NaNi3(OH)(SIP)2(H2O)5·H2O (SIP = 5-sulfoisophthalate) and … · w e i g h t l o s t u n d e r u l...

42
S1 Physisorption-Induced Structural Change Directing Carbon Monoxide Chemisorption and Nitric Oxide Coordination on Hemilabile Porous Metal Organic Framework NaNi 3 (OH)(SIP) 2 (H 2 O) 5 ·H 2 O (SIP = 5-sulfoisophthalate) Jon.G. Bell 1 , Samuel. A. Morris 2 , Farida. Aidoudi 2 , Laura J. McCormick 2,3 , Russell E. Morris 2 , K. Mark Thomas 1* 1 Wolfson Northern Carbon Reduction Laboratories, School of Chemical Engineering and Advanced Materials, Newcastle University, Newcastle upon Tyne, NE1 7RU, U.K. *Email: [email protected] 2 School of Chemistry, Purdie Building, St Andrews University, North Haugh, St Andrews, Fife KY16 9ST, U.K. 3 Experimental Systems Group, Advanced Light Source, Berkeley, California, USA Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2017

Transcript of NaNi3(OH)(SIP)2(H2O)5·H2O (SIP = 5-sulfoisophthalate) and … · w e i g h t l o s t u n d e r u l...

Page 1: NaNi3(OH)(SIP)2(H2O)5·H2O (SIP = 5-sulfoisophthalate) and … · w e i g h t l o s t u n d e r u l t r a - h i g h v a c u u m Figure S1. Temperature programmed thermogravimetric

S1

Physisorption-Induced Structural Change Directing Carbon Monoxide Chemisorption

and Nitric Oxide Coordination on Hemilabile Porous Metal Organic Framework

NaNi3(OH)(SIP)2(H2O)5·H2O (SIP = 5-sulfoisophthalate)

Jon.G. Bell1, Samuel. A. Morris2, Farida. Aidoudi2, Laura J. McCormick2,3, Russell E.

Morris2, K. Mark Thomas1*

1Wolfson Northern Carbon Reduction Laboratories, School of Chemical Engineering and

Advanced Materials, Newcastle University, Newcastle upon Tyne, NE1 7RU, U.K.

*Email: [email protected]

2School of Chemistry, Purdie Building, St Andrews University, North Haugh, St Andrews, Fife KY16 9ST, U.K.

3Experimental Systems Group, Advanced Light Source, Berkeley, California, USA

Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A.This journal is © The Royal Society of Chemistry 2017

Page 2: NaNi3(OH)(SIP)2(H2O)5·H2O (SIP = 5-sulfoisophthalate) and … · w e i g h t l o s t u n d e r u l t r a - h i g h v a c u u m Figure S1. Temperature programmed thermogravimetric

S2

Supporting Information

Contents Page

S1 Activation of porous structure S4

S1.1 Temperature Programmed Thermogravimetric analysis of S4

NaCo3(OH)(SIP)2(H2O)5·H2O and NaNi3(OH)(SIP)2(H2O)5·H2O

under ultra-high vacuum using the IGA system

S1.2 Powder X-ray diffraction profiles and crystallographic information S4

S2 CO adsorption/desorption isotherms S8

S2.1 NaNi3(OH)(SIP)2 S8

S2.1.1 CO adsorption isotherms for NaNi3(OH)(SIP)2 S8

S2.1.2 CO low pressure kinetic desorption profile S11

S2.1.3 CO loading experiments S12

S2.1.4 Activation of NaNi3(OH)(SIP)2(H2O)5·H2O under ultra-high S14

vacuum at 403 K to give NaNi3(OH)(SIP)2(H2O)2 for comparison

with XRD measurements

S2.1.5 CO desorption kinetics for NaNi3(OH)(SIP)2(H2O)2 degassed at 403 K S15

S2.2 NaCo3(OH)(SIP)2 S15

S2.2.1 CO adsorption/desorption isotherms for NaCo3(OH)(SIP)2 S15

after degas at 448 K

S2.2.2 CO desorption kinetic profile for NaCo3(OH)(SIP)2 degassed at 448 K S16

S3 Comparison of carbon dioxide adsorption before and S17

after CO adsorption

S4 Virial analysis S18

S4.1 CO adsorption on NaNi3(OH)(SIP)2 S18

S4.2 CO adsorption on NaCo3(OH)(SIP)2 S20

S5 Clausius-Clapeyron Graphs S21

S5.1 CO adsorption on NaNi3(OH)2(SIP)2 S21

S5.2 CO adsorption on NaCo3(OH)2(SIP)2(degas temperature 448 K) S22

S6 Enthalpy and entropy of adsorption for NaNi3(OH)(SIP)2 S23

and NaCo3(OH)(SIP)2

S7 Ideal adsorbed solution theory: CO/ N2 selectivity at 348 K S29

Page 3: NaNi3(OH)(SIP)2(H2O)5·H2O (SIP = 5-sulfoisophthalate) and … · w e i g h t l o s t u n d e r u l t r a - h i g h v a c u u m Figure S1. Temperature programmed thermogravimetric

S3

S7.1 Comparison of CO and N2 adsorption isotherms for NaNi3(OH)(SIP)2 S30

and NaCo3(OH)(SIP)2 at 348 K

S7.2 Comparison of CO/N2 selectivity for adsorption of 1:1 mixture on S32

NaNi3(OH)(SIP)2 and NaCo3(OH)(SIP)2 at 348 K

S8 In-situ temperature programmed desorption (TPD) studies S33

S8.1 NaNi3(OH)(SIP)2 S33

S8.1.1 In-situ TPD under ultra-high vacuum after sequential CO isotherms S33

S8.1.2 In-situ temperature programmed desorption with simultaneous S34

thermogravimetric and dynamic mass spectrometry under helium

for NaNi3(OH)(SIP)2 after CO treatment for 2 weeks at 348 K

S9 Temperature programmed thermogravimetric analysis coupled S36

with mass spectrometry in flowing helium (ex-situ measurements)

S9.1 Experimental S36

S9.2 Results and Discussion S36

S10 Scanning electron microscopy S41

References S42

Page 4: NaNi3(OH)(SIP)2(H2O)5·H2O (SIP = 5-sulfoisophthalate) and … · w e i g h t l o s t u n d e r u l t r a - h i g h v a c u u m Figure S1. Temperature programmed thermogravimetric

S4

S1 Activation of porous structure

S1.1 Thermogravimetric analysis NaCo3(OH)(SIP)2(H2O)5·H2O and NaNi3(OH)(SIP)2(H2O)5·H2O of under ultra-high vacuum using the IGA system

The Temperature Programmed Thermogravimetric Profiles give the following stoichiometry: degas 400 K - NaNi3(OH)(SIP)2 (H2O)2 and degas at > 500 K - NaNi3(OH)(SIP)2

250 300 350 400 450 500 550 600

85

90

95

100

Wei

ght %

Temperature/ K

NaCo3(OH)(SIP)2 NaNi3(OH)(SIP)2

weight lost under ultra-high vacuum

Figure S1. Temperature programmed thermogravimetric profiles for NaCo3(OH)(SIP)2(H2O)5·H2O and NaNi3(OH)(SIP)2(H2O)5·H2O under ultra-high vacuum at a heating rate of 1 K min-1

S1.2 Powder X-ray diffraction profiles and crystallographic information

a)

5 10 15 20 25 30 350

2x105

4x105

6x105

8x105

1x106

Inte

nsity

(Cou

nts)

2 theta (°)

NaNi3(OH)(SIP)2(H2O)5·H2O Rietveld Refinement Observed-Calculated

Page 5: NaNi3(OH)(SIP)2(H2O)5·H2O (SIP = 5-sulfoisophthalate) and … · w e i g h t l o s t u n d e r u l t r a - h i g h v a c u u m Figure S1. Temperature programmed thermogravimetric

