N-body Models of Aggregation and Disruption Derek C. Richardson University of Maryland Derek C....

58
N-body Models of Aggregation and Disruption Derek C. Richardson University of Maryland QuickTime™ and a TIFF (LZW) decompressor are needed to see this picture.

Transcript of N-body Models of Aggregation and Disruption Derek C. Richardson University of Maryland Derek C....

N-body Models of Aggregation and

Disruption

N-body Models of Aggregation and

DisruptionDerek C. Richardson

University of Maryland

Derek C. RichardsonUniversity of Maryland

QuickTime™ and aTIFF (LZW) decompressor

are needed to see this picture.

OverviewOverview

Introduction/the N-body problem. Numerical method (pkdgrav). Application: binary asteroids. Non-idealized & strength models. First results: “YORP” spinup of rubble piles & spin limits with strength.

Introduction/the N-body problem. Numerical method (pkdgrav). Application: binary asteroids. Non-idealized & strength models. First results: “YORP” spinup of rubble piles & spin limits with strength.

IntroductionIntroduction

Many dynamical processes in the solar system can be modeled by gravity and collisions alone. E.g., Reaccumulation after catastrophic disruption (collisional or rotational).

Planetary ring dynamics. Planet formation.

Problems well suited to N-body code.

Many dynamical processes in the solar system can be modeled by gravity and collisions alone. E.g., Reaccumulation after catastrophic disruption (collisional or rotational).

Planetary ring dynamics. Planet formation.

Problems well suited to N-body code.

The N-body problemThe N-body problem

The orbit of any one planet depends on the combined motion of all the planets, not to mention the actions of all these on each other. To consider simultaneously all these causes of motion and to define these motions by exact laws allowing of convenient calculation exceeds, unless I am mistaken, the forces of the entire human intellect.

— Isaac Newton, 1687.

The orbit of any one planet depends on the combined motion of all the planets, not to mention the actions of all these on each other. To consider simultaneously all these causes of motion and to define these motions by exact laws allowing of convenient calculation exceeds, unless I am mistaken, the forces of the entire human intellect.

— Isaac Newton, 1687.

The N-body problemThe N-body problem

˙ ̇ r i = −Gm j (ri − r j )

ri − r j3

j≠ i

Cost = N (N – 1) / 2 = O(N2)

Tree codesTree codes

Reduce computational cost by treating particles in groups.

Reduce computational cost by treating particles in groups.

Tree codesTree codes

Replace many summations with single multipole expansion around center of mass.

Tree codesTree codes

Reduce computational cost by treating particles in groups.

Error controlled by opening angle criterion and order of expansion.

Reduce computational cost by treating particles in groups.

Error controlled by opening angle criterion and order of expansion.

Tree codesTree codes

Use multipole expansion if opening angle < crit.

crit

Tree codesTree codes

Reduce computational cost by treating particles in groups.

Error controlled by opening angle criterion and order of expansion.

Particles organized into systematic hierarchical structure. Ideally suited for recursive algorithms.

Reduce computational cost by treating particles in groups.

Error controlled by opening angle criterion and order of expansion.

Particles organized into systematic hierarchical structure. Ideally suited for recursive algorithms.

Tree codesTree codes

E.g. Barnes & Hut (1986) two-dimensional tree.

Cost = O(N log N)

Reducing cost furtherReducing cost further

Parallel methods: Distribute work among Np processors. N-body problem difficult—exploit tree.

Adaptive/hierarchical timestepping: Focus work on most active particles.

Good object-oriented code structure.

Hard-core optimizations.

Parallel methods: Distribute work among Np processors. N-body problem difficult—exploit tree.

Adaptive/hierarchical timestepping: Focus work on most active particles.

Good object-oriented code structure.

Hard-core optimizations.

Integrating the equations of motionIntegrating the equations of motion Many techniques for solving coupled linear ordinary differential equations.

Most popular: Runge-Kutta (explicit forward). Bulirsch-Stoer (complex/expensive). Leapfrog/symplectic methods.

Preserve phase space volume. Timestep adaptability issues.

Many techniques for solving coupled linear ordinary differential equations.

Most popular: Runge-Kutta (explicit forward). Bulirsch-Stoer (complex/expensive). Leapfrog/symplectic methods.

Preserve phase space volume. Timestep adaptability issues.

Collision detectionCollision detection

Particles collide when separation distance equals sum of radii.

Particles collide when separation distance equals sum of radii.

R1 R2

Collision detectionCollision detection

Particles collide when separation distance equals sum of radii.

Two approaches:1. Predict collisions before they occur.

Need neighbour-finding algorithm (tree!).

2. Detect collisions after they occur. Detected by mutual overlap. Adaptive timestepping essential.

Particles collide when separation distance equals sum of radii.

