Multiple independence tests for point processes: ALBERT ...malot/albert_StatMathNeuro.pdf ·...

21
A permutation Unitary Events method Mélisande ALBERT Introduction of the Problematic Problematic Single testing Statistical Model Number of coincidences Resampling approach Centering issue Centered Test Statistic Test construction Multiple tests Problematic Simulation study Conclusion Multiple independence tests for point processes: a permutation Unitary Events approach based on delayed coincidence count Mélisande ALBERT 1 , Yann BOURET 2 , Magalie FROMONT 3 , Patricia REYNAUD-BOURET 1 . 1 Univ. Nice Sophia Antipolis, LJAD 2 Univ. Nice Sophia Antipolis, LPMC 3 Univ. Européenne de Bretagne, IRMAR September, 8th 2015 MathStatNeuro 2015 - 1/16

Transcript of Multiple independence tests for point processes: ALBERT ...malot/albert_StatMathNeuro.pdf ·...

Page 1: Multiple independence tests for point processes: ALBERT ...malot/albert_StatMathNeuro.pdf · Unitary Events method Mélisande ALBERT Introduction of the Problematic Problematic Single

A permutationUnitary Events

method

MélisandeALBERT

Introduction ofthe Problematic

Problematic

Single testing

Statistical Model

Number ofcoincidences

Resamplingapproach

Centering issue

Centered TestStatistic

Test construction

Multiple tests

Problematic

Simulation study

Conclusion

Multiple independence tests for point processes:a permutation Unitary Events approach based on delayed

coincidence count

Mélisande ALBERT1, Yann BOURET2, Magalie FROMONT3,

Patricia REYNAUD-BOURET1.

1Univ. Nice Sophia Antipolis, LJAD

2Univ. Nice Sophia Antipolis, LPMC

3Univ. Européenne de Bretagne, IRMAR

September, 8th 2015

MathStatNeuro 2015 - 1/16

Page 2: Multiple independence tests for point processes: ALBERT ...malot/albert_StatMathNeuro.pdf · Unitary Events method Mélisande ALBERT Introduction of the Problematic Problematic Single