S5

b)

5 10 15 20 25 30 350

2x105

4x105

6x105

8x105

1x106

Inte

nsity

(Cou

nts)

2 theta (°)

NaNi3(OH)(SIP)2(H2O)2 Rietveld Refinement Observed-Calculated

c)

5 10 15 20 25 30 350

2x105

4x105

6x105

8x105

Inht

ensit

y(co

unts

)

2 theta (°)

NaNi3(OH)(SIP)2

Observed-Calculated Pawley Refinement

Figure S2 PXRD profiles for a) NaNi3(OH)(SIP)2(H2O)5·H2O (Rietveld Refinement from 3 – 38°gave R_wp = 6.84% in the space group P-1. Black line is the experimental data, red is the calculated fit and the blue is the difference curve); b) NaNi3(OH)(SIP)2(H2O)2 degassed under vacuum at 400 K (Rietveld Refinement from 3 – 38 °2θ. gave R_wp = 7.14% in the space group P-1. Black line is the experimental data, red is the calculated fit and the blue is the difference curve; c) NaNi3(OH)(SIP)2 degassed at 573 K (Pawley refinement gave R_wp = 4.68% in space group P-1. Black line is the experimental data, red is the calculated fit and the blue is the difference curve)

Page 6: NaNi3(OH)(SIP)2(H2O)5·H2O (SIP = 5-sulfoisophthalate) and … · w e i g h t l o s t u n d e r u l t r a - h i g h v a c u u m Figure S1. Temperature programmed thermogravimetric

S6

Fresh NaNi3(OH)(SIP)2(H2O)5·H2O. CIF file RT-1

Space Group P-1. a = 9.8590(11) Å, b = 11.0355(13) Å, c = 12.567(14) Å, = 104.782(2)°, = 89.974(2)°, = 109.954(2)°, V=1237.01Å3

Degas 400 K NaNi3(OH)(SIP)2 (H2O)2. CIF file 400K-1 and 400K-2

Cif file 400K-1: Space Group P-1. a = 9.8415(13) Å, b = 11.0066(15) Å, c = 12.6355(17) Å, = 104.131(3)°, = 92.127(3)°, = 110.798(3)°, V = 1229.17 Å3

NO Reaction with NaNi3(OH)(SIP)2 (H2O)2. CIF File 400K-NO

Space Group P-1. a = 9.8979(17) Å, b = 10.9915(18) Å, c = 12.589(2) Å, = 104.603(3)°, = 91.331(3)°, = 110.658(3)°, V=1230.58Å3

CO Reaction with NaNi3(OH)(SIP)2 (H2O)2. CIF File 400K-CO

Space Group P-1. a = 9.8418(16) Å, b = 10.9891(18) Å, c = 12.587(2) Å, = 104.340(3)°, = 91.715 (3)°, = 110.678(3)°, V=1223.55Å3

Degas 448 K NaCo3(OH)(SIP)2: CIF file NaCoSIP

Space Group P-1. a = 9.972(4) Å, b = 11.192(5)(15) Å, c = 12.679(5) Å, = 104.544(9)°, = 90.078(9)°, = 110.086(9)°, V = 1280.42 Å3

Degas 573 K PXRD NaNi3(OH)(SIP)2

Space Group P-1 with unit cell dimensions and this gave the following: a = 10.8516(5) Å, b = 11.1792(5) Å, c = 12.5215(5) Å, α = 98.575(3)°, β = 106.154(3)°, γ = 67.916(3)°, V = 1350.3(1) Å3

CCDC Numbers for CIP Files

CoNaSIP = CCDC 1553467

RT-1 = CCDC 1553050

400K-1 = CCDC 1553052

400K-CO = CCDC 1553053

400K-NO = CCDC 1553051

Calculation of void volume of fully dehydrated NaNi3(OH)(SIP)2

Void volume for NaNi3(OH)(SIP)2(H2O)5·H2O = 25 Å3 / 1237.0 Å3

Void volume for NaNi3(OH)(SIP)2 (H2O)2 = 190.1 Å3 / 1229.2 Å3

Framework volume for NaNi3(OH)(SIP)2 (H2O)2 = 1039.1 Å3

Page 7: NaNi3(OH)(SIP)2(H2O)5·H2O (SIP = 5-sulfoisophthalate) and … · w e i g h t l o s t u n d e r u l t r a - h i g h v a c u u m Figure S1. Temperature programmed thermogravimetric

S7

NaNi3(OH)(SIP)2(H2O)5·H2O has 5 framework bound water molecules. Removal of 3 removed by partial dehydration to give NaNi3(OH)(SIP)2 (H2O)2, resulted in an increase in pore volume of 190.1 - 25 Å3 = 165.1 Å3, i.e. approximately 55 Å3

per water.

The loss of a further two water molecules from NaNi3(OH)(SIP)2 (H2O)2 to give NaNi3(OH)(SIP)2, leads to a fully dehydrated framework volume of 1039.1 Å3 – (2*55 Å3) = 929.1 Å3.

Cell volume for NaNi3(OH)(SIP)2 from Pawley fit = 1350.3 Å3

Void volume for NaNi3(OH)(SIP)2 = 1350.3 Å3 - 929.1 Å3 = 421.2 Å3

Void volume (%) for NaNi3(OH)(SIP)2 = 421.2 Å3 / 1350.3 Å3 = 31.2%

Density of NaNi3(OH)(SIP)2 framework = 1.728 g cm-3

Crystallographic void volume = 0.1805 cm3 g-1

Page 8: NaNi3(OH)(SIP)2(H2O)5·H2O (SIP = 5-sulfoisophthalate) and … · w e i g h t l o s t u n d e r u l t r a - h i g h v a c u u m Figure S1. Temperature programmed thermogravimetric

S8

S2 CO adsorption isotherms

S2.1 NaNi3(OH)(SIP)2

S2.1.1 CO adsorption/desorption isotherms for NaNi3(OH)(SIP)2

a)

0 200 400 600 800 10000

1

2

3

4 273 K 283 K 293 K 303 K 313 K 323 K 333 K 343 K

Surfa

ce E

xces

s Am

ount

/ m

mol

g-1

Pressure/ mbar

b)

0 1000 2000 3000 4000 5000 60000

1

2

3

4

5

Surfa

ce E

xces

s Am

ount

/ mm

ol g

-1

Pressure/ mbar

Adsorption at 273 K Desorption at 273 K

Page 9: NaNi3(OH)(SIP)2(H2O)5·H2O (SIP = 5-sulfoisophthalate) and … · w e i g h t l o s t u n d e r u l t r a - h i g h v a c u u m Figure S1. Temperature programmed thermogravimetric

S9

c)

0 500 1000 1500 20000

1

2

3

4

Surfa

ce E

xces

s Am

ount

/ m

mol

g-1

Pressure/ mbar

Adsorption at 283 K Desorption at 283 K

d)

0 1000 2000 3000 4000 50000

1

2

3

4

Surfa

ce E

xces

s Am

ount

/ m

mol

g-1

Pressure/ mbar

Adsorption at 293 K Desorption at 293 K

Page 10: NaNi3(OH)(SIP)2(H2O)5·H2O (SIP = 5-sulfoisophthalate) and … · w e i g h t l o s t u n d e r u l t r a - h i g h v a c u u m Figure S1. Temperature programmed thermogravimetric

S10

e)

0 1000 2000 3000 4000 50000

1

2

3

4

Su

rface

Exc

ess

Amou

nt /

mm

ol g

-1

Pressure/ mbar

Adsorption at 303 K Desorption at 303 K

f)

