Multirate Digital Signal Processing: Part III

9
Multirate Digital Signal Processing: Part III Dr. Deepa Kundur University of Toronto Dr. Deepa Kundur (University of Toronto) Multirate Digital Signal Processing: Part III 1 / 34 Chapter 11: Multirate Digital Signal Processing Discrete-Time Signals and Systems Reference: Sections 11.5 and 11.9 of John G. Proakis and Dimitris G. Manolakis, Digital Signal Processing: Principles, Algorithms, and Applications, 4th edition, 2007. Dr. Deepa Kundur (University of Toronto) Multirate Digital Signal Processing: Part III 2 / 34 Chapter 11: Multirate Digital Signal Processing 11.5 Implementation of Sampling Rate Conversion Polyphase Filter Structures H (z ) = X n=-∞ h(n)z -n = ··· + h(0) + h(M)z -M + ··· (row 0) ··· + h(1)z -1 + h(M + 1)z -(M+1) + ··· (row 1) . . . . . . . . . ··· + h(M - 1)z -(M-1) + h(2M - 1)z -(2M-1) + ··· (row M - 1) = z -0 [··· + h(0) + h(M)z -M + ···] z -1 [··· + h(1) + h(M + 1)z -M + ···] . . . . . . z -(M-1) [··· + h(M - 1) + h(2M - 1)z -M + ···] = M-1 X i =0 z -i X n=-∞ h(nM + i )z -nM = M-1 X i =0 z -i X n=-∞ h(nM + i )(z M ) -n = M-1 X i =0 z -i P i (z M ) Dr. Deepa Kundur (University of Toronto) Multirate Digital Signal Processing: Part III 3 / 34 Chapter 11: Multirate Digital Signal Processing 11.5 Implementation of Sampling Rate Conversion H (z )= M-1 X i =0 z -i P i (z M ) | {z } M-component polyphase decomposition P i (z M )= X n=-∞ h(nM + i )z -nM = X n=-∞ p i (n)z -nM | {z } Polyphase components of H (z ) Observe: p i (n)= h(nM + i ), i =0, 1, 2,..., M - 1 which is a downsampled and delayed (“phase shifted”) version of the original impulse response. Dr. Deepa Kundur (University of Toronto) Multirate Digital Signal Processing: Part III 4 / 34

Transcript of Multirate Digital Signal Processing: Part III

Page 1: Multirate Digital Signal Processing: Part III

Multirate Digital Signal Processing: Part III

Dr. Deepa Kundur

University of Toronto

Dr. Deepa Kundur (University of Toronto) Multirate Digital Signal Processing: Part III 1 / 34

Chapter 11: Multirate Digital Signal Processing

Discrete-Time Signals and Systems

Reference:

Sections 11.5 and 11.9 of

John G. Proakis and Dimitris G. Manolakis, Digital Signal Processing:Principles, Algorithms, and Applications, 4th edition, 2007.

Dr. Deepa Kundur (University of Toronto) Multirate Digital Signal Processing: Part III 2 / 34

Chapter 11: Multirate Digital Signal Processing 11.5 Implementation of Sampling Rate Conversion

Polyphase Filter Structures

H(z) =∞∑

n=−∞h(n)z−n

=

· · ·+ h(0) + h(M)z−M + · · · (row 0)

· · ·+ h(1)z−1 + h(M + 1)z−(M+1) + · · · (row 1)...

......

· · ·+ h(M − 1)z−(M−1) + h(2M − 1)z−(2M−1) + · · · (row M − 1)

=

z−0[· · ·+ h(0) + h(M)z−M + · · ·]z−1[· · ·+ h(1) + h(M + 1)z−M + · · ·]

......

z−(M−1)[· · ·+ h(M − 1) + h(2M − 1)z−M + · · ·]

=M−1∑i=0

z−i∞∑

n=−∞h(nM + i)z−nM

=M−1∑i=0

z−i∞∑

n=−∞h(nM + i)(zM)−n =

M−1∑i=0

z−iPi (zM)

Dr. Deepa Kundur (University of Toronto) Multirate Digital Signal Processing: Part III 3 / 34

Chapter 11: Multirate Digital Signal Processing 11.5 Implementation of Sampling Rate Conversion

H(z) =M−1∑i=0

z−iPi (zM)︸ ︷︷ ︸

M-component polyphase decomposition

Pi (zM) =

∞∑n=−∞

h(nM + i)z−nM =∞∑

n=−∞pi (n)z−nM︸ ︷︷ ︸

Polyphase components of H(z)

Observe:pi (n) = h(nM + i), i = 0, 1, 2, . . . ,M − 1

which is a downsampled and delayed (“phase shifted”) version of the original

impulse response.

