Multijet merging and jet substructure - Durham...

56
Multijet merging Jet properties Conclusions Multijet merging and jet substructure MarekSchonherr Institute for Particle Physics Phenomenology BOOST, London, 20/08/2014 MarekSchonherr IPPP Durham Multijet merging and jet substructure 1/23

Transcript of Multijet merging and jet substructure - Durham...

  • Multijet merging Jet properties Conclusions

    Multijet merging and jet substructure

    Marek Schönherr

    Institute for Particle Physics Phenomenology

    BOOST, London, 20/08/2014

    Marek Schönherr IPPP Durham

    Multijet merging and jet substructure 1/23

  • Multijet merging Jet properties Conclusions

    Introduction

    Two aspects of event generation are important for boosted observables

    1 production of boosted systems• production of hard jets or boosted heavy resonances usually requires

    (multiple) jets to recoil against• jet/resonance production at large p⊥ is usually accompagnied by (many)

    additional jets

    ⇒ multijet merging to describe such topologies

    2 description of intrajet dynamics• parton evolution well described by parton shower• contributions from multiple interactions• important aspects from hadronisation and hadron decays

    ⇒ multijet merging must not upset parton shower resummation⇒ good soft-physics models important at high scales as well

    Marek Schönherr IPPP Durham

    Multijet merging and jet substructure 2/23

  • Multijet merging Jet properties Conclusions

    Introduction

    Two aspects of event generation are important for boosted observables

    1 production of boosted systems• production of hard jets or boosted heavy resonances usually requires

    (multiple) jets to recoil against• jet/resonance production at large p⊥ is usually accompagnied by (many)

    additional jets

    ⇒ multijet merging to describe such topologies

    2 description of intrajet dynamics• parton evolution well described by parton shower• contributions from multiple interactions• important aspects from hadronisation and hadron decays

    ⇒ multijet merging must not upset parton shower resummation⇒ good soft-physics models important at high scales as well

    Marek Schönherr IPPP Durham

    Multijet merging and jet substructure 2/23

  • Multijet merging Jet properties Conclusions

    Terminology

    LOPS/NLOPS matching ⇒ see Keith’s talk• combine LO/NLO description of a single process with parton shower→ only this one process described to LO/NLO accuracy→ subsequent multiplicities added at PS-accuracy

    • multiple schemes, different ways to resolve overlap of competingdescriptions

    • examples: pp→ h, pp→W + j, ...Multijet merging

    • combine multiple LOPS (→MEPS)/NLOPS (→MEPS@NLO) of subsequentmultiplicity→ resums emission scale hierarchies identical to parton shower→ wrt. the most inclusive process considered→ corrects hard emission of jets to LO/NLO accuracy

    • multiple schemes, different ways to resolve overlap of competingdescriptions

    • examples: pp→ h+jets, pp→ tt̄+jets, ...Marek Schönherr IPPP Durham

    Multijet merging and jet substructure 3/23

  • Multijet merging Jet properties Conclusions

    MEPSPS LO

    LO

    LO

    Parton showers

    resummation of (soft-)collinear limit→ intrajet evolution

    • matrix elements (ME) and parton showers (PS) are approximations indifferent regions of phase space

    • MEPS combines multiple LOPS – keeping either accuracy• NLOPS elevate LOPS to NLO accuracy• MENLOPS supplements core NLOPS with higher multiplicities LOPS

    Marek Schönherr IPPP Durham

    Multijet merging and jet substructure 4/23

  • Multijet merging Jet properties Conclusions

    MEPS

    ME

    LO LO LO LO

    Matrix elements

    fixed-order in αs→ hard wide-angle emissions→ interference terms

    • matrix elements (ME) and parton showers (PS) are approximations indifferent regions of phase space

    • MEPS combines multiple LOPS – keeping either accuracy• NLOPS elevate LOPS to NLO accuracy• MENLOPS supplements core NLOPS with higher multiplicities LOPS

    Marek Schönherr IPPP Durham

    Multijet merging and jet substructure 4/23

  • Multijet merging Jet properties Conclusions

    MEPS

    ME

    PS LO

    LO

    LO

    LO

    LO

    LO LO

    MEPS (CKKW-like)

    Catani, Krauss, Kuhn, Webber JHEP11(2001)063

    Lönnblad JHEP05(2002)046

    Höche, Krauss, Schumann, Siegert JHEP05(2009)053

    Hamilton, Richardson, Tully JHEP11(2009)038

    • matrix elements (ME) and parton showers (PS) are approximations indifferent regions of phase space

    • MEPS combines multiple LOPS – keeping either accuracy• NLOPS elevate LOPS to NLO accuracy• MENLOPS supplements core NLOPS with higher multiplicities LOPS

    Marek Schönherr IPPP Durham

    Multijet merging and jet substructure 4/23

  • Multijet merging Jet properties Conclusions

    MEPS

    ME

    PS LO

    LO

    LO

    LO

    LO

    LO LO

    MEPS (CKKW-like)

    Catani, Krauss, Kuhn, Webber JHEP11(2001)063

    Lönnblad JHEP05(2002)046

    Höche, Krauss, Schumann, Siegert JHEP05(2009)053

    Hamilton, Richardson, Tully JHEP11(2009)038

    • matrix elements (ME) and parton showers (PS) are approximations indifferent regions of phase space

    • MEPS combines multiple LOPS – keeping either accuracy• NLOPS elevate LOPS to NLO accuracy• MENLOPS supplements core NLOPS with higher multiplicities LOPSα

    k+ns (µR) = α

    ks (µcore)αs(t1) · · ·αs(tn)

    Marek Schönherr IPPP Durham

    Multijet merging and jet substructure 4/23

  • Multijet merging Jet properties Conclusions

    MEPS

    pp → h + jetsLoPs

    0 50 100 150 200 250 30010−4

    10−3

    10−2

    10−1

    Transverse momentum of the Higgs boson

    p⊥(h) [GeV]

    /dp ⊥

    [pb/

    GeV

    ]

    • first emission by PS,restrict toQn+1 < Qcut

    • LOPS pp→ h+ jetfor Qn+1 > Qcut

    • restrict emission offpp→ h+ jet toQn+2 < Qcut

    • LOPS pp→ h+ 2jetsfor Qn+2 > Qcut

    • iterate• sum all contributions• eg. p⊥(h)>200 GeV

    has contributions fr.multiple topologies

    Marek Schönherr IPPP Durham

    Multijet merging and jet substructure 5/23

  • Multijet merging Jet properties Conclusions

    MEPS

    pp → h + jetspp → h + 0j

    0 50 100 150 200 250 30010−4

    10−3

    10−2

    10−1

    Transverse momentum of the Higgs boson

    p⊥(h) [GeV]

    /dp ⊥

    [pb/

    GeV

    ]

    • first emission by PS,restrict toQn+1 < Qcut

    • LOPS pp→ h+ jetfor Qn+1 > Qcut

    • restrict emission offpp→ h+ jet toQn+2 < Qcut

    • LOPS pp→ h+ 2jetsfor Qn+2 > Qcut

    • iterate• sum all contributions• eg. p⊥(h)>200 GeV

    has contributions fr.multiple topologies

    Marek Schönherr IPPP Durham

    Multijet merging and jet substructure 5/23

  • Multijet merging Jet properties Conclusions

    MEPS

    pp → h + jetspp → h + 0jpp → h + 1j

    0 50 100 150 200 250 30010−4

    10−3

    10−2

    10−1

    Transverse momentum of the Higgs boson

    p⊥(h) [GeV]

