Nanoscale Heat Transfer using Phonon Boltzmann Transport ... · •Background information. •...

17
2009 COMSOL Conference, Boston, MA October 8-10, 2009 Nanoscale Heat Transfer using Phonon Boltzmann Transport Equation Sangwook Sihn Air Force Research Laboratory, Materials and Manufacturing Directorate, AFRL/RX, Wright-Patterson AFB, OH, 45433 University of Dayton Research Institute, Dayton, OH email : [email protected] Ajit K. Roy Air Force Research Laboratory, Wright-Patterson AFB, OH Presented at the COMSOL Conference 2009 Boston

Transcript of Nanoscale Heat Transfer using Phonon Boltzmann Transport ... · •Background information. •...

Page 1: Nanoscale Heat Transfer using Phonon Boltzmann Transport ... · •Background information. • Description of phonon Boltzmann transport equation (BTE). • Modeling and solution

2009 COMSOL Conference, Boston, MAOctober 8-10, 2009

Nanoscale Heat Transfer usingPhonon Boltzmann Transport Equation

Sangwook SihnAir Force Research Laboratory, Materials and Manufacturing

Directorate, AFRL/RX, Wright-Patterson AFB, OH, 45433University of Dayton Research Institute, Dayton, OH

email : [email protected]

Ajit K. RoyAir Force Research Laboratory, Wright-Patterson AFB, OH

Presented at the COMSOL Conference 2009 Boston

Page 2: Nanoscale Heat Transfer using Phonon Boltzmann Transport ... · •Background information. • Description of phonon Boltzmann transport equation (BTE). • Modeling and solution

• Background information.

• Description of phonon Boltzmann transport equation (BTE).

• Modeling and solution procedure of BTE using COMSOL.

• Results

– Steady-state and transient problems.

– Issues of refinement in spatial and angular domains.

• Summary and conclusions.

2

Outline

Page 3: Nanoscale Heat Transfer using Phonon Boltzmann Transport ... · •Background information. • Description of phonon Boltzmann transport equation (BTE). • Modeling and solution

• For last two centuries, heat conduction has been modeled by Fourier Eq (FE).

– Conservation of energy:

– Fourier’s linear approximation of heat flux:

• Parabolic equation —> Diffusive nature of heat transport.

• Heat is effectively transferred between localized regions through sufficient scattering events of phonons within medium.

• Does not hold when number of scattering is negligible.– e.g., mean free path ~ device size (chip-package level).

– Boundary scattering at interfaces causing thermal resistance.

• Admits infinite speed of heat transport —> Contradict with theory of relativity.

3

Fourier Equation (FE)

q⋅−∇=∂∂

tTcρ

Tk∇−=q

TtT 21

∇=∂∂

αT1

T2

x L

Λ>>LDiffusive

Fourier Equation cannot be used for small time and spatial scales.

Page 4: Nanoscale Heat Transfer using Phonon Boltzmann Transport ... · •Background information. • Description of phonon Boltzmann transport equation (BTE). • Modeling and solution

• Resolve the issue of the Fourier equation with the infinite speed of heat carrier.

– Definition of heat flux:

• Hyperbolic equation —> Wave nature of heat transport.

• Called as Cattaneo equation or Telegraph equation.

• Finite speed of heat carriers.

• Ad hoc approximation of heat flux definition.

• Violates 2nd law of thermodynamics.– If heat source varies faster than speed of sound, heat would appear to be moving from

cold to hot.

Hyperbolic Heat Conduction Equation (HHCE)

TtT

tT

C2

2

2

2

11∇=

∂∂

+∂∂

α

,Tkt

∇−=+∂∂ qq

oτ time)relaxation :( oτ

)( 2oτα=C

4

HHCE: could be used for short time scale, but not for short spatial scale.

Page 5: Nanoscale Heat Transfer using Phonon Boltzmann Transport ... · •Background information. • Description of phonon Boltzmann transport equation (BTE). • Modeling and solution

• Fourier Equation cannot be used for small time and spatial scales.• HHCE: could be used for short time scale, but not for short spatial scale.

• Needs equations and methods for small scale simulation in terms of both time and space.– Molecular dynamics simulation.

