Nano-confinement of biomolecules: hydrophilic confinement ... · Nano-confinement of biomolecules:...

18
Nano-confinement of biomolecules: hydrophilic confinement promotes structural order and enhances mobility of water molecules Bachir Aoun 1 and Daniela Russo 2,3 ( ) Nano Res., Just Accepted Manuscript • DOI: 10.1007/s12274-015-0907-7 http://www.thenanoresearch.com on Oct. 9, 2015 © Tsinghua University Press 2015 Just Accepted This is a “Just Accepted” manuscript, which has been examined by the peerreview process and has been accepted for publication. A “Just Accepted” manuscript is published online shortly after its acceptance, which is prior to technical editing and formatting and author proofing. Tsinghua University Press (TUP) provides “Just Accepted” as an optional and free service which allows authors to make their results available to the research community as soon as possible after acceptance. After a manuscript has been technically edited and formatted, it will be removed from the “Just Accepted” Web site and published as an ASAP article. Please note that technical editing may introduce minor changes to the manuscript text and/or graphics which may affect the content, and all legal disclaimers that apply to the journal pertain. In no event shall TUP be held responsible for errors or consequences arising from the use of any information contained in these “Just Accepted” manuscripts. To cite this manuscript please use its Digital Object Identifier (DOI®), which is identical for all formats of publication. Nano Research DOI 10.1007/s1227401509077

Transcript of Nano-confinement of biomolecules: hydrophilic confinement ... · Nano-confinement of biomolecules:...

  • Nano-confinement of biomolecules: hydrophilic

    confinement promotes structural order and enhances

    mobility of water molecules

    Bachir Aoun1 and Daniela Russo2,3 ( )

    Nano Res., Just Accepted Manuscript DOI: 10.1007/s12274-015-0907-7 http://www.thenanoresearch.com on Oct. 9, 2015 Tsinghua University Press 2015

    JustAcceptedThis isaJustAcceptedmanuscript,whichhasbeenexaminedby thepeerreviewprocessandhasbeenaccepted for publication.A JustAcceptedmanuscript is published online shortly after its acceptance,which isprior to technical editing and formatting and authorproofing.TsinghuaUniversityPress (TUP)providesJustAcceptedasanoptionalandfreeservicewhichallowsauthorstomaketheirresultsavailableto the research community as soon aspossible after acceptance.After amanuscripthas been technicallyedited and formatted, itwill be removed from the JustAcceptedWeb site andpublished as anASAParticle. Please note that technical editing may introduce minor changes to the manuscript text and/orgraphicswhichmayaffectthecontent,andalllegaldisclaimersthatapplytothejournalpertain.InnoeventshallTUPbeheldresponsibleforerrorsorconsequencesarisingfromtheuseofanyinformationcontainedintheseJustAcceptedmanuscripts.TocitethismanuscriptpleaseuseitsDigitalObjectIdentifier(DOI),whichisidenticalforallformatsofpublication.

    NanoResearch DOI10.1007/s1227401509077

  • 64NanoRes.

    Nano-con

    confineme

    enhances

    B. Aoun1 a

    1Argonne N

    2 CNR-IOM

    France, 3In

    France

    SummaryWeshowfascomparslowlyexpwellorder

    finement of b

    ent promote

    mobility of w

    and D. Russo2

    National Labora

    M, c/o Institu

    stitut Lumire

    yoftheworforthefirstredtohydrpellingwateredorganiz

    biomolecules

    es structura

    water molecu

    ,3*

    atory, Chicago,

    ut Laue-Lange

    Matire, Univ

    rkttimethathrophobiconermoleculeationofwa

    www.theNa

    s: hydrophilic

    l order and

    ules

    IL (USA)

    evin, Grenoble

    versit de Lyon

    hydrophilicnes.Wealsoesfromtheatermolecul

    anoResearch.co

    c

    d

    e,

    n,

    Nano-con

    moleculesuoobservethSWCNTcalesandenh

    omwww.Spring

    nfinement of b

    undergotohatwhilethavity,thehyhanceswater

    er.com/journal/1

    io-molecules

    highlystruhelatterprydrophiliccrmobility.

    2274 | Nano

    ucturedconromotesdehconfinement

    Research

    nfinementshydration,trevealsa

  • onfinemment p

    y of wa

    and Daniela R

    al Laboratory, C

    titut Laue-Lang

    Matire, Univers

    ymonthyearmonthyearay month yey inserted b)

    UniversityPresrVerlag Berlin014

    RDSement,ing,hydratioon nanotubry

    uction

    esearch omaticallyArticle

    respondence to

    ment promot

    ater mo

    Russo2,3 (

    Chicago, IL (USA

    gevin, Grenoble,

    sit de Lyon, Fra

    earby

    ssn

    onbe,

    ABSMolecpackinbiomofind tintoorganbiomoenhaninto tunstabresultbiomodegra

    insertedb

    o Russo Daniela

    of tes str

    olecule

    )

    )

    France

    ance

    TRACTculardynamngcharacterolecules in lthat hydropha geometri

    nization undoleculesinsidnces theirmthe nanotubblesmallpots shed ligholecules withadation.

    bythepubl

    a: [email protected]

    biomoructura

    es

    micssimulatioristicsofsmalarge diamehilic biomolical configuder SWCNdethecylind

    mobility.Convbes with aocketsofwatht on key ph direct rele

    conapp

    lisher)

    oleculeal orde

    onshavebeeallhydrophilter singlewecules easilyuration whiT confinemderconfinesversely,hydtrend for hteranddriveparametersevance for l

    A betternfinedproteinplications, as

    s: her and

    enusedtoinvic(Nagma)a

    wall carbon ny fill the nanich remind

    ment. The pallwatermorophobic bioomogeneousetowardastimportant flongterm st

    understandinshassignifs it can prov

    ydrophenhan

    nvestigatetheandhydrophnanotubes (Snotube andds the watpacking ofoleculesinitomolecules as filling, whtateofdehydfor the encatorage and p

    ing of the bficantvaluefvide direct i

    hilic nces

    econfinemenhobic(NalmaSWCNT).Wself organizer structurahydrophili

    tscore,whicaccommodathich generatdration.Thesapsulation oprevention o

    behavior offorpracticalinsight into

    nta)

    Wezealicchteteseofof

  • 2NanoRes.

    protein foland enzymcan have ebe used toforadaptatapplicationbiocatalysisof individualsopreventoisolatepThis can rstorage lopreservatio

    Confof otherpolymers)alsobe indmatrix, wiapplicationRecent dsolubilizatifor biolog(CNT) allomaterialtohollowcylinetworksdimensionscapableofhtube..