Dr. Deepa Kundur (University of Toronto) Multirate Digital Signal Processing: Part III 4 / 34

Page 2: Multirate Digital Signal Processing: Part III

Chapter 11: Multirate Digital Signal Processing 11.5 Implementation of Sampling Rate Conversion

Consider LTI filtering of an input x(n) with filter H(z) using a polyphase filterstructure with M = 3.

Y (z) = H(z)X (z)

=

[2∑

i=0

z−iPi (zM)

]X (z)

= [P0(z3) + z−1P1(z3) + z−2P2(z3)]X (z)

= P0(z3)X (z) + z−1P1(z3)X (z) + z−2P2(z3)X (z)

= P0(z3)X (z) + z−1{P1(z3)X (z) + z−1[P2(z3)X (z)]}

See Figure 11.5.1 of text .See Figure 11.5.2 of text .

Dr. Deepa Kundur (University of Toronto) Multirate Digital Signal Processing: Part III 5 / 34

Chapter 11: Multirate Digital Signal Processing 11.5 Implementation of Sampling Rate Conversion

Noble Identities

LTI Filter Downsampler

LTI FilterDownsampler

LTI Filter Upsampler

Upsampler LTI Filter

Dr. Deepa Kundur (University of Toronto) Multirate Digital Signal Processing: Part III 6 / 34

Chapter 11: Multirate Digital Signal Processing 11.5 Implementation of Sampling Rate Conversion

Recall, for a downsampler:

v(n) = u(nD)Z←→ V (z) =

1

D

D−1∑i=0

U(z1/DW iD)

where WD = e−j2π/D .

v(n) = u(nD)Z←→ V (z) =

1

D

D−1∑i=0

U

(ω − 2πi

D

)

Dr. Deepa Kundur (University of Toronto) Multirate Digital Signal Processing: Part III 7 / 34

Chapter 11: Multirate Digital Signal Processing 11.5 Implementation of Sampling Rate Conversion

LTI Filter Downsampler

LTI FilterDownsamplerV1(z) = H(zD)X (z)

Y (z) =1

D

D−1∑i=0

V1(z1/DW iD)

=1

D

D−1∑i=0

H((z1/DW iD)

D)X (z1/DW i

D)

=1

D

D−1∑i=0

H(z W iDD︸︷︷︸

=e−j2πD/D

)X (z1/DW iD) = 1

D

∑D−1i=0 H(z)X (z1/DW i

D)

Dr. Deepa Kundur (University of Toronto) Multirate Digital Signal Processing: Part III 8 / 34

Page 3: Multirate Digital Signal Processing: Part III

Chapter 11: Multirate Digital Signal Processing 11.5 Implementation of Sampling Rate Conversion

LTI Filter Downsampler

LTI FilterDownsampler

V2(z) =1

D

D−1∑i=0

X (z1/DW iD)

Y (z) = H(z)V2(z)

= H(z)1

D

D−1∑i=0

X (z1/DW iD)

= 1D

∑D−1i=0 H(z)X (z1/DW i

D)

Dr. Deepa Kundur (University of Toronto) Multirate Digital Signal Processing: Part III 9 / 34

Chapter 11: Multirate Digital Signal Processing 11.5 Implementation of Sampling Rate Conversion

Noble Identity – Decimation

LTI Filter Downsampler

LTI FilterDownsampler

Dr. Deepa Kundur (University of Toronto) Multirate Digital Signal Processing: Part III 10 / 34

Chapter 11: Multirate Digital Signal Processing 11.5 Implementation of Sampling Rate Conversion

Recall, for an upsampler:

v(n) =

{u(nI

)n = 0,±I ,±2I , . . .

0 otherwiseZ←→ V (z) = U(z I )

v(n) =

{u(nI

)n = 0,±I ,±2I , . . .

0 otherwiseZ←→ V (ω) = U(ωI )

Dr. Deepa Kundur (University of Toronto) Multirate Digital Signal Processing: Part III 11 / 34

Chapter 11: Multirate Digital Signal Processing 11.5 Implementation of Sampling Rate Conversion

LTI Filter Upsampler

Upsampler LTI FilterV1(z) = H(z)X (z)

Y (z) = V1(z I ) = H(z I )X (z I )

Dr. Deepa Kundur (University of Toronto) Multirate Digital Signal Processing: Part III 12 / 34

Page 4: Multirate Digital Signal Processing: Part III

Chapter 11: Multirate Digital Signal Processing 11.5 Implementation of Sampling Rate Conversion

