Marine Laboratory University of California Santa Cruz, CA 95060 USA

Biologisk Institut Odense Universitet Campusvej 55 5230 Odense M Denmark

ESCUDIE, Bernard

EVANS, William

FENG, Albert S.

FENTON, M. Brock

Laboratoire de Traitment du Signal (U.A.C.N.R.S. 346) Institute de Chimie et de Physique Industrielles 31, Place Bellecour 69228 - Lyon Cedex 02 France

National Marine Fisheries Service Universal Building, #1011 1825 Connecticut Ave., NW Washington, D.C. 20235 USA

Department of Physiology and Biophysics University of I l l i n o i s Urbana, IL 61801 USA

Faculty of Science York University 4700 Keele Street North York, Ontario M3J 1P3 Canada

FLANDRIN, Patrick

FLOYD, Robert W.

FRIEDL, William A.

Laboratoire de Traitment du Signal (U.A.C.N.R.S. 346) Institute de Chimie et de Physique Industrielles 31, Place Bellecour 69228 - Lyon Cedex 02

Naval Ocean Systems Center Hawaii Laboratory, Code 513 P.O. Box 997 Kailua, HI 96734-0997

Naval Ocean Systems Center Hawaii Laboratory, Code 513 P.O. Box 997 Kailua, HI 96734-0997

France

USA

USA

8 4 4

Page 20: NATO ASI Series - uni-muenchen.de · NATO ASI Series Advanced Science Institutes Series A series presenting the results of activities sponsored by the NATO Science Committee, which

FULLARD, James

FUZESSERY, Zolton

GOOLER, David M.

GRIFFIN, Donald

GRINNELL, Alan D.

GUPPY, Anna

Department of Biology Erindale College University of Toronto Mississauga, Ontario L5L 1C6 Canada

Department of Neurophysiology University of Wisconsin Medical School 1300 University Avenue Madison, WI 53706 USA

Department of Physiology and Biology College of Liberal Arts and Sciences 524 B u x r i l l Hall 407 South Goodwin Avenue University of I l l i n o i s at Urb ana-Champa i gn Urbana, IL 61801 USA

The Rockefeiler University 1230 York Avenue New York, NY 10021 USA

Jerry Lewis Center UCLA Medical Center University of California Los Angeles Los Angeles, CA 90024 USA

Zoologisches Institut der Universität Luisenstrasse 14 D-800 München 2 FRG

HARTLEY, David

HAUN, Jeffrey E.

HENSON, 0. W.

JEN, P h i l l i p

JOHNSON, C. Scott

Medical Science Program Physiology Section Indiana University Bloomington, IN 47405 USA

Naval Ocean Systems Center Hawaii Laboratory, Code 513 P.O. Box 997 Kailua, HI 96734-0997 USA

Department of Anatomy University of North Carolina Chapel H i l l , NC 27514 USA

College of Arts and Science Division of Biological Sciences 213 Lefevre Hall University of Missouri Columbia, MO 65201 USA

Naval Ocean Systems Center Code 514 San Diego, CA 92152-5000 USA

845

Page 21: NATO ASI Series - uni-muenchen.de · NATO ASI Series Advanced Science Institutes Series A series presenting the results of activities sponsored by the NATO Science Committee, which

JOHNSON, Richard

JORGENSEN, Morton

KAMMINGA, Cees

KOBER, Rudi

LANEN, Theodor

LINDHARD, Morton

MACKAY, Stuart

MARTEN, Ken

MASTERS, Mitch

MENNE, Dieter

MILLER, Lee

M0HL, Bertel

MOORE, Patrick W. B.

MOSS, Cindy

Department of Math and Computer Science Western New Mexico University Silver City, NM 88062

Biologisk Institut Odense Universitet Campusvej 55 5230 Odense M

Technische Hogeschool Delft Afdeling Der Elektrotechniek 2600 GA Delft

Behringstreasse 10 7410 Reutlingen

Information Theory Group Delft University of Technology Mekelweg 4 Postbus 5031 2600 Delft

Department of Zoophysiology University of Aarhus DK-8000 Aarhus C

2083 16th Avenue San Francisco, CA 94116

Long Marine Laboratory Santa Cruz, CA 95060

Department of Zoology Ohio State University 1735 Neil Avenue Columbus, OH 43210

Department of Zoology National University of Singapore 10 Kent Ridge Crescent 05111

Biologisk Institut Odense Universitet Campusvej 55 5230 Odense M

Department of Zoophysiology University of Aarhus DK-8000 Aarhus C

Naval Ocean Systems Center Hawaii Laboratory, Code 512 P.O. Box 997 Kailua, HI 96734-0997

Department of Psychology Brown University Providence, RI 02912

USA

Denmark

Netherlands

FRG

Netherlands

FRG

USA

USA

USA

Singapore

Denmark

Denmark

USA

USA

846

Page 22: NATO ASI Series - uni-muenchen.de · NATO ASI Series Advanced Science Institutes Series A series presenting the results of activities sponsored by the NATO Science Committee, which

NEUBAUER, Werner

NEUWEILER, Gerhard

NORRIS, Ken

O'NEILL, William

OSTWALD, Joachim

PENNER, Ralph

PETTIGREW, Jack

POLLAK, George

PORTER, Hop

POWELL, B i l l A.

PYE, David

RIESS, Diane

RIDGWAY, Sam

ROSS, Linda

4693 Quarter Charge Drive Annandale, VA 22003 USA

Zoologisches Institut Der Universität Luisenstrasse 14 D-8000 München 2 FRG

Long Marine Laboratory University of California Santa Cruz, CA 95064 USA

Center for Brain Research University of Rochester Medical School Rochester, NY 14642 USA

Institut für Biologie der Universität Auf Der Morgenstelle 28 D-7400 Tübingen FRG

Naval Ocean Systems Center Hawaii Laboratory, Code 512 P.O. Box 997 Kailua, HI 96734-0997 USA

Department of Physiology and Pharmacology University of Queensland St. Lucia, Queensland Australia

Department of Zoology University of Texas Austin, TX 78712 USA

Naval Ocean Systems Center Biosciences Division, Code 51 San Diego, CA 92152 USA

National Marine Fisheries Service University Building #1011 1825 Connecticut Ave., NW Washington, D.C. 20235 USA

School of Biological Sciences Queen Mary College Mile End Road London, El 4NS England

2338 Franklin Street, #2 San Francisco, CA 924123 USA

Naval Ocean Systems Center Code 514 San Diego, CA 92152-5000 USA

Department of Zoology University of Texas Austin, TX 78712 USA

847

Page 23: NATO ASI Series - uni-muenchen.de · NATO ASI Series Advanced Science Institutes Series A series presenting the results of activities sponsored by the NATO Science Committee, which

ROVERUD, Roald

RUBSAMEN, Rudolf

SCHMIDT, Sabine

SCHMIDT, Uwe

SCHULLER, Gerd

SCHUSTERMAN, Ronald J.

SIMMONS, James A.

SMOLKER, Rachel

SUGA, Nobuo

SURRLYKKE, Annemarie

SUTHERS, Roderick

TERRY, Paul

THOMAS, Jeanette A.

