Multi-Story Lateral Design - WoodWorks Shear Accumulation • Shear forces are additive from floor...

102
Lateral Design of Mid- Rise Wood Structures Presented by Ricky McLain, MS, PE, SE Technical Director – WoodWorks Chicago Area Workshops – April, 2017

Transcript of Multi-Story Lateral Design - WoodWorks Shear Accumulation • Shear forces are additive from floor...

LateralDesignofMid-RiseWoodStructures

PresentedbyRickyMcLain,MS,PE,SE

TechnicalDirector– WoodWorks

ChicagoAreaWorkshops – April, 2017

Follow the

load

Multi-StoryWoodDesign

Photocredit:MattTodd&PBArchitects

Following the load…

LoadPathContinuity

Photocredit:MattTodd&PBArchitects

Karuna IHolst Architecture

Photo: Terry Malone

Multi-StoryConsiderations

• WindLoadPaths

• Multi-StoryStackedShearWallEffects

• AccumulationofOverturningLoads

• ShearWallDeflection

• DiaphragmModeling

• DiscontinuousShearWalls

WindLoadDistributiontoShearwalls

WindLoadDistributiontoShearwalls

WindLoadDistributiontoShearwalls

Photocredit:MattTodd&PBArchitects

Multi-StoryWindLoadDesign

Photocredit:MattTodd&PBArchitects

DesignPrinciplesaretheSame

Rememberto:FOLLOWTHELOAD!

Multi-StoryWindLoadDesign

WINDSURFACELOADSONWALLS

Multi-StoryWindLoadDesign

WINDINTODIAPHRAGMSASUNIFORMLINEARLOADS

Multi-StoryWindLoadDesign

DIAPHRAGMSSPANBETWEEN

SHEARWALLS

WINDINTOSHEARWALLSASCONCENTRATEDLOADS

Multi-StoryWindLoadDesign

DIAPHRAGMWINDFORCESDONOTACCUMULATE-THEYAREISOLATEDATEACHLEVEL

SHEARWALLWINDFORCESDO ACCUMULATE-UPPERLEVELFORCESADDTOLOWERLEVELFORCES

DesignExample:FiveOverOneWoodFrame

Freedownloadat

woodworks.org

Multi-StoryWindDesign

ElevationSource:WoodWorks Five-StoryWood-Frame

StructureoverPodiumSlabDesignExample

Multi-StoryWindDesign

FloorPlan

Source:WoodWorks Five-StoryWood-Frame

StructureoverPodiumSlabDesignExample

Multi-StoryWindDesign

Shearwall Layout

Source:WoodWorks Five-StoryWood-Frame

StructureoverPodiumSlabDesignExample

Shearwall design

we’lllookat

Multi-StoryWindDesign

Shearwall Layout

Source:WoodWorks Five-StoryWood-Frame

StructureoverPodiumSlabDesignExample

ComponentsofShearWallDesign

Collector&DragDesign

ShearWallConstruction

ShearTransferDetailing

ShearResistance

ComponentsofShearWallDesign

Typ.ShearWallElevation

WindForcesPerStory29’-0”

10’-0”Typ.

F5

=5.2k

F4

=3.8k

F3

=3.7k

F2

=3.6k

F1

=3.4k

ComponentsofShearWallDesign

Typ.ShearWallElevation

AccumulatedWindForces29’-0”

10’-0”Typ.

F =5.2k

F=9k

F=12.7k

F=16.3k

F=19.7k

Multi-StoryShearAccumulation

• Shearforcesareadditivefromfloortofloor

• “Baseshear”atthebottomorbaseofa

structureisequaltothesumofallstoryshears

• Soleplateattachmentofeachwallmust

adequatelytransferaccumulativeshearforces

tothewall/foundationbelow

Typicalwalltowallattachment:

• Fasteners(nails,screws,etc.),angles,sheathing

Typicalwalltofoundationattachment:

• Anchorbolts

Multi-StoryShearAccumulation

Source:WoodWorks Five-Story

Wood-Frame Structureover

PodiumSlabDesignExample

Multi-StoryShearAccumulation

Source:WoodWorks Five-StoryWood-Frame

StructureoverPodiumSlabDesignExample

Designacompleteloadpath

Multi-StoryShearAccumulation

NDSTable11L&11N:Nail/ScrewCapacity;SPFSole

plate,ShearParalleltoGrain(AlongShearWall)