A permutationUnitary Events

method

MélisandeALBERT

Introduction ofthe Problematic

Problematic

Single testing

Statistical Model

Number ofcoincidences

Resamplingapproach

Centering issue

Centered TestStatistic

Test construction

Multiple tests

Problematic

Simulation study

Conclusion

Introduction of the biological contextProblematic and State of the art

0.0 0.5 1.0 1.5 2.0

010

020

030

0

0.0 0.5 1.0 1.5 2.0

010

020

030

0

0.0 0.5 1.0 1.5 2.0

010

020

030

0

0.0 0.5 1.0 1.5 2.0

010

020

030

0

0.0 0.5 1.0 1.5 2.0

010

020

030

0

0.0 0.5 1.0 1.5 2.0

010

020

030

0

0.0 0.5 1.0 1.5 2.0

010

020

030

0

0.0 0.5 1.0 1.5 2.0

010

020

030

0

0.0 0.5 1.0 1.5 2.0

010

020

030

0

0.0 0.5 1.0 1.5 2.0

010

020

030

0

0.0 0.5 1.0 1.5 2.0

010

020

030

0

0.0 0.5 1.0 1.5 2.0

010

020

030

0

0.0 0.5 1.0 1.5 2.0

010

020

030

0

0.0 0.5 1.0 1.5 2.0

010

020

030

0

0.0 0.5 1.0 1.5 2.0

010

020

030

0

0.0 0.5 1.0 1.5 2.0

010

020

030

0

0.0 0.5 1.0 1.5 2.0

010

020

030

0

0.0 0.5 1.0 1.5 2.0

010

020

030

0

0.0 0.5 1.0 1.5 2.0

010

020

030

0

0.0 0.5 1.0 1.5 2.0

010

020

030

0

0.0 0.5 1.0 1.5 2.0

010

020

030

0

0.0 0.5 1.0 1.5 2.0

010

020

030

0

0.0 0.5 1.0 1.5 2.0

010

020

030

0

0.0 0.5 1.0 1.5 2.0

010

020

030

0

0.0 0.5 1.0 1.5 2.0

010

020

030

0

0.0 0.5 1.0 1.5 2.0

010

020

030

0

0.0 0.5 1.0 1.5 2.0

010

020

030

0

0.0 0.5 1.0 1.5 2.0

010

020

030

0

0.0 0.5 1.0 1.5 2.0

010

020

030

0

0.0 0.5 1.0 1.5 2.0

010

020

030

0

0.0 0.5 1.0 1.5 2.0

010

020

030

0

0.0 0.5 1.0 1.5 2.0

010

020

030

0

0.0 0.5 1.0 1.5 2.0

010

020

030

0

0.0 0.5 1.0 1.5 2.0

010

020

030

0

0.0 0.5 1.0 1.5 2.0

010

020

030

0

0.0 0.5 1.0 1.5 2.0

010

020

030

0

0.0 0.5 1.0 1.5 2.0

010

020

030

0

0.0 0.5 1.0 1.5 2.0

010

020

030

0

0.0 0.5 1.0 1.5 2.0

010

020

030

0

0.0 0.5 1.0 1.5 2.0

010

020

030

0

0.0 0.5 1.0 1.5 2.0

010

020

030

0

0.0 0.5 1.0 1.5 2.0

010

020

030

0

0.0 0.5 1.0 1.5 2.0

010

020

030

0

0.0 0.5 1.0 1.5 2.0

010

020

030

0

0.0 0.5 1.0 1.5 2.0

010

020

030

0

0.0 0.5 1.0 1.5 2.0

010

020

030

0

0.0 0.5 1.0 1.5 2.0

010

020

030

0

0.0 0.5 1.0 1.5 2.0

010

020

030

0

0.0 0.5 1.0 1.5 2.0

010

020

030

0

0.0 0.5 1.0 1.5 2.0

010

020

030

0

0.0 0.5 1.0 1.5 2.0

010

020

030

0

0.0 0.5 1.0 1.5 2.0

010

020

030

0

0.0 0.5 1.0 1.5 2.0

010

020

030

0

0.0 0.5 1.0 1.5 2.0

010

020

030

0

0.0 0.5 1.0 1.5 2.0

010

020

030

0

0.0 0.5 1.0 1.5 2.0

010

020

030

0

0.0 0.5 1.0 1.5 2.0

010

020

030

0

0.0 0.5 1.0 1.5 2.0

010

020

030

0

0.0 0.5 1.0 1.5 2.0

010

020

030

0

0.0 0.5 1.0 1.5 2.0

010

020

030

0

0.0 0.5 1.0 1.5 2.0

010

020

030

0

0.0 0.5 1.0 1.5 2.0

010

020

030

0

0.0 0.5 1.0 1.5 2.0

010

020

030

0

0.0 0.5 1.0 1.5 2.0

010

020

030

0

0.0 0.5 1.0 1.5 2.0

010

020

030

0

0.0 0.5 1.0 1.5 2.0

010

020

030

0

0.0 0.5 1.0 1.5 2.0

010

020

030

0

0.0 0.5 1.0 1.5 2.0

010

020

030

0

0.0 0.5 1.0 1.5 2.0

010

020

030

0

0.0 0.5 1.0 1.5 2.0

010

020

030

0

0.0 0.5 1.0 1.5 2.0

010

020

030

0

0.0 0.5 1.0 1.5 2.0

010

020

030

0

0.0 0.5 1.0 1.5 2.0

010

020

030

0

0.0 0.5 1.0 1.5 2.0

010

020

030

0

0.0 0.5 1.0 1.5 2.0

010

020

030

0

0.0 0.5 1.0 1.5 2.0

010

020

030

0

0.0 0.5 1.0 1.5 2.0

010

020

030

0

0.0 0.5 1.0 1.5 2.0

010

020

030

0

0.0 0.5 1.0 1.5 2.0

010

020

030

0

0.0 0.5 1.0 1.5 2.0

010

020

030

0

0.0 0.5 1.0 1.5 2.0

010

020

030

0

0.0 0.5 1.0 1.5 2.0

010

020

030

0

0.0 0.5 1.0 1.5 2.0

010

020

030

0

0.0 0.5 1.0 1.5 2.0

010

020

030

0

0.0 0.5 1.0 1.5 2.0

010

020

030

0

0.0 0.5 1.0 1.5 2.0

010

020

030

0

0.0 0.5 1.0 1.5 2.0

010

020

030

0

0.0 0.5 1.0 1.5 2.0

010

020

030

0

0.0 0.5 1.0 1.5 2.0

010

020

030

0

0.0 0.5 1.0 1.5 2.0

010

020

030

0

0.0 0.5 1.0 1.5 2.0

010

020

030

0

0.0 0.5 1.0 1.5 2.0

010

020

030

0

0.0 0.5 1.0 1.5 2.0

010

020

030

0

0.0 0.5 1.0 1.5 2.0

010

020

030

0

0.0 0.5 1.0 1.5 2.0

010

020

030

0

0.0 0.5 1.0 1.5 2.0

010

020

030

0

0.0 0.5 1.0 1.5 2.0

010

020

030

0

0.0 0.5 1.0 1.5 2.0

010

020

030

0

0.0 0.5 1.0 1.5 2.0

010

020

030

0

0.0 0.5 1.0 1.5 2.0

010

020

030

0

0.0 0.5 1.0 1.5 2.0

010

020

030

0

0.0 0.5 1.0 1.5 2.0

010

020

030

0

0.0 0.5 1.0 1.5 2.0

010

020

030

0

0.0 0.5 1.0 1.5 2.0

010

020

030

0

0.0 0.5 1.0 1.5 2.0

010

020

030

0

0.0 0.5 1.0 1.5 2.0

010

020

030

0

0.0 0.5 1.0 1.5 2.0

010

020

030

0

0.0 0.5 1.0 1.5 2.0

010

020

030

0

0.0 0.5 1.0 1.5 2.0

010

020

030

0

0.0 0.5 1.0 1.5 2.0

010

020

030

0

0.0 0.5 1.0 1.5 2.0

010

020

030

0

0.0 0.5 1.0 1.5 2.0

010

020

030

0

0.0 0.5 1.0 1.5 2.0

010

020

030

0

0.0 0.5 1.0 1.5 2.0

010

020

030

0

0.0 0.5 1.0 1.5 2.0

010

020

030

0

0.0 0.5 1.0 1.5 2.0

010

020

030

0

0.0 0.5 1.0 1.5 2.0

010

020

030

0

0.0 0.5 1.0 1.5 2.0