    Theanumerousparticularlyspontaneousidewalls,pother biomallow themtoaccumulthusmakintransporta

    Previ(MD) simugeometrybiomoleculconfinemenproteinfoldfolding ratwater in thalso beenPande [7]solvationpolypeptid

    lding and smes under cenhanced stro improve thtiontospecins, suchs,andbiosenual biomolentpotentialsparticularalloreduce microngevity, anonanddelivefinementcanstable maatsufficientlducedbywaithin pores on of externadevelopmention[2,3]havgical applicaowing for toachievenanindricalstrucof carbon

    s that provhighcargolo

    applicationobiochemic

    y attractivusly encapsproteins,pep

    molecules. Fumallow tocrlateinthecyng them appandproteindious workulations toon nan

    les suggestnt geometryding transititesand imprhe stabilizingstudied byobserved tproduced

    de chain that

    structural stconfinement,ructural stabheir performific industriaas, e.g.,nsors [1].Thecules can bselfaggregatostericconfoobial degradnd producery.nbeachievedcromoleculelyhighconcallsof a cagor tubes, oral nondenat

    of newvecreatedneation of cartheir emergnoconfinemcturescreaten atoms, wvide largeoadingwithi

    ofCNThasbcal studiee for thesulate or aptides,DNAunctionalizatrossthecellytoplasmlowplicable to udelivery.[4,5using moleinvestigate

    osized cot a correly and theion states throvestabilityg confinedbMD simulatthat the ad helix s

    tdecreased

    www.theNa

    tability. Protor entrapm

    bility,whichmance and alalanddiagnodrug delivheencapsulabe encapsulation,andbeurmationalstadation, impre better d

    dbythepreses (proteinscentration.Itewithin a sr simply byturing press

    methodsewopportunrbon nanotuence as aent.SWCNTedbyinterlinwith nanosinner voluinthecylind

    beenexplorees. CNTeir abilitydsorb on tA fragments,tion ofCNTmembraneswriskoftoxiuse inmolec5] ecular dynam

    the effectsonfinementlation betwe propertieshat can enhay. [6]The rolbiomoleculestions. Sorindition of wstability ofas a functio

    anoResearch.co

    teinsment,canllowosticvery,ationated,usedates.rovedrug

    ences ortcansilicay thesure.

    ofnitiesubesnewTarenkedscaleumesdrical

    edinareto

    theirand

    T canandicity,cular

    micss of

    ofweens ofanceleofshasand

    waterf aon of

    SWprotherinexadiffundintenandiamchrouniqthatcellwatnaninveexpdynchachamakinvemolforsolv

    of hthefocuintemolthehighbettpronanprohydWitmolinvehydaquNacom(CHbloc(CHNacom

    omwww.Spring

    CNTtubedperties plarmodynamicconfined spmined the sferent helixader CNT coerplay benotubepeptidmeter. [8,9]omophore cqueinsightittriggersthes. [10] Theter confinenotubes (SWestigated byperiments wnamics, the pinlike confiracteristics ake themestigating tlecules of biinvestigatio

    vation.Inthepre

    how SWCNThydrophilic

    us our exameractions, anlecularsize.local behaviohlyrelevantter understaperties annoconfinemeteinmodeldrophilic athinthisgenlecular dynestigate codrophilic anueous solacetylleucinemprises a hyH3)2CHCH2,ckedpolypeH3CONHCacetylglycinemprises the

    er.com/journal/1

    iameter,sugay a signcsof secondapaces. Othestatic and dand betahaionfinement,etween pde interac.A study loconfinementintotheroleebiologicalastatic and

    ed withinWCNT) havey Xray anwhich revpresence ofigurations [andmechan

    excellentthe effectsiological releon of the s

    esentworkwT confinemeor hydropho

    mination onnd controlInaddition,ors of hydratomanybio

    and the spend waterent, we

    biomolecund hydroperalframewnamic simuonfinementnd hydrophlutions.emethylamiydrophobic a,attachedtoptidebackbo

    CHCONHemethylamipolar bloc

    2274 | Nano

    ggestingthatnificant rolary structureer investigadynamical prirpin sequenand revealprimaryctions andookingat retin SWCNTofcis/tranisoactivityofphdynamic pr

    singlewaalso been s

    nd neutronveal anomalayered stru[11, 12]. Tnical propert

    environmof confin

    evance, andsubtle effect

    weaddresstentmay behobic biomoln the rolefor effectsweseektoation water,ochemicalprecificity of b

    moleculeused a

    ules, withphobic cha

    work,wefirstulations in

    packinghobic biomoWe examide (Nalmamino acidotheCatomonewithCHCH3) aide (Nagmcked backbo

    Research

    thesolventle in thee formationations haveroperties ofnces formedthe subtlesequences,

    d SWCNTtinalRetinalT allowed aomerizationhotoreceptorroperties ofall carbonsuccessfully scatteringalous softuctures andThe uniqueties of CNTments fornement on also allowts of water

    hequestionaffected bylecules. Weof specificrelated tounderstand which arerocesses.Tobiomoleculees undersimplified

    h distinctaracteristics.tperformedorder toof small

    olecules inmine: a)

    ma), whichside chain,mofapolarH3endcaps,and b)ma) whichone and a

  • NanoRes.

    hydrogenapeptidescompositiothus they abetweenhydrophobstructuralSWCNT folight on kand consepresencean2.Compu

    MDNAMD ppotentialforce fieldof potenticombinationexperimentaequivalentsummarizefull descripprovidedin(ESM).

    Wegeneratedsdiameter amoleculesNalma ancorrespondrespectivelyincaseofNthe ESM).water and(FigureS1equilibratens at 1 bprocedurefromtheintheSWCNTthenextsecthe350Kdownatar

    atomattacheshare a

    onwith simiallow for athe effectsbic propertieproperties

    orbothbiomey parameteervation ofndabsenceo

    utationald

    simulationspackage [14corrected v[15],usingial energyn to reproducealresultsofNconcentrati

    e our compuption of thentheElectro

    explored tsystemscontand a lengwereused and 900 mod to conceny.AcubicboNalmaand47The SWCNd biomolecuintheESM)dat350K, ibar. To confproduces i

    nitialconditioTwasanalyzction.Topreequilibratedrateof10K/n

    edtotheCaquite sim

    ilar ensemblstraightforws of hydres [13]. Weof confinem

    molecules.Ouers relevantbiomolecule

    ofwatermole

    details

    s were pe4] with allvariant CHATIP3Pmodefunctions re both structu

    NalmaandNaons ratios [utational ape computationicSupplem

    two amorphtainingSWCth of 5 nmalongwith 6olecules oftrations ofoxlengthof7.4AforNagTwere partules as in.Thewholein theNPTefirm that thindependentons,thefillinzedandwilleparethetraj configurations,

    www.theNa

    atom.Thesemilar chemleaveragedward comparrophilic veinvestigate

    ment packingur findings sfor the stoes in botheculesolvati

    erformed uatom diheARMM22/CMel.This selecreflects theure anddynaagmasolutio[13]. We brpproach hereonal strategmentaryMate

    hous randoCNTwitha4m. 18,000 w600moleculeNagma w2 M and 342.4Awasugma(TableStially filledwnitial conditsystemwasensemble, fohe equilibrat configuratngdensityinlbediscussejectoriesat30onswere co

    anoResearch.co

    twomicalsize;risonersusthe

    g inshedorage

    theion.

    usingedralMAPctionbestamicsonatrieflye. Agy isterial

    omly4nmwateresof

    which3 M,usedSIIinwithtionsfirstor78ationtionsnsideedin00K,ooled

    Figunanohydr(fullmolethe cfolloofpK asect3.R

    thecondurPrelfocuand

    diam

    omwww.Spring

    ure 1. Evolutiootube filling rophilic Nagmal circles, fullecules close to confined molecu

    owedby25nproductionruand analyzetion).

