Nanostructured semiconductors for solar cells...Applications of mesoporous materials Metal powders...

16
Nanostructured semiconductors for solar cells Dr. I. Nandhakumar University of Southampton, UK

Transcript of Nanostructured semiconductors for solar cells...Applications of mesoporous materials Metal powders...

Page 1: Nanostructured semiconductors for solar cells...Applications of mesoporous materials Metal powders Metal films Silicas and metal oxides Polymers Catalysis Chemical sieves Batteries

Nanostructured semiconductors for solar cells

Dr. I. Nandhakumar

University of Southampton, UK

Page 2: Nanostructured semiconductors for solar cells...Applications of mesoporous materials Metal powders Metal films Silicas and metal oxides Polymers Catalysis Chemical sieves Batteries

Research rationale

• ‘High quality’ nanostructured semiconductors using electroplating methods (e.g. CdTe, ZnO) with novel optical and electrical properties

Page 3: Nanostructured semiconductors for solar cells...Applications of mesoporous materials Metal powders Metal films Silicas and metal oxides Polymers Catalysis Chemical sieves Batteries

Mesoporous materials

0.1 1 10 100 1000 nm

Mesoporous materials (2-50 nm)

Page 4: Nanostructured semiconductors for solar cells...Applications of mesoporous materials Metal powders Metal films Silicas and metal oxides Polymers Catalysis Chemical sieves Batteries

Surfactants

CH3(CH2)15(OCH2CH2)10OH Hydrophobic tail

Hydrophilic headgroup

Page 5: Nanostructured semiconductors for solar cells...Applications of mesoporous materials Metal powders Metal films Silicas and metal oxides Polymers Catalysis Chemical sieves Batteries

Amphiphile self-assembly

T /°C

40

60

30 80 70 40 50 60 Amphiphile concentration /wt%

HI I1

La

V1

Lamellar Hexagonal

Micellar cubic

Micellar

Cubic Ia3d

Page 6: Nanostructured semiconductors for solar cells...Applications of mesoporous materials Metal powders Metal films Silicas and metal oxides Polymers Catalysis Chemical sieves Batteries

Mz+

Mz+

electrodeposited!semiconductor film!

LC template

conducting substrate!

Electroplating

Surfactant removal

nanostructured!semiconductor film!

Mz+

Two-step templating

Page 7: Nanostructured semiconductors for solar cells...Applications of mesoporous materials Metal powders Metal films Silicas and metal oxides Polymers Catalysis Chemical sieves Batteries
Page 8: Nanostructured semiconductors for solar cells...Applications of mesoporous materials Metal powders Metal films Silicas and metal oxides Polymers Catalysis Chemical sieves Batteries

Applications of mesoporous materials

Metal powders

Metal films

Silicas and metal oxides

Polymers

Catalysis

Chemical sieves

Batteries Fuel cells Chemical capacitors

Sensors Semiconductors

solar cells optoelectronic devices

Page 9: Nanostructured semiconductors for solar cells...Applications of mesoporous materials Metal powders Metal films Silicas and metal oxides Polymers Catalysis Chemical sieves Batteries

!

!

Phasediagram C16EO8/Cd/Te/water/H2SO4

Page 10: Nanostructured semiconductors for solar cells...Applications of mesoporous materials Metal powders Metal films Silicas and metal oxides Polymers Catalysis Chemical sieves Batteries

Polarised Optical Microscopy

Liquid Crystal Template Mesoporous CdTe

Page 11: Nanostructured semiconductors for solar cells...Applications of mesoporous materials Metal powders Metal films Silicas and metal oxides Polymers Catalysis Chemical sieves Batteries

Nanoporous CdTe

hexagonal arrangement d-spacing 6 nm

d

•  TEM gives direct evidence of a hexagonal array with a d-spacing of 6 nm

end-on view: pore size ~ 3 nm pore-to-pore distance 7 nm

Page 12: Nanostructured semiconductors for solar cells...Applications of mesoporous materials Metal powders Metal films Silicas and metal oxides Polymers Catalysis Chemical sieves Batteries

Low-angle XRD

0

50

100

150

200

250

300

350

1 1.5 2 2.5 3 3.5 4 4.5

2θ (degrees)

d100

Inte

nsity

(arb

. uni

ts)

d100

Interchannel spacing = d100 / cos30°

nλ = 2 dhkl sinΘ; λCuKα = 1.54 Å

!CdTe!• d100 = 58 ± 2Å !• 69 Å pore to pore !distance!

• Temp. 25°C

Page 13: Nanostructured semiconductors for solar cells...Applications of mesoporous materials Metal powders Metal films Silicas and metal oxides Polymers Catalysis Chemical sieves Batteries

!• 17 domains showing 2 spots • largest domains 3 mm2

Measuring domain sizes by synchrotron SAXS

d100 = 60 Å Pore-to-pore = 70 Å

Page 14: Nanostructured semiconductors for solar cells...Applications of mesoporous materials Metal powders Metal films Silicas and metal oxides Polymers Catalysis Chemical sieves Batteries

Optical Data

•  Interference fringes => optically flat surfaces •  Strong absorption above band gap

100

80

60

40

20

0

Ref

lect

ance

%

1600140012001000800600Wavelength nm

Experiment perpendicular Experiment parallel CdTe RT band gap

Chem. Comm., 12, 1374 (2004)"

Page 15: Nanostructured semiconductors for solar cells...Applications of mesoporous materials Metal powders Metal films Silicas and metal oxides Polymers Catalysis Chemical sieves Batteries

ZnO

a

d b

c

a

f d

e

b

c a

a

b

c

d

h

g

f

e

j

i

SEM micrographs of three films electrodeposited at -0.845 V vs. SCE at 50 C The template mixture contained a 45 wt.% solution of 0.1 M zinc nitrate and 55 wt.% Brij®56.

Page 16: Nanostructured semiconductors for solar cells...Applications of mesoporous materials Metal powders Metal films Silicas and metal oxides Polymers Catalysis Chemical sieves Batteries

Summary & Conclusions

•  high quality semiconductors"•  CdTe, PbTe, ZnO, Te….""

•  40 % of all the atoms are at or near a surface:!–  Enhanced electronic + optical properties for e.g. solar cells, ultra-fast

photodiodes, non-linear optical elements!"

•  Unique 3D nanostructuring"

–  Exploration of quantum-size effects"•  Bandgap compares welotodiode efficiency 14% to ?? i"