NAS Parallel Benchmark Version 1.0 Results 11-96 · 2016. 2. 26. · processors operating in...

53
1 - 53 NAS Parallel Benchmark (Version 1.0) Results 11-96 Subhash Saini 1 and David H. Bailey 2 Report NAS-96-18, November 1996 Numerical Aerospace Simulation Program NASA Ames Research Center Mail Stop T 27A-1 Moffett Field, CA 94035-1000, USA email: [email protected] Abstract The NAS Parallel Benchmarks have been developed at NASA Ames Research Center to study the performance of parallel supercomputers. The eight benchmark problems are specified in a ‘‘pencil and paper’’ fashion. In other words, the complete details of the problem to be solved are given in a technical document, and except for a few restrictions, benchmarkers are free to select the language constructs and implementation techniques best suited for a particular system. These results represent the best results that have been reported to us by the vendors for the specific systems listed. In this report 3 , we present new NPB (Version 1.0) performance results for the following systems: - DEC Alpha Server 8400 5/440, - Fujitsu VPP Series (VX, VPP300, and VPP700), - HP/Convex Exemplar SPP2000, - IBM RS/6000 SP P2SC node (120 MHz) - NEC SX-4/32, - SGI/CRAY T3E, - SGI Origin200 - SGI Origin2000 We also report High Performance Fortran (HPF) based NPB results for IBM SP2 Wide Nodes, HP/Convex Exemplar SPP2000, and SGI/CRAY T3D. These results have been submitted by Applied Parallel Research (APR) and Portland Group Inc. (PGI). We also present sustained performance per dollar for Class B LU, SP and BT benchmarks. 1. Subhash Saini is an employe of MRJ Inc. This work is supported by NASA Ames Research Center through contract NAS 2-14303. 2. David H. Bailey is an employee of NASA Ames Research Center. 3. URL: http://www.nas.nasa.gov/NAS/NPB/

Transcript of NAS Parallel Benchmark Version 1.0 Results 11-96 · 2016. 2. 26. · processors operating in...

  • 1 - 53

    NAS Parallel Benchmark (Version 1.0) Results 11-96Subhash Saini1 and David H. Bailey2

    Report NAS-96-18, November 1996

    Numerical Aerospace Simulation ProgramNASA Ames Research Center

    Mail Stop T 27A-1Moffett Field, CA 94035-1000, USA

    email: [email protected]

    Abstract

    The NAS Parallel Benchmarks have been developed at NASA Ames Research Center to studythe performance of parallel supercomputers. The eight benchmark problems are specified in a‘‘pencil and paper’’ f ashion. In other words, the complete details of the problem to be solved aregiven in a technical document, and except for a few restrictions, benchmarkers are free to selectthe language constructs and implementation techniques best suited for a particular system. Theseresults represent the best results that have been reported to us by the vendors for the specificsystems listed. In this report3, we present new NPB (Version 1.0) performance results for thefollowing systems:

    - DEC Alpha Server 8400 5/440,- Fujitsu VPP Series (VX, VPP300, and VPP700),- HP/Convex Exemplar SPP2000,- IBM RS/6000 SP P2SC node (120 MHz)- NEC SX-4/32,- SGI/CRAY T3E,- SGI Origin200- SGI Origin2000

    We also report High Performance Fortran (HPF) based NPB results for IBM SP2 Wide Nodes,HP/Convex Exemplar SPP2000, and SGI/CRAY T3D. These results have been submitted byApplied Parallel Research (APR) and Portland Group Inc. (PGI). We also present sustainedperformance per dollar for Class B LU, SP and BT benchmarks.

    1. Subhash Saini is an employe of MRJ Inc. This work is supported by NASA Ames Research Center throughcontract NAS 2-14303.

    2. David H. Bailey is an employee of NASA Ames Research Center.3. URL: http://www.nas.nasa.gov/NAS/NPB/

  • 2 - 53

    1: Intr oduction

    The Numerical Aerodynamic Simulation (NAS) Program, located at NASA Ames ResearchCenter, is a pathfinder in high-performance computing for NASA and is dedicated to advancingthe science of computational aerodynamics. One key goal of the NAS organization is todemonstrate by the year 2000 an operational computing system capable of simulating an entireaerospace vehicle system in one to several hours. It is currently projected that the solution of thisGrand Challenge problem will require a system that can perform scientific computations at asustained rate of approximately 1000 times faster than 1990 generation supercomputers. Such acomputer system will most likely employ hundreds or even thousands of powerful RISCprocessors operating in parallel.

    In order to objectively measure the performance of various highly parallel computer systemsand to compare them with conventional supercomputers, NAS has developed the NAS ParallelBenchmarks (NPB 1.0) [1, 2]. Note that the NPB 1.0 are distinct from the NAS High SpeedProcessor (HSP) benchmarks and procurements. The HSP benchmarks are used for evaluatingproduction supercomputers for procurements in the NAS organization, whereas the NPB 1.0 areused for studying highly parallel processor (HPP) systems in general.

    2: NAS Parallel Benchmarks

    The NPB 1.0 consist of a set of eight benchmark problems, each of which focuses on someimportant aspect of highly parallel supercomputing for aerophysics applications. Some extensionof Fortran or C is required for implementations, and reasonable limits are placed on the use ofassembly code and the like. Otherwise, programmers are free to utilize language constructs thatmaximize performance on the particular system being studied. The choice of data structures,processor allocation, and memory usage are generally left open to the discretion of theimplementer.

    The eight problems consist of five kernels and three simulated computational fluid dynamics(CFD) applications. The five kernels comprise relatively compact problems, each emphasizing aparticular type of numerical computation. Compared with the simulated CFD applications, theycan be implemented fairly readily and provide insight as to the general levels of performance thatcan be expected on these specific types of numerical computations.

    The simulated CFD applications, on the other hand, usually require more effort to implement,but they are more representative of the types of actual data movement and computation required instate-of-the-art CFD application codes. For example, in an isolated kernel, a certain data structuremay be very efficient on a certain system; and yet, this data structure may be inappropriate ifincorporated into a larger application. By comparison, the simulated CFD applications requiredata structures and implementation techniques that are more typical of real CFD applications.

    (Space does not permit a complete description of these benchmark problems. A more detaileddescription of these benchmarks, together with the rules and restrictions associated with them, isgiven in reference 2.)

    There are now three standard sizes for the NAS Parallel Benchmarks: Class A, Class B andClass C size problems. The nominal benchmark sizes for Class A, Class B and Class C problems

  • 3 - 53

    are shown in Table 1. These tables also give the standard floating-point operation (flop) counts forClass A and Class B. We recommend that those wishing to compute performance rates in millionsof floating point operations per second (Mflop/s) use these standard flop counts. Table 1 containsMflop/s rates calculated in this manner for the current fastest implementation on one processor ofCRAY Y-MP for Class A and on one processor of CRAY C90 for Class B. Note, however, that inthis report, performance rates arenot cited in Mflop/s; instead we present, the wall clock times(and, the equivalent performance ratios). We suggest that these, not Mflop/s, be examined whencomparing different systems and implementations.

    With the exception of the IS benchmark, these standard flop counts were determined by usingthe hardware performance monitor on the CRAY Y-MP or CRAY C90, and we believe that theyare close to the minimal counts required for these problems. In the case of the IS benchmark,which does not involve floating-point operations, we selected a value approximately equal to thenumber of integer operations required, in order to permit the computation of performance ratesanalogous to Mflop/s rates. We reserve the right to change these standard flop counts in the future,if necessary.

    The NAS organization reserves the right to verify any NPB results that are submitted to us. Wemay, for example, attempt to run the submitter’s code on another system of the same configurationas that used by the submitter. In those instances where we are unable to reproduce the vendor’ssupplied results (allowing a 5% tolerance), our policy is to alert the submitter of the discrepancyand allow submitter to resolve the discrepancy in the next release of this report. If the discrepancyis not resolved to our satisfaction, then our own observed results and not the submitter’s resultswill be reported.

    3: NAS Parallel Benchmark Results

    In the following section, each of the eight benchmarks will be briefly described, and then thebest performance results we have received to date for each computer system will be given inTables 2 through 10 and Tables 14-18. These tables include run times and performance ratios. Theperformance ratios compare individual timings with the current best time for that benchmarkachieved on one processor of CRAY Y-MP for Class A and on one processor of CRAY C90 forClass B. The run times in each case are elapsed time measured in accordance with thespecifications of NPB rules. This report includes a number of new results including previouslyunpublished - DEC Alpha Server 8400 5/440, Fujitsu VPP Series (VX, VPP300, VPP700),HP/Convex Exemplar SPP2000, IBM RS/6000 SP P2SC node (120 MHz), NEC SX-4/32,SGI/CRAY T3E, SGI Origin200 and SGI Origin2000

    3.1: Kernels

    The results for five kernels (EP, MG, CG, FT, and IS) are given below in the following section:

    3.1.1: The Embarrassingly Parallel (EP) Benchmark

    The first of the five kernel benchmarks is anembarrassingly parallel problem. In thisbenchmark, two-dimensional statistics are accumulated from a large number of Gaussian pseudo-random numbers, which are generated according to a particular scheme that is well-suited forparallel computation. This problem is typical of many Monte Carlo applications. Since it requiresalmost no communication, in some sense this benchmark provides an estimate of the upperachievable limits for floating-point performance on a particular system. Results for EP benchmark

  • 4 - 53

    are given in Table 2.

    3.1.2: Multigrid (MG) Benchmark

    The second kernel benchmark is a simplified multigrid kernel, which solves a 3-D PoissonPDE. This problem is simplified in the sense that it has constant rather than variable coefficientsas in a more realistic application. This code is a good test of both short and long distance highlystructured communication. The Class B problem uses the same size grid as of Class A but agreater number of inner loop iterations. Results for this benchmark are shown in Table 3.

    3.1.3: Conjugate Gradient (CG) Benchmark

    In this benchmark, a conjugate gradient method is used to compute an approximation to thesmallest eigenvalue of a large, sparse, symmetric positive definite matrix. This kernel is typical ofunstructured grid computations in that it tests irregular long-distance communication and employssparse matrix-vector multiplication. Results are shown in Table 4.

    3.1.4: 3-D FFT PDE (FT) Benchmark

    In this benchmark a 3-D partial differential equation is solved using FFTs. This kernel performsthe essence of many spectral methods. It is a good test of long-distance communicationperformance. The rules of the NPB specify that assembly-coded, library routines may be used toperform matrix multiplication and one-dimensional, two-dimensional, or three-dimensional FFTs.Thus this benchmark is somewhat unique in that computational library routines may be legallyemployed. Results are shown in Table 5.