    Resultsan

    Wedescristructural

    nfined hydroringthefinalliminary musedon thedcompletefil

    Resultsinmeterof1.5n

    er.com/journal/1

    on, as a functby hydrophob

    a (open squares)squares). a)

    the inner SWCules in the inne

    nsofequilibrundynamicsed (results

    dDiscussi

    ibehereNagand dynam

    ophilic and hequilibration

    molecular drelationbetwllingoftheinndicatedtheenmnecessary

    2274 | Nano

    tion of time, obic Nalma () and related w) Percentages CNT walls. b) Per cavity.

    rationtime.swerecarriedescribed i

    ions

    gmaandNalmical properhydrophobiconandfillingdynamicsweenSWCNnnercavity.existenceofryformigrati

    Research

    3

    a)

    b)of the carbon open circles) ater molecules

    of confined Percentages of

    Finally,5nsedoutat300n the next

    lma,duringrties of thecmolecules,gstage. simulations

    NTdiameteraminimumionof

  • 4NanoRes.

    Figure 2. Nproduction rhydrophilic N(full circles, density is lohydrophobic Nagma. biomoleculcarefullyconfinemenmolecularobtained frwere analydiameter ibiomoleculcavityandSWCNT wavailabledistributionmolecules,displacemebelow.

    Bothrange of 2050configuratiafter 70 nmoleculeshydrophilicwatermolethe hydropSWCNT inwatermoleFigure1shfunction ohydrophobassociatedpercentage

    Number densirun, for hydr

    Nagma (open sqfull squares). T

    ower than the Nalma is more

    lesinsidetheinvestigatent andcharacteris

    rom SWCNTyzed (in theis compatiblesbeabletothusable to

    with largefor samp

    n functionsmean shell

    entswere ca

    peptides fi

    ns, andionsafterconns of equilifilling the

    cNagmawecules. Similphobic Nalmnternalcavityecules. howstheevoof time (eqbic Nalma,watermolec

    e of confine

    ty, calculated rophobic Nalm

    quares) and relaThe calculation

    biomolecules e densely pack

    enanotube.Ithe correhydroph

    tic, only MTwith a diESM). This

    ble with higomigrateinsoachieveadiametersle preparas, numbersthickness an

    alculated and

    ill the SWC

    arrive atnfinement.Wibration, 80e SWCNTwhile the remlar behaviorma which fywithonly

    olutionofSWquilibrationhydrophili

    cules.Figureed molecule

    www.theNa

    during the ma (open cirated water molen reveals that w

    densities andked than hydrop

    Inordertomlation betwilic/hydrophMD trajectoameter of 4s relatively lgh numberssidetheSWCcomplete fillare also eaations. Dens of confindmean squd are compa

    NT in the t

    highly staWeestimatet% of the tcavity are

    maining 20% is observedfills 95% of5%occupied

    WCNTfillingstep) for

    c Nagmae1a)depictses close to

    anoResearch.co

    5 ns rcles)

    ecules water

    d that philic

    moreweenhobicories nmlarges ofCNTling.asilynsityfineduareared

    time

    abilethat,totalthe

    % ared forthe

    dby

    asatheands thethe

    SWwat

    FiguNalmrelathomwellmoleprofmoltheatomneigandSWfillinequbothwalclosdempepfiguSWthanthewithextehydmorNagslowequ

    funratimolvolu

    omwww.Spring

    CNT innerter

    ure 3. Cylindrma (open circleted water mo

    mogeneous fillinl-structured paecules also shofiles, which are

    lecules are rbiolayer isms the caghboringatod estimates tCNT. Fig 1bng inside Suilibrium ishcases,fillinlls towardsse to innemonstratingptidenanotubure1b) thanCNTfaster(nNagmamoaverage sizhNalmaconendsa4lodrophobic Nre efficientlygmaandthewly even atuilibriumaro

    Figure 2ctionofsimuo of the nlecule foundume of this

    er.com/journal/1

    walls, and s

    ical Density Des) hydrophiliclecules (full

    ng by Nalma stacking of Naow pronouncedcorrelated to th

    replaced bystableoveralculation coms, itassignthe total perb) illustratesSWCNT indreached betwngseemstotthe center oer walls ia prefere

    be interacti1a) is thatN(butofthesaolecules.Itises of each bntainingabrongsidechainNalma, watey than in peirpercentagt 80 ns, whund40nsindisplays n

    ulationtime,umbers ofd inside a ds space (ES

    2274 | Nano

    shows that

    Distribution forc Nagma (opencircles, full s

    tands in sharp cagma. The cod differences inhe biomolecular

    biomoleculetime.Foreaconsiders tns the typercentage fors the evoludicating thaween 60 antakeplacefroof the tube.is filled iential andion. MoreNalmabiomameorderofsworthmenbiomoleculeranchpointin.Inthepreer moleculepresence ofgecontinueshile it reachnthesecondcnumber den,whichisdeatoms of adefined spaSM for mo

    Research

    after 20 ns

    r hydrophobic n squares) and squares). The contrast to the onfined water n their density r distributions.

    es and thatachSWCNTthe closestofmoleculer thewholeution of theat a stabled 80 ns. InomSWCNT The spacen priority,stabilizingevident in

    molecules fillfmagnitude)ntioningthatare similar,fromwhichsenceofthees expelledhydrophilictodecrease

    hes a stablecase. nsity as aefinedasthea particularace and theore detailed

    )

  • NanoRes.

    descriptionall speciesthe fillingnumberofsmallerthainthehydrdiffering aSWCNT anmoleculesinteractionnanotube ihydrophobin thewatefavorableeallows thewater. ThecanbeassothewholemolecularSWCNTs ehypothesisproposed tfaster acroareawaretoftheSWC

    To inencapsulatigeometricahydrationDensityDidefined ascalculated0.01nm)odivided byspecies confor detaileconfinemenhasastronon the hydbiomoleculhydrophobhomogeneocenter upwhichhowbiomoleculwaterisneand the prpockets ofpeptide.Thpockets ofobservedin

    n).Thebehavinside the Scapacity isconfinedw

    anthenumbrophobiccasamounts ofnd the highcan be exbetween

    in the case obicpeptidesersolution, tenvironmentem to minime slightly shoociatedwhitsystem, inatraffic jams

    enhance the is suppoto explain wss nanochathatthisresuCNTdiametenvestigate tion onalcorrelationwater, westribution(Cs the localwithin cyli

    ofvariable ray the total dntained insided definitionnt of biomongimpactondrophilic orlar species.bic Nalmaous fillingto almost 0

    wever leaveslesandtheSegligiblecomrofile suggesf water mohehypothesf water is snthewaterd

    viorofthenuSWCNT, conreached at

    watermolecuberofbiomole,itisalmoswater contaher densityxplained bythe peptideofNalma. Eexistathighthey findmotswithinthemize their iorter fillingaloweringagreementws at the extdynamicsac

    orted by awhy water mannels. [16]Nultcanbereer. the impactstructural

    nproperties,calculate

    CDD)(Figuredensity ofndrical sheladii (from0.density of thde thewholen). MD resolecules insinlocalstructr hydrophobThe densityclearly s

    of the SW0.3 nm froman emptyg

    SWCNTwallmparedtothasts the presolecules withsis for theprsupported bdensitydistr

    www.theNa

    umberdensitnfirms that oequilibrium,ules is ingenleculesandtstnegligible.ined withinof hydrophy the strone and SWCEven thoughherconcentraoreenergeticSWCNT,asinteraction wtime forNaoftheenerg

