Mussie Alemseghed, Ph.D.

39
Indigenous Africans toward New solar cell technology Mussie Alemseghed, Ph.D. Mussie Alemseghed, Ph.D. University of Cincinnati/Oak Ridge National Lab University of Cincinnati/Oak Ridge National Lab NanoPower Africa NanoPower Africa 11/08/2011 11/08/2011

Transcript of Mussie Alemseghed, Ph.D.

Page 1: Mussie Alemseghed, Ph.D.

Indigenous Africans toward New solar cell technology

Mussie Alemseghed, Ph.D.Mussie Alemseghed, Ph.D.

University of Cincinnati/Oak Ridge National LabUniversity of Cincinnati/Oak Ridge National Lab

NanoPower Africa NanoPower Africa 

11/08/201111/08/2011

Page 2: Mussie Alemseghed, Ph.D.

•Located in northeastern Africa, Eritrea has about 620 miles (1,000 kilometers) of coastline along the west coast of the Red Sea.

• The population in Eritrea is ~3 million (1994), divided between nine ethnic groups. •The highland Tigrinya group constitutes about half of the population. More than 75 percent of the population lives in rural areas. 

GEOGRAPHY

Page 3: Mussie Alemseghed, Ph.D.

Food and Economy

Food in Daily Life.Eritrean cuisine is a reflection of the country's history.• injerra is commonly eaten in the rural areas. It is a 

pancake‐like bread that is eaten together with a sauce called tsebhi or wat . The sauce may be of a hot and spicy meat variety, or vegetable based. 

• In the urban centers one finds the strong influence of Italian cuisine, and pasta is served in all restaurants. 

Page 4: Mussie Alemseghed, Ph.D.

Basic Economy

• The Eritrean economy is totally dependent upon agricultural production. Over 75% of the population lives in the rural areas and conducts subsistence agricultural production. 

Page 5: Mussie Alemseghed, Ph.D.

Major Industries

• The marginal industrial base in Eritrea provides the domestic market with textiles, shoes, food products, beverages, and building materials. If stable and peaceful development occurs, Eritrea might be able to create a considerable tourism industry based on the Dahlak islands in the Red Sea. 

• produced many resources like gold, ivory, copper, platinum ,frankincense, potash, and natural gas. 

Page 6: Mussie Alemseghed, Ph.D.

• History covering civilizations dating back to 4000 BC, the great empire of Axum, the dynasty of rulers that include: Queen of Sheba up to the SolomonicDynasty founded by Menelik, lasting until 1974 when the 237th Solomonic monarch, His Emperor Haile Selassie, was overthrown. 

The History and culture of Ethio‐Eritrea 

Page 7: Mussie Alemseghed, Ph.D.

“Australopithecus afarensis”

• Archaeologists have discovered remains of early hominids in Ethiopia’s Rift Valley, including Australopithecus afarensis, or “Lucy,” thought to be 3.5 million years old. By ca. 7000 B. C. 

Page 8: Mussie Alemseghed, Ph.D.

•which is a crack in the surface of the earth and runs north and south for about 4000 miles .

Great Rift Valley

Page 9: Mussie Alemseghed, Ph.D.

Great Rift Valley

The Great Rift Valley is a 4,000 mile giant fault, or break in the earth’s crust. It extends from the Red Sea to the Zambezi River.

Page 10: Mussie Alemseghed, Ph.D.

• The Abay (Blue Nile), Ethiopia’s largest river,• the Tekezé, and the Baro flow west into the Nile River in Sudan,

• The Awash flows east through the northern Rift Valley and disappears into saline lakes in the Denakil Depression. 

• In the south, the Genale and Shebele flow southeastward into Somalia; the Omo drains the southwest and empties into Lake Turkana on the border with Kenya. 

Page 11: Mussie Alemseghed, Ph.D.

Energy• Less than one‐half of Ethio‐Eritrea towns and cities are connected to the national grid. 

• Petroleum requirements are met via imports of refined products, although some oil is being hauled overland from Sudan. Exploration for gas and oil is underway in the Red sea region In general, Ethiopians rely on forests for nearly all of their energy and construction needs; the result has been deforestation of much of the highlands during the last three decades. 

Page 12: Mussie Alemseghed, Ph.D.