    3.1.5: Integer Sort (IS) Benchmark

    This benchmark tests a sorting operation that is important inparticle method codes. This typeof application is similar to particle-in-cell applications of physics, wherein particles are assignedto cells and may drift out. The sorting operation is used to reassign particles to the appropriatecells. This benchmark tests both integer computation speed and communication performance.This problem is unique in that floating point arithmetic is not involved. Significant datacommunication, however, is required. Results are shown in Table 6.

    3.2: Simulated CFD Application Benchmarks

    The three simulated CFD application benchmarks are intended to accurately represent theprincipal computational and data movement requirements of modern CFD applications.

    3.2.1: LU Simulated CFD Application (LU) Benchmark

    The first of these is the so-called the lower-upper diagonal (LU) benchmark. It does not performa LU factorization but instead employs a symmetric successive over-relaxation (SSOR) numericalscheme to solve a regular-sparse, block5x5 lower and upper triangular system. This problemrepresents the computations associated with a newer class of implicit CFD algorithms, typified atNASA Ames by the codeINS3D-LU. This problem exhibits a somewhat limited amount ofparallelism compared to the next two benchmarks. A complete solution of the LU benchmarkrequires 250 iterations. Results are given in Table 7.

  • 5 - 53

    3.2.2: SP Simulated CFD Application (SP) Benchmark

    The second simulated CFD application is called the scalar pentadiagonal (SP) benchmark. Inthis benchmark, multiple independent systems of nondiagonally dominant, scalar pentadiagonalequations are solved. A complete solution of the SP benchmark requires 400 iteration. Results aregiven in Table 8.

    3.2.3: BT Simulated CFD Application (BT) Benchmark

    The third simulated CFD application is called the block tridiagonal (BT) benchmark. In thisbenchmark, multiple independent systems of non-diagonally dominant, block tridiagonalequations with a5x5 block size are solved.

    SP and BT are representative of computations associated with the implicit operators of CFDcodes such asARC3D at NASA Ames. SP and BT are similar in many respects, but there is afundamental difference with respect to the communication to computation ratio. Timings are citedas complete run times, in seconds, as with the other benchmarks. For the BT benchmark, 200iterations are required. Results of BT benchmark are given in Table 9.

    3.3 NPB 1.0 Class C Results

    In Table 10 are given the Class C NPB 1.0 results for EP, MG, CG, FT, LU, SP and BTbenchmarks on CRAY T3E.

    4: Sustained Performance Per Dollar

    One aspect of the relative performance of these systems has not been addressed so far, namelythe differences in price between these systems. One should not be too surprised that the CRAYC90 system, for example, exhibits superior performance rates on these benchmarks, since itscurrent list price is much greater than that of the other systems tested.

    One way to compensate for these price differences is to compute sustained performance permillion dollars,i.e. the performance ratio figures shown in Tables 2 through 9 divided by the listprice in millions. Some figures of this type are shown in Tables 11-13 for Class B LU, SP, and BTbenchmarks, respectively. The table includes the list price of the minimal system (in terms ofmemory per node and number of processors) required to run the full Class B size NPB asimplemented by the vendor. These prices were provided by the vendors and include anyassociated software costs, i.e. operating system, compilers, scientific libraries as required,etc. butdo not include maintenance. Note that some vendors’ standard configurations may includesubstantially more hardware than required for the benchmark.

    5 High Performance Fortran Based NPB

    High Performance Fortran (HPF), the high-level language for parallel Fortran programming, isbased on Fortran 90. HPF was defined by an informal standards committee known as the HighPerformance Fortran Forum (HPFF) in 1993, and modeled on TMC’s CM Fortran language.Several HPF features have since been incorporated into the draft ANSI/ISO Fortran 95, the nextformal revision of the Fortran standard.

    HPF allows users to write a single parallel program that can execute on a serial machine, ashared-memory parallel machine, or a distributed-memory parallel machine. HPF eliminates the

  • 6 - 53

    complex, error-prone task of explicitly specifying how, where, and when to pass messagesbetween processors on distributed-memory machines, or when to synchronize processors onshared-memory machines. HPF is designed in a way that allows the programmer to code anapplication at a high level, and then selectively optimize portions of the code by dropping intomessage-passing or calling tuned library routines as “extrinsics”.

    Compilers supporting High Performance Fortran features first appeared in late 1994 and early1995 from Applied Parallel Research (APR) Digital Equipment Corporation, and The PortlandGroup (PGI). IBM introduced an HPF compiler for the IBM RS/6000 SP in April of 1996. Overthe past year, these implementations have shown steady improvement in terms of both featuresand performance. NAS is working toward a standard set of HPF NPBs which can be used as ameasure of both HPF compilers and hardware systems. In advance of that release we have chosento publish here results achieved using versions of the HPF NPBs developed outside of NAS andsubmitted by APR and PGI. These results can be compared to the MPI results in NPB 2.2 [4] andthe other NPB 1.0 results supplied here to provide perspective on performance currentlyobtainable using HPF versus MPI or versus hand-tuned implementations such as those suppliedby the hardware vendors.

    For more details on HPF, see reference 3 and references therein. HPF NPB results appear inTables 14-18.

    References

    [1] D. H. Bailey, E. Barszcz, J. T. Barton, D. S. Browning, R. L. Carter, L. Dagum, R. A. Fatoohi, P. O. Frederickson, T. A. Lasinski, R. S. Schreiber, H. D. Simon, V. Venkatakrishnan, and S. K. Weeratunga, ‘‘The NAS Parallel Benchmarks,’’ International Journal of Supercomputer Applications, Vol 5, No.3 (Fall1991), pp. 63-73.

    [2] D. H. Bailey, J. Barton, T. Lasinski, and H. D. Simon, eds., “The NAS Parallel Benchmarks,’’NASA Technical Memorandum 103863, NASA Ames Research Center, Moffett Field, CA 94035-1000, July 1993.

    [3] S. Saini, “NAS Experiences of Porting CM Fortran Codes to HPF on IBM SP2 and SGIPower Challenge”, pp. 873-880, inThe Proceedings of IEEE 10th International ParallelProcessing Symposium (IPPS), Honolulu, Hawaii, April 15-19, 1996.

    [4] David Bailey, Tim Harris, William Saphir, Rob van der Wijngaart, Alex Woo, and MauriceYarrow, “The NAS Parallel Benchmarks 2.0”, Report NAS-95-020, December, 1995.

  • 7 - 53

    Table 1: NAS Parallel Benchmarks Problem Size.

    Benchmark Name Abb.

    Class A Class B Class C

    NominalSize

    Operation Count (x 109)

    Mflop/sCRAY

    Y-MP/1

    Nominal Size

    OperationCount(x109)

    Mflop/sCRAYC90/1

    NominalSize

    EmbarrassinglyParallel

    EP 228 26.68 211 230 100.9 689 232

    Multigrid MG 2563 3.905 176 2563 18.81 557 5123

    Conjugate Gradient CG 14x103 1.508 127 75x103 54.89 447 1.5 x 105

    3-D FFT PDE FT 2562x128 5.631 196 512x2562 71.37 645 5123

    Integer Sort IS 223x219 0.7812 68 225x221 3.150 244 227

    LU Simulated CFDAppl.

    LU 643 64.57 194 1023 319.6 711 1623

    SP Simulated CFDAppl.

    SP 643 102.0 216 1023 447.1 648 1623

    BT Simulated CFDAppl.

    BT 643 181.3 229 1023 721.5 705 1623

  • 8 - 53

    Table 2: Results of the Embarrassingly Parallel (EP) benchmark.

    Computer System

    DateReceived

    NumberProcessor

    Class A Class B

    Time in seconds

    Ratio toCRAY

    Y-MP/1

    Time in seconds

    Ratio toCRAYC90/1

    BBN TC2000 Dec 91 64 284.0 0.44 NA NA

    Convex ExemplarSPP1000

    Mar 95 18

    163264

    376.848.124.311.86.1

    0.332.625.19

    10.6920.68

    NA191.096.048.024.5

    NA0.771.533.055.98

    HP/Convex ExemplarSPP2000

    Nov 96 148

    16

    160.941.220.710.5

    0.783.066.10

    12.02

    NANANANA

    NANANANA

    CRAY C90 Feb 95 1248

    16

    36.6218.429.154.612.36

    3.456.85

    13.7927.3753.46

    146.4173.6636.7818.379.35

    1.01.993.987.97

    15.66

    CRAY J916 Feb 95 1248

    16

    169.4486.7043.0921.5410.78

    0.741.462.935.86

    11.70

    675.71340.13170.1585.4943.16

    0.220.430.861.713.39

    CRAY T3D Feb 95 163264

    128256512

    1024

    22.7411.375.682.871.440.720.55

    5.5511.1022.2143.9687.62

    175.24229.40

    91.8345.9222.9511.475.742.872.19

    1.593.196.38

    12.7625.5151.0166.85

    CRAY T3E Nov 96 248

    163264

    128256

    56.228.114.17.03.51.80.90.4

    2.254.498.95

    18.0236.0570.09

    140.19315.43

    224.5112.256.128.114.07.03.51.8

    0.651.312.615.21

    10.4620.9241.8381.34

  • 9 - 53

    CRAY T916 July 95 1248

    18.569.544.772.42

    6.8013.2326.4552.14

    76.1338.1119.129.65

    1.923.847.66

    15.17

    CRAY Y-MP Aug 92 18

    126.1715.87

    1.07.95

    NANA

    NANA

    DEC Alpha Server8400 5/300(300 MHz)

    Oct 95 148

    16

    155.677.9739.1

    19.71

    0.811.613.236.40

    622.22311.9

    156.6978.43

    0.240.470.931.87

    DEC Alpha Server8400 5/440(437 MHz)

    Nov 96 1248

    12

    94.632847.375023.812512.10168.4609

    1.332.665.30

    10.4314.91

    378.3750189.234494.859447.617233.1172

    0.390.771.543.074.42

    Fujitsu VPP500 Aug 94 1248

    163264

    44.2522.3411

    11.245.672.871.460.75

    2.855.65

    11.2322.2643.9686.42

    168.23

    176.6488.7866

    44.5222.3611.265.682.88

    0.831.653.296.5

    13.0025.7850.84

    Fujitsu VX Nov 96 124

    30.331215.31057.3720

    4.168.24

    17.11

    120.948557.690730.4367

    1.212.544.81

    Fujitsu VPP300 Nov 96 1248

    16

    30.331215.31057.37203.92171.9962

    4.168.24

    17.1132.1763.20

    120.948557.690730.436714.60487.7563

    1.212.544.81

    10.0218.88

    Fujitsu VPP700 Nov 96 1246

    1632

    30.331215.31057.37203.92171.99621.0265

    4.168.24

    17.1132.1763.20

    122.91

    120.948557.690730.436714.60487.75633.7444

    1.212.544.81

    10.0218.8839.10

    IBM RS/6000 SPWide-node1 (67 MHz)

    Mar 95 8163264

    128

    19.919.954.982.491.25

    6.3412.6925.3450.67

    100.94

    79.7539.8919.99.954.99

    1.843.677.36

    14.7129.34

    Table 2: Results of the Embarrassingly Parallel (EP) benchmark.