    with the ideatremities ofcross them.a new conmolecules mNonetheless,elatedtothe

    of the pepstability

    togetherwitthe Cylinde3).TheCDatomic spe

    lls (of thick.01nm to2he same atoe cylinder (Esults showide the SWCtures,dependbic propertiey profile ofshows a vCNT, fromthe innerw

    gapbetweenl.Theamounatofthepeptence of traphin the pacresence of smby the shouributionbetw

    anoResearch.co

    tyofonce, theneralthat,Then thehobicngerCNTh theationcallythiswithalmagyofthattheThisnceptmove,wesize

    ptideandthitsdricalDDiseciesknessnm)omicESMthatCNTdinges ofthe

    verythe

    wall,n thentoftidesppedckedmallulderween

    0.4conhydSWtow

    hydshopresaccowithproapppeaatmaxcorrlinewatis dreguproThiorg(pacbeinofwalmdistGivwithconpepstruarraet awirchapep

    deficonquatrajesegrofbiomtoth

    snatraje

    omwww.Spring

    and0.8nm.nfined watedrophobic biCNT cavity

    warddehydraAlso seen

    drophilicNaw a highlysence of coommodate ah a maximgressiveproximately1akat1.3nm,1.7 nm. Inximum derespondingearly increaseterprofile.Bdominant anularly sepagressiveincrs is interanization ofcked) hydrongthedensewaterarepremostnoneisftance in closven the extenhinwhich tnfined into (ptides,we suucture, remangementinal [11]. Atelike strucnnellike strptidedensity

    Figure 4inedasthednfined atomsantity is calcectory. Quregationofwthe cylindmoleculeswheSWCNTw

    Figurepshots takeectories,

    er.com/journal/1

    Aspreviouser moleculo interface sy, which suation. n in Figuregma, inwhistructured

    onfinement.and fill themum densit

    decrease.2 nm. Therbeforeacomthe central

    ensity, theto biomol

    esuntil1.1neyondthisvnd it showrated by 0reaseofintenrpreted asf three shellophilic molerandbetteresentinsidefoundinthese proximitynsion of thehewaterm(0.4 nm), anuggest the pminiscent otheSWCNTlarger leng

    cture beginructure loosiprofile. reports the

    distancefrom averaged oculated usinalitatively,watermolecuder in prewhich are almwalls. 5 display

    en from the

    2274 | Nano

    slyshowninles in prslowly escapuggests a s

    3 is the CDich thewateencapsulatioThe watercenter of thty at 0.3 n

    extendre is a noticmpletedropl region of

    CDD olecules isnmwhere itvaluetheNaws three dis0.4 nm, annsityanddefingerprint

    ls of highlylecules, thedefined.Fewthefirsttwolastshellwhy to the SWe available i

    molecules arend the lowpresence ofof the inTasproposedgth scales (ns to evolving the con

    mean shelmtheSWCNover allmoleng the 5 nsthe resultules towardesence ofmost in close

    ys threede productio

    Research

    5

    nFigure1b),resence ofpe from theslow trend

    DD for thermoleculeson and theappears tohe SWCNT,nm and ading toceable smallofintensitythe water

    of Nagmalower andtcrossestheagmaprofiletinct peaksnd with aefinedshape.ts of they correlatedouter one

    wmoleculesoshells,andhichliesata

    WCNTwalls.inner spacee essentiallydensity ofawire likener waterdbyZanotti1 nm), theve into atours in its

    l thickness,NTaxisofallecules. Thisproductionts confirms thecenterhydrophiliceproximity

    dimensionalonrun MD

    .

  • 6NanoRes.

    Figure 4. Mhydrophobic squares) and The comparisthe hydrophilcenter of the S

    a)

    b)Figure 5. ReSWCNT andproduction ru(green color) a correlated wmolecules (grandomly distformation. Wvisible. which visdistribution

    Mean shell thickNalma (open related water m

    son between shelic Nagma segreSWCNT.

    epresentation od confined moluns. a) SWCNT

    and water molwater network. green color) antributed and sh

    Water molecules

    sualizes thens in the p

    kness, as a fucircles) hydrop

    molecules (full ell thickness higegates water mo

    of three dimenlecules taken f

    T confinement oecules (orange b) SWCNT con

    nd water molechowing possibils escaping from

    distinct wpresence of

    www.theNa

    unction of timephilic Nagma (circles, full squghlights the facolecules toward

    nsional snapshofrom the final of Nagma molecolor) distributnfinement of N

    cules (orange city of water pom the SWCNT

    water molecthe hydrop

    anoResearch.co

    e, for (open uares) ct that ds the

    ots of 5 ns

    ecules ted in

    Nalma color) ockets T are

    culesphilic

    Nag(FigToprobiomwatconmolthatcominveaspof tenathesligdesexpsoluthisrelacanmeasqufrominfefunhydwatcoefcorrtimscattranana

    dentheslowhighbiom0.00in stwicthethathydhydwatIt icon

    omwww.Spring

    gma (Figurgure5b)arebimprove ouperties ofmolecules aters,andalsnfined geomlecular mobt the forcefmpromise bestigating bects. In fact,the experimables reproduhydrophilic

    ghtlyoverestpitethissmaperimentalvautions is consreasonweativeanalysis

    also beaningfulwayuaredisplacem the trajecterred. Figurction of timdrophobic mter moleculfficientcalcurespondingescale forttering spectnsverse andalyzedandar

    In accordnsity(seeFig

    two biomwing downhly concentmolecules h093x105cmsolutions (Tace that of thESM,D=0t, given thedrophilic pedrophobicontermoleculesis straightfonfined within

    er.com/journal/1

    e 5a) andbettervisualiur knowledgf the hynd their aco investigateetrical arranility. It is wfield we usbetween theboth struct, itprovides

    mental dynamuction of diandhydropimatingwatalloverestimaluesofwatnserved (Tabareconfidensof themobextracted ay. To this pument(MSD)toriesand thre 6a repreme for free wmolecules anles. We coulatedintheto the acdynamics

    troscopy). Td axial diffurereportedindance withgure2),thecrmolecules eas comparerated solutihave a diffum2/s)which iable SI in thhe hydrophil.049x105cme distinct septides arenes.Inbothcsdiffusefastorward to rn the inner

    2274 | Nano

    d hydrophobized. ge on the cydrophilic/hccompanyingeourhypothngements, wworth mentise represente dual obtural andsagoodappmic parameiffusion coefphobicsoluteterdiffusionmation,theraterdiffusionble SI in thent thataquabilityof conand interprpurpose, the)wascalculahediffusionesents thewater, hydrond associateonsider thetimeintervaccessible ex(i.e. usin

    The contribuusion haventheESM.to the hig

    rowdingaffeexhibits aned to the bions. The husion coeffiis35 timessheESM) andilic peptide (m2/s).Itiswstructural ore more mcases,thecorterbyatleasremark thatcavity of th

    Research

    bic Nalma

    confinementhydrophobicg hydrationhesisof thewe examineioning herets the bestbjectives ofdynamical

    proximationters, whichfficients fores(although).However,atiobetweenn in the twoe ESM). Foralitativeandnfinedwaterreted in atotalmean

    ateddirectlycoefficientsMSD as aophilic anded confinede diffusionalupto1ns,xperimentalng neutronutions frombeen also

    gh numberectsMSDofimportant

    behavior ofhydrophobicicient (D =maller than

    dmore than(Table SI in

    worthnotingrganization,

    mobile thanrrespondingstafactor10.the water

    he SWCNT

    .