16dCommon:(120lb)*(1.6)=192lb12Ga.WoodScrew”:(125lb)*(1.6)=200lb

Multi-StoryShearAccumulation

Multi-StoryShearAccumulation

NDSTable11E:AnchorBoltCapacity;SYPSoleplate,

ShearParalleltoGrain(AlongShearWall)

1/2”:(680lb)*(1.6)=1088lb5/8”:(970lb)*(1.6)=1552lb3/4”:(1330lb)*(1.6)=2128lb

Shearwall Nailing

Level AccumShear

ASDShear

ASDUnitShear

WallSheathed

FastenerEdge

Spacing

Allow.Shear

5

th

Floor

5.2k 3.1k 107plf 1side 6” 336plf

4

th

Floor

9 k 5.4k 186plf 1side 6” 336plf

3

rd

Floor

12.7 k 7.6k 262plf 1side 6” 336plf

2

nd

Floor

16.3 k 9.8k 338plf 1side 4” 490plf

1

st

Floor

19.7 k 11.8k 407plf 1side 4” 490plf

Assumes15/32”RatedSheathing, 8dnails,SPFFraming

Shearwall ShearAnchorage

Level AccumShear

ASDShear

ASDUnitShear

Fastener FastenerSpacing

Allow.Shear

5

th

Floor

5.2k 3.1k 107plf 16d 2@16” 288plf

4

th

Floor

9 k 5.4k 186plf 16d 2@16” 288plf

3

rd

Floor

12.7 k 7.6k 262plf 16d 2@16” 288plf

2

nd

Floor

16.3 k 9.8k 338plf 16d 3@16” 432plf

1

st

Floor

19.7 k 11.8k 407plf ½“A.B. 2’-8” 408plf

MakingourBuildingsSafe- Wind

ComponentsofShearWallDesign

Holdown

Anchorage

BoundaryPosts

CompressionTension

OverturningResistance

OverturningForceCalculation

F =5.2k

F=9k

F=12.7k

F=16.3k

F=19.7k

T=C=F*h/L

T&Carecumulativeatlowerstories

Lismomentarm,notentirewalllength

1.9k

5.1k

9.6k

15.4k

22.5k

h

LAssumeL=29ft-1ft=28ft

SolePlateCrushing

SolePlateCrushing

Compressionforcesperpendiculartograincancauselocalized

woodcrushing.NDSvaluesforwithmetalplatebearing

onwood resultinamaximumwoodcrushingof0.04”.

Relationshipisnon-linear

SolePlateCrushing

NDSCommentaryC4.2.6:whenajointismadeoftwo

woodmembersandbothareloadedperpendicularto

grain,theamountofdeformationwillbeapproximately2.5

timesthatofametalplatetowoodjoint.

Source:WoodWorks Five-StoryWood-Frame

StructureoverPodiumSlabDesignExample

CompressionPostSize&SolePlateCrush

Level Compression RequiredBearingArea

PostSize

Story SolePlateCrush

5xSolePlateCrush

5

th

Floor 1.9k 4.4in

2

(2)-2x4 0.011” 0.057”

4

th

Floor 5.1k 11.9in

2

(2)-4x4 0.013” 0.067”

3

rd

Floor 9.6 k 22.6 in

2

(2)-4x4 0.034” 0.171”

2

nd

Floor 15.4k 36.3in

2

(3)-4x4 0.039” 0.195”

1

st

Floor 22.5k 39.8in

2

(4)-4x4 0.026” 0.13”

Floors2-5useS-P-F#2SolePlate,Fcperp

=425psi

Floor1useSYP#2SolePlate,Fcperp

=565psi

StorytoStoryCompressionForceTransfer

Source:WoodWorksFive-StoryWood-Frame

StructureoverPodiumSlabDesignExample

RimJoistBuckling&Crushing

IncreasingCompressionPostSize

Source:WoodWorksFive-StoryWood-Frame

StructureoverPodiumSlabDesignExample

OverturningTension

EqualandOppositeForces

CompressionTension

UsingDeadLoadtoResistOverturning

Source:Strongtie

Deadloadfromabove

(Wall,Floor,Roof)canbe

usedtoresistsomeorall

overturningforces,

dependingonmagnitude

Load

Combinationsof

ASCE7-10:

06.D+0.6W

ShearWallHoldown Options

StandardHoldownInstallationStrapHoldown

Installation

…………

………

Continuous RodTiedown Systems

6+kipstorytostorycapacities

13+kipcapacities

100+kipcapacities20+kips/level

ComponentsofShearWallDesign

Tensionaccumulatesinrod.Bearingplatesseelocaloverturningonly.Tensionzone

boundaryframingincompression!