  • 10 - 53

    IBM RS/6000 SPP2SC node (120 MHz)

    Nov 96 8163264

    NANANANA

    NANANANA

    39.8420.0410.025.02

    3.687.31

    14.6129.17

    IBM RS/6000 SPThin-node2 (67 MHz)

    Mar 95 8163264

    128

    20.8210.425.232.621.31

    6.0612.1124.1248.1696.31

    82.9441.4720.7510.375.19

    1.773.537.06

    14.1228.21

    Intel iPSC/860 May 92 3264

    128

    102.751.425.7

    1.232.464.91

    NANANA

    NANANA

    Intel ParagonOSF R 1.2

    Jan 95 64128256512

    1024

    15.29 7.673.872.231.15

    8.2516.4532.6056.58

    109.71

    61.0430.5715.378.934.45

    2.404.799.53

    16.4032.90

    Intel Paragon(SunMos turbo)

    Jan 95 64128256512

    1024

    7.803.93 2.001.12 .59

    16.1832.1063.09

    112.65213.85

    31.1515.607.823.982.05

    4.709.39

    18.6236.7971.42

    Intel Paragon MPOSF R1.3

    Jan 95 64128256512

    8.024.172.261.28

    15.7330.2655.8395.57

    31.4215.888.114.23

    4.669.22

    18.0534.61

    Intel Paragon MP(SunMos turbo)

    Nov 95 64128256512

    5.752.941.540.87

    21.9442.9281.93

    145.02

    22.7011.405.782.98

    6.4512.8425.3449.13

    Kendall Square KSR1 Oct 93 163264

    128

    101.951.426.012.8

    1.232.454.859.86

    NANANANA

    NANANANA

    Kendall Square KSR2 Feb 94May 94

    3264

    24.813.0

    5.099.71

    NA46.6

    NA3.14

    Kyoto/MatsushitaADENART

    Feb 94 256 32.9 3.83 NA NA

    Table 2: Results of the Embarrassingly Parallel (EP) benchmark.

  • 11 - 53

    MasPar MP-1 Aug 92 4K 16K

    248.0 69.3

    0.511.82

    NANA

    NANA

    MasPar MP-2 Nov 92 16K 22.4 5.63 NA NA

    Meiko CS-1 Aug 92 16 116.8 1.08 NA NA

    Meiko CS-2 Oct 94 16326496

    128

    39.3920.4511.007.846.29

    3.206.16

    11.4616.0720.06

    152.8177.2039.4826.8421.16

    0.961.903.715.456.92

    nCUBE-2S Mar 94 64128256512

    1024

    83.841.9320.9710.505.25

    1.513.016.02

    12.0224.03

    336.3168.284.142.121.0

    0.440.871.743.486.97

    NEC SX-3 Oct 94 1 21.27 5.93 NA NA

    NEC SX-4/32 Nov 96 1248

    1632

    NANANANANANA

    NANANANANANA

    89.5644.79

    22.41711.2245.6582.944

    1.633.276.53

    13.0425.8749.73

    Silicon GraphicsPower Challenge XL(75 MHz)

    Oct 94 148

    16

    242.9561.4430.7715.48

    0.522.054.108.15

    973.62245.74122.9861.79

    0.150.601.192.37

    SGIPower Challenge XL(90 MHz)

    May 95 1248

    16

    169.1087.4643.8721.9811.05

    0.751.442.885.74

    11.42

    676.78352.31176.5287.8044.22

    0.220.420.831.673.31

    SGI Origin200(180 MHz)

    Nov 96 124

    110.4756.6829.43

    1.142.234.29

    442.77224.93114.87

    0.330.651.27

    Table 2: Results of the Embarrassingly Parallel (EP) benchmark.

  • 12 - 53

    SGI Origin2000(195 MHz)

    Nov 96 1248

    163132

    101.9351.7025.8313.006.68NA

    3.55

    1.242.444.889.71

    18.89NA

    35.54

    408.25207.22103.4452.0626.71

    NA14.17

    0.360.711.422.815.48NA

    10.33

    Thinking MachinesCM-2

    Oct 91 8K16K32K64K

    126.663.9 33.718.8

    1.001.973.746.71

    NANANANA

    NANANANA

    Thinking MachinesCM-200

    Oct 91 8K16K32K64K

    76.939.220.710.9

    1.643.226.10

    11.58

    NANANANA

    NANANANA

    Thinking MachinesCM-5

    Nov 92 163264

    128256512

    42.421.510.95.42.71.4

    2.985.87

    11.5823.3646.7390.12

    NANANANANANA

    NANANANANANA

    Thinking MachinesCM-5E

    Sep 95 1632

    27.213.6

    4.649.28

    108.554.3

    1.352.70

    Thinking MachinesCM-500

    Sept 95 64128256

    6.93.62.0

    18.2935.0463.09

    27.113.7 7.0

    5.4010.6920.92

    Table 2: Results of the Embarrassingly Parallel (EP) benchmark.

  • 13 - 53

    Table 3: Results of the Multigrid (MG) benchmark.

    Computer System

    DateReceived

    NumberProcessor

    Class A Class B

    Time in seconds

    Ratio toCRAY

    Y-MP/1

    Time in seconds

    Ratio toCRAYC90/1

    Convex ExemplarSPP1000

    Mar 95 18

    163264

    208.029.917.311.0NA

    0.110.741.282.02NA

    NA150.485.152.739.6

    NA0.220.400.640.85

    HP/Convex ExemplarSPP2000

    Nov. 96 148

    16

    28.18.05.34.3

    0.792.784.195.17

    NANANANA

    NANANANA

    CRAY C90 Feb 95 1248

    16

    7.273.711.921.100.71

    3.065.99

    11.5820.2031.30

    33.7817.248.894.593.43

    1.001.963.807.369.85

    CRAY EL Aug 92 148

    89.1927.9422.30

    0.25 0.800.95

    NANANA

    NANANA

    CRAY J916 Feb 95 1248

    16

    39.0820.5210.755.883.82

    0.571.092.073.782.06

    184.8894.7148.6926.6016.12

    0.180.360.691.272.10

    CRAY T3D Feb 95 163264

    128256512

    1024

    13.786.402.611.360.740.390.25

    1.613.478.51

    16.3430.0356.9788.88

    66.5830.1012.566.573.371.741.15

    0.511.112.695.14

    10.0219.4129.38

    CRAY T3E Nov 96 248

    163264

    128256

    NA11.25.62.81.50.80.40.2

    NA1.983.977.94

    14.8127.7855.55111.1

    NA52.726.413.47.03.82.01.1

    NA0.641.282.524.838.89

    16.8930.71

  • 14 - 53

    CRAY T916 July 95 1248

    4.432.281.270.99

    5.029.75

    17.5022.44

    20.3010.505.544.06

    1.663.226.108.32

    CRAY Y-MP Aug 92 18

    22.222.96

    1.007.51

    NANA

    NANA

    Fujitsu VPP500 Mar 95 48

    1632

    1.440.750.420.26

    15.4329.6352.9085.46

    6.813.592.011.26

    4.969.41

    16.8126.81

    Fujitsu VX Nov 96 4 1.38 16.10 6.58 5.13

    Fujitsu VPP300 Nov 96 48

    16

    1.380.750.41

    6.1029.6354.20

    6.583.591.95

    5.139.41

    17.32

    Fujitsu VPP700 Nov 96 48

    1632

    1.380.750.410.25

    6.1029.6354.2088.88

    6.583.591.951.30

    5.139.41

    17.3225.98

    IBM SP-1 Mar 94 8163264

    17.509.495.102.89

    1.272.344.367.69

    82.0344.57 24.3713.86

    0.410.761.392.44

    IBM RS/6000 SPWide-node1 (67 MHz)

    Oct 94 8163264

    128

    6.043.171.690.950.53

    3.687.01

    13.1523.3941.92

    27.9214.587.724.362.46

    1.212.324.387.75

    13.73

    IBM RS/6000 SPP2SC node (120 MHz)

    Nov 96 8163264

    NANANANA

    NANANANA

    17.009.024.912.91

    1.993.756.88

    11.61

    IBM RS/6000 SPThin-node2 (67 MHz)

    Feb 95 8163264

    128

    7.183.741.991.120.63

    3.095.94

    11.1719.8435.27

    32.7317.139.145.202.95

    1.041.973.966.50

    11.45

    Intel iPSC/860 Aug 92 128 8.6 2.58 NA NA

    Table 3: Results of the Multigrid (MG) benchmark.

  • 15 - 53

    Intel Paragon MP(OSF1.3)

    Jan 95 64128256

    6.13.532.48

    3.646.298.96

    28.715.910.4

    1.182.123.24

    Intel Paragon( SunMos )

    Jan 95 64128256512

    7.724.052.351.75

    2.885.499.46

    12.70

    36.919.511.4 8.51

    0.921.732.963.97

    Intel Paragon(SunMos Turbo)

    Nov 95 64128256512

    5.853.171.871.46

    3.87.01

    11.8815.22

    27.915.29.057.01

    1.212.223.734.82

    Intel Paragon MP SunMos Turbo

    Jan 95 64128256512

    4.832.781.671.37

    4.607.99

    13.3116.22

    23.313.48.126.72

    1.452.524.165.03

    Kendall Square KSR1 Feb 94 3264

    128

    19.710.35.6

    1.132.163.97

    NANANA

    NANANA

    Kendall Square KSR2 Feb 94May 94

    32 64

    10.35.7

    2.20 3.90

    NA26.1

    NA1.29

    MasPar MP-1 Aug 92 16K 12.0 1.86 NA NA

    MasPar MP-2 Nov 92 16K 4.36 5.09 NA NA

    Meiko CS-1 Aug 92 16 42.8 0.52 NA NA

    Meiko CS-2 Oct 94 16 64128

    7.602.351.43

    2.93 9.8315.54

    35.4610.766.55

    0.953.145.16

    NEC SX-3 Oct 94 1 2.80 7.94 13.16 2.57

    NEC SX-4/32 Nov 96 1248

    1632

    NANANANANANA

    NANANANANANA

    19.289.765.002.631.460.95

    1.753.466.76

    12.8423.1435.56

    Table 3: Results of the Multigrid (MG) benchmark.

