Named Entity Recognition gate.ac.uk/ nlp.shef.ac.uk/ Hamish Cunningham

110
Named Entity Recognition http://gate.ac.uk/ http://nlp.shef.ac.uk/ Hamish Cunningham Kalina Bontcheva RANLP, Borovets, Bulgaria, 8 th September 2003

description

Named Entity Recognition http://gate.ac.uk/ http://nlp.shef.ac.uk/ Hamish Cunningham Kalina Bontcheva RANLP, Borovets, Bulgaria, 8 th September 2003. Structure of the Tutorial. task definition applications corpora, annotation evaluation and testing how to preprocessing - PowerPoint PPT Presentation

Transcript of Named Entity Recognition gate.ac.uk/ nlp.shef.ac.uk/ Hamish Cunningham

Page 1: Named Entity Recognition gate.ac.uk/ nlp.shef.ac.uk/ Hamish Cunningham

Named Entity Recognition

http://gate.ac.uk/ http://nlp.shef.ac.uk/

Hamish CunninghamKalina Bontcheva

RANLP, Borovets, Bulgaria, 8th September 2003

Page 2: Named Entity Recognition gate.ac.uk/ nlp.shef.ac.uk/ Hamish Cunningham

Structure of the Tutorial

• task definition• applications• corpora, annotation• evaluation and testing • how to

– preprocessing– approaches to NE– baseline– rule-based approaches– learning-based approaches

• multilinguality• future challenges

Page 3: Named Entity Recognition gate.ac.uk/ nlp.shef.ac.uk/ Hamish Cunningham

3(110)

Information Extraction

• Information Extraction (IE) pulls facts and structured information from the content of large text collections.

• IR - IE - NLU • MUC: Message Understanding

Conferences • ACE: Automatic Content Extraction

Page 4: Named Entity Recognition gate.ac.uk/ nlp.shef.ac.uk/ Hamish Cunningham

4(110)

MUC-7 tasks

• NE: Named Entity recognition and typing

• CO: co-reference resolution • TE: Template Elements • TR: Template Relations • ST: Scenario Templates

Page 5: Named Entity Recognition gate.ac.uk/ nlp.shef.ac.uk/ Hamish Cunningham

5(110)

An Example

The shiny red rocket was fired on Tuesday. It is the brainchild of Dr. Big Head. Dr. Head is a staff scientist at We Build Rockets Inc.

• NE: entities are "rocket", "Tuesday", "Dr. Head" and "We Build Rockets"

• CO: "it" refers to the rocket; "Dr. Head" and "Dr. Big Head" are the same

• TE: the rocket is "shiny red" and Head's "brainchild".

• TR: Dr. Head works for We Build Rockets Inc.

• ST: a rocket launching event occurred with the various participants.

Page 6: Named Entity Recognition gate.ac.uk/ nlp.shef.ac.uk/ Hamish Cunningham

6(110)

Performance levels

• Vary according to text type, domain, scenario, language

• NE: up to 97% (tested in English, Spanish, Japanese, Chinese)

• CO: 60-70% resolution • TE: 80% • TR: 75-80% • ST: 60% (but: human level may be

only 80%)

Page 7: Named Entity Recognition gate.ac.uk/ nlp.shef.ac.uk/ Hamish Cunningham

7(110)

What are Named Entities?

• NER involves identification of proper names in texts, and classification into a set of predefined categories of interest

• Person names• Organizations (companies, government

organisations, committees, etc)• Locations (cities, countries, rivers, etc)• Date and time expressions

Page 8: Named Entity Recognition gate.ac.uk/ nlp.shef.ac.uk/ Hamish Cunningham

8(110)

What are Named Entities (2)

• Other common types: measures (percent, money, weight etc), email addresses, Web addresses, street addresses, etc.

• Some domain-specific entities: names of drugs, medical conditions, names of ships, bibliographic references etc.

• MUC-7 entity definition guidelines [Chinchor’97]

http://www.itl.nist.gov/iaui/894.02/related_projects/muc/proceedings/ne_task.html

Page 9: Named Entity Recognition gate.ac.uk/ nlp.shef.ac.uk/ Hamish Cunningham

9(110)

What are NOT NEs (MUC-7)

• Artefacts – Wall Street Journal• Common nouns, referring to named entities –

the company, the committee • Names of groups of people and things named

after people – the Tories, the Nobel prize• Adjectives derived from names – Bulgarian,

Chinese• Numbers which are not times, dates,

percentages, and money amounts

Page 10: Named Entity Recognition gate.ac.uk/ nlp.shef.ac.uk/ Hamish Cunningham

10(110)

Basic Problems in NE

• Variation of NEs – e.g. John Smith, Mr Smith, John.

• Ambiguity of NE types: John Smith (company vs. person) – May (person vs. month) – Washington (person vs. location) – 1945 (date vs. time)

• Ambiguity with common words, e.g. "may"

Page 11: Named Entity Recognition gate.ac.uk/ nlp.shef.ac.uk/ Hamish Cunningham

11(110)

More complex problems in NE

• Issues of style, structure, domain, genre etc. • Punctuation, spelling, spacing, formatting, ...

all have an impact:Dept. of Computing and MathsManchester Metropolitan UniversityManchesterUnited Kingdom

Tell me more about Leonardo

Da Vinci

Page 12: Named Entity Recognition gate.ac.uk/ nlp.shef.ac.uk/ Hamish Cunningham

12(110)

Structure of the Tutorial

• task definition

• applications

• corpora, annotation

• evaluation and testing

• how to

– preprocessing

– approaches to NE

– baseline

– rule-based approaches

– learning-based approaches

• multilinguality

• future challenges

Page 13: Named Entity Recognition gate.ac.uk/ nlp.shef.ac.uk/ Hamish Cunningham

13(110)

Applications

• Can help summarisation, ASR and MT

• Intelligent document access – Browse document collections by the entities that

occur in them– Formulate more complex queries than IR can

answer– Example application domains:

• News

• Scientific articles, e.g, MEDLINE abstracts

Page 14: Named Entity Recognition gate.ac.uk/ nlp.shef.ac.uk/ Hamish Cunningham

14(110)

Application -Threat trackerSearch by entity:http://www.alias-i.com/iraq/feature_description/entity_search.html

Page 15: Named Entity Recognition gate.ac.uk/ nlp.shef.ac.uk/ Hamish Cunningham

15(110)

Application Example - KIMBrowsing by entity and ontology: http://www.ontotext.com/kim

Page 16: Named Entity Recognition gate.ac.uk/ nlp.shef.ac.uk/ Hamish Cunningham

16(110)

Application Example - KIMOntotext’s KIM formal query over OWL (includingrelations between entities) and results

Page 17: Named Entity Recognition gate.ac.uk/ nlp.shef.ac.uk/ Hamish Cunningham

17(110)