0 2000 4000 6000 80000

1

2

3

4

Surfa

ce E

xces

s Am

ount

/ m

mol

g-1

Pressure/ mbar

Adsorption at 313 K Desorption at 313 K

Page 11: NaNi3(OH)(SIP)2(H2O)5·H2O (SIP = 5-sulfoisophthalate) and … · w e i g h t l o s t u n d e r u l t r a - h i g h v a c u u m Figure S1. Temperature programmed thermogravimetric

S11

g)

0 5000 10000 15000 200000

1

2

3

4

Surfa

ce E

xces

s Am

ount

/ m

mol

g-1

Pressure/ mbar

Adsorption at 333 K Desorption at 333 K

Figure S3. High pressure CO adsorption/desorption isotherms for NaNi3(OH)(SIP)2 a) low pressure comparison b) 273 K, c) 283 K, d) 293 K, e) 303 K, f) 313 K and g) 333 K

S2.1.2 CO low pressure desorption kinetic profiles at 348 K

2660 2670 2680 2690 2700 2710 272054.4

54.6

54.8

55.0

55.2

Tota

l wei

ght/

mg

Total Time/ mins

Desorption under vacuum

Figure S4: Carbon monoxide desorption kinetic profile for NaNi3(OH)(SIP)2 under ultra-high vacuum at 348 K

Page 12: NaNi3(OH)(SIP)2(H2O)5·H2O (SIP = 5-sulfoisophthalate) and … · w e i g h t l o s t u n d e r u l t r a - h i g h v a c u u m Figure S1. Temperature programmed thermogravimetric

S12

S2.1.3 CO loading experiments

a)

0 1000 2000 3000 4000 50000.0

0.2

0.4

0.6

0.8

1.0

Surfa

ce E

xces

s Am

ount

/ m

mol

g-1

Pressure/ mbar

Adsorption at 348 K and 5 bar Desorption at 348 K and 5 bar

b)

0 2000 4000 6000 8000 100000.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

Surfa

ce E

xces

s Am

ount

/ m

mol

g-1

Pressure/ mbar

Adsorption at 348 K and 10 bar Desorption at 348 K and 10 bar

Page 13: NaNi3(OH)(SIP)2(H2O)5·H2O (SIP = 5-sulfoisophthalate) and … · w e i g h t l o s t u n d e r u l t r a - h i g h v a c u u m Figure S1. Temperature programmed thermogravimetric

S13

c)

0 4000 8000 12000 160000.0

0.5

1.0

1.5

2.0

2.5

Surfa

ce E

xces

s Am

ount

/ m

mol

g-1

Pressure/ mbar

Adsorption at 348 K and 15 bar Desorption at 348 K and 15 bar

d)

0 4000 8000 12000 160000.0

0.5

1.0

1.5

2.0

2.5

Surfa

ce E

xces

s Am

ount

/ m

mol

g-1

Pressure/ mbar

Adsorption at 348 K and 17 bar Desorption at 348 K and 17 bar

Figure S5. CO adsorption/ desorption isotherms for NaNi3(OH)(SIP)2 at 348 K for maximum pressures of a) 5 bar, b) 10 bar, c) 15 bar, d) 17 bar.

Page 14: NaNi3(OH)(SIP)2(H2O)5·H2O (SIP = 5-sulfoisophthalate) and … · w e i g h t l o s t u n d e r u l t r a - h i g h v a c u u m Figure S1. Temperature programmed thermogravimetric

S14

0 3000 6000 9000 12000 15000 180000.0

0.5

1.0

1.5

2.0

2.5

Surfa

ce E

xces

s Am

ount

/ m

mol

g-1

Pressure/ mbar

5 bar 10 bar 15 bar 17 bar

Figure S6. Repeatability of CO adsorption isotherm loading experiments for different samples of NaNi3(OH)(SIP)2 at 348 K over the pressure range 5 – 17 bar.

S2.1.4 Activation of NaNi3(OH)(SIP)2(H2O)5·H2O under ultra-high vacuum at 403 K to give NaNi3(OH)(SIP)2(H2O)2 for comparison with XRD measurements

0 5000 10000 15000 200000.0

0.5

1.0

1.5

2.0

Surfa

ce E

xces

s Am

ount

/ m

mol

g-1

Pressure/ mbar

Adsorption at 348 K Desorption at 348 K

Figure S7. CO adsorption/ desorption isotherms at 348 K up to 20 bar for NaNi3(OH)(SIP)2(H2O)2

Page 15: NaNi3(OH)(SIP)2(H2O)5·H2O (SIP = 5-sulfoisophthalate) and … · w e i g h t l o s t u n d e r u l t r a - h i g h v a c u u m Figure S1. Temperature programmed thermogravimetric

S15

S2.1.5 CO Desorption kinetics for NaNi3(OH)(SIP)2 (H2O)2 degassed at 403 K

0 200 400 600 800 1000 120076.70

76.75

76.80

76.85To

tal W

eigh

t/ m

gs

Time/ mins

CO desorption kinetic profile for the 50 - 0 mbar pressure step

Figure S8. Kinetic profile for desorption of CO from NaNi3(OH)(SIP)2(H2O)2 for pressure decrement 250 – 0 mbar

S2.2 NaCo3(OH)(SIP)2

S2.2.1 CO adsorption/desorption isotherms for NaCo3(OH)(SIP)2

a)

0 200 400 600 800 10000.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Surfa

ce E

xces

s Am

ount

/ m

mol

g-1

Pressure/ mbar

268 K 273 K 283 K 293 K 303 K

Page 16: NaNi3(OH)(SIP)2(H2O)5·H2O (SIP = 5-sulfoisophthalate) and … · w e i g h t l o s t u n d e r u l t r a - h i g h v a c u u m Figure S1. Temperature programmed thermogravimetric

S16

b)

Figure S9. CO adsorption/ desorption isotherms on NaCo3(OH)(SIP)2 a) 268 – 303 K up to 1 bar and b) 348 K up to 5 bar

S2.2.2 CO desorption kinetics profile for NaCo3(OH)(SIP)2

0 2000 4000 6000 8000 1000087

88

89

90

91

92

Tota

l Wei

ght/

mgs

Time/ mins

desorption kinetic profile for the pressure step 250 - 0 mbar

Figure S10. Kinetic profile for desorption of CO at 348 K from NaCo3(OH)(SIP)2 for pressure decrement 250 – 0 mbar

0 1000 2000 3000 4000 50000.0

0.5

1.0

1.5

2.0 Adsorption Desorption

Surfa

ce E

xces

s Am

ount

/ mm

ol g

-1

Pressure/ mbar

Page 17: NaNi3(OH)(SIP)2(H2O)5·H2O (SIP = 5-sulfoisophthalate) and … · w e i g h t l o s t u n d e r u l t r a - h i g h v a c u u m Figure S1. Temperature programmed thermogravimetric

S17

S3.0 Comparison of carbon dioxide adsorption isotherms before and after CO Adsorption

0.0 0.2 0.4 0.6 0.8 1.00

1

2

3

4

5

6

7 CO2 on fresh NaNi3(OH)(SIP)2 at 195 K CO2 on fresh NaCo3(OH)(SIP)2 at 195 K CO2 on NaNi3(OH)(SIP)2 at 273 K after CO at 348 K CO2 on NaCo3(OH)(SIP)2 at 195 K after CO at 348 K

Amou

nt A

dsor

bed/

mm

ol g

-1

P/P0

b)

0 5000 10000 15000 200000.0

0.5

1.0

1.5

2.0

2.5

Surfa

ce E

xces

s Am

ount

/ m

mol

g-1

Pressure/ mbar

CO2 excess isotherm at 273 K on NaNi3(OH)(SIP)2 (H2O)2

Figure S11. CO2 adsorption isotherms basis a) Comparison on a relative pressure of NaNi3(OH)(SIP)2 and NaCo3(OH)(SIP)2 at 195 K prior to CO treatment with NaNi3(OH)(SIP)2 and NaCo3(OH)(SIP)2 after CO adsorption at 348 K b) NaNi3(OH)(SIP)2(H2O)2 at 273 K and up to 20 bar