  • 16 - 53

    nCUBE-2S Mar 94 64128512

    1024

    37.619.2 5.3 2.8

    0.591.164.197.94

    NANANANA

    NANANANA

    SGIPower Challenge90 MHz

    Oct 95 1248

    16

    37.9720.0310.63 6.55 5.71

    0.591.112.093.393.89

    176.22 93.3049.4530.4326.30

    0.190.360.681.111.28

    SGI Origin200(180 MHz)

    Nov 96 124

    34.6921.7712.89

    0.641.021.72

    245.09151.0477.05

    0.140.220.44

    SGI Origin2000(195 MHz)

    Nov 96 1248

    163132

    30.1417.7510.676.003.34NA

    2.12

    0.741.252.083.706.65NA

    10.48

    194.88113.7956.1928.4115.03

    NA8.61

    0.170.300.601.192.25NA

    3.92

    Thinking MachinesCM-2

    Dec 91 16K32K64K

    45.826.014.1

    0.490.851.58

    NANANA

    NANANA

    Thinking MachinesCM-200

    Dec 91 16K32K

    30.217.2

    0.741.29

    NANA

    NANA

    Thinking MachinesCM-5

    Aug 93 3264

    128

    19.510.96.1

    1.142.033.64

    NANANA

    NANANA

    Thinking MachinesCM-5E

    Sep 95 1632

    7.73.8

    2.895.85

    36.118.7

    0.941.81

    Thinking MachinesCM-500

    Sep 95 64128256

    2.21.410.91

    10.115.7624.42

    10.66.23.9

    3.195.498.67

    Table 3: Results of the Multigrid (MG) benchmark.

  • 17 - 53

    Table 4: Results of the Conjugate Gradient (CG) benchmark.

    Computer System

    DateReceived

    .NumberProcessor

    Class A Class B

    Time in seconds

    Ratio toCRAYY-MP/1

    Time in seconds

    Ratio toCRAYC90/1

    BBN TC2000 Dec 91 40 51.4 0.23 NA NA

    Convex ExemplarSPP1000

    Mar 95 18

    163264

    202.922.28.944.30NA

    0.060.541.332.77NA

    NANA

    837.0485.4292.1

    NANA

    0.150.250.42

    HP/Convex ExemplarSPP2000

    Nov 96 148

    16

    37.79.85.02.7

    0.321.222.384.41

    NANANANA

    NANANANA

    CRAY C90 Feb 95 1248

    16

    3.431.790.950.530.34

    3.486.66

    12.5522.4935.06

    122.9063.1133.2518.1110.61

    1.001.953.706.79

    11.58

    CRAY EL Sep 93 148

    45.2414.2910.14

    0.260.831.18

    NANANA

    NANANA

    CRAY J916 July 95 1248

    16

    15.938.424.422.611.68

    0.751.422.704.577.10

    532.03293.24150.9280.6742.86

    0.230.420.811.522.87

    CRAY T3D Feb 95 163264

    128256512

    1024

    14.377.443.932.111.210.720.58

    0.831.603.035.659.85

    16.5620.55

    570.11291.30158.8182.0747.1527.3416.58

    0.220.420.771.502.614.507.41

  • 18 - 53

    CRAY T3E Nov 96 128

    163264

    128256

    NANA6.52.91.60.90.60.4

    NANA

    1.834.117.45

    13.2419.8729.80

    802.3404.5205.6107.159.333.822.922.2

    0.150.300.601.152.073.645.375.54

    CRAY T916 July 95 148

    16

    1.951.100.580.38

    6.1110.8420.5531.37

    73.9837.7919.6511.43

    1.663.256.25

    10.75

    CRAY Y-MP Aug 92 18

    11.922.38

    1.005.01

    NANA

    NANA

    Fujitsu VPP500 Aug 94 1248

    151630

    5.683.061.721.04NA

    0.80NA

    2.103.906.93

    11.46NA

    14.90NA

    NA104.5155.4031.8020.85

    NA15.21

    NA1.182.223.865.89NA

    8.08

    Fujitsu VX Nov 96 124

    5.87033.18021.8185

    2.033.756.55

    NA104.140857.8277

    NA1.182.13

    Fujitsu VPP300 Nov 96 1248

    1516

    5.87033.18021.81851.0656

    NA0.7514

    2.033.756.55

    11.19NA

    15.86

    NA104.140857.827732.060519.7696

    NA

    NA1.182.133.836.22NA

    Fujitsu VPP700 Nov 96 1248

    15163035

    5.87033.18021.81851.0656

    NA0.7514

    NA0.6726

    2.033.756.55

    11.19NA

    15.8NA

    17.72

    NA104.140857.827732.060519.7696

    NA13.4585

    NA

    NA1.182.133.836.22NA

    9.13NA

    Table 4: Results of the Conjugate Gradient (CG) benchmark.

  • 19 - 53

    IBM SP-1 Feb 94 8163264

    21.3712.827.984.72

    0.560.931.492.53

    NA 638.2362.9193.4

    NA 0.190.340.64

    IBM RS/6000 SPWide-node1 (67 MHz)

    Mar 94 8163264

    128

    4.913.092.091.6

    1.38

    2.433.865.707.458.64

    156.2188.4

    52.5333.7925.44

    0.791.392.343.644.83

    IBM RS/6000 SPP2SC node (120 MHz)

    Nov 96 8163264

    NANANANA

    NANANANA

    115.8862.2136.2222.71

    1.061.983.395.41

    IBM RS/6000 SPThin-node2 (67 MHz)

    Mar 95 8163264

    128

    5.603.482.341.721.48

    2.133.435.096.938.05

    234.46120.2367.1638.5228.50

    0.521.021.833.194.31

    Intel iPSC/860 Sep 93 128 7.0 1.70 NA NA

    Intel Paragon(OSF1.2)

    Mar 94 64128256512

    4.103.302.83NA

    2.913.614.21NA

    NA132.570.0 47.6

    NA0.931.762.58

    Intel Paragon(SunMos)

    Nov 95 64128256512

    3.592.76 2.44

    NA

    3.324.314.89NA

    NA125.4 63.640.5

    NA0.981.933.03

    Kendall Square KSR1 Feb 94 3264

    19.013.4

    0.630.89

    NANA

    NANA

    Kendall Square KSR2 Feb 94 3264

    9.8 6.1

    1.221.95

    NA182.0

    NA0.67

    MasPar MP-1 Aug 92 4K16K

    64.514.6

    0.180.82

    NANA

    NANA

    MasPar MP-2 Nov 92 16K 11.0 1.08 NA NA

    Meiko CS-1 Aug 92 16 67.5 0.18 NA NA

    Meiko CS-2 Oct 94 1632

    7.185.60

    1.662.13

    248.30156.50

    0.490.79

    Table 4: Results of the Conjugate Gradient (CG) benchmark.

  • 20 - 53

    nCUBE-2S Mar 94 64128256512

    1024

    29.616.9 9.66.24.1

    0.400.7 11.241.922.91

    NANANANANA

    NANANANANA

    NEC SX-4/32 Nov 96 124

    NANANA

    NANANA

    81.7745.1226.31

    1.502.724.67

    Silicon GraphicsPower Challenge XL(75 MHz)

    Oct 94 1248

    16

    39.016.97.24.53.5

    0.310.711.662.653.41

    NANANANANA

    NANANANANA

    SGIPower Challenge(90 MHz)

    May 95

    Oct 95

    1248

    16

    35.1419.588.794.032.54

    0.340.611.352.964.69

    NANANANANA

    NANANANANA

    SGI Origin200(180 MHz)

    Nov 96 124

    31.3818.679.76

    0.380.641,22

    1731.181002.32624.62

    0.070.120.20

    SGI Origin2000(195 MHz)

    Nov 96 1248

    1631

    26.8914.376.233.022.04NA

    0.440.831.913.955.84NA

    1538.71851.82490.76283.19156.5779.65

    0.080.140.250.430.781.54

    Thinking MachinesCM-2

    Mar 92 8K16K32K

    25.614.1 8.8

    0.470.851.35

    NANANA

    NANANA

    Thinking MachinesCM-5

    Aug 93 32 64128

    20.710.66.2

    0.581.121.92

    NANANA

    NANANA

    Thinking MachinesCM-5E

    Sep 95 1632

    13.58.0

    0.881.49

    454251

    0.270.49

    Thinking MachinesCM-500

    Sep 95 64128256

    5.43.93.4

    2.213.063.51

    14991 62

    0.821.351.98

    Table 4: Results of the Conjugate Gradient (CG) benchmark.

  • 21 - 53

    Table 5: Results of the 3-D FFT PDE (FT) benchmark.

    Computer System

    DateReceived

    NumberProcessor

    Class A Class B

    Time in seconds

    Ratio toCRAY

    Y-MP/1

    Time in seconds

    Ratio toCRAYC90/1

    Convex ExemplarSPP1000

    Mar 95 18

    1632

    178.625.520.513.9

    0.161.131.402.07

    NA375.4

    NANA

    NA0.29NANA

    CRAY C90 Feb 95 1248

    16

    8.954.532.291.290.80

    3.216.35

    12.5622.3035.96

    110.6055.7527.9514.127.65

    1.001.983.967.83

    14.46

    CRAY EL May 93 148

    105.127.918.5

    0.271.031.56

    NANANA

    NANANA

    CRAY J916 July 95 1248

    16

    42.8422.0811.215.803.41

    0.671.302.574.978.44

    530.06267.92134.9270.5138.06

    0.210.410.821.572.91

    CRAY T3D Feb 95 163264

    128256512

    1024

    11.805.902.991.520.770.510.32

    2.444.879.62

    18.9337.3656.4189.91

    NANA

    40.5720.6810.776.443.76

    NANA

    2.735.35

    10.2717.1729.41

    CRAY T3E Nov 96 248

    163264

    128256

    28.914.47.33.71.91.00.50.2

    1.002.003.947.78

    15.1428.7757.54

    143.85

    NANA

    86.243.121.811.05.52.8

    NANA

    1.282.575.07

    10.0520.1139.5

  • 22 - 53

    CRAY T916 July 95 1248

    5.232.671.400.98

    5.5010.7820.5529.36

    64.8132.3916.659.48

    1.713.416.64

    11.67

    CRAY Y-MP Aug 92 18

    28.774.19

    1.06.87

    NANA

    NANA

    Fujitsu VPP500 Sept 95 1248

    163264

    11.255.672.881.440.750.400.24

    2.565.079.99

    19.9838.3671.93

    119.88

    NANA

    31.2115.927.944.072.18

    NANA

    3.546.95

    13.9127.1750.73

    Fujitsu VX Nov 96 124

    6.32724.37882.2557

    4.556.57

    12.75

    NA49.688524.5128

    NA2.234.51

    Fujitsu VPP300 Nov 96 1248

    16

    6.32724.37882.25571.14910.6005

    4.556.57

    12.7525.0447.91

    NA49.688524.512812.37586.3013

    NA2.234.518.94

    17.55

    Fujitsu VPP700 Nov 96 1248

    1632

    6.32724.37882.25571.14910.60050.3345

    4.556.57

    12.7525.0447.9186.01

    NA49.688524.512812.37586.30133.2577

    NA2.234.518.94

    17.5533.95

    IBM SP-1 Feb 94 8163264

    43.6822.8612.086.46

    0.661.262.384.45

    NA286.5143.274.5

    NA0.390.771.49

    IBM RS/6000 SPWide-node1 (67 MHz)

    Oct 94 8163264

    128

    13.317.173.962.191.23

    2.164.017.2713.4

    23.39

    NA91.8

    47.2326.0514.52

    NA1.202.344.257.62

    Table 5: Results of the 3-D FFT PDE (FT) benchmark.