    /dp ⊥

    [pb/

    GeV

    ]

    • first emission by PS,restrict toQn+1 < Qcut

    • LOPS pp→ h+ jetfor Qn+1 > Qcut

    • restrict emission offpp→ h+ jet toQn+2 < Qcut

    • LOPS pp→ h+ 2jetsfor Qn+2 > Qcut

    • iterate• sum all contributions• eg. p⊥(h)>200 GeV

    has contributions fr.multiple topologies

    Marek Schönherr IPPP Durham

    Multijet merging and jet substructure 5/23

  • Multijet merging Jet properties Conclusions

    MEPS

    pp → h + jetspp → h + 0jpp → h + 1j

    0 50 100 150 200 250 30010−4

    10−3

    10−2

    10−1

    Transverse momentum of the Higgs boson

    p⊥(h) [GeV]

    /dp ⊥

    [pb/

    GeV

    ]

    • first emission by PS,restrict toQn+1 < Qcut

    • LOPS pp→ h+ jetfor Qn+1 > Qcut

    • restrict emission offpp→ h+ jet toQn+2 < Qcut

    • LOPS pp→ h+ 2jetsfor Qn+2 > Qcut

    • iterate• sum all contributions• eg. p⊥(h)>200 GeV

    has contributions fr.multiple topologies

    Marek Schönherr IPPP Durham

    Multijet merging and jet substructure 5/23

  • Multijet merging Jet properties Conclusions

    MEPS

    pp → h + jetspp → h + 0jpp → h + 1jpp → h + 2j

    0 50 100 150 200 250 30010−4

    10−3

    10−2

    10−1

    Transverse momentum of the Higgs boson

    p⊥(h) [GeV]

    /dp ⊥

    [pb/

    GeV

    ]

    • first emission by PS,restrict toQn+1 < Qcut

    • LOPS pp→ h+ jetfor Qn+1 > Qcut

    • restrict emission offpp→ h+ jet toQn+2 < Qcut

    • LOPS pp→ h+ 2jetsfor Qn+2 > Qcut

    • iterate• sum all contributions• eg. p⊥(h)>200 GeV

    has contributions fr.multiple topologies

    Marek Schönherr IPPP Durham

    Multijet merging and jet substructure 5/23

  • Multijet merging Jet properties Conclusions

    MEPS

    pp → h + jetspp → h + 0jpp → h + 1jpp → h + 2j

    0 50 100 150 200 250 30010−4

    10−3

    10−2

    10−1

    Transverse momentum of the Higgs boson

    p⊥(h) [GeV]

    /dp ⊥

    [pb/

    GeV

    ]

    • first emission by PS,restrict toQn+1 < Qcut

    • LOPS pp→ h+ jetfor Qn+1 > Qcut

    • restrict emission offpp→ h+ jet toQn+2 < Qcut

    • LOPS pp→ h+ 2jetsfor Qn+2 > Qcut

    • iterate• sum all contributions• eg. p⊥(h)>200 GeV

    has contributions fr.multiple topologies

    Marek Schönherr IPPP Durham

    Multijet merging and jet substructure 5/23

  • Multijet merging Jet properties Conclusions

    MEPS

    pp → h + jetspp → h + 0jpp → h + 1jpp → h + 2jpp → h + 3j

    0 50 100 150 200 250 30010−4

    10−3

    10−2

    10−1

    Transverse momentum of the Higgs boson

    p⊥(h) [GeV]

    /dp ⊥

    [pb/

    GeV

    ]

    • first emission by PS,restrict toQn+1 < Qcut

    • LOPS pp→ h+ jetfor Qn+1 > Qcut

    • restrict emission offpp→ h+ jet toQn+2 < Qcut

    • LOPS pp→ h+ 2jetsfor Qn+2 > Qcut

    • iterate• sum all contributions• eg. p⊥(h)>200 GeV

    has contributions fr.multiple topologies

    Marek Schönherr IPPP Durham

    Multijet merging and jet substructure 5/23

  • Multijet merging Jet properties Conclusions

    MEPS

    pp → h + jetspp → h + 0jpp → h + 1jpp → h + 2jpp → h + 3j

    0 50 100 150 200 250 30010−4

    10−3

    10−2

    10−1

    Transverse momentum of the Higgs boson

    p⊥(h) [GeV]

    /dp ⊥

    [pb/

    GeV

    ]

    • first emission by PS,restrict toQn+1 < Qcut

    • LOPS pp→ h+ jetfor Qn+1 > Qcut

    • restrict emission offpp→ h+ jet toQn+2 < Qcut

    • LOPS pp→ h+ 2jetsfor Qn+2 > Qcut

    • iterate• sum all contributions• eg. p⊥(h)>200 GeV

    has contributions fr.multiple topologies

    Marek Schönherr IPPP Durham

    Multijet merging and jet substructure 5/23

  • Multijet merging Jet properties Conclusions

    MEPS

    pp → h + jetspp → h + 0jpp → h + 1jpp → h + 2jpp → h + 3j

    0 50 100 150 200 250 30010−4

    10−3

    10−2

    10−1

    Transverse momentum of the Higgs boson

    p⊥(h) [GeV]

    /dp ⊥

    [pb/

    GeV

    ]

    • first emission by PS,restrict toQn+1 < Qcut

    • LOPS pp→ h+ jetfor Qn+1 > Qcut

    • restrict emission offpp→ h+ jet toQn+2 < Qcut

    • LOPS pp→ h+ 2jetsfor Qn+2 > Qcut

    • iterate• sum all contributions• eg. p⊥(h)>200 GeV

    has contributions fr.multiple topologies

    Marek Schönherr IPPP Durham

    Multijet merging and jet substructure 5/23

  • Multijet merging Jet properties Conclusions

    MEPS@NLOPS NLO

    NLO

    NLO

    NLOPS (MC@NLO,POWHEG)

    Frixione, Webber JHEP06(2002)029

    Nason JHEP11(2004)040, Frixione et.al. JHEP11(2007)070

    Höche, Krauss, MS, Siegert JHEP09(2012)049

    • matrix elements (ME) and parton showers (PS) are approximations indifferent regions of phase space

    • MEPS combines multiple LOPS – keeping either accuracy• NLOPS elevate LOPS to NLO accuracy• MENLOPS supplements core NLOPS with higher multiplicities LOPS•

    Marek Schönherr IPPP Durham

    Multijet merging and jet substructure 6/23

  • Multijet merging Jet properties Conclusions

    MEPS@NLOME

    PS NLO

    NLO

    NLO

    LO

    LO

    LO LO

    MENLOPS (CKKW-like)

    Hamilton, Nason JHEP06(2010)039

    Höche, Krauss, MS, Siegert JHEP08(2011)123

    Gehrmann, Höche, Krauss, MS, Siegert JHEP01(2013)144

    • matrix elements (ME) and parton showers (PS) are approximations indifferent regions of phase space

    • MEPS combines multiple LOPS – keeping either accuracy• NLOPS elevate LOPS to NLO accuracy• MENLOPS supplements core NLOPS with higher multiplicities LOPS•

    Marek Schönherr IPPP Durham

    Multijet merging and jet substructure 6/23

  • Multijet merging Jet properties Conclusions

    MEPS@NLOME

    PS NLO

    NLO

    NLO

    NLO

    NLO

    NLO NLO

    MEPS@NLO (CKKW-like)