  • NanoRes.

    containingcompareddiffusioncothatofsimThisbehavbondnetwowater. CoFigure 1b),tempting texchange leaving ununchanged

    Finalfinallyperfwaterwateboth NalmgeometricaintroducinghighfrequetheHB lifelifetimeofwaterwateevidence obehaviorhydrophilicwithobserthe waterhydrophilicrapid HBhydrophobmore easilpartner gipresence otrapped poable to easignificantl

    Carbtransport awaterdynaboth exper17,18].Ondirectly cmagnitudewater moinvestigatioSWCNTisespeciallytheyinduce

    hydrophilicto the hy

    oefficient(Dmulatedbulkviorsuggestsorkwithplansidering t, and the obto concludeat bulk ratnchanged thd.lly to suppoformedHyderconfinedmma and Naal criteria (ga toleranceencycontribetime.FigureallSWCNT

    er moleculesof specificof waterc/hydrophobvedchangesmolecules

    cmoleculesB dynamicsbic case. Wly renewedven their hof Nalma hockets ofwaasily renewlylongerandon nanotuand their aamicshavebrimentally anthe otheromparable,e and generaolecules flowons. In factscreenedbowing to theonthem.If

    c peptides isydrophobic=0.5x105cwater(D=3sthepresencasticitysimilathe resultsbserved hig that waterewith extehe final inn

    ort the prevrogenBondmolecules inagma molecdefined ine time, inorutions,wewe6b) represeconfinedhys. The resultand distinctHB in thbicmolecules in thediffuconfined

    arecharactes as com

    Waterwatermost likel

    high mobilithydrophobicatermolecultheir HB, wdmorestabbes in teability to enbeenextensivnd byMDhand ourboth for

    al conditionsw as discut in our casbyhydrophihe inducedfthe

    www.theNa

    s highlymocase, and

    cm2/s)isclose3.25x105cmceofahydroartothatofprepresentedhmobility,r moleculesernalmolecuner equilibr

    vious results(HB)analys

    n thepresenccules. By uthe ESM)

    rder toelimiwereabletoments theaveydrogenbonts show a ct differenceshe presencees. In agreemusioncoefficin presenceerizedbyammpared tointeractionsly with aty. Howevermolecules,

    les do not swhich resultblecontacts.rms of wnhance confivelyinvestigsimulationsresults arethe orders

    s, to the flowussed in thse the effecilicbiomoleccrowding e

    anoResearch.co

    obile,its

    ertom2/s).ogenpured init iscanules,rium

    s wesisofceofusingandinatemaperagendedclears ine ofmentcient,e ofmorethearenewr, inthe

    seemts in. waterfinedgated[16,not

    s ofw ofthesect ofculeseffect

    a)

    b) FigutimecirclsquacomHydas a hydrconfhydrhydrhydhydmoldiffcasesmaSingarraextefromSW

    omwww.Spring

    ure 6. a) Mean e, for hydrophles), hydrophilares) and related

    mpared to nondrogen-Bond lif

    function of torophobic biomfinement of wrophobic Nalmrogen bond lifet

    drophilic condrophobiclecules trappfusion coeffie, i.e. 0.04allerthanwhgle wateranged insmernal watersm the hydrCNT.As it i

    er.com/journal/1

    square displacehobic Nalma clic Nagma cod water molecun-confined in fetime, of wateolerance time (p

    molecules. The ater moleculesa promote signtimes.

    nfinement enencapsulati

    ped by the bcient inferrex 105 cm2/shatisfoundmoleculesallpocketsds in solutionrophobic enis shown in

    2274 | Nano

    ement (msd), asconfined in SWonfined in SW

    ules (full circlesSWCNT fre

    er-water confinps) for both hy results clears within the Snificantly longe

    nhanceswation freezbiological paed for the hs, is almostinthehydroor groupsdonot interan but slownvironmentFigure6,be

    Research

    7

    s a function of WCNT (open WCNT (open s, full squares), ee water. b) ned molecules, ydrophilic and ly show that SWCNT from er water-water

    termobility,es wateracking. Thehydrophobict ten timesophiliccase.of waters

    actwith thewly escapeinside theeingNalma

  • 8NanoRes.

    moleculesSWCNT, rediffuse witspeculatemove towatheconfine

    It ispreviouslyof hydrogeometricaofhydratiowas obserpeptide the[13a]wherewater dynfasterrelati

    Neveand itsdisbiointerfaccases. Thesolution cocase the hpowders. Ithat thenuselected, afollowingcontextwethe geomestrongintetheamounisrelatedtoandisafuof thenanopresence ohighly conwith the bdynamics.lowhydratthatHBexwaterdyna

    4.Conclu

    Thehthe surpraqueous sopeptidesunthe first timwithin SWstructured

    are relativesulting inwthin a rigidthat isolateards the smaement. natural toinvestigatedphilic/hydroalcontextfreonlevel(betwrved that the easier is teasforhighlnamics arouivetothehyertheless, thetributionwice,isnotequhydrophiliconfiguration,hydration lIn the latterumberofwaand bindingspontaneou

    e introduce aetry of theractionwithtofwater,itothecharacnctionoftheotube.Thusof the hydronfined waterbiointerface,Comparingtedpowdersxtent isacritamics[13f].

    usion

    highlightofrising selfsolvated hydnderSWCNme thathydWCNT arearrangemen

    vely frozewatermolecd medium. Id water mallpockets in

    compare tdhydrationophobic moeofconstrainween17wahe more hthe onset oflyconcentratnd hydrophdrophobicsceamountofithin theSWuivalentinbc case is like, while in tevel can bcase, a cruc

    atermoleculg sites andus water aanew impoconfinement

    hbiomoleculesdistributionteristicsofthenanoconfins, it isnotsuophobic Nalr molecules, and thus sthese result[13a],weseticalparame

    ourwork isstructural odrophilic/hydTconfinemedrophilicmo

    more pronts compar

    www.theNa

    n withinules that sloIt is possibl

    molecules slonorder to le

    these resultswaterdynamolecules innt.Asafuncater/moleculehydrophobicwater diffutedsolutionshilic surfacecenario[13f]water confi

    WCNTandatbothinvestigely closer tothe hydrophe comparedcialdifferenceswas carefHB were b

    affinity. Inrtantparamt medium, wes.Weshownanddynamhebiomolecunementandurprising thalma in SWCmostly inte

    show a reduts to the caseevidenceaeter inhydra

    s representedorganizationdrophobic sment.Weshowlecules confione to higed to confi

    anoResearch.co

    theowlyle toowlyeave

    s tomicsn actiones)itthe

    usionsthees is ined,t thegatedo thehobicd toce isfullybuiltthis

    meter,withthat

    mics,ules,size

    at, inCNT,eractucedse ofagaination

    dbyn ofmallwforfinedghlyfined

    hydthewathydorgwatparlongbiomsolvsituconanhAckD.R(FraprojCNdiscScosciemangratprocomLabsArElecSupandvershttp Ref [1]

    [2]

    [3]