  • 23 - 53

    IBM RS/6000 SPP2SC node (120 MHz)

    Nov 96 8163264

    NANANANA

    NANANANA

    83.2440.5221.0715.07

    1.332.735.257.34

    IBM RS/6000 SPThin-node2 (67 MHz)

    Mar 95 8163264

    128

    14.788.094.312.391.30

    1.953.566.68

    12.0422.13

    NA101.0351.3828.0215.68

    NA1.092.153.957.05

    Intel iPSC/860 Dec 91Apr 92

    64128

    20.99.7

    1.38 2.97

    NANA

    NANA

    Intel ParagonOSF R 1.2

    Nov 95 163264

    128256

    24.712.996.833.853.46

    1.162.214.217.478.32

    NANA

    83.642.0725.93

    NANA

    1.322.634.27

    Intel ParagonSunMos

    Nov 95 163264

    128256512

    20.4610.545.473.132.82NA

    1.412.735.269.19

    10.20NA

    NANA

    60.932.1518.6616.17

    NANA

    1.823.445.936.84

    Intel Paragon MPR1.3

    Nov 95 163264

    128256

    17.69.525.162.932.73

    1.633.025.589.82

    10.54

    NANA

    60.931.0

    19.87

    NANA

    1.823.575.57

    Intel Paragon MPSunMos Turbo

    Nov 95 64 128256512

    3.872.382.201.92

    7.4312.0913.0814.98

    41.822.7614.212.4

    2.654.867.798.92

    Kendall Square KSR1 Feb 94 3264

    16.29.2

    1.783.13

    NANA

    NANA

    Kendall Square KSR2 Feb 94May 94

    3264

    9.06.5

    3.204.43

    NA124.0

    NA0.89

    Kyoto/MatsushitaADENART

    Feb 94 256 72.7 0.4 NA NA

    Table 5: Results of the 3-D FFT PDE (FT) benchmark.

  • 24 - 53

    MasPar MP-1 Aug 92 16K 18.3 1.57 NA NA

    MasPar MP-2 Nov 92 16K 8.0 3.60 NA NA

    Meiko CS-1 Aug 92 16 170.0 0.17 NA NA

    Meiko CS-2 Oct 94 16 3264

    12.677.174.53

    2.274.016.35

    NA82.7148.04

    NA1.342.30

    nCUBE-2S Mar 94 64128256512

    1024

    62.832.916.08.44.1

    0.460.871.8

    3.437.02

    NANANANANA

    NANANANANA

    NEC SX-3 Oct 94 1 2.79 10.31 37.52 2.95

    NEC SX-4/32 Nov 96 1248

    1632

    NANANANANANA

    NANANANANANA

    56.5728.1414.798.034.743.14

    1.963.937.48

    13.7723.3335.22

    Silicon GraphicsPower Challenge XL(75 MHz)

    Oct 94 1248

    16

    61.1735.5319.9812.5711.18

    0.470.811.442.292.57

    761.67414.52223.97130.15110.37

    0.150.270.490.851.00

    SGIPower Challenge(90 MHz)

    May 95 1248

    16

    51.8927.4916.6410.479.23

    0.551.051.732.753.12

    642.3331.5181.4110.693.9

    0.170.330.611.001.18

    SGI Origin200(180 MHz)

    Nov 96 124

    66.5635.5118.61

    0.430.811.55

    NANANA

    NANANA

    Table 5: Results of the 3-D FFT PDE (FT) benchmark.

  • 25 - 53

    SGI Origin2000(195 MHz)

    Nov 96 1248

    1632

    55.4329.5315.568.054.553.16

    0.520.971.853.576.329.10

    810.41419.72215.95108.4254.8828.66

    0.140.260.511.022.023.85

    Thinking MachinesCM-2

    Dec 91 16K 32K64K

    37.018.211.4

    0.781.582.52

    NANANA

    NANANA

    Thinking MachinesCM-200

    Dec 91 8K 45.6 0.63 NA NA

    Thinking MachinesCM-5

    Aug 93 32 64

    128

    14.97.96.6

    1.933.644.36

    NANANA

    NANANA

    Thinking MachinesCM-5E

    Sep 95

    Feb 94

    1632 64

    128

    12.86.73.92.9

    2.254.297.389.92

    16082.046.034.0

    0.691.352.403.25

    Thinking MachinesCM-500

    Sep 95 64 128256

    3.51.961.33

    8.2214.6721.63

    41.922.513.2

    2.644.928.38

    Table 5: Results of the 3-D FFT PDE (FT) benchmark.

  • 26 - 53

    Table 6: Results of the Integer Sort (IS) benchmark.

    Computer System Date

    ReceivedNumber

    Processor

    Class A Class B

    Time in seconds

    Ratio toCray

    Y-MP/1

    Time in seconds

    Ratio toCrayC90/1

    Convex ExemplarSPP1000

    Mar 95 18

    83.210.1

    0.141.13

    NA43.5

    NA0.30

    HP/Convex ExemplarSPP2000

    Nov 96 148

    16

    30.67.043.492.21

    0.371.633.285.19

    NANANANA

    NANANANA

    CRAY C90 Feb 95 1248

    16

    3.331.640.850.460.27

    3.446.99

    13.4824.9142.44

    12.926.503.301.730.98

    1.01.993.927.47

    13.18

    CRAY EL Sep 93 148

    43.7612.99 8.45

    0.260.881.35

    NANANA

    NANANA

    CRAY J916 July 95 1248

    16

    13.757.023.812.211.63

    0.831.633.005.197.03

    54.4127.9613.937.604.91

    0.240.460.931.702.63

    CRAY T3D Feb 95 163264

    128256512

    1024

    7.073.892.091.050.550.310.44

    1.622.955.48

    10.9120.8436.9726.05

    NA16.578.744.562.361.331.22

    NA0.781.482.835.479.71

    10.59

  • 27 - 53

    CRAY T3E Nov 96 248

    163264

    128256

    16.98.14.02.21.20.60.30.2

    0.681.422.875.219.55

    19.1038.2057.30

    NA38.918.69.85.12.91.60.8

    NA0.330.691.322.534.468.08

    16.15

    CRAY T916 July 95 1248

    2.021.020.520.38

    5.6711.2422.0430.16

    7.443.741.921.41

    1.743.456.739.16

    CRAY Y-MP Aug 92 18

    11.461.85

    1.006.19

    NANA

    NANA

    Fujitsu VPP500 Apr 94 1248

    2.1891.5741.0980.917

    5.247.28

    10.4412.50

    NANA

    3.703.03

    NANA

    3.494.26

    Fujitsu VX Nov 96 124

    2.39681.80381.2519

    4.786.359.15

    9.19646.08754.1363

    1.412.123.12

    Fujitsu VPP300 Nov 96 1248

    16

    2.39681.80381.25191.12491.0204

    4.786.359.15

    10.1911.23

    9.19646.08754.13633.19592.7231

    1.412.123.124.044.74

    Fujitsu VPP700 Nov 96 1248

    1632

    2.39681.80381.25191.12491.02040.9839

    4.786.359.15

    10.1911.2311.64

    9.19646.08754.13633.19592.72312.7211

    1.412.123.124.044.744.75

    IBM SP-1 Feb 94 8163264

    16.818.855.043.06

    0.681.29 2.273.75

    NA 37.320.111.2

    NA0.350.641.15

    Table 6: Results of the Integer Sort (IS) benchmark.

  • 28 - 53

    IBM RS/6000 SPWide-node1 (67 MHz)

    Mar 95 8163264

    128

    4.932.651.540.890.59

    2.324.327.44

    12.8819.42

    19.7510.605.923.411.98

    0.651.222.183.796.53

    IBM RS/6000 SPP2SC node (120 MHz)

    Nov 96 8163264

    NANANANA

    NANANANA

    11.165.853.201.75

    1.162.214.047.38

    IBM RS/6000 SPThin-node2 (67 MHz)

    Feb 95 8163264

    128

    5.162.891.660.910.61

    2.223.976.90

    12.5918.79

    20.7911.466.373.582.05

    0.621.132.033.616.30

    Intel iPSC/860 May 92 3264

    128

    25.717.313.6

    0.450.660.84

    NANANA

    NANANA

    Intel Paragon(OSF1.2)

    Mar 94 3264

    128256512

    7.814.342.41NANA

    1.472.644.76NANA

    NA17.339.525.94 4.69

    NA0.751.362.182.75

    Intel Paragon(SunMos)

    Mar 94 3264

    128

    5.483.772.29

    2.093.045.00

    NA11.987.22

    NA1.081.79

    Kendall Square KSR1 Feb 94 3264

    10.86.6

    1.06 1.74

    NANA

    NANA

    Kendall Square KSR2 Feb 94May 94

    3264

    7.03.9

    1.642.94

    NA20.3

    NA0.64

    Kyoto/MatsushitaADENART

    Feb 94 256 46.6 0.25 NA NA

    MasPar MP-1 Jan 93 16K 11.5 1.00 NA NA

    MasPar MP-2 Jan 93 16K 7.7 1.49 NA NA

    Meiko CS-1 Aug 92 16 62.7 0.18 NA NA

    Table 6: Results of the Integer Sort (IS) benchmark.

  • 29 - 53

    nCUBE-2S Mar 94 64128256512

    1024

    23.2 12.0 6.13.21.7

    0.490.961.883.58 6.74

    NA47.5NA

    12.5 6.5

    NA0.27NA

    1.031.99

    NEC SX-4/32 Nov 96 1248

    16

    NANANANANA

    NANANANANA

    6.773.50

    1.8771.1390.896

    1.913.696.88

    11.3414.42

    SGIPower Challenge(90 MHz)

    Oct 95 1248

    20.011.97.15.0

    0.570.961.612.29

    NANANANA

    NANANANA

    SGI Origin200(180 MHz)

    Nov 96 124

    17.269.184.89

    0.661.252.34

    235.05154.2879.18

    0.0550.0840.16

    SGI Origin2000(195 MHz)

    Nov 96 1248

    1632

    13.667.073.802.141.341.21

    0.841.623.025.368.559.47

    104.4854.3627.2515.098.895.76

    0.120.240.470.861.452.24

    Thinking MachinesCM-200

    Dec 91 64K 5.7 2.01 NA NA

    Thinking MachinesCM-5

    Aug 93 3264

    128

    43.124.2 12.0

    0.270.470.96

    NANA

    NANANA

    Thinking MachinesCM-5E

    Sep 95

    Feb 94

    163264

    128

    11.96.13.1

    1.66

    0.961.88 3.706.90

    NA31.416.4 8.4

    NA0.41 0.791.54

    Thinking MachinesCM-500

    Sep 95 64128256

    3.161.67 1.16

    3.636.869.88

    16.18.2 4.3

    0.801.583.0

    Table 6: Results of the Integer Sort (IS) benchmark.