VATER, Marianne

Department of Biology University of California Riverside, CA 92521 USA

Lehrstuhl Allegmeine Zoologie Ruhr Universität Bochum Postfach 10 21 48 4630 Bochum 1 FRG

Zoologisches Institut Der Universität Luisenstrasse 14 D-8000 München 2 FRG

Zoologisches Institut Poppelsdorfer Schloss D-5300 Bonn 1 FRG

Zoologisches Institut der Universität München Luisenstrasse 14

D-8000 München FRG

1629 Mariposa Street Palo Alto, CA 94306 USA Department of Psychology Brown University Providence, RI 02912 USA

Long Marine Laboratory 100 Shaffer Road Santa Cruz, CA 95060 USA

Department of Biology Washington University St. Louis, MO 63130 USA

Institute of Biology Odense University DK-5230 Odense M Denmark

Medical Sciences Program Indiana University Bloomington, IN 47405 USA

Technische Hogeschool Delft Afdeling der Elektrotechniek Mekelweg 4, Postbus 5031 2600 GA Delft Netherlands

Naval Ocean Systems Center Hawaii Laboratory, Code 512 P.O. Box 997 Kailua, HI 96734-0997 USA

Zooligisches Institut LMU Luisenstrasse 14 8 München 2 FRG

848

Page 24: NATO ASI Series - uni-muenchen.de · NATO ASI Series Advanced Science Institutes Series A series presenting the results of activities sponsored by the NATO Science Committee, which

von der EMDE, Gerhard

WATKINS, William

WENSTRUP, Jeffrey

WIERSMA, Henk

Lehrbereich Zoophysiology Universität Tübingen Auf der Morganstelle 28 7400 Tübingen USA

Woods Hole Oceanographic Institute Woods Hole, MA 02543 USA

Department of Physiology and Anatomy University of California Berkeley, CA 94720 USA

Technische Hogeschool Delft Afedling der Elektrotechniek Mekelweg 4 Postbus 5031 2600 GA Delft Netherlands

WOOD, F. G.

WOODWARD, Donald

Naval Ocean Systems Center Code 514 San Diego, CA 92152-5000

Chief of Naval Research (0NR-1142BI) 800 N. Quincy Street Arlington, VA 22217

USA

USA

ZAKHARIA, Manell Laboratoire de Traitment du Signal (U.A.C.N.R.S. 346) Institut de Chimie et de Physique Industrielles 31, Place Bellecour 69228 - Lyon Cedex 02 France

ZBINDEN, Karl

ZOOK, John M.

Abteilung Wirbeltiere Hallerstrasse 6 3012 Bern

Department of Zoological and Biomedical Science Ohio University Athens, OH 45701

Switzerland

USA

849

Page 25: NATO ASI Series - uni-muenchen.de · NATO ASI Series Advanced Science Institutes Series A series presenting the results of activities sponsored by the NATO Science Committee, which

INDEX

Acoustics, see Echolocation Acoustic tract, see Tract Acuity, fine, for echo, 366-371 Adaptation, auditory, 421-430,

535-536 A e r o d r a m u s sp.(bird), 38 A g r o s t i s s e g e t w n (moth), 558-560

audiogram, 553 A l o u a t t a sp.(monkey), 664 Analysis, temporal, 189-191 Animal

behavior information-seeking, 684

communication, 662-665 of invertebrate, 662 of vertebrate, 662-665

see separate animals Antiresonance of vocal tract,

149, 238 A n t v o z o u s p a l l i d u s (bat), 289,

291, 312, 539, 542, 545 A r c t i a c a j a (moth), 555 A v t i b e u s j a m a i o e n s i s (bat), 312,

795 A s c a l a p h a o d o r a t a (moth), 558-559

audiogram, 553 A s e l l i a tridens (bat), 375 Atlantic bottlenose dolphin, see

T u r s i o p s t r u n c a t u s Atlantic spotted dolphin, see

S t e n e l l a p l a g i o d o n Audiogram of bats, 227-228, 553

see separate species Audition of

dolphin, 161-168 human, 736-737

phase-sensitive, 317 Auditory

adaptation, 535 nerve, 198 pathways, 197-223

function, 197-223 peri-stimulus time histogram,

200 system

of bat, 421-430, 535

Auditory (continued) and echolocation, 147-350

Avoidance of obstacle by bat, 489-493

Backscattering of echo, 809-813 Bang sound of dolphin, 703-706 B a r h a s t e l l a sp.(bat), 233 Bat

acoustics, 289-293 adaptation of auditory system

421-430, 535-536 auditory system, 354

adaptation of, 421-430, 535-536 efferent, 307-310 properties, basic, 425-426

avoidance of obstacle, 489-493 brainstem

auditory, 311-316 nucleus, 197-223

c a l l design, 536-542, 595-599, 607-611

catching thrown mealworms, 467-470

clicks, 33-35, 523, 635-638 clutter, 607-608

resistance to, 537 Cochlea, 225-241, 307-310 communication, 544-545 cue, spectral, 422-424 Doppler sh i f t compensation, 307-

310 see Doppler ear

external, 289-293, 472, 659-661 middle, 225

echolocation, 23-45, 93-98, 197-223, 289-293, 353-411, 413-450, 489-493, 513-517, 535-549, 551-566, 581-588, 595-599, 601-611, 625-628, 639-643, 687-688, 835-842

ecology, sensory, 545 foraging, 535-549, 601-605,

635-638 frequency of sonar, 170, 234-238,

513, 791

851

Page 26: NATO ASI Series - uni-muenchen.de · NATO ASI Series Advanced Science Institutes Series A series presenting the results of activities sponsored by the NATO Science Committee, which

Bat (continued) frequency of sonar (continued)

spectrum of 37 species, 640 sweep, 791-796, 835

flut t e r of insect wings, 536-540

gleaning, 552-554 glottal gate, 31-33 hair c e l l , 232-234, 308 harmonics, 543 head-aim tracking, 467 hearing, 289-293, 374-377 hunting, 551-562, 619-623 Information processing, 513-517 and insects, 477-481, 551-566,

619-623 intensity disparity, interval of,

197-223 isopressure contour, 290 larynx, 23-29

and airflow, 26-28 and pressure, subglottal,

26-28 Malaysian, 489-493 membrane, 229-230, 289 middle ear, 225 model signal, 582

by Computer, 583 neotropical, 589-594 noseleaf, 791-796 nucleus

anteroventral, cochlear, 170-174, 191-193, 311-313

medial of trapezoid body, 311-313

ventral of lemniscus, l a t e r a l , 311-313

orientation acoustical, 589-594 Visual, 589-594

Phonation, 24-25 pinna, 289-293 and prey, 467-470, 551-566,

595-599, 601-614, 703-706 pulse of sonar, 23-38, 791-802

duration, 31-33 intensity, 25-29 type, 31-33

respiration, 24-29 search f l i g h t , 537, 542, 620-621 sensitivity of echolocation,

435, 445 signal

by Computer, 583 processing, 311-316 by sonar, natural, 489, 540,

584, 586 structure, 581-588 harmonic, 581-588

sonar frequency, 292, 513, 791,

798-801

Bat (continued) sonar (continued)

frequency (continued) spectrum, 640

pulse production, 23-38 sweep, 791-802, 835

species on Barro Colorado Island, Panama, 601-605

species: A g r o s t i s segetum, 558-560 A n t r o z o u s p a l l i d u s , 289, 291, 312,