Two approaches:1. Predict collisions before they occur.

Need neighbour-finding algorithm (tree!).

2. Detect collisions after they occur. Detected by mutual overlap. Adaptive timestepping essential.

Numerical methodNumerical method

Our group uses pkdgrav: Parallel k-D tree code.

k-D: split along longest dimension. Expand to hexadecapole order.

Second-order leapfrog integrator. Hierarchical timestepping. Collisions predicted before they occur. Includes bouncing and sliding friction.

Our group uses pkdgrav: Parallel k-D tree code.

k-D: split along longest dimension. Expand to hexadecapole order.

Second-order leapfrog integrator. Hierarchical timestepping. Collisions predicted before they occur. Includes bouncing and sliding friction.

Parallelism in pkdgravParallelism in pkdgrav

master

• controls overall flow

“pst”

• loops over processors

“pkd”

• loops over particles on one processor

“mdl”

• interface between pkdgrav and parallel primitives (e.g. mpi)

Application: binary asteroidsApplication: binary asteroids Use N-body code to simulate:

Capture of collisional ejecta in Main Belt. Michel et al., Durda et al.: collisions that make families also make satellites.

Use N-body code to simulate: Capture of collisional ejecta in Main Belt. Michel et al., Durda et al.: collisions that make families also make satellites.

Application: binary asteroidsApplication: binary asteroids

QuickTime™ and ampeg4 decompressor

are needed to see this picture.

Michel et al. 2001

Application: binary asteroidsApplication: binary asteroids Use N-body code to simulate:

Capture of collisional ejecta in Main Belt. Michel et al., Durda et al.: collisions that make families also make satellites.

Rotational disruption of gravitational aggregates in near-Earth population. Tidal disruption. “YORP” thermal spin-up.

Use N-body code to simulate: Capture of collisional ejecta in Main Belt. Michel et al., Durda et al.: collisions that make families also make satellites.

Rotational disruption of gravitational aggregates in near-Earth population. Tidal disruption. “YORP” thermal spin-up.

Application: binary asteroidsApplication: binary asteroids

QuickTime™ and aYUV420 codec decompressor

are needed to see this picture.

Tidal disruption vs. YORPTidal disruption vs. YORP Tidal disruption makes binaries, but also destroys them quickly. Binary NEA mean lifetime only ~ 1 Myr.

YORP thermal effect may form binaries through rotational disruption. But, some internal strength/cohesion may be necessary to prevent material from just “dribbling” away (but that may be OK too!).

Tidal disruption makes binaries, but also destroys them quickly. Binary NEA mean lifetime only ~ 1 Myr.

YORP thermal effect may form binaries through rotational disruption. But, some internal strength/cohesion may be necessary to prevent material from just “dribbling” away (but that may be OK too!).

Forming binaries with YORPForming binaries with YORP

Preliminary investigation: Slowly spin up various rubble piles.

Find particles leak away from equator (no fission).

Preliminary investigation: Slowly spin up various rubble piles.

Find particles leak away from equator (no fission).

QuickTime™ and aYUV420 codec decompressor

are needed to see this picture.

QuickTime™ and aYUV420 codec decompressor

are needed to see this picture.

Forming binaries with YORPForming binaries with YORP

Preliminary investigation: Slowly spin up various rubble piles.

Find particles leak away from equator (no fission).

Preliminary investigation: Slowly spin up various rubble piles.

Find particles leak away from equator (no fission).

Recoil: new mobility mechanism?

Forming binaries with YORPForming binaries with YORP

Forming binaries with YORPForming binaries with YORP May need strength and/or irregular body shape to form binaries. E.g., contact binary can separate.

May need strength and/or irregular body shape to form binaries. E.g., contact binary can separate.

QuickTime™ and aYUV420 codec decompressor

are needed to see this picture.

Non-idealized modelsNon-idealized models

Treating particles as idealized, rigid, independent spheres is convenient.

Components with different shapes may provide more realism. E.g., Ellisoidal particles (Roig et al.) Polyhedral (Korycansky & Asphaug).

We combine best of both worlds: allow spheres to “fuse” together…

Treating particles as idealized, rigid, independent spheres is convenient.

Components with different shapes may provide more realism. E.g., Ellisoidal particles (Roig et al.) Polyhedral (Korycansky & Asphaug).

We combine best of both worlds: allow spheres to “fuse” together…

Non-idealized modelsNon-idealized models

QuickTime™ and aYUV420 codec decompressor

are needed to see this picture.

QuickTime™ and aYUV420 codec decompressor

are needed to see this picture.

Strength modelStrength model

Colliding particles/aggregates can: Stick on contact; Bounce; Liberate particle(s) from aggregate(s).

Outcome currently parameterized by impact speed.