Application Example - PerseusTime-line and geographic visualisation: http://

www.perseus.tufts.edu/

Page 18: Named Entity Recognition gate.ac.uk/ nlp.shef.ac.uk/ Hamish Cunningham

18(110)

Structure of the Tutorial

• task definition

• applications

• corpora, annotation

• evaluation and testing

• how to

– preprocessing

– approaches to NE

– baseline

– rule-based approaches

– learning-based approaches

• multilinguality

• future challenges

Page 19: Named Entity Recognition gate.ac.uk/ nlp.shef.ac.uk/ Hamish Cunningham

19(110)

Some NE Annotated Corpora

• MUC-6 and MUC-7 corpora - English• CONLL shared task corpora

http://cnts.uia.ac.be/conll2003/ner/ - NEs in English and Germanhttp://cnts.uia.ac.be/conll2002/ner/ - NEs in Spanish and Dutch

• TIDES surprise language exercise (NEs in Cebuano and Hindi)

• ACE – English - http://www.ldc.upenn.edu/Projects/ACE/

Page 20: Named Entity Recognition gate.ac.uk/ nlp.shef.ac.uk/ Hamish Cunningham

20(110)

The MUC-7 corpus

• 100 documents in SGML • News domain• 1880 Organizations (46%)• 1324 Locations (32%)• 887 Persons (22%)• Inter-annotator agreement very high (~97%)

• http://www.itl.nist.gov/iaui/894.02/related_projects/muc/proceedings/muc_7_proceedings/marsh_slides.pdf

Page 21: Named Entity Recognition gate.ac.uk/ nlp.shef.ac.uk/ Hamish Cunningham

21(110)

The MUC-7 Corpus (2)

<ENAMEX TYPE="LOCATION">CAPE CANAVERAL</ENAMEX>, <ENAMEX TYPE="LOCATION">Fla.</ENAMEX> &MD; Working in chilly temperatures <TIMEX TYPE="DATE">Wednesday</TIMEX> <TIMEX TYPE="TIME">night</TIMEX>, <ENAMEX TYPE="ORGANIZATION">NASA</ENAMEX> ground crews readied the space shuttle Endeavour for launch on a Japanese satellite retrieval mission.

<p>Endeavour, with an international crew of six, was set to blast off from the

<ENAMEX TYPE="ORGANIZATION|LOCATION">Kennedy Space Center</ENAMEX> on <TIMEX TYPE="DATE">Thursday</TIMEX> at <TIMEX TYPE="TIME">4:18 a.m. EST</TIMEX>, the start of a 49-minute launching period. The <TIMEX TYPE="DATE">nine day</TIMEX> shuttle flight was to be the 12th launched in darkness.

Page 22: Named Entity Recognition gate.ac.uk/ nlp.shef.ac.uk/ Hamish Cunningham

22(110)

NE Annotation Tools - Alembic

Page 23: Named Entity Recognition gate.ac.uk/ nlp.shef.ac.uk/ Hamish Cunningham

23(110)

NE Annotation Tools – Alembic (2)

Page 24: Named Entity Recognition gate.ac.uk/ nlp.shef.ac.uk/ Hamish Cunningham

24(110)

NE Annotation Tools - GATE

Page 25: Named Entity Recognition gate.ac.uk/ nlp.shef.ac.uk/ Hamish Cunningham

25(110)

Corpora and System Development

• Corpora are divided typically into a training and testing portion

• Rules/Learning algorithms are trained on the training part

• Tuned on the testing portion in order to optimise – Rule priorities, rules effectiveness, etc.

– Parameters of the learning algorithm and the features used

• Evaluation set – the best system configuration is run on this data and the system performance is obtained

• No further tuning once evaluation set is used!

Page 26: Named Entity Recognition gate.ac.uk/ nlp.shef.ac.uk/ Hamish Cunningham

26(110)

Structure of the Tutorial

• task definition

• applications

• corpora, annotation

• evaluation and testing

• how to

– preprocessing

– approaches to NE

– baseline

– rule-based approaches

– learning-based approaches

• multilinguality

• future challenges

Page 27: Named Entity Recognition gate.ac.uk/ nlp.shef.ac.uk/ Hamish Cunningham

27(110)

Performance Evaluation

• Evaluation metric – mathematically defines how to measure the system’s performance against a human-annotated, gold standard

• Scoring program – implements the metric and provides performance measures – For each document and over the entire corpus– For each type of NE

Page 28: Named Entity Recognition gate.ac.uk/ nlp.shef.ac.uk/ Hamish Cunningham

28(110)

The Evaluation Metric

• Precision = correct answers/answers produced

• Recall = correct answers/total possible correct answers

• Trade-off between precision and recall

• F-Measure = (β2 + 1)PR / β2R + P [van Rijsbergen 75]

• β reflects the weighting between precision and recall, typically β=1

Page 29: Named Entity Recognition gate.ac.uk/ nlp.shef.ac.uk/ Hamish Cunningham

29(110)

The Evaluation Metric (2)• We may also want to take account of

partially correct answers:• Precision =

Correct + ½ Partially correctCorrect + Incorrect + Partial

• Recall = Correct + ½ Partially correctCorrect + Missing + Partial

• Why: NE boundaries are often misplaced, sosome partially correct results

Page 30: Named Entity Recognition gate.ac.uk/ nlp.shef.ac.uk/ Hamish Cunningham

30(110)

The MUC scorer (1)Document: 9601020572-----------------------------------------------------------------

POS ACT| COR PAR INC | MIS SPU NON| REC PRE ------------------------+-------------+--------------+-----------SUBTASK SCORES | | |enamex | | |organization 11 12| 9 0 0| 2 3 0| 82 75 person 24 26| 24 0 0| 0 2 0| 100 92 location 27 31| 25 0 0| 2 6 0| 93 81 …

* * * SUMMARY SCORES * * *----------------------------------------------------------------- POS ACT| COR PAR INC | MIS SPU NON| REC PRE-----------------------+-------------+--------------+------------TASK SCORES | | |enamex | | |organizatio 1855 1757|1553 0 37| 265 167 30| 84 88person 883 859| 797 0 13| 73 49 4| 90 93location 1322 1406|1199 0 13| 110 194 7| 91 85

Page 31: Named Entity Recognition gate.ac.uk/ nlp.shef.ac.uk/ Hamish Cunningham

31(110)

The MUC scorer (2)

• Using the detailed report we can track errors in each document, for each NE in the text

ENAMEX cor inc PERSON PERSON "Wernher von Braun" "Braun"

ENAMEX cor inc PERSON PERSON "von Braun" "Braun"

ENAMEX cor cor PERSON PERSON "Braun" "Braun"

ENAMEX cor cor LOCATI LOCATI "Saturn" "Saturn"

Page 32: Named Entity Recognition gate.ac.uk/ nlp.shef.ac.uk/ Hamish Cunningham

32(110)