539, 542, 545 A s e l l i a tridens, 375 A r t i b e u S j j a m a i o e n s i s , 312, 795 B a r b a s t e l l a sp., 233 C a p r i m u l g u s indicus, 648 C a r d i o d e r m a cor, 539, 609 C a r o l l a p e r s p i c i l l a t a , 36 C h r o t o p t e r u s a u r i t u s , 601, 604 C l o e o t i s p e r c i v a l i , 544 C o l e u r a a f r a 3 541 C r a s e o n y c t e r i s t h o n g l o n g y a e s 648 D e s m o d u s r o t u n d u s , 442, 543,

589-592 D. sp., 35

E p t e s i o u s f u s c u s , 23-25, 30-34, 115-120, 178-180, 183, 184, 189, 271-274, 358-360, 363, 366-379, 398, 401, 404, 407, 418, 437, 442, 443, 445, 489, 501, 541, 545, 607-609, 625, 636, 837, 840-841

E. p w n i l u s , 226, 541 E. s e r o t i n u s , 437, 444 E. sp., 225, 232, 441, 622, 837 E u d e r m a m a s c u l a t u m , 544, 598 E u s t h e n o p t e r o n , sp., 659 G l i s c h r o p u s tylopus, 491, 492 G l o s s o p h a g a s o r i c i n a , 584, 591 H e s p e v o p t e r u s b l a n f o r d i , 482, 491 H i p p o s i d e r o s b i c o l o r , 375, 421,

538, 540, 542, 615 H. caffer, 421, 536, 538, 540,

544, 609 H. c e r v i n u s , 491, 492 H. o o m m e r s o n i , 540, 609 H. d i a d e m a , 420, 491, 492, 538 H. f u l v u s , 230, 231 H. lankadiva, 307, 420 H. ruber, 419 H. speoris, 230, 335-339, 420,

538, 540, 542, 615-617 H. sp., 230, 233, 335-339, 375,

420 K e r i v o u l a , sp., 647 L a s i o n y c t e r i s o i n e r e u s , 544

L. n o c t i v a g a n s , 538, 544, 595-597 L a s i u r u s b o r e a l i s , 537, 625-628

L. o i n e r e u s , 537-541, 595-597, 607, 625, 628

L. o i n e r e u s s e m o t u s , 556 L a v i a f r o n s , 539, 584, 609

8 5 2

Page 27: NATO ASI Series - uni-muenchen.de · NATO ASI Series Advanced Science Institutes Series A series presenting the results of activities sponsored by the NATO Science Committee, which

Bat (continued) species: (continued) M a c r o d e r m a g i g a s , 289-291 M a c r o p h y l l u m m a c r o p h y l l u m , 601,

602, 640 M a c r o t u s o a l i f o r n i o u s , 539, 542,

589, 592, 635, 637 M. w a t e r h o u s i i , 593

M a n d u c a sp., 552 M e g a d e r m a lyra, 229, 230, 233,

234, 291, 418, 490, 507-511, 539, 542, 545, 562, 592, 613-614, 617, 635, 637, 646-649

M. c a l i f o m i c u s , 545 M i c r o m y c t e r i s h i r s u t a , 593, 601,

602, 604 M. m e g a l o t i s , 593, 601, 602, 604 M. n i c e f o r i s , 602

M i m o n c r e n u l a t u m , 601, 602 M o l o s s u s a t e r , 175-177, 201, 203,

230, 231, 234, 422, 423 M. m o l o s s u s , 422, 423

Myotis a d v e r s u s , 539 M. a u r i c u l u s , 539, 542, 544 M. c a l i f o m i c u s , 538, 542 M. d a s y c m e n e , 541 M. d a u b e r t o n i , 542, 544,

797-802 M. evotis, 542 M. leibii, 542 M. lucifugus, 230, 362, 363,

422, 489, 538, 539, 542-545, 595, 620, 623, 625, 626, 628, 635, 685, 686, 806

M. m y s t a c i n u s , 785-790 M. m y o t i s , 418, 424, 542-545,

592, 607, 807 M. n i g r i c a n s , 640 M. o x y g n a t h u s , 360, 394 M. s e p t e n t r i o n a l i s , 542 M. sp., 225, 229, 232-234,

376, 377, 424, 468, 471 M. volans, 537-541 M. y u m a n e n s i s , 542, 544, 625

iJectilio a l b i v e n t r i s , 356-360, 365, 374, 399, 403, 513-517, 539

N. leporinus, 312, 374, 375, 501-506, 539

ilyctalus n o c t u l a , 538-541 N. sp., 232, 437

ilycteris thebaica, 539, 542, 545 N. g r a n d i s , 539, 542, 545,

607-609 fyctophilus b a l s t o n i , 539 N. g o u l d i , 289-291, 646-649

Itomops m a r t i e n s s e n i , 541 Peropteryx m a c r o t i s , 581, 584, 586 °hylloderma s t e n o p s , 601

Lt (continued) species: (continued) P h y l o s t o m u s d i s c o l o r , 589-591,

601, 795 P. h a s t a t u s , 312, 313, 370-372,

601, 602, 791 P. sp., 358-360, 363

P i p i s t r e l l u s d o r m e r i , 538-543 P. kuhli, 619-623 P. m i n u s , 538-543 P. p i p i s t r e l l u s , 444, 635 P. tenuis, 491, 492 P. sp., 359, 360, 364, 441

P l e c o t u s a u r i t u s , 544 P. p h y l l o t i s , 541 P. sp., 233, 379, 442

P t e r o n o t u s p a r n e l l i i , 25-32, 37, 38, 149-159, 171, 175-177, 181-187, 189, 190, 230, 235, 247-269, 291, 301-309, 312, 313, 329-333, 349, 365, 370, 374, 375, 417, 419, 421, 422, 425, 427-430, 442, 471-476, 489, 535-538, 540, 543, 616, 640, 807

P. davyi, 37 P. f u l i g i n o s a , 303 P. g y m n o n o t u s , 360, 363, 365 P. sp., 225-237

P t e r o p u s p o l i o c e p h a l u s 646 P. s c a p u l a t u s , 646

R h i n o l o p h u s f e r r u m e q u i n u m , 29-33, 226, 229, 230, 235-237, 308, 347, 360, 363-366, 375, 390, 395, 419, 420, 423, 426, 483-487, 495-499, 536, 538, 544, 807, 840

R. h i l d e b r a n d i i , 25, 26, 29, 31, 36-38, 421, 538, 607-609

R. luctus, 491, 492 R. m e g a p h y l l u s 625-628 R. rouxii, 38, 93-98, 171, 173,

189, 235, 236, 243-246, 259-264, 293, 307, 309, 335-336, 341-350, 357, 373-378, 419, 424-428, 513-517, 536, 538, 543, 544, 615, 616

R. t r i f o l i a t u s , 491, 492 R. sp., 225-238, 791-796, 837

R h i n o p o m a h a r d w i c k e i , 536, 538, 541-544, 607

R. sp., 230, 337, 365, 540 R o u s e t t u s a e g y p t i a c u s , 33-35

R. sp., 440 S a c c o p t e r y x b i l i n e a t a , 541, 807 S c o t o p h y l u s b o r b o n i c u s , 607-609

S. leucogaster, 609 S. viridis, 609

S y p s i g n a t h u s sp., 664 T a d a r i a aegyptiaca, 541, 542

T. a n s o r g e i , 541

8 5 3

Page 28: NATO ASI Series - uni-muenchen.de · NATO ASI Series Advanced Science Institutes Series A series presenting the results of activities sponsored by the NATO Science Committee, which

