NASA 2004 PP

49
Exploratory NEP modeling Robert M. Edwards Penn State 814.865.0037 [email protected]

Transcript of NASA 2004 PP

Page 1: NASA 2004 PP

Exploratory NEP modeling

Robert M. Edwards Penn State

814.865.0037 [email protected]

Page 2: NASA 2004 PP

Motivation: System Integration

Steam

Generator &

Electrical:

Pressure

Vessel &

Piping

Core Design:

neutronics

thermal

hydraulics

Mechanical

Pumps, valves

turbines

System

Integration

(Control

Engineering)

DETAILED MODELS DETAILED MODELS

DETAILED MODELS DETAILED MODELS

Page 3: NASA 2004 PP

References

Scoping Calculations of Power Sources for Nuclear Electric Propulsion, ORNL CR-191133, 1994 50 MW 4-year reactor example data

Brayton Power Conversion System Parametric Design Modeling for NEP, NASA contractor report CR-191135, 1993 500 kWe Brayton PCU

Modular Modeling System (MMS): A Code for the Dynamic Simulation of Fossil and Nuclear Power Plants: Overview and General Theory, EPRI CS/NP-2989, 1983

Preliminary Results of a Dynamic System Model for a Closed-Loop Brayton Cycle Coupled to a Nuclear Reactor, Steven Wright, Sandia National Lab.

“Dynamic Analysis and Control System Design for an Advanced Nuclear Gas Turbine Power Plant”, a dissertation in Mechanical Engineering,

MIT 1990.

Page 4: NASA 2004 PP

Reactor Kinetics Equations

output nr, relative reactor power

input r(t), reactivity from control devices

feedback from temperature, etc

b is fraction of neutrons that are “delayed”

1,...6i cndt

dc

cnt

dt

dn

irriir

ir

6

1i

ir

r

b

br

Page 5: NASA 2004 PP

reactor power response to 10 cents without temperature feedback

0 1 2 3 4 5 6 7 8 9 101

1.05

1.1

1.15

1.2

1.25

1.3

1.35

1.4power response of reactor without feedback to 10 cents

seconds

rela

tive r

eacto

r pow

er

br 1.0t

Page 6: NASA 2004 PP

Scoping Calculations of Power Sources for Nuclear Electric Propulsion, ORNL CR-191133, 1994

50 MW, four year life 82.24 cm diameter, 75.37 cm height 82.92% enriched Uranium 5871 fuel pins, 6.4 mm diameter Tantalum-181 clad, 0.6355 mm Tungsten liner, 0.127 mm Uranium-Nitride fuel, 4.826 mm Lithium coolant, 16.139 kg/s

2.75 g/s per fuel pin 500 oK inlet temperature, 1200 oK outlet

temperature

Page 7: NASA 2004 PP

Reactor Fuel Pin Equations: for 30 axial nodes, k

ccinkpk

ckcc

kk

ck

f

kfk

ff

kff

C/T)k(TcmR

)k(T)k(T

dt

)k(Td

dt

)k(dT

C/R

)k(T)k(T

R

)k(T)k(T

dt

)k(dT

C/R

)k(T)k(TQ

dt

)k(dT

Fuel (Tf) Clad (Tk) Coolant (Tc)

Tc(k)

Tc(k-1)

Rk Rf Cc Ck Cf

Page 8: NASA 2004 PP

Fuel temperature response to 10% step change in power

0 1 2 3 4 5 6 7 8 9 10900

905

910

915

920

925

930

935

940

945Fuel temperature response to 10% step in power

seconds

tem

pera

ture

(K

)

Page 9: NASA 2004 PP

SIMULINK Reactor Model

Page 10: NASA 2004 PP

reactor power response to 10 cents WITH temperature feedback

0 2 4 6 8 100.98

1

1.02

1.04

1.06

1.08

1.1

1.12

1.14power response of reactor with feedback to 10 cents

seconds

rela

tive r

eacto

r pow

er

Page 11: NASA 2004 PP

reactor temperature response to 10 cents WITH temperature feedback

0 2 4 6 8 10901.9

902

902.1

902.2

902.3

902.4

902.5

902.6

902.7

seconds

tem

pera

ture

(K

)

temperature response of reactor with feedback to 10 cents

Page 12: NASA 2004 PP

Brayton Power Conversion System Parametric Design Modeling for NEP, NASA contractor report CR-191135, 1993