12

Overview ofOverview oforganic photovoltaic thin filmsorganic photovoltaic thin films

12

Page 13: Mussie Alemseghed, Ph.D.

Stability toenvironmental

conditions

OpticalProperties

Electrical properties

Mechanical Properties

Processibility

Solubility

Phase separationbetween

Incompatibleblocks

Modification of conjugated

polymers

Semiconducting Polymers integrated in blockSemiconducting Polymers integrated in block‐‐copolymer structurescopolymer structures

Page 14: Mussie Alemseghed, Ph.D.

10-12

10-16

10-14

10-10

10-8

10-2

10-4

10-6

106

102

104

Conductivity

S/cm

1

Insulators

Semiconductors

Conductors

Glass

Polyethylene

Silicon

Copper

rr PATs

Doped rr PATs

Semiconducting PolymersSemiconducting Polymers

Page 15: Mussie Alemseghed, Ph.D.

15

Semiconducting PolymersSemiconducting Polymers

sp2 hybridized C have pz orbitals that line up to form connected electron clouds where electrons/holes can travel through.

SS S

S SS

SS S

S SS

doping

n

And when doped with an oxidant   p‐type semiconducting polymersholes are the charges.

σ = 10‐6   ‐ 10‐8 S/cmsemiconductor

σ = 10 ‐ 103 S/cmconductor

Page 16: Mussie Alemseghed, Ph.D.

rr PATs self‐assemble to form flat stacks resulting in high conductivities upon doping.

ÅÅ

Regioregular Poly(3Regioregular Poly(3‐‐Alkylthiophene) (Alkylthiophene) (PATsPATs))

McCullough, R. D.; Tristram-Nagle, S.; Wiliams, S. P.; Lowe, R. D.; Jayaraman, M. J. Am. Chem. Soc. 1993, 115, 4910

Page 17: Mussie Alemseghed, Ph.D.

17

Applications of Semiconducting PolymersApplications of Semiconducting Polymers

Printable ElectronicsPOLYMER TRANSISTORS

Current PATs have mobilities 0.1‐ 0.5 cm2/VsSource Drain

GATE

rr‐PATs (mobilities, on/off ratio)

POLYMER TRANSISTORS

PATs have mobilities 10‐3‐10‐1 cm2/Vs

Plastic Field‐Effect Transistors

17

Polymer Solar Cell

Organic Light‐Emitting Diodes (LEDs)

Page 18: Mussie Alemseghed, Ph.D.

SYNTHESIS OF DISYNTHESIS OF DI‐‐BLOCK COPOLYMERS CONTAINING BLOCK COPOLYMERS CONTAINING REGIOREGULAR POLY(3REGIOREGULAR POLY(3‐‐HEXYLTHIOPHENE) AND HEXYLTHIOPHENE) AND 

POLY(TETRAHYDROFURAN)  BY A COMBINATION OF POLY(TETRAHYDROFURAN)  BY A COMBINATION OF GRIGNARD METHATHESIS AND CATIONIC GRIGNARD METHATHESIS AND CATIONIC 

POLYMERIZATIONSPOLYMERIZATIONS

Rod‐coil diblock copolymer

SBrn

OO m

Page 19: Mussie Alemseghed, Ph.D.

Conducting Block Copolymers ContainingConducting Block Copolymers ContainingPoly(3Poly(3‐‐AlkylthiopheneAlkylthiophene)

Cationic polymerization has never been employed for the synthesis of polythiophene di‐block copolymers

PAT = Poly(3‐alkylthiophene)

Allyl or Vinyl terminated PAT

OH terminated PAT

9-BBN NaOH / H2O2

ATRPRAFT

NMP AnionicROP

Page 20: Mussie Alemseghed, Ph.D.

20

Challenges of Cationic PolymerizationChallenges of Cationic Polymerization

Sensitive to traces of nucleophilic impurities and oxygen

Reproducibility issue

However, a controlled polymerization is possible under stringent reaction conditions:

low temperatures highly purified monomer and solvents

20

Ring‐opening polymerization of tetrahydrofuran can  be achieved only by cationic polymerization

Page 21: Mussie Alemseghed, Ph.D.