010

020

030

0

0.0 0.5 1.0 1.5 2.0

010

020

030

0

0.0 0.5 1.0 1.5 2.0

010

020

030

0

0.0 0.5 1.0 1.5 2.0

010

020

030

0

0.0 0.5 1.0 1.5 2.0

010

020

030

0

0.0 0.5 1.0 1.5 2.0

010

020

030

0

0.0 0.5 1.0 1.5 2.0

010

020

030

0

0.0 0.5 1.0 1.5 2.0

010

020

030

0

0.0 0.5 1.0 1.5 2.0

010

020

030

0

0.0 0.5 1.0 1.5 2.0

010

020

030

0

0.0 0.5 1.0 1.5 2.0

010

020

030

0

0.0 0.5 1.0 1.5 2.0

010

020

030

0

0.0 0.5 1.0 1.5 2.0

010

020

030

0

0.0 0.5 1.0 1.5 2.0

010

020

030

0

0.0 0.5 1.0 1.5 2.0

010

020

030

0

0.0 0.5 1.0 1.5 2.0

010

020

030

0

0.0 0.5 1.0 1.5 2.0

010

020

030

0

0.0 0.5 1.0 1.5 2.0

010

020

030

0

0.0 0.5 1.0 1.5 2.0

010

020

030

0

0.0 0.5 1.0 1.5 2.0

010

020

030

0

0.0 0.5 1.0 1.5 2.0

010

020

030

0

0.0 0.5 1.0 1.5 2.0

010

020

030

0

0.0 0.5 1.0 1.5 2.0

010

020

030

0

0.0 0.5 1.0 1.5 2.0

010

020

030

0

0.0 0.5 1.0 1.5 2.0

010

020

030

0

0.0 0.5 1.0 1.5 2.0

010

020

030

0

0.0 0.5 1.0 1.5 2.0

010

020

030

0

0.0 0.5 1.0 1.5 2.0

010

020

030

0

0.0 0.5 1.0 1.5 2.0

010

020

030

0

0.0 0.5 1.0 1.5 2.0

010

020

030

0

0.0 0.5 1.0 1.5 2.0

010

020

030

0

0.0 0.5 1.0 1.5 2.0

010

020

030

0

0.0 0.5 1.0 1.5 2.0

010

020

030

0

0.0 0.5 1.0 1.5 2.0

010

020

030

0

0.0 0.5 1.0 1.5 2.0

010

020

030

0

0.0 0.5 1.0 1.5 2.0

010

020

030

0

0.0 0.5 1.0 1.5 2.0

010

020

030

0

0.0 0.5 1.0 1.5 2.0

010

020

030

0

0.0 0.5 1.0 1.5 2.0

010

020

030

0

0.0 0.5 1.0 1.5 2.0

010

020

030

0

0.0 0.5 1.0 1.5 2.0

010

020

030

0

0.0 0.5 1.0 1.5 2.0

010

020

030

0

0.0 0.5 1.0 1.5 2.0

010

020

030

0

0.0 0.5 1.0 1.5 2.0

010

020

030

0

0.0 0.5 1.0 1.5 2.0

010

020

030

0

0.0 0.5 1.0 1.5 2.0

010

020

030

0

0.0 0.5 1.0 1.5 2.0

010

020

030

0

0.0 0.5 1.0 1.5 2.0

010

020

030

0

0.0 0.5 1.0 1.5 2.0

010

020

030

0

0.0 0.5 1.0 1.5 2.0

010

020

030

0

0.0 0.5 1.0 1.5 2.0

010

020

030

0

0.0 0.5 1.0 1.5 2.0

010

020

030

0

0.0 0.5 1.0 1.5 2.0

010

020

030

0

0.0 0.5 1.0 1.5 2.0

010

020

030

0

0.0 0.5 1.0 1.5 2.0

010

020

030

0

0.0 0.5 1.0 1.5 2.0

010

020

030

0

0.0 0.5 1.0 1.5 2.0

010

020

030

0

0.0 0.5 1.0 1.5 2.0

010

020

030

0

0.0 0.5 1.0 1.5 2.0

010

020

030

0

0.0 0.5 1.0 1.5 2.0

010

020

030

0

0.0 0.5 1.0 1.5 2.0

010

020

030

0

0.0 0.5 1.0 1.5 2.0

010

020

030

0

0.0 0.5 1.0 1.5 2.0

010

020

030

0

0.0 0.5 1.0 1.5 2.0

010

020

030

0

0.0 0.5 1.0 1.5 2.0

010

020

030

0

0.0 0.5 1.0 1.5 2.0

010

020

030

0

0.0 0.5 1.0 1.5 2.0

010

020

030

0

0.0 0.5 1.0 1.5 2.0

010

020

030

0

0.0 0.5 1.0 1.5 2.0

010

020

030

0

0.0 0.5 1.0 1.5 2.0

010

020

030

0

0.0 0.5 1.0 1.5 2.0

010

020

030

0

0.0 0.5 1.0 1.5 2.0

010

020

030

0

0.0 0.5 1.0 1.5 2.0

010

020

030

0

0.0 0.5 1.0 1.5 2.0

010

020

030

0

0.0 0.5 1.0 1.5 2.0

010

020

030

0

0.0 0.5 1.0 1.5 2.0

010

020

030

0

0.0 0.5 1.0 1.5 2.0

010

020

030

0

0.0 0.5 1.0 1.5 2.0

010

020

030

0

0.0 0.5 1.0 1.5 2.0

010

020

030

0

0.0 0.5 1.0 1.5 2.0

010

020

030

0

0.0 0.5 1.0 1.5 2.0

010

020

030

0

0.0 0.5 1.0 1.5 2.0

010

020

030

0

0.0 0.5 1.0 1.5 2.0

010

020

030

0

0.0 0.5 1.0 1.5 2.0

010

020

030

0

0.0 0.5 1.0 1.5 2.0

010

020

030

0

0.0 0.5 1.0 1.5 2.0

010

020

030

0

0.0 0.5 1.0 1.5 2.0

010

020

030

0

0.0 0.5 1.0 1.5 2.0

010

020

030

0

0.0 0.5 1.0 1.5 2.0

010

020

030

0

0.0 0.5 1.0 1.5 2.0

010

020

030

0

0.0 0.5 1.0 1.5 2.0

010

020

030

0

0.0 0.5 1.0 1.5 2.0

010

020

030

0

0.0 0.5 1.0 1.5 2.0

010

020

030

0

0.0 0.5 1.0 1.5 2.0

010

020

030

0

0.0 0.5 1.0 1.5 2.0

010

020

030

0

0.0 0.5 1.0 1.5 2.0

010

020

030

0

0.0 0.5 1.0 1.5 2.0

010

020

030

0

0.0 0.5 1.0 1.5 2.0

010

020

030

0

0.0 0.5 1.0 1.5 2.0

010

020

030

0

0.0 0.5 1.0 1.5 2.0

010

020

030

0

0.0 0.5 1.0 1.5 2.0

010

020

030

0

0.0 0.5 1.0 1.5 2.0

010

020

030

0

0.0 0.5 1.0 1.5 2.0

010

020

030

0

0.0 0.5 1.0 1.5 2.0

010

020

030

0

0.0 0.5 1.0 1.5 2.0

010

020

030

0

0.0 0.5 1.0 1.5 2.0

010

020

030

0

0.0 0.5 1.0 1.5 2.0

010

020

030

0

0.0 0.5 1.0 1.5 2.0

010

020

030

0

0.0 0.5 1.0 1.5 2.0

010

020

030

0

0.0 0.5 1.0 1.5 2.0

010

020

030

0

0.0 0.5 1.0 1.5 2.0

010

020

030

0

0.0 0.5 1.0 1.5 2.0

010

020

030

0

0.0 0.5 1.0 1.5 2.0

010

020

030

0

0.0 0.5 1.0 1.5 2.0

010

020

030

0

0.0 0.5 1.0 1.5 2.0

010

020

030

0

0.0 0.5 1.0 1.5 2.0

010

020

030

0

0.0 0.5 1.0 1.5 2.0

010

020

030

0

0.0 0.5 1.0 1.5 2.0

010

020

030

0

0.0 0.5 1.0 1.5 2.0

010

020

030

0

0.0 0.5 1.0 1.5 2.0

010

020

030

0

0.0 0.5 1.0 1.5 2.0

010

020

030

0

0.0 0.5 1.0 1.5 2.0

010

020

030

0

0.0 0.5 1.0 1.5 2.0

010

020

030

0

0.0 0.5 1.0 1.5 2.0

010

020

030

0

0.0 0.5 1.0 1.5 2.0

010

020

030

0

0.0 0.5 1.0 1.5 2.0

010

020

030

0

0.0 0.5 1.0 1.5 2.0

010

020

030

0