500 kWe unit

Helium-Xenon with cp=0.5 cal/g-K

Compressor inlet

375 oK, 1339.18 kPa

Turbine inlet

1144.69 oK, 2355.46 kPa

Lithium Intermediate Heat Exchanger

1166.7 inlet, 1111.1 oK outlet temperatures

(considerably smaller DT than 50 MW reactor)

Page 13: NASA 2004 PP

Brayton Code Model

Duct 6

Duct 5

Duct 4

Duct 2

Duct 3

Duct 1

Gas Cooling

Aux Cooling

IHX

Turb Comp Generator

Recuperator

16

1

5

6 7

13 14

15

10

8

12

9

Page 14: NASA 2004 PP

Brayton Code data

Temperatures, K 375.00 500.67 500.67 500.67 500.67 500.67 871.19 869.82 1144.44 1141.69 1141.69 939.33 936.58 566.05 566.05 375.00 375.00

Pressures, KPA 1339.18 1874.86 1874.86 2410.53 2410.53 2398.48 2379.17 2367.28 2362.54 2355.46 1867.82 1380.19 1376.05 1359.47 1352.68 1345.91 1339.18

Page 15: NASA 2004 PP

Brayton Code data

duct dimensions Duct 1 diameter, cm 12.91509 Length, cm 193.7263 Duct 2 diameter, cm 14.96846 Length, cm 224.52680 Duct 3 diameter, cm 18.38337 Length, cm 275.75050 Duct 4 diameter, cm 22.70933 Length, cm 340.64000 Duct 5 diameter, cm 17.61942 Length, cm 264.29120 Duct 6 diameter, cm 15.94148 Length, cm 239.12220

Page 16: NASA 2004 PP

MMS component equation set: mass, momentum, energy

r

r

r

rr

r

rr

r

r

P/hu uses dt

dPV

dt

dVhWqhmhm

V

1

dt

dh

hP,f uses dt

dVhWqhmhm

Vdt

d

dt

dP

K

mPP

L

A

dt

md

mmV

1

dt

d

oosooii

o

Ph

osooii

ho

o

2i

oii

oio

Page 17: NASA 2004 PP

Ideal Gas Assumption

RT

1

P

TRc

P

h

RT

P

Tch

hP

2pP

h

p

r

r

r

Page 18: NASA 2004 PP

SIMULINK “duct” model

Page 19: NASA 2004 PP

duct model equation implementation

function sys=mdlDerivatives(t,x,u,V,L,Af,cp,R,K,mo) delp=u(1)-x(1); rhoo=x(1)/(R*x(2));rhoi=u(1)/(R*u(2));rhobar=(rhoo+rhoi)/2; if mo==0 if delp<=0 mdi=0; else mdi=K*sqrt(delp*rhobar); end else xd(3)=Af/L*(u(1)-x(1)-(u(3)/K)^2/rhobar); %Vi=x(3)/rhoi/Af;Vo=u(3)/rhoo/Af; this term creates numerical %problems and is neglected. %xd(3)=xd(3)+(x(3)*Vi-u(3)*Vo)/L mdi=x(3); end drholdt=(mdi-u(3))/V; Tbar=(u(2)+x(2))/2; Pbar=(u(1)+x(1))/2; dp=1/(R*Tbar); dh=-Pbar/(R*cp*Tbar^2); term1=(mdi*cp*u(2)-u(3)*cp*x(2)+u(4)-cp*Tbar*V*drholdt); xd(1)=(rhobar*drholdt-dh/V*term1)/(dh+dp*rhobar); xd(2)=(term1/(rhobar*V) + xd(1)/rhobar)/cp; sys=xd'