Colliding particles/aggregates can: Stick on contact; Bounce; Liberate particle(s) from aggregate(s).

Outcome currently parameterized by impact speed.

Strength modelStrength model

In addition, bonded aggregates can have a size-dependent bulk tensile and/or shear strength.

Particles experiencing stress (relative to center of mass) in excess of strength are liberated.

Global model (no fractures/cracks).

In addition, bonded aggregates can have a size-dependent bulk tensile and/or shear strength.

Particles experiencing stress (relative to center of mass) in excess of strength are liberated.

Global model (no fractures/cracks).

Strength modelStrength model

For a demo of the new strength model in action, see Patrick’s presentation!

Testing strength: spin limitsTesting strength: spin limits One way to test the strength model is to compare with analytical predictions of global failure (e.g. Holsapple).

Found good match for cohesionless models (Richardson et al. 2005).

Science motivation: spin-up past critical limit could make binaries (e.g. YORP).

One way to test the strength model is to compare with analytical predictions of global failure (e.g. Holsapple).

Found good match for cohesionless models (Richardson et al. 2005).

Science motivation: spin-up past critical limit could make binaries (e.g. YORP).

Spin limits: preliminary resultsSpin limits: preliminary results

Work in progress!

QuickTime™ and aTIFF (LZW) decompressor

are needed to see this picture.

QuickTime™ and aTIFF (LZW) decompressor

are needed to see this picture.

QuickTime™ and aTIFF (LZW) decompressor

are needed to see this picture.

QuickTime™ and aTIFF (LZW) decompressor

are needed to see this picture.

SummarySummary

N-body methods allow modeling of complex phenomena involving gravity & collisions.

Examples include post-disruption gravitational reaccumulation to form binaries & families.

Binaries: more work needed to assess YORP (including survivability against BYORP!).

New pkdgrav strength model provides added realism/complexity, but needs fracture model.

N-body methods allow modeling of complex phenomena involving gravity & collisions.

Examples include post-disruption gravitational reaccumulation to form binaries & families.

Binaries: more work needed to assess YORP (including survivability against BYORP!).

New pkdgrav strength model provides added realism/complexity, but needs fracture model.

Extra Slides…Extra Slides…

What is YORP?What is YORP?

Yarkovsky-O'Keefe-Radzievskii-Paddack effect.

Irregular bodies reflect/re-radiate solar photons in different directions: net torque spin-up/down.

Yarkovsky-O'Keefe-Radzievskii-Paddack effect.

Irregular bodies reflect/re-radiate solar photons in different directions: net torque spin-up/down.

Results: Many BinariesResults: Many Binaries

High rates of production for: Low q. Low v∞. Rapid spin. Large elongation.

High rates of production for: Low q. Low v∞. Rapid spin. Large elongation.

Close approach distance q

Encounter speed v∞

Spin period P

Elongation ε

Orbital PropertiesOrbital Properties

High eccentricity.

Range of semi-major axis.

Binary orbit aligned more with approach orbit than progenitor spin.

Retrograde orbits possible.

High eccentricity.

Range of semi-major axis.

Binary orbit aligned more with approach orbit than progenitor spin.

Retrograde orbits possible.

Retrograde

Eccentricity e (97% > 0.1)

Inclination I

Spin-orbit angle

Semimajor axis a (50% > 10 Rp)

Physical PropertiesPhysical Properties

Size ratio peaks at 0.1–0.2 (10–5:1).

Obliquities: Primary spin aligned with binary orbit.

Wide range of secondary spin axes.

Spin Periods: Primary has narrow range (3.5 6.0 h).

Secondary has wide range (4.0 20+ h).

Size ratio peaks at 0.1–0.2 (10–5:1).

Obliquities: Primary spin aligned with binary orbit.

Wide range of secondary spin axes.

Spin Periods: Primary has narrow range (3.5 6.0 h).

Secondary has wide range (4.0 20+ h).

Size ratio

Obliquities

Spin periods

Evolutionary EffectsEvolutionary Effects

Mutual tides damp eccentricity in ~ 1–10 My.

Repeated encounters may strip binary.

NEA population refreshed by MBAs (some of which may be binary).

Thermal effects (YORP) important?

Mutual tides damp eccentricity in ~ 1–10 My.

Repeated encounters may strip binary.

NEA population refreshed by MBAs (some of which may be binary).

Thermal effects (YORP) important?

Steady-state (Monte Carlo) ModelSteady-state (Monte Carlo) Model

We know… Binary production efficiency from tidal disruption (Walsh & Richardson 2006);

Planetary encounter circumstances (Bottke et al. 1994);

Distribution of NEA lifetimes (Gladman et al. 2000); Shape and spin of source bodies (Harris et al. 2005);

Tidal evolution effects (Weidenschilling et al. 1989);

Effects of binary encounters with planets (Bottke & Melosh 1996; this work);

Small binary MBAs formed in collisional simulations (Durda et al. 2004).