0.0 0.5 1.0 1.5 2.0

010

020

030

0

0.0 0.5 1.0 1.5 2.0

010

020

030

0

0.0 0.5 1.0 1.5 2.0

010

020

030

0

0.0 0.5 1.0 1.5 2.0

010

020

030

0

0.0 0.5 1.0 1.5 2.0

010

020

030

0

0.0 0.5 1.0 1.5 2.0

010

020

030

0

0.0 0.5 1.0 1.5 2.0

010

020

030

0

0.0 0.5 1.0 1.5 2.0

010

020

030

0

0.0 0.5 1.0 1.5 2.0

010

020

030

0

0.0 0.5 1.0 1.5 2.0

010

020

030

0

0.0 0.5 1.0 1.5 2.0

010

020

030

0

0.0 0.5 1.0 1.5 2.0

010

020

030

0

0.0 0.5 1.0 1.5 2.0

010

020

030

0

0.0 0.5 1.0 1.5 2.0

010

020

030

0

0.0 0.5 1.0 1.5 2.0

010

020

030

0

0.0 0.5 1.0 1.5 2.0

010

020

030

0

0.0 0.5 1.0 1.5 2.0

010

020

030

0

0.0 0.5 1.0 1.5 2.0

010

020

030

0

0.0 0.5 1.0 1.5 2.0

010

020

030

0

0.0 0.5 1.0 1.5 2.0

010

020

030

0

0.0 0.5 1.0 1.5 2.0

010

020

030

0

0.0 0.5 1.0 1.5 2.0

010

020

030

0

0.0 0.5 1.0 1.5 2.0

010

020

030

0

0.0 0.5 1.0 1.5 2.0

010

020

030

0

0.0 0.5 1.0 1.5 2.0

010

020

030

0

0.0 0.5 1.0 1.5 2.0

010

020

030

0

0.0 0.5 1.0 1.5 2.0

010

020

030

0

0.0 0.5 1.0 1.5 2.0

010

020

030

0

0.0 0.5 1.0 1.5 2.0

010

020

030

0

0.0 0.5 1.0 1.5 2.0

010

020

030

0

0.0 0.5 1.0 1.5 2.0

010

020

030

0

0.0 0.5 1.0 1.5 2.0

010

020

030

0

0.0 0.5 1.0 1.5 2.0

010

020

030

0

0.0 0.5 1.0 1.5 2.0

010

020

030

0

0.0 0.5 1.0 1.5 2.0

010

020

030

0

0.0 0.5 1.0 1.5 2.0

010

020

030

0

0.0 0.5 1.0 1.5 2.0

010

020

030

0

0.0 0.5 1.0 1.5 2.0

010

020

030

0

0.0 0.5 1.0 1.5 2.0

010

020

030

0

0.0 0.5 1.0 1.5 2.0

010

020

030

0

0.0 0.5 1.0 1.5 2.0

010

020

030

0

0.0 0.5 1.0 1.5 2.0

010

020

030

0

0.0 0.5 1.0 1.5 2.0

010

020

030

0

0.0 0.5 1.0 1.5 2.0

010

020

030

0

0.0 0.5 1.0 1.5 2.0

010

020

030

0

0.0 0.5 1.0 1.5 2.0

010

020

030

0

0.0 0.5 1.0 1.5 2.0

010

020

030

0

0.0 0.5 1.0 1.5 2.0

010

020

030

0

0.0 0.5 1.0 1.5 2.0

010

020

030

0

0.0 0.5 1.0 1.5 2.0

010

020

030

0

0.0 0.5 1.0 1.5 2.0

010

020

030

0

0.0 0.5 1.0 1.5 2.0

010

020

030

0

0.0 0.5 1.0 1.5 2.0

010

020

030

0

0.0 0.5 1.0 1.5 2.0

010

020

030

0

0.0 0.5 1.0 1.5 2.0

010

020

030

0

0.0 0.5 1.0 1.5 2.0

010

020

030

0

0.0 0.5 1.0 1.5 2.0

010

020

030

0

0.0 0.5 1.0 1.5 2.0

010

020

030

0

0.0 0.5 1.0 1.5 2.0

010

020

030

0

0.0 0.5 1.0 1.5 2.0

010

020

030

0

0.0 0.5 1.0 1.5 2.0

010

020

030

0

0.0 0.5 1.0 1.5 2.0

010

020

030

0

0.0 0.5 1.0 1.5 2.0

010

020

030

0

0.0 0.5 1.0 1.5 2.0

010

020

030

0

0.0 0.5 1.0 1.5 2.0

010

020

030

0

0.0 0.5 1.0 1.5 2.0

010

020

030

0

0.0 0.5 1.0 1.5 2.0

010

020

030

0

0.0 0.5 1.0 1.5 2.0

010

020

030

0

0.0 0.5 1.0 1.5 2.0

010

020

030

0

0.0 0.5 1.0 1.5 2.0

010

020

030

0

0.0 0.5 1.0 1.5 2.0

010

020

030

0

0.0 0.5 1.0 1.5 2.0

010

020

030

0

0.0 0.5 1.0 1.5 2.0

010

020

030

0

0.0 0.5 1.0 1.5 2.0

010

020

030

0

0.0 0.5 1.0 1.5 2.0

010

020

030

0

0.0 0.5 1.0 1.5 2.0

010

020

030

0

0.0 0.5 1.0 1.5 2.0

010

020

030

0

0.0 0.5 1.0 1.5 2.0

010

020

030

0

0.0 0.5 1.0 1.5 2.0

010

020

030

0

0.0 0.5 1.0 1.5 2.0

010

020

030

0

0.0 0.5 1.0 1.5 2.0

010

020

030

0

0.0 0.5 1.0 1.5 2.0

010

020

030

0

0.0 0.5 1.0 1.5 2.0

010

020

030

0

0.0 0.5 1.0 1.5 2.0

010

020

030

0

0.0 0.5 1.0 1.5 2.0

010

020

030

0

0.0 0.5 1.0 1.5 2.0

010

020

030

0

0.0 0.5 1.0 1.5 2.0

010

020

030

0

0.0 0.5 1.0 1.5 2.0

010

020

030

0

0.0 0.5 1.0 1.5 2.0

010

020

030

0

0.0 0.5 1.0 1.5 2.0

010

020

030

0

0.0 0.5 1.0 1.5 2.0

010

020

030

0

0.0 0.5 1.0 1.5 2.0

010

020

030

0

0.0 0.5 1.0 1.5 2.0

010

020

030

0

0.0 0.5 1.0 1.5 2.0

010

020

030

0

0.0 0.5 1.0 1.5 2.0

010

020

030

0

0.0 0.5 1.0 1.5 2.0

010

020

030

0

0.0 0.5 1.0 1.5 2.0

010

020

030

0

0.0 0.5 1.0 1.5 2.0

010

020

030

0

0.0 0.5 1.0 1.5 2.0

010

020

030

0

0.0 0.5 1.0 1.5 2.0

010

020

030

0

0.0 0.5 1.0 1.5 2.0

010

020

030

0

0.0 0.5 1.0 1.5 2.0

010

020

030

0

0.0 0.5 1.0 1.5 2.0

010

020

030

0

0.0 0.5 1.0 1.5 2.0

010

020

030

0

0.0 0.5 1.0 1.5 2.0

010

020

030

0

0.0 0.5 1.0 1.5 2.0

010

020

030

0

0.0 0.5 1.0 1.5 2.0

010

020

030

0

0.0 0.5 1.0 1.5 2.0

010

020

030

0

0.0 0.5 1.0 1.5 2.0

010

020

030

0

0.0 0.5 1.0 1.5 2.0

010

020

030

0

0.0 0.5 1.0 1.5 2.0

010

020

030

0

time in second

0.0 0.5 1.0 1.5 2.0

010

020

030

0

0.0 0.5 1.0 1.5 2.0

010

020

030

0

0.0 0.5 1.0 1.5 2.0

010

020

030

0

0.0 0.5 1.0 1.5 2.0

010

020

030

0

0.0 0.5 1.0 1.5 2.0

010

020

030

0

Global problematic

Synchrony detection?

Notion of coincidence

Neurons fire nearly at thesame time

Model based methods:

Unitary Events methods [Grün (1996), Grün, et al. (1999) orTuleau-Malot, et al. (2014)].

Smoothed JPSTH methods [Ventura et al. (2005)].

Surrogate data methods:

Across time such as dithering approaches, [Louis et al. (2010)].

Across trials such as the Trial Shu!ing [Pipa et al. (2003)].