21

Synthesis of Poly(3-hexylthiophene)-b-Poly(tetrahydrofuran) Block Copolymer by Cationic

Polymerization

21

Alemseghed, M. G.; Gowrisanker, S.; Servello, J.; Stefan, M. C.Macromol. Chem. Phys. 2009, 210, 2007-2014

Page 22: Mussie Alemseghed, Ph.D.

22

1H NMR of Allyl‐terminated poly(3‐hexylthiophene)

22DPn = e / a  = 45 , Mn (SEC) = 8560 g/mol; PDI = 1.16 

8 7 6 5 4 3 2 1 0

6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0

δ ppm

SS SS Brna

b

c

defgh

i

j

bac

CDCl3

d

e

f

j

g,h,i

8 7 6 5 4 3 2 1 0

6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0

δ ppm

SS SS Brna

b

c

defgh

i

j

SS SS Brna

b

c

defgh

i

j

bac

CDCl3

d

e

f

j

g,h,i

cb

Page 23: Mussie Alemseghed, Ph.D.

1H NMR of hydroxypropyl-terminatedpoly(3-hexylthiophene)

8 7 6 5 4 3 2 1 0

2.00 1.95 1.90

4.0 3.8 3.6

δ (ppm )

S n

a

bc

de

f g

OHk

l

a

g f

kl

l

e

b,c,dCDCl3

8 7 6 5 4 3 2 1 0

2.00 1.95 1.90

4.0 3.8 3.6

δ (ppm )

S n

a

bc

de

f g

OHk

l

a

g f

kl

l

e

b,c,dCDCl3

Br

Page 24: Mussie Alemseghed, Ph.D.

24

CDCl3

TMS

SBr nO

mO

CH 3

ac

b

de

fg

h i

8 7 6 5 4 3 2 1

3.8 3.6 3.4 3.2 3.0

δ ppm

j

a

h

j d,e,f

g

hb

c

H2O

i

11H NMR spectrum of  poly(3H NMR spectrum of  poly(3‐‐hexylthiophene)hexylthiophene)‐‐bb‐‐poly(tetrahydrofuran) dipoly(tetrahydrofuran) di‐‐block copolymerblock copolymer

•74% P3HT•26% PTHF

hi

j

% Composition = integrating b/h peaks

Page 25: Mussie Alemseghed, Ph.D.

25

GPC traces of allylGPC traces of allyl--terminated P3HT and poly(3terminated P3HT and poly(3--hexylthiophene)hexylthiophene)--bb--poly(tetrahydrofuran)poly(tetrahydrofuran)

10 12 14 16 18 200.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

Det

ecto

r Res

pons

e

Elution Volume (mL)

PHT; Mn=8560 g/mol; PDI=1.16 PHT-PTHF; Mn=17700 g/mol; PDI=1.47

13 14 15 16 170.0

0.5

1.0

Mn = 18180 g/mol; PDI = 1.1 Mn = 8730 g/mol; PDI = 1.1

RI R

espo

nse

Retention Volume (mL)

[PHT‐OH] : [TfO2] : [DTBP] = 1 : 45 : 70; [THF] : [PHT‐OH] = 9230 : 1

THF : CHCl3 = 1:1 THF : CHCl3 = 1:3

Page 26: Mussie Alemseghed, Ph.D.

0% 10% 70%

UV-Vis Solvatochromic Behavior of poly(3-hexylthiophene)-b-

poly(tetrahydrofuran)

Page 27: Mussie Alemseghed, Ph.D.

27

Nanofibrillar Morphology of Poly(3Nanofibrillar Morphology of Poly(3‐‐hexylthiophene)hexylthiophene)

NanowireWidth

rr-P3HT ~ 16 Å

rr-P3HT ~ 3.8 Å

1. Nanowire morphology

2. Different molecular weights  Nanowire widths are different !

Zhang, et.al.  Am. Chem. Soc.  2006, 128, 3480 ‐ 3481.

Page 28: Mussie Alemseghed, Ph.D.

28

Tapping Mode AFM (TMTapping Mode AFM (TM--AFM) Image ofAFM) Image ofpoly(3poly(3--hexylthiophene)hexylthiophene)--bb--poly(tetrahydrofuran) poly(tetrahydrofuran)

Diblock copolymerDiblock copolymer

Height image Phase imageAlemseghed, M. G.; Gowrisanker, S.; Servello, J.; Stefan, M. C.