Continuous RodHoldown System

Overturningrestraintat

bearingplateattopofstory

1.9k

3.2k

4.5k

5.8k

7.1k

1.9k

5.1k

9.6k

15.4k

22.5k

F =5.2k

F=9k

F=12.7k

F=16.3k

F=19.7k

ThreadedRodTieDownw/TakeUpDevice

Source:Strongtie Source:hardyframe.com

ThreadedRodTieDownw/oTakeUpDevice

Uplift ResistanceShear Wall Overturning Resistance

KeyDifferences:

• Rodlocation

• Loaddirection

• Framing

Requirements

• Loadpath

• Shrinkage/

compression

location

GraphicsSource:Strongtie

OverturningResistancevs.UpliftResistance

TieDowns:SkippedFloorsvs.AllFloors

Source:Strongtie

TieDownRodSize&Elongation

Level PlateHght

Tension RodDia.

Steel RodCapacity

RodElong.

5

th

Floor

10ft 1.9k 3/8” A36 2.4k 0.10”

4

th

Floor

10ft 5.1k 5/8” A36 6.7k 0.09”

3

rd

Floor

10ft 9.6 k 5/8” A193 14.4 k 0.18”

2

nd

Floor

10ft 15.4k 3/4” A193 20.7 k 0.19”

1

st

Floor

10ft 22.5k 7/8” A193 28.2 k 0.2”

ThreadedRodTieDown- Couplers

ReducingCoupler

Source:Strongtie

PerformanceRoute:EngineerSpecifies- Holdown Locations

- TensionandCompressionLoads

- CompressionFramingType

- Expectedbuilding shrinkageperstory

- Allowableroddeformation limits(if required)

Vendordevelopdesigns tomeettherequirements

andsubmitsstampeddesignandshopdrawings.

DetailedDesignRoute.EngineerSpecifiesitall

- Rodsizeandmaterial

- Bearingplates,couplers, shrinkage

compensators

- CompressionPosts

- Approvedalternatives,etc.

SpecifyingContinuousTie-downSystems

WABO/SEAWWhitePaperhttp://www.seaw.org/assets/docs/WhitePapers/WABO-SEAW_WP_9.pdf

BearingPlateCrushing

BearingPlateSize&Thickness

LevelBearingPlate Bearing

LoadAllow.BearingCapacity

BearingPlateCrush

W L T Hole

Area

A

brng

5

th

Floor

3 in 3.5in 3/8” 0.25

in

2

10.25

in

2

1.9k 4.4k 0.012”

4

th

Floor

3in 3.5in 3/8” 0.518

in

2

9.98in

2

3.2k 4.2 k 0.022”

3

rd

Floor

3in 5.5in 1/2” 0.518

in

2

15.98

in

2

4.5k 6.8 k 0.018”

2

nd

Floor

3in 5.5in 1/2” 0.69

in

2

15.8in

2

5.8k 6.7 k 0.03”

1

st

Floor

3 in 8.5in 7/8” 0.89

in

2

24.6in

2

7.0k 10.4k 0.014”

Shearwall Deformation– SystemStretch

Totalsystemstretch

includes:

• RodElongation

• Take-updevice

displacement

• BearingPlateCrushing

• SolePlateCrushing

Source:WoodWorks Five-StoryWood-Frame

StructureoverPodiumSlabDesignExample

AccumulativeMovement

Level RodElong.

Shrinkage SolePlateCrush

BearingPlateCrush

TakeUpDeflect.Elong.

TotalDisplac.