    [4]

    omwww.Spring

    drophobicmolatter promter moleculedrophilic conanizationofter mobility.ameters imgterm stmolecules ivationbywau pressure tnsidered inhydridemole

    knowledg

    R. thanks ARance), for finject.D.R. isRS France)cussionsandttBrown(Suentific discunuscripttoimtefully acknovided on B

    mputingboratoryComrgonneNatio

    ctronicpplementarydparameterdsion op://dx.doi.org

    ferences

    Cass, T. and Analysis: A p1998. Imasaka, K.;microplasma-carbon nanoNanotecnologImasaka, K.; Wallace, Eself-assemblydynamics 045101-0451Pantarotto, DTranslocationmembranes b

    er.com/journal/1

    olecules.Wemotes dehydres from thenfinement rwatermole These resu

    mportant fororage andin the preatermoleculetreatment, oorder to rececules.

    gement

    RCSant annancial suppgrateful toand Dr. A

    dsuggestionsunovionPhassion and tmprovethesowledges thlues andFuclustersmputing RonalLaborato

    Supplemematerial (f

    definitions)iof thisg/10.1007/s12

    Ligler, F. S.; Impratical approac

    ; Kato, Y.; Su-based water-sootubes using gy, 2007, 18, 33; Kato, Y.; Su

    E.J.; Sansom, y with lipids study. Nano07

    D.; Briand, J.Pn of bioactivby carbon nano

    2274 | Nano

    ealsoobservration, slowle SWCNTreveals a weculesand anults shed ligr processesd conservesence or aes.Inthispeon the CNTcover the h

    nd region Rportwith thDr. Jose Tei

    Alessandro Cs.D.R.isgraarmaceuticalsto have revscientificlanhe computinusion highpoperatedResource Cory.

    mentaryfull simulatisavailableins artic2274*******

    Immobilized Biach. Oxford Un

    uehiro, J.; Enolubilization of

    gas bubblin35602-335609 uehiro, J.; En

    M.S.P.; Carband detergent:otechnology,

    P.; Prato, M.;ive peptides otubes. Chem C

    Research

    ethatwhilely expellingcavity, theell orderedn enhancedght on keys involvingvation ofabsence oferspectiveinT, could behydrated or

    RhoneAlpesheNanofoldixeira (LLB,Cunsolo foratefultoDr.s,USA.)forviewed thenguage.B.A.g resourcesperformance

    by theCenter at

    Material:tion detailsntheonlinecle at*

    iomolecules in niversity Press,

    hancement of f single-walled ng in water.

    hancement ofbon nanotube : a molecular

    2009, 20,

    ; Bianco, A.; across cell

    Commun 2004,

  • NanoRes.

    16-17 [5] Kam, N

    protein function

    [6] Zhang, DynamiLetters

    [7] Sorin, Denatur2006,12

    [8] OBrienFactors to Car3702-37

    [9] TrzaskoMolecumodelseLett., 20

    [10] Liu, Z.ImagingchromoNatothe

    [11] KoleThiyagaa NanoPhys Re

    [12] PaineaRols, Sthe StruNano L

    [13] a) Rusbond bio-mol4968; bHydratioligopeD.; Hurprotein 2007, 7impact of hydroChem Pimpact hydratio

    N.W.S.; Dai, H.transporters

    nality. J.Am. ChS.Q.; Cheung

    ics by Aniso2007, 7, 11, 34E.J.; Pande,

    res Protein 28,6316-6317 n, E.P.; Stan, GGoverning Hel

    rbon Nanotube709 owski, B.; Jular dynamicsencapsulated in006, 430, 97-10.; Yanagi, K.; Sg the dynamic

    ophores confineechnology, 2007esnikov, A.I.; arajan P.; Anomotube: A Revelev Letter, 2004,

    au, E.; Albouy, .; Launois, P.; Xucture of Wateretters, 2013, 13

    sso, D.; Ollivieanalysis on

    lecules sites. Pb) Russo, D.; ion water dynaptide. Chem. Pra G.; Copley J.methyl group

    75, 1.; d) Russoof hydration waophobic peptidePhys. , 2009, of kosmotrop

    on shell water

    . Carbon nanotus: generality hem Soc, 2005, , M.S.; Manipotropic Nanoc38-3442

    V.S.; NanoHelices. J.A

    G.; Thirumalailix Formation ies. Nano Let

    Jalbout, A.F.; s studies ofnto carbon nano00. Suenaga, K.; Kac behaviour oed inside carbon7, 2, 422-425

    Zanotti, J.Mmalously Soft Dlation of Nano, 93,3,035503(4P.A.; Rouziere

    Xray Scatterinr during Carbo3, 1751-1756 er, J.; Teixeira,

    hydrophilic Phys. Chem.CheBaglioni, P.; Pmics of a comp

    Phys., 2003, 292.R.D.; Effect ofdynamics in so

    o, D.; Teixeira,ater on the dynes. From dry po130, 235101;

    pes and chaotrr dynamics in

    www.theNa

    ubes as intraceand biolo

    127,6021-6026pulating Biopolconfinement. N

    otube ConfineAm. Chem

    , D.; Brooks, n Peptides Cont. , 2008, 8,

    Adamowicz, f protein-fragotubes. Chem. P

    ataura, H.; Lijimf individual ren nanotubes. N

    M.; Loong, Dynamics ofWaoscale Confinem4) e, S.; Orecchinng Determinati

    on Nanotube Fi

    J.; Water hydrand hydroph

    em. Phys.,2008Peroni, E.; Teixpletely hydroph

    2, 235-245; c) Rf hydration watolution. Phys R

    J.; Ollivier, J.amics of side cowder to solutio

    e) Russo, D.ropes on bulkn a model pe

    anoResearch.co

    ellular ogical 6 lymer Nano

    ement Soc.

    B.R.; nfined , 11,

    L.; gment Phys.

    ma,S.; etinal

    Nature

    C.K.; ater in ment.

    ni, A.; ion of illing.

    rogen hobic 8, 10, xeira, hobic Russo, ter on

    Rev E, ; The

    chains ons. J. The

    k and eptide

    [13]

    [15]

    [16]

    [17]

    [18]

    .

    omwww.Spring

    solution. CheCopley J.R.Dof the waterdependence dimensionalitD.; Hura, Gdynamics nea86, 1852. h) Head-Gordon& Design 17: Phillips, J.CTajkhorshid, L.; SchultenNAMD. Jour1781-1802 a) MacKerDunbrack, Jr.Gao, J.; Guo,L.; Kuczera, Ngo,T.; NguyB.; SchlenkriWatanabe, MM.; All-atom and dynamics102, 3586-36C.L. 3rd. EEnergetics inGas-Phase QuConformationSimulations. 1400-1415.Sisan, B.T.; LNarrow Carb044501 Falk, K.; SedMolecular ornanotube medependent friWhitby, M; Enhanced fluNano Lett., 20

    er.com/journal/1

    em Phys., 2008,D.; Ollivier, J.; Tr hydrogen bon

    on temperatty. J.Mol StructG.; Head Gorar a model prote

    Hura, G.; Soren, T.; 1999.Pers97118. .; Braun, R.; E.; Villa, E.; C, K.; Scalablernal of Comput

    rell, A. D.; BR.L.; Evanseck H.; Ha, S.; JosK.; Lau, F.T.K

    yen, D.T.; Prodhich, M.; Smith.; Wiorkiewicz-empirical pote

    s studies of prot616. b) MacKerExtending then Protein Foruantum Mechanal Distribution