  • 30 - 53

    Table 7: Results of the LU CFD Application (LU)benchmark..

    ComputerSystem

    DateReceived

    No.Proc.

    Class A Class B

    Time in seconds

    Ratio toCray

    YMP/1

    Time in seconds

    Ratio toCrayC90/1

    BBN TC2000 Dec 91 62 3032.0 0.11 NA NA

    Convex ExemplarSPP1000

    Mar 95 18

    1632

    2668331 196 126

    0.131.001.702.65

    NA1492827

    465.9

    NA0.300.540.9

    CRAY C90 Feb 95 1248

    16

    119.7862.2932.2017.1510.17

    2.785.35

    10.3619.4532.79

    449.54231.98121.2663.0337.93

    1.001.943.717.13

    11.85

    CRAY EL Aug 92 148

    1449.0522.3351.6

    0.23 0.64 0.95

    NANANA

    NANANA

    CRAY J916 July 95 1248

    16

    492.83254.94135.0772.7347.59

    0.681.312.474.517.01

    1994.051024.74526.29286.17170.26

    0.230.440.851.572.64

    CRAY T3D Feb 95 163264

    128256512

    1024

    205.69106.8955.3228.7115.949.027.09

    1.623.126.03

    11.6220.9236.9747.04

    844.53451.18233.45120.5365.0636.3920.77

    0.531.001.933.736.9

    12.3521.64

  • 31 - 53

    CRAY T3E Nov 96 248

    163264

    128256

    356.4179.290.246.924.012.97.14.2

    0.941.863.707.11

    13.9025.8546.9779.41

    1497.4728.9365.8185.195.951.529.516.8

    0.300.621.232.434.698.73

    15.2426.76

    CRAY T916 July 95 1248

    16

    82.6746.9123.6815.74

    NA

    4.037.11

    14.0821.19

    NA

    293.38149.3377.9543.1328.26

    1.533.015.77

    10.4215.91

    CRAY Y-MP Aug 92 18

    333.549.5

    1.006.74

    NANA

    NANA

    DEC Alpha Server8400 5/300(300 MHz)

    Oct 95 1248

    12

    528.6301.77158.7891.7279.13

    0.631.112.103.644.21

    2304.91350.0691.8

    376.23296.19

    0.200.330.651.191.51

    DEC Alpha Server8400 5/440(437 MHz)

    Nov 96 1248

    378.61219.41115.8367.965

    0.881.522.884.91

    1684.47987.54500.12271.32

    0.270.460.901.66

    Fujitsu VPP500 Oct 95 123468

    161734

    101.96061.409

    NA35.789

    NA21.04113.944

    NANA

    3.275.43NA

    9.31NA

    15.8523.92

    NANA

    414.82242.23175.20

    NA97.851

    NANA

    43.64428.095

    1.081.862.57NA

    4.59NANA

    10.3016.00

    Fujitsu VX Nov 96 1234

    77.73250.880

    NA30.500

    4.296.55NA

    10.93

    297.94190.00138.34

    NA

    1.512.373.25NA

  • 32 - 53

    Fujitsu VPP300 Nov 96 123468

    16

    77.73250.880

    NA30.500

    NA18.44412.553

    4.296.55NA

    10.93NA

    18.0826.57

    297.94190.00138.34

    NA78.026

    NANA

    1.512.373.25NA

    5.76NANA

    Fujitsu VPP700 Nov 96 123468

    161732

    77.73250.880

    NA30.500

    NA18.44412.553

    NA10.063

    4.296.55NA

    10.93NA

    18.0826.57

    NA33.14

    297.94190.00138.34

    NA78.026

    NANA

    36.736NA

    1.512.373.25NA

    5.76NANA

    12.24NA

    IBM SP-1 Feb 94 8163264

    291.4172.9101.863.2

    1.141.933.285.28

    NA604.8348.1207.5

    NA0.741.292.17

    IBM RS/6000 SPWide-node1 (67 MHz)

    Mar 95 8163264

    128

    112.564.636.522.715.2

    2.965.169.14

    14.6921.94

    429.8234.4129.776.847.8

    1.051.923.475.859.4

    IBM RS/6000 SPWide-node2 (77 MHz)

    Oct 95 18

    163264

    501.580.8148.3629.4119.20

    0.674.136.90

    11.3417.37

    2066.6311.53171.7998.0459.45

    0.221.442.624.59 7.56

    IBM RS/6000 SPP2SC node (120 MHz)

    Nov 96 8163264

    NANANANA

    NANANANA

    236.64126.7773.1642.89

    1.903.556.14

    10.48

    IBM RS/6000 SPThin-node1 (67 MHz)

    Mar 95 8163264

    128

    120.870.940.124.515.9

    2.764.708.32

    13.6120.97

    477.3255.4141.382.951.2

    0.941.763.185.428.78

    Intel iPSC/860 Mar 91 64128

    690.8 442.5

    0.480.75

    NANA

    NANA

  • 33 - 53

    Intel Paragon (OSF1.2) Jul 94 64128256512

    190.0118.075.0NA

    1.762.834.45NA

    675.0406.0254.0175.0

    0.671.111.772.57

    Kendall Square KSR1 Feb 94 3264

    128

    341.0199.0155.0

    0.981.682.15

    NANANA

    NANANA

    Kendall Square KSR2 Feb 94May 94

    32 64

    172.0102.0

    1.933.27

    NA424.0

    NA1.06

    MasPar MP-1 Aug 92 4K 1580.0 0.21 NA NA

    MasPar MP-2 Nov 92 4K 463.5 0.72 NA NA

    Meiko CS-1 Aug 92 16 2937.0 0.11 NA NA

    nCUBE-2S Mar 94 64128256512

    1024

    1322.0712.5389.1226.1134.1

    0.250.47 0.861.482.49

    NANANANANA

    NANANANANA

    NEC SX-4/32 Nov 96 1248

    161732

    NANANANANANANA

    NANANANANANANA

    291.06148.2977.24643.08727.15125.29420.909

    1.543.035.82

    10.4316.5617.7721.50

    Silicon GraphicsPower Challenge XL(75 MHz)

    Oct 94 148

    16

    604.0231.8111.765.3

    0.551.442.995.11

    2617.91010.5550.2308.1

    0.170.440.821.46

    SGIPower Challenge - XL(90 MHz)

    Oct 94 1248

    16

    549.02356.73188.33101.0065.90

    0.610.931.773.305.06

    2439.901500.30774.93419.90292.02

    0.180.300.581.071.54

    SGI Origin200(180 MHz)

    Nov 96 124

    397.30206.52114.39

    0.841.612.92

    1873.60958.01519.32

    0.240.470.87

  • 34 - 53

    SGI Origin2000(195 MHz)

    Nov 96 1248

    162531

    351.35181.3997.5250.5629.91

    NA18.93

    0.951.843.426.60

    11.15NA

    17.62

    1522.30777.43401.80221.32130.4189.75

    NA

    0.300.581.122.033.455.01NA

    Thinking MachinesCM-2

    Mar 91 8K16K32K

    1307.0850.0546.0

    0.260.39 0.61

    NANANA

    NANANA

    Thinking MachinesCM-5

    Aug 93 3264

    128

    418.0272.0171.0

    0.801.231.95

    NANANA

    NANANA

    Thinking MachinesCM-5E

    Sep 95

    Feb 94

    163264

    128

    25614397.065.0

    1.302.333.445.13

    957533

    367.0318.0

    0.470.841.221.41

    Thinking MachinesCM-500

    Sep 95 64128256

    90 6143

    3.715.477.76

    336247149

    1.341.823.02

  • 35 - 53

    Table 8: Results of the SP simulated CFD application (SP) benchmark.

    Computer System

    DateReceived

    NumberProcessor

    Class A Class B

    Time in seconds

    Ratio toCray

    YMP/1

    Time in seconds

    Ratio toCrayC90/1

    BBN TC2000 Dec 91 112 880.0 0.54 NA NA

    Convex Exemplar SPP1000

    Mar 95 18

    163264

    2533345228144102

    0.191.372.073.274.62

    NA15841068697.4449.5

    NA0.440.650.991.5

    HP/Convex Exemplar SPP2000

    Nov 96 148

    16

    770.9198.6101.656.6

    0.612.374.648.33

    NANANANA

    NANANANA

    CRAY C90 Feb 95 1248

    16

    174.5087.3244.7522.7412.82

    2.705.40

    10.5420.7336.78

    689.60345.57175.8590.8052.22

    1.002.003.927.59

    13.21

    CRAY EL Aug 92 148

    2025.7601.9488.4

    0.23 0.78 0.97

    NANANA

    NANANA

    CRAY J916 July 95 1248

    16

    870.47436.91226.66118.3077.54

    0.541.082.083.996.08

    3728.691927.50941.08521.73316.58

    0.180.360.731.322.18

    CRAY T3D Feb 95 163264

    128256512

    1024

    202.11104.1053.2627.5414.718.915.41

    2.334.538.85

    17.1232.0552.9287.15

    818.07463.62233.52130.4574.8942.6325.23

    0.841.492.955.299.21

    16.1827.33

  • 36 - 53

    CRAY T3E Nov 96 248

    163264

    128256

    621.9313.0157.579.839.220.411.26.0

    0.761.513.005.91

    12.0323.1142.1078.58

    2427.71230.5611.7312.9162.785.548.126.9

    0.280.561.132.204.248.07

    14.3425.64

    CRAY T916 Jul 95 1248

    16

    112.3756.4630.4218.69

    NA

    4.208.35

    15.5025.23

    NA

    427.56214.63113.0260.6140.59

    1.613.216.10

    11.3816.99

    CRAY Y-MP Aug 92 18

    471.564.6

    1.017.30

    NANA

    NANA

    DEC Alpha Server8400 5/300(300 MHz)

    Mar 95 148

    12

    749.61199.17118.04102.75

    0.632.373.994.59

    3448.10904.45452.13364.54

    0.200.761.531.89

    DEC Alpha Server8400 5/440(437 MHz)

    Nov 96 1248

    575.80290.83153.8991.430

    0.821.623.065.16

    2569.51294.9661.45363.35

    0.270.531.041.90

    Fujitsu VPP500 Mar 95 12468

    161732345164

    99.30961.58832.114

    NA16.3998.5761

    NA4.5355

    NANA

    2.5483

    4.757.66

    14.68NA

    28.7554.98

    NA103.96

    NANA

    185.03

    404.08241.23127.4883.71064.930

    NA30.474

    NA15.67410.654

    NA

    1.712.865.418.24

    10.62NA

    22.63NA

    44.064.73

    NA

    Fujitsu VX Nov 96 124

    80.50460.43631.324

    5.867.80

    15.05

    331.36219.11114.41

    2.083.156.03

    Table 8: Results of the SP simulated CFD application (SP) benchmark.