5

th

Floor

0.1” 0.03” 0.057” 0.012” 0.03” 0.23”

4

th

Floor

0.09” 0.03” 0.067” 0.022” 0.03” 0.24”

3

rd

Floor

0.18” 0.03” 0.171” 0.018” 0.03” 0.43”

2

nd

Floor

0.19” 0.03” 0.195” 0.03” 0.03” 0.48”

1

st

Floor

0.2” 0.03” 0.13” 0.014” 0.03” 0.4”

WithShrinkageCompensatingDevices

Shearwall TieDownElongation

SDPWSDefinitionofΔa

:“Totalverticalelongationofwallanchoragesystem(includingfastenerslip,deviceelongation,rodelongation,etc.)attheinducedunitshearinthewall.

Source:WoodWorks Five-StoryWood-Frame

StructureoverPodiumSlabDesignExample

ShearWallDeflection

SDPWS2008Eq 4.3-1

SDPWS2008Eq.C4.3.2-1

Deflection

Takecareassymbolsarenotconsistentbetweenstandards

Displacement≠Drift≠Deflection?ASCE7-1012.8

IBC2000to2015Eq.23-2

ShearWallDeflection

SDPWS2008Eq 4.3-1

SDPWS2008Eq.C4.3.2-1

Deflection

Bendingofboundaryelements

IBC2000to2015Eq.23-2

ShearWallDeflection

SDPWS2008Eq 4.3-1

SDPWS2008Eq.C4.3.2-1

Deflection

ShearDeformationofSheathingPanels&

Slipofnails@paneltopanelconnections

IBC2000to2015Eq.23-2

ShearWallDeflection

SDPWS2008Eq 4.3-1

SDPWS2008Eq.C4.3.2-1

IBC2000to2015Eq.23-2

Deflection

RigidBodyRotation

b

h

Δa

Shearwall Deflection

Level UnitShear

EndPostA

EndPostE

Ga TotalDisplace.

Deflection

5

th

Floor

179plf 10.5in

2

1400

ksi

10k/in 0.23” 0.26”

4

th

Floor

310plf 24.5in

2

1400

ksi

10k/in 0.24” 0.4”

3

rd

Floor

438plf 24.5in

2

1400

ksi

10k/in 0.43” 0.59”

2

nd

Floor

562plf 36.8in

2

1400

ksi

13k/in 0.48” 0.6”

1

st

Floor

679plf 49in

2

1400

ksi

13k/in 0.4” 0.67”

ShearWallDeflectionsInPractice

2D/3DModelingofallthecomponentsofashearwallsystemnotpracticalindesign.

ApproachesusedinMidRiseinclude:- Spreadsheets- Equivalentcantilevercolumnsmodelsin

commercialanalysissoftware- EquivalentFEMwallmodelsincommercial

analysissoftware- Proprietarycalculationsbysystem

manufacturer

SDPWS2008Eq 4.3-1

Shearwall DeflectionMethods

Multiplemethodsforcalculating

accumulativeshearwall deflection

exist

MechanicsBasedApproach:

• Usessinglestorydeflection

equationateachfloor

• Includesrotational&crushing

effects

• UsesSDPWS3partequation

Othermethodsexistwhichuse

alternatedeflectionequations,FEM

Shearwall DeflectionCriteriaforWind

Unlikeseismic,nocodeinformationexistson

deflection/driftcriteriaofstructuresduetowindloads

Serviceabilitychecktominimizedamagetocladdingand

nonstructuralwalls

ASCE7-10:C.2.2DriftofWallsandFrames.Lateraldeflectionordriftofstructuresanddeformationofhorizontaldiaphragmsandbracingsystemsduetowindeffectsshallnotimpairtheserviceabilityofthestructure.

Whatwindforceshouldbeused?Whatdriftcriteriashouldbeapplied?

Allowable=?

Shearwall DeflectionCriteriaforWind

WindForcesConsensusisthatASDdesignlevelforcesaretooconservative

forbuilding/framedriftcheckduetowind

• CommentarytoASCE7-10AppendixCsuggeststhatsome

recommendusing10yearreturnperiodwindforces:

• ~70%of700returnperiodwind(ultimatewindspeed

forriskcategoryIIbuildings)