MathStatNeuro 2015 - 2/16

Page 3: Multiple independence tests for point processes: ALBERT ...malot/albert_StatMathNeuro.pdf · Unitary Events method Mélisande ALBERT Introduction of the Problematic Problematic Single

A permutationUnitary Events

method

MélisandeALBERT

Introduction ofthe Problematic

Problematic

Single testing

Statistical Model

Number ofcoincidences

Resamplingapproach

Centering issue

Centered TestStatistic

Test construction

Multiple tests

Problematic

Simulation study

Conclusion

Test of independenceStatistical model

First step

Test independence on a time window.

Statistical Modeling for Neuronal Activity

Spike trains modeled by point processes on an interval (say [0, 1]).

Definition

Point process on [0, 1] = random countable set of points in [0, 1].X := the set of almost surely finite point processes on [0, 1].

Example : homogeneous Poisson process with intensity ! > 0.

"! In the following, no model assumption for the point processes.

MathStatNeuro 2015 - 3/16

Page 4: Multiple independence tests for point processes: ALBERT ...malot/albert_StatMathNeuro.pdf · Unitary Events method Mélisande ALBERT Introduction of the Problematic Problematic Single

A permutationUnitary Events

method

MélisandeALBERT

Introduction ofthe Problematic

Problematic

Single testing

Statistical Model

Number ofcoincidences

Resamplingapproach

Centering issue

Centered TestStatistic

Test construction

Multiple tests

Problematic

Simulation study

Conclusion

Test of independenceThe number of delayed coincidences

Observation: Xn = (X1, . . . , Xn),

where n = number of trials, and Xi = (X 1i , X 2

i ) i.i.d. in X 2.

X12

X11

X21

X22

0 1

X13

X23

Aim:

Test (H0) : X 1 "" X 2 against (H1) : X 1 #""X 2.

Denote X!!n an sample as above satisfying (H0).

MathStatNeuro 2015 - 4/16

Page 5: Multiple independence tests for point processes: ALBERT ...malot/albert_StatMathNeuro.pdf · Unitary Events method Mélisande ALBERT Introduction of the Problematic Problematic Single

A permutationUnitary Events

method

MélisandeALBERT

Introduction ofthe Problematic

Problematic

Single testing

Statistical Model

Number ofcoincidences

Resamplingapproach

Centering issue

Centered TestStatistic

Test construction

Multiple tests

Problematic

Simulation study

Conclusion

Test of independenceThe number of delayed coincidences

Observation: Xn = (X1, . . . , Xn),

where n = number of trials, and Xi = (X 1i , X 2

i ) i.i.d. in X 2.

Notion of (delayed) coincidence for point processes

#coinc! counts the number of coincidences between two point processes:

#coinc!

!

X 1, X 2"

=#

T"X1

#

S"X2

1{|T#S|$!}.

coincidence

$$

0 1

X 2

coincidence

X 1

MathStatNeuro 2015 - 4/16

Page 6: Multiple independence tests for point processes: ALBERT ...malot/albert_StatMathNeuro.pdf · Unitary Events method Mélisande ALBERT Introduction of the Problematic Problematic Single

A permutationUnitary Events

method

MélisandeALBERT

Introduction ofthe Problematic

Problematic

Single testing

Statistical Model

Number ofcoincidences

Resamplingapproach

Centering issue

Centered TestStatistic

Test construction

Multiple tests

Problematic

Simulation study

Conclusion

Test of independenceThe number of delayed coincidences

Observation: Xn = (X1, . . . , Xn),

where n = number of trials, and Xi = (X 1i , X 2

i ) i.i.d. in X 2.

Notion of (delayed) coincidence for point processes

#coinc! counts the number of coincidences between two point processes:

#coinc!

!

X 1, X 2"

=#

T"X1

#

S"X2

1{|T#S|$!}.

Test statistic based on the total number of delayed coincidences

Cobs = C(Xn) =

n#

i=1

#coinc!

!

X 1i , X 2

i

"

.

MathStatNeuro 2015 - 4/16

Page 7: Multiple independence tests for point processes: ALBERT ...malot/albert_StatMathNeuro.pdf · Unitary Events method Mélisande ALBERT Introduction of the Problematic Problematic Single

A permutationUnitary Events

method

MélisandeALBERT

Introduction ofthe Problematic

Problematic

Single testing

Statistical Model

Number ofcoincidences

Resamplingapproach

Centering issue

Centered TestStatistic

Test construction

Multiple tests

Problematic

Simulation study

Conclusion

Test of independenceDefinition of the test statistic

General idea

Reject independence when there are too many (resp. too few) coincidencescompared to what is expected under independence.

How to recreate the distribution under independence?

Construct a new sample Xn from the original one, i.e. Xn, such that

L!

C!

Xn

"$

$Xn

"

$ L!

C!

X!!n

""

,

whether Xn satisfies independence or not.

MathStatNeuro 2015 - 5/16

Page 8: Multiple independence tests for point processes: ALBERT ...malot/albert_StatMathNeuro.pdf · Unitary Events method Mélisande ALBERT Introduction of the Problematic Problematic Single

A permutationUnitary Events

method

MélisandeALBERT

Introduction ofthe Problematic

Problematic

Single testing

Statistical Model

Number ofcoincidences

Resamplingapproach

Centering issue

Centered TestStatistic

Test construction

Multiple tests

Problematic

Simulation study

Conclusion

The di!erent resampling approachesTrial Shu!ing, Full Bootstrap and Permutation

NatureRandomness

Computerrandomness

Original data set

Surrogate data set

Trial-shuffling Full Bootstrap

Permutation

built as either

n=3 trials

Pick n= 3 couples (i,j) with replacement in

(1,2) (1,3)(2,1) (2,3)(3,1) (3,2)

(1,1) (1,2) (1,3)(2,1) (2,2) (2,3)(3,1) (3,2) (3,3)

Pick n= 3 couples (i,j) with replacement in

Pick only 1 permutation given by

1 2 31 3 22 1 32 3 13 1 23 2 1

in

Unconditional distribution: all possible choices of both Nature and Computer randomness

Conditional distribution: 1 fixed original data set (Nature randomness), all possible choices of Computer randomness

MathStatNeuro 2015 - 6/16

Page 9: Multiple independence tests for point processes: ALBERT ...malot/albert_StatMathNeuro.pdf · Unitary Events method Mélisande ALBERT Introduction of the Problematic Problematic Single

A permutationUnitary Events

method

MélisandeALBERT

Introduction ofthe Problematic

Problematic

Single testing

Statistical Model

Number ofcoincidences

Resamplingapproach

Centering issue

Centered TestStatistic

Test construction

Multiple tests

Problematic

Simulation study

Conclusion

Conditional distributions of the number of coincidencesHow do they perform?

L!

C!

Xn

"$

$Xn

"

$ L!

C!

X!!n

""

?

Centering issue !!!