    Lavesson, Lönnblad JHEP12(2008)070

    Höche, Krauss, MS, Siegert JHEP04(2013)027

    Gehrmann, Höche, Krauss, MS, Siegert JHEP01(2013)144

    Lönnblad, Prestel JHEP03(2013)166

    Plätzer JHEP08(2013)114

    • matrix elements (ME) and parton showers (PS) are approximations indifferent regions of phase space

    • MEPS combines multiple LOPS – keeping either accuracy• NLOPS elevate LOPS to NLO accuracy• MENLOPS supplements core NLOPS with higher multiplicities LOPS• MEPS@NLO combines multiple NLOPS – keeping either accuracy

    Marek Schönherr IPPP Durham

    Multijet merging and jet substructure 6/23

  • Multijet merging Jet properties Conclusions

    MEPS@NLOME

    PS NLO

    NLO

    NLO

    NLO

    NLO

    NLO NLO

    MEPS@NLO (CKKW-like)

    Lavesson, Lönnblad JHEP12(2008)070

    Höche, Krauss, MS, Siegert JHEP04(2013)027

    Gehrmann, Höche, Krauss, MS, Siegert JHEP01(2013)144

    Lönnblad, Prestel JHEP03(2013)166

    Plätzer JHEP08(2013)114

    • matrix elements (ME) and parton showers (PS) are approximations indifferent regions of phase space

    • MEPS combines multiple LOPS – keeping either accuracy• NLOPS elevate LOPS to NLO accuracy• MENLOPS supplements core NLOPS with higher multiplicities LOPS• MEPS@NLO combines multiple NLOPS – keeping either accuracy

    Marek Schönherr IPPP Durham

    Multijet merging and jet substructure 6/23

  • Multijet merging Jet properties Conclusions

    MEPS@NLO

    pp → h + jetsSherpa S-MC@NLO

    0 50 100 150 200 250 30010−4

    10−3

    10−2

    10−1

    Transverse momentum of the Higgs boson

    p⊥(h) [GeV]

    /dp ⊥

    [pb/

    GeV

    ]

    • first emission byNLOPS , restrict toQn+1 < Qcut

    • NLOPS pp→ h+ jetfor Qn+1 > Qcut

    • restrict emission offpp→ h+ jet toQn+2 < Qcut

    • NLOPSpp→ h+ 2jets forQn+2 > Qcut

    • iterate• sum all contributions• eg. p⊥(h)>200 GeV

    has contributions fr.multiple topologies

    Marek Schönherr IPPP Durham

    Multijet merging and jet substructure 7/23

  • Multijet merging Jet properties Conclusions

    MEPS@NLO

    pp → h + jetspp → h + 0j @ NLO

    0 50 100 150 200 250 30010−4

    10−3

    10−2

    10−1

    Transverse momentum of the Higgs boson

    p⊥(h) [GeV]

    /dp ⊥

    [pb/

    GeV

    ]

    • first emission byNLOPS , restrict toQn+1 < Qcut

    • NLOPS pp→ h+ jetfor Qn+1 > Qcut

    • restrict emission offpp→ h+ jet toQn+2 < Qcut

    • NLOPSpp→ h+ 2jets forQn+2 > Qcut

    • iterate• sum all contributions• eg. p⊥(h)>200 GeV

    has contributions fr.multiple topologies

    Marek Schönherr IPPP Durham

    Multijet merging and jet substructure 7/23

  • Multijet merging Jet properties Conclusions

    MEPS@NLO

    pp → h + jetspp → h + 0j @ NLOpp → h + 1j @ NLO

    0 50 100 150 200 250 30010−4

    10−3

    10−2

    10−1

    Transverse momentum of the Higgs boson

    p⊥(h) [GeV]

    /dp ⊥

    [pb/

    GeV

    ]

    • first emission byNLOPS , restrict toQn+1 < Qcut

    • NLOPS pp→ h+ jetfor Qn+1 > Qcut

    • restrict emission offpp→ h+ jet toQn+2 < Qcut

    • NLOPSpp→ h+ 2jets forQn+2 > Qcut

    • iterate• sum all contributions• eg. p⊥(h)>200 GeV

    has contributions fr.multiple topologies

    Marek Schönherr IPPP Durham

    Multijet merging and jet substructure 7/23

  • Multijet merging Jet properties Conclusions

    MEPS@NLO

    pp → h + jetspp → h + 0j @ NLOpp → h + 1j @ NLO

    0 50 100 150 200 250 30010−4

    10−3

    10−2

    10−1

    Transverse momentum of the Higgs boson

    p⊥(h) [GeV]

    /dp ⊥

    [pb/

    GeV

    ]

    • first emission byNLOPS , restrict toQn+1 < Qcut

    • NLOPS pp→ h+ jetfor Qn+1 > Qcut

    • restrict emission offpp→ h+ jet toQn+2 < Qcut

    • NLOPSpp→ h+ 2jets forQn+2 > Qcut

    • iterate• sum all contributions• eg. p⊥(h)>200 GeV

    has contributions fr.multiple topologies

    Marek Schönherr IPPP Durham

    Multijet merging and jet substructure 7/23

  • Multijet merging Jet properties Conclusions

    MEPS@NLO

    pp → h + jetspp → h + 0j @ NLOpp → h + 1j @ NLOpp → h + 2j @ NLO

    0 50 100 150 200 250 30010−4

    10−3

    10−2

    10−1

    Transverse momentum of the Higgs boson

    p⊥(h) [GeV]

    /dp ⊥

    [pb/

    GeV

    ]

    • first emission byNLOPS , restrict toQn+1 < Qcut

    • NLOPS pp→ h+ jetfor Qn+1 > Qcut

    • restrict emission offpp→ h+ jet toQn+2 < Qcut

    • NLOPSpp→ h+ 2jets forQn+2 > Qcut

    • iterate• sum all contributions• eg. p⊥(h)>200 GeV

    has contributions fr.multiple topologies

    Marek Schönherr IPPP Durham

    Multijet merging and jet substructure 7/23

  • Multijet merging Jet properties Conclusions

    MEPS@NLO

    pp → h + jetspp → h + 0j @ NLOpp → h + 1j @ NLOpp → h + 2j @ NLO

    0 50 100 150 200 250 30010−4

    10−3

    10−2

    10−1

    Transverse momentum of the Higgs boson

    p⊥(h) [GeV]

    /dp ⊥

    [pb/

    GeV

    ]

    • first emission byNLOPS , restrict toQn+1 < Qcut

    • NLOPS pp→ h+ jetfor Qn+1 > Qcut

    • restrict emission offpp→ h+ jet toQn+2 < Qcut

    • NLOPSpp→ h+ 2jets forQn+2 > Qcut

    • iterate• sum all contributions• eg. p⊥(h)>200 GeV

    has contributions fr.multiple topologies

    Marek Schönherr IPPP Durham

    Multijet merging and jet substructure 7/23

  • Multijet merging Jet properties Conclusions

    MEPS@NLO

    pp → h + jetspp → h + 0j @ NLOpp → h + 1j @ NLOpp → h + 2j @ NLOpp → h + 3j @ LO

    0 50 100 150 200 250 30010−4

    10−3

    10−2

    10−1

    Transverse momentum of the Higgs boson

    p⊥(h) [GeV]

    /dp ⊥

    [pb/

    GeV

    ]