• Others(AISCDesignGuide3)recommendusing75%of50

yearreturnperiodforces

DriftCriteriaCanvarywidelywithbrittlenessoffinishesbutgenerally

recommendationsareintherangeofH/240toH/600

DiaphragmModelingMethods

Possible Shear Wall Layouts

Typical Unit

7654321

D

C

B

A

NotusingallsharedwallsforShear

RobustDiaphragmAspectRatio

DiaphragmModelingMethods

Possible Shear Wall Layouts

Typical Unit

7654321

D

C

B

A

Butmaybenotmuchwallavailableonexterior

RobustDiaphragmAspectRatio

LightFrameWoodDiaphragmsoftendefaulttoFlexibleDiaphragms

CodeBasis:ASCE7-1026.2Definitions(Wind)Diaphragmsconstructedofwoodstructuralpanelsarepermittedtobeidealizedasflexible

CodeBasis:ASCE7-1012.3.1.1(Seismic)Diaphragmsconstructedofuntopped steeldeckingorwoodstructuralpanelsarepermittedtobeidealizedasflexibleifanyofthefollowingconditionsexist:[…]c.Instructuresoflight-frameconstructionwhereallofthefollowingconditionsaremet:

1.Toppingofconcreteorsimilarmaterialsisnotplacedoverwoodstructuralpaneldiaphragmsexceptfornonstructural toppingnogreaterthan11/2in.thick.2.EachlineofverticalelementsoftheseismicforceresistingsystemcomplieswiththeallowablestorydriftofTable12.12-1..

RigidorFlexibleDiaphragm?

Hypothetical FlexibleDiaphragm Distribution

Typical Unit

7654321

D

C

B

A

Areatributarytocorridorwallline

Areatributarytoexteriorwall

line

23%

23%

27%

27%

Largeportionofloadonlittle

wall

Changing wall construction does NOT impact load to wall line

Hypothetical RigidDiaphragm Distribution

Typical Unit

7654321

D

C

B

A

Longer,stifferwallsreceivemoreload

Diaphragmassumedtoberigidbody.

10%

10%

40%

40%

Narrow,flexiblewallsreceiveless

load

Changing wall construction impacts load to wall line

ASCE7-1012.3.1.3(Seismic)

[Diaphragms]arepermittedtobeidealizedasflexible wherethecomputedmaximumin-planedeflectionofthediaphragmunderlateralloadismorethantwotimestheaveragestorydriftofadjoiningverticalelementsoftheseismicforce-resistingsystemoftheassociatedstoryunderequivalenttributarylateralloadasshowninFig.12.3-1.

IBC2012Chapter2Definition(Wind&Seismic)

Adiaphragmisrigid forthepurposeofdistributionofstoryshearandtorsionalmomentwhenthelateraldeformationofthediaphragmislessthanorequaltotwotimestheaveragestorydrift.

CanaRigidDiaphragmbeJustified?

Average drift of walls

Maximum diaphragm deflection

SomeAdvantagesofRigidDiaphragm

• Moreload(plf)tolongerinterior/corridorwalls

• Lessload(plf)tonarrowwallswhereoverturningrestraintistougher

• Cantuneloadstowallsandwalllinesbychangingstiffnessofwalls

SomeDisadvantagesofRigidDiaphragm

• Considerationsoftorsionalloadingnecessary

• Morecomplicatedcalculationstodistributeloadtoshearwalls

• Mayunderestimate“Real”loadstonarrowexteriorwalls

• Justificationofrigidassumption

RigidDiaphragmAnalysis

Semi-RigidDiaphragmAnalysis

• Neitheridealizedflexiblenoridealizedrigid

• Explicitmodelingofdiaphragmdeformationswithshearwall

deformationstodistributelateralloads

• Noteasy.

EnvelopingMethod

• IdealizedasBOTHflexibleandrigid.

• Individualcomponentsdesignedforworstcasefromeachapproach

• Beenaroundawhile,officiallyrecognizedinthe2015SDPWS

TwoMoreDiaphragmApproaches

Possible Shear Wall Layouts

Typical Unit

7654321

D

C

B

A

TheCantileverDiaphragmOption

Possible Shear Wall Layouts

Typical Unit

7654321

D

C

B

A

RobustAspectRatiobutonlysupportedon

3sides…

OpenFrontStructure CantileverDiaphragm

CantileveredDiaphragmsinSDPWS2008

AWCSDPWS2008Figure4A

AWCSDPWS2008Figure4B

OpenFrontStructure

SDPWS4.2.5.1.1

L≤25ft

L/W≤1,onestory

≤2/3,multi-story

CantileveredDiaphragmsinSDPWS2008

Exception:Wherecalculationsshowthediaphragm

deflectionscanbetolerated,thelength,L,canbe

increasedtoL/W≤1.5forWSPsheatheddiaphragms.