The GATE Evaluation Tool

Page 33: Named Entity Recognition gate.ac.uk/ nlp.shef.ac.uk/ Hamish Cunningham

33(110)

Regression Testing

• Need to track system’s performance over time

• When a change is made to the system we want to know what implications are over the entire corpus

• Why: because an improvement in one case can lead to problems in others

• GATE offers automated tool to help with the NE development task over time

Page 34: Named Entity Recognition gate.ac.uk/ nlp.shef.ac.uk/ Hamish Cunningham

34(110)

Regression Testing (2)At corpus level – GATE’s corpus benchmark tool – tracking system’s performance over time

Page 35: Named Entity Recognition gate.ac.uk/ nlp.shef.ac.uk/ Hamish Cunningham

35(110)

Structure of the Tutorial

• task definition

• applications

• corpora, annotation

• evaluation and testing

• how to

– preprocessing

– approaches to NE

– baseline

– rule-based approaches

– learning-based approaches

• multilinguality

• future challenges

Page 36: Named Entity Recognition gate.ac.uk/ nlp.shef.ac.uk/ Hamish Cunningham

36(110)

Pre-processing for NE Recognition

• Format detection • Word segmentation (for languages

like Chinese)• Tokenisation • Sentence splitting • POS tagging

Page 37: Named Entity Recognition gate.ac.uk/ nlp.shef.ac.uk/ Hamish Cunningham

37(110)

Two kinds of NE approaches

Knowledge Engineering

• rule based • developed by experienced

language engineers • make use of human

intuition • requires only small amount

of training data• development could be very

time consuming • some changes may be

hard to accommodate

Learning Systems

• use statistics or other machine learning

• developers do not need LE expertise

• requires large amounts of annotated training data

• some changes may require re-annotation of the entire training corpus

• annotators are cheap (but you get what you pay for!)

Page 38: Named Entity Recognition gate.ac.uk/ nlp.shef.ac.uk/ Hamish Cunningham

38(110)

Baseline: list lookup approach

• System that recognises only entities stored in its lists (gazetteers).

• Advantages - Simple, fast, language independent, easy to retarget (just create lists)

• Disadvantages – impossible to enumerate all names, collection and maintenance of lists, cannot deal with name variants, cannot resolve ambiguity

Page 39: Named Entity Recognition gate.ac.uk/ nlp.shef.ac.uk/ Hamish Cunningham

39(110)

Creating Gazetteer Lists

• Online phone directories and yellow pages for person and organisation names (e.g. [Paskaleva02])

• Locations lists – US GEOnet Names Server (GNS) data – 3.9 million locations

with 5.37 million names (e.g., [Manov03])

– UN site: http://unstats.un.org/unsd/citydata

– Global Discovery database from Europa technologies Ltd, UK (e.g., [Ignat03])

• Automatic collection from annotated training data

Page 40: Named Entity Recognition gate.ac.uk/ nlp.shef.ac.uk/ Hamish Cunningham

40(110)

Structure of the Tutorial

• task definition

• applications

• corpora, annotation

• evaluation and testing

• how to

– preprocessing

– approaches to NE

– baseline

– rule-based approaches

– learning-based approaches

• multilinguality

• future challenges

Page 41: Named Entity Recognition gate.ac.uk/ nlp.shef.ac.uk/ Hamish Cunningham

41(110)

Shallow Parsing Approach (internal structure)

• Internal evidence – names often have internal structure. These components can be either stored or guessed, e.g. location:

• Cap. Word + {City, Forest, Center, River}

• e.g. Sherwood Forest

• Cap. Word + {Street, Boulevard, Avenue, Crescent, Road}

• e.g. Portobello Street

Page 42: Named Entity Recognition gate.ac.uk/ nlp.shef.ac.uk/ Hamish Cunningham

42(110)

Problems with the shallow parsing approach

• Ambiguously capitalised words (first word in sentence)[All American Bank] vs. All [State Police]

• Semantic ambiguity"John F. Kennedy" = airport (location) "Philip Morris" = organisation

• Structural ambiguity [Cable and Wireless] vs. [Microsoft] and [Dell];[Center for Computational Linguistics] vs. message from [City Hospital] for [John Smith]

Page 43: Named Entity Recognition gate.ac.uk/ nlp.shef.ac.uk/ Hamish Cunningham

43(110)

Shallow Parsing Approach with Context

• Use of context-based patterns is helpful in ambiguous cases

• "David Walton" and "Goldman Sachs" are indistinguishable

• But with the phrase "David Walton of Goldman Sachs" and the Person entity "David Walton" recognised, we can use the pattern "[Person] of [Organization]" to identify "Goldman Sachs“ correctly.

Page 44: Named Entity Recognition gate.ac.uk/ nlp.shef.ac.uk/ Hamish Cunningham

44(110)

Identification of Contextual Information

• Use KWIC index and concordancer to find windows of context around entities

• Search for repeated contextual patterns of either strings, other entities, or both

• Manually post-edit list of patterns, and incorporate useful patterns into new rules

• Repeat with new entities

Page 45: Named Entity Recognition gate.ac.uk/ nlp.shef.ac.uk/ Hamish Cunningham

45(110)

Examples of context patterns

• [PERSON] earns [MONEY]• [PERSON] joined [ORGANIZATION]• [PERSON] left [ORGANIZATION]• [PERSON] joined [ORGANIZATION] as [JOBTITLE]• [ORGANIZATION]'s [JOBTITLE] [PERSON]• [ORGANIZATION] [JOBTITLE] [PERSON]• the [ORGANIZATION] [JOBTITLE]• part of the [ORGANIZATION]• [ORGANIZATION] headquarters in [LOCATION]• price of [ORGANIZATION]• sale of [ORGANIZATION]• investors in [ORGANIZATION]• [ORGANIZATION] is worth [MONEY]• [JOBTITLE] [PERSON]• [PERSON], [JOBTITLE]

Page 46: Named Entity Recognition gate.ac.uk/ nlp.shef.ac.uk/ Hamish Cunningham

46(110)

Caveats

• Patterns are only indicators based on likelihood

• Can set priorities based on frequency thresholds

• Need training data for each domain

• More semantic information would be useful (e.g. to cluster groups of verbs)

Page 47: Named Entity Recognition gate.ac.uk/ nlp.shef.ac.uk/ Hamish Cunningham

47(110)

Rule-based Example: FACILE • FACILE - used in MUC-7 [Black et al 98] • Uses Inxight’s LinguistiX tools for tagging and

morphological analysis • Database for external information, role similar to a

gazetteer• Linguistic info per token, encoded as feature

vector:– Text offsets – Orthographic pattern (first/all capitals, mixed, lowercase)– Token and its normalised form– Syntax – category and features– Semantics – from database or morphological analysis– Morphological analyses

• Example:(1192 1196 10 T C "Mrs." "mrs." (PROP TITLE) (ˆPER_CIV_F)(("Mrs." "Title" "Abbr")) NIL)PER_CIV_F – female civilian (from database)