    • first emission byNLOPS , restrict toQn+1 < Qcut

    • NLOPS pp→ h+ jetfor Qn+1 > Qcut

    • restrict emission offpp→ h+ jet toQn+2 < Qcut

    • NLOPSpp→ h+ 2jets forQn+2 > Qcut

    • iterate• sum all contributions• eg. p⊥(h)>200 GeV

    has contributions fr.multiple topologies

    Marek Schönherr IPPP Durham

    Multijet merging and jet substructure 7/23

  • Multijet merging Jet properties Conclusions

    MEPS@NLO

    pp → h + jetspp → h + 0j @ NLOpp → h + 1j @ NLOpp → h + 2j @ NLOpp → h + 3j @ LO

    0 50 100 150 200 250 30010−4

    10−3

    10−2

    10−1

    Transverse momentum of the Higgs boson

    p⊥(h) [GeV]

    /dp ⊥

    [pb/

    GeV

    ]

    • first emission byNLOPS , restrict toQn+1 < Qcut

    • NLOPS pp→ h+ jetfor Qn+1 > Qcut

    • restrict emission offpp→ h+ jet toQn+2 < Qcut

    • NLOPSpp→ h+ 2jets forQn+2 > Qcut

    • iterate• sum all contributions• eg. p⊥(h)>200 GeV

    has contributions fr.multiple topologies

    Marek Schönherr IPPP Durham

    Multijet merging and jet substructure 7/23

  • Multijet merging Jet properties Conclusions

    MEPS@NLO

    pp → h + jetspp → h + 0j @ NLOpp → h + 1j @ NLOpp → h + 2j @ NLOpp → h + 3j @ LO

    0 50 100 150 200 250 30010−4

    10−3

    10−2

    10−1

    Transverse momentum of the Higgs boson

    p⊥(h) [GeV]

    /dp ⊥

    [pb/

    GeV

    ]

    • first emission byNLOPS , restrict toQn+1 < Qcut

    • NLOPS pp→ h+ jetfor Qn+1 > Qcut

    • restrict emission offpp→ h+ jet toQn+2 < Qcut

    • NLOPSpp→ h+ 2jets forQn+2 > Qcut

    • iterate• sum all contributions• eg. p⊥(h)>200 GeV

    has contributions fr.multiple topologies

    Marek Schönherr IPPP Durham

    Multijet merging and jet substructure 7/23

  • Multijet merging Jet properties Conclusions

    Recent results in SHERPA

    Multijet merging at NLO accuracy (MEPS@NLO)

    • pp→W + jets – SHERPA+BLACKHAT Höche, Krauss, MS, Siegert JHEP04(2013)027• e+e− → jets – SHERPA+BLACKHAT

    Gehrmann, Höche, Krauss, MS, Siegert JHEP01(2013)144

    • pp→ h+ jets – SHERPA+GOSAM/MCFMHöche, Krauss, MS, Siegert, contribution to YR3 arXiv:1307.1347

    Höche, Krauss, MS arXiv.1401.7971

    MS, Zapp, contribution to LH13 arXiv:1405.1067

    • pp̄→ tt̄+ jets – SHERPA+GOSAM/OPENLOOPSHöche, Huang, Luisoni, MS, Winter Phys.Rev.D88(2013)014040

    Höche, Krauss, Maierhöfer, Pozzorini, MS, Siegert arXiv:1402.6293

    • pp→ 4`+ jets – SHERPA+OPENLOOPSCascioli, Höche, Krauss, Maierhöfer, Pozzorini, Siegert JHEP01(2014)046

    • pp→ V H+ jets, pp→ V V + jets, pp→ V V V + jets– SHERPA+OPENLOOPS

    Höche, Krauss, Pozzorini, MS, Thompson, Zapp Phys.Rev.D89(2014)114006

    Marek Schönherr IPPP Durham

    Multijet merging and jet substructure 8/23

  • Multijet merging Jet properties Conclusions

    pp→ tt̄+jetsHöche, Krauss, Maierhöfer, Pozzorini, MS, Siegert in arXiv:1401.7971

    Sherpa+OpenLoops

    pl-jet⊥ > 40 GeV

    pl-jet⊥ > 60 GeV×0.1

    pl-jet⊥ > 80 GeV×0.01

    [email protected] × MEPS@LOS-MC@NLO

    0 1 2 3

    10−5

    10−4

    10−3

    10−2

    10−1

    1Inclusive light jet multiplicity

    Nl-jet

    σ(≥

    Nl-

    jet)

    [pb]

    pp→ tt̄+jets (0,1,2 @ NLO; 3 @ LO)• scales:α2+ns (µR) = α

    2s(µcore)

    n∏i=1

    αs(ti),

    µF = µQ = µcore on 2→ 2Qcut = 30 GeV

    µcore = −2

    1p0p1

    + 1p0p2 +1

    p0p3

    • µR/F ∈ [ 12 , 2]µdefR/F• µQ ∈ [ 1√2 ,

    √2]µdefQ

    • Qcut ∈ {20, 30, 40} GeV• spin-correlated dileptonic decays

    at LO accuracy

    Marek Schönherr IPPP Durham

    Multijet merging and jet substructure 9/23

  • Multijet merging Jet properties Conclusions

    pp→ tt̄+jets

    Sherpa+OpenLoops

    [email protected] × MEPS@LO

    S-MC@NLO

    10−6

    10−5

    10−4

    10−3

    10−2Transverse momentum of reconstructed top quark

    /d

    p T[p

    b/G

    eV]

    0 100 200 300 400 500 600

    0.5

    1

    1.5

    pT (top) [GeV]

    Rat

    ioto

    ME

    PS@

    NL

    O

    pp→ tt̄+jets (0,1,2 @ NLO; 3 @ LO)Reconstructed top p⊥

    • again, shapes are stable• noticable reduction in

    uncertainty

    • inclusive observable, but largenumber of events with ≥1 jetnecessitates mutlijet merging forbest accuracy

    Marek Schönherr IPPP Durham

    Multijet merging and jet substructure 10/23

  • Multijet merging Jet properties Conclusions

    pp→ tt̄+jets

    Sherpa+OpenLoops

    pp → tt̄ excl.pp → tt̄ + 1j excl.pp → tt̄ + 2j excl.pp → tt̄ + 3j incl.

    MEPS@NLO

    10−6

    10−5

    10−4

    10−3

    10−2Transverse momentum of reconstructed top quark

    /d

    p T[p

    b/G

    eV]

    0 100 200 300 400 500 600

    0.5

    1

    pT (top) [GeV]

    Rat

    ioto

    ME

    PS@

    NL

    O

    pp→ tt̄+jets (0,1,2 @ NLO; 3 @ LO)Reconstructed top p⊥

    • again, shapes are stable• noticable reduction in

    uncertainty

    • inclusive observable, but largenumber of events with ≥1 jetnecessitates mutlijet merging forbest accuracy

    Marek Schönherr IPPP Durham

    Multijet merging and jet substructure 10/23

  • Multijet merging Jet properties Conclusions

    pp→ tt̄+jets

    Sherpa+OpenLoops

    [email protected] × MEPS@LO

    S-MC@NLO

    10−5

    10−4

    10−3

    Total transverse energy

    /d

    Hto

    tT

    [pb/

    GeV

    ]

    200 400 600 800 1000 1200

    0.5

    1

    1.5

    HtotT [GeV]

    Rat

    ioto

    ME

    PS@

    NL

    O

    pp→ tt̄+jets (0,1,2 @ NLO; 3 @ LO)Total transverse energyH totT =

    ∑b-jets

    p⊥+∑l-jets

    p⊥+∑lep

    p⊥+EmissT

    • relevant observable for newphysics searches

    • slight correction to MEPS shapesat high H totT

    • noticable reduction in uncert.,especially at high H totT

    • inclusive observable, butdominated by configurationswith different number of jets atsuccessively higher H totT

    Marek Schönherr IPPP Durham

    Multijet merging and jet substructure 11/23

  • Multijet merging Jet properties Conclusions

    pp→ tt̄+jets

    Sherpa+OpenLoops

    MEPS@NLOpp → tt̄ excl.pp → tt̄ + j excl.pp → tt̄ + 2j excl.pp → tt̄ + 3j incl.