  • 37 - 53

    Fujitsu VPP300 Nov 96 12468

    16

    80.50460.43631.324

    NA16.0548.2465

    5.867.80

    15.05NA

    29.3757.18

    331.36219.11114.4178.38158.781

    NA

    2.083.156.038.80

    11.73NA

    Fujitsu VPP700 Nov 96 12468

    16173234

    80.50460.43631.324

    NA16.0548.2465

    NA4.5311

    NA

    5.867.80

    15.05NA

    29.3757.18

    NA104.06

    NA

    331.36219.11114.4178.38158.781

    NA27.860

    NA14.621

    2.083.156.038.80

    11.73NA

    24.75NA

    47.17

    IBM SP-1 Feb 94 8163264

    441.6268.7165.0100.4

    1.071.752.864.69

    NA941.2522.4 302.3

    NA0.731.322.28

    IBM RS/6000 SPWide-node1 (67 MHz)

    Mar 95 8163264

    128

    143.883.248.730.118.7

    3.285.679.68

    15.6625.21

    589.3300.6163.891.754.8

    1.172.294.217.52

    12.58

    IBM RS/6000 SPWide-node2 (77 MHz)

    Oct 95 18

    163264

    711.8114.1569.3243.2026.46

    0.664.136.80

    10.9117.82

    3087.0453.66248.51142.8880.17

    0.221.522.774.838.60

    IBM RS/6000 SPP2SC node (120 MHz)

    Nov 96 8163264

    NANANANA

    NANANANA

    359.81182.30107.1658.35

    1.923.786.44

    11.82

    IBM RS/6000 SPThin-node2 (67 MHz)

    Mar 95 8163264

    128

    161.193.353.632.720.6

    2.935.058.80

    14.4222.89

    640.9342.3184.4101.659.9

    1.082.013.746.79

    11.51

    Table 8: Results of the SP simulated CFD application (SP) benchmark.

  • 38 - 53

    Intel iPSC/860 Jul 94Aug 92

    64128

    640.0 449.5

    0.741.05

    NANA

    NANA

    Intel Paragon(OSF1.2)

    Jul 94 64102128204256324400484

    226.0NA

    143.0NA

    97.089.0NANA

    2.09NA

    3.30NA

    4.865.30NANA

    960.0610.0

    NA387.0301.0262.0246.0209.0

    0.721.13NA

    1.782.292.632.803.30

    Kendall Square KSR1 Feb 94 3264

    128

    418.0257.0160.0

    1.131.83 2.95

    NANANA

    NANANA

    Kendall Square KSR2 Feb 94 May 94

    3264

    221.0131.0

    2.133.59

    NA495.0

    NA1.39

    Kyoto/MatsushitaADENART

    Feb 94 256 209.9 2.24 NA NA

    MasPar MP-1 Aug 92 4K 1772 0.27 NA NA

    MasPar MP-2 Nov 92 4K 615 0.77 NA NA

    Meiko CS-1 Aug 92 16 2975 0.16 NA NA

    nCUBE-2S Mar 94 64128256512

    1024

    1243.2717.4387.3208.6120.9

    0.380.661.222.263.90

    NANANANANA

    NANANANANA

    NEC SX-3 Oct 94 1 75.72 6.23 495.0 1.39

    NEC SX-4/32 Nov 96 1248

    16172632

    NANANANANANANANA

    NANANANANANANANA

    398.77199.0899.98452.35328.82324.69717.41017.130

    1.733.466.90

    13.1723.9327.9239.6140.26

    Table 8: Results of the SP simulated CFD application (SP) benchmark.

  • 39 - 53

    Silicon GraphicsPower Challenge XL(75 MHz)

    Oct 94 148

    16

    858.3225.8119.567.2

    0.552.093.957.02

    3719.5947.6491.4313.1

    0.190.731.402.20

    SGIPower Challenge - XL(90 MHz)

    May 95 1248

    16

    757.00387.90200.44106.4363.18

    0.621.222.354.437.46

    3343.901685.30853.35445.38294.22

    0.210.410.811.552.34

    SGI Origin200(180 MHz)

    Nov 96 124

    768.25408.32222.04

    0.611.152.12

    4036.902259.901229.30

    0.170.310.56

    SGI Origin2000(195 MHz)

    Nov 96 1248

    162531

    675.28346.02187.8697.9752.01

    NA30.47

    0.701.362.514.819.07NA

    15.47

    3068.701628.00803.64423.61234.99140.48

    NA

    0.220.420.861.632.944.91NA

    Thinking MachinesCM-2

    Dec 91 16K 32K64K

    1444.0917.0640.0

    0.330.510.74

    NANANA

    NANANA

    Thinking MachinesCM-5

    3264

    128

    289.0170.0119.0

    1.632.773.96

    NANANA

    NANANA

    Thinking MachinesCM-5E

    Sep 95

    Feb 94

    163264

    128

    268144

    104.061.0

    1.763.274.537.73

    1580771

    595.0320.0

    0.440.891.162.16

    Thinking MachinesCM-500

    Sep 95 64128256

    85 51 34

    5.559.25

    13.87

    405 236140

    1.702.924.93

    Table 8: Results of the SP simulated CFD application (SP) benchmark.

  • 40 - 53

    Table 9: Results of the BT simulated CFD application (BT) benchmark.

    Computer System Date

    ReceivedNumber

    Processor

    Class A Class B

    Time inseconds

    Ratio toCRAY

    Y-MP/1

    Time in seconds

    RatioCRAYC90/1

    BBN TC2000 Dec 91 112 1378.0 0.58 NA NA

    Convex ExemplarSPP1000

    Mar 95 18

    163264

    282536621112578

    0.282.173.766.34

    10.16

    NA1675984

    559.8338.2

    NA0.611.041.823.03

    HP/Convex ExemplarSPP2000

    Nov 96 148

    16

    829.4212.9107.255.3

    0.963.727.39

    14.33

    NANANANA

    NANANANA

    CRAY C90 Feb 95 1248

    16

    276.80139.4472.1136.9920.30

    2.865.68

    10.9921.4239.03

    1023.4519.46265.20138.1678.80

    1.001.973.867.41

    12.99

    CRAY EL May 93 148

    3832.81090.2764.1

    0.210.731.04

    NANANA

    NANANA

    CRAY J916 July 95 1248

    16

    1202.53608.83317.62168.4698.80

    0.661.302.494.708.02

    5356.592789.741414.43765.60426.91

    0.190.370.721.342.40

    CRAY T3D Feb 95 163264

    128256512

    1024

    230.41115.5359.0129.9615.898.394.56

    3.446.85

    13.4326.4449.8794.45

    173.77

    918.04476.97252.86128.2168.3838.0120.45

    1.112.154.047.9815.0

    26.9250.04

  • 41 - 53

    CRAY T3E Nov 96 248

    163264

    128256

    677.9339.8172.588.644.622.711.96.2

    1.172.334.598.94

    17.7734.9166.59

    127.81

    2988.71480.7735.6370.3192.299.954.529.3

    0.340.691.392.765.32

    10.2418.7834.93

    CRAY T916 July 95 1248

    16

    193.19100.1053.2330.66

    4.107.92

    14.8925.84

    649.10332.38169.2792.4364.06

    1.583.086.05

    11.0715.98

    CRAY Y-MP Aug 92 18

    792.4114.0

    1.006.95

    NANA

    NANA

    DEC Alpha Server8400 5/300(300 MHz)

    Oct 95 1248

    12

    1048.7527.04271.13146.91103.47

    0.761.502.925.397.66

    4076.502525.001278.60649.53458.21

    0.250.410.801.582.23

    DEC Alpha Server8400 5/440(437 MHz)

    Nov 96 1248

    747.75376.03192.67103.54

    1.062.114.117.65

    3390.41727.7881.90454.39

    0.300.591.162.25

    Fujitsu VPP500 Mar 95 1248

    161732345164

    142.4275.1739.1419.829.99NA

    5.09NANA

    2.66

    5.5610.5420.2539.9879.32

    NA155.68

    NANA

    297.90

    NANANANANA

    37.26NA

    18.8212.61

    NA

    NANANANANA

    27.47NA

    54.3881.16

    NA

    Fujitsu VX Nov 96 124

    129.4068.51035.518

    6.1211.5722.31

    487.29258.20175.09

    2.103.965.84

    Table 9: Results of the BT simulated CFD application (BT) benchmark.

  • 42 - 53

    Fujitsu VPP300 Nov 96 123468

    16

    129.4068.510

    NA35.518

    NA18.0889.2841

    6.1211.57

    NA22.31

    NA43.8185.35

    487.29258.20175.09

    NA88.541

    NANA

    2.103.965.84NA

    11.56NANA

    Fujitsu VPP700 Nov 96 123468

    16173234

    129.4068.510

    NA35.518

    NA18.0889.2841

    NA4.9286

    NA

    6.1211.57

    NA22.31

    NA43.8185.35

    NA160.78

    NA

    487.29258.20175.09

    NA88.541

    NANA

    31.634NA

    16.824

    2.103.965.84NA

    11.56NANA

    32.35NA

    60.83

    IBM SP-1 Aug 94 8163264

    443.9249.2143.083.1

    1.793.18 5.54 9.54

    NA987.4511.2274.6

    NA1.042.003.73

    IBM RS/6000 SPWide-node1 (67 MHz)

    Mar 95 8163264

    128

    206.7112.961.834.720.1

    3.837.02

    12.8222.8439.42

    862.8440.6226.8119.167.0

    1.192.324.518.59

    15.27

    IBM RS/6000 SPWide-node2 (77 MHz)

    Oct 95 18

    163264

    1130.7170.7495.4851.3429.01

    0.704.648.30

    15.4427.31

    4775.7708.47375.76197.91105.19

    0.211.442.725.179.73

    IBM RS/6000 SPP2SC node (120 MHz)

    Nov 96 8163264

    NANANANA

    NANANANA

    504.58263.77143.7776.49

    2.033.887.12

    13.38

    IBM RS/6000 SPThin-node2 (67 MHz)

    Feb 95 8163264

    128

    216.6118.064.936.320.8

    3.666.72

    12.2121.8338.10

    889.8459.2237.2124.869.6

    1.152.234.318.20

    14.70

    Table 9: Results of the BT simulated CFD application (BT) benchmark.