Page 48: Named Entity Recognition gate.ac.uk/ nlp.shef.ac.uk/ Hamish Cunningham

48(110)

FACILE (2)

• Context-sensitive rules written in special rule notation, executed by an interpreter

• Writing rules in PERL is too error-prone and hard• Rules of the kind:

A => B\C/D, where:– A is a set of attribute-value expressions and optional score,

the attributes refer to elements of the input token feature vector

– B and D are left and right context respectively and can be empty

– B, C, D are sequences of attribute-value pairs and Klene regular expression operations; variables are also supported

• [syn=NP, sem=ORG] (0.9) =>\ [norm="university"],[token="of"],[sem=REGION|COUNTRY|CITY] / ;

Page 49: Named Entity Recognition gate.ac.uk/ nlp.shef.ac.uk/ Hamish Cunningham

49(110)

FACILE (3)

# Rule for the mark up of person names when the first name is not

# present or known from the gazetteers: e.g 'Mr J. Cass',

[SYN=PROP,SEM=PER, FIRST=_F, INITIALS=_I, MIDDLE=_M, LAST=_S] #_F, _I, _M, _S are variables, transfer info from RHS

=> [SEM=TITLE_MIL|TITLE_FEMALE|TITLE_MALE]\[SYN=NAME, ORTH=I|O, TOKEN=_I]?, [ORTH=C|A, SYN=PROP, TOKEN=_F]?, [SYN=NAME, ORTH=I|O, TOKEN=_I]?, [SYN=NAME, TOKEN=_M]?, [ORTH=C|A|O,SYN=PROP,TOKEN=_S, SOURCE!=RULE] #proper name, not recognised by a rule/;

Page 50: Named Entity Recognition gate.ac.uk/ nlp.shef.ac.uk/ Hamish Cunningham

50(110)

FACILE (4)

• Preference mechanism:– The rule with the highest score is preferred– Longer matches are preferred to shorter matches– Results are always one semantic categorisation of

the named entity in the text

• Evaluation (MUC-7 scores):– Organization: 86% precision, 66% recall– Person: 90% precision, 88% recall– Location: 81% precision, 80% recall – Dates: 93% precision, 86% recall

Page 51: Named Entity Recognition gate.ac.uk/ nlp.shef.ac.uk/ Hamish Cunningham

51(110)

Example Rule-based System - ANNIE

• Created as part of GATE• GATE – Sheffield’s open-source infrastructure for

language processing• GATE automatically deals with document formats,

saving of results, evaluation, and visualisation of results for debugging

• GATE has a finite-state pattern-action rule language, used by ANNIE

• ANNIE modified for MUC guidelines – 89.5% f-measure on MUC-7 corpus

Page 52: Named Entity Recognition gate.ac.uk/ nlp.shef.ac.uk/ Hamish Cunningham

52(110)

NE ComponentsThe ANNIE system – a reusable and easily extendable set of components

Page 53: Named Entity Recognition gate.ac.uk/ nlp.shef.ac.uk/ Hamish Cunningham

53(110)

Gazetteer lists for rule-based NE

• Needed to store the indicator strings for the internal structure and context rules

• Internal location indicators – e.g., {river, mountain, forest} for natural locations; {street, road, crescent, place, square, …}for address locations

• Internal organisation indicators – e.g., company designators {GmbH, Ltd, Inc, …}

• Produces Lookup results of the given kind

Page 54: Named Entity Recognition gate.ac.uk/ nlp.shef.ac.uk/ Hamish Cunningham

54(110)

The Named Entity Grammars

• Phases run sequentially and constitute a cascade of FSTs over the pre-processing results

• Hand-coded rules applied to annotations to identify NEs

• Annotations from format analysis, tokeniser, sentence splitter, POS tagger, and gazetteer modules

• Use of contextual information • Finds person names, locations, organisations, dates,

addresses.

Page 55: Named Entity Recognition gate.ac.uk/ nlp.shef.ac.uk/ Hamish Cunningham

55(110)

 NE Rule in JAPEJAPE: a Java Annotation Patterns Engine• Light, robust regular-expression-based processing • Cascaded finite state transduction • Low-overhead development of new components• Simplifies multi-phase regex processing

Rule: Company1 Priority: 25 ( ( {Token.orthography == upperInitial} )+ //from tokeniser {Lookup.kind == companyDesignator} //from gazetteer lists ):match --> :match.NamedEntity = { kind=company, rule=“Company1” }

Page 56: Named Entity Recognition gate.ac.uk/ nlp.shef.ac.uk/ Hamish Cunningham

56(110)

Nam

ed E

ntiti

es in

GA

TE

Page 57: Named Entity Recognition gate.ac.uk/ nlp.shef.ac.uk/ Hamish Cunningham

57(110)

Using co-reference to classify ambiguous NEs

• Orthographic co-reference module that matches proper names in a document

• Improves NE results by assigning entity type to previously unclassified names, based on relations with classified NEs

• May not reclassify already classified entities• Classification of unknown entities very useful for

surnames which match a full name, or abbreviations, e.g. [Bonfield] will match [Sir Peter Bonfield]; [International Business Machines Ltd.] will match [IBM]

Page 58: Named Entity Recognition gate.ac.uk/ nlp.shef.ac.uk/ Hamish Cunningham

58(110)

Named Entity Coreference

Page 59: Named Entity Recognition gate.ac.uk/ nlp.shef.ac.uk/ Hamish Cunningham

59(110)

DEMO

Page 60: Named Entity Recognition gate.ac.uk/ nlp.shef.ac.uk/ Hamish Cunningham

60(110)

Structure of the Tutorial

• task definition

• applications

• corpora, annotation

• evaluation and testing

• how to

– preprocessing

– approaches to NE

– baseline

– rule-based approaches

– learning-based approaches

• multilinguality

• future challenges

Page 61: Named Entity Recognition gate.ac.uk/ nlp.shef.ac.uk/ Hamish Cunningham

61(110)

Machine Learning Approaches

• ML approaches frequently break down the NE task in two parts:– Recognising the entity boundaries– Classifying the entities in the NE categories

• Some work is only on one task or the other• Tokens in text are often coded with the IOB scheme

– O – outside, B-XXX – first word in NE, I-XXX – all other words in NE

– Easy to convert to/from inline MUC-style markup– Argentina B-LOC

played Owith ODel B-PERBosque I-PER

Page 62: Named Entity Recognition gate.ac.uk/ nlp.shef.ac.uk/ Hamish Cunningham

62(110)

IdentiFinder [Bikel et al 99]

• Based on Hidden Markov Models

• Features– Capitalisation– Numeric symbols– Punctuation marks– Position in the sentence– 14 features in total, combining above info, e.g.,

containsDigitAndDash (09-96), containsDigitAndComma (23,000.00)