    10−6

    10−5

    10−4

    10−3

    10−2Total transverse energy

    /d

    Hto

    tT

    [pb/

    GeV

    ]

    200 400 600 800 1000 1200

    0.5

    1

    HtotT [GeV]

    Rat

    ioto

    ME

    PS@

    NL

    O

    pp→ tt̄+jets (0,1,2 @ NLO; 3 @ LO)Total transverse energyH totT =

    ∑b-jets

    p⊥+∑l-jets

    p⊥+∑lep

    p⊥+EmissT

    • relevant observable for newphysics searches

    • slight correction to MEPS shapesat high H totT

    • noticable reduction in uncert.,especially at high H totT

    • inclusive observable, butdominated by configurationswith different number of jets atsuccessively higher H totT

    Marek Schönherr IPPP Durham

    Multijet merging and jet substructure 11/23

  • Multijet merging Jet properties Conclusions

    Jet properties

    Jet production comprises contributions from all energy regimes:

    �������������������������

    �������������������������

    ������������������������������������������������������������

    ������������������������������������������������������������

    ������������������������������������

    ������������������������������������

    ������������������������������������

    ������������������������������������

    ���������������������������������������������������������

    ���������������������������������������������������������

    ������������

    ������������

    ������������������

    ������������������

    ��������������������

    ��������������������

    ������������������

    ������������������

    ��������������������

    ��������������������

    ������������������

    ������������������

    ��������������������

    ��������������������

    ��������������������

    ��������������������

    ������������������������

    ������������������������

    ������������������������

    ������������������������

    ��������������������

    ��������������������

    ������������������

    ������������������������

    ������������

    ������������������

    ���������������

    ���������������

    ������������������

    ������������������

    �������������������������

    �������������������������

    ���������������

    ���������������

    ������������������

    ������������������

    ������������������������

    ������������������

    ������������������

    ������������

    ������������

    ������������������

    ������������������

    ����������

    ����������

    ����������

    ����������

    ������������������

    ������������������ ���

    ������������

    ���������������

    ������������������

    ������������������

    ���������������

    ���������������

    ����������

    ����������

    ������������������

    ������������������

    ������������

    ������������

    ���������������

    ���������������

    ��������������������

    ��������������������

    ������������

    ������������

    ������������������

    ������������������

    ������������������������������������

    ��������������������������������������

    ����������

    ������������

    ���������������

    ���������������

    ���������������

    ���������������

    • perturbative contributions- hard seed parton(s) → fixed order matrix elements- soft & collinear emissions (parton shower w/ colour coherence)

    • non-perturbative contributions- (uncorrelated) contributions from additional partonic interactions- hadronisation and hadron decays

    ⇒ small scale contributions especially important for intrajet observables

    • necessity to describe intrajet observables well to be useful in jetsubstructure analysis

    • need to describe hard emissions well• recoil to produce boosted heavy particles (production xsecs/dists)• good chance they will end up in same fat jet (Qcut usally k⊥-type)

    ⇒ multijet merging must preserve soft physicsMarek Schönherr IPPP Durham

    Multijet merging and jet substructure 12/23

  • Multijet merging Jet properties Conclusions

    Jet properties

    Jet production comprises contributions from all energy regimes:

    �������������������������

    �������������������������

    ������������������������������������������������������������

    ������������������������������������������������������������

    ������������������������������������

    ������������������������������������

    ������������������������������������

    ������������������������������������

    ���������������������������������������������������������

    ���������������������������������������������������������

    ������������

    ������������

    ������������������

    ������������������

    ��������������������

    ��������������������

    ������������������

    ������������������

    ��������������������

    ��������������������

    ������������������

    ������������������

    ��������������������

    ��������������������

    ��������������������

    ��������������������

    ������������������������

    ������������������������

    ������������������������

    ������������������������

    ��������������������

    ��������������������

    ������������������

    ������������������������

    ������������

    ������������������

    ���������������

    ���������������

    ������������������

    ������������������

    �������������������������

    �������������������������

    ���������������

    ���������������

    ������������������

    ������������������

    ������������������������

    ������������������

    ������������������

    ������������

    ������������

    ������������������

    ������������������

    ����������

    ����������

    ����������

    ����������

    ������������������

    ������������������ ���

    ������������

    ���������������

    ������������������

    ������������������

    ���������������

    ���������������

    ����������

    ����������

    ������������������

    ������������������

    ������������

    ������������

    ���������������

    ���������������

    ��������������������

    ��������������������

    ������������

    ������������

    ������������������

    ������������������

    ������������������������������������

    ��������������������������������������

    ����������

    ������������

    ���������������

    ���������������

    ���������������

    ���������������

    • perturbative contributions- hard seed parton(s) → fixed order matrix elements- soft & collinear emissions (parton shower w/ colour coherence)

    • non-perturbative contributions- (uncorrelated) contributions from additional partonic interactions- hadronisation and hadron decays

    ⇒ small scale contributions especially important for intrajet observables

    • necessity to describe intrajet observables well to be useful in jetsubstructure analysis

    • need to describe hard emissions well• recoil to produce boosted heavy particles (production xsecs/dists)• good chance they will end up in same fat jet (Qcut usally k⊥-type)

    ⇒ multijet merging must preserve soft physicsMarek Schönherr IPPP Durham

    Multijet merging and jet substructure 12/23

  • Multijet merging Jet properties Conclusions

    Jet shapes – differential jet shape ρ(r)

    0.1 0.2 0.3 0.4 0.5

    (r)

    ρ

    -110

    1

    10 jets, R = 0.6

    tanti-k

    < 160 GeVT

    p110 GeV <

    | < 2.8y|

    ATLAS

    Data

    6)→Sherpa 1.2.3 (2

    2)→Sherpa 1.2.3 (2

    2)→Sherpa 1.3.0 (2

    ALPGEN+PYTHIA

    r0 0.1 0.2 0.3 0.4 0.5 0.6

    Data

    /MC

    0.81

    1.20.1 0.2 0.3 0.4 0.5

    (r)

    ρ

    -110

    1

    10 jets, R = 0.6

    tanti-k

    < 260 GeVT

    p210 GeV <

    | < 2.8y|

    ATLAS

    Data

    6)→Sherpa 1.2.3 (2

    2)→Sherpa 1.2.3 (2

    2)→Sherpa 1.3.0 (2

    ALPGEN+PYTHIA

    r0 0.1 0.2 0.3 0.4 0.5 0.6

    Data

    /MC

    0.81

    1.2

    0.1 0.2 0.3 0.4 0.5

    (r)

    ρ

    -110

    1

    10 jets, R = 0.6

    tanti-k

    < 40 GeVT

    p30 GeV <

    | < 2.8y|

    ATLAS

    Data

    6)→Sherpa 1.2.3 (2

    2)→Sherpa 1.2.3 (2

    2)→Sherpa 1.3.0 (2

    ALPGEN+PYTHIA

    r0 0.1 0.2 0.3 0.4 0.5 0.6

    Data

    /MC

    0.81

    1.20.1 0.2 0.3 0.4 0.5

    (r)