Bat (continued) species: (continued) T a d a r i a a e g y p t i a c a (continued)

T. a u s t r a l i S y 647 T. b e c a v r i , 541 T. b r a s i l i e n s i s , 27, 359, 360,

370, 422-424, 437, 545 T. c h a p i n i , 541 T. fulminanSy 541 T. j o b e n s i s , 541 T. m a o r o t i s , 541 T. m i d a s , 541, 607-609 T. teniotis, 581, 584, 586

T a p h o z o u s g e o r g i a n u s , 538, 541, 646, 647

T. k a o h e n s i S j 230, 538, 541, 542

T. m a u r i t i a n u s , 538, 541 T. m e l a n o p o g o n , 541, 542 T. peli, 541 T. sp., 230, 231, 234, 540

T o n a t i a b i d e n s , 601, 602 T. silvicoldy 601-604

T r a o h o p s c i r r h o s u s , 539, 542, 545, 562, 592, 601, 602

T y l o n y c t e r i s p a c h y p u s , 490-492 T. r o b u s t u l a , 490-492

Tyto alba, 291 Vampyrum s p e a t r u m , 541, 604 V e s p e r t i l i o m u r i n u s , 541 Stimulation with echo, 426-430 strategy, 595-599 system, auditory, 354, 421-430,

535 target

Classification, 413-434 detection, 435-450 discrimination, 413-434 ränge, 197-223

time-delay estimation of sound, 835-842

time window, 513-517 tract, vocal, 35 vision

and approach, 590 and landing, 590

vocalization, 430 see c a l l , echolocation, signal, sonar

Beluga whale, see D e l p h i n a p t e r u s leueas

B i e n o t h e v i v m sp., 660 Big brown bat, see E p t e s i a u s

f u s e u s Bionics, defined, 769 Biosonar signal, s e e Sonar Bird

c l i c k , 38-41 echolocation signal, 38-42 sonar signal, 38-42 tract, vocal, resonance of,

40-42

Body, geniculate, medial, 185-186 Bottlenose dolphin of

Indian ocean, see T u r s i o p s a d u n c u s

Pacific ocean, see T u v s i o p s t r u n a a t u s

Brainstem of bat, auditory, 311-316 nucleus, 197-223

Bubbles and sonar sound, 79-86

Call design, 536-542, 595-599, 607-611

see Bat, Dolphin, Whale C a p r i m u l g u s i n d i c u s (bat), 648 C a r d i d e r m a cor (bat), 539, 609 C a r o l l a p e r s p i c i l l a t a (bat), 36,

275-279, 581, 688, 791, 795 echolocation, 275-279 signal, 584 unit, social, 688

C e p h a l o r h y n c h u s c o m m e r s o n i i (dolphin), 530, 717, 720

anatomy, nasal, 61-66 bandwidth of sonar, 132, 141 echolocation, 13, 17, 61, 144 sound production apparatus, 61-66 time duration of sound, 132, 141 C. hectoviy 62 C. sp., 527

Cerebellum and electrode punctures in bat,

271-274 and sound, 271

C h r o t o p t e r u s a u r i t u s (bat), 601, 604 C h r y s o p a c a r n e a (lacewing), 553,

561, 632 Click sound, 33-35, 662, 665, 684,

775 chi-square window, 320-321 frequency domain cues, 318-320 of moth, 635-638 -pair experiment with dolphin,

317-321 production in bat, 33-35 and taste, bad, for bat, 635-638 waveform, 523

C l o e o t i s p e r o i v a l i (bat), 544 Cochlea of bat anatomy, 225-241 and frequency of sound, 170,

234-238 map, 235-237

morphology, 229-232 nuclei, 170-174, 191 physiology, 226-229 Schema, 172, 173, 189

Cognition, 671-681 definition, 683, 691-694 and echolocation, 653-722

with, 697-699 without, 694-696

854

Page 29: NATO ASI Series - uni-muenchen.de · NATO ASI Series Advanced Science Institutes Series A series presenting the results of activities sponsored by the NATO Science Committee, which

Cognition (continued) information-processing model

692-693 psychology of, 691-692

C o l e u r a a f r a (bat), 541 Colliculus, i n f e r i o r , of bat,

174, 181-186, 191-196, 204-209, 215-217, 247-252

pathways, aural, convergence of, 194-196

and space, auditory, 215, 217 C o l l o o a l i a s p o d i o p y g i a (bird),

38-41 C. m a x i m a , 3 9

Communication, acoustic i n vertebrates, 671-681

and C o g n i t i o n , 675-678 e v o l u t i o n , 655-656 and hearing, 658-661 h i s t o r i c a l , 655-668 and v i s i o n , 657

Complex, superior, olivary, i n bat, 243

Computer for generating signal, 583

and structure, harmonic, 583 Converter of root-mean square,

389 Cortex, auditory, 152-157

Schema, 154 C r a s e o n y c t e r i s t h o n g l o n g y a e

(bat), 648 Cricket and bat, 553, 561 C r i t i c a l interval, see Interval,

c r i t i c a l Cvocallis e l i n g n a r i a (moth),

805, 806 Cycnia t e n e r a (moth), 636, 637

Dali's porpoise, see P h o c o e n o i d e s d a l l i

Debilitation, acoustic, of prey, 703-706

De Boor theorem, 726-727 Decompression sickness i n goldfish,

81 D e l p h i n a p t e r u s leucas (whale), 15-

16, 47-60, 132, 140, 162, 324, 328, 451-479

bandwidth of sonar, 132, 140 echolocation, 15-16

signal, 47-60 oscillogram, 58 spectrogram, 56-59

D. sp., 718-720 echolocation, 521-534

Dzlphinus d e l p h i s (dolphin), 82, 328, 576

D. sp., 525, 720 Dismodus r o t u n d u s (bat), 442, 543,

589-592

D e s m o d u s r o t u n d u s (continued) D. sp., 35

Directivity index of sonar, 165 Dolphin

attention and echolocation, 707-713

bang sound, 569, 572, 576, 703-706 behavior

social, 567-579 and sonar, 718-719

buzzing, 83 clicks, 567, 569, 570, 574,

704, 711 Cognition and echolocation,

683-701 detection of

sonar, 451-454, 707-713, 753-767

target, 451-465 discrimination of target, 758-765 disorientation of prey, 567-579 echo, 829-833, 703-713, 773-783

with Cognition, 697-699 without Cognition, 694-696 experiment, 707-713 processing, 779, 809-821

energy detection by sonar, 756-758 flux density of sound, formula

for, 437 frequency of sound, 80 Gabor model, 816-817 jaw

clap, 577, 578 -hearing, evidence of, 281-287

oscillogram, 572-573 predation by, 567-579 prey, disorientation of, 567-579 sonar

and behavior, 718-719 detection, 753-767 as energy detector, 756-758 energy flux density formula,

437 frequency, 80 impulse, loud, 567-579 melon, 79 path, 79 recognition, 753-767 resolution, 776-778 signal, 829-833 -system research, 715-722 target, 451-465 theories of sound, origin of,