Page 63: Named Entity Recognition gate.ac.uk/ nlp.shef.ac.uk/ Hamish Cunningham

63(110)

IdentiFinder (2)

• MUC-6 (English) and MET-1(Spanish) corpora used for evaluation

• Mixed case English – IdentiFinder - 94.9% f-measure– Best rule-based – 96.4%

• Spanish mixed case– IdentiFinder – 90%– Best rule-based - 93%– Lower case names, noisy training data, less training data

• Training data: 650,000 words, but similar performance with half of the data. Less than 100,000 words reduce the performance to below 90% on English

Page 64: Named Entity Recognition gate.ac.uk/ nlp.shef.ac.uk/ Hamish Cunningham

64(110)

MENE [Borthwick et al 98]

• Combining rule-based and ML NE to achieve better performance

• Tokens tagged as: XXX_start, XXX_continue, XXX_end, XXX_unique, other (non-NE), where XXX is an NE category

• Uses Maximum Entropy– One only needs to find the best features for the

problem – ME estimation routine finds the best relative

weights for the features

Page 65: Named Entity Recognition gate.ac.uk/ nlp.shef.ac.uk/ Hamish Cunningham

65(110)

MENE (2)

• Features– Binary features – “token begins with capitalised

letter”, “token is a four-digit number”– Lexical features – dependencies on the

surrounding tokens (window ±2) e.g., “Mr” for people, “to” for locations

– Dictionary features – equivalent to gazetteers (first names, company names, dates, abbreviations)

– External systems – whether the current token is recognised as an NE by a rule-based system

Page 66: Named Entity Recognition gate.ac.uk/ nlp.shef.ac.uk/ Hamish Cunningham

66(110)

MENE (3)

• MUC-7 formal run corpus– MENE – 84.2% f-measure– Rule-based systems it uses – 86% - 91 %– MENE + rule-based systems – 92%

• Learning curve– 20 docs – 80.97%– 40 docs – 84.14%– 100 docs – 89.17%– 425 docs – 92.94%

Page 67: Named Entity Recognition gate.ac.uk/ nlp.shef.ac.uk/ Hamish Cunningham

67(110)

NE Recognition without Gazetteers [Mikheev et al 99]

• How big should gazetteer lists be? • Experiment with simple list lookup approach on

MUC-7 corpus• Learned lists – MUC-7 training corpus

– 1228 person names– 809 organisations– 770 locations

• Common lists (from the Web)– 5000 locations– 33,000 organisations– 27,000 person names

Page 68: Named Entity Recognition gate.ac.uk/ nlp.shef.ac.uk/ Hamish Cunningham

68(110)

NE Recognition without Gazetteers (2)

Category Learned Common Combined

Recall Precision

Recall Preci-sion

Recall Preci-sion

ORG 49 75 3 51 50 72

PER 26 92 31 81 47 85

LOC 76 93 74 94 86 90

Page 69: Named Entity Recognition gate.ac.uk/ nlp.shef.ac.uk/ Hamish Cunningham

69(110)

NE Recognition without Gazetteers (3)

Full Gaz Ltd Gaz Some locs

No Gaz

rec prec rec prec rec prec rec prec

ORG 90 93 87 90 87 89 86 85

PER 96 98 92 97 90 97 90 95

LOC 95 94 91 92 85 90 46 59

• System combines rule-based grammars and statistical (MaxEnt) models

• Full gaz – 4900 LOC, 30,000 ORG, 10,000 PER• Some locs – 200 countries + continents + 8 planets• Ltd gaz – Some locs + lists inferred from 30

processed texts in the same domain

Page 70: Named Entity Recognition gate.ac.uk/ nlp.shef.ac.uk/ Hamish Cunningham

70(110)

NE Recognition without Gazetteers (4)

Stage ORG PER LOC

Sure-fire rule R:42 P:98 R:40 P:99 R:36 P:96

Part. match 1 R:75 P:98 R:80 P:99 R:69 P:93

Relaxed rules (use gaz.)

R:83 P:96 R:90 P:98 R:86 P:93

Part. match 2 R:85 P:96 R:93 P:97 R:88 P:93

Title assignment

R:91 P:95 R:95 P:97 R:95 P:93

Page 71: Named Entity Recognition gate.ac.uk/ nlp.shef.ac.uk/ Hamish Cunningham

71(110)

Fine-grained Classification of NEs [Fleischman 02]

• Finer-grained categorisation needed for applications like question answering

• Person classification into 8 sub-categories – athlete, politician/government, clergy, businessperson, entertainer/artist, lawyer, doctor/scientist, police.

• Approach using local context and global semantic information such as WordNet

• Used a decision list classifier and Identifinder to construct automatically training set from untagged data

• Held-out set of 1300 instances hand annotated

Page 72: Named Entity Recognition gate.ac.uk/ nlp.shef.ac.uk/ Hamish Cunningham

72(110)

Fine-grained Classification of NEs (2)

• Word frequency features – how often the words surrounding the target instance occur with a specific category in training– For each 8 categories 10 distinct word positions = 80 features per

instance

– 3 words before & after the instance

– The two-word bigrams immediately before and after the instance

– The three-word trigrams before/after the instance

# Position N-gram Category Freq.

1 Previous unigram introduce politician 3

2 Previous unigram introduce entertainer 43

3 Following bigram into that politician 2

4 Following bigram into that business 0

Page 73: Named Entity Recognition gate.ac.uk/ nlp.shef.ac.uk/ Hamish Cunningham

73(110)

Fine-grained Classification of NEs (3)

• Topic signatures and WordNet information– Compute lists of terms that signal relevance to a

topic/category [Lin&Hovy 00] & expand with WordNet synonyms to counter unseen examples

– Politician – campaign, republican, budget

• The topic signature features convey information about the overall context in which each instance exists

• Due to differing contexts, instances of the same name in a single text were classified differently

Page 74: Named Entity Recognition gate.ac.uk/ nlp.shef.ac.uk/ Hamish Cunningham

74(110)

Fine-grained Classification of NEs (4)

• MemRun chooses the prevailing sub-category based on their most frequent classification

• Othomatching-like algorithm is developed to match George Bush, Bush, and George W. Bush

• Expts with k-NN, Naïve Bayes, SVMs, Neural Networks and C4.5 show that C4.5 is best

• Expts with different feature configurations – 70.4% with all features discussed here

• Future work: treating finer grained classification as a WSD task (categories are different senses of a person)

Page 75: Named Entity Recognition gate.ac.uk/ nlp.shef.ac.uk/ Hamish Cunningham

75(110)

Structure of the Tutorial

• task definition

• applications

• corpora, annotation

• evaluation and testing

• how to

– preprocessing

– approaches to NE

– baseline

– rule-based approaches

– learning-based approaches

• multilinguality

• future challenges

Page 76: Named Entity Recognition gate.ac.uk/ nlp.shef.ac.uk/ Hamish Cunningham

76(110)

Multilingual Named Entity Recognition

• Recent experiments are aimed at NE recognition in multiple languages

• TIDES surprise language evaluation exercise measures how quickly researchers can develop NLP components in a new language

• CONLL’02, CONLL’03 focus on language-independent NE recognition

Page 77: Named Entity Recognition gate.ac.uk/ nlp.shef.ac.uk/ Hamish Cunningham

77(110)

Analysis of the NE Task in Multiple Languages [Palmer&Day 97]

Language NE Time/Date

Numeric exprs.