    ρ

    -110

    1

    10 jets, R = 0.6

    tanti-k

    < 80 GeVT

    p60 GeV <

    | < 2.8y|

    ATLAS

    Data

    6)→Sherpa 1.2.3 (2

    2)→Sherpa 1.2.3 (2

    2)→Sherpa 1.3.0 (2

    ALPGEN+PYTHIA

    r0 0.1 0.2 0.3 0.4 0.5 0.6

    Data

    /MC

    0.81

    1.2

    ATLAS collaboration Phys.Rev.D83(2011)052003, ATL-PHYS-PUB-2011-010

    Marek Schönherr IPPP Durham

    Multijet merging and jet substructure 13/23

  • Multijet merging Jet properties Conclusions

    Jet shapes – differential jet shape ρ(r)

    b

    b

    b

    b

    bb

    b ATLAS dataSherpa-2.0.0

    10−1

    1

    10 1Jet shape ρ for p⊥ ∈ 110–160 GeV, y ∈ 0.0–2.8

    ρ(r)

    b b b b b b

    0 0.1 0.2 0.3 0.4 0.5 0.6

    0.81

    1.2

    r

    MC

    /Dat

    a

    b

    b

    b

    b

    b

    b

    b ATLAS dataSherpa-2.0.0

    10−1

    1

    10 1Jet shape ρ for p⊥ ∈ 210–260 GeV, y ∈ 0.0–2.8

    ρ(r)

    b b b b b b

    0 0.1 0.2 0.3 0.4 0.5 0.6

    0.81

    1.2

    r

    MC

    /Dat

    a

    bb

    b

    bb

    b

    b ATLAS dataSherpa-2.0.0

    10−1

    1

    10 1Jet shape ρ for p⊥ ∈ 30–40 GeV, y ∈ 0.0–2.8

    ρ(r)

    b b b b b b

    0 0.1 0.2 0.3 0.4 0.5 0.6

    0.81

    1.2

    r

    MC

    /Dat

    a

    b

    b

    b

    bb

    b

    b ATLAS dataSherpa-2.0.0

    10−1

    1

    10 1Jet shape ρ for p⊥ ∈ 60–80 GeV, y ∈ 0.0–2.8

    ρ(r)

    b b b b b b

    0 0.1 0.2 0.3 0.4 0.5 0.6

    0.81

    1.2

    r

    MC

    /Dat

    a

    ATLAS data Phys.Rev.D83(2011)052003

    Marek Schönherr IPPP Durham

    Multijet merging and jet substructure 14/23

  • Multijet merging Jet properties Conclusions

    Jet shapes – differential jet shape ρ(r)

    b

    b

    b

    b

    b

    b

    b ATLAS dataSherpa-2.0.0

    10−1

    1

    10 1Jet shape ρ for p⊥ ∈ 400–500 GeV, y ∈ 0.0–2.8

    ρ(r)

    b b b b b b

    0 0.1 0.2 0.3 0.4 0.5 0.6

    0.81

    1.2

    r

    MC

    /Dat

    a

    b

    b

    b

    b

    b

    b

    b ATLAS dataSherpa-2.0.0

    10−1

    1

    10 1Jet shape ρ for p⊥ ∈ 500–600 GeV, y ∈ 0.0–2.8

    ρ(r)

    b b b b b b

    0 0.1 0.2 0.3 0.4 0.5 0.6

    0.81

    1.2

    r

    MC

    /Dat

    a

    ATLAS data Phys.Rev.D83(2011)052003

    Marek Schönherr IPPP Durham

    Multijet merging and jet substructure 15/23

  • Multijet merging Jet properties Conclusions

    Jet shapes – integrated jet shape 1−Ψ(r = 0.3)

    0.5 1 1.5 2 2.5

    (r =

    0.3

    1 -

    0.05

    0.06

    0.07

    0.08

    0.09

    0.1

    0.11

    0.12

    0.13

    0.14 jets, R = 0.6

    tanti-k

    < 160 GeVT

    p110 GeV <

    ATLAS

    Data 6)→Sherpa 1.2.3 (2 2)→Sherpa 1.2.3 (2 2)→Sherpa 1.3.0 (2

    ALPGEN+PYTHIA

    |y|

    0 0.5 1 1.5 2 2.5

    Data

    /MC

    0.60.8

    11.21.4 0.5 1 1.5 2 2.5

    (r =

    0.3

    1 -

    0.04

    0.05

    0.06

    0.07

    0.08

    0.09

    0.1

    0.11 jets, R = 0.6

    tanti-k

    < 260 GeVT

    p210 GeV <

    ATLAS

    Data 6)→Sherpa 1.2.3 (2 2)→Sherpa 1.2.3 (2 2)→Sherpa 1.3.0 (2

    ALPGEN+PYTHIA

    |y|

    0 0.5 1 1.5 2 2.5

    Data

    /MC

    0.60.8

    11.21.4

    0.5 1 1.5 2 2.5

    (r =

    0.3

    1 -

    0.12

    0.14

    0.16

    0.18

    0.2

    0.22

    0.24

    0.26

    0.28

    0.3

    0.32

    jets, R = 0.6t

    anti-k

    < 40 GeVT

    p30 GeV <

    ATLAS

    Data 6)→Sherpa 1.2.3 (2 2)→Sherpa 1.2.3 (2 2)→Sherpa 1.3.0 (2

    ALPGEN+PYTHIA

    |y|

    0 0.5 1 1.5 2 2.5

    Data

    /MC

    0.60.8

    11.21.4 0.5 1 1.5 2 2.5

    (r =

    0.3

    1 -

    0.08

    0.1

    0.12

    0.14

    0.16

    0.18

    0.2 jets, R = 0.6

    tanti-k

    < 80 GeVT

    p60 GeV <

    ATLAS

    Data 6)→Sherpa 1.2.3 (2 2)→Sherpa 1.2.3 (2 2)→Sherpa 1.3.0 (2

    ALPGEN+PYTHIA

    |y|

    0 0.5 1 1.5 2 2.5

    Data

    /MC

    0.60.8

    11.21.4

    ATLAS collaboration Phys.Rev.D83(2011)052003, ATL-PHYS-PUB-2011-010

    Marek Schönherr IPPP Durham

    Multijet merging and jet substructure 16/23

  • Multijet merging Jet properties Conclusions

    Jet shapes – integrated jet shape 1−Ψ(r = 0.3)