We know… Binary production efficiency from tidal disruption (Walsh & Richardson 2006);

Planetary encounter circumstances (Bottke et al. 1994);

Distribution of NEA lifetimes (Gladman et al. 2000); Shape and spin of source bodies (Harris et al. 2005);

Tidal evolution effects (Weidenschilling et al. 1989);

Effects of binary encounters with planets (Bottke & Melosh 1996; this work);

Small binary MBAs formed in collisional simulations (Durda et al. 2004).

Steady-state (Monte Carlo) ModelSteady-state (Monte Carlo) Model In one timestep…

All asteroids in the simulation are tested for: End of lifetime (median ~ 10 Myr); Close planetary encounter < 3REarth (one every ~3 Myr).

All binaries are tested for: End of lifetime; Close planetary encounter < 24REarth: explicit 3-body integration.

If neither happen, the binary is tidally evolved.

Removed NEAs/binaries are immediately replaced.

“Fresh” asteroids take spin/shape characteristics of MBAs, with a variable percentage being binaries.

MBA binaries have characteristics determined from the Durda et al. 2004 simulations.

In one timestep… All asteroids in the simulation are tested for:

End of lifetime (median ~ 10 Myr); Close planetary encounter < 3REarth (one every ~3 Myr).

All binaries are tested for: End of lifetime; Close planetary encounter < 24REarth: explicit 3-body integration.

If neither happen, the binary is tidally evolved.

Removed NEAs/binaries are immediately replaced.

“Fresh” asteroids take spin/shape characteristics of MBAs, with a variable percentage being binaries.

MBA binaries have characteristics determined from the Durda et al. 2004 simulations.

Steady-state ResultsSteady-state Results

For 2000 asteroids: Find ~2% binary

fraction. Binary NEA mean

lifetime ~ 1 Myr. 93% of removed

binaries destroyed by planetary encounters.

MBA initial binary percentage has little effect (mean lifetime ~0.32 Myr).

For 2000 asteroids: Find ~2% binary

fraction. Binary NEA mean

lifetime ~ 1 Myr. 93% of removed

binaries destroyed by planetary encounters.

MBA initial binary percentage has little effect (mean lifetime ~0.32 Myr).

Steady-state ResultsSteady-state Results

The resultant steady-state binaries… Have slightly larger semi-major axes than observed;

The resultant steady-state binaries… Have slightly larger semi-major axes than observed;

Observed

Steady-state

Steady-state ResultsSteady-state Results

The resultant steady-state binaries… Have slightly larger semi-major axes than observed;

Mostly have low eccentricities (< 0.2), consistent with observations.

The resultant steady-state binaries… Have slightly larger semi-major axes than observed;

Mostly have low eccentricities (< 0.2), consistent with observations.

Eccentricity

A Word About Rubble PilesA Word About Rubble Piles Rubble piles are low-tensile-strength, medium-porosity gravitational aggregates.

In simulations, rubble piles consist of perfectly smooth spheres; some dissipation.

Used in a variety of contexts: planetesimal collisions, tidal disruption, spin-up.

How do they differ from perfect fluids?

Rubble piles are low-tensile-strength, medium-porosity gravitational aggregates.

In simulations, rubble piles consist of perfectly smooth spheres; some dissipation.

Used in a variety of contexts: planetesimal collisions, tidal disruption, spin-up.

How do they differ from perfect fluids?

Rubble Pile Equilibrium ShapesRubble Pile Equilibrium Shapes

Mass loss: 0% < 10% > 10% X = initial condition

Rubble Pile Equilibrium ShapesRubble Pile Equilibrium Shapes

Mass loss: 0% < 10% > 10% X = initial condition

YORP Spinup of Rubble PilesYORP Spinup of Rubble Piles

QuickTime™ and aYUV420 codec decompressor

are needed to see this picture.

QuickTime™ and aYUV420 codec decompressor

are needed to see this picture.

Resolution EffectsResolution Effects

QuickTime™ and aYUV420 codec decompressor

are needed to see this picture.

ClassificationsClassifications

Stress response may be predicted by plotting tensile strength (resistance to stretching) vs. porosity.

Richardson Richardson et alet al. . 20032003

Strength vs. GravityStrength vs. GravityAsphaug et al. 2003

Asphaug et al. 1998

Dam

aged

Dam

aged

Coh

eren

tC

oher

ent

Aggregates Resist DisruptionAggregates Resist Disruption Once shattered, impact energy is more readily absorbed at impact site.

Once shattered, impact energy is more readily absorbed at impact site.

QuickTime™ and aTIFF (LZW) decompressor

are needed to see this picture.