Org/Per/Loc

Chinese 4454 17.2% 1.8% 80.9%

English 2242 10.7% 9.5% 79.8%

French 2321 18.6% 3% 78.4%

Japanese 2146 26.4% 4% 69.6%

Portuguese 3839 17.7% 12.1% 70.3%

Spanish 3579 24.6% 3% 72.5%

Page 78: Named Entity Recognition gate.ac.uk/ nlp.shef.ac.uk/ Hamish Cunningham

78(110)

Analysis of Multilingual NE (2)

• Numerical and time expressions are very easy to capture using rules

• Constitute together about 20-30% of all NEs

• All numerical expressions in the 6 languages required only 5 patterns

• Time expressions similarly require only a few rules (less than 30 per language)

• Many of these rules are reusable across the languages

Page 79: Named Entity Recognition gate.ac.uk/ nlp.shef.ac.uk/ Hamish Cunningham

79(110)

Analysis of Multilingual NE (3)

• Suggest a method for calculating the lower bound for system performance given a corpus in the target language

• Conclusion: Much of the NE task can be achieved by simple string analysis and common phrasal contexts

• Zipf’s law: the prevalence of frequent phenomena allow high scores to be achieved directly from the training data

• Chinese, Japanese, and Portuguese corpora had a lower bound above 70%

• Substantial further advances require language specificity

Page 80: Named Entity Recognition gate.ac.uk/ nlp.shef.ac.uk/ Hamish Cunningham

80(110)

What is needed for multilingual NE

• Extensive support for non-Latin scripts and text encodings, including conversion utilities– Automatic recognition of encoding [Ignat et al03]– Occupied up to 2/3 of the TIDES Hindi effort

• Bi-lingual dictionaries• Annotated corpus for evaluation• Internet resources for gazetteer list collection

(e.g., phone books, yellow pages, bi-lingual pages)

Page 81: Named Entity Recognition gate.ac.uk/ nlp.shef.ac.uk/ Hamish Cunningham

81(110)

Multilingual support - Alembic

Japaneseexample

Page 82: Named Entity Recognition gate.ac.uk/ nlp.shef.ac.uk/ Hamish Cunningham

82(110)

                     

GATE Unicode Kit (GUK) Complements Java’s facilities

• Support for defining Input Methods (IMs)

• currently 30 IMs for 17 languages

• Pluggable in other applications (e.g. JEdit)

Editing Multilingual Data

Page 83: Named Entity Recognition gate.ac.uk/ nlp.shef.ac.uk/ Hamish Cunningham

83(110)

Multilingual Data - GATEAll processing, visualisation and editing tools use GUK

Page 84: Named Entity Recognition gate.ac.uk/ nlp.shef.ac.uk/ Hamish Cunningham

84(110)

Gazetteer-based Approach to Multilingual NE [Ignat et al 03]

• Deals with locations only• Even more ambiguity than in one language:

– Multiple places that share the same name, such as the fourteen cities and villages in the world called ‘Paris’

– Place names that are also words in one or more languages, such as ‘And’ (Iran), ‘Split’ (Croatia)

– Places have varying names in different languages (Italian ‘Venezia’ vs. English ‘Venice’, German ‘Venedig’, French ‘Venise’)

Page 85: Named Entity Recognition gate.ac.uk/ nlp.shef.ac.uk/ Hamish Cunningham

85(110)

Gazetteer-based multilingual NE (2)

• Disambiguation module applies heuristics based on location size and country mentions (prefer the locations from the country mentioned most)

• Performance evaluation:– 853 locations from 80 English texts– 96.8% precision– 96.5% recall

Page 86: Named Entity Recognition gate.ac.uk/ nlp.shef.ac.uk/ Hamish Cunningham

86(110)

Machine Learning for Multilingual NE

• CONLL’2002 and 2003 shared tasks were NE in Spanish, Dutch, English, and German

• The most popular ML techniques used:– Maximum Entropy (5 systems)– Hidden Markov Models (4 systems)– Connectionist methods (4 systems)

• Combining ML methods has been shown to boost results

Page 87: Named Entity Recognition gate.ac.uk/ nlp.shef.ac.uk/ Hamish Cunningham

87(110)

ML for NE at CONLL (2)

• The choice of features is at least as important as the choice of ML algorithm– Lexical features (words)– Part-of-speech– Orthographic information– Affixes– Gazetteers

• External, unmarked data is useful to derive gazetteers and for extracting training instances

Page 88: Named Entity Recognition gate.ac.uk/ nlp.shef.ac.uk/ Hamish Cunningham

88(110)

ML for NE at CONLL (3)

• English (f-measure) – Baseline - 59.5%

(list lookup of entities with 1 class in training data)– Systems – between 60.2% and 88.76%

• German (f-measure) – Baseline – 30.3% – Systems – between 47.7% and 72.4%

• Spanish (f-measure)– Baseline – 35.9%– Systems – between 60.9% and 81.4%

• Dutch (f-measure)– Baseline – 53.1%– Systems – between 56.4% and 77%

Page 89: Named Entity Recognition gate.ac.uk/ nlp.shef.ac.uk/ Hamish Cunningham

89(110)

TIDES surprise language exercise

• Collaborative effort between a number of sites to develop resources and tools for various LE tasks on a surprise language

• Tasks: IE (including NE), machine translation, summarisation, cross-language IR

• Dry-run lasted 10 days on the Cebuano language from the Philippines

• Surprise language was Hindi, announced at the start of June 2003; duration 1 month

Page 90: Named Entity Recognition gate.ac.uk/ nlp.shef.ac.uk/ Hamish Cunningham

90(110)

Language categorisation

• LDC – survey of 300 largest languages (by population) to establish what resources are available

• http://www.ldc.upenn.edu/Projects/TIDES/language-summary-table.html

• Classification dimensions:– Dictionaries, news texts, parallel texts, e.g., Bible– Script, orthography, words separated by spaces

Page 91: Named Entity Recognition gate.ac.uk/ nlp.shef.ac.uk/ Hamish Cunningham

91(110)

The Surprise Languages

• Cebuano:– Latin script and words are spaced, but– Few resources and little work, so– Medium difficulty

• Hindi– Non-latin script, different encodings used, words

are spaced, no capitalisation– Many resources available– Medium difficulty

Page 92: Named Entity Recognition gate.ac.uk/ nlp.shef.ac.uk/ Hamish Cunningham

92(110)