    J;J. Computa

    Lichter, S.; Soliton Nanotubes.

    dlmeier, F.; Jolyrigin of fast embranes: supection. Nano Let

    Cagnon, L.; uid flow throu008,8,2632

    2274 | Nano

    , 345, 2-3, 200Teixeira, J.; Onond at bio-moture and hyt., 2010, 972,rdon, T.; Hydein surface. Bioenson, J. M.; G

    rspectives in Dr

    Wang, W.; Chipot, C.; Skeee molecular dtational Chemi

    Bashford, D.; k, J.D.; Field Mseph-McCarthy

    K.; Mattos, C.; hom, B.; Reihe

    h, J.C.; Stote, R-Kuczera, J.;Yi

    ential for molecteins. J. Phys. Crell, A.D.; Feige Treatment rce Fields: L

    anics in Reprodns in Molecu

    tational Chem

    tons Transport Phys. Rev. Le

    y, L.; Netz, R.Rwater transpo

    erlubricity vertt., 2010, 10, 10

    Thanou, M. ugh nanoscale

    Research

    9

    0; f) Russo, D; the behaviour olecules sites: drogen bond 81; g) Russo,

    dration water ophys. J., 2004,Glaeser, R.M.; rug Discovery

    Gumbart, J.; el, R.D.; Kale,

    dynamics with istry 2005, 26,

    Bellott, M.; M.J.; Fischer, S.;y, D.; Kuchnir, Michnick, S.;

    er, W.E.; Roux, R.; Straub, J.; in, D.; Karplus,cular modeling Chem. B, 1998,g, M.; Brooks, of Backbone

    Limitations of ducing Protein ular Dynamics ., 2004, 25:

    Water through ett., 2014,112,

    R., Bocquet, L. ort in carbon rsus curvature 0, 4067-4073

    Quirke, N.; carbon pipes.

    ,

    ;

    ,

    ,

  • NCM

    Ba 1 Ar

    2 CN

    3Ins

    Electro

    Nano-coConfineMobility

    achir Aoun1 a

    rgonne Nationa

    NR-IOM, c/o Ins

    stitut Lumire M

    1. Full

    Forcefield.beentested[i]has betterand NALMperformedCHARMM

    E

    The CHARaminoacidquantummThe forcefi

    onic Supp

    onfinemement Py Of Wa

    and Daniela R

    al Laboratory, C

    titut Laue-Lang

    Matire, Univers

    lsimulatio

    .Various fordinordertor reproductionMA solutionby using

    M22/CMAPfo

    ForcefieldD[105cm2/compass27cvffpcff

    CHARMMxperimentalv

    [3,4]

    RMM22 protdscompoundmechanicalchieldusedha

    plement

    ment Promoater Mo

    Russo2,3 (

    Chicago, IL (USA

    gevin, Grenoble,

    sit de Lyon, Fra

    ondetails

    rcefields andchoosethefn ofboth strun at equivalthe NAMD

    orcefield[15]

    Diffusi

    d /s]

    WaN

    7

    M22values

    tein forcefieds,andall ithemicalcalcuasbeen teste

    ary Mat

    Of otes Strolecule

    )

    )

    France

    ance

    dparametersinalsetup[Tuctural anddyent concentrD packageincombinat

    ion coefficients

    aterin3MNagma3.923.344.913.251.1

    ld is paramtsatomsparulationsofthdand found

    terial

    Biomoructuraes

    s such asCOTableI].CHAynamicalproprations ratio[ v ] with ationwiththe

    Table SI:

    s inferred from

    3MNagma0.420.811.40.78

    meterized forrametersandheinteractiond toproduce

    oleculeal Orde

    OMPASS27,ARMM22allperties basedos [ii, iii, iv]llatom dihethreesitew

    m the tested for

    WateriNalm3.83.05.02.70.7

    r explicit TIPdtheatomicnsbetweenme thebest co

    s: Her and

    cvff,pcff, anatomempirion experimenTherefore, Medral poten

    waterTIP3Pm

    rcefield

    n2Mma67175

    P3Pwatermpartialchargmodelcompoompromise i

    ydrophEnhan

    ndCHARMricalpotentiantal resultsoMD simulatntial correctemodel.

    2MNalma0.240.451.00.330.31

    model interargesweredeoundsandwinorder toa

    hilic nces

    MM22,havealforcefieldofNAGMAtions wereed variant

    actionwithrivedfrom

    water. achieve the

  • NanoRes

    www.theNanoResearch.comwww.Springer.com/journal/12274 | Nano Research

    2

    objectivesofourstructuralanddynamicalinvestigation. Theinitialconfigurations.Simulationswerecarriedoutat295KusingdifferentconcentrationsofNagmaandNalmasolutions intheNPTensemble.TheLangevinpistonmethod isusedtocontrolthepressure,withanintegrationtimestepof1fs.Threedimensionalcubicperiodicboundaryconditionswereappliedwitha longdistances interactioncutoff fixedat12using theParticleMeshEwald (PME)methodwasusedforthelongrangecoulombforcescalculation.Thetotalnumberofsolutemolecules(Nagma,Nalma)wasfixedat100andthenumbersofwatermoleculeswereadjustedaccordingtothedesiredconcentration[Table II]. The initial configurationswere constructed to be as dispersed as possible in order to avoidaggregation. Finally, energyminimization and 5ns of equilibrationwere performed and followed by aproduction runof1ns thatwasused forcomparison toexperimentaldata.While theTIP3watermodelseems togivea ratherhighdiffusionconstant compared to theexperiment, theNalma solutediffusionmatchestheexperimentaldiffusioncoefficient[TableSII].

    Table SII: Molecular dynamics parameter of Nagma and Nalma molecules in water solution

    CHARMM22parameters&

    experimentalvalues

    Nalma1:252M

    Nalma1:501M

    Nagma1:193M

    Nagma1:501M

    Solutemoleculesnumber 100 100 100 100

    Watermoleculesnumber 2554 5000 1948 5000

    Meanboxlength(A) 47.4 56.3 42.4 55.1

    Simulationwater D(105cm2s1)

    2.7 3.5 3.25 3.9

    Simulationsolute D(105cm2s1)

    0.33 0.4 0.78 0.91

    Experimentwater** D(105cm2s1)

    0.75 1.26 1.1 1.65

    Experimentsolute** D(105cm2s1)

    0.31 0.36

    **Difusionconstantsderivedfromreference[3,4]However, as themain focus of thiswork is on the solute behavior,we only qualitatively compare thedynamicalparametersofthewatermolecules.

    FigureS1a)andS1b)reporttheatomisticrepresentationsoftwoinitialconditionsthathavebeentestedinordertoperformsimulationonthewholeSWCNTandbiomoleculesystem.FigureS1a)isbuildfromanequilibratedsolutionstateofNalmaorNagmawhichhavebeenpreviouslyused tochoice theusedpotential.Adding an empty SWCNT in thebox,wenoticed that the final equilibration timewasextremely long (over200ns),becausewatermolecules first fill theSWCNTand then theyare replacedfrom the biomolecules. For this reason a different strategywas used. Figure S1b) shows the randomgeneratedsystemwherewatermoleculesandbiomoleculespartiallyfilltheSWCNTas initialcondition.

  • NanoRes

    www.theNanoResearch.comwww.Springer.com/journal/12274 | Nano Research

    3

    Duringtheequilibration,thebiomolecules immediately loadtheSWCNTandthetotalstabilizationtimewasoftheorderof100ns.Therefore,weusedthissetupforourcalculation.