MathStatNeuro 2015 - 7/16

Page 10: Multiple independence tests for point processes: ALBERT ...malot/albert_StatMathNeuro.pdf · Unitary Events method Mélisande ALBERT Introduction of the Problematic Problematic Single

A permutationUnitary Events

method

MélisandeALBERT

Introduction ofthe Problematic

Problematic

Single testing

Statistical Model

Number ofcoincidences

Resamplingapproach

Centering issue

Centered TestStatistic

Test construction

Multiple tests

Problematic

Simulation study

Conclusion

Test of independenceDefinition of the test statistic

In view of the statistical literature, it is not possible to estimateL

!

C!

X!!n

""

directly, BUT,

L!

C!

Xn

"

% E%

C!

Xn

"

|Xn

&$

$Xn

"

$ L!

C!

X!!n

"

% E%

C!

X!!n

"&"

.

YET, E%

C!

X!!n

"&

is unknown...

Centering trick

Let C0(Xn) =1

n % 1

#

i %=j

#coinc! (X 1

i , X 2j ), s.t. E

%

C0(Xn)&

= E%

C!

X!!n

"&

,

and letU(Xn) = C(Xn) % C0(Xn).

Then

L!

U!

Xn

"

% E%

U!

Xn

"

|Xn

&$

$Xn

"

$ L!

U!

X!!n

""

.

with

E%

U!

XTSn

"$

$Xn

&

= %U(Xn)

n, and

'

E[U(X&n )|Xn] = 0,

E[U(X"n )|Xn] = 0.

MathStatNeuro 2015 - 8/16

Page 11: Multiple independence tests for point processes: ALBERT ...malot/albert_StatMathNeuro.pdf · Unitary Events method Mélisande ALBERT Introduction of the Problematic Problematic Single

A permutationUnitary Events

method

MélisandeALBERT

Introduction ofthe Problematic

Problematic

Single testing

Statistical Model

Number ofcoincidences

Resamplingapproach

Centering issue

Centered TestStatistic

Test construction

Multiple tests

Problematic

Simulation study

Conclusion

Conditional distributions of the centered number of coincidencesHow do they perform?

L!

U!

Xn

"

% E%

U!

Xn

"

|Xn

&$

$Xn

"

$ L!

U!

X!!n

""

?

MathStatNeuro 2015 - 9/16

Page 12: Multiple independence tests for point processes: ALBERT ...malot/albert_StatMathNeuro.pdf · Unitary Events method Mélisande ALBERT Introduction of the Problematic Problematic Single

A permutationUnitary Events

method

MélisandeALBERT

Introduction ofthe Problematic

Problematic

Single testing

Statistical Model

Number ofcoincidences

Resamplingapproach

Centering issue

Centered TestStatistic

Test construction

Multiple tests

Problematic

Simulation study

Conclusion

Conditional distributions of the centered number of coincidencesHow do they perform?

L!

U!

Xn

"

% E%

U!

Xn

"

|Xn

&$

$Xn

"

$ L!

U!

X!!n

""

?

Critical value:

(1 % %)-quantile of L!

U!

Xn

"

% E%

U!

Xn

"

|Xn

&$

$Xn

"

,

& with Monte Carlo approximation.

MathStatNeuro 2015 - 9/16

Page 13: Multiple independence tests for point processes: ALBERT ...malot/albert_StatMathNeuro.pdf · Unitary Events method Mélisande ALBERT Introduction of the Problematic Problematic Single

A permutationUnitary Events

method

MélisandeALBERT

Introduction ofthe Problematic

Problematic

Single testing

Statistical Model

Number ofcoincidences

Resamplingapproach

Centering issue

Centered TestStatistic

Test construction

Multiple tests

Problematic

Simulation study

Conclusion

Test of independenceDefinition of the critical region

Trial Shu!ing p-values with Monte Carlo approximation:

Simulate B Trial Shu!ing samples XTS,1n , . . . ,XTS,B

n .

Compute the centered test statistics:

UTSb = U

!

XTS,bn

"

+U(Xn)

n.

Define the p-value by

%TS(Xn) =1B

B#

b=1

1{UTSb

'U(Xn)},

and reject independence if it is smaller than %.

MathStatNeuro 2015 - 10/16

Page 14: Multiple independence tests for point processes: ALBERT ...malot/albert_StatMathNeuro.pdf · Unitary Events method Mélisande ALBERT Introduction of the Problematic Problematic Single

A permutationUnitary Events

method

MélisandeALBERT

Introduction ofthe Problematic

Problematic

Single testing

Statistical Model

Number ofcoincidences

Resamplingapproach

Centering issue

Centered TestStatistic

Test construction

Multiple tests

Problematic

Simulation study

Conclusion

Test of independenceDefinition of the critical region

Full Bootstrap p-values with Monte Carlo approximation:

Simulate B Full Bootstrap samples X&,1n , . . . ,X&,B

n .

Compute the centered test statistics:

U&b = U

!

X&,bn

"

.

Define the p-value by

%&(Xn) =1B

B#

b=1

1{U!

b'U(Xn)},

and reject independence if it is smaller than %.

MathStatNeuro 2015 - 10/16

Page 15: Multiple independence tests for point processes: ALBERT ...malot/albert_StatMathNeuro.pdf · Unitary Events method Mélisande ALBERT Introduction of the Problematic Problematic Single

A permutationUnitary Events

method

MélisandeALBERT

Introduction ofthe Problematic

Problematic

Single testing

Statistical Model

Number ofcoincidences

Resamplingapproach

Centering issue

Centered TestStatistic

Test construction

Multiple tests

Problematic

Simulation study

Conclusion

Test of independenceDefinition of the critical region

Permutation p-values with Monte Carlo approximation:

Simulate B permuted samples X",1n , . . . ,X",B

n .

Compute the centered test statistics:

U"b = U

!

X",bn

"

, and U"B+1 = U(Xn) .

Define the p-value by [Romano and Wolf (2005)]

%"(Xn) =1

B + 1

B+1#

b=1

1{U!

b'U(Xn)},

and reject independence if it is smaller than %.

Then, thanks to [Romano and Wolf (2005)],

P(H0) (%"(Xn) ' %) ' %,

(only for the permutation approach).

MathStatNeuro 2015 - 10/16

Page 16: Multiple independence tests for point processes: ALBERT ...malot/albert_StatMathNeuro.pdf · Unitary Events method Mélisande ALBERT Introduction of the Problematic Problematic Single

A permutationUnitary Events

method

MélisandeALBERT

Introduction ofthe Problematic

Problematic

Single testing

Statistical Model

Number ofcoincidences

Resamplingapproach

Centering issue

Centered TestStatistic

Test construction

Multiple tests

Problematic

Simulation study

Conclusion

Test of independenceHow do they perform?

MathStatNeuro 2015 - 11/16

Page 17: Multiple independence tests for point processes: ALBERT ...malot/albert_StatMathNeuro.pdf · Unitary Events method Mélisande ALBERT Introduction of the Problematic Problematic Single

A permutationUnitary Events

method

MélisandeALBERT

Introduction ofthe Problematic

Problematic

Single testing

Statistical Model

Number ofcoincidences

Resamplingapproach

Centering issue

Centered TestStatistic

Test construction

Multiple tests

Problematic

Simulation study

Conclusion

Multiple TestingProblematic

Initial problematic

Detect the synchronizations.