Named Entity Recognition for TIDES

• Information on other systems and results from TIDES is still unavailable to non-TIDES participants

• Will be made available by the end of 2003 in a Special issue of ACM Transactions on Asian Language Information Processing (TALIP). Rapid Development of Language Capabilities: The Surprise Languages

• The Sheffield approach is presented below, because it is not subject to these restrictions

Page 93: Named Entity Recognition gate.ac.uk/ nlp.shef.ac.uk/ Hamish Cunningham

93(110)

Dictionary-based Adaptation of an English POS tagger

• Substituted Hindi/Cebuano lexicon for English one in a Brill-like tagger

• Hindi/Cebuano lexicon derived from a bi-lingual dictionary

• Used empty ruleset since no training data available

• Used default heuristics (e.g. return NNP for capitalised words)

• Very experimental, but reasonable results

Page 94: Named Entity Recognition gate.ac.uk/ nlp.shef.ac.uk/ Hamish Cunningham

94(110)

Evaluation of the Tagger

• No formal evaluation was possible

• Estimate around 67% accuracy on Hindi – evaluated by a native speaker on 1000 words

• Created in 2 person days

• Results and a tagging service made available to other researchers in TIDES

• Important pre-requisite for NE recognition

Page 95: Named Entity Recognition gate.ac.uk/ nlp.shef.ac.uk/ Hamish Cunningham

95(110)

NE grammars

• Most English JAPE rules based on POS tags and gazetteer lookup

• Grammars can be reused for languages with similar word order, orthography etc.

• No time to make detailed study of Cebuano, but very similar in structure to English

• Most of the rules left as for English, but some adjustments to handle especially dates

• Used both English and Cebuano grammars and gazetteers, because NEs appear in both languages

Page 96: Named Entity Recognition gate.ac.uk/ nlp.shef.ac.uk/ Hamish Cunningham

96(110)

Page 97: Named Entity Recognition gate.ac.uk/ nlp.shef.ac.uk/ Hamish Cunningham

97(110)

Evaluation Results

Cebuano English Baseline

P R F P R F

Person 71 65 68 36 36 36

Org 75 71 73 31 47 38

Location 73 78 76 65 7 12

Date 83 100 92 42 58 49

Total 76 79 77.5 45 41.7 43

Page 98: Named Entity Recognition gate.ac.uk/ nlp.shef.ac.uk/ Hamish Cunningham

98(110)

Structure of the Tutorial

• task definition

• applications

• corpora, annotation

• evaluation and testing

• how to

– preprocessing

– approaches to NE

– baseline

– rule-based approaches

– learning-based approaches

• multilinguality

• future challenges

Page 99: Named Entity Recognition gate.ac.uk/ nlp.shef.ac.uk/ Hamish Cunningham

99(110)

Future challenges

• Towards semantic tagging of entities• New evaluation metrics for semantic entity

recognition• Expanding the set of entities recognised – e.g.,

vehicles, weapons, substances (food, drug)• Finer-grained hierarchies, e.g., types of

Organizations (government, commercial, educational, etc.), Locations (regions, countries, cities, water, etc)

Page 100: Named Entity Recognition gate.ac.uk/ nlp.shef.ac.uk/ Hamish Cunningham

100(110)

Future challenges (2)

• Standardisation of the annotation formats– [Ide & Romary 02] – RDF-based annotation

standards– [Collier et al 02] – multi-lingual named entity

annotation guidelines– Aimed at defining how to annotate in order to

make corpora more reusable and lower the overhead of writing format conversion tools • MUC used inline markup• TIDES and ACE used stand-off markup, but two

different kinds (XML vs one-word per line)

Page 101: Named Entity Recognition gate.ac.uk/ nlp.shef.ac.uk/ Hamish Cunningham

101(110)

Towards Semantic Tagging of Entities

• The MUC NE task tagged selected segments of text whenever that text represents the name of an entity.

• In ACE (Automated Content Extraction), these names are viewed as mentions of the underlying entities. The main task is to detect (or infer) the mentions in the text of the entities themselves.

• ACE focuses on domain- and genre-independent approaches

• ACE corpus contains newswire, broadcast news (ASR output and cleaned), and newspaper reports (OCR output and cleaned)

Page 102: Named Entity Recognition gate.ac.uk/ nlp.shef.ac.uk/ Hamish Cunningham

102(110)

ACE Entities

• Dealing with – Proper names – e.g., England, Mr. Smith, IBM– Pronouns – e.g., he, she, it– Nominal mentions – the company, the spokesman

• Identify which mentions in the text refer to which entities, e.g., – Tony Blair, Mr. Blair, he, the prime minister, he– Gordon Brown, he, Mr. Brown, the chancellor

Page 103: Named Entity Recognition gate.ac.uk/ nlp.shef.ac.uk/ Hamish Cunningham

103(110)

ACE Example <entity ID="ft-airlines-27-jul-2001-2" GENERIC="FALSE" entity_type = "ORGANIZATION"> <entity_mention ID="M003" TYPE = "NAME" string = "National Air Traffic Services"> </entity_mention> <entity_mention ID="M004" TYPE = "NAME" string = "NATS"> </entity_mention> <entity_mention ID="M005" TYPE = "PRO" string = "its"> </entity_mention> <entity_mention ID="M006" TYPE = "NAME" string = "Nats"> </entity_mention> </entity>

Page 104: Named Entity Recognition gate.ac.uk/ nlp.shef.ac.uk/ Hamish Cunningham

104(110)

ACE Entities (2)

• Some entities can have different roles, i.e., behave as Organizations, Locations, or Persons – GPEs (Geo-political entities)

• New York [GPE – role: Person], flush with Wall Street money, has a lot of loose change jangling in its pockets.

• All three New York [GPE – role: Location] regional commuter train systems were found to be punctual more than 90 percent of the time.

Page 105: Named Entity Recognition gate.ac.uk/ nlp.shef.ac.uk/ Hamish Cunningham

105(110)

Further information on ACE

• ACE is a closed-evaluation initiative, which does not allow the publication of results

• Further information on guidelines and corpora is available at:

• http://www.ldc.upenn.edu/Projects/ACE/

• ACE also includes other IE tasks, for further details see Doug Appelt’s presentation:http://www.clsp.jhu.edu/ws03/groups/sparse/presentations/doug.ppt

Page 106: Named Entity Recognition gate.ac.uk/ nlp.shef.ac.uk/ Hamish Cunningham

106(110)

Evaluating Richer NE Tagging

• Need for new metrics when evaluating hierarchy/ontology-based NE tagging

• Need to take into account distance in the hierarchy

• Tagging a company as a charity is less wrong than tagging it as a person

Page 107: Named Entity Recognition gate.ac.uk/ nlp.shef.ac.uk/ Hamish Cunningham

107(110)

Further Reading• Aberdeen J., Day D., Hirschman L., Robinson P. and Vilain M. 1995.