Page 18: NaNi3(OH)(SIP)2(H2O)5·H2O (SIP = 5-sulfoisophthalate) and … · w e i g h t l o s t u n d e r u l t r a - h i g h v a c u u m Figure S1. Temperature programmed thermogravimetric

S18

0 5000 10000 15000 200000.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5 CO2 at 273 K after degas at 513 K and CO adsorption

at 348 K

Surfa

ce E

xces

s Am

ount

/ m

mol

g-1

Pressure/ mbar

Figure S12. Isotherm for CO2 Adsorption at 273 K for NaNi3(OH)(SIP)2 degassed at 513K after CO adsorption at 348 K

S4.0 Virial analysis

S4.1 CO adsorption on NaNi3(OH)(SIP)2 (Degas Temperature 513 K)

Table S1. Virial Parameters for CO Adsorption on NaNi3(OH)(SIP)2 (Degas Temperature 513 K) in the Temperature Range 273 – 343 K

Temperature (K)

Temperature error (K)

A0 (ln(mol g-1 Pa-1))

A0 error (ln(mol g-1

Pa-1))

A1 (g mol-1) A1 error (g mol-1)

273.125 0.004 -16.105 0.015 -347.5 20.6283.140 0.008 -16.645 0.036 -498.8 56.8293.139 0.009 -17.090 0.020 -605.5 28.5303.125 0.004 -17.613 0.011 -598.7 14.6313.137 0.007 -18.120 0.005 -517.7 7.7323.134 0.013 -18.539 0.004 -539.5 7.7333.105 0.005 -18.856 0.005 -712.7 13.3343.114 0.007 -19.212 0.004 -676.8 15.9

Table S2. Virial Parameters for CO Adsorption on NaCo3(OH)(SIP)2 (Degas Temperature 448 K) in the Temperature Range 268 – 303 K

Page 19: NaNi3(OH)(SIP)2(H2O)5·H2O (SIP = 5-sulfoisophthalate) and … · w e i g h t l o s t u n d e r u l t r a - h i g h v a c u u m Figure S1. Temperature programmed thermogravimetric

S19

Temperature (K)

Temperature error (K)

A0 (ln(mol g-1 Pa-1))

A0 error (ln(mol g-1

Pa-1))

A1 (g mol-1) A1 error (g mol-1)

268.139 0.041 -17.479 0.012 -522.3 22.5273.120 0.010 -17.633 0.009 -586.9 12.6283.135 0.013 -18.102 0.010 -529.6 18.8293.146 0.010 -18.491 0.006 -542.8 13.6303.124 0.004 -18.849 0.003 -550.3 10.1

0.0000 0.0005 0.0010 0.0015-21

-20

-19

-18

-17

-16

-15

ln(n

/p) /

ln( m

ol g

-1 P

a-1)

Surface excess / mol g-1

273 K 283 K 293 K 303 K 313 K 323 K 333 K 343 K

Figure S13. The variation of ln(n/p) vs. surface excess for CO adsorption on NaNi3(OH)(SIP)2 (degas temperature 513 K) over the temperature range 273 – 343 K and up to 1 bar

0.0030 0.0032 0.0034 0.0036-19.5

-19.0

-18.5

-18.0

-17.5

-17.0

-16.5

-16.0

Linear Regression for Data17_B:Y = A + B * X

Parameter Value Error------------------------------------------------------------A -31.54945 0.20192B 4220.04555 61.67832------------------------------------------------------------

R SD N P------------------------------------------------------------0.99936 0.04257 8 <0.0001------------------------------------------------------------

A 0 / m

ol g

-1 P

a-1

1/T (K-1)

A0 Linear Fit of Data17_B

Figure S14. Graph of A0 vs. 1/T for CO adsorption on NaNi3(OH)(SIP)2 (degas temperature 513 K ) over the temperature range 273 – 343 K

Page 20: NaNi3(OH)(SIP)2(H2O)5·H2O (SIP = 5-sulfoisophthalate) and … · w e i g h t l o s t u n d e r u l t r a - h i g h v a c u u m Figure S1. Temperature programmed thermogravimetric

S20

S4.2 CO adsorption on NaCo3(OH)(SIP)2

0.0000 0.0002 0.0004 0.0006 0.0008 0.0010-19.5

-19.0

-18.5

-18.0

-17.5

-17.0

ln(n

/p)/

ln(m

ol g

-1 Pa

-1)

Surface Excess/ mol g-1

268 K 273 K 283 K 293 K 303 K

Figure S15. Graphs of ln(n/p) vs. surface excess for CO adsorption on NaCo3(OH)(SIP)2 (degas temperature 448 K) over the temperature range 268 K – 303 K

0.0033 0.0034 0.0035 0.0036 0.0037 0.0038-19.0

-18.8

-18.6

-18.4

-18.2

-18.0

-17.8

-17.6

-17.4

-17.2Linear Regression for Data11_D:Y = A + B * X

Parameter Value Error------------------------------------------------------------A -29.57427 0.28686B 3250.74301 81.26509------------------------------------------------------------

R SD N P------------------------------------------------------------0.99906 0.02866 5 <0.0001------------------------------------------------------------

A 0 / m

ol g

-1 P

a-1

1/T (K-1)

Figure S16. Graphs of A0 vs. 1/T for CO adsorption on NaCo3(OH)(SIP)2 (degas temperature 448 K) over the temperature range 268 K – 303 K

Page 21: NaNi3(OH)(SIP)2(H2O)5·H2O (SIP = 5-sulfoisophthalate) and … · w e i g h t l o s t u n d e r u l t r a - h i g h v a c u u m Figure S1. Temperature programmed thermogravimetric

S21

S5.0 Clausius-Clapeyron graphs

S5.1 CO adsorption on NaNi3(OH)2(SIP)2

0.0033 0.0034 0.0035 0.0036 0.00373

4

5

6

7

8

9

10

ln(P

)/ ln

(mba

r)

1/T (K-1)

0.5 mmol g-1

1.0 mmol g-1

1.5 mmol g-1

2.0 mmol g-1

2.5 mmol g-1

3.0 mmol g-1

273 K - 303 K

Figure S17. Graphs of ln(P) vs. 1/T for CO adsorption on NaNi3(OH)(SIP)2 over the temperature range 273 K - 303 K and uptake range 0.5 - 3.0 mmol g-1

0.0028 0.0029 0.0030 0.0031 0.00326

7

8

9

10

11

ln(P

)/ ln

(mba

r)

1/T (K-1)

0.5 mmol g-1

1.0 mmol g-1

1.5 mmol g-1

2.0 mmol g-1

2.5 mmol g-1

3.0 mmol g-1

313 - 348 K

Figure S18. Graphs of ln(P) vs. 1/T for CO adsorption on NaNi3(OH)(SIP)2 over the temperature range 313 K – 348 K and uptake range 0.5 – 3.0 mmol g-1

Page 22: NaNi3(OH)(SIP)2(H2O)5·H2O (SIP = 5-sulfoisophthalate) and … · w e i g h t l o s t u n d e r u l t r a - h i g h v a c u u m Figure S1. Temperature programmed thermogravimetric

S22

0.0028 0.0030 0.0032 0.0034 0.0036 0.00385

6

7

8

9

10

11

ln(P

)/ ln

(mba

r)

1/T (K-1)

1.75 mmol g-1

2.00 mmol g-1

2.25 mmol g-1

2.50 mmol g-1

2.75 mmol g-1

3.00 mmol g-1

273 - 348 K

Figure S19. Graphs of ln(P) vs. 1/T for CO adsorption on NaNi3(OH)(SIP)2 over the temperature range 273 K – 348 K and uptake range after the point of isotherm inflection, which corresponds to 1.75 – 3.00 mmol g-1.