    100 200 300 400 500 600

    (r =

    0.3

    1 -

    0.05

    0.1

    0.15

    0.2

    0.25

    0.3 jets, R = 0.6

    tanti-k

    | < 2.8y2.1 < |

    ATLAS

    Data

    6)→Sherpa 1.2.3 (2

    2)→Sherpa 1.2.3 (2

    2)→Sherpa 1.3.0 (2

    ALPGEN+PYTHIA

    (GeV)T

    p

    0 100 200 300 400 500 600

    Data

    /MC

    0.60.8

    11.21.4 100 200 300 400 500 600

    (r =

    0.3

    1 -

    0.05

    0.1

    0.15

    0.2

    0.25

    0.3 jets, R = 0.6

    tanti-k

    | < 2.8y|

    ATLAS

    Data

    6)→Sherpa 1.2.3 (2

    2)→Sherpa 1.2.3 (2

    2)→Sherpa 1.3.0 (2

    ALPGEN+PYTHIA

    (GeV)T

    p

    0 100 200 300 400 500 600

    Data

    /MC

    0.60.8

    11.21.4

    100 200 300 400 500 600

    (r =

    0.3

    1 -

    0.05

    0.1

    0.15

    0.2

    0.25

    0.3 jets, R = 0.6

    tanti-k

    | < 0.3y|

    ATLAS

    Data

    6)→Sherpa 1.2.3 (2

    2)→Sherpa 1.2.3 (2

    2)→Sherpa 1.3.0 (2

    ALPGEN+PYTHIA

    (GeV)T

    p

    0 100 200 300 400 500 600

    Data

    /MC

    0.60.8

    11.21.4 100 200 300 400 500 600

    (r =

    0.3

    1 -

    0.05

    0.1

    0.15

    0.2

    0.25

    0.3 jets, R = 0.6

    tanti-k

    | < 1.2y0.8 < |

    ATLAS

    Data

    6)→Sherpa 1.2.3 (2

    2)→Sherpa 1.2.3 (2

    2)→Sherpa 1.3.0 (2

    ALPGEN+PYTHIA

    (GeV)T

    p

    0 100 200 300 400 500 600

    Data

    /MC

    0.60.8

    11.21.4

    ATLAS collaboration Phys.Rev.D83(2011)052003, ATL-PHYS-PUB-2011-010

    Marek Schönherr IPPP Durham

    Multijet merging and jet substructure 17/23

  • Multijet merging Jet properties Conclusions

    Jet shapes – integrated jet shape Ψ(r)

    b

    bb

    b bb

    b ATLAS dataSherpa-2.0.0

    0

    0.2

    0.4

    0.6

    0.8

    1

    1.2Jet shape Ψ for p⊥ ∈ 110–160 GeV, y ∈ 1.2–2.1

    Ψ(r)

    b b b b b b

    0 0.1 0.2 0.3 0.4 0.5 0.6

    0.81

    1.2

    r

    MC

    /Dat

    a

    b

    bb b

    b b

    b ATLAS dataSherpa-2.0.0

    0

    0.2

    0.4

    0.6

    0.8

    1

    1.2Jet shape Ψ for p⊥ ∈ 210–260 GeV, y ∈ 2.1–2.8

    Ψ(r)

    b b b b b b

    0 0.1 0.2 0.3 0.4 0.5 0.6

    0.81

    1.2

    r

    MC

    /Dat

    a

    b

    b

    b

    bb

    b

    b ATLAS dataSherpa-2.0.0

    0

    0.2

    0.4

    0.6

    0.8

    1

    1.2Jet shape Ψ for p⊥ ∈ 30–40 GeV, y ∈ 0.0–0.3

    Ψ(r)

    b b b b b b

    0 0.1 0.2 0.3 0.4 0.5 0.6

    0.81

    1.2

    r

    MC

    /Dat

    a

    b

    b

    bb

    b b

    b ATLAS dataSherpa-2.0.0

    0

    0.2

    0.4

    0.6

    0.8

    1

    1.2Jet shape Ψ for p⊥ ∈ 60–80 GeV, y ∈ 0.8–1.2

    Ψ(r)

    b b b b b b

    0 0.1 0.2 0.3 0.4 0.5 0.6

    0.81

    1.2

    r

    MC

    /Dat

    a

    ATLAS data Phys.Rev.D83(2011)052003

    Marek Schönherr IPPP Durham

    Multijet merging and jet substructure 18/23

  • Multijet merging Jet properties Conclusions

    Jet shapes – integrated jet shape Ψ(r)

    b

    bb b

    b b

    b ATLAS dataSherpa-2.0.0

    0

    0.2

    0.4

    0.6

    0.8

    1

    1.2Jet shape Ψ for p⊥ ∈ 400–500 GeV, y ∈ 0.0–2.8

    Ψ(r)

    b b b b b b

    0 0.1 0.2 0.3 0.4 0.5 0.6

    0.81

    1.2

    r

    MC

    /Dat

    a

    b

    bb b

    b b

    b ATLAS dataSherpa-2.0.0

    0

    0.2

    0.4

    0.6

    0.8

    1

    1.2Jet shape Ψ for p⊥ ∈ 500–600 GeV, y ∈ 0.0–2.8

    Ψ(r)

    b b b b b b

    0 0.1 0.2 0.3 0.4 0.5 0.6

    0.81

    1.2

    r

    MC

    /Dat

    a

    ATLAS data Phys.Rev.D83(2011)052003

    Marek Schönherr IPPP Durham

    Multijet merging and jet substructure 19/23

  • Multijet merging Jet properties Conclusions

    Jet substructure – background mis-tag rate

    BOOST2011 arXiv:1201.0008

    Multijet background mis-tag rate in pp→ tt̄+ jets production

    0.1 0.2 0.3 0.4 0.5 0.6 0.7Signal efficiency

    10-3

    10-2

    10-1

    Back

    gro

    und m

    is-t

    ag

    ATLASCMSHEPJHNSubPrunedTWTrimmed

    0.1 0.2 0.3 0.4 0.5 0.6 0.7Signal efficiency

    10-3

    10-2

    10-1

    Back

    gro

    und m

    is-t

    ag

    ATLASCMSHEPJHNSubPrunedTWTrimmed

    • need to properly describe additional hard radiation that can end up in thefat jet leading to large (sub-)jet masses

    • otherwise mis-tag rates etc. underestimated

    no multijet merging

    pp→ jj

    multijet merging

    pp→ jj + up to 4j

    Marek Schönherr IPPP Durham

    Multijet merging and jet substructure 20/23

  • Multijet merging Jet properties Conclusions

    Jet substructure – signal observables

    BOOST2012 arXiv:1311.2708

    pp→ tt̄+ jets production

    • some observablesvery sensitive toadditional hardradiation

    • can be reduced byvarious techniques,but effects remain intails

    Marek Schönherr IPPP Durham

    Multijet merging and jet substructure 21/23

  • Multijet merging Jet properties Conclusions

    Conclusions

    Multijet merging

    • describes both hard radiation and intrajet evolution→ reliable estimate of event yields→ good description of jet substructure

    • for large cone radii and/or high boosts partons of large relative k⊥, Qij ,etc. land in the fat jet→ multijet merging must preserve resum. accuracy to describe these configs

    ⇒ tool of choice for boosted observables• various formulations and implementations exist• accuracy for hard emissions has recently been elevated to NLO

    accuracy for soft-collinear resummation remains at (N)LL

    SHERPA: current release SHERPA-2.1.1http://sherpa.hepforge.org

    Marek Schönherr IPPP Durham

    Multijet merging and jet substructure 22/23

    http://sherpa.hepforge.org

  • Multijet merging Jet properties Conclusions

    Thank you for your attention!