716 species: C e p h a l o r h y n c h u s c o m m e r s o n i , 13, 17,

61-66, 132, 141, 530, 717, 720

C. h e c t o r i , 62 C. sp., 527

8 5 5

Page 30: NATO ASI Series - uni-muenchen.de · NATO ASI Series Advanced Science Institutes Series A series presenting the results of activities sponsored by the NATO Science Committee, which

Dolphin (continued) species: (continued) D e l p h i n u s d e l p h i s , 82, 328, 576

D. sp., 525, 720 G l o b i c e p h a l a s c a m m o n i , 526

G. sp., 521 I n i a g e o f f r e n s i s , 18, 132, 135,

328, 526-528, 717, 720 L a g e n o r h y n c h u s a l b i r o s t r i s ,

132, 137 L. o b l i q u i d e n s , 526, 571, 720

L i p o t e s v e x i l l i f e r , 18, 526 N e o p h o c o e n a a s i a e o r i e n t a l i s ,

528 N. p h o c a e n o i d e s , 17-19, 718

O r c a e l l a b r e v i r o s t r i s , 18, 19, 137, 138, 718

P l a t a n i s t a indi, 18, 521, 526, 528

P. m i n o r , 526 P h o c o e n a p h o c o e n a , 12-15, 61-66,

132, 139, 140, 314, 328, 528, 531, 676, 720

P h o c o e n o i d e s d a l l i , 17, 18, 528, 529

P o n t o p o r i o b l a i n v i l l e i , 526 S o t a l i a f l u v i a t i l i s , 18-20, 132,

138, 139, 717, 718, 719 S t e n e l l a c o e r u l e o a l b a , 312-314

S. l o n g i r o s t r i s , 67-77, 328, 525, 526

S. p l a g i o d o n , 570, 571 T u r s i o p s a d u n c u s , 132, 136,

568-571 T. scylla, 525 T. t r u n c a t u s , 10-13, 82-85,

109-113, 121-127, 132, 135, 136, 161-168, 281-287, 295-299, 312, 313, 317-321, 451-579, 703-713, 753-758

T. sp., 325, 328, 521-538, 676, 694-699, 703-706, 718-720

target detection, 453-461

in noise, 454-458 in reverberation, 458-461

discrimination, 758-765 recognition, 461-463, 758-765 shape discrimination, 461-463 vocalization, recorded, 703 whistling, 83, 704

Doppler compensation in bat, 93, 307,

308-310, 372-374 coupling, 400 and echo, see Echo sensitivity, 400-401 shi f t , 265, 372-374, 480

compensation, 307-310 tolerance, 401

Ear of vertebrate, 659-661 of bat, large, 289-293

Echo acuity, fine, for, 366-371 backscattering of, 809-813 calculation, 817-818 complex, 295-299 delay perception, 366-371 discrimination for metal plates,

809-813 and Doppler s h i f t , 150-153 encoding, 414-415 f i l t e r bank, matched, 835-842 and fluctuation of target,

417-418 and fluttering of insect wings,

477-481 formation, 820, 823-827 from insect, 477-481, 803-807 Lamb wave, 820 pattern recognition, 830-833 and plate, metallic, 809-813 from sphere, metallic, 815-821 signal-to-noise ratio, 371 and surface material, 415 target

natural, 416-418 parameters, 414-418 range-extended, 414-415

time-delayed, 803-807, 835-842 time domain feature, 829-833

Echolocation adaptability, 162 application, 723-842 assemblage, acoustical, 639-643 attention, 162 and auditory sysyem, 147-350 bandwidth, 129-145 of bat, 353-411, 435-450,

551-560, 603, 619-628, 645-650, 687, 688

c a l l analysis, 400 of bat, 603, 619-628 of dolphin, 683-701

in cluttering noise, 613-617 and Cognition, 653-711 and Computer manipulation,

640-641 concepts, theoretical, 725-752 definition, 683 detection, 387-411, 731-734 directionality, 374-379 of dolphin, 9-22, 161-168,

683-701 Doppler s h i f t , 372-374 echo delay, 355-361, 366, 371-372 emergence, 665-666 estimation, 387, 411 experiment design, c r i t i c a l ,

387-411

8 5 6

Page 31: NATO ASI Series - uni-muenchen.de · NATO ASI Series Advanced Science Institutes Series A series presenting the results of activities sponsored by the NATO Science Committee, which

Echolocation (continued) feeding strategy, 521-534 fluctuation, 388-393 and fluttering target, 615-617 frequency design, 639 and habitat, 521-534 history, natural, 519-652 of human when blind, 687 and image, acoustic, 353-361,

371-372 improper, 141 and insect prey, 551-566,

619-623, see Moth interpolation, 725-731 literature survey, 10-17 and map, neural, 725-731 of marine mammal, 521-534 of microbat, 645-650 and noise, 388-393, 613-614

-to-echo ratio, 371-372 oscillogram, 58, 478, 479, 603 Parameter estimation, 725-731 perception of image, acoustic,

353-385 Performance of bat, 353-385 phase sens i t i v i t y , 404-407 ränge discrimination, 361-366 signal, 619-623

design, 734-736 energy, 389-391 power, 389-390 production, 7-145

sound frequency, 513, 619-623 spectrogram, 734-742 and system, auditory, 147-350 target, 613-617

detection, 435-450 location, 374-379 velocity, 372-374

theory, 723-842 time duration, 129-145 type of, 9-22, 129-145 uncertainty, 731-734 and vision of bat, 645-650 waveform, 11

Echolocator of bat allotonic, 639 syntonic, 639

Emission, cochlear, 228-229 Energy detector, model of, 758 E p t e s i c u s f u s c u s (bat), 23-25,

29-34, 115-120, 178-180, 183, 184, 189, 271-274, 358-360, 363, 366-379, 398, 401, 404, 407, 418, 437, 442, 443, 445, 489, 501, 541, 545, 607-609, 625, 636, 837, 840-841

cerebellum, role of, 271-274 col l i c u l u s , i n f e r i o r , 183, 184,

189

E p t e s i c u s f u s c u s (continued) echolocation, 271-274 electrode punctures in the

cerebellum, 271-274 larynx cross-section, 24 lemniscus, l a t e r a l , 178-180 neuron sensitivity, 271-274 ontogeny, 115-120 signal, vocal, 115-120 space, auditory, frontal, 271-274 spectrogam, 117-118

vermis, cerebellar, 271-274 E. pumilusy 226, 541 E. s e r o t i n u s , 437, 444 E. sp., 225, 232, 441, 622, 837

E u c h a e t i a s e g l e (moth), 636, 637 E u d e r m a m a c u l a t u m (bat), 544, 598 E u s t h e n o p t e r o n sp., 659

False k i l l e r whale, see P s e u d o r c a c r a s s i d e n s

Fast blue dye, fluorescent, 347-349 F i l t e r

acoustic of bat, 35-38 bank, 833-842 mathematics, 838-840

Fish ear, 576-577, 658-659 Signal, 662-663

Fishing bat, see N o c t i l i o leporinus Flight, target-directed, 150, 151,

620-621 Fluttering, 536-540 see Glint Foraging behavior of bat, 535-549,

601-605, 635-638 Formant frequency of sonar, 89-90 Frequency of sound, see Sonar

Gabor model, 816-817 Ganglion c e l l of retina

of microbat, 646 Gate, g l o t t a l , of bat, 31-33, 36-38 Generator, laryngeal, of bat, 23-24,

29-31 Geniculate body, medial, 185-186 Gleaning bat, see M e g a d e v m a lyva Glint of fluttering insect, 417-418,

477, 480, 481 G l i s c h r o p u s tylopus (bat), 491, 492 Globicephala scammoni (dolphin), 526

G. sp., echolocation, 521 G l o s s o p h a g a s o r i c i n a (bat), 584, 791 Goldfish decompression sickness, 81 G r a m p u s g r i s e u s (whale) echolocation,

521, 526, 719 Greater horseshoe bat, see R h i n o ­

lophus f e r r u m - e q u i n u m Greater mustache bat, see P t e r o n o t u s

p a r n e l l i i

Hagfish, see M y x i n e sp.