Idea : simultaneously test independence on sliding time windows [ak , bk ],

b0 2a

(H0,k) : X 1 "" X 2 on [ak , bk ] (H0,k ) : X 1 #""X 2 on [ak , bk ].

Aim:

Control the m tests at a global level %.

! The errors accumulate !

"! Benjamini and Hochberg multiple testing procedure to control the FalseDiscovery Rate (1995).

MathStatNeuro 2015 - 12/16

Page 18: Multiple independence tests for point processes: ALBERT ...malot/albert_StatMathNeuro.pdf · Unitary Events method Mélisande ALBERT Introduction of the Problematic Problematic Single

A permutationUnitary Events

method

MélisandeALBERT

Introduction ofthe Problematic

Problematic

Single testing

Statistical Model

Number ofcoincidences

Resamplingapproach

Centering issue

Centered TestStatistic

Test construction

Multiple tests

Problematic

Simulation study

Conclusion

Multiple TestingSimulation study: parameters

0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0

20

40

60

80

Independent Dependent

Poisson

Injection Injection

Hawkes

spont=60

h =-600.1i->i [0,0.001]

h =0i->j

h =30.1i->j [0,0.005]

i->j [0,0.005]h =6.1 h =-30.1

i->j

A: Description of Experiment 1

h =0i->j

[0,0.005]

n = 50,$ varies in {0.001, 0.002, . . . , 0.04},B = 10000 steps in the Monte Carlo approximation of the quantiles,m = 191 simultaneous tests.

MathStatNeuro 2015 - 13/16

Page 19: Multiple independence tests for point processes: ALBERT ...malot/albert_StatMathNeuro.pdf · Unitary Events method Mélisande ALBERT Introduction of the Problematic Problematic Single