Page 20: NASA 2004 PP

Duct model response to set change in inlet pressure

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 22.35

2.4

2.45

2.5

2.55

2.6x 10

6 outlet pressure response to inlet pressure step, duct 1

time in seconds

pre

ssure

in p

ascal

Page 21: NASA 2004 PP

Response without the dynamic form of the momentum equation

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 22.38

2.4

2.42

2.44

2.46

2.48

2.5x 10

6 outlet pressure response to inlet pressure step, duct 1

time in seconds

pre

ssure

in p

ascal

Page 22: NASA 2004 PP

Interconnecting the duct components to form a loop

Page 23: NASA 2004 PP

Interconnecting ducts to form a heat exchanger

Page 24: NASA 2004 PP

Compressor and Turbine models from performance data

A representation of Wright’s data

Mass flow

Speed 1

Speed 2

Pressure ratio

compressor

turbine

Speed 1

Page 25: NASA 2004 PP

A linear generalization of Wright’s data

1.2 1.4 1.6 1.8 22

4

6

8

10

12

14

16m

ass f

low

kg/s

pressure ratio

compressor/turbine performance characteristics

compressor

turbine

Page 26: NASA 2004 PP

Maps that execute

1.2 1.4 1.6 1.8 22

4

6

8

10

12

14

16

compressor

turbine

50000 RPM

50000 RPM

Page 27: NASA 2004 PP

Compressor/Turbine Thermal model

T4s

T3

T2 T2s

T

s

T1

T4

Page 28: NASA 2004 PP

Compressor Thermal equations

Compressor

Turbine

1s22

12

1s2

k1k

1

21s2

1

s2k1k

1

2

T)1(TT

TT

TT

P

PTT

T

T

P

P

s4334s43

43

k1k

4

3

3s4

s4

3k1k

4

3

TTTTTT

TT

P

P

TT

T

T

P

P

Page 29: NASA 2004 PP

SIMULINK compressor block

poscope

mdo mdi

Pi

Ti

mdo

N

Po

To

mdi

J

compressor2

ToTi

Pi

N J

Page 30: NASA 2004 PP

SIMULINK Compressor model

4J

3mdi

2To

1Po

1/s

po

(u(1)-u(2))*u(3)*cp

mdot*cp*deltat

mp*u(1)+u(2)

mdot

(u(1)-u(2))*2500000

flow equalizer

mn*u(1)+b

Yint

u(3)*(u(1)/u(2))^((k-1)/k)

T2s(u(1)-(1-eta)*u(2))/eta

T2

u(2)/u(1)

Pr

4N

3mdo

2Ti

1Pi

Page 31: NASA 2004 PP

SIMULINK model of CBC

Page 32: NASA 2004 PP

Compressor-recuperator subsystem

Page 33: NASA 2004 PP

turbine – IHX subsystem constant heat input

Page 34: NASA 2004 PP

Flow response to speed step transient 28000->30000 RPM

10 10.2 10.4 10.6 10.8 11 11.2 11.4 11.6 11.86.5

6.6

6.7

6.8

6.9

7

7.1

7.2

7.3flow response to speed step 28000->30000

time (sec)

flow

(kg/s

)

Page 35: NASA 2004 PP

Turbine inlet temperature to speed step transient 28000->30000 RPM

0 2 4 6 8 10 12 14 16 18 201100

1105

1110

1115

1120

1125

1130

1135

1140

1145turbine inlet temperature to speed step 28000->30000

time (sec)

tem

pera

ture

(K

)

Page 36: NASA 2004 PP

Net power output response to speed step transient 28000->30000 RPM

0 2 4 6 8 10 12 14 16 18 201

1.02

1.04

1.06

1.08

1.1

1.12

1.14

1.16x 10

6 net power output to step in speed 28000 30000

time (sec)

pow

er

(watt

s)