857

Page 32: NATO ASI Series - uni-muenchen.de · NATO ASI Series Advanced Science Institutes Series A series presenting the results of activities sponsored by the NATO Science Committee, which

Hair c e l l of bat, 232-234, 308 Harbor porpoise see P h o c o e n a

p h o c o e n a Harbor seal, see P h o c a v i t u l i n a Hearing of bat, see Bat

directionality, 289-293, 374-377 H e s p e r p t e r u s b l a n f o r d i (bat), 482 H i p p o s i d e r o s b i c o l o r (bat), 375,

421, 538, 540, 542, 615 H. caffer> 421, 536, 538, 540,

544, 609 H. c e r v i n u s , 491, 492 H. c o m m e r s o n i , 540, 609 H. d i a d e m a , 420, 491, 492, 538 H. f u l v u s , 230, 231 H. lankadiva, 307, 420 H. r u b e r , 419 H. s p e o r i s , 230, 335-339, 420,

538, 540, 542, 615-617 H. sp., 230, 233, 335-339, 375,

420 Horseradish peroxidase, 243, 244

and wheat germ agglutinin, 243, 244

Hounsfield number, definition, 73 Hunting bat, 551-562, 619-623 E y d r u r g a l e p t o n y x (seal), 522 H y p o p r e p i a f u c o s a (moth), 636

Indian false vampire bat, see M e g a d e r m a lyra

I n i a g e o f f r e n s i s (dolphin), 18, 132, 135, 328, 526-528, 717, 720

Insect, 803-807 and bat, 551-566, 619-623 communication, acoustic, 662 echo, 803-807 fl u t t e r i n g wings, 417

echo, 477-481 g l i n t , 477-481

time-delay spectrometry, 803-807

wing beat frequency, 477-481 see Moth, separate insects

Internalization, 674 Interval, c r i t i c a l , 161-162

defi n i t i o n , 298 Isopressure contour, 290

Jacobita dolphin, see C e p h a -lorhynchus c o m m e r s o n i

Jaw-hearing by dolphin echolocation, 285 evidence for, 281-287

acoustic, 281-287 behavioral, 281-287

K e r i v o u l a sp. (bat), 647 K i l l e r whale, false, see

P s e u d o r c a c r a s s i d e n s

Labyrinth, 658 Lacewing, see C h r y s o p a c a r n e a L a g e n o r h y n c h u s a l b i r o s t r i s

(dolphin), 132, 137 L. o b l i q u i d e n s , 526, 571, 720

Lamb wave, 820 Language, 675-678 human, origin of, 678

Larynx of bat, 23-31 L a s i o n y c t e r i s n o c t i v a g a n s (bat),

538, 544, 595-597 L. o i n e r e u s , 544

L a s i u r u s b o r e a l i s (bat), 537, 625-628 L. o i n e r e u s , 537-541, 595-597,

607, 625, 628 L. o i n e r e u s s e m o t u s , 556

L a v i a f r o n s (bat), 539, 594, 609 Learning, 696 Lemniscus, l a t e r a l , 178-180, 188,

203-204 nuclei, 178-179

Leopard seal, see E y d r u r g a leptonyx L i p o t e s v e x i l l i f e r (dolphin), 18, 526 Loudspeaker, 478 L y m a n t r i a d i s p a r (moth), 622

M a c r o d e r m a g i g a s (bat), 289-291, 646-649

M a c r o p h y l l u m m a c r o p h y l l u m (bat) 601, 602, 640

M a c r o t u s c a l i f o m i c u s (bat), 539, 542, 589, 592, 635, 637

M. w a t e r h o u s i i , 593 Malaysian bats, 489-493 M a m e s t r a b r a s s i c a e (moth), 629-633 M a n d u c a sp. (bat), 552 Mealworm as bait for bat, 636, 685,

686 M e g a d e r m a c a l i f o m i c u s (bat), 545

M. lyra, 229, 230, 233, 234, 291, 418, 490, 507-511, 539, 542, 545, 562, 592, 613-614, 617, 635, 637, 646-649

echolocation, 507-511 discrimination Performance

507-510 target discrimination, 507-511 and prey detection, 613

M e l o l o n t h a m e l o l o n t h a (beetle), 479 Melon of dolphin, 79 Membrane of bats

basilar, 229-230, 232, 234-237 vocal, 23

Memory, short-term, 672 Microbat

echolocation, 645-650 Vision, 645-650

M i c r o n y o t e r i s h i r s u t a (bat), 593, 601-604

M. m e g a l o t i s , 593, 601-604 M. n i c e f o r i s , 602

8 5 8

Page 33: NATO ASI Series - uni-muenchen.de · NATO ASI Series Advanced Science Institutes Series A series presenting the results of activities sponsored by the NATO Science Committee, which

Microphone and loudspeaker, ultrasonic, 478, 479

M i m o n c r e n u l a t u m (bat), 601, 602 Minnow, European, see P h o x i n u s sp. Mirror, acoustic, 417 M o l o s s u s a t e r (bat), 175-177, 201,

203, 230, 231, 234, 422, 423

M. m o l o s s u s , 422, 423 Moth, 553-556, 629-633, 803-807

audiogram, 641 and bat, 553 clicks, 554, 556 dives, 554 ear, 629, 639 echo, 803-807 f l i g h t motor neuron, 629-633 freezing of motion, 554 input, auditory, 629-633 loops, 554 phonotaxis, negative, 554 ultrasound, hearing of, 553 species: A r c t i a eaja, 555 A s c a l a p h a o d o r a t a , 558-559 C r o o a l l i s e l i n g n a r i a , 805, 806 C y c n i a tenera, 636, 637 E u c h a e t i a s egle, 636, 637 H y p o p r e p i a f u c o s a , 636, 637 L y m a n t r i a d i s p a r , 622 M a m e s t r a b r a s s i c a e , 629-633 O d o n t o p e r a b i d e n t a t a , 804 P h r a g m a t o b i a f u l g i n o s a , 555 P h y r r a r c t i c a i s a b e l l a , 637 T e c o p h o r a f o v e a , 555, 556

Mustached bat, see P t e r o n o t u s p a m e l l i i

Myotis a d v e r s u s , 539 M. a u r i c u l u s , 539, 542, 544 M. c a l i f o m i c u s , 538, 542 M. d a s y c m e n e , 541 M. d a u b e r t o n i , 542, 544, 797-802 M. evotis, 542 M. leibii, 542 M, lucifugus, 230, 362, 363, 422,