• Accurate method.• Computationally expensive.• Suitable for systems having a few atomic layers or several thousands of atoms.• Not suitable for device-level thermal analysis.

– Boltzmann Transport Equation (BTE).

– Ballistic-Diffusive Equation (BDE).• Similar to Cattaneo Eq. (HHCE) with a source term.• Derived from BTE.• Good approximation of BTE without internal heat source, disturbance, etc.

5

Small Scale Heat Transport (Time & Space)

Page 6: Nanoscale Heat Transfer using Phonon Boltzmann Transport ... · •Background information. • Description of phonon Boltzmann transport equation (BTE). • Modeling and solution

• BTE: also called as equation of phonon radiative transfer (EPRT).

• Equation for phonon distribution function:

• Can predict ballistic nature of heat transfer.

• Neglects wave-like behaviors of phonon.– Valid for structures larger than wavelength of phonons (~ 1 nm @ RT).

• Solution methods:– Deterministic: discrete ordinates method, spherical harmonics method.

– Statistical: Monte Carlo.

• Much more efficient than MD.

• Agrees well with experimental data.

6

Boltzmann Transport Equation (BTE)

T1

T2

x L

Λ<<Lo

o fftff

tf

τ−

∂∂

=∇⋅+∂∂

scat

vBallistic

Page 7: Nanoscale Heat Transfer using Phonon Boltzmann Transport ... · •Background information. • Description of phonon Boltzmann transport equation (BTE). • Modeling and solution

• Phonon intensity:

• BTE becomes EPRT:

• For 1-D,

• For each angle (θ ), solve non-linear equation with iterations for– Solving for Ιω.

– Updating Ιωο.

• Heat flux:

• Internal energy:7

Details of Boltzmann Transport Equation (BTE)

πωωω 4/)(),,(),,( DtftI rvvrv =

,o

o III

tI

τωω

ωω −

=∇⋅+∂

∂ v

o

o IIxIv

tI

τθ ωωωω −

=∂∂

+∂

∂ cos x Lθ Ιω

∫ ∫=Ω

Ω=π

ω

ω ωθ4

0cosD ddIq

( ) ∫ ∫∫=Ω

Ω=Ω=≈π

ω ω ωωωωπ 4

0)(

41 D ddIddDfcTu

v

∫=Ω

Ω=π

ωω π 441 dII o

*Equilibrium phonon intensitydetermined by Bose-Einstein statistics

Page 8: Nanoscale Heat Transfer using Phonon Boltzmann Transport ... · •Background information. • Description of phonon Boltzmann transport equation (BTE). • Modeling and solution

8

Modeling & Solution Procedure using COMSOL

• Use a built-in feature of COMSOL, “Coefficient Form PDEs”.

• The spatial domain is discretized using FE mesh.

• The angular (momentum) domain is discretized using Gaussian quadrature points.

• For each angle (θ ), set up the BTE with corresponding coefficients (µi=cosθi) and BCs (Neumann vs. Dirichlet).

• Calculate equilibrium phonon intensity (Io) by numerical integration of (Ii) using Gaussian quadratures.

• Solve.– Direct solver (UMFPACK).– Max. BDF order = 1.

• Postprocess and visualize the results.

o

o IIxIv

tI

τθ −

=∂∂

+∂∂ cos

Page 9: Nanoscale Heat Transfer using Phonon Boltzmann Transport ... · •Background information. • Description of phonon Boltzmann transport equation (BTE). • Modeling and solution

• Original 1-D BTE:

• Nondimensionalize with

• Split into (+) and (-) directions:

• Discretize angular space atGaussian quadrature points:

• After FE run, postprocess:

9

Details of Solution Procedure

==

<=+∂∂

+∂∂

>=+∂∂

+∂∂

==

==

+

−−−

+++

1

4

10

4

0

*

*

, :BCsDirichlet

)0(,

)0(,

ηηηη πσ

πσ

µη

µ

µη

µ

TITI

IIIKntI

IIIKntI

ii

ioii

ii

ioii

ii

)cos(, θµτ

µ =−

=∂∂

+∂∂

o

o IIxIv

tI

LKn

Lxtt

o

Λ=== ,,* η

τ

+=

+=

∑∑

∑∑

=

−−

=

++

=

=

+

2

1

2

1

2

1

2

1

2),(

21),(

gpgp

gpgp

n

iiii

n

iiii

n

iii

n

iiio

IwIwtq

IwIwtI

µµπη

η

oIIIKntI

=+∂∂

+∂∂

ηµ*

Page 10: Nanoscale Heat Transfer using Phonon Boltzmann Transport ... · •Background information. • Description of phonon Boltzmann transport equation (BTE). • Modeling and solution

10

Coefficient Form for BTE(60 Finite elements, 16 Gaussian Points)

Page 11: Nanoscale Heat Transfer using Phonon Boltzmann Transport ... · •Background information. • Description of phonon Boltzmann transport equation (BTE). • Modeling and solution

0

0.2

0.4

0.6

0.8

1

0.1 1 10 100Knudsen number, Kn=Λ/L

Gra

dien

t of n

ondi

m. e

miss

ive

pow

er,

∆e o

*

Analytic Numerical (ngp=16) Numerical (ngp=128)

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1Nondimensional coordinate, η

Non

dim

. em

issiv

e po

wer

, eo* Kn=0.1

Kn=1 Kn=10 Kn=100

11

Steady-State Problem: Analytic vs. Numerical Solutions

−+

−=

21

2*0

)()(

qq

qo

JJJe

η

Emissive power ~ Temperature Gradient

)1()0( *0

*0

*0 =−==∆ ηη eee

LKn Λ

=

Small temperature gradientat smaller scale

Page 12: Nanoscale Heat Transfer using Phonon Boltzmann Transport ... · •Background information. • Description of phonon Boltzmann transport equation (BTE). • Modeling and solution

0

10

20

30

40

50

60

0.1 1 10 100Knudsen number, Kn=Λ/L

k* =

q*L

/ ∆e o

*

Analytic Numerical (ngp=16) Numerical (ngp=128)

0

0.2

0.4

0.6

0.8

1

0.1 1 10 100Knudsen number, Kn=Λ/L

Non

dim

ensio

nal h

eat f

lux,

q*

Analytic Numerical (ngp=16) Numerical (ngp=128)

12

Steady-State Problem: Analytic vs. Numerical Solutions

Heat flux

−+ −=

21

*

qq JJqq *

**

oeLqk

∆=

Thermal conductivity

Page 13: Nanoscale Heat Transfer using Phonon Boltzmann Transport ... · •Background information. • Description of phonon Boltzmann transport equation (BTE). • Modeling and solution

0

0.1

0.2

0.3

0.4

0.5

0.6

0 0.2 0.4 0.6 0.8 1Nondimensional coordinate, η

Non

dim

ensio

nal t

empe

ratu

re, θ 15 elements

60 elements 120 elements

0.35

0.4

0.45

0.5

0.55

0 0.1 0.2 0.3Nondimensional coordinate, η

Non

dim

ensio

nal t

empe

ratu

re, θ 15 elements

60 elements 120 elements

Transient Problem: Effect of Spatial Refinement(More Finite Elements)

Temperature @ t*=0.1

Ray effect.

• Refine spatial (x-) direction with n finite elements (n=15, 60, 120).

• Divide angular direction with 16 Gaussian points (ngp=16).

13

• Spatial refinement leads to a smoother solution.

• However, it does not solve ray effect.

Page 14: Nanoscale Heat Transfer using Phonon Boltzmann Transport ... · •Background information. • Description of phonon Boltzmann transport equation (BTE). • Modeling and solution

0

0.1

0.2

0.3

0.4

0.5

0.6

0 0.2 0.4 0.6 0.8 1Nondimensional coordinate, η

Non

dim

ensio

nal t

empe

ratu

re, θ ngp=4

ngp=8 ngp=16 ngp=32 ngp=64 ngp=128

0.35

0.4

0.45

0.5

0.55

0 0.1 0.2 0.3Nondimensional coordinate, η

Non

dim

ensio

nal t

empe

ratu

re, θ

ngp=4 ngp=8 ngp=16 ngp=32 ngp=64 ngp=128

Transient Problem: Effect of Angular Refinement(More Gaussian Points)

Temperature @ t*=0.1

• Refine spatial (x-) direction with 240 FE elements.