    Marek Schönherr IPPP Durham

    Multijet merging and jet substructure 23/23

  • Multijet merging Jet properties Conclusions

    MEPS

    Parton showers (operate in Nc →∞ limit):

    PSn(tc, tmax) = ∆n(tc, tmax) +

    ∫ tmaxtc

    dt′Kn(t′) ∆n(t′, tmax)

    Multijet merging at leading order:

    dσMEPS = dσLOn ⊗ PSn Θ(Qcut −Qn+1)+ dσLOn+1 Θ(Qn+1 −Qcut) ∆n(tn+1, tn) ⊗ PSn+1 Θ(Qcut −Qn+2)+ dσLOn+2 Θ(Qn+2 −Qcut) ∆n(tn+1, tn) ∆n+1(tn+2, tn+1) ⊗ PSn+2

    • restrict the parton shower on 2→ n to emit only below Qcut• arbitrary jet measure Qn = Qn(Φn)• add the n+ 1 ME and its parton shower• multiply by Sudakov wrt. 2→ n process to restore resummation• iterate• if tn(Φn) 6= Qn(Φn) truncated shower needed to fill gaps

    Marek Schönherr IPPP Durham

    Multijet merging and jet substructure 24/23

  • Multijet merging Jet properties Conclusions

    MEPS

    Parton showers (operate in Nc →∞ limit):

    PSn(tc, tmax) = ∆n(tc, tmax) +

    ∫ tmaxtc

    dt′Kn(t′) ∆n(t′, tmax)

    Multijet merging at leading order:

    dσMEPS = dσLOn ⊗ PSn Θ(Qcut −Qn+1)+ dσLOn+1 Θ(Qn+1 −Qcut) ∆n(tn+1, tn) ⊗ PSn+1 Θ(Qcut −Qn+2)+ dσLOn+2 Θ(Qn+2 −Qcut) ∆n(tn+1, tn) ∆n+1(tn+2, tn+1) ⊗ PSn+2

    • restrict the parton shower on 2→ n to emit only below Qcut• arbitrary jet measure Qn = Qn(Φn)• add the n+ 1 ME and its parton shower• multiply by Sudakov wrt. 2→ n process to restore resummation• iterate• if tn(Φn) 6= Qn(Φn) truncated shower needed to fill gaps

    αk+ns (µR) = αks (µcore)αs(t1) · · ·αs(tn)

    Marek Schönherr IPPP Durham

    Multijet merging and jet substructure 24/23

  • Multijet merging Jet properties Conclusions

    MEPS

    Parton showers (operate in Nc →∞ limit):

    PSn(tc, tmax) = ∆n(tc, tmax) +

    ∫ tmaxtc

    dt′Kn(t′) ∆n(t′, tmax)

    Multijet merging at leading order:

    dσMEPS = dσLOn ⊗ PSn Θ(Qcut −Qn+1)+ dσLOn+1 Θ(Qn+1 −Qcut) ∆n(tn+1, tn) ⊗ PSn+1 Θ(Qcut −Qn+2)+ dσLOn+2 Θ(Qn+2 −Qcut) ∆n(tn+1, tn) ∆n+1(tn+2, tn+1) ⊗ PSn+2

    • restrict the parton shower on 2→ n to emit only below Qcut• arbitrary jet measure Qn = Qn(Φn)• add the n+ 1 ME and its parton shower• multiply by Sudakov wrt. 2→ n process to restore resummation• iterate• if tn(Φn) 6= Qn(Φn) truncated shower needed to fill gaps Nason JHEP11(2004)040

    Marek Schönherr IPPP Durham

    Multijet merging and jet substructure 24/23

  • Multijet merging Jet properties Conclusions

    MEPS@NLO

    Parton showers for NLOPS (need to reproduce Nc = 3 singular limits for 1st em.):

    P̃Sn(tc, tmax) = ∆̃n(tc, tmax) +

    ∫ tmaxtc

    dt′K̃n(t′) ∆̃n(t′, tmax)

    Multijet merging at next-to-leading order:

    dσMEPS@NLO = dσNLOn ⊗ P̃Sn Θ(Qcut −Qn+1)+ dσNLOn+1 Θ(Qn+1 −Qcut)

    (∆n(tn+1, tn) −∆(1)n (tn+1, tn)

    )⊗ P̃Sn+1 Θ(Qcut −Qn+2)

    + dσNLOn+2 Θ(Qn+2 −Qcut)(

    ∆n(tn+1, tn)−∆(1)n (tn+1, tn))

    ×(

    ∆n+1(tn+2, tn+1)−∆(1)n+1(tn+2, tn+1))⊗ P̃Sn+2

    • NLOPS for 2→ n, restricted to emit only below Qcut• add the NLOPS for 2→ n+ 1• multiply by Sudakov wrt. 2→ n process to restore resummation• remove overlap of ∆n and dσNLOn+1, iterate• if tn(Φn) 6= Qn(Φn) truncated shower needed to fill gaps

    Marek Schönherr IPPP Durham

    Multijet merging and jet substructure 25/23

  • Multijet merging Jet properties Conclusions

    MEPS@NLO

    Parton showers for NLOPS (need to reproduce Nc = 3 singular limits for 1st em.):

    P̃Sn(tc, tmax) = ∆̃n(tc, tmax) +

    ∫ tmaxtc

    dt′K̃n(t′) ∆̃n(t′, tmax)

    Multijet merging at next-to-leading order:

    dσMEPS@NLO = dσNLOn ⊗ P̃Sn Θ(Qcut −Qn+1)+ dσNLOn+1 Θ(Qn+1 −Qcut)

    (∆n(tn+1, tn) −∆(1)n (tn+1, tn)

    )⊗ P̃Sn+1 Θ(Qcut −Qn+2)

    + dσNLOn+2 Θ(Qn+2 −Qcut)(

    ∆n(tn+1, tn)−∆(1)n (tn+1, tn))

    ×(

    ∆n+1(tn+2, tn+1)−∆(1)n+1(tn+2, tn+1))⊗ P̃Sn+2

    • NLOPS for 2→ n, restricted to emit only below Qcut• add the NLOPS for 2→ n+ 1• multiply by Sudakov wrt. 2→ n process to restore resummation• remove overlap of ∆n and dσNLOn+1, iterate

    αn+ks (µR) = αks (µcore)αs(t1) · · ·αs(tn)

    Marek Schönherr IPPP Durham

    Multijet merging and jet substructure 25/23

  • Multijet merging Jet properties Conclusions

    MENLOPS

    dσMENLOPS = dσNLOn ⊗ P̃Sn Θ(Qcut −Qn+1)+ kn(Φn+1) dσ

    LOn+1 Θ(Qn+1 −Qcut) ∆n(tn+1, tn)

    ⊗ PSn+1 Θ(Qcut −Qn+2)+ kn(Φn+1(Φn+2)) dσ

    LOn+2 Θ(Qn+2 −Qcut)

    ×∆n(tn+1, tn) ∆n+1(tn+2, tn+1) ⊗ PSn+2

    • restrict MC@NLO expression to region Q < Qcut• add in real radiation explicitly, as in MEPS• restore logarithmic behaviour by explicit Sudakov• local K-factor for continuity at Qcut

    kn(Φn+1) =B̄n (Φn(Φn+1))

    Bn (Φn(Φn+1))

    (1− Hn(Φn+1)

    Rn(Φn+1)

    )+

    Hn(Φn+1)

    Rn(Φn+1)

    • iterateMarek Schönherr IPPP Durham

    Multijet merging and jet substructure 26/23

  • Multijet merging Jet properties Conclusions

    Scale choices

    CKKW scales

    αn+ks (µ2R) = α

    ks (µ

    2core)αs(t1) · · ·αs(tn) µ2F,a/b = text,a/b µ2Q = µ2core

    Free choices

    1 µcore – scale of core process identified through clustering with inverseparton shower

    2 µR/F beyond 1-loop running

    - calculate with chosen µR/F- include renormalisation and factorisation terms to shift the 1-loop running

    to above

    Bnαs(µR)

    πβ0

    (log

    µRµR,CKKW

    )n+kand

    Bnαs2π

    logµFtext

    ∑c=q,g

    ∫ 1xa

    dz

    zPac(z)fc(xa/z, µ

    2F )

    → same as in UNLOPS Lönnblad, Prestel JHEP03(2013)166, Plätzer JHEP08(2013)114Marek Schönherr IPPP Durham

    Multijet merging and jet substructure 27/23

    Multijet mergingJet propertiesConclusions