S5.2 CO adsorption on NaCo3(OH)2(SIP)2(degas temperature 448 K)

a)

0.0033 0.0034 0.0035 0.0036 0.0037 0.0038

3

4

5

6

7

ln(P

)/ ln

(mba

r)

1/ T (K-1)

0.05 - 0.45 mmol g-1

Page 23: NaNi3(OH)(SIP)2(H2O)5·H2O (SIP = 5-sulfoisophthalate) and … · w e i g h t l o s t u n d e r u l t r a - h i g h v a c u u m Figure S1. Temperature programmed thermogravimetric

S23

b)

0.0034 0.0035 0.0036 0.0037 0.00385.4

5.6

5.8

6.0

6.2

6.4

6.6

6.8

7.0

ln(P

)/ ln

(mba

r)

1/T (K-1)

0.5 - 0.85 mmol g-1

Figure S20. Graphs of ln(P) vs. 1/T for a) 0.05 - 0.45 mol g-1 and b) 0.5 – 0.85 mol g-1

S6.0 Enthalpy and entropy of adsorption for NaNi3(OH)2(SIP)2 and NaCo3(OH)(SIP)2

Table S3. Enthalpy and Entropy of CO Adsorption on NaNi3(OH)(SIP)2): 273 – 303 K

Amount Adsorbed/ mmol g-1

Enthalpy of Adsorption/ kJ mol-1

Error/ kJ mol-1 Entropy of Adsorption/ kJ mol-1

Error/ kJ mol-1

0.15 49.29 5.84 -199.93 1.360.20 44.76 3.78 -187.49 0.880.25 42.85 2.77 -183.19 0.640.30 41.73 2.13 -181.14 0.490.35 41.36 1.50 -181.42 0.550.40 41.24 1.05 -182.31 0.420.45 41.14 0.72 -183.14 0.320.50 40.78 0.45 -182.95 0.310.55 40.34 0.62 -182.50 0.190.60 40.18 0.70 -182.92 0.170.65 40.20 0.73 -183.88 0.050.70 40.30 0.75 -185.03 0.010.75 40.66 0.73 -187.05 0.270.80 40.80 0.84 -188.33 0.130.85 39.78 0.68 -185.68 0.310.90 39.28 0.53 -184.78 0.190.95 38.97 0.39 -184.48 0.221.00 38.85 0.34 -184.82 0.07

Page 24: NaNi3(OH)(SIP)2(H2O)5·H2O (SIP = 5-sulfoisophthalate) and … · w e i g h t l o s t u n d e r u l t r a - h i g h v a c u u m Figure S1. Temperature programmed thermogravimetric

S24

1.05 38.81 0.59 -185.45 0.331.10 39.12 0.72 -187.26 0.161.15 40.16 0.87 -191.49 0.281.20 41.26 0.65 -195.69 0.561.25 41.80 0.89 -197.91 0.651.30 42.06 0.71 -199.05 0.241.35 42.26 0.43 -199.94 0.361.40 42.44 0.20 -200.79 0.341.45 42.42 0.15 -200.91 0.171.50 42.22 0.18 -200.37 0.051.55 42.03 0.22 -199.86 0.051.60 41.84 0.25 -199.37 0.051.65 41.67 0.27 -198.93 0.021.70 41.52 0.27 -198.53 0.011.75 41.37 0.28 -198.16 0.011.80 41.22 0.28 -197.79 0.011.85 41.08 0.28 -197.45 0.011.90 40.94 0.28 -197.11 0.011.95 40.83 0.28 -196.86 0.012.00 40.73 0.23 -196.69 0.072.05 40.56 0.14 -196.25 0.112.10 40.40 0.06 -195.83 0.112.15 40.23 0.02 -195.42 0.082.20 40.07 0.04 -194.99 0.042.25 39.91 0.07 -194.58 0.042.30 39.75 0.10 -194.19 0.042.35 39.60 0.12 -193.81 0.042.40 39.49 0.16 -193.57 0.052.45 39.43 0.20 -193.52 0.082.50 39.38 0.25 -193.48 0.082.55 39.32 0.30 -193.44 0.082.60 39.29 0.29 -193.47 0.052.65 39.27 0.26 -193.59 0.182.70 38.93 0.40 -192.60 0.222.75 38.54 0.58 -191.43 0.262.80 38.16 0.74 -190.32 0.252.85 37.81 0.89 -189.27 0.242.90 37.47 1.04 -188.28 0.242.95 37.06 0.93 -187.06 0.163.00 36.54 1.05 -185.53 0.433.05 35.85 1.61 -183.47 1.053.10 35.63 1.93 -183.10 0.543.15 35.41 2.02 -182.76 0.35

Page 25: NaNi3(OH)(SIP)2(H2O)5·H2O (SIP = 5-sulfoisophthalate) and … · w e i g h t l o s t u n d e r u l t r a - h i g h v a c u u m Figure S1. Temperature programmed thermogravimetric

S25

Table S4. Enthalpy and entropy of CO adsorption on NaNi3(OH)(SIP)2: 313 – 348 K

Amount Adsorbed/ mmol g-1

Enthalpy of Adsorption/ kJ mol-1

Error/ kJ mol-1 Entropy of Adsorption/ kJ mol-1

Error/ kJ mol-1

0.10 34.42 5.73 -146.16 5.740.15 33.82 3.67 -148.40 2.340.20 33.95 3.18 -151.60 0.690.25 33.78 2.68 -153.26 0.700.30 33.78 2.99 -155.00 0.480.35 33.85 3.38 -156.69 0.590.40 33.88 3.48 -158.08 0.160.45 33.91 2.99 -159.34 0.810.50 33.71 2.57 -159.81 0.680.55 33.72 2.48 -160.84 0.140.60 33.55 2.89 -161.23 0.730.65 33.30 3.36 -161.24 0.870.70 33.02 3.17 -161.22 0.290.75 32.77 2.87 -161.27 0.520.80 32.50 2.40 -161.21 0.830.85 32.06 2.39 -160.54 0.040.90 31.96 2.60 -160.90 0.420.95 31.88 3.04 -161.34 0.891.00 31.71 3.13 -161.47 0.211.05 31.75 3.24 -162.22 0.221.10 31.94 3.13 -163.38 0.251.15 32.18 2.92 -164.66 0.491.20 31.75 3.11 -163.99 0.481.25 31.35 3.26 -163.36 0.401.30 31.19 3.45 -163.48 0.451.35 31.08 3.36 -163.74 0.181.40 31.41 3.27 -165.20 0.271.45 32.57 2.98 -169.10 0.901.50 33.98 2.61 -173.78 1.081.55 35.07 2.00 -177.46 1.451.60 36.02 1.30 -180.71 1.531.65 36.70 0.33 -183.10 1.991.70 37.28 0.12 -185.13 0.891.75 37.75 0.39 -186.79 0.521.80 38.13 0.33 -188.16 0.121.85 38.48 0.13 -189.39 0.391.90 38.80 0.05 -190.53 0.351.95 39.11 0.22 -191.64 0.322.00 39.25 0.27 -192.23 0.092.05 39.31 0.26 -192.53 0.032.10 39.36 0.24 -192.83 0.032.15 39.41 0.23 -193.12 0.022.20 39.43 0.20 -193.29 0.062.25 39.42 0.15 -193.39 0.09

Page 26: NaNi3(OH)(SIP)2(H2O)5·H2O (SIP = 5-sulfoisophthalate) and … · w e i g h t l o s t u n d e r u l t r a - h i g h v a c u u m Figure S1. Temperature programmed thermogravimetric