MITRE: Description of the Alembic System Used for MUC-6. MUC-6 proceedings. Pages141-155. Columbia, Maryland. 1995.

• Black W.J., Rinaldi F., Mowatt D. Facile: Description of the NE System Used For MUC-7. Proceedings of 7th Message Understanding Conference, Fairfax, VA, 19 April - 1 May, 1998.

• Borthwick. A. A Maximum Entropy Approach to Named Entity Recognition.PhD Dissertation. 1999

• Bikel D., Schwarta R., Weischedel. R. An algorithm that learns what’s in a name. Machine Learning 34, pp.211-231, 1999

• Carreras X., Màrquez L., Padró. 2002. Named Entity Extraction using AdaBoost.The 6th Conference on Natural Language Learning. 2002

• Chang J.S., Chen S. D., Zheng Y., Liu X. Z., and Ke S. J. Large-corpus-based methods for Chinese personal name recognition. Journal of Chinese Information Processing, 6(3):7-15, 1992

• Chen H.H., Ding Y.W., Tsai S.C. and Bian G.W. Description of the NTU System Used for MET2. Proceedings of 7th Message Understanding Conference, Fairfax, VA, 19 April - 1 May, 1998.

• Chinchor. N. MUC-7 Named Entity Task Definition Version 3.5.Available by from ftp.muc.saic.com/pub/MUC/MUC7-guidelines, 1997

Page 108: Named Entity Recognition gate.ac.uk/ nlp.shef.ac.uk/ Hamish Cunningham

108(110)

Further reading (2)• Collins M., Singer Y. Unsupervised models for named entity classification

In Proceedings of the Joint SIGDAT Conference on Empirical Methods in Natural Language Processing and Very Large Corpora, 1999

• Collins M. Ranking Algorithms for Named-Entity Extraction: Boosting and the Voted Perceptron. Proceedings of the 40th Annual Meeting of the ACL, Philadelphia, pp. 489-496, July 2002 Gotoh Y., Renals S. Information extraction from broadcast news, Philosophical Transactions of the Royal Society of London, series A: Mathematical, Physical and Engineering Sciences, 2000.

• Grishman R. The NYU System for MUC-6 or Where's the Syntax? Proceedings of the MUC-6 workshop, Washington. November 1995.

• [Ign03a] C. Ignat and B. Pouliquen and A. Ribeiro and R. Steinberger. Extending and Information Extraction Tool Set to Eastern-European Languages. Proceedings of Workshop on Information Extraction for Slavonic and other Central and Eastern European Languages (IESL'03). 2003.

• Krupka G. R., Hausman K. IsoQuest Inc.: Description of the NetOwlTM Extractor System as Used for MUC-7. Proceedings of 7th Message Understanding Conference, Fairfax, VA, 19 April - 1 May, 1998.

• McDonald D. Internal and External Evidence in the Identification and Semantic Categorization of Proper Names. In B.Boguraev and J. Pustejovsky editors: Corpus Processing for Lexical Acquisition. Pages21-39. MIT Press. Cambridge, MA. 1996

• Mikheev A., Grover C. and Moens M. Description of the LTG System Used for MUC-7. Proceedings of 7th Message Understanding Conference, Fairfax, VA, 19 April - 1 May, 1998

• Miller S., Crystal M., et al. BBN: Description of the SIFT System as Used for MUC-7. Proceedings of 7th Message Understanding Conference, Fairfax, VA, 19 April - 1 May, 1998

Page 109: Named Entity Recognition gate.ac.uk/ nlp.shef.ac.uk/ Hamish Cunningham

109(110)

Further reading (3)• Palmer D., Day D.S. A Statistical Profile of the Named Entity Task.

Proceedings of the Fifth Conference on Applied Natural Language Processing, Washington, D.C., March 31- April 3, 1997.

• Sekine S., Grishman R. and Shinou H. A decision tree method for finding and classifying names in Japanese texts. Proceedings of the Sixth Workshop on Very Large Corpora, Montreal, Canada, 1998

• Sun J., Gao J.F., Zhang L., Zhou M., Huang C.N. Chinese Named Entity Identification Using Class-based Language Model. In proceeding of the 19th International Conference on Computational Linguistics (COLING2002), pp.967-973, 2002.

• Takeuchi K., Collier N. Use of Support Vector Machines in Extended Named Entity Recognition. The 6th Conference on Natural Language Learning. 2002

• D.Maynard, K. Bontcheva and H. Cunningham. Towards a semantic extraction of named entities. Recent Advances in Natural Language Processing, Bulgaria, 2003.

• M. M. Wood and S. J. Lydon and V. Tablan and D. Maynard and H. Cunningham. Using parallel texts to improve recall in IE. Recent Advances in Natural Language Processing, Bulgaria, 2003.

• D.Maynard, V. Tablan and H. Cunningham. NE recognition without training data on a language you don't speak. ACL Workshop on Multilingual and Mixed-language Named Entity Recognition: Combining Statistical and Symbolic Models, Sapporo, Japan, 2003.

Page 110: Named Entity Recognition gate.ac.uk/ nlp.shef.ac.uk/ Hamish Cunningham

110(110)

Further reading (4)

• H. Saggion, H. Cunningham, K. Bontcheva, D. Maynard, O. Hamza, Y. Wilks. Multimedia Indexing through Multisource and Multilingual Information Extraction; the MUMIS project. Data and Knowledge Engineering, 2003.

• D. Manov and A. Kiryakov and B. Popov and K. Bontcheva and D. Maynard, H. Cunningham. Experiments with geographic knowledge for information extraction. Workshop on Analysis of Geographic References, HLT/NAACL'03, Canada, 2003.

• H. Cunningham, D. Maynard, K. Bontcheva, V. Tablan. GATE: A Framework and Graphical Development Environment for Robust NLP Tools and Applications. Proceedings of the 40th Anniversary Meeting of the Association for Computational Linguistics (ACL'02). Philadelphia, July 2002.

• H. Cunningham. GATE, a General Architecture for Text Engineering. Computers and the Humanities, volume 36, pp. 223-254, 2002.

• D. Maynard, H. Cunningham, K. Bontcheva, M. Dimitrov. Adapting A Robust Multi-Genre NE System for Automatic Content Extraction. Proc. of the 10th International Conference on Artificial Intelligence: Methodology, Systems, Applications (AIMSA 2002), 2002.

• E. Paskaleva and G. Angelova and M.Yankova and K. Bontcheva and H. Cunningham and Y. Wilks. Slavonic Named Entities in GATE. 2003. CS-02-01.

• K. Pastra, D. Maynard, H. Cunningham, O. Hamza, Y. Wilks. How feasible is the reuse of grammars for Named Entity Recognition? Language Resources and Evaluation Conference (LREC'2002), 2002.