    It is important tonote thatdifferent lengthsanddiametersofSWCNThavebeenalso tested inorder to control themolecules structuredependence from the size of thenanotube.Weverified that acutoffof1.5nmenables the fillingof theSWCNTwith thebiomoleculesandbeyond2.0nmabove, thestructuralbehavioranddonotseemstochange.IndependencefromtheCNTlengthhasbeenalsoverifiedup to 10 nm. Consequently, in order to improve the simulation time/performancewe decided to useSWCNTof4nmdiameterand5nmlong

    a) b)

    Figure S1. a) Initial condition builds from the final equilibrated state of bio-molecules in solution, at the desired concentration,

    and an empty SWCNT. The equilibration state is reached after 200 ns. b) Initial condition builds from a randomly generated

    systems containing SWCNT, water molecules and bio-molecule at the desired concentration. The equilibration state is reached in a

    time range of 100 ns. Both configuration s represent the Nagma molecule case.

    Structure. Inorder to comparewith theXraydiffraction structure factor andwithpreviousmoleculardynamicssimulations[2]wealsocalculatedtheI(Q)Xrayscatteringfunction[FigureS2].Thepeaksandshiftspositionsasa functionofsolventconcentrationagreewith theexperimentalresults [2].Therefore,increasingtheconcentration,weobservedthatthemainpeakatQ~1.8A1ofNalmasolution,decreaseinintensity and shifts to lowerQvalueswhile thebump atQ~0.8A1 ismorepronounced.An equivalent

  • NanoRes

    www.theNanoResearch.comwww.Springer.com/journal/12274 | Nano Research

    4

    behaviorisalsoobservedfortheNagmasolution,forwhatthemaindiffractionpeakisconcerned.

    Figure S2: Simulated X-ray scattering intensity pattern for Nagma and Nalma as a function of concentration, in water solutions.

    Axial and transverseMSDs. Inordertoconfirm theconsistencyofourresultsandconclusionswealsocalculated theaxialand transversediffusion forbothNalma/waterandNagma/watersystems.Confinedatoms and molecules in SWCNT axial and transversal MSD components, are computed upon the

    transformedcoordinates totheSWCNTprincipalaxesreferentialsystem .As ,

    and arethemain,secondaryandtertiaryprincipalaxes,atomsinsidetheSWCNTarestripedoutofthe

    globalSWCNTdiffusionbyapplyingthefollowingtimedependenttransformationmatrixMT

    And

    ThereforeintheSWCNTprincipalaxesreferentialsystem,axialMSDarecomputedupon and

    transversalMSDupon vectorsandthetotalMSDsisnowthesumbetweentheaxialandthe

    transverseMSDs.From thewater confinement point of view (Figure S3a)we found that transversal diffusion ofwatermolecules isdominantup to1nswhileaxialdiffusion takesoveroverconfirming thepresenceand theexternalexchangeofthewatermoleculesinthechannel.Inaddition,resultsreportedinFigureS3bshow,forNagmamolecules,animportanttransversediffusionascomparedtotheaxialdiffusion,inthewholeobservedtimeframe.

  • NanoRes

    www.theNanoResearch.comwww.Springer.com/journal/12274 | Nano Research

    5

    For Nalma and the few trapped water molecules, diffusion is remarkably different compare toNagma/water confinement. First the few water molecules which have been confined (Figure S3c),essentiallyexperiencealocaltranslationaldiffusion(likelylocal,consideringthemagnitudeoftheMSD)andshowaquitenegligibleaxialdiffusion.Atthesametime,Nalmamoleculesarecharacteristicofahighlysuppressedaxialdiffusionandapronouncedlocaltransversediffusion(FigureS3d). Alsointhisnewcalculation,asalreadynoticeableinFigure6a),Nalma/waterMSDsaresignificantlowerandwithadifferenttimedependencecomparedtoNagma/watersystem.

    a b

    c dFigure S3) Axial, transverse and total MSDs calculated for a) water confined with Nagma molecules; b) Nagma molecules; c)

    water confined with Nalma molecules; d) Nalma molecules

    Parameterdefinitions

    NumberDensityND(t):Itistheratiobetweenthenumberofatomsoftargetmoleculesfoundina

    definedspacebythevolumeofthisspaceataspecifictime .Thiscalculationisusefultostudy

    theevolutionintermofquantityofaminoacidscomparedtowaterinsidethenanotubes.ND(t)iscalculatedfollowingeq.(1):

  • NanoRes

    www.theNanoResearch.comwww.Springer.com/journal/12274 | Nano Research

    6

    isthevolumeofthenanotube, representstheatomsselection, definesthenumberof

    atomsfoundinsidethenanotubeattime .

    Mean Shell Thickness,MST(t): It is the average of all the target atoms radii in the nanotube

    cylinderattime .Thisparameterhasbeenusedtostudyhowaminoacidscompetewithwater

    insidethenanotube.MST(t)iscalculatedusingeq.(2):

    While referstotheatomicspeciesand totheSWCNT, isthetotalnumberoftarget

    atoms found inside the SWCNT at time . is the distance between the atom and the

    SWCNTmainaxisattime

    CylindricalDensityDistribution, CDD(d):Describes the ratio of cylindrical densities of atoms

    inside the nanotube at a distance from the nanotubemain axis of symmetry. CDD(d) is

    calculatedusingeq(3)

    Where isthetotalnumberoftargetatomsfoundinsidethenanotubeattime , represents

    theSWCNTvolume, thedistanceoftheselectedatom fromtheaxis. isthenanotubelength,

    while istheradialdistancetoleranceand istheKroneckerdeltathat isequalto1

    when andequaltozeroelsewhere.

    MeanSquareDisplacement,MSD(t):Thisparametergivesinformationaboutthespatialextentof

    randommotionofthemolecules.MSD(t)iscalculatedusingeq.(4)

  • NanoRes

    www.theNanoResearch.comwww.Springer.com/journal/12274 | Nano Research

    7

    Where denotestheaverageoverallatomsand and thepositionsoftheatomattime

    and .WhentheMSDshowsalineardependencefromthetimet,thediffusioncoefficient canbe

    calculatedfromeq.(5):

    TheMSD data Figure 6a)were calculated directly from the trajectories and from those dataweinferredthediffusioncoefficientcalculatedinthetimeintervalupto1ns

    HydrogenBondAnalysis:Ahydrogenbondisanattractiveforcethatoccurswhenanhydrogenis

    bound toanelectronegativeatoms.Therefore, it canbedefinedbetween exactly threeatoms,adonor,thehydrogenandanacceptor.Thedonorisanelectronegativeatom(e.g.oxygen,nitrogen,fluorine)withanegativecharge,covalentlybondedtothehydrogenatom.Theacceptorisalsoanelectronegativeatom thatbelongs to the samemoleculeas thedonorand thehydrogenor toacompletelydifferentmolecule. In thisworkwe investigatewaterhydrogenbondeddimers confined incarbonnanotube.Anoxygendonoratomofawatermoleculesharesanyofthetwohydrogenofthesamemoleculewithanacceptoroxygenatomofanearwatermolecule. Inourcomputation,weconsider the following criteria to decide whether an HB is formed: hydrogenacceptor BondLength(BL)