S26

2.30 39.41 0.11 -193.49 0.092.35 39.40 0.06 -193.59 0.082.40 39.40 0.02 -193.69 0.082.45 39.34 0.04 -193.63 0.112.50 39.27 0.10 -193.54 0.112.55 39.21 0.18 -193.47 0.172.60 39.16 0.33 -193.43 0.292.65 39.11 0.48 -193.39 0.282.70 39.11 0.59 -193.51 0.212.75 39.14 0.67 -193.73 0.152.80 39.17 0.74 -193.95 0.152.85 39.21 0.83 -194.17 0.162.90 39.28 0.97 -194.51 0.272.95 38.97 0.91 -193.75 0.093.00 38.65 0.85 -192.96 0.113.05 38.37 0.77 -192.29 0.143.10 38.30 0.55 -192.25 0.433.15 37.94 0.47 -191.42 0.15

Page 27: NaNi3(OH)(SIP)2(H2O)5·H2O (SIP = 5-sulfoisophthalate) and … · w e i g h t l o s t u n d e r u l t r a - h i g h v a c u u m Figure S1. Temperature programmed thermogravimetric

S27

Table S5. Enthalpy and entropy of CO adsorption on NaNi3(OH)(SIP)2 (degas temperature 513 K): 273 – 348 K

Amount Adsorbed/ mmol g-1

Enthalpy of Adsorption/ kJ mol-1

Error/ kJ mol-1 Entropy of Adsorption/ kJ mol-1

Error/ kJ mol-1

0.00 35.06 0.521.70 40.10 0.49 -193.63 1.621.75 40.28 0.43 -194.43 2.531.80 40.40 0.38 -194.97 2.991.85 40.48 0.33 -195.40 2.141.90 40.55 0.29 -195.80 1.691.95 40.62 0.25 -196.18 1.452.00 40.62 0.23 -196.32 1.332.05 40.57 0.21 -196.29 1.332.10 40.52 0.19 -196.27 1.362.15 40.46 0.18 -196.24 1.322.20 40.39 0.18 -196.16 1.282.25 40.32 0.18 -196.06 1.272.30 40.25 0.18 -195.97 1.382.35 40.18 0.18 -195.88 1.542.40 40.11 0.18 -195.79 1.612.45 40.04 0.18 -195.68 1.702.50 39.97 0.18 -195.58 1.762.55 39.90 0.18 -195.50 1.702.60 39.83 0.18 -195.40 1.722.65 39.74 0.17 -195.24 1.772.70 39.56 0.20 -194.82 1.902.75 39.38 0.24 -194.39 2.092.80 39.20 0.29 -193.98 2.322.85 39.04 0.34 -193.60 2.662.90 38.91 0.40 -193.33 2.922.95 38.75 0.42 -192.99 3.003.00 38.47 0.47 -192.32 2.953.05 38.05 0.59 -191.22 2.933.10 37.68 0.62 -190.30 2.833.15 37.30 0.62 -189.41 2.55

Page 28: NaNi3(OH)(SIP)2(H2O)5·H2O (SIP = 5-sulfoisophthalate) and … · w e i g h t l o s t u n d e r u l t r a - h i g h v a c u u m Figure S1. Temperature programmed thermogravimetric

S28

Table S2. Enthalpy and entropy of CO adsorption on NaCo3(OH)(SIP)2 (degas temperature 448 K): 268 – 303 K

Amount Adsorbed/ mmol g-1

Enthalpy of Adsorption/ kJ mol-1

Error/ kJ mol-1 Entropy of Adsorption/ kJ mol-1

Error/ kJ mol-1

0 27.03 0.680.05 27.09 0.58 -125.83 2.060.1 26.55 0.25 -129.93 0.870.15 26.58 0.42 -133.58 1.480.2 26.73 0.52 -136.66 1.850.25 26.69 0.39 -138.54 1.370.3 26.86 0.31 -140.87 1.110.35 27.18 0.30 -143.48 1.050.4 27.41 0.10 -145.60 0.350.45 27.51 0.08 -147.14 0.300.5 27.48 0.35 -148.16 1.250.55 27.48 0.32 -149.22 1.150.6 27.50 0.42 -150.23 1.490.65 26.90 1.03 -148.96 3.750.7 27.02 1.09 -150.25 3.980.75 26.93 1.24 -150.79 4.500.8 26.87 1.20 -151.35 4.370.85 26.86 1.12 -152.11 4.09

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5-240

-220

-200

-180

-160

-140

-120

Entro

py/ J

K-1 m

ol-1

Surface Excess Amount / mmol g-1

273 - 303 K 313 - 348 K 273 - 348 K

Figure S21. Graphs of entropy of adsorption vs. surface excess for CO adsorption on NaNi3(OH)(SIP)2 over the temperature range 273 – 348 K (excluding 323 K isotherm)

Page 29: NaNi3(OH)(SIP)2(H2O)5·H2O (SIP = 5-sulfoisophthalate) and … · w e i g h t l o s t u n d e r u l t r a - h i g h v a c u u m Figure S1. Temperature programmed thermogravimetric

S29

S7.0 Ideal adsorbed solution theory: CO/N2 Selectivity

The adsorption of a CO/N2 50:50 mixture on NaNi3(OH)(SIP)2 and NaCo3(OH)(SIP)2 was

modelled using ideal adsorbed solution theory.1 The model requires no equilibrium mixture

data, only pure component isotherms at equal temperature. The model is based on solving the

following set of equations:

(1) Py1 = P01x1

(2) P(1-y1) = P02(1-x1)

(3)

𝑃 = 𝑃01

∫𝑃 = 0

𝑛 ∗1 (𝑃)

𝑃𝑑𝑃 =

𝑃 = 𝑃02

∫𝑃 = 0

𝑛 ∗2 (𝑃)

𝑃𝑑𝑃

(4)

1𝑛

=𝑥1

𝑛 ∗1 (𝑃0

1)+

𝑥2

𝑛 ∗2 (𝑃0

2)

Where P is the total pressure, P0i is the pressure of component i, yi is the mole fraction of the

gas phase for component i, xi is the adsorbed phase mole fraction of component i. Integration

of pure component isotherms (n*i /P0

i vs. P0i) (equation 3) was performed numerically using

the trapezoid method.

Page 30: NaNi3(OH)(SIP)2(H2O)5·H2O (SIP = 5-sulfoisophthalate) and … · w e i g h t l o s t u n d e r u l t r a - h i g h v a c u u m Figure S1. Temperature programmed thermogravimetric

S30

S7.1 Comparison of CO and N2 adsorption isotherms for NaNi3(OH)(SIP)2 and

NaCo3(OH)(SIP)2 at 348 K

0 5000 10000 15000 200000.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

Surfa

ce E

xces

s Am

ount

/ m

mol

g-1

Pressure/ mbar

CO pure isotherm at 348 K N2 pure isotherm at 348 K IAST total amount adsorbed for 50:50 mixture

b)

0 5000 10000 15000 200000.0

0.5

1.0

1.5

2.0

2.5

Surfa

ce E

xces

s Am

ount

/ m

mol

g-1

Pressure/ mbar

CO pure isotherm at 348 K N2 pure isotherm at 348 K CO/N2 1:1 mixture calculated from IAST

Figure S22. Surface excess adsorption isotherms for CO and N2 and IAST calculations for 1:1 mixture at 348K on a) NaNi3(OH)(SIP)2 and b) NaCo3(OH)(SIP)2 at 348 K

Page 31: NaNi3(OH)(SIP)2(H2O)5·H2O (SIP = 5-sulfoisophthalate) and … · w e i g h t l o s t u n d e r u l t r a - h i g h v a c u u m Figure S1. Temperature programmed thermogravimetric