CantileveredDiaphragm

SDPWS4.2.5.2

Lc ≤25ft

Lc/W≤2/3

CantileveredDiaphragmsinSDPWS2008

Possible Shear Wall Layouts

Typical Unit

7654321

D

C

B

A

OpenFrontStructureorCantileveredDiaphragm?

CantileveredDiaphragmsinSDPWS2015

OpenFrontStructurewithaCantileveredDiaphragm

AWCSDPWS2015Figure4A

CantileveredDiaphragm SDPWS4.2.5.2

L’/W’≤1.5

WhenTorsionally Irregular

L’/W’≤1,onestory

2/3,multi-story

L’≤35 ft

OpenFrontStructure&CantileveredDiaphragmsinSDPWS2015

Provideddiaphragmsmodelledasrigidorsemi-rigidandfor

seismic,thestorydriftateachedgeofthestructurewithin

allowablestorydriftofASCE7.Storydriftsincludetorsionand

accidentaltorsionalloadsanddeformationsofthediaphragm.

CantileveredDiaphragm SDPWS4.2.5.2

L’/W’≤1.5

WhenTorsionally Irregular

L’/W’≤1,onestory

≤2/3,multi-story

L’≤35 ft

OpenFrontStructure&CantileveredDiaphragmsinSDPWS2015

IfL’≤6ft ,sectiondoesn’tapply.Exception:

WindLoadDistributiontoShearwalls

TieDownAttachmenttoConcrete

Source:Strongtie

TieDownBoltwithWasher

Source:Strongtie

TieDownBoltwithWasher

Source:Strongtie

TieDownBoltwithWasher- Reinforcing

Source:Strongtie

TieDownAnchorChairinCastSlab

Source:EarthboundAnchors

ReinforcingAroundAnchorChairs

Source:EarthboundAnchors

EmbeddedSteelPlates– WeldonRods

TieDownAnchors– PrecastThroughBolt

TieDownAnchors– ThroughPodium

DiscontinuousShearWalls

Photocredit:MattTodd&PBArchitects

Karuna IHolst Architecture

Photo: Terry Malone

LateralLoadPathContinuity:WallElevation

ShearWall

ShearWall

Header

Header

Headerdistributes

uppershearwall

endpost

concentratedload

towallbelow

Headeralso

distributesupper

shearwallshearto

wallbelow

Postsinlower

walltransfer

upperwallend

post

concentrated

loadsto

foundation

Wallplatesactas

dragstrutsto

transfershear

loadsfromupper

walltolower

wall

Note:anymember

supporting a

discontinuous wall

mustbedesigned for

theover-strength

factorunderASCE7-

10Section12.3.3.3,

forSDCB-F

OffsetShearWallOverturningResistance

Source:FEMA55

OffsetShearWallOverturningResistance

Source:Strongtie

TieDowntoSteelBeamAttachment

Source:Strongtie

TieDowntoSteelBeamAttachment

ShearWalltoPodiumSlabInterface

ASCE7-10Section12.3.3.3andCommentaryC12.3.3.3

providesguidanceonseismicloadrequirementsforvarious

elementssupportingdiscontinuousshearwalls

Recap

• WindLoadPaths

• Multi-StoryStackedShearWallEffects

• AccumulationofOverturningLoads

• ShearWallDeflection

• DiaphragmModeling

• DiscontinuousShearWalls

Questions?

ThisconcludesThe

AmericanInstituteof

ArchitectsContinuing

EducationSystems

Course

RickyMcLain,MS,PE,SE

WoodWorks

[email protected]

(802)498-3310

Visitwww.woodworks.org formoreeducationalmaterials,casestudies,designexamples,aprojectgallery,andmore

ThispresentationisprotectedbyUS

andInternationalCopyrightlaws.

Reproduction,distribution,displayanduseof

thepresentationwithoutwrittenpermission

ofthespeakerisprohibited.

©TheWoodProductsCouncil2017

CopyrightMaterials