Page 37: NASA 2004 PP

CBC with reactor model

turbine

exhaust

recuperator

exhaust

high

pressurePi

Ti

md0

N

mdRx

rho

Po

To

mdi

J

nr

turbine_ihx

rho

mdot

Pi

Ti

mdo

N

Po

To

mdi

J

compressor-recuperator

Scope9

Scope8

Scope7

Scope6Scope5Scope4

Scope3

Scope2

Scope1

Scope

Output Point1

Output PointN

Input Point2

Input Point1

Input Point

Page 38: NASA 2004 PP

turbine-ihx with reactor model

5

nr

4

J

3

mdi

2

To

1

Po

Pi

Ti

mdo

N

Po

To

mdi

J

turbine2 -3.797e04

q2

-1.892e04

q

mdot

Ti

peak

Tout

Tf max

Tf av g

Tkav g

Tcav g

rhof b

neppin

Tg

Ti

mdot

Q

TiRx

ihxts

Pi

Ti

mdo

q

Po

To

mdi

ihx_shell

Pi

Ti

mdo

q

Po

To

mdi

duct3

Pi

Ti

mdo

q

Po

To

mdi

duct2

Scope7

Scope6

Scope5

Scope4

Scope3Scope2

Scope1

Scope

1/0.646

Gain2

109.61

Gain1

.5

Gain

rho (dk) nr

6-delayed

groups

6

rho

5

mdRx

4

N

3

md0

2

Ti

1

Pi

Page 39: NASA 2004 PP

mass flow Response to speed step 28000 to 30000 RPM

10 10.2 10.4 10.6 10.8 11 11.2 11.4 11.6 11.86.5

6.6

6.7

6.8

6.9

7

7.1

7.2

7.3flow response to step in speed to 30000 RPM

seconds

flow

(kg/s

)

Page 40: NASA 2004 PP

turbine inlet temperature Response to speed step 28000 to 30000 RPM

0 5 10 15 20 25 30 35 40 45 501130

1132

1134

1136

1138

1140

1142turbine inlet temperature to step in speed to 30000 RPM

seconds

tem

pera

ture

(K

)

Page 41: NASA 2004 PP

Reactor power Response to speed step 28000 to 30000 RPM

0 5 10 15 20 25 30 35 40 45 501

1.005

1.01

1.015

1.02

1.025

1.03

1.035power response of reactor to step in speed to 30000 RPM

seconds

rela

tive r

eacto

r pow

er

Page 42: NASA 2004 PP

net power output Response to speed step 28000 to 30000 RPM

0 5 10 15 20 25 30 35 40 45 501.06

1.07

1.08

1.09

1.1

1.11

1.12

1.13

1.14

1.15x 10

6

seconds

net pow

er

outp

ut (w

atts)

net power output to step in speed to 30000 RPM

Page 43: NASA 2004 PP

Simplified generator model added:

I

PP2

dt

d outin2

Page 44: NASA 2004 PP

Speed Response to step -15% step decrease in load

0 50 100 150 200 250 300 350 400 450 5002.8

2.9

3

3.1

3.2

3.3

3.4

3.5

3.6x 10

4 speed response to -15% step in load

time (sec)

speed (

RP

M)

Page 45: NASA 2004 PP

Turbine Inlet Temperature response to -15% in load

0 50 100 150 200 250 300 350 400 450 5001100

1105

1110

1115

1120

1125

1130

1135

1140

1145turbine inlet temperature to -15% step in load

time (sec)

tem

pera

ture

(K

)

Page 46: NASA 2004 PP

Reactor Power Response to -15% step in load

0 50 100 150 200 250 300 350 400 450 5001

1.05

1.1

reactor power response to -15% step in load

time (sec)

rela

tive r

eacto

r pow

er

Page 47: NASA 2004 PP

Net Power Output response to -15% step in load

0 50 100 150 200 250 300 350 400 450 5009

9.2

9.4

9.6

9.8

10

10.2

10.4

10.6x 10

5 Net power output to -15% step in load

time (sec)

pow

er

(watt

s)

Page 48: NASA 2004 PP

Summary, exploratory NEP modeling approach

representative fuel pin from a 50 MW four year core

500 kWe CBC

MMS equation set not suitable for low pressure drops and flows

simplified compressor/turbine performance curves

results consistent with Wright

more study needed

Page 49: NASA 2004 PP

Possible Improvements

T=f(h,P), r=f(h,P), h=f(T,P)

compressor/turbine performance maps mass flow as a function of speed and Pr

efficiency as a function of speed and Pr

add component metal heat capacities

data for another Brayton unit full power steady state temperatures and pressures around

the unit

component dimensions, masses, heat capacities

more detail on the generator, electrical power distribution system, and ion propulsion