489, 538, 539, 542-545, 595, 620, 623, 625, 626, 628, 635, 685, 686, 806

M. m y s t a c i n u s , 785-790 M. m y o t i s , 418, 424, 542-545,

592, 607, 807 M. n i g r i c a n s , 640 M. o x y g n a t h u s , 360, 394 M. s e p t e n t r i o n a l i s , 542 M. volans, 537-541 M. y u m a n e n s i s , 542, 544, 625 M. sp., 225, 229, 232-234, 376,

377, 424, 468, 471 Myxine sp. , 658

Nasal system of dolphin sound production, 716

N e o p h o c o e n a a s i a e o r i e n t a l i s (dolphin), 528

N. p h o c a e n o i d e s , 17-19, 718 Nerve, auditory, of bat, 170-171 Neuron E-I, auditory, 209-216 N o c t i l i o a l b i v e n t r i s (bat), 356-360,

365, 374, 399, 403, 513-517, 539

N. leporinus, 312, 374, 375, 501-506, 539

N. sp., 441, 536 Noise, 438-445 Noseleaf of bat, 791-796 Nucleus of bat

cochlear, 170-174, 191-193, 311, 313

N y c t a l u s n o c t u l a (bat), 538-541 N. sp., 232, 437

Nycteris t h e b a i c a (bat), 539, 542, 545 N. g r a n d i s , 539, 542, 545, 607-609

N y c t o p h i l u s g o u l d i , 289-291, 646-649 N. b a l s t o n i , 539

Odontocetes, see Dolphin, Whale O d o n t o p e r a b i d e n t a t a (moth), 804 Oilbird, see S t e a t o m i s sp. Olfaction, 656-657 Olivary complex, superior, 175-177,

187-189 Olive, superior

l a t e r a l , 203 medial, 200-203

O r c a e l l a b r e v i r o s t r i s (dolphin) echolocation, 18, 19, 137, 138, 718

O r c i n u s o r c a (whale), 568, 571 0. sp., 522-524

c l i c k waveform, 523 Orientation of bat

acoustical, 589-594 Visual, 589-594

Oscillogram, 58, 478, 479, 603 O t o m o p s m a r t i e n s s e n i (bat), 541

Pathway, auditory binaural, 187-191 c o l l i c u l u s , i n f e r i o r , 181-186,

191-196 geniculate body, medial, 185-186 monaural, 187-191 nerve, auditory, 170 nucleus, cochlear, 170-174,

191-193 olivary complex, superior,

175-177 Organization, tonotopic, 170-187 p a r a l l e l , 169-223

Pattern recognition algorithm, 830-833

Perception, active, 683 P e r o p t e r y x m a c r o t i s (bat), 581,

584, 586

859

Page 34: NATO ASI Series - uni-muenchen.de · NATO ASI Series Advanced Science Institutes Series A series presenting the results of activities sponsored by the NATO Science Committee, which

P h r a g m a t o b i a f u l i g i n o s a (moth), 555 P h y l l o d e r m a s t e n o p s (bat), 601 P h y l o s t o m u s h a s t a t u s (bat), 312,

313, 370-372, 601, 602, 791 P. d i s c o l o r , 589-591, 601, 795 P. sp., 358-360, 363

P h y r r a r c t i c a i s a b e l l a (moth), 637 P h y s e t e r c a t o d o n (whale), 99-107

clic k s , 99-107 spectrogram, 102-104 stranded, 100-101 vocalization of calf, 99-107 P. m a c r o c e p h a l u s , 568, 716

P h o c a v i t u l i n a (seal) echolocation, 522

P h o c o e n a p h o c o e n a (porpoise), 12-16, 61-66, 132, 139, 140, 314, 328, 528, 531, 676, 720

P h o c o e n o i d e s d a l l i (dolphin), 17, 18, 528, 529

Phonation of bat, 24-25 P h o x i n u s sp., 659 Pinna of bat, 289-293, 614 P i p i s t r e l l u s d o r m e r i (bat),

538-543 P. k u h l i 3 619-623 P. m i n u s 3 538-543 P. p i p i s t r e l l u s , 444, 635 P. t e n u i s 3 491, 492 P. sp., 359, 360, 364, 441

P l a t a n i s t a i n d i (dolphin), 18, 526, 528

echolocation, 521 P. m i n o r , 526 P. sp., 527

P l e c o t u s a u r i t u s (bat), 544 P. p h y l l o t i s 3 541 P. sp., 233, 379, 442

P o n t o p o r i o b l a i n v i l l e i (dolphin) 526

Potential, cochlear, 226-227 Praying mantis, 562

and bat, 553 Prey of bat

debilitation, acoustic, 703-706

detection, 613-614 echolocation, 595-599, 601-611 head-aim tracking, 467 interception strategy

non-predictive, 467-470 predictive, 467-470

mealworm thrown into a i r , 467-470

modelling, 467-468 selection, 601-605

P s e u d o r c a c r a s s i d e n s (whale), 201, 323-328, 521, 526, 576, 720

echolocation, 323-328, 521

Psychology behavioristic, 691 cognitive, 691 see Cognition

P t e r o n o t u s d a v y i (bat), 37 P. f u l i g i n o s a , 303 P. g y m n o n o t u s , 360, 363,365 P. p a r n e l l i i , 25-32, 37, 38,

149-159, 171, 175, 176-177, 181-187, 189, 190, 230, 235, 247-269, 291, 301-309, 312, 313, 329-333, 349, 365, 370, 374, 375, 417, 419, 421, 422, 427-430, 442, 471-476, 489, 535-538, 540, 543, 616, 640, 807

auditory system, 253-258 Cochlea, structure of, 301-305 collic u l u s , inferior, 329-333 echolocation, 265-269 neuron, binaural, 329-333 sonar, 254-256, 259-269 target, 253-258, 471-476 tonotopy, 175-177 vocalization, 265-269

P. sp., 225-237 P t e r o p u s p o l i o c e p h a l u s (bat), 646

P. s c a p u l a t u s , 646 Pulse, sonar, of bat, 23-38,

791-802

Radar, 393-394 R a n a sp., (frog), 659 Range of sound, 357-366, 400-404 Rat, see R a t t u s n o r v e g i c u s R a t t u s n o r v e g i c u s (rat)

vision, 646 Ray diagram, 79-86 Resonance of whale head

magnetic, nuclear, 79-86 Respiration of bat, 24-29 Retina of microbat, 646 Reverberation of sonar formula,

774-775 R h i n o l o p h u s f e r r u m e q u i n u m (bat),

29-33, 226, 229, 230, 235-237, 308, 347, 360, 363-366, 375, 390, 395, 419, 420, 423, 426, 483-487, 495-499, 536, 538, 544, 807, 840

R. h i l d e b r a n d i i 3 25, 26, 29, 31, 36-38, 421, 538, 607-609

ff. luctus, 491, 492 ff. m e g a p h y l l u s , 625-628 ff. rouxii, 38, 93-98, 171, 173,

189, 235, 236, 243-246, 259-264, 293, 307, 309, 335-336, 341-350, 357, 373-378, 419, 424-428, 513-517, 536, 538, 543, 544, 615, 616

860

Page 35: NATO ASI Series - uni-muenchen.de · NATO ASI Series Advanced Science Institutes Series A series presenting the results of activities sponsored by the NATO Science Committee, which