  • 43 - 53

    Intel iPSC/860 Aug 92 64128

    714.7414.3

    1.11 1.91

    NANA

    NANA

    Intel Paragon(OSF1.2)

    Mar 94 64102128204256306408510512

    235.0NA

    129.0NA

    83.0NANANA

    63.0

    3.37NA

    6.14NA

    9.55NANANA

    12.58

    NA633.0

    NA359.0

    NA257.0226.0196.0

    NA

    NA1.62NA

    2.86NA

    3.984.535.22NA

    Intel Paragon(SunMos)

    Nov 93Mar 94

    64102128204306

    224.0NA

    113.0NANA

    3.54NA

    7.01NANA

    NA598.0

    NA324.0215.0

    NA1.71NA

    3.164.76

    Kendall Square KSR1 Feb 94 3264

    128

    457256 145

    1.743.1

    5.46

    NANANA

    NANANA

    Kendall Square KSR2 Feb 94May 94

    3264

    225130

    3.526.10

    NA542.0

    NA1.89

    Kyoto/MatsushitaADENART

    Feb 94 256 314.1 2.52 NA NA

    MasPar MP-1 Aug 92 4K 2396.0 0.33 NA NA

    MasPar MP-2 Nov 92 4K 789.0 1.00 NA NA

    Meiko CS-1 Aug 92 16 2984.0 0.27 NA NA

    Meiko CS-2 Oct 94 81632

    570.4 286.6 149.3

    1.392.775.31

    NANANA

    NANANA

    nCUBE-2S Mar 94

    Jul 94

    64128256512

    1024

    1243.2644.7336.7179.1100.9

    0.641.222.354.427.85

    NANANANANA

    NANANANANA

    NEC SX-3 Oct 94 1 100.31 7.90 NA NA

    Table 9: Results of the BT simulated CFD application (BT) benchmark.

  • 44 - 53

    NEC SX-4/32 Nov 96 1248

    16172632

    NANANANANANANANA

    NANANANANANANANA

    577.16288.72146.5975.39340.93235.57423.99624.042

    1.773.546.98

    13.5725.0028.7742.6542.57

    Silicon GraphicsPower Challenge XL(75 MHz)

    Oct 94 148

    16

    1330.3355.9177.091.8

    0.602.234.488.63

    5698.71450.0775.0426.0

    0.180.711.322.40

    SGIPower Challneg XL(90 MHz)

    May 95 1248

    16

    1145.20574.37298.74152.6580.20

    0.691.382.655.199.88

    5089.602537.701278.60672.56391.88

    0.200.400.801.522.61

    SGI Origin200(180 MHz)

    Nov 96 124

    826.53420.08222.57

    0.961.893.56

    3953.702091.501069.20

    0.260.490.95

    SGI Origin2000(195 MHz)

    Nov 96 1248

    162531

    768.42388.43196.13103.4155.44

    NA30.05

    1.032.044.047.66

    14.29NA

    26.37

    3437.701767.00904.23468.77253.07151.87

    NA

    0.300.581.132.184.046.73NA

    Thinking MachinesCM-2

    Dec 91 16K 32K64K

    1118.0634.0370.0

    0.71 1.25 2.14

    NANANA

    NANANA

    Thinking MachinesCM-200

    Dec 91 16K 32K

    832.0601.0

    0.951.32

    NANA

    NANA

    Thinking MachinesCM-5

    May 93 3264

    128

    284.0175.0119.0

    2.794.506.66

    NANANA

    NANANA

    Table 9: Results of the BT simulated CFD application (BT) benchmark.

  • 45 - 53

    Thinking MachinesCM-5E

    Sep 95

    Feb 94

    163264

    128

    25913584.048.0

    3.065.879.43

    16.50

    1480 712

    464.0253.0

    0.691.442.214.05

    Thinking MachinesCM-500

    Sep 95 64128256

    7543 27

    10.5618.4329.34

    370209114

    2.774.908.98

    Table 9: Results of the BT simulated CFD application (BT) benchmark.

  • 46 - 53

    Table 10: Results for NPB 1.0 Class C on CRAY T3E.

    No. ofCPUs

    Wall Clock Time in Seconds

    EP MG CG FT IS LU SP BT

    1 NA NA NA NA NA NA NA NA

    4 448.8 NA NA NA NA NA NA NA

    8 224.4 NA NA NA NA NA NA NA

    16 112.2 NA 272.9 NA 48.9 773.4 1352.7 1806.5

    32 56.1 53.0 146.2 93.4 23.8 387.8 661.5 904.3

    64 28.1 26.7 78.5 47.2 14.5 195.3 327.0 454.4

    128 14.0 13.6 51.7 23.7 7.5 101.5 174.3 230.6

    256 7.0 7.1 46.9 12.1 4.0 52.8 93.9 115.4

  • 47 - 53

    Table 11: Approximate sustained performance per dollar for Class B LU benchmark..

    Computer System

    #

    Proc.

    Memory Ratioto

    C90/1

    List PriceMillionDollars

    Performanceper Million

    Dollars

    Date

    CRAY T3E 128 64 MB/PE 15.24 5.0 3.05 Nov 96

    DEC Alpha Server8400 5/440 (437 MHz)

    8 2 GB 1.66 0.58 2.86 Nov 96

    Fujitsu VX 3 2 GB /PE 3.25 1.11 2.93 Nov 96

    Fujitsu VPP300 6 512 MB /PE 5.76 1.54 3.74 Nov 96

    Fujitsu VPP700 17 512 MB/PE 12.24 5.17 2.37 Nov 96

    IBM RS/6000 SPP2SC node (120 MHz)

    64 128 MB/PE 10.48 3.52 2.98 Nov 96

    NEC SX-4/32 32 4 GB 21.50 10.7 2.0 Nov 96

    SGI Origin2000(195 MHz)

    26 2 GB 5.01 0.96 5.21 Nov 96

  • 48 - 53

    Table 12: Approximate sustained performance per dollar for Class B SP benchmark..

    Computer System

    # Proc Memory Ratioto

    C90/1

    List PriceMillionDollars

    Performanceper Million

    Dollars

    Date

    CRAY T3E 128 64 MB/PE 14.34 5.0 2.87 Nov 96

    DEC Alpha Server8400 5/440 (437 MHz)

    8 2 GB 1.90 0.58 3.28 Nov 96

    Fujitsu VX 4 512 MB/PE 6.03 1.0 6.03 Nov 96

    Fujitsu VPP300 8 512 MB/PE 11.73 1.99 5.89 Nov 96

    Fujitsu VPP700 34 512 MB/PE 47.17 9.98 4.73 Nov 96

    IBM RS/6000 SPP2SC node (120 MHz)

    64 128 MB/PE 11.82 3.52 3.36 Nov 96

    NEC SX-4/32 32 4 GB 40.26 10.7 3.76 Nov 96

    SGI Origin2000(195 MHz)

    26 2 GB 4.91 0.96 5.11 Nov 96

  • 49 - 53

    Table 13: Approximate sustained performance per dollar for Class B BT benchmark..

    Computer System

    #Proc

    Memory Ratioto

    C90/1

    List PriceMillionDollars

    Performance per Million

    Dollars

    Date

    CRAY T3E 128 64 MB/PE 18.78 5.0 3.76 Nov 96

    DEC Alpha Server8400 5/440 (437 MHz)

    8 2 GB 2.25 0.58 3.88 Nov 96

    Fujitsu VX 3 512 MB/PE 5.84 1.11 5.26 Nov 96

    Fujitsu VPP300 6 512 MB/PE 11.56 1.54 7.51 Nov 96

    Fujitsu VPP700 34 512 MB/PE 60.83 9.98 6.1 Nov 96

    IBM RS/6000 SPP2SC node (120 MHz)

    64 128 MB/PE 13.38 3.52 3.80 Nov 96

    NEC SX-4/32 32 4 GB 42.57 10.7 3.98 Nov 96

    SGI Origin2000(195 MHz)

    26 2 GB 6.73 0.96 7.01 Nov 96

  • 50 - 53

    Table 14: Results of the HPF based EP benchmark.

    Computer System DateReceived

    NumberProcessor

    Time in seconds

    Class A Class B

    APR PGI APR PGI

    HP/ConvexExemplar SPP200

    Oct 96 1248

    16

    NANANANANA

    6172891457539

    NANANANANA

    NANANANANA

    IBM SP2Wide Nodes

    Sept 96 1248

    163264

    NANANANA794223

    947473237119593015

    NANANANANANANA

    NA189594647423711959

    SGI/CRAY T3D Sept 96 1248

    163264

    NANANANA864322

    1190596302151743719

    NANANANANANANA

    478223981190595298149NA

  • 51 - 53

    Table 15: Results of the HPF based MG benchmark.

    Computer System DateReceived

    NumberProcessor

    Time in seconds

    Class A Class B

    APR PGI APR PGI

    IBM SP2Wide Nodes

    Sept 96 163264

    1297

    NANANA

    NANANA

    NANANA

    SGI/CRAY T3D Sept 96 163264

    643725

    NANANA

    NANANA

    NANANA

    Table 16: Results of the HPF based FT benchmark.

    Computer System DateReceived

    NumberProcessor

    Time in seconds

    Class A Class B

    APR PGI APR PGI

    IBM SP2Wide Nodes(67 mHz)

    Sept 96 163264

    NANANA

    6.23.12.6

    NANANA

    NANANA

    SGI/CRAY T3D Sept 96 163264

    128

    NANANANA

    27.215.69.55.6

    NANANANA

    NANANA

    19.6

  • 52 - 53

    Table 17: Results of the HPF based SP benchmark.

    Computer System DateReceived

    NumberProcessor

    Time in seconds

    Class A Class B

    APR PGI APR PGI

    HP/ConvexExemplar SPP200

    Oct 96 1248

    16

    NANANANANA

    38261908966504274

    NANANANANA

    NANANANANA

    IBM SP2Wide Nodes(67 MHz)

    Sept 96 163264

    315207130

    23714299

    NANANA

    NANANA

    SGI/CRAY T3D Sept 96 8163264

    NA803420226

    1618834425228

    NANANANA

    NA332719501012

  • 53 - 53

    Table 18: Results of the HPF based BT benchmark.

    Computer System DateReceived

    NumberProcessor

    Time in seconds

    Class A Class B

    APR PGI APR PGI

    HP/ConvexExemplar SPP200

    Oct 96 1248

    16

    NANANANANA

    23721161699335175

    NANANANANA

    NANANANANA

    IBM SP2Wide Nodes(67 MHz)

    Sept 96 1248

    163264

    NANANANA332184109

    3273169790746924913581

    NANANANANANANA

    NANA

    378819631111652350

    SGI/CRAY T3D Sept 96 8163264

    NA1044536275

    1669855438226

    NANANANA

    6795363421191096