S31

a)

0 2000 4000 6000 8000 100000.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

Su

rface

Exc

ess

Amou

nt /

mm

ol g

-1

Pressure/ mbar

CO component adsorbed at 348 K N2 component adsorbed at 348 K Total amount of 1:1 mixture adsorbed at 348 K

b)

0 2000 4000 6000 8000 10000 120000.00

0.25

0.50

0.75

1.00

1.25

Surfa

ce E

xces

s Am

ount

/ m

mol

g-1

Pressure/ mbar

CO component adsorbed at 348 K N2 component adsorbed at 348 K Total amount of 1:1 mixture adsorbed at 348 K

Figure S23. Comparison of surface excess adsorption isotherms for 1:1 CO/N2 and components from IAST calculations at 348K on a) NaNi3(OH)(SIP)2 and b) NaCo3(OH)(SIP)2

Page 32: NaNi3(OH)(SIP)2(H2O)5·H2O (SIP = 5-sulfoisophthalate) and … · w e i g h t l o s t u n d e r u l t r a - h i g h v a c u u m Figure S1. Temperature programmed thermogravimetric

S32

S7.2 Comparison of CO/N2 selectivity for adsorption of 1:1 mixture on NaNi3(OH)(SIP)2 and NaCo3(OH)(SIP)2 at 348 K

a)

0 2000 4000 6000 8000 100002.4

2.5

2.6

2.7

2.8

2.9

3.0 CO/ N2 selectivity at 348 K

Se

lect

ivity

Pressure/ mbar

b)

0 2000 4000 6000 8000 10000 120001.70

1.75

1.80

1.85

1.90

Sele

ctiv

ity

pressure/ mbar

Selectivity

Figure S24. Selectivity for a 1:1 CO/N2 mixture at 348 K calculated using ideal adsorbed solution theory for adsorption on a) NaNi3(OH)(SIP)2 and b) NaCo3(OH)(SIP)2

Page 33: NaNi3(OH)(SIP)2(H2O)5·H2O (SIP = 5-sulfoisophthalate) and … · w e i g h t l o s t u n d e r u l t r a - h i g h v a c u u m Figure S1. Temperature programmed thermogravimetric

S33

S8.0 In-situ temperature programmed desorption studies

S8.1 NaNi3(OH)(SIP)2

S8.1.1 In-situ Temperature Programmed Desorption under Ultra-High Vacuum after Sequential CO Isotherms

The sequential isotherm is Figure 6 in main text.

0 100 200 300 400 5000

1

2

3

4

5

350

400

450

500

Amou

nt d

esor

bed/

wt %

Time/ mins

Tem

pera

ture

/ KFigure S25. In-situ temperature programmed desorption in UHV after CO sequential isotherm

for NaNi3(OH)(SIP)2 at 348 K: Amount of CO desorbed and temperature vs. time under UHV at a heating rate of 1K min-1 to a maximum temperature of 493 K.

Page 34: NaNi3(OH)(SIP)2(H2O)5·H2O (SIP = 5-sulfoisophthalate) and … · w e i g h t l o s t u n d e r u l t r a - h i g h v a c u u m Figure S1. Temperature programmed thermogravimetric

S34

S8.1.2 In-situ temperature programmed desorption with simultaneous thermogravimetric and dynamic mass spectrometry under helium after CO treatment at 348 K

a)

0.00.10.2

012

-0.2-0.10.0

400 500 600 7000.02.55.0

0.00.51.0

Torr/

1 x

10-9

CO2

CO

mg/

K

DTG

Wt %

Temperature/ K

TG

Blank After CO Treatment

H2O

Page 35: NaNi3(OH)(SIP)2(H2O)5·H2O (SIP = 5-sulfoisophthalate) and … · w e i g h t l o s t u n d e r u l t r a - h i g h v a c u u m Figure S1. Temperature programmed thermogravimetric

S35

b)

0.00.20.4

0.00.51.0

-0.2-0.10.0

400 500 600 700-1.0-0.50.0

0.00.51.0

Torr

/ 1 x

10-9

CO2

CO

mg/

K

DTG

Wt %

Temperature/ K

TG

H2O

Figure S26: a) Comparison of temperature programmed thermogravimetric, differential thermogravimetric and gas evolution profiles from dynamic sampling mass spectrometry (DSMS) for NaNi3(OH)(SIP)2 (activation temperature 513 K) and NaNi3(OH)(SIP)2 after CO treatment at 348 K under dry helium (flow rate 50 cm3 min-1) for CO, H2O and CO2 b) Temperature programmed thermogravimetric, differential thermogravimetric and gas evolution profiles from dynamic sampling mass spectrometry (DSMS) for NaNi3(OH)(SIP)2 (activation temperature 513 K) under dry helium (flow rate 50 cm3 min-1) for CO, H2O and CO2

Page 36: NaNi3(OH)(SIP)2(H2O)5·H2O (SIP = 5-sulfoisophthalate) and … · w e i g h t l o s t u n d e r u l t r a - h i g h v a c u u m Figure S1. Temperature programmed thermogravimetric

S36

S9 Temperature programmed thermogravimetric analysis coupled

with mass spectrometry in flowing helium (ex-situ measurements)

S9.1 Experimental

Thermogravimetric analysis (Thermal Sciences STA 1500 thermogravimetric analyzer)

and mass spectrometry (VG Quadrupoles 300 amu) was used to investigate the decomposition

of the MOFs. The desorbed species were monitored as a function of temperature during

pyrolysis at 10 K min-1 in a flow of helium (60mL min-1). The sampling probe inlet, which

comprised of a l mm diameter stainless steel tube lined with a deactivated fused silica capillary

was located ~ 1 cm above the sample. This allows the detection of both stable decomposition

products and reactive intermediate species.2 Mass/charge ratios of 4(He), 18(H2O), 28(CO), 32

(O2), 44(CO2) and 64(SO2), weight loss and sample temperature were monitored

simultaneously throughout the TPD experiments.

S9.2 Results and discussion

Temperature programmed desorption profiles for fresh NaNi3(OH)(SIP)2 for CO, CO2 ,

SO2 and H2O were determined using TG-MS and are compared in Figure S27a. The TPD

profiles for H2O for NaNi3(OH)(SIP)2 show peaks at 478 K and 632 K before major framework

decomposition. The higher noise level for the H2O TPD profiles compared with the other

profiles is due to the higher background H2O signal present in the mass spectrometer. The

lowest temperature peaks at 478 K corresponds to desorption of water adsorbed in the pores,

whereas the peak at 632 K is due to decomposition of framework. Decomposition of the

framework results in the production of CO, CO2 and SO2, with only comparatively small

amounts of H2O. The main CO and CO2 TPD peaks coincided and occurred at ~717 K with a

weaker peak at 795 K. The TPD profiles show that the framework decomposition starts at ~

620K. The TPD characteristics of NaCo3(OH)(SIP)2 are very similar to that of

NaNi3(OH)(SIP)2. Figures S28-S32 show very similar CO, CO2 and SO2 TPD peaks for fresh

and CO reacted NaNi3(OH)(SIP)2.