A permutationUnitary Events

method

MélisandeALBERT

Introduction ofthe Problematic

Problematic

Single testing

Statistical Model

Number ofcoincidences

Resamplingapproach

Centering issue

Centered TestStatistic

Test construction

Multiple tests

Problematic

Simulation study

Conclusion

Multiple TestingSimulation study: results

time

de

lta

0.0 0.5 1.0 1.5 2.0

0.0

00

.01

0.0

20

.03

0.0

4

0.0 0.5 1.0 1.5 2.0

0.0

00

.01

0.0

20

.03

0.0

4

0.0 0.5 1.0 1.5 2.0

0.0

00

.01

0.0

20

.03

0.0

4

0.0 0.5 1.0 1.5 2.0

0.0

00

.01

0.0

20

.03

0.0

4

0.0 0.5 1.0 1.5 2.0

0.0

00

.01

0.0

20

.03

0.0

4

0.0 0.5 1.0 1.5 2.0

0.0

00

.01

0.0

20

.03

0.0

4

0.0 0.5 1.0 1.5 2.0

0.0

00

.01

0.0

20

.03

0.0

4

0.0 0.5 1.0 1.5 2.0

0.0

00

.01

0.0

20

.03

0.0

4

0.0 0.5 1.0 1.5 2.0

0.0

00

.01

0.0

20

.03

0.0

4

0.0 0.5 1.0 1.5 2.0

0.0

00

.01

0.0

20

.03

0.0

4

0.0 0.5 1.0 1.5 2.0

0.0

00

.01

0.0

20

.03

0.0

4

0.0 0.5 1.0 1.5 2.0

0.0

00

.01

0.0

20

.03

0.0

4

0.0 0.5 1.0 1.5 2.0

0.0

00

.01

0.0

20

.03

0.0

4

0.0 0.5 1.0 1.5 2.0

0.0

00

.01

0.0

20

.03

0.0

4

0.0 0.5 1.0 1.5 2.0

0.0

00

.01

0.0

20

.03

0.0

4

0.0 0.5 1.0 1.5 2.0

0.0

00

.01

0.0

20

.03

0.0

4

0.0 0.5 1.0 1.5 2.0

0.0

00

.01

0.0

20

.03

0.0

4

0.0 0.5 1.0 1.5 2.0

0.0

00

.01

0.0

20

.03

0.0

4

0.0 0.5 1.0 1.5 2.0

0.0

00

.01

0.0

20

.03

0.0

4

0.0 0.5 1.0 1.5 2.0

0.0

00

.01

0.0

20

.03

0.0

4

0.0 0.5 1.0 1.5 2.0

0.0

00

.01

0.0

20

.03

0.0

4

0.0 0.5 1.0 1.5 2.0

0.0

00

.01

0.0

20

.03

0.0

4

0.0 0.5 1.0 1.5 2.0

0.0

00

.01

0.0

20

.03

0.0

4

0.0 0.5 1.0 1.5 2.0

0.0

00

.01

0.0

20

.03

0.0

4

0.0 0.5 1.0 1.5 2.0

0.0

00

.01

0.0

20

.03

0.0

4

0.0 0.5 1.0 1.5 2.0

0.0

00

.01

0.0

20

.03

0.0

4

0.0 0.5 1.0 1.5 2.0

0.0

00

.01

0.0

20

.03

0.0

4

0.0 0.5 1.0 1.5 2.0

0.0

00

.01

0.0

20

.03

0.0

4

0.0 0.5 1.0 1.5 2.0

0.0

00

.01

0.0

20

.03

0.0

4

0.0 0.5 1.0 1.5 2.0

0.0

00

.01

0.0

20

.03

0.0

4

0.0 0.5 1.0 1.5 2.0

0.0

00

.01

0.0

20

.03

0.0

4

0.0 0.5 1.0 1.5 2.0

0.0

00

.01

0.0

20

.03

0.0

4

0.0 0.5 1.0 1.5 2.0

0.0

00

.01

0.0

20

.03

0.0

4

0.0 0.5 1.0 1.5 2.0

0.0

00

.01

0.0

20

.03

0.0

4

0.0 0.5 1.0 1.5 2.0

0.0

00

.01

0.0

20

.03

0.0

4

0.0 0.5 1.0 1.5 2.0

0.0

00

.01

0.0

20

.03

0.0

4

0.0 0.5 1.0 1.5 2.0

0.0

00

.01

0.0

20

.03

0.0

4

0.0 0.5 1.0 1.5 2.0

0.0

00

.01

0.0

20

.03

0.0

4

0.0 0.5 1.0 1.5 2.0

0.0

00

.01

0.0

20

.03

0.0

4

0.0 0.5 1.0 1.5 2.0

0.0

00

.01

0.0

20

.03

0.0

4

0.0 0.5 1.0 1.5 2.0

0.0

00

.01

0.0

20

.03

0.0

4

0.0 0.5 1.0 1.5 2.0

0.0

00

.01

0.0

20

.03

0.0

4

0.0 0.5 1.0 1.5 2.0

0.0

00

.01

0.0

20

.03

0.0

4

0.0 0.5 1.0 1.5 2.0

0.0

00

.01

0.0

20

.03

0.0

4

0.0 0.5 1.0 1.5 2.0

0.0

00

.01

0.0

20

.03

0.0

4

0.0 0.5 1.0 1.5 2.0

0.0

00

.01

0.0

20

.03

0.0

4

0.0 0.5 1.0 1.5 2.0

0.0

00

.01

0.0

20

.03

0.0

4

0.0 0.5 1.0 1.5 2.0

0.0

00

.01

0.0

20

.03

0.0

4

0.0 0.5 1.0 1.5 2.0

0.0

00

.01

0.0

20

.03

0.0

4

0.0 0.5 1.0 1.5 2.0

0.0

00

.01

0.0

20

.03

0.0

4

0.0 0.5 1.0 1.5 2.0

0.0

00

.01

0.0

20

.03

0.0

4

0.0 0.5 1.0 1.5 2.0

0.0

00

.01

0.0

20

.03

0.0

4

0.0 0.5 1.0 1.5 2.0

0.0

00

.01

0.0

20

.03

0.0

4

0.0 0.5 1.0 1.5 2.0

0.0

00

.01

0.0

20

.03

0.0

4

0.0 0.5 1.0 1.5 2.0

0.0

00

.01

0.0

20

.03

0.0

4

0.0 0.5 1.0 1.5 2.0

0.0

00

.01

0.0

20

.03

0.0

4

0.0 0.5 1.0 1.5 2.0

0.0

00

.01

0.0

20

.03

0.0

4

0.0 0.5 1.0 1.5 2.0

0.0

00

.01

0.0

20

.03

0.0

4

0.0 0.5 1.0 1.5 2.0

0.0

00

.01

0.0

20

.03

0.0

4

0.0 0.5 1.0 1.5 2.0

0.0

00

.01

0.0

20

.03

0.0

4

0.0 0.5 1.0 1.5 2.0

0.0

00

.01

0.0

20

.03

0.0

4

0.0 0.5 1.0 1.5 2.0

0.0

00

.01

0.0

20

.03

0.0

4

0.0 0.5 1.0 1.5 2.0

0.0

00

.01

0.0

20

.03

0.0

4

0.0 0.5 1.0 1.5 2.0

0.0

00

.01

0.0

20

.03

0.0

4

0.0 0.5 1.0 1.5 2.0

0.0

00

.01

0.0

20

.03

0.0

4

0.0 0.5 1.0 1.5 2.0

0.0

00

.01

0.0

20

.03

0.0

4

0.0 0.5 1.0 1.5 2.0

0.0

00

.01

0.0

20

.03

0.0

4

0.0 0.5 1.0 1.5 2.0

0.0

00

.01

0.0

20

.03

0.0

4

0.0 0.5 1.0 1.5 2.0

0.0

00

.01

0.0

20

.03

0.0

4

0.0 0.5 1.0 1.5 2.0

0.0

00

.01

0.0

20

.03

0.0

4

0.0 0.5 1.0 1.5 2.0

0.0

00

.01

0.0

20

.03

0.0

4

0.0 0.5 1.0 1.5 2.0

0.0

00

.01

0.0

20

.03

0.0

4

0.0 0.5 1.0 1.5 2.0

0.0

00

.01

0.0

20

.03

0.0

4

0.0 0.5 1.0 1.5 2.0

0.0

00

.01

0.0

20

.03

0.0

4

0.0 0.5 1.0 1.5 2.0

0.0

00

.01

0.0

20

.03

0.0

4

0.0 0.5 1.0 1.5 2.0

0.0

00

.01

0.0

20

.03

0.0

4

0.0 0.5 1.0 1.5 2.0

0.0

00

.01

0.0

20

.03

0.0

4

0.0 0.5 1.0 1.5 2.0

0.0

00

.01

0.0

20

.03

0.0

4

0.0 0.5 1.0 1.5 2.0

0.0

00

.01

0.0

20

.03

0.0

4

0.0 0.5 1.0 1.5 2.0

0.0

00

.01

0.0

20

.03

0.0

4

time

de

lta

time

de

lta

time

de

lta

time

de

lta

time

de

lta

time

de

lta

time

de

lta

time

de

lta

time

de

lta

Permutation

MathStatNeuro 2015 - 14/16

Page 20: Multiple independence tests for point processes: ALBERT ...malot/albert_StatMathNeuro.pdf · Unitary Events method Mélisande ALBERT Introduction of the Problematic Problematic Single

A permutationUnitary Events

method

MélisandeALBERT

Introduction ofthe Problematic

Problematic

Single testing

Statistical Model

Number ofcoincidences

Resamplingapproach

Centering issue

Centered TestStatistic

Test construction

Multiple tests

Problematic

Simulation study

Conclusion

Work still in progress and Perspectives

Conclusions and perspectives

Centering when applying bootstrap-based methods.

The permutation approach is more reliable.

Asymptotic theoretical results for full bootstrap and permutationapproaches.

Non-asymptotic results for the permutation tests?

Choice of $ for the notion of coincidences?

More than two neurons?

MathStatNeuro 2015 - 15/16

Page 21: Multiple independence tests for point processes: ALBERT ...malot/albert_StatMathNeuro.pdf · Unitary Events method Mélisande ALBERT Introduction of the Problematic Problematic Single

A permutationUnitary Events

method

MélisandeALBERT

Introduction ofthe Problematic

Problematic

Single testing

Statistical Model

Number ofcoincidences

Resamplingapproach

Centering issue

Centered TestStatistic

Test construction

Multiple tests

Problematic

Simulation study

Conclusion

References

M. Albert, Y. Bouret, M. Fromont, and P. Reynaud-Bouret.

Bootstrap and permutation tests of independence for point processes.Available on ArXiv: arXiv:1406.1643, (to appear in AOS), 2014.

S. Grün, M. Diesmann, F. Grammont, A. Riehle, and A. Aertsen.

Detecting unitary events without discretization of time.Journal of neuroscience methods, 94(1):67–79, 1999.

S. Louis, C. Borgelt, and S. Grün.

Generation and selection of surrogate methods for correlation analysis.In Analysis of Parallel Spike Trains, pages 359–382. Springer, 2010.

G. Pipa and S. Grün.

Non-parametric significance estimation of joint-spike events by shu!ing and resampling.Neurocomputing, 52:31–37, 2003.

J. P. Romano and M. Wolf.

Exact and approximate step-down methods for multiple hypothesis testing.Journal of the American Statistical Association, 100(469):94–108, 2005.

C. Tuleau-Malot, A. Rouis, F. Grammont, and P. Reynaud-Bouret.

Multiple Tests based on a Gaussian Approximation of the Unitary Events method with delayedcoincidence count.Neural computation, 26(7):1408–1454, 2014.

V. Ventura, C. Cai, and R. E. Kass.

Statistical assessment of time-varying dependency between two neurons.Journal of Neurophysiology, 94(4):2940–2947, 2005.

MathStatNeuro 2015 - 16/16