LTI Filter Upsampler

Upsampler LTI Filter

V2(z) = X (z I )

Y (z) = H(z I )V2(z) = H(z I )X (z I )

Dr. Deepa Kundur (University of Toronto) Multirate Digital Signal Processing: Part III 13 / 34

Chapter 11: Multirate Digital Signal Processing 11.5 Implementation of Sampling Rate Conversion

Noble Identity – Interpolation

LTI Filter Upsampler

Upsampler LTI Filter

Dr. Deepa Kundur (University of Toronto) Multirate Digital Signal Processing: Part III 14 / 34

Chapter 11: Multirate Digital Signal Processing 11.5 Implementation of Sampling Rate Conversion

Noble Identities

It is possible to interchange the operation of LTI filtering anddownsampling or upsampling if we properly modify the systemfunction of the filter.

Dr. Deepa Kundur (University of Toronto) Multirate Digital Signal Processing: Part III 15 / 34

Chapter 11: Multirate Digital Signal Processing 11.5 Implementation of Sampling Rate Conversion

Polyphase Structures of Decimation Filters

Consider

LTI Filter DownsamplerDecimator

Consider a polyphase implementation with M = 3.See Figure 11.5.9 of text .

Dr. Deepa Kundur (University of Toronto) Multirate Digital Signal Processing: Part III 16 / 34

Page 5: Multirate Digital Signal Processing: Part III

Chapter 11: Multirate Digital Signal Processing 11.5 Implementation of Sampling Rate Conversion

Polyphase Structures of Decimation Filters

I Use of the Noble identity allows reduction of number ofmultiplications and additions, since filtering is performed at alower rate.

I It is more convenient to implement the polyphase decimatorusing a commutator model.See Figure 11.5.10 of text .

Dr. Deepa Kundur (University of Toronto) Multirate Digital Signal Processing: Part III 17 / 34

Chapter 11: Multirate Digital Signal Processing 11.5 Implementation of Sampling Rate Conversion

Polyphase Structures of Interpolation Filters

Consider

UpsamplerInterpolator

LTI Filter

Consider a transpose polyphase implementation with M = 3.See Figure 11.5.12 of text .

Dr. Deepa Kundur (University of Toronto) Multirate Digital Signal Processing: Part III 18 / 34

Chapter 11: Multirate Digital Signal Processing 11.5 Implementation of Sampling Rate Conversion

Polyphase Structures of Interpolation Filters

I Use of the Noble identity allows reduction of number ofmultiplications and additions, since filtering is performed at alower rate.

I It is more convenient to implement the polyphase decimatorusing a commutator model.See Figure 11.5.13 of text .

Dr. Deepa Kundur (University of Toronto) Multirate Digital Signal Processing: Part III 19 / 34

Chapter 11: Multirate Digital Signal Processing 11.9 Applications of Multirate Signal Processing

Phase Shifter

I Phase shifter: system that delays a signal x(n) by a fraction of asample.

I Consider a delay that is a rational fraction of a sampling interval.

I Example: 25Tx delay

Dr. Deepa Kundur (University of Toronto) Multirate Digital Signal Processing: Part III 20 / 34

Page 6: Multirate Digital Signal Processing: Part III

Chapter 11: Multirate Digital Signal Processing 11.9 Applications of Multirate Signal Processing

n1 23 4

0

n1 2 3 40 6 7 8 9515 20

10-1-2-3

Dr. Deepa Kundur (University of Toronto) Multirate Digital Signal Processing: Part III 21 / 34

Chapter 11: Multirate Digital Signal Processing 11.9 Applications of Multirate Signal Processing

n1 2 3 40 6 7 8 9515 20

10-1-2-3

n1 2 3 40 6 7 8 9515 20

10-1-2-3

Dr. Deepa Kundur (University of Toronto) Multirate Digital Signal Processing: Part III 22 / 34

Chapter 11: Multirate Digital Signal Processing 11.9 Applications of Multirate Signal Processing

n1 2 3 40 6 7 8 9515 20

10-1-2-3

n1 23

0-1

Dr. Deepa Kundur (University of Toronto) Multirate Digital Signal Processing: Part III 23 / 34

Chapter 11: Multirate Digital Signal Processing 11.9 Applications of Multirate Signal Processing

n1 23 4

0

n1 23

0-1

Dr. Deepa Kundur (University of Toronto) Multirate Digital Signal Processing: Part III 24 / 34

Page 7: Multirate Digital Signal Processing: Part III

Chapter 11: Multirate Digital Signal Processing 11.9 Applications of Multirate Signal Processing

Fractional Phase Shifter

UpsamplerInterpolator

LTI Filter

Delay byk samples

I Efficient implementation makes use of polyphase filter structures for theH(z) filter and a commutator implementation. See Figure 11.9.2 of text .