Macromol. Chem. Phys. 2009, 210, 2007-2014

Page 29: Mussie Alemseghed, Ph.D.

29

Mobility: charge carrier drift velocity per unit electric field29

Mobility Measurement for the DiMobility Measurement for the Di‐‐block Copolymerblock Copolymer

Gate (Au)

Source (Au) Drain (Au)

Page 30: Mussie Alemseghed, Ph.D.

3030

II‐‐V Curve of the DiV Curve of the Di‐‐block Copolymerblock Copolymer

0 ‐5 ‐10 ‐15 ‐20 ‐25 ‐30 ‐350.0

‐2.0x10‐6

‐4.0x10‐6

‐6.0x10‐6

‐8.0x10‐6

‐1.0x10‐5

‐1.2x10‐5

VGS = +5V

VGS = ‐5V

VGS = ‐15V

VGS = ‐25V

VGS = ‐35V

I DS(Amps)

VDS (Voltage)

Page 31: Mussie Alemseghed, Ph.D.

3131

10 0 -10 -20 -30 -400.0

1.0x10‐3

2.0x10‐3

3.0x10‐3

4.0x10‐3

5.0x10‐3

6.0x10‐3

(IDS)1/2  ( μ

Α1/

2 )

Gate‐Source  Voltage  VGS  (V)

Transfer plot of the DiTransfer plot of the Di‐‐block copolymerblock copolymer

Mobility = 8.9x10‐3 cm2/Vs,  VT = ‐1.72 V,  on/off = 104

Page 32: Mussie Alemseghed, Ph.D.

5 mol% PEOXAMn=8,240 g/mol

Allyl‐terminatedP3HT; Mn= 7550 

g/mol

15mol% PEOXAMn=10,024  

g/mol

30 mol% PEOXAMn=11,720  g/mol

Shorter and dispersed nanofibrillar morphology observed in the di‐blockcopolymers when compared with rr‐ P3HT as  the  % mol PEOXA increases.

Surface morphology of poly(3‐hexylthiophene)‐b‐poly(2‐ethyl‐2‐oxazoline) di‐block  copolymers ( AFM)

Page 33: Mussie Alemseghed, Ph.D.

Challenges:

Sunlight wasted ‐ Known photocatalysts are mostly UV/near‐UV‐active

Large overpotentials ‐ Large reorganization energies of charge transfer reactions in 

polar media

Self‐quenching of charge carriers ‐ Freely diffusing catalysts

Lack of meaningful photocatalytic activity measurements:

Photochemical quantum yields – system dependent, insufficient

Turnover numbers – critical/complementary (/time‐1�power‐1)

Applicability depends on: Stability, tune‐ability, process‐ability, scale‐up

Introducing a photochemical component‐Quantum Dots

Lewis Inorg. Chem. 2005, 44, 6900

Page 34: Mussie Alemseghed, Ph.D.

CdS rods (light) CdS-Au heterostructures (dark)

Fabrication of antenna heterostructures

Mussie G. Alemseghed, T. Purnima A. Ruberu, and Javier Vela," Controlled Fabrication of Colloidal Semiconductor‐Metal Hybrid Heterostructures: Site Selective Metal Photo Deposition ". Chem. Mater. 2011, 23, 3571–3579 

Page 35: Mussie Alemseghed, Ph.D.

CdS-Au heterostructures

Fabrication of antenna heterostructures

CdS rods

Au dots

nm

nm

Mussie G. Alemseghed, T. Purnima A. Ruberu, and Javier Vela," Controlled Fabrication of Colloidal Semiconductor‐Metal Hybrid Heterostructures: Site Selective Metal Photo Deposition ". Chem. Mater. 2011, 23, 3571–3579 

Page 36: Mussie Alemseghed, Ph.D.

CdS-Ptheterostructures

High CdS-Pthν, 1h

Low CdS-Pthν, 3h

Mussie Alemseghed

Fabrication of antenna heterostructures

Page 37: Mussie Alemseghed, Ph.D.

organic‐inorganic hybrid solar cell 

Page 38: Mussie Alemseghed, Ph.D.

NanoPower Africa at ORNL/ANL

Polymer Polymer-QDSolar cells

Neutron Scattering

NanoPowerAfrica

Synthesis of Organic PV & 

QD

Surface studies

Page 39: Mussie Alemseghed, Ph.D.