• Divide angular direction with ngp Gaussian points (ngp=4,8,16,32,64,128).

14

• Angular refinement resolve ray effect.

• Spatial and angular refinements are independent.

• Highly refined spatial mesh with coarse angular mesh alleviates solution.

Page 15: Nanoscale Heat Transfer using Phonon Boltzmann Transport ... · •Background information. • Description of phonon Boltzmann transport equation (BTE). • Modeling and solution

0

0.08

0.16

0.24

0.32

0.4

0 0.2 0.4 0.6 0.8 1Nondimensional coordinate, η

Non

dim

ensio

nal h

eat f

lux,

q* t*=0.01

t*=0.1 t*=1 t*=10

0

0.08

0.16

0.24

0.32

0.4

0 0.2 0.4 0.6 0.8 1Nondimensional coordinate, η

Non

dim

ensio

nal h

eat f

lux,

q* t*=0.1

t*=1 t*=10 t*=100

0

0.08

0.16

0.24

0.32

0.4

0 0.2 0.4 0.6 0.8 1Nondimensional coordinate, η

Non

dim

ensio

nal h

eat f

lux,

q* t*=0.01

t*=0.1 t*=1 t*=10

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1Nondimensional coordinate, η

Non

dim

ensio

nal t

empe

ratu

re, θ t*=0.1

t*=1 t*=10 t*=100

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1Nondimensional coordinate, η

Non

dim

ensio

nal t

empe

ratu

re, θ t*=0.01

t*=0.1 t*=1 t*=10

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1Nondimensional coordinate, η

Non

dim

ensio

nal t

empe

ratu

re, θ t*=0.01 t*=0.1 t*=1 t*=10

15

Results of BTE(Temperature & Heat Flux Distributions with Time Increase)

Kn=10 Kn=1 Kn=0.1

Page 16: Nanoscale Heat Transfer using Phonon Boltzmann Transport ... · •Background information. • Description of phonon Boltzmann transport equation (BTE). • Modeling and solution

0

0.08

0.16

0.24

0.32

0.4

0 0.2 0.4 0.6 0.8 1Nondimensional coordinate, η

Non

dim

ensio

nal h

eat f

lux,

q*

BTE BDE Fourier Cattaneo

0

0.03

0.06

0.09

0.12

0 0.2 0.4 0.6 0.8 1Nondimensional coordinate, η

Non

dim

ensio

nal h

eat f

lux,

q* BTE

BDE Fourier Cattaneo

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1Nondimensional coordinate, η

Non

dim

ensio

nal t

empe

ratu

re, θ BTE

BDE Fourier Cattaneo

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1Nondimensional coordinate, η

Non

dim

ensio

nal t

empe

ratu

re, θ BTE

BDE Fourier Cattaneo

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1Nondimensional coordinate, η

Non

dim

ensio

nal t

empe

ratu

re, θ BTE

BDE Fourier Cattaneo

0

1

2

3

4

5

0 0.2 0.4 0.6 0.8 1Nondimensional coordinate, η

Non

dim

ensio

nal h

eat f

lux,

q* BTE

BDE Fourier Cattaneo

16

Comparisons of FE, HHTC, BDE vs. BTE(Temperature & Heat Flux Distributions for 3 Kn)

Kn=10t*=1

Kn=1t*=1

Kn=0.1t*=10

Page 17: Nanoscale Heat Transfer using Phonon Boltzmann Transport ... · •Background information. • Description of phonon Boltzmann transport equation (BTE). • Modeling and solution

• Nanoscale simulation is conducted for phonon heat transfer using Boltzmann transport equation.– Phonons for dielectric, thermoelectric, semiconductor materials.– Electrons for metals.– Gas molecules for rarefied gas states.

• Numerical solution of BTE has been obtained for 1-D problem (both steady-state and transient problems).

• Temperature and heat flux distributions from the nanoscale simulation yield completely different results from the solutions from Fourier and Cattaneo equations.

– Thermal conductivity will be different, too.

17

Summary and Conclusions