R h i n o l o p h u s f e r r u m e q u i n u m ( c o n t inue< R. t r i f o l i a t u s , 491, 492 R. sp., 225-238, 791-796, 837

Rhythmicity, 673 River dolphin, see L i p o t e s

v e x i l l i f e r Ronken paradigm, 406 Root-mean-square Converter, 389 R o u s e t t u s a e g y p t i a o u s (bat), 33-35

R. sp., 440 Rufous horseshoe bat, see

R h i n o l o p h u s r o u x i i

S a e o o p t e r y x b i l i n e a t a (bat), 541, 807

S c o t o p h i l u s b o r b o n i c u s (bat), 607-609

S. leucogaster, 609 S. viridis, 609

Search f l i g h t of bat, 537, 542, 620-621

Signal, see Sonar Sonar

of animal, 351-517, see Bat, Dolphin, Whale

of bat, 835-842 and vision, 647-649

bionic, 769-783 di r e c t i v i t y index, 165 discrimination by

dolphin, 809-813 human, 809-813

for diver, 769 echo formation, 823-827 equation, 436-445 frequency modulation, 769,

787-790 history, 1-5, 769-770 and plate, metallic, 809-813 pulse, 23-29

control, 35-38 target Identification, 823-827 signal, 149-158, 773-783

analysis, 797-798 of bat, 615 detectability theory, 284,

318, 394-395 energy, 389-390 equation, 753-756 -to-noise ratio, 390-397 power, 389-390 predictability theory, 388 processing, 773-783, 799-801 structure fine, 444 harmonic, 581-588

sound complex, 151-158 frequency, 80, 88, 198, 375,

835-838 as Information exchange, '656-6!

) Sonar (continued) path, 79-82 predatory, 567-576 pressure, 436 processing, 151-158 social, 570-575 wave, 79-86

see Bang, Click, Whistle S o t a l i a f l u v i a t i l i s (dolphin),

18-20, 132, 138, 139, 717-719

Sound, see Sonar Spectrogram, 56-59, 478-480, 734-

742, 797-798 Spectrometry, 803-807

described, 803 Sperm whale, see P h y s e t e r Spinner dolphin, see S t e n e l l a

l o n g i r o s t r i s S t e a t o r n i s c a r i p e n i s ( o i l b i r d ) ,

38, 42, 87-91 S t e n e l l a c o e r u l e o a l b a (dolphin)

312-314 S. l o n g i r o s t r i s , 67-77, 328,

525, 526 anatomy of

forehead, 67-77 structures, acoustic, 6 1 - 1 1

melon of forehead, 70-72, 74 tonogram, 67-77

S. p l a g i o d o n , 570-571 Stimulation of bat with echo,

426-430 Swiftlet (bird), see C o l l o c a l i a S y p s i g n a t h u s sp, (bat), 664 Syrinx, bronchial, of o i l b i r d ,

87-90

T a d a r i a a e g y p t i a o a (bat), 541, 542 T. a n s o r g e i , 541 T. a u s t r a l i s , 647 T. b e c a r r i , 541 2". b r a s i l i e n s i s , 27, 359, 360,

370, 422-424, 437, 545 T. c h a p i n i , 541 T. f u l m i n a n s , 541 T. j o b e n s i s , 541 T, m a c r o t i s , 541 T. m i d a s , 541, 607-609 T. teniotis, 581, 584, 586

T a p h o z o u s g e o r g i a n u s (bat), 538, 541, 646, 647

T. k a o h e n s i s , 230, 538, 541, 542 T. m a u r i t i a n u s , 538, 541 T. m e l a n o p o g o n , 541, 542 T. p e l i , 541 T. sp., 230, 231, 234, 540

Target of bat

C l a s s i f i c a t i o n , 413-434 7 * d e t e c t i o n by, 435-450

861

Page 36: NATO ASI Series - uni-muenchen.de · NATO ASI Series Advanced Science Institutes Series A series presenting the results of activities sponsored by the NATO Science Committee, which

Target (continued) of bat (continued)

discrimination, 413-434 echo parameters, 414-418 localization, 374-379 natural, 414-418, 442-443 ränge, 253-258, 355-357,

371-372 recognition, 413-434 velocity, 372-374

cylinder, metallic, as, 829-833 discrimination, 413-434, 758-765 of dolphin

detection, 451-465 ränge, maximum, 451-454 in reverberation, 458-461 shape, 459, 461-463

fluctuating, 419-421 non-fluctuating, 418-419 recognition, 758-765, 829-833

algorithm, 829-833 time-domain features, 829-833

T e n e b r i o sp. (insect), echo, 803-807

Tetramethylbenzidine, 244 T h e c o p h o r a f o v e a (moth), 555, 556 Time for sound

delay, 835-842 window, 513-517

T i p u l o o l e r a c e a (insect), 495-499 T. sp., 416

T o n a t i a b i d e n s (bat), 601, 602 T. s i l v i c o l a , 601-604

Tonotopy, 170-187 T r a e h o p s c i r r h o s u s (bat), 539,

542, 545, 562, 592, 601-604

Tract of bat acoustic, 289-293 central, 186-187 vocal, 149

T u r s i o p s a d u n c u s (dolphin), 132, 136, 568-571

T. s c y l l a 3 525 T. sp., 325, 328, 521-534,

676, 694-699, 703-706, 718-720

T. truncatus, 10-13, 82-85, 109-113, 121-127, 132, 135, 136, 161-168, 281-287, 295-299, 312, 313, 317-321, 451-479, 703-713, 753-758

audition, 161-168 bandwidth of sonar, 132,

135, 136 behavior, mother/infant,

121-127

T u r s i o p s a d u n c u s (continued) T. t r u n c a t u s (continued)

in captivity, 10, 109-113 cl i c k production, 109-113,

121-127, 318, 164-165 discrimination, temporal,

317-321 echolocation, 161-168, 295-299,

707-713 experiment, 707-713

feeding, 703-706 and loud sound, 703-706

jaw-hearing, evidence of, 281-287

signal detection theory, 318 sonar, 10-13, 109-113 sound debilitating prey, 703-706

T y l o n y c t e r i s p a c h y p u s (bat), 490-492 T. r o b u s t u l a , 490-492

Tyto a l b a (bat), 291

V a m p y r u m s p e c t r u m (bat), 541, 604 V e s p e r t i l i o m u r i n u s (bat), 541, Vision of

bat, 590, 645-650 rat, 646

Vocal tract of bat, 35-38, 430 Vocal tract of bird, 40-42, 87-91

Wavelength of sound resonant frequency formula, 88

Weberian ossicles, 659 Whale

behavior, social, 567-579 cl i c k train, 567-570 bangs, 569, 572, 576

head, 79-86 and beam, ultrasonic, 82

oscillogram, 572, 573 predation, 567-579 sound, 567-579

for disorientation of prey 567-579

see separate whales Wheat germ agglutinin, 243, 244

and horseradish peroxidase, 243. 244

Whistling by dolphin, 83 human, 83

White-sided dolphin, see L a g e n o r h y n c h u s o b l i q u i d e n s

White whale, see D e l p h i n a p t e r u s leucas

Wigner representation, 738-739 Wigner-Ville distribution of

time frequency, 798