I In particular, fixing the commutator location provides the desired delay anddownsampling.

I The implementation allows for shifts of {0, 1/I , 2/I , . . . , (I − 1)/I}depending on the fixed position of the commutator.

Dr. Deepa Kundur (University of Toronto) Multirate Digital Signal Processing: Part III 25 / 34

Chapter 11: Multirate Digital Signal Processing 11.9 Applications of Multirate Signal Processing

Subband Coding of Speech Signals

I Goal: efficiently represent speech signals in digital form.

I Characteristic: most speech energy is contained in lowerfrequencies.

I Idea: encode higher-frequency bands with fewer bits/samplethan lower-frequency bands.

I bits/sample is related to the amplitude quantization levelI lower number of bits/sample implies greater degree of

amplitude quantization

Dr. Deepa Kundur (University of Toronto) Multirate Digital Signal Processing: Part III 26 / 34

Chapter 11: Multirate Digital Signal Processing 11.9 Applications of Multirate Signal Processing

x[n]

n-1 10-2-3 2 3

1

Dr. Deepa Kundur (University of Toronto) Multirate Digital Signal Processing: Part III 27 / 34

Chapter 11: Multirate Digital Signal Processing 11.9 Applications of Multirate Signal Processing

-1 10-2-3 2 3n

1

x [n]q x[n]

Dr. Deepa Kundur (University of Toronto) Multirate Digital Signal Processing: Part III 28 / 34

Page 8: Multirate Digital Signal Processing: Part III

Chapter 11: Multirate Digital Signal Processing 11.9 Applications of Multirate Signal Processing

x

x q

x2 3-2-3 -

23

-2

-3

-

.5

.5-.5

-.5 1.5 2.5-2.5 3.5-1.5

e q rounding error isuniformly distributed

I larger ∆ results in higher quantization error

Dr. Deepa Kundur (University of Toronto) Multirate Digital Signal Processing: Part III 29 / 34

Chapter 11: Multirate Digital Signal Processing 11.9 Applications of Multirate Signal Processing

CodingI larger ∆ results in xq(n) that requires fewer bits/sample to

represent.

CoderQuantizerx(n)x (t)a x (n)q

Analogsignal

Discrete-timesignal

Quantizedsignal

Digitalsignal

A/D converter

0 1 0 1 1 . . .Sampler

Dr. Deepa Kundur (University of Toronto) Multirate Digital Signal Processing: Part III 30 / 34

Chapter 11: Multirate Digital Signal Processing 11.9 Applications of Multirate Signal Processing

CodingI larger ∆ results in xq(n) that requires fewer bits/sample to

represent.

1

0

x [n]qFor b = 3

0 0 00 0 10 1 00 1 11 0 01 0 11 1 01 1 1

1

0

x [n]qFor b = 2

0 0

0 1

1 0

1 1ERROR ERROR

Dr. Deepa Kundur (University of Toronto) Multirate Digital Signal Processing: Part III 31 / 34

Chapter 11: Multirate Digital Signal Processing 11.9 Applications of Multirate Signal Processing

Coding

smaller ∆ ⇐⇒

smaller quantization errorgreater number of quantization levelslarger bits/sample representation

Dr. Deepa Kundur (University of Toronto) Multirate Digital Signal Processing: Part III 32 / 34

Page 9: Multirate Digital Signal Processing: Part III

Chapter 11: Multirate Digital Signal Processing 11.9 Applications of Multirate Signal Processing

largestlargesmallsmallest

lower qunatization error

I lower quantization error occurs at lower frequencies wheresignificant speech signal energy exists

I larger degree of quantization allows more efficient coding

Dr. Deepa Kundur (University of Toronto) Multirate Digital Signal Processing: Part III 33 / 34

Chapter 11: Multirate Digital Signal Processing 11.9 Applications of Multirate Signal Processing

Multirate Implementation of Subband Coder

Recall, for a downsampler and upsampler:

v(n) = u(nD)Z←→ V (z) =

1

D

D−1∑i=0

U(z1/De−j2πi/D)︸ ︷︷ ︸BW expansion by factor D

v(n)=

{u(nI

)n ∈ Z

0 otherwiseZ←→ V (z) = U(z I )︸ ︷︷ ︸

BW compression by factor I

See Figure 11.9.4 of text .

See Figure 11.9.6 of text . �

Dr. Deepa Kundur (University of Toronto) Multirate Digital Signal Processing: Part III 34 / 34