Page 37: NaNi3(OH)(SIP)2(H2O)5·H2O (SIP = 5-sulfoisophthalate) and … · w e i g h t l o s t u n d e r u l t r a - h i g h v a c u u m Figure S1. Temperature programmed thermogravimetric

S37

Mass spectrometer TPD peaks under helium at heating rate 20 K-1

Table S3.Temperature Programmed Desorption peaks for Fresh NaNi3(OH)(SIP)2(H2O)5·H2O

m/z Peak 1 (K) Peak 2 (K) Peak 3 (K)44 - CO2 717 748 79528 - CO 717 746 79664 - SO2 724 740(sh)18 - H2O 478 632

(s) = shoulder

Table S4. Temperature Programmed Desorption peaks for Fresh NaCo3(OH)(SIP)2(H2O)5·H2O

m/z Peak 1 (K) Peak 2 (K) Peak 3 (K) Peak 4 (K)44 - CO2 (s) 687 733 (s) 762 77528 - CO 732 76364 - SO2 74318 - H2O 425 510

(s) = shoulder

Table S5. Temperature Programmed Desorption peaks for NaNi3(OH)(SIP)2 after exposure to CO at 348 K and 20 bar for 2 week

m/z Peak 1 (K) Peak 2 (K) Peak 3 (K)44 - CO2 719 749 80028 - CO 720 749 80064 - SO2 724 742(sh)

(s) = shoulder

Table S6. Temperature Programmed Desorption peaks for NaNi3(OH)(SIP)2 after exposure to CO at 373 K and 100 bar for 3 days

m/z Peak 1 (K) Peak 2 (K) Peak 3 (K)44 - CO2 716 745 79728 - CO 716 745 79764 - SO2 724 (s) 740

(s) = shoulder

Page 38: NaNi3(OH)(SIP)2(H2O)5·H2O (SIP = 5-sulfoisophthalate) and … · w e i g h t l o s t u n d e r u l t r a - h i g h v a c u u m Figure S1. Temperature programmed thermogravimetric

S38

a)

300 400 500 600 700 8000.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

0

2

4

6

8

10

0

2

4

6

8

10 CO2

CO SO2

H2O

CO a

nd C

O2 S

igna

l/ 1x

10-1

0 au

Temperature/ K

717

746795

724478 632

SO

2 Sig

nal /

1x1

0-14 a

u

H2O

sig

nal/

1x10

-10 a

u

b)

300 400 500 600 700 8000

1

2

3

4

0

2

4

6

8

10

2.30

2.35

2.40

2.45

2.50

2.55

2.60 CO CO2

SO2

H2O

CO a

nd C

O 2 Sig

nal/

1 x

10-10

arb

uni

ts

Temperature/ K

775

733

743

763

687

423510

SO 2 s

igna

l/ 1x

10-14

arb

uni

ts

H2O

sig

nal/

1x10

-9 a

u

Figure S27. Temperature programmed desorption profiles of m/z = 28(CO), 44(CO2) and 64(SO2) peaks in flowing helium (60 cm3 min-1 for a) NaNi3(OH)(SIP)2(H2O)5·H2O and b) NaCo3(OH)(SIP)2(H2O)5·H2O

Page 39: NaNi3(OH)(SIP)2(H2O)5·H2O (SIP = 5-sulfoisophthalate) and … · w e i g h t l o s t u n d e r u l t r a - h i g h v a c u u m Figure S1. Temperature programmed thermogravimetric

S39

600 700 800 9000.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

0

2

4

6

8

10 CO CO2

CO a

nd C

O2 S

igna

l/ 1x

10-1

0 arb

uni

ts

Temperature/ K

SO

2 Sig

nal/

1x10

-14 a

rb u

nits

Figure S28. Temperature programmed desorption profiles of m/z = 28(CO), 44(CO2) and 64(SO2) for NaNi3(OH)(SIP)2 after exposure to CO at 348 K and up to 20 bar.

600 700 8000.0

0.5

1.0

1.5

2.0

2.5

3.0

0.0

0.2

0.4

0.6

0.8

1.0 CO CO2 SO2

CO2 a

nd C

O Si

gnal

/ 1x1

0-10 a

rb u

nits

Temperature/ K

716 K

724 K 745 K797 K

SO 2 S

igna

l/ 1

x10-1

3 arb

uni

ts

Figure S29 Temperature programmed desorption profiles of m/z = 28(CO), 44(CO2) and 64(SO2 for NaNi3(OH)(SIP)2 after exposure to CO at 373 K and at 100 bar in IMI-FLOW system.

Page 40: NaNi3(OH)(SIP)2(H2O)5·H2O (SIP = 5-sulfoisophthalate) and … · w e i g h t l o s t u n d e r u l t r a - h i g h v a c u u m Figure S1. Temperature programmed thermogravimetric

S40

600 700 800 9000.0

0.2

0.4

0.6

0.8

1.0

1.2

Parti

al P

ress

ure

/ 1x1

0-10 a

rb u

nits

Temperature/ K

Fresh Sample 20 bar, 348 K 100 bar, 373 K

CO signal for NaNi3(OH)(SIP)2

716 - 720

745

795

Figure S30. Temperature programmed desorption profiles of m/z = 28(CO) for fresh NaNi3(OH)(SIP)2(H2O)5·H2O, NaNi3(OH)(SIP)2 after CO isotherm at 348 K up to 20 bar and NaNi3(OH)(SIP)2 exposed to CO in IMI-FLOW at 373 K and 100 bar.

600 700 800 9000.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Parti

al P

ress

ure/

1x1

0-10 a

rb u

nits

Temperature/ K

Fresh 20 bar, 348 K 100 bar, 373 K

CO2 signal for NaNi3(OH)(SIP)2

716 - 720 K

750 K

795 - 800 K

Figure S31. Temperature programmed desorption of m/z = 44(CO2) for fresh NaNi3(OH)(SIP)-2(H2O)5·H2O, NaNi3(OH)(SIP)2 after CO isotherm at 348 K up to 20 bar and NaNi3(OH)(SIP)2 exposed to CO in IMI-FLOW at 373 K and 100 bar for three days.

Page 41: NaNi3(OH)(SIP)2(H2O)5·H2O (SIP = 5-sulfoisophthalate) and … · w e i g h t l o s t u n d e r u l t r a - h i g h v a c u u m Figure S1. Temperature programmed thermogravimetric

S41

600 700 800 9000.0

0.5

1.0

1.5

2.0

2.5

Parti

al P

ress

ure/

Arb

Uni

ts 1

x10-14

Temperature/ K

Fresh Sample CO 20 bar, 348 K CO 100 bar, 373 K

SO2 signal for NaNi3(OH)(SIP)2

723 - 725 K

Figure S32. Temperature programmed desorption of m/z = 64(SO2) for fresh NaNi3(OH)(SIP)-2(H2O)5·H2O, NaNi3(OH)(SIP)2 after CO isotherm at 348 K up to 20 bar and NaNi3(OH)(SIP)2 exposed to CO in IMI-FLOW at 373 K and 100 bar for three days

S10.0 Scanning electron microscopy

Figure S33. Scanning electron micrographs of fresh NaCo3(OH)(SIP)2(H2O)5·H2O - A and B at x47 and x350, respectively and NaCo3(OH)(SIP)2 after CO adsorption at 348 K up to 20 bar - C and D at x47 and x350, respectively

Page 42: NaNi3(OH)(SIP)2(H2O)5·H2O (SIP = 5-sulfoisophthalate) and … · w e i g h t l o s t u n d e r u l t r a - h i g h v a c u u m Figure S1. Temperature programmed thermogravimetric

S42

Figure S34. Scanning electron micrographs of fresh NaNi3(OH)(SIP)2(H2O)5·H2O - A and B at x47 and x350, respectively and NaNi3(OH)(SIP)2 after CO adsorption at 348 K up to 20 bar - C and D at x47 and x350, respectively

References

1. Myers, A. L.; Prausnitz, J. M., Thermodynamics of mixed-gas adsorption. Aiche Journal 1965, 11, (1), 121-127.2. Jones, J. M.; Harding, A. W.; Brown, S. D.; Thomas, K. M., Detection of reactive intermediate nitrogen and sulphur species in the combustion of carbons that are models for coal chars. Carbon 1995, 33, (6), 833-843.