Nanomedicines Jakarta

download Nanomedicines Jakarta

of 42

Transcript of Nanomedicines Jakarta

  • 7/27/2019 Nanomedicines Jakarta

    1/42

    1

    Biomedical technology and innovation

    A Shmulewitz and R Langer, Nature Biotechology 24:277-280 (2006)

    Nano Tech

    Bio Tech Info Tech

  • 7/27/2019 Nanomedicines Jakarta

    2/42

    Nanoscale medicinesState of the art of nanoparticles as drug delivery systems

    Hans P. MerkleDepartment of Chemistry and Applied BioSciences, D-CHAB

    ETH Zurich, CH-8093 Zurich, Switzerland

    www.galenik.ethz.ch - [email protected]

    2

  • 7/27/2019 Nanomedicines Jakarta

    3/42

    Welcome to Zurich

    Welcome to ETH Zurich

    ETH Campus Hnggerberg

  • 7/27/2019 Nanomedicines Jakarta

    4/42

    Biochemistry

    Biophysics

    Chemical and Bio-Engineering

    Inorganic ChemistryMaterials Science

    Microbiology

    Organic Chemistry

    Pharmaceutical Sciences

    Physical Chemistry

  • 7/27/2019 Nanomedicines Jakarta

    5/42

    5

    Colloidal silicon dioxide is a widely

    established excipient in drug formulation

    Particle size ca. 15 nm

    Specific surface

    50380 m2g-1 (BET)

    Tablet disintegrant

    Powder flow regulation

    agent

    Anticaking agent Adsorbent

    Suspending agent

    Viscosity-increasing agent

    1 m

    Aerosil A-200

    Degussa

    Aerosil (Degussa, DE)

    Cab-O-Sil (Cabot Corp., USA)

    Wacker HDK (Wacker-Chemie, DE)

  • 7/27/2019 Nanomedicines Jakarta

    6/42

    6

    TiO2and ZnO nanoparticles in sunscreens

    ZnO

    TiO2

    500 nm

    200 nm

    AO Gamer et al. Toxicology

    in Vitro 20:301

    307 (2006)

    (Safety) ... would only be of concern inpeople using sunscreens if the ZnO and

    TiO2penetrated into viable skin cells.

    The weight of current evidence is that

    they remain on the surface of the skinand in the outer dead layer

    (stratum corneum) of the skin.

    http://www.tga.gov.au/npmeds/

    sunscreen-zotd.htm

  • 7/27/2019 Nanomedicines Jakarta

    7/427

    Superparamagnetic

    iron oxide (SPIO)

    Fe2O

    3or Fe

    3O

    4

    nanoparticles as

    contrast agents

    for MRI diagnostic

    imaging

    T1

    Gd, T1

    SPIO, T2

    SPIO + Gd, T2SPIO, true FISP

    SPIO, T2 grad

    i.v. SPIO nanoparticles

    greatly improve visibility

    of hepatic metastases from

    colon cancer

    A Jackson and DA Nicholson

    DOI 10.1007/3-540-26420-5_14

    http://www.springerlink.com/

    content/h1072l0h60326p48/

    Springer (2006)

    http://www.springerlink.com/content/h1072l0h60326p48/http://www.springerlink.com/content/h1072l0h60326p48/http://www.springerlink.com/content/h1072l0h60326p48/http://www.springerlink.com/content/h1072l0h60326p48/http://www.springerlink.com/content/h1072l0h60326p48/
  • 7/27/2019 Nanomedicines Jakarta

    8/428

    What makes nanoparticles so attractive

    as platform for drug delivery?

    Delivery by nanoparticles helps to decouple

    the three major functions of drugs ...

    - Therapeutic activity

    - Biodistribution

    - Unwanted side effects

    Drug

    Nanoparticle

  • 7/27/2019 Nanomedicines Jakarta

    9/429

    Agenda

    Historical aspects

    Nanomedicinesa forward look

    Examples and technologies for nanoparticles Biodistribution of nanoparticles

    The challengelong circulating

    nanoparticles Ligand-mediated delivery

    Conclusions

  • 7/27/2019 Nanomedicines Jakarta

    10/42

    10

    Birth of nanoparticles as drug delivery

    systems at ETH Zurich in 1976

    G Birrenbach & PP Speiser, J Pharm Sci 65:1763 (1976)

    ... the partition of drugs

    in such nanoparts

    seems to be promisingas a new drug delivery

    system for long term

    therapy ...

  • 7/27/2019 Nanomedicines Jakarta

    11/42

    12

    Nanoparticles for therapeuticsFrequency of scientific publications per year

    0

    100

    200

    300

    400

    500

    600

    700

    800

    900

    1990 1992 1994 1996 1998 2000 2002 2004 2006

    East

    up to June 2007

    Numberofpublicatio

    nsperyear

    19902007

    (nanoparticle* OR nanocapsul*) AND drug

  • 7/27/2019 Nanomedicines Jakarta

    12/42

    13

    Nanomedicine

    Scope Analytical tools

    Nanoimaging

    Nanomaterials and nanodevices

    Novel therapeutics andnanodevices

    Clinical, regulatory and

    toxicological issues

    Regulatory issues Guidelines to ensure safe and

    reliable transfer of advances in

    nanomedicine from laboratory to

    bedside

    Definitions Size range from 1 nm to

    several hundreds ofnanometers

    To be included in a micro-

    device or a biological

    environment

    To monitor, control,construct, repair, defend

    and improve all human

    biological systems

    Ultimately to achieve

    medical benefit

    Concerns To ensure short and long

    term safety

    http://www.esf.org/

    http://www.esf.org/http://www.esf.org/
  • 7/27/2019 Nanomedicines Jakarta

    13/42

    14

    NCI Alliance for Nanotechnology

    in Cancer, 2005

    http://nano.cancer.gov/news_center/nanotech_news.asp

    Bibliography

    2002 - 2007

    Website

    http://nano.cancer.gov/resource_center/sci_biblio_enabled-therapeutics_abstracts.asp

    http://nano.cancer.gov/news_center/nanotech_news.asphttp://nano.cancer.gov/resource_center/sci_biblio_enabled-therapeutics_abstracts.asphttp://nano.cancer.gov/resource_center/sci_biblio_enabled-therapeutics_abstracts.asphttp://nano.cancer.gov/resource_center/sci_biblio_enabled-therapeutics_abstracts.asphttp://nano.cancer.gov/resource_center/sci_biblio_enabled-therapeutics_abstracts.asphttp://nano.cancer.gov/news_center/nanotech_news.asp
  • 7/27/2019 Nanomedicines Jakarta

    14/42

    15

    Clinical potential of nanoparticles

    Parenteral and peroral deliveryof drugs of very low aqueous

    solubility

    Delivery to organs, tissuesand cells of the mononuclear

    phagocyte systems, MPS

    Extravasation into tumor tissue

    Targeted ligand-mediated

    delivery

    (Mucosal delivery)

    - Liver

    - Lung

    - Lymph nodes

    - Macrophages

    - APC

    Therapeutics

    Diagnostics

    Vaccines

  • 7/27/2019 Nanomedicines Jakarta

    15/42

    16

    Examples and Technologies

  • 7/27/2019 Nanomedicines Jakarta

    16/42

    17

    Nanosuspensions of poorly soluble drugs

    Unfavorable

    energetics leading

    to agglomeration

    Charge or sterically

    stabilized surface

    using surfactants

    Nanosuspension SolutionCrystal

    BE Rabinow, Nat Rev Drug Disc 3:785 (2004)

  • 7/27/2019 Nanomedicines Jakarta

    17/42

    18

    Abraxane -

    the first nanoparticle

    therapeutic on the market:

    http://www.abraxane.com/HCP/index.htm

    FDA approval of

    Abraxane on

    January 7, 2005

    Taxol

    Paclitaxel

    Human serum albuminnanoparticles of ca. 150 nm

    made by desolvation and

    glutardialdehyde crosslinkage.

    Vitali Vogel et al. Progr Colloid

    Polymer Sci 119:31 (2002)

    http://www.abraxane.com/HCP/index.htmhttp://www.abraxane.com/HCP/index.htm
  • 7/27/2019 Nanomedicines Jakarta

    18/42

    19

    Solid lipid nanoparticles, SLN

    Excipients Mono-, di- and triglycerides

    Fatty acids

    Cationic lipids

    Surfactants

    Manufacturing

    High shear homogenisation

    Ultrasound Extrusion

    Solvent evaporation

    DB Chen et al. Chem Pharm Bull

    49:1444 (2001)

    Long-circulating SLNcontaining paclitaxelt1/2= 10 h (SLP) vs. 1.3 h (PTX)

    200 nm

    W Mehnert & K Mader, Adv Drug Deliv

    Rev 47:165 (2001)

  • 7/27/2019 Nanomedicines Jakarta

    19/42

    20

    Nucleic Acid Solutionin Buffer

    Free Nucleic AcidRemoval

    LB Jeffs et al. Pharm

    Res 22:362 (2005)

    with DNA

    no DNA

    200 nm

    Liposomes forencapsulation

    of nucleic

    acids

    Scalable, extrusion-

    free technology for

    stabilized nucleic

    acid lipid particles

    (SNALP)

  • 7/27/2019 Nanomedicines Jakarta

    20/42

    22

    Cellular delivery with micellar core-shell

    self-assemblies of amphiphilic polymers

    JA Hubbell, Science

    300:595 (2003)

    Packaging

    nucleic acid

    Packaging

    hydrophobic

    drugs

    1

    2

  • 7/27/2019 Nanomedicines Jakarta

    21/42

    24

    Biodistribution of nanoparticles

  • 7/27/2019 Nanomedicines Jakarta

    22/42

    25

    Efficient phagocytosis of

    human serum albumin

    nanoparticles bymacrophages in vitro

    0.01 mg/ml HSA

    0.025 mg/ml HSA

    0.1 mg/ml HSA

    1.0 mg/ml HSA

    Flow cytometry

    C

    ounts

    FITC intensity

    No HSA nanoparticles

    Macrophages with

    HSA nanoparticles

    100 nm

    K Langer et al. Int J Pharm

    257:169 (2003)

  • 7/27/2019 Nanomedicines Jakarta

    23/42

    26

    The Mononuclear

    Phagocyte System

    MPS

    Liver, Kupffer cells

    Lungs, macrophages

    Spleen, macrophages Lymph nodes,

    macrophages

    Kidney phagocytes

    Blood monocytes

    Bone marrow

    precursor cells

    Brain, microglia

    Kupffer cells loaded with

    ink particles in liver sinusoids

    SV = central vein

    Kupffer cells K with

    ink nanoparticles in

    liver sinusoids. SV:

    centrilobular vein

    Macrophages M

    and erythrocytes E

    in spleen tissue

    K

    M

    M

    M

    E

    E

  • 7/27/2019 Nanomedicines Jakarta

    24/42

    27

    The liver as a component of the MPS

    Liver lobule with portal tract

    T and centrilobular vein CV

    Centrilobularvein

    Lobule

    Herpatic vein

    Bileduct

    Heparticportal vein HPV

    Hepaticartery HA

    Bile duct HA HPV

    T

    T

    T

    CV

    From PR Wheather et al.Functional Histology, Churchill

    Livingstone, Edinburgh 1987

    T

    T

  • 7/27/2019 Nanomedicines Jakarta

    25/42

    28

    Splenic

    accumulation

    of NP in the rat

    ... caused by

    filtration at the

    interendothelial cell

    slits IES or by direct

    splenic macrophage

    recognition?

    SM Moghimi et al.

    J Leukoc Biol 54:513 (1993)2 m

    Accumulation in lysosomes of rat

    splenic red pulp macrophages.

    220 nm poly(styrene) nanoparticles.

  • 7/27/2019 Nanomedicines Jakarta

    26/42

    29

    Biodistribution of Rhodamin 123 loaded

    PGA-PLA nanoparticles in mice

    HF Liang et al.

    Biomaterials

    27:2051 (2006)

    100 nm nanoparticles

  • 7/27/2019 Nanomedicines Jakarta

    27/42

    30

    Extravasation into tumor tissueEnhanced permeability and retention (EPR) effect

    TM Allen & PR Cullis Science 303:1818 (2004)

    Y Matsumura et al. Gan To Kagaku Ryoho 14:821 (1987)T Inai et al. Am J Pathol

    165:32 (2004))

    Endothelial

    fenestrations

    to tumor tissue

  • 7/27/2019 Nanomedicines Jakarta

    28/42

    31

    Passage of nanoparticles across the BBB

    is mediated by binding of ApoE

    Blood

    vessel

    Neuron

    Endothelium

    AstrocyteBasement

    membrane

    PericyteTight junction

    ApoE

    receptor

    Release

    of drug

    Endotheli

    um

    ApoE

    ApoEcoated NP

    Polysorbate 80

    coated NP

  • 7/27/2019 Nanomedicines Jakarta

    29/42

    32

    Long-circulating "stealth"

    nanoparticles

    ... how to avoid clearance by the MPS?

  • 7/27/2019 Nanomedicines Jakarta

    30/42

    34

    Toward protein resistant "stealth" surfaces

    Adsorption of hydrophilic block-co-polymers onhydrophobic surfaces

    Poloxamines a 20; b 120

    Poloxamers a 60; b 100120

    Covalent conjugation of PEGa a 40 - 100 SMMoghimi

    etal.Pharmaco

    lRev53:283(20

    01)

    PEGb PPGa PPGa PEGb

    PEGb PPGa PPGa PEGb

    NCH2CH2N

    PEGb PPGa PEGb

  • 7/27/2019 Nanomedicines Jakarta

    31/42

    35

    The surface makes the difference

    Polystyrene nanospheres of 200 nm.

    Due to surface hydrophobicityuncoated particles tend to aggregate.

    Upon iv injection uncoated particles

    are cleared within minutes by the

    hepatic Kupffer cells.

    SM Moghimi et al. FASEB J 19:311 (2005)

    Polystyrene nanospheres of 200 nm

    with poloxamine 908 coating of 8 nm.Coating prevents aggregation, and

    results in ordered stacking. Upon iv

    injection, coated particles circulate for

    extended periods of time. Eventual

    clearance by spleen is due to filtration.

    Uncoated nanoparticles Poloxamine 908 coated

  • 7/27/2019 Nanomedicines Jakarta

    32/42

    38

    Paclitaxel loaded core-shell

    assemblies extend circulation

    and antitumor activityin tumor-bearing mice

    JA Hubbell, Science

    300:595 (2003)

    Negative

    control

    T Hamaguchi et al.

    Brit J Cancer 92:1240 (2005)

    25, 50 and 100 mg kg-1

    Paclitaxel alone

    Paclitaxel micelles

    Paclitaxel

    Control

  • 7/27/2019 Nanomedicines Jakarta

    33/42

    39

    Breakthrough in

    siRNA delivery

    K Whalley, Nature Rev Drug Discov 4:1 (2006)

  • 7/27/2019 Nanomedicines Jakarta

    34/42

    4040

    LiposomesStabilized nucleic acid

    lipid particles (SNALP)for DNA and RNA delivery

    Lipid excipients

    H

    +

    PEG-lipid

  • 7/27/2019 Nanomedicines Jakarta

    35/42

    42

    SNALP for systemic

    siRNA mediated

    ApoB gene silencingto lower LDL

    TS Zimmermann et al.

    Nature 441:111 (2006)

    siRNA delivery throughSNALP can lower both

    ApoB and LDL levels in

    cynomolgus monkeys

    RelativeAp

    oBlevel

    RelativeLDLlevel

    ApoB

    LDL

    LDL particle ApoB

  • 7/27/2019 Nanomedicines Jakarta

    36/42

    43

    Ligand mediated deliveryof nanoparticles

  • 7/27/2019 Nanomedicines Jakarta

    37/42

    44

    Gal-PLA-PGA nanoparticles

    HF Liang et al.

    Bioconj Chem

    17:291-299 (2006)

    Poly(L-lactic acid)

    PLA

    Activated PLA

    Carbodiimid

    Poly(-glutamic acid)

    Amphiphilic

    block copolymer

    NanoparticleGalactosylated nanoparticle

    Galactosamine

    Galactosamine

    Targeted nanoparticles

    for paclitaxel delivery

    Hydrophilic,

    anionic shell

  • 7/27/2019 Nanomedicines Jakarta

    38/42

    45

    Tumor

    Liver

    Spleen

    Gal-Rhod-NPRhod-NP

    Liver and tumor targeted localization of

    galactosamin modified nanoparticles

    HF Liang et al.

    Biomaterials

    27:2051 (2006)

    Partial reduction of

    spleenic acculation

    in mice

    Increased liver uptake

    Increased tumor uptake

  • 7/27/2019 Nanomedicines Jakarta

    39/42

    46

    Targeted organdistribution ofgalactosamin

    modifiedpaclitaxel NPs

    HF Liang et al.

    Biomaterials

    27:2051 (2006)

    Galactosamin

    negative control

    Galactosamin

    modified NPs

    Intensity

    counts/mg

    Inten

    sity

    counts/mg

    Rhodamin 123loaded Gal-NPs in

    hepatoma-tumor-

    bearing nude mice

  • 7/27/2019 Nanomedicines Jakarta

    40/42

    47

    Superior tumor volume response of

    galactosamin modified paclitaxel NPs

    HFLianget

    al.Biomaterials

    27:2051(2006)

  • 7/27/2019 Nanomedicines Jakarta

    41/42

    49

    Conclusions

    The future of nanomedicines has alreadybegun.

    Nanomedicines raise novel prospects for

    diagnosis and drug delivery.

    Nanomedicines can decouple the delivery of

    drugs from their normal biodistribution.

    Scientific challenges are long circulation

    ("stealth") and ligand-mediated delivery

    Laboratory-to-clinic is demanding, but niches

    are about to come up.

  • 7/27/2019 Nanomedicines Jakarta

    42/42

    Thank